]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk: remove bio_set arg from blk_queue_split()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146
147 /* device mapper special case, should not leak out: */
148 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
149
150 /* everything else not covered above: */
151 [BLK_STS_IOERR] = { -EIO, "I/O" },
152 };
153
154 blk_status_t errno_to_blk_status(int errno)
155 {
156 int i;
157
158 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
159 if (blk_errors[i].errno == errno)
160 return (__force blk_status_t)i;
161 }
162
163 return BLK_STS_IOERR;
164 }
165 EXPORT_SYMBOL_GPL(errno_to_blk_status);
166
167 int blk_status_to_errno(blk_status_t status)
168 {
169 int idx = (__force int)status;
170
171 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
172 return -EIO;
173 return blk_errors[idx].errno;
174 }
175 EXPORT_SYMBOL_GPL(blk_status_to_errno);
176
177 static void print_req_error(struct request *req, blk_status_t status)
178 {
179 int idx = (__force int)status;
180
181 if (WARN_ON_ONCE(idx > ARRAY_SIZE(blk_errors)))
182 return;
183
184 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
185 __func__, blk_errors[idx].name, req->rq_disk ?
186 req->rq_disk->disk_name : "?",
187 (unsigned long long)blk_rq_pos(req));
188 }
189
190 static void req_bio_endio(struct request *rq, struct bio *bio,
191 unsigned int nbytes, blk_status_t error)
192 {
193 if (error)
194 bio->bi_status = error;
195
196 if (unlikely(rq->rq_flags & RQF_QUIET))
197 bio_set_flag(bio, BIO_QUIET);
198
199 bio_advance(bio, nbytes);
200
201 /* don't actually finish bio if it's part of flush sequence */
202 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
203 bio_endio(bio);
204 }
205
206 void blk_dump_rq_flags(struct request *rq, char *msg)
207 {
208 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
209 rq->rq_disk ? rq->rq_disk->disk_name : "?",
210 (unsigned long long) rq->cmd_flags);
211
212 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
213 (unsigned long long)blk_rq_pos(rq),
214 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
215 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
216 rq->bio, rq->biotail, blk_rq_bytes(rq));
217 }
218 EXPORT_SYMBOL(blk_dump_rq_flags);
219
220 static void blk_delay_work(struct work_struct *work)
221 {
222 struct request_queue *q;
223
224 q = container_of(work, struct request_queue, delay_work.work);
225 spin_lock_irq(q->queue_lock);
226 __blk_run_queue(q);
227 spin_unlock_irq(q->queue_lock);
228 }
229
230 /**
231 * blk_delay_queue - restart queueing after defined interval
232 * @q: The &struct request_queue in question
233 * @msecs: Delay in msecs
234 *
235 * Description:
236 * Sometimes queueing needs to be postponed for a little while, to allow
237 * resources to come back. This function will make sure that queueing is
238 * restarted around the specified time. Queue lock must be held.
239 */
240 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
241 {
242 if (likely(!blk_queue_dead(q)))
243 queue_delayed_work(kblockd_workqueue, &q->delay_work,
244 msecs_to_jiffies(msecs));
245 }
246 EXPORT_SYMBOL(blk_delay_queue);
247
248 /**
249 * blk_start_queue_async - asynchronously restart a previously stopped queue
250 * @q: The &struct request_queue in question
251 *
252 * Description:
253 * blk_start_queue_async() will clear the stop flag on the queue, and
254 * ensure that the request_fn for the queue is run from an async
255 * context.
256 **/
257 void blk_start_queue_async(struct request_queue *q)
258 {
259 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
260 blk_run_queue_async(q);
261 }
262 EXPORT_SYMBOL(blk_start_queue_async);
263
264 /**
265 * blk_start_queue - restart a previously stopped queue
266 * @q: The &struct request_queue in question
267 *
268 * Description:
269 * blk_start_queue() will clear the stop flag on the queue, and call
270 * the request_fn for the queue if it was in a stopped state when
271 * entered. Also see blk_stop_queue(). Queue lock must be held.
272 **/
273 void blk_start_queue(struct request_queue *q)
274 {
275 WARN_ON(!irqs_disabled());
276
277 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
278 __blk_run_queue(q);
279 }
280 EXPORT_SYMBOL(blk_start_queue);
281
282 /**
283 * blk_stop_queue - stop a queue
284 * @q: The &struct request_queue in question
285 *
286 * Description:
287 * The Linux block layer assumes that a block driver will consume all
288 * entries on the request queue when the request_fn strategy is called.
289 * Often this will not happen, because of hardware limitations (queue
290 * depth settings). If a device driver gets a 'queue full' response,
291 * or if it simply chooses not to queue more I/O at one point, it can
292 * call this function to prevent the request_fn from being called until
293 * the driver has signalled it's ready to go again. This happens by calling
294 * blk_start_queue() to restart queue operations. Queue lock must be held.
295 **/
296 void blk_stop_queue(struct request_queue *q)
297 {
298 cancel_delayed_work(&q->delay_work);
299 queue_flag_set(QUEUE_FLAG_STOPPED, q);
300 }
301 EXPORT_SYMBOL(blk_stop_queue);
302
303 /**
304 * blk_sync_queue - cancel any pending callbacks on a queue
305 * @q: the queue
306 *
307 * Description:
308 * The block layer may perform asynchronous callback activity
309 * on a queue, such as calling the unplug function after a timeout.
310 * A block device may call blk_sync_queue to ensure that any
311 * such activity is cancelled, thus allowing it to release resources
312 * that the callbacks might use. The caller must already have made sure
313 * that its ->make_request_fn will not re-add plugging prior to calling
314 * this function.
315 *
316 * This function does not cancel any asynchronous activity arising
317 * out of elevator or throttling code. That would require elevator_exit()
318 * and blkcg_exit_queue() to be called with queue lock initialized.
319 *
320 */
321 void blk_sync_queue(struct request_queue *q)
322 {
323 del_timer_sync(&q->timeout);
324
325 if (q->mq_ops) {
326 struct blk_mq_hw_ctx *hctx;
327 int i;
328
329 queue_for_each_hw_ctx(q, hctx, i)
330 cancel_delayed_work_sync(&hctx->run_work);
331 } else {
332 cancel_delayed_work_sync(&q->delay_work);
333 }
334 }
335 EXPORT_SYMBOL(blk_sync_queue);
336
337 /**
338 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
339 * @q: The queue to run
340 *
341 * Description:
342 * Invoke request handling on a queue if there are any pending requests.
343 * May be used to restart request handling after a request has completed.
344 * This variant runs the queue whether or not the queue has been
345 * stopped. Must be called with the queue lock held and interrupts
346 * disabled. See also @blk_run_queue.
347 */
348 inline void __blk_run_queue_uncond(struct request_queue *q)
349 {
350 if (unlikely(blk_queue_dead(q)))
351 return;
352
353 /*
354 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
355 * the queue lock internally. As a result multiple threads may be
356 * running such a request function concurrently. Keep track of the
357 * number of active request_fn invocations such that blk_drain_queue()
358 * can wait until all these request_fn calls have finished.
359 */
360 q->request_fn_active++;
361 q->request_fn(q);
362 q->request_fn_active--;
363 }
364 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
365
366 /**
367 * __blk_run_queue - run a single device queue
368 * @q: The queue to run
369 *
370 * Description:
371 * See @blk_run_queue. This variant must be called with the queue lock
372 * held and interrupts disabled.
373 */
374 void __blk_run_queue(struct request_queue *q)
375 {
376 if (unlikely(blk_queue_stopped(q)))
377 return;
378
379 __blk_run_queue_uncond(q);
380 }
381 EXPORT_SYMBOL(__blk_run_queue);
382
383 /**
384 * blk_run_queue_async - run a single device queue in workqueue context
385 * @q: The queue to run
386 *
387 * Description:
388 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
389 * of us. The caller must hold the queue lock.
390 */
391 void blk_run_queue_async(struct request_queue *q)
392 {
393 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
394 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
395 }
396 EXPORT_SYMBOL(blk_run_queue_async);
397
398 /**
399 * blk_run_queue - run a single device queue
400 * @q: The queue to run
401 *
402 * Description:
403 * Invoke request handling on this queue, if it has pending work to do.
404 * May be used to restart queueing when a request has completed.
405 */
406 void blk_run_queue(struct request_queue *q)
407 {
408 unsigned long flags;
409
410 spin_lock_irqsave(q->queue_lock, flags);
411 __blk_run_queue(q);
412 spin_unlock_irqrestore(q->queue_lock, flags);
413 }
414 EXPORT_SYMBOL(blk_run_queue);
415
416 void blk_put_queue(struct request_queue *q)
417 {
418 kobject_put(&q->kobj);
419 }
420 EXPORT_SYMBOL(blk_put_queue);
421
422 /**
423 * __blk_drain_queue - drain requests from request_queue
424 * @q: queue to drain
425 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
426 *
427 * Drain requests from @q. If @drain_all is set, all requests are drained.
428 * If not, only ELVPRIV requests are drained. The caller is responsible
429 * for ensuring that no new requests which need to be drained are queued.
430 */
431 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
432 __releases(q->queue_lock)
433 __acquires(q->queue_lock)
434 {
435 int i;
436
437 lockdep_assert_held(q->queue_lock);
438
439 while (true) {
440 bool drain = false;
441
442 /*
443 * The caller might be trying to drain @q before its
444 * elevator is initialized.
445 */
446 if (q->elevator)
447 elv_drain_elevator(q);
448
449 blkcg_drain_queue(q);
450
451 /*
452 * This function might be called on a queue which failed
453 * driver init after queue creation or is not yet fully
454 * active yet. Some drivers (e.g. fd and loop) get unhappy
455 * in such cases. Kick queue iff dispatch queue has
456 * something on it and @q has request_fn set.
457 */
458 if (!list_empty(&q->queue_head) && q->request_fn)
459 __blk_run_queue(q);
460
461 drain |= q->nr_rqs_elvpriv;
462 drain |= q->request_fn_active;
463
464 /*
465 * Unfortunately, requests are queued at and tracked from
466 * multiple places and there's no single counter which can
467 * be drained. Check all the queues and counters.
468 */
469 if (drain_all) {
470 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
471 drain |= !list_empty(&q->queue_head);
472 for (i = 0; i < 2; i++) {
473 drain |= q->nr_rqs[i];
474 drain |= q->in_flight[i];
475 if (fq)
476 drain |= !list_empty(&fq->flush_queue[i]);
477 }
478 }
479
480 if (!drain)
481 break;
482
483 spin_unlock_irq(q->queue_lock);
484
485 msleep(10);
486
487 spin_lock_irq(q->queue_lock);
488 }
489
490 /*
491 * With queue marked dead, any woken up waiter will fail the
492 * allocation path, so the wakeup chaining is lost and we're
493 * left with hung waiters. We need to wake up those waiters.
494 */
495 if (q->request_fn) {
496 struct request_list *rl;
497
498 blk_queue_for_each_rl(rl, q)
499 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
500 wake_up_all(&rl->wait[i]);
501 }
502 }
503
504 /**
505 * blk_queue_bypass_start - enter queue bypass mode
506 * @q: queue of interest
507 *
508 * In bypass mode, only the dispatch FIFO queue of @q is used. This
509 * function makes @q enter bypass mode and drains all requests which were
510 * throttled or issued before. On return, it's guaranteed that no request
511 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
512 * inside queue or RCU read lock.
513 */
514 void blk_queue_bypass_start(struct request_queue *q)
515 {
516 spin_lock_irq(q->queue_lock);
517 q->bypass_depth++;
518 queue_flag_set(QUEUE_FLAG_BYPASS, q);
519 spin_unlock_irq(q->queue_lock);
520
521 /*
522 * Queues start drained. Skip actual draining till init is
523 * complete. This avoids lenghty delays during queue init which
524 * can happen many times during boot.
525 */
526 if (blk_queue_init_done(q)) {
527 spin_lock_irq(q->queue_lock);
528 __blk_drain_queue(q, false);
529 spin_unlock_irq(q->queue_lock);
530
531 /* ensure blk_queue_bypass() is %true inside RCU read lock */
532 synchronize_rcu();
533 }
534 }
535 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
536
537 /**
538 * blk_queue_bypass_end - leave queue bypass mode
539 * @q: queue of interest
540 *
541 * Leave bypass mode and restore the normal queueing behavior.
542 */
543 void blk_queue_bypass_end(struct request_queue *q)
544 {
545 spin_lock_irq(q->queue_lock);
546 if (!--q->bypass_depth)
547 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
548 WARN_ON_ONCE(q->bypass_depth < 0);
549 spin_unlock_irq(q->queue_lock);
550 }
551 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
552
553 void blk_set_queue_dying(struct request_queue *q)
554 {
555 spin_lock_irq(q->queue_lock);
556 queue_flag_set(QUEUE_FLAG_DYING, q);
557 spin_unlock_irq(q->queue_lock);
558
559 /*
560 * When queue DYING flag is set, we need to block new req
561 * entering queue, so we call blk_freeze_queue_start() to
562 * prevent I/O from crossing blk_queue_enter().
563 */
564 blk_freeze_queue_start(q);
565
566 if (q->mq_ops)
567 blk_mq_wake_waiters(q);
568 else {
569 struct request_list *rl;
570
571 spin_lock_irq(q->queue_lock);
572 blk_queue_for_each_rl(rl, q) {
573 if (rl->rq_pool) {
574 wake_up(&rl->wait[BLK_RW_SYNC]);
575 wake_up(&rl->wait[BLK_RW_ASYNC]);
576 }
577 }
578 spin_unlock_irq(q->queue_lock);
579 }
580 }
581 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
582
583 /**
584 * blk_cleanup_queue - shutdown a request queue
585 * @q: request queue to shutdown
586 *
587 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
588 * put it. All future requests will be failed immediately with -ENODEV.
589 */
590 void blk_cleanup_queue(struct request_queue *q)
591 {
592 spinlock_t *lock = q->queue_lock;
593
594 /* mark @q DYING, no new request or merges will be allowed afterwards */
595 mutex_lock(&q->sysfs_lock);
596 blk_set_queue_dying(q);
597 spin_lock_irq(lock);
598
599 /*
600 * A dying queue is permanently in bypass mode till released. Note
601 * that, unlike blk_queue_bypass_start(), we aren't performing
602 * synchronize_rcu() after entering bypass mode to avoid the delay
603 * as some drivers create and destroy a lot of queues while
604 * probing. This is still safe because blk_release_queue() will be
605 * called only after the queue refcnt drops to zero and nothing,
606 * RCU or not, would be traversing the queue by then.
607 */
608 q->bypass_depth++;
609 queue_flag_set(QUEUE_FLAG_BYPASS, q);
610
611 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
612 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
613 queue_flag_set(QUEUE_FLAG_DYING, q);
614 spin_unlock_irq(lock);
615 mutex_unlock(&q->sysfs_lock);
616
617 /*
618 * Drain all requests queued before DYING marking. Set DEAD flag to
619 * prevent that q->request_fn() gets invoked after draining finished.
620 */
621 blk_freeze_queue(q);
622 spin_lock_irq(lock);
623 if (!q->mq_ops)
624 __blk_drain_queue(q, true);
625 queue_flag_set(QUEUE_FLAG_DEAD, q);
626 spin_unlock_irq(lock);
627
628 /* for synchronous bio-based driver finish in-flight integrity i/o */
629 blk_flush_integrity();
630
631 /* @q won't process any more request, flush async actions */
632 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
633 blk_sync_queue(q);
634
635 if (q->mq_ops)
636 blk_mq_free_queue(q);
637 percpu_ref_exit(&q->q_usage_counter);
638
639 spin_lock_irq(lock);
640 if (q->queue_lock != &q->__queue_lock)
641 q->queue_lock = &q->__queue_lock;
642 spin_unlock_irq(lock);
643
644 /* @q is and will stay empty, shutdown and put */
645 blk_put_queue(q);
646 }
647 EXPORT_SYMBOL(blk_cleanup_queue);
648
649 /* Allocate memory local to the request queue */
650 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
651 {
652 struct request_queue *q = data;
653
654 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
655 }
656
657 static void free_request_simple(void *element, void *data)
658 {
659 kmem_cache_free(request_cachep, element);
660 }
661
662 static void *alloc_request_size(gfp_t gfp_mask, void *data)
663 {
664 struct request_queue *q = data;
665 struct request *rq;
666
667 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
668 q->node);
669 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
670 kfree(rq);
671 rq = NULL;
672 }
673 return rq;
674 }
675
676 static void free_request_size(void *element, void *data)
677 {
678 struct request_queue *q = data;
679
680 if (q->exit_rq_fn)
681 q->exit_rq_fn(q, element);
682 kfree(element);
683 }
684
685 int blk_init_rl(struct request_list *rl, struct request_queue *q,
686 gfp_t gfp_mask)
687 {
688 if (unlikely(rl->rq_pool))
689 return 0;
690
691 rl->q = q;
692 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
693 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
694 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
695 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
696
697 if (q->cmd_size) {
698 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
699 alloc_request_size, free_request_size,
700 q, gfp_mask, q->node);
701 } else {
702 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
703 alloc_request_simple, free_request_simple,
704 q, gfp_mask, q->node);
705 }
706 if (!rl->rq_pool)
707 return -ENOMEM;
708
709 if (rl != &q->root_rl)
710 WARN_ON_ONCE(!blk_get_queue(q));
711
712 return 0;
713 }
714
715 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
716 {
717 if (rl->rq_pool) {
718 mempool_destroy(rl->rq_pool);
719 if (rl != &q->root_rl)
720 blk_put_queue(q);
721 }
722 }
723
724 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
725 {
726 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
727 }
728 EXPORT_SYMBOL(blk_alloc_queue);
729
730 int blk_queue_enter(struct request_queue *q, bool nowait)
731 {
732 while (true) {
733 int ret;
734
735 if (percpu_ref_tryget_live(&q->q_usage_counter))
736 return 0;
737
738 if (nowait)
739 return -EBUSY;
740
741 /*
742 * read pair of barrier in blk_freeze_queue_start(),
743 * we need to order reading __PERCPU_REF_DEAD flag of
744 * .q_usage_counter and reading .mq_freeze_depth or
745 * queue dying flag, otherwise the following wait may
746 * never return if the two reads are reordered.
747 */
748 smp_rmb();
749
750 ret = wait_event_interruptible(q->mq_freeze_wq,
751 !atomic_read(&q->mq_freeze_depth) ||
752 blk_queue_dying(q));
753 if (blk_queue_dying(q))
754 return -ENODEV;
755 if (ret)
756 return ret;
757 }
758 }
759
760 void blk_queue_exit(struct request_queue *q)
761 {
762 percpu_ref_put(&q->q_usage_counter);
763 }
764
765 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
766 {
767 struct request_queue *q =
768 container_of(ref, struct request_queue, q_usage_counter);
769
770 wake_up_all(&q->mq_freeze_wq);
771 }
772
773 static void blk_rq_timed_out_timer(unsigned long data)
774 {
775 struct request_queue *q = (struct request_queue *)data;
776
777 kblockd_schedule_work(&q->timeout_work);
778 }
779
780 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
781 {
782 struct request_queue *q;
783
784 q = kmem_cache_alloc_node(blk_requestq_cachep,
785 gfp_mask | __GFP_ZERO, node_id);
786 if (!q)
787 return NULL;
788
789 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
790 if (q->id < 0)
791 goto fail_q;
792
793 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
794 if (!q->bio_split)
795 goto fail_id;
796
797 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
798 if (!q->backing_dev_info)
799 goto fail_split;
800
801 q->stats = blk_alloc_queue_stats();
802 if (!q->stats)
803 goto fail_stats;
804
805 q->backing_dev_info->ra_pages =
806 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
807 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
808 q->backing_dev_info->name = "block";
809 q->node = node_id;
810
811 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
812 laptop_mode_timer_fn, (unsigned long) q);
813 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
814 INIT_LIST_HEAD(&q->queue_head);
815 INIT_LIST_HEAD(&q->timeout_list);
816 INIT_LIST_HEAD(&q->icq_list);
817 #ifdef CONFIG_BLK_CGROUP
818 INIT_LIST_HEAD(&q->blkg_list);
819 #endif
820 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
821
822 kobject_init(&q->kobj, &blk_queue_ktype);
823
824 mutex_init(&q->sysfs_lock);
825 spin_lock_init(&q->__queue_lock);
826
827 /*
828 * By default initialize queue_lock to internal lock and driver can
829 * override it later if need be.
830 */
831 q->queue_lock = &q->__queue_lock;
832
833 /*
834 * A queue starts its life with bypass turned on to avoid
835 * unnecessary bypass on/off overhead and nasty surprises during
836 * init. The initial bypass will be finished when the queue is
837 * registered by blk_register_queue().
838 */
839 q->bypass_depth = 1;
840 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
841
842 init_waitqueue_head(&q->mq_freeze_wq);
843
844 /*
845 * Init percpu_ref in atomic mode so that it's faster to shutdown.
846 * See blk_register_queue() for details.
847 */
848 if (percpu_ref_init(&q->q_usage_counter,
849 blk_queue_usage_counter_release,
850 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
851 goto fail_bdi;
852
853 if (blkcg_init_queue(q))
854 goto fail_ref;
855
856 return q;
857
858 fail_ref:
859 percpu_ref_exit(&q->q_usage_counter);
860 fail_bdi:
861 blk_free_queue_stats(q->stats);
862 fail_stats:
863 bdi_put(q->backing_dev_info);
864 fail_split:
865 bioset_free(q->bio_split);
866 fail_id:
867 ida_simple_remove(&blk_queue_ida, q->id);
868 fail_q:
869 kmem_cache_free(blk_requestq_cachep, q);
870 return NULL;
871 }
872 EXPORT_SYMBOL(blk_alloc_queue_node);
873
874 /**
875 * blk_init_queue - prepare a request queue for use with a block device
876 * @rfn: The function to be called to process requests that have been
877 * placed on the queue.
878 * @lock: Request queue spin lock
879 *
880 * Description:
881 * If a block device wishes to use the standard request handling procedures,
882 * which sorts requests and coalesces adjacent requests, then it must
883 * call blk_init_queue(). The function @rfn will be called when there
884 * are requests on the queue that need to be processed. If the device
885 * supports plugging, then @rfn may not be called immediately when requests
886 * are available on the queue, but may be called at some time later instead.
887 * Plugged queues are generally unplugged when a buffer belonging to one
888 * of the requests on the queue is needed, or due to memory pressure.
889 *
890 * @rfn is not required, or even expected, to remove all requests off the
891 * queue, but only as many as it can handle at a time. If it does leave
892 * requests on the queue, it is responsible for arranging that the requests
893 * get dealt with eventually.
894 *
895 * The queue spin lock must be held while manipulating the requests on the
896 * request queue; this lock will be taken also from interrupt context, so irq
897 * disabling is needed for it.
898 *
899 * Function returns a pointer to the initialized request queue, or %NULL if
900 * it didn't succeed.
901 *
902 * Note:
903 * blk_init_queue() must be paired with a blk_cleanup_queue() call
904 * when the block device is deactivated (such as at module unload).
905 **/
906
907 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
908 {
909 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
910 }
911 EXPORT_SYMBOL(blk_init_queue);
912
913 struct request_queue *
914 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
915 {
916 struct request_queue *q;
917
918 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
919 if (!q)
920 return NULL;
921
922 q->request_fn = rfn;
923 if (lock)
924 q->queue_lock = lock;
925 if (blk_init_allocated_queue(q) < 0) {
926 blk_cleanup_queue(q);
927 return NULL;
928 }
929
930 return q;
931 }
932 EXPORT_SYMBOL(blk_init_queue_node);
933
934 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
935
936
937 int blk_init_allocated_queue(struct request_queue *q)
938 {
939 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
940 if (!q->fq)
941 return -ENOMEM;
942
943 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
944 goto out_free_flush_queue;
945
946 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
947 goto out_exit_flush_rq;
948
949 INIT_WORK(&q->timeout_work, blk_timeout_work);
950 q->queue_flags |= QUEUE_FLAG_DEFAULT;
951
952 /*
953 * This also sets hw/phys segments, boundary and size
954 */
955 blk_queue_make_request(q, blk_queue_bio);
956
957 q->sg_reserved_size = INT_MAX;
958
959 /* Protect q->elevator from elevator_change */
960 mutex_lock(&q->sysfs_lock);
961
962 /* init elevator */
963 if (elevator_init(q, NULL)) {
964 mutex_unlock(&q->sysfs_lock);
965 goto out_exit_flush_rq;
966 }
967
968 mutex_unlock(&q->sysfs_lock);
969 return 0;
970
971 out_exit_flush_rq:
972 if (q->exit_rq_fn)
973 q->exit_rq_fn(q, q->fq->flush_rq);
974 out_free_flush_queue:
975 blk_free_flush_queue(q->fq);
976 return -ENOMEM;
977 }
978 EXPORT_SYMBOL(blk_init_allocated_queue);
979
980 bool blk_get_queue(struct request_queue *q)
981 {
982 if (likely(!blk_queue_dying(q))) {
983 __blk_get_queue(q);
984 return true;
985 }
986
987 return false;
988 }
989 EXPORT_SYMBOL(blk_get_queue);
990
991 static inline void blk_free_request(struct request_list *rl, struct request *rq)
992 {
993 if (rq->rq_flags & RQF_ELVPRIV) {
994 elv_put_request(rl->q, rq);
995 if (rq->elv.icq)
996 put_io_context(rq->elv.icq->ioc);
997 }
998
999 mempool_free(rq, rl->rq_pool);
1000 }
1001
1002 /*
1003 * ioc_batching returns true if the ioc is a valid batching request and
1004 * should be given priority access to a request.
1005 */
1006 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1007 {
1008 if (!ioc)
1009 return 0;
1010
1011 /*
1012 * Make sure the process is able to allocate at least 1 request
1013 * even if the batch times out, otherwise we could theoretically
1014 * lose wakeups.
1015 */
1016 return ioc->nr_batch_requests == q->nr_batching ||
1017 (ioc->nr_batch_requests > 0
1018 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1019 }
1020
1021 /*
1022 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1023 * will cause the process to be a "batcher" on all queues in the system. This
1024 * is the behaviour we want though - once it gets a wakeup it should be given
1025 * a nice run.
1026 */
1027 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1028 {
1029 if (!ioc || ioc_batching(q, ioc))
1030 return;
1031
1032 ioc->nr_batch_requests = q->nr_batching;
1033 ioc->last_waited = jiffies;
1034 }
1035
1036 static void __freed_request(struct request_list *rl, int sync)
1037 {
1038 struct request_queue *q = rl->q;
1039
1040 if (rl->count[sync] < queue_congestion_off_threshold(q))
1041 blk_clear_congested(rl, sync);
1042
1043 if (rl->count[sync] + 1 <= q->nr_requests) {
1044 if (waitqueue_active(&rl->wait[sync]))
1045 wake_up(&rl->wait[sync]);
1046
1047 blk_clear_rl_full(rl, sync);
1048 }
1049 }
1050
1051 /*
1052 * A request has just been released. Account for it, update the full and
1053 * congestion status, wake up any waiters. Called under q->queue_lock.
1054 */
1055 static void freed_request(struct request_list *rl, bool sync,
1056 req_flags_t rq_flags)
1057 {
1058 struct request_queue *q = rl->q;
1059
1060 q->nr_rqs[sync]--;
1061 rl->count[sync]--;
1062 if (rq_flags & RQF_ELVPRIV)
1063 q->nr_rqs_elvpriv--;
1064
1065 __freed_request(rl, sync);
1066
1067 if (unlikely(rl->starved[sync ^ 1]))
1068 __freed_request(rl, sync ^ 1);
1069 }
1070
1071 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1072 {
1073 struct request_list *rl;
1074 int on_thresh, off_thresh;
1075
1076 spin_lock_irq(q->queue_lock);
1077 q->nr_requests = nr;
1078 blk_queue_congestion_threshold(q);
1079 on_thresh = queue_congestion_on_threshold(q);
1080 off_thresh = queue_congestion_off_threshold(q);
1081
1082 blk_queue_for_each_rl(rl, q) {
1083 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1084 blk_set_congested(rl, BLK_RW_SYNC);
1085 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1086 blk_clear_congested(rl, BLK_RW_SYNC);
1087
1088 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1089 blk_set_congested(rl, BLK_RW_ASYNC);
1090 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1091 blk_clear_congested(rl, BLK_RW_ASYNC);
1092
1093 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1094 blk_set_rl_full(rl, BLK_RW_SYNC);
1095 } else {
1096 blk_clear_rl_full(rl, BLK_RW_SYNC);
1097 wake_up(&rl->wait[BLK_RW_SYNC]);
1098 }
1099
1100 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1101 blk_set_rl_full(rl, BLK_RW_ASYNC);
1102 } else {
1103 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1104 wake_up(&rl->wait[BLK_RW_ASYNC]);
1105 }
1106 }
1107
1108 spin_unlock_irq(q->queue_lock);
1109 return 0;
1110 }
1111
1112 /**
1113 * __get_request - get a free request
1114 * @rl: request list to allocate from
1115 * @op: operation and flags
1116 * @bio: bio to allocate request for (can be %NULL)
1117 * @gfp_mask: allocation mask
1118 *
1119 * Get a free request from @q. This function may fail under memory
1120 * pressure or if @q is dead.
1121 *
1122 * Must be called with @q->queue_lock held and,
1123 * Returns ERR_PTR on failure, with @q->queue_lock held.
1124 * Returns request pointer on success, with @q->queue_lock *not held*.
1125 */
1126 static struct request *__get_request(struct request_list *rl, unsigned int op,
1127 struct bio *bio, gfp_t gfp_mask)
1128 {
1129 struct request_queue *q = rl->q;
1130 struct request *rq;
1131 struct elevator_type *et = q->elevator->type;
1132 struct io_context *ioc = rq_ioc(bio);
1133 struct io_cq *icq = NULL;
1134 const bool is_sync = op_is_sync(op);
1135 int may_queue;
1136 req_flags_t rq_flags = RQF_ALLOCED;
1137
1138 if (unlikely(blk_queue_dying(q)))
1139 return ERR_PTR(-ENODEV);
1140
1141 may_queue = elv_may_queue(q, op);
1142 if (may_queue == ELV_MQUEUE_NO)
1143 goto rq_starved;
1144
1145 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1146 if (rl->count[is_sync]+1 >= q->nr_requests) {
1147 /*
1148 * The queue will fill after this allocation, so set
1149 * it as full, and mark this process as "batching".
1150 * This process will be allowed to complete a batch of
1151 * requests, others will be blocked.
1152 */
1153 if (!blk_rl_full(rl, is_sync)) {
1154 ioc_set_batching(q, ioc);
1155 blk_set_rl_full(rl, is_sync);
1156 } else {
1157 if (may_queue != ELV_MQUEUE_MUST
1158 && !ioc_batching(q, ioc)) {
1159 /*
1160 * The queue is full and the allocating
1161 * process is not a "batcher", and not
1162 * exempted by the IO scheduler
1163 */
1164 return ERR_PTR(-ENOMEM);
1165 }
1166 }
1167 }
1168 blk_set_congested(rl, is_sync);
1169 }
1170
1171 /*
1172 * Only allow batching queuers to allocate up to 50% over the defined
1173 * limit of requests, otherwise we could have thousands of requests
1174 * allocated with any setting of ->nr_requests
1175 */
1176 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1177 return ERR_PTR(-ENOMEM);
1178
1179 q->nr_rqs[is_sync]++;
1180 rl->count[is_sync]++;
1181 rl->starved[is_sync] = 0;
1182
1183 /*
1184 * Decide whether the new request will be managed by elevator. If
1185 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1186 * prevent the current elevator from being destroyed until the new
1187 * request is freed. This guarantees icq's won't be destroyed and
1188 * makes creating new ones safe.
1189 *
1190 * Flush requests do not use the elevator so skip initialization.
1191 * This allows a request to share the flush and elevator data.
1192 *
1193 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1194 * it will be created after releasing queue_lock.
1195 */
1196 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1197 rq_flags |= RQF_ELVPRIV;
1198 q->nr_rqs_elvpriv++;
1199 if (et->icq_cache && ioc)
1200 icq = ioc_lookup_icq(ioc, q);
1201 }
1202
1203 if (blk_queue_io_stat(q))
1204 rq_flags |= RQF_IO_STAT;
1205 spin_unlock_irq(q->queue_lock);
1206
1207 /* allocate and init request */
1208 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1209 if (!rq)
1210 goto fail_alloc;
1211
1212 blk_rq_init(q, rq);
1213 blk_rq_set_rl(rq, rl);
1214 rq->cmd_flags = op;
1215 rq->rq_flags = rq_flags;
1216
1217 /* init elvpriv */
1218 if (rq_flags & RQF_ELVPRIV) {
1219 if (unlikely(et->icq_cache && !icq)) {
1220 if (ioc)
1221 icq = ioc_create_icq(ioc, q, gfp_mask);
1222 if (!icq)
1223 goto fail_elvpriv;
1224 }
1225
1226 rq->elv.icq = icq;
1227 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1228 goto fail_elvpriv;
1229
1230 /* @rq->elv.icq holds io_context until @rq is freed */
1231 if (icq)
1232 get_io_context(icq->ioc);
1233 }
1234 out:
1235 /*
1236 * ioc may be NULL here, and ioc_batching will be false. That's
1237 * OK, if the queue is under the request limit then requests need
1238 * not count toward the nr_batch_requests limit. There will always
1239 * be some limit enforced by BLK_BATCH_TIME.
1240 */
1241 if (ioc_batching(q, ioc))
1242 ioc->nr_batch_requests--;
1243
1244 trace_block_getrq(q, bio, op);
1245 return rq;
1246
1247 fail_elvpriv:
1248 /*
1249 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1250 * and may fail indefinitely under memory pressure and thus
1251 * shouldn't stall IO. Treat this request as !elvpriv. This will
1252 * disturb iosched and blkcg but weird is bettern than dead.
1253 */
1254 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1255 __func__, dev_name(q->backing_dev_info->dev));
1256
1257 rq->rq_flags &= ~RQF_ELVPRIV;
1258 rq->elv.icq = NULL;
1259
1260 spin_lock_irq(q->queue_lock);
1261 q->nr_rqs_elvpriv--;
1262 spin_unlock_irq(q->queue_lock);
1263 goto out;
1264
1265 fail_alloc:
1266 /*
1267 * Allocation failed presumably due to memory. Undo anything we
1268 * might have messed up.
1269 *
1270 * Allocating task should really be put onto the front of the wait
1271 * queue, but this is pretty rare.
1272 */
1273 spin_lock_irq(q->queue_lock);
1274 freed_request(rl, is_sync, rq_flags);
1275
1276 /*
1277 * in the very unlikely event that allocation failed and no
1278 * requests for this direction was pending, mark us starved so that
1279 * freeing of a request in the other direction will notice
1280 * us. another possible fix would be to split the rq mempool into
1281 * READ and WRITE
1282 */
1283 rq_starved:
1284 if (unlikely(rl->count[is_sync] == 0))
1285 rl->starved[is_sync] = 1;
1286 return ERR_PTR(-ENOMEM);
1287 }
1288
1289 /**
1290 * get_request - get a free request
1291 * @q: request_queue to allocate request from
1292 * @op: operation and flags
1293 * @bio: bio to allocate request for (can be %NULL)
1294 * @gfp_mask: allocation mask
1295 *
1296 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1297 * this function keeps retrying under memory pressure and fails iff @q is dead.
1298 *
1299 * Must be called with @q->queue_lock held and,
1300 * Returns ERR_PTR on failure, with @q->queue_lock held.
1301 * Returns request pointer on success, with @q->queue_lock *not held*.
1302 */
1303 static struct request *get_request(struct request_queue *q, unsigned int op,
1304 struct bio *bio, gfp_t gfp_mask)
1305 {
1306 const bool is_sync = op_is_sync(op);
1307 DEFINE_WAIT(wait);
1308 struct request_list *rl;
1309 struct request *rq;
1310
1311 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1312 retry:
1313 rq = __get_request(rl, op, bio, gfp_mask);
1314 if (!IS_ERR(rq))
1315 return rq;
1316
1317 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1318 blk_put_rl(rl);
1319 return rq;
1320 }
1321
1322 /* wait on @rl and retry */
1323 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1324 TASK_UNINTERRUPTIBLE);
1325
1326 trace_block_sleeprq(q, bio, op);
1327
1328 spin_unlock_irq(q->queue_lock);
1329 io_schedule();
1330
1331 /*
1332 * After sleeping, we become a "batching" process and will be able
1333 * to allocate at least one request, and up to a big batch of them
1334 * for a small period time. See ioc_batching, ioc_set_batching
1335 */
1336 ioc_set_batching(q, current->io_context);
1337
1338 spin_lock_irq(q->queue_lock);
1339 finish_wait(&rl->wait[is_sync], &wait);
1340
1341 goto retry;
1342 }
1343
1344 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1345 gfp_t gfp_mask)
1346 {
1347 struct request *rq;
1348
1349 /* create ioc upfront */
1350 create_io_context(gfp_mask, q->node);
1351
1352 spin_lock_irq(q->queue_lock);
1353 rq = get_request(q, rw, NULL, gfp_mask);
1354 if (IS_ERR(rq)) {
1355 spin_unlock_irq(q->queue_lock);
1356 return rq;
1357 }
1358
1359 /* q->queue_lock is unlocked at this point */
1360 rq->__data_len = 0;
1361 rq->__sector = (sector_t) -1;
1362 rq->bio = rq->biotail = NULL;
1363 return rq;
1364 }
1365
1366 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1367 {
1368 if (q->mq_ops)
1369 return blk_mq_alloc_request(q, rw,
1370 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1371 0 : BLK_MQ_REQ_NOWAIT);
1372 else
1373 return blk_old_get_request(q, rw, gfp_mask);
1374 }
1375 EXPORT_SYMBOL(blk_get_request);
1376
1377 /**
1378 * blk_requeue_request - put a request back on queue
1379 * @q: request queue where request should be inserted
1380 * @rq: request to be inserted
1381 *
1382 * Description:
1383 * Drivers often keep queueing requests until the hardware cannot accept
1384 * more, when that condition happens we need to put the request back
1385 * on the queue. Must be called with queue lock held.
1386 */
1387 void blk_requeue_request(struct request_queue *q, struct request *rq)
1388 {
1389 blk_delete_timer(rq);
1390 blk_clear_rq_complete(rq);
1391 trace_block_rq_requeue(q, rq);
1392 wbt_requeue(q->rq_wb, &rq->issue_stat);
1393
1394 if (rq->rq_flags & RQF_QUEUED)
1395 blk_queue_end_tag(q, rq);
1396
1397 BUG_ON(blk_queued_rq(rq));
1398
1399 elv_requeue_request(q, rq);
1400 }
1401 EXPORT_SYMBOL(blk_requeue_request);
1402
1403 static void add_acct_request(struct request_queue *q, struct request *rq,
1404 int where)
1405 {
1406 blk_account_io_start(rq, true);
1407 __elv_add_request(q, rq, where);
1408 }
1409
1410 static void part_round_stats_single(int cpu, struct hd_struct *part,
1411 unsigned long now)
1412 {
1413 int inflight;
1414
1415 if (now == part->stamp)
1416 return;
1417
1418 inflight = part_in_flight(part);
1419 if (inflight) {
1420 __part_stat_add(cpu, part, time_in_queue,
1421 inflight * (now - part->stamp));
1422 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1423 }
1424 part->stamp = now;
1425 }
1426
1427 /**
1428 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1429 * @cpu: cpu number for stats access
1430 * @part: target partition
1431 *
1432 * The average IO queue length and utilisation statistics are maintained
1433 * by observing the current state of the queue length and the amount of
1434 * time it has been in this state for.
1435 *
1436 * Normally, that accounting is done on IO completion, but that can result
1437 * in more than a second's worth of IO being accounted for within any one
1438 * second, leading to >100% utilisation. To deal with that, we call this
1439 * function to do a round-off before returning the results when reading
1440 * /proc/diskstats. This accounts immediately for all queue usage up to
1441 * the current jiffies and restarts the counters again.
1442 */
1443 void part_round_stats(int cpu, struct hd_struct *part)
1444 {
1445 unsigned long now = jiffies;
1446
1447 if (part->partno)
1448 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1449 part_round_stats_single(cpu, part, now);
1450 }
1451 EXPORT_SYMBOL_GPL(part_round_stats);
1452
1453 #ifdef CONFIG_PM
1454 static void blk_pm_put_request(struct request *rq)
1455 {
1456 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1457 pm_runtime_mark_last_busy(rq->q->dev);
1458 }
1459 #else
1460 static inline void blk_pm_put_request(struct request *rq) {}
1461 #endif
1462
1463 /*
1464 * queue lock must be held
1465 */
1466 void __blk_put_request(struct request_queue *q, struct request *req)
1467 {
1468 req_flags_t rq_flags = req->rq_flags;
1469
1470 if (unlikely(!q))
1471 return;
1472
1473 if (q->mq_ops) {
1474 blk_mq_free_request(req);
1475 return;
1476 }
1477
1478 blk_pm_put_request(req);
1479
1480 elv_completed_request(q, req);
1481
1482 /* this is a bio leak */
1483 WARN_ON(req->bio != NULL);
1484
1485 wbt_done(q->rq_wb, &req->issue_stat);
1486
1487 /*
1488 * Request may not have originated from ll_rw_blk. if not,
1489 * it didn't come out of our reserved rq pools
1490 */
1491 if (rq_flags & RQF_ALLOCED) {
1492 struct request_list *rl = blk_rq_rl(req);
1493 bool sync = op_is_sync(req->cmd_flags);
1494
1495 BUG_ON(!list_empty(&req->queuelist));
1496 BUG_ON(ELV_ON_HASH(req));
1497
1498 blk_free_request(rl, req);
1499 freed_request(rl, sync, rq_flags);
1500 blk_put_rl(rl);
1501 }
1502 }
1503 EXPORT_SYMBOL_GPL(__blk_put_request);
1504
1505 void blk_put_request(struct request *req)
1506 {
1507 struct request_queue *q = req->q;
1508
1509 if (q->mq_ops)
1510 blk_mq_free_request(req);
1511 else {
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(q->queue_lock, flags);
1515 __blk_put_request(q, req);
1516 spin_unlock_irqrestore(q->queue_lock, flags);
1517 }
1518 }
1519 EXPORT_SYMBOL(blk_put_request);
1520
1521 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1522 struct bio *bio)
1523 {
1524 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1525
1526 if (!ll_back_merge_fn(q, req, bio))
1527 return false;
1528
1529 trace_block_bio_backmerge(q, req, bio);
1530
1531 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1532 blk_rq_set_mixed_merge(req);
1533
1534 req->biotail->bi_next = bio;
1535 req->biotail = bio;
1536 req->__data_len += bio->bi_iter.bi_size;
1537 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1538
1539 blk_account_io_start(req, false);
1540 return true;
1541 }
1542
1543 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1544 struct bio *bio)
1545 {
1546 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1547
1548 if (!ll_front_merge_fn(q, req, bio))
1549 return false;
1550
1551 trace_block_bio_frontmerge(q, req, bio);
1552
1553 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1554 blk_rq_set_mixed_merge(req);
1555
1556 bio->bi_next = req->bio;
1557 req->bio = bio;
1558
1559 req->__sector = bio->bi_iter.bi_sector;
1560 req->__data_len += bio->bi_iter.bi_size;
1561 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1562
1563 blk_account_io_start(req, false);
1564 return true;
1565 }
1566
1567 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1568 struct bio *bio)
1569 {
1570 unsigned short segments = blk_rq_nr_discard_segments(req);
1571
1572 if (segments >= queue_max_discard_segments(q))
1573 goto no_merge;
1574 if (blk_rq_sectors(req) + bio_sectors(bio) >
1575 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1576 goto no_merge;
1577
1578 req->biotail->bi_next = bio;
1579 req->biotail = bio;
1580 req->__data_len += bio->bi_iter.bi_size;
1581 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1582 req->nr_phys_segments = segments + 1;
1583
1584 blk_account_io_start(req, false);
1585 return true;
1586 no_merge:
1587 req_set_nomerge(q, req);
1588 return false;
1589 }
1590
1591 /**
1592 * blk_attempt_plug_merge - try to merge with %current's plugged list
1593 * @q: request_queue new bio is being queued at
1594 * @bio: new bio being queued
1595 * @request_count: out parameter for number of traversed plugged requests
1596 * @same_queue_rq: pointer to &struct request that gets filled in when
1597 * another request associated with @q is found on the plug list
1598 * (optional, may be %NULL)
1599 *
1600 * Determine whether @bio being queued on @q can be merged with a request
1601 * on %current's plugged list. Returns %true if merge was successful,
1602 * otherwise %false.
1603 *
1604 * Plugging coalesces IOs from the same issuer for the same purpose without
1605 * going through @q->queue_lock. As such it's more of an issuing mechanism
1606 * than scheduling, and the request, while may have elvpriv data, is not
1607 * added on the elevator at this point. In addition, we don't have
1608 * reliable access to the elevator outside queue lock. Only check basic
1609 * merging parameters without querying the elevator.
1610 *
1611 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1612 */
1613 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1614 unsigned int *request_count,
1615 struct request **same_queue_rq)
1616 {
1617 struct blk_plug *plug;
1618 struct request *rq;
1619 struct list_head *plug_list;
1620
1621 plug = current->plug;
1622 if (!plug)
1623 return false;
1624 *request_count = 0;
1625
1626 if (q->mq_ops)
1627 plug_list = &plug->mq_list;
1628 else
1629 plug_list = &plug->list;
1630
1631 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1632 bool merged = false;
1633
1634 if (rq->q == q) {
1635 (*request_count)++;
1636 /*
1637 * Only blk-mq multiple hardware queues case checks the
1638 * rq in the same queue, there should be only one such
1639 * rq in a queue
1640 **/
1641 if (same_queue_rq)
1642 *same_queue_rq = rq;
1643 }
1644
1645 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1646 continue;
1647
1648 switch (blk_try_merge(rq, bio)) {
1649 case ELEVATOR_BACK_MERGE:
1650 merged = bio_attempt_back_merge(q, rq, bio);
1651 break;
1652 case ELEVATOR_FRONT_MERGE:
1653 merged = bio_attempt_front_merge(q, rq, bio);
1654 break;
1655 case ELEVATOR_DISCARD_MERGE:
1656 merged = bio_attempt_discard_merge(q, rq, bio);
1657 break;
1658 default:
1659 break;
1660 }
1661
1662 if (merged)
1663 return true;
1664 }
1665
1666 return false;
1667 }
1668
1669 unsigned int blk_plug_queued_count(struct request_queue *q)
1670 {
1671 struct blk_plug *plug;
1672 struct request *rq;
1673 struct list_head *plug_list;
1674 unsigned int ret = 0;
1675
1676 plug = current->plug;
1677 if (!plug)
1678 goto out;
1679
1680 if (q->mq_ops)
1681 plug_list = &plug->mq_list;
1682 else
1683 plug_list = &plug->list;
1684
1685 list_for_each_entry(rq, plug_list, queuelist) {
1686 if (rq->q == q)
1687 ret++;
1688 }
1689 out:
1690 return ret;
1691 }
1692
1693 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1694 {
1695 struct io_context *ioc = rq_ioc(bio);
1696
1697 if (bio->bi_opf & REQ_RAHEAD)
1698 req->cmd_flags |= REQ_FAILFAST_MASK;
1699
1700 req->__sector = bio->bi_iter.bi_sector;
1701 if (ioprio_valid(bio_prio(bio)))
1702 req->ioprio = bio_prio(bio);
1703 else if (ioc)
1704 req->ioprio = ioc->ioprio;
1705 else
1706 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1707 blk_rq_bio_prep(req->q, req, bio);
1708 }
1709 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1710
1711 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1712 {
1713 struct blk_plug *plug;
1714 int where = ELEVATOR_INSERT_SORT;
1715 struct request *req, *free;
1716 unsigned int request_count = 0;
1717 unsigned int wb_acct;
1718
1719 /*
1720 * low level driver can indicate that it wants pages above a
1721 * certain limit bounced to low memory (ie for highmem, or even
1722 * ISA dma in theory)
1723 */
1724 blk_queue_bounce(q, &bio);
1725
1726 blk_queue_split(q, &bio);
1727
1728 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1729 bio->bi_status = BLK_STS_IOERR;
1730 bio_endio(bio);
1731 return BLK_QC_T_NONE;
1732 }
1733
1734 if (op_is_flush(bio->bi_opf)) {
1735 spin_lock_irq(q->queue_lock);
1736 where = ELEVATOR_INSERT_FLUSH;
1737 goto get_rq;
1738 }
1739
1740 /*
1741 * Check if we can merge with the plugged list before grabbing
1742 * any locks.
1743 */
1744 if (!blk_queue_nomerges(q)) {
1745 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1746 return BLK_QC_T_NONE;
1747 } else
1748 request_count = blk_plug_queued_count(q);
1749
1750 spin_lock_irq(q->queue_lock);
1751
1752 switch (elv_merge(q, &req, bio)) {
1753 case ELEVATOR_BACK_MERGE:
1754 if (!bio_attempt_back_merge(q, req, bio))
1755 break;
1756 elv_bio_merged(q, req, bio);
1757 free = attempt_back_merge(q, req);
1758 if (free)
1759 __blk_put_request(q, free);
1760 else
1761 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1762 goto out_unlock;
1763 case ELEVATOR_FRONT_MERGE:
1764 if (!bio_attempt_front_merge(q, req, bio))
1765 break;
1766 elv_bio_merged(q, req, bio);
1767 free = attempt_front_merge(q, req);
1768 if (free)
1769 __blk_put_request(q, free);
1770 else
1771 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1772 goto out_unlock;
1773 default:
1774 break;
1775 }
1776
1777 get_rq:
1778 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1779
1780 /*
1781 * Grab a free request. This is might sleep but can not fail.
1782 * Returns with the queue unlocked.
1783 */
1784 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1785 if (IS_ERR(req)) {
1786 __wbt_done(q->rq_wb, wb_acct);
1787 if (PTR_ERR(req) == -ENOMEM)
1788 bio->bi_status = BLK_STS_RESOURCE;
1789 else
1790 bio->bi_status = BLK_STS_IOERR;
1791 bio_endio(bio);
1792 goto out_unlock;
1793 }
1794
1795 wbt_track(&req->issue_stat, wb_acct);
1796
1797 /*
1798 * After dropping the lock and possibly sleeping here, our request
1799 * may now be mergeable after it had proven unmergeable (above).
1800 * We don't worry about that case for efficiency. It won't happen
1801 * often, and the elevators are able to handle it.
1802 */
1803 blk_init_request_from_bio(req, bio);
1804
1805 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1806 req->cpu = raw_smp_processor_id();
1807
1808 plug = current->plug;
1809 if (plug) {
1810 /*
1811 * If this is the first request added after a plug, fire
1812 * of a plug trace.
1813 *
1814 * @request_count may become stale because of schedule
1815 * out, so check plug list again.
1816 */
1817 if (!request_count || list_empty(&plug->list))
1818 trace_block_plug(q);
1819 else {
1820 struct request *last = list_entry_rq(plug->list.prev);
1821 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1822 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1823 blk_flush_plug_list(plug, false);
1824 trace_block_plug(q);
1825 }
1826 }
1827 list_add_tail(&req->queuelist, &plug->list);
1828 blk_account_io_start(req, true);
1829 } else {
1830 spin_lock_irq(q->queue_lock);
1831 add_acct_request(q, req, where);
1832 __blk_run_queue(q);
1833 out_unlock:
1834 spin_unlock_irq(q->queue_lock);
1835 }
1836
1837 return BLK_QC_T_NONE;
1838 }
1839
1840 /*
1841 * If bio->bi_dev is a partition, remap the location
1842 */
1843 static inline void blk_partition_remap(struct bio *bio)
1844 {
1845 struct block_device *bdev = bio->bi_bdev;
1846
1847 /*
1848 * Zone reset does not include bi_size so bio_sectors() is always 0.
1849 * Include a test for the reset op code and perform the remap if needed.
1850 */
1851 if (bdev != bdev->bd_contains &&
1852 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1853 struct hd_struct *p = bdev->bd_part;
1854
1855 bio->bi_iter.bi_sector += p->start_sect;
1856 bio->bi_bdev = bdev->bd_contains;
1857
1858 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1859 bdev->bd_dev,
1860 bio->bi_iter.bi_sector - p->start_sect);
1861 }
1862 }
1863
1864 static void handle_bad_sector(struct bio *bio)
1865 {
1866 char b[BDEVNAME_SIZE];
1867
1868 printk(KERN_INFO "attempt to access beyond end of device\n");
1869 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1870 bdevname(bio->bi_bdev, b),
1871 bio->bi_opf,
1872 (unsigned long long)bio_end_sector(bio),
1873 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1874 }
1875
1876 #ifdef CONFIG_FAIL_MAKE_REQUEST
1877
1878 static DECLARE_FAULT_ATTR(fail_make_request);
1879
1880 static int __init setup_fail_make_request(char *str)
1881 {
1882 return setup_fault_attr(&fail_make_request, str);
1883 }
1884 __setup("fail_make_request=", setup_fail_make_request);
1885
1886 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1887 {
1888 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1889 }
1890
1891 static int __init fail_make_request_debugfs(void)
1892 {
1893 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1894 NULL, &fail_make_request);
1895
1896 return PTR_ERR_OR_ZERO(dir);
1897 }
1898
1899 late_initcall(fail_make_request_debugfs);
1900
1901 #else /* CONFIG_FAIL_MAKE_REQUEST */
1902
1903 static inline bool should_fail_request(struct hd_struct *part,
1904 unsigned int bytes)
1905 {
1906 return false;
1907 }
1908
1909 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1910
1911 /*
1912 * Check whether this bio extends beyond the end of the device.
1913 */
1914 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1915 {
1916 sector_t maxsector;
1917
1918 if (!nr_sectors)
1919 return 0;
1920
1921 /* Test device or partition size, when known. */
1922 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1923 if (maxsector) {
1924 sector_t sector = bio->bi_iter.bi_sector;
1925
1926 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1927 /*
1928 * This may well happen - the kernel calls bread()
1929 * without checking the size of the device, e.g., when
1930 * mounting a device.
1931 */
1932 handle_bad_sector(bio);
1933 return 1;
1934 }
1935 }
1936
1937 return 0;
1938 }
1939
1940 static noinline_for_stack bool
1941 generic_make_request_checks(struct bio *bio)
1942 {
1943 struct request_queue *q;
1944 int nr_sectors = bio_sectors(bio);
1945 blk_status_t status = BLK_STS_IOERR;
1946 char b[BDEVNAME_SIZE];
1947 struct hd_struct *part;
1948
1949 might_sleep();
1950
1951 if (bio_check_eod(bio, nr_sectors))
1952 goto end_io;
1953
1954 q = bdev_get_queue(bio->bi_bdev);
1955 if (unlikely(!q)) {
1956 printk(KERN_ERR
1957 "generic_make_request: Trying to access "
1958 "nonexistent block-device %s (%Lu)\n",
1959 bdevname(bio->bi_bdev, b),
1960 (long long) bio->bi_iter.bi_sector);
1961 goto end_io;
1962 }
1963
1964 part = bio->bi_bdev->bd_part;
1965 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1966 should_fail_request(&part_to_disk(part)->part0,
1967 bio->bi_iter.bi_size))
1968 goto end_io;
1969
1970 /*
1971 * If this device has partitions, remap block n
1972 * of partition p to block n+start(p) of the disk.
1973 */
1974 blk_partition_remap(bio);
1975
1976 if (bio_check_eod(bio, nr_sectors))
1977 goto end_io;
1978
1979 /*
1980 * Filter flush bio's early so that make_request based
1981 * drivers without flush support don't have to worry
1982 * about them.
1983 */
1984 if (op_is_flush(bio->bi_opf) &&
1985 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1986 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1987 if (!nr_sectors) {
1988 status = BLK_STS_OK;
1989 goto end_io;
1990 }
1991 }
1992
1993 switch (bio_op(bio)) {
1994 case REQ_OP_DISCARD:
1995 if (!blk_queue_discard(q))
1996 goto not_supported;
1997 break;
1998 case REQ_OP_SECURE_ERASE:
1999 if (!blk_queue_secure_erase(q))
2000 goto not_supported;
2001 break;
2002 case REQ_OP_WRITE_SAME:
2003 if (!bdev_write_same(bio->bi_bdev))
2004 goto not_supported;
2005 break;
2006 case REQ_OP_ZONE_REPORT:
2007 case REQ_OP_ZONE_RESET:
2008 if (!bdev_is_zoned(bio->bi_bdev))
2009 goto not_supported;
2010 break;
2011 case REQ_OP_WRITE_ZEROES:
2012 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
2013 goto not_supported;
2014 break;
2015 default:
2016 break;
2017 }
2018
2019 /*
2020 * Various block parts want %current->io_context and lazy ioc
2021 * allocation ends up trading a lot of pain for a small amount of
2022 * memory. Just allocate it upfront. This may fail and block
2023 * layer knows how to live with it.
2024 */
2025 create_io_context(GFP_ATOMIC, q->node);
2026
2027 if (!blkcg_bio_issue_check(q, bio))
2028 return false;
2029
2030 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2031 trace_block_bio_queue(q, bio);
2032 /* Now that enqueuing has been traced, we need to trace
2033 * completion as well.
2034 */
2035 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2036 }
2037 return true;
2038
2039 not_supported:
2040 status = BLK_STS_NOTSUPP;
2041 end_io:
2042 bio->bi_status = status;
2043 bio_endio(bio);
2044 return false;
2045 }
2046
2047 /**
2048 * generic_make_request - hand a buffer to its device driver for I/O
2049 * @bio: The bio describing the location in memory and on the device.
2050 *
2051 * generic_make_request() is used to make I/O requests of block
2052 * devices. It is passed a &struct bio, which describes the I/O that needs
2053 * to be done.
2054 *
2055 * generic_make_request() does not return any status. The
2056 * success/failure status of the request, along with notification of
2057 * completion, is delivered asynchronously through the bio->bi_end_io
2058 * function described (one day) else where.
2059 *
2060 * The caller of generic_make_request must make sure that bi_io_vec
2061 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2062 * set to describe the device address, and the
2063 * bi_end_io and optionally bi_private are set to describe how
2064 * completion notification should be signaled.
2065 *
2066 * generic_make_request and the drivers it calls may use bi_next if this
2067 * bio happens to be merged with someone else, and may resubmit the bio to
2068 * a lower device by calling into generic_make_request recursively, which
2069 * means the bio should NOT be touched after the call to ->make_request_fn.
2070 */
2071 blk_qc_t generic_make_request(struct bio *bio)
2072 {
2073 /*
2074 * bio_list_on_stack[0] contains bios submitted by the current
2075 * make_request_fn.
2076 * bio_list_on_stack[1] contains bios that were submitted before
2077 * the current make_request_fn, but that haven't been processed
2078 * yet.
2079 */
2080 struct bio_list bio_list_on_stack[2];
2081 blk_qc_t ret = BLK_QC_T_NONE;
2082
2083 if (!generic_make_request_checks(bio))
2084 goto out;
2085
2086 /*
2087 * We only want one ->make_request_fn to be active at a time, else
2088 * stack usage with stacked devices could be a problem. So use
2089 * current->bio_list to keep a list of requests submited by a
2090 * make_request_fn function. current->bio_list is also used as a
2091 * flag to say if generic_make_request is currently active in this
2092 * task or not. If it is NULL, then no make_request is active. If
2093 * it is non-NULL, then a make_request is active, and new requests
2094 * should be added at the tail
2095 */
2096 if (current->bio_list) {
2097 bio_list_add(&current->bio_list[0], bio);
2098 goto out;
2099 }
2100
2101 /* following loop may be a bit non-obvious, and so deserves some
2102 * explanation.
2103 * Before entering the loop, bio->bi_next is NULL (as all callers
2104 * ensure that) so we have a list with a single bio.
2105 * We pretend that we have just taken it off a longer list, so
2106 * we assign bio_list to a pointer to the bio_list_on_stack,
2107 * thus initialising the bio_list of new bios to be
2108 * added. ->make_request() may indeed add some more bios
2109 * through a recursive call to generic_make_request. If it
2110 * did, we find a non-NULL value in bio_list and re-enter the loop
2111 * from the top. In this case we really did just take the bio
2112 * of the top of the list (no pretending) and so remove it from
2113 * bio_list, and call into ->make_request() again.
2114 */
2115 BUG_ON(bio->bi_next);
2116 bio_list_init(&bio_list_on_stack[0]);
2117 current->bio_list = bio_list_on_stack;
2118 do {
2119 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2120
2121 if (likely(blk_queue_enter(q, false) == 0)) {
2122 struct bio_list lower, same;
2123
2124 /* Create a fresh bio_list for all subordinate requests */
2125 bio_list_on_stack[1] = bio_list_on_stack[0];
2126 bio_list_init(&bio_list_on_stack[0]);
2127 ret = q->make_request_fn(q, bio);
2128
2129 blk_queue_exit(q);
2130
2131 /* sort new bios into those for a lower level
2132 * and those for the same level
2133 */
2134 bio_list_init(&lower);
2135 bio_list_init(&same);
2136 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2137 if (q == bdev_get_queue(bio->bi_bdev))
2138 bio_list_add(&same, bio);
2139 else
2140 bio_list_add(&lower, bio);
2141 /* now assemble so we handle the lowest level first */
2142 bio_list_merge(&bio_list_on_stack[0], &lower);
2143 bio_list_merge(&bio_list_on_stack[0], &same);
2144 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2145 } else {
2146 bio_io_error(bio);
2147 }
2148 bio = bio_list_pop(&bio_list_on_stack[0]);
2149 } while (bio);
2150 current->bio_list = NULL; /* deactivate */
2151
2152 out:
2153 return ret;
2154 }
2155 EXPORT_SYMBOL(generic_make_request);
2156
2157 /**
2158 * submit_bio - submit a bio to the block device layer for I/O
2159 * @bio: The &struct bio which describes the I/O
2160 *
2161 * submit_bio() is very similar in purpose to generic_make_request(), and
2162 * uses that function to do most of the work. Both are fairly rough
2163 * interfaces; @bio must be presetup and ready for I/O.
2164 *
2165 */
2166 blk_qc_t submit_bio(struct bio *bio)
2167 {
2168 /*
2169 * If it's a regular read/write or a barrier with data attached,
2170 * go through the normal accounting stuff before submission.
2171 */
2172 if (bio_has_data(bio)) {
2173 unsigned int count;
2174
2175 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2176 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2177 else
2178 count = bio_sectors(bio);
2179
2180 if (op_is_write(bio_op(bio))) {
2181 count_vm_events(PGPGOUT, count);
2182 } else {
2183 task_io_account_read(bio->bi_iter.bi_size);
2184 count_vm_events(PGPGIN, count);
2185 }
2186
2187 if (unlikely(block_dump)) {
2188 char b[BDEVNAME_SIZE];
2189 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2190 current->comm, task_pid_nr(current),
2191 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2192 (unsigned long long)bio->bi_iter.bi_sector,
2193 bdevname(bio->bi_bdev, b),
2194 count);
2195 }
2196 }
2197
2198 return generic_make_request(bio);
2199 }
2200 EXPORT_SYMBOL(submit_bio);
2201
2202 /**
2203 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2204 * for new the queue limits
2205 * @q: the queue
2206 * @rq: the request being checked
2207 *
2208 * Description:
2209 * @rq may have been made based on weaker limitations of upper-level queues
2210 * in request stacking drivers, and it may violate the limitation of @q.
2211 * Since the block layer and the underlying device driver trust @rq
2212 * after it is inserted to @q, it should be checked against @q before
2213 * the insertion using this generic function.
2214 *
2215 * Request stacking drivers like request-based dm may change the queue
2216 * limits when retrying requests on other queues. Those requests need
2217 * to be checked against the new queue limits again during dispatch.
2218 */
2219 static int blk_cloned_rq_check_limits(struct request_queue *q,
2220 struct request *rq)
2221 {
2222 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2223 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2224 return -EIO;
2225 }
2226
2227 /*
2228 * queue's settings related to segment counting like q->bounce_pfn
2229 * may differ from that of other stacking queues.
2230 * Recalculate it to check the request correctly on this queue's
2231 * limitation.
2232 */
2233 blk_recalc_rq_segments(rq);
2234 if (rq->nr_phys_segments > queue_max_segments(q)) {
2235 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2236 return -EIO;
2237 }
2238
2239 return 0;
2240 }
2241
2242 /**
2243 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2244 * @q: the queue to submit the request
2245 * @rq: the request being queued
2246 */
2247 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2248 {
2249 unsigned long flags;
2250 int where = ELEVATOR_INSERT_BACK;
2251
2252 if (blk_cloned_rq_check_limits(q, rq))
2253 return BLK_STS_IOERR;
2254
2255 if (rq->rq_disk &&
2256 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2257 return BLK_STS_IOERR;
2258
2259 if (q->mq_ops) {
2260 if (blk_queue_io_stat(q))
2261 blk_account_io_start(rq, true);
2262 blk_mq_sched_insert_request(rq, false, true, false, false);
2263 return BLK_STS_OK;
2264 }
2265
2266 spin_lock_irqsave(q->queue_lock, flags);
2267 if (unlikely(blk_queue_dying(q))) {
2268 spin_unlock_irqrestore(q->queue_lock, flags);
2269 return BLK_STS_IOERR;
2270 }
2271
2272 /*
2273 * Submitting request must be dequeued before calling this function
2274 * because it will be linked to another request_queue
2275 */
2276 BUG_ON(blk_queued_rq(rq));
2277
2278 if (op_is_flush(rq->cmd_flags))
2279 where = ELEVATOR_INSERT_FLUSH;
2280
2281 add_acct_request(q, rq, where);
2282 if (where == ELEVATOR_INSERT_FLUSH)
2283 __blk_run_queue(q);
2284 spin_unlock_irqrestore(q->queue_lock, flags);
2285
2286 return BLK_STS_OK;
2287 }
2288 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2289
2290 /**
2291 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2292 * @rq: request to examine
2293 *
2294 * Description:
2295 * A request could be merge of IOs which require different failure
2296 * handling. This function determines the number of bytes which
2297 * can be failed from the beginning of the request without
2298 * crossing into area which need to be retried further.
2299 *
2300 * Return:
2301 * The number of bytes to fail.
2302 *
2303 * Context:
2304 * queue_lock must be held.
2305 */
2306 unsigned int blk_rq_err_bytes(const struct request *rq)
2307 {
2308 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2309 unsigned int bytes = 0;
2310 struct bio *bio;
2311
2312 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2313 return blk_rq_bytes(rq);
2314
2315 /*
2316 * Currently the only 'mixing' which can happen is between
2317 * different fastfail types. We can safely fail portions
2318 * which have all the failfast bits that the first one has -
2319 * the ones which are at least as eager to fail as the first
2320 * one.
2321 */
2322 for (bio = rq->bio; bio; bio = bio->bi_next) {
2323 if ((bio->bi_opf & ff) != ff)
2324 break;
2325 bytes += bio->bi_iter.bi_size;
2326 }
2327
2328 /* this could lead to infinite loop */
2329 BUG_ON(blk_rq_bytes(rq) && !bytes);
2330 return bytes;
2331 }
2332 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2333
2334 void blk_account_io_completion(struct request *req, unsigned int bytes)
2335 {
2336 if (blk_do_io_stat(req)) {
2337 const int rw = rq_data_dir(req);
2338 struct hd_struct *part;
2339 int cpu;
2340
2341 cpu = part_stat_lock();
2342 part = req->part;
2343 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2344 part_stat_unlock();
2345 }
2346 }
2347
2348 void blk_account_io_done(struct request *req)
2349 {
2350 /*
2351 * Account IO completion. flush_rq isn't accounted as a
2352 * normal IO on queueing nor completion. Accounting the
2353 * containing request is enough.
2354 */
2355 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2356 unsigned long duration = jiffies - req->start_time;
2357 const int rw = rq_data_dir(req);
2358 struct hd_struct *part;
2359 int cpu;
2360
2361 cpu = part_stat_lock();
2362 part = req->part;
2363
2364 part_stat_inc(cpu, part, ios[rw]);
2365 part_stat_add(cpu, part, ticks[rw], duration);
2366 part_round_stats(cpu, part);
2367 part_dec_in_flight(part, rw);
2368
2369 hd_struct_put(part);
2370 part_stat_unlock();
2371 }
2372 }
2373
2374 #ifdef CONFIG_PM
2375 /*
2376 * Don't process normal requests when queue is suspended
2377 * or in the process of suspending/resuming
2378 */
2379 static struct request *blk_pm_peek_request(struct request_queue *q,
2380 struct request *rq)
2381 {
2382 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2383 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2384 return NULL;
2385 else
2386 return rq;
2387 }
2388 #else
2389 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2390 struct request *rq)
2391 {
2392 return rq;
2393 }
2394 #endif
2395
2396 void blk_account_io_start(struct request *rq, bool new_io)
2397 {
2398 struct hd_struct *part;
2399 int rw = rq_data_dir(rq);
2400 int cpu;
2401
2402 if (!blk_do_io_stat(rq))
2403 return;
2404
2405 cpu = part_stat_lock();
2406
2407 if (!new_io) {
2408 part = rq->part;
2409 part_stat_inc(cpu, part, merges[rw]);
2410 } else {
2411 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2412 if (!hd_struct_try_get(part)) {
2413 /*
2414 * The partition is already being removed,
2415 * the request will be accounted on the disk only
2416 *
2417 * We take a reference on disk->part0 although that
2418 * partition will never be deleted, so we can treat
2419 * it as any other partition.
2420 */
2421 part = &rq->rq_disk->part0;
2422 hd_struct_get(part);
2423 }
2424 part_round_stats(cpu, part);
2425 part_inc_in_flight(part, rw);
2426 rq->part = part;
2427 }
2428
2429 part_stat_unlock();
2430 }
2431
2432 /**
2433 * blk_peek_request - peek at the top of a request queue
2434 * @q: request queue to peek at
2435 *
2436 * Description:
2437 * Return the request at the top of @q. The returned request
2438 * should be started using blk_start_request() before LLD starts
2439 * processing it.
2440 *
2441 * Return:
2442 * Pointer to the request at the top of @q if available. Null
2443 * otherwise.
2444 *
2445 * Context:
2446 * queue_lock must be held.
2447 */
2448 struct request *blk_peek_request(struct request_queue *q)
2449 {
2450 struct request *rq;
2451 int ret;
2452
2453 while ((rq = __elv_next_request(q)) != NULL) {
2454
2455 rq = blk_pm_peek_request(q, rq);
2456 if (!rq)
2457 break;
2458
2459 if (!(rq->rq_flags & RQF_STARTED)) {
2460 /*
2461 * This is the first time the device driver
2462 * sees this request (possibly after
2463 * requeueing). Notify IO scheduler.
2464 */
2465 if (rq->rq_flags & RQF_SORTED)
2466 elv_activate_rq(q, rq);
2467
2468 /*
2469 * just mark as started even if we don't start
2470 * it, a request that has been delayed should
2471 * not be passed by new incoming requests
2472 */
2473 rq->rq_flags |= RQF_STARTED;
2474 trace_block_rq_issue(q, rq);
2475 }
2476
2477 if (!q->boundary_rq || q->boundary_rq == rq) {
2478 q->end_sector = rq_end_sector(rq);
2479 q->boundary_rq = NULL;
2480 }
2481
2482 if (rq->rq_flags & RQF_DONTPREP)
2483 break;
2484
2485 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2486 /*
2487 * make sure space for the drain appears we
2488 * know we can do this because max_hw_segments
2489 * has been adjusted to be one fewer than the
2490 * device can handle
2491 */
2492 rq->nr_phys_segments++;
2493 }
2494
2495 if (!q->prep_rq_fn)
2496 break;
2497
2498 ret = q->prep_rq_fn(q, rq);
2499 if (ret == BLKPREP_OK) {
2500 break;
2501 } else if (ret == BLKPREP_DEFER) {
2502 /*
2503 * the request may have been (partially) prepped.
2504 * we need to keep this request in the front to
2505 * avoid resource deadlock. RQF_STARTED will
2506 * prevent other fs requests from passing this one.
2507 */
2508 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2509 !(rq->rq_flags & RQF_DONTPREP)) {
2510 /*
2511 * remove the space for the drain we added
2512 * so that we don't add it again
2513 */
2514 --rq->nr_phys_segments;
2515 }
2516
2517 rq = NULL;
2518 break;
2519 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2520 rq->rq_flags |= RQF_QUIET;
2521 /*
2522 * Mark this request as started so we don't trigger
2523 * any debug logic in the end I/O path.
2524 */
2525 blk_start_request(rq);
2526 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2527 BLK_STS_TARGET : BLK_STS_IOERR);
2528 } else {
2529 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2530 break;
2531 }
2532 }
2533
2534 return rq;
2535 }
2536 EXPORT_SYMBOL(blk_peek_request);
2537
2538 void blk_dequeue_request(struct request *rq)
2539 {
2540 struct request_queue *q = rq->q;
2541
2542 BUG_ON(list_empty(&rq->queuelist));
2543 BUG_ON(ELV_ON_HASH(rq));
2544
2545 list_del_init(&rq->queuelist);
2546
2547 /*
2548 * the time frame between a request being removed from the lists
2549 * and to it is freed is accounted as io that is in progress at
2550 * the driver side.
2551 */
2552 if (blk_account_rq(rq)) {
2553 q->in_flight[rq_is_sync(rq)]++;
2554 set_io_start_time_ns(rq);
2555 }
2556 }
2557
2558 /**
2559 * blk_start_request - start request processing on the driver
2560 * @req: request to dequeue
2561 *
2562 * Description:
2563 * Dequeue @req and start timeout timer on it. This hands off the
2564 * request to the driver.
2565 *
2566 * Block internal functions which don't want to start timer should
2567 * call blk_dequeue_request().
2568 *
2569 * Context:
2570 * queue_lock must be held.
2571 */
2572 void blk_start_request(struct request *req)
2573 {
2574 blk_dequeue_request(req);
2575
2576 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2577 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2578 req->rq_flags |= RQF_STATS;
2579 wbt_issue(req->q->rq_wb, &req->issue_stat);
2580 }
2581
2582 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2583 blk_add_timer(req);
2584 }
2585 EXPORT_SYMBOL(blk_start_request);
2586
2587 /**
2588 * blk_fetch_request - fetch a request from a request queue
2589 * @q: request queue to fetch a request from
2590 *
2591 * Description:
2592 * Return the request at the top of @q. The request is started on
2593 * return and LLD can start processing it immediately.
2594 *
2595 * Return:
2596 * Pointer to the request at the top of @q if available. Null
2597 * otherwise.
2598 *
2599 * Context:
2600 * queue_lock must be held.
2601 */
2602 struct request *blk_fetch_request(struct request_queue *q)
2603 {
2604 struct request *rq;
2605
2606 rq = blk_peek_request(q);
2607 if (rq)
2608 blk_start_request(rq);
2609 return rq;
2610 }
2611 EXPORT_SYMBOL(blk_fetch_request);
2612
2613 /**
2614 * blk_update_request - Special helper function for request stacking drivers
2615 * @req: the request being processed
2616 * @error: block status code
2617 * @nr_bytes: number of bytes to complete @req
2618 *
2619 * Description:
2620 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2621 * the request structure even if @req doesn't have leftover.
2622 * If @req has leftover, sets it up for the next range of segments.
2623 *
2624 * This special helper function is only for request stacking drivers
2625 * (e.g. request-based dm) so that they can handle partial completion.
2626 * Actual device drivers should use blk_end_request instead.
2627 *
2628 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2629 * %false return from this function.
2630 *
2631 * Return:
2632 * %false - this request doesn't have any more data
2633 * %true - this request has more data
2634 **/
2635 bool blk_update_request(struct request *req, blk_status_t error,
2636 unsigned int nr_bytes)
2637 {
2638 int total_bytes;
2639
2640 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2641
2642 if (!req->bio)
2643 return false;
2644
2645 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2646 !(req->rq_flags & RQF_QUIET)))
2647 print_req_error(req, error);
2648
2649 blk_account_io_completion(req, nr_bytes);
2650
2651 total_bytes = 0;
2652 while (req->bio) {
2653 struct bio *bio = req->bio;
2654 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2655
2656 if (bio_bytes == bio->bi_iter.bi_size)
2657 req->bio = bio->bi_next;
2658
2659 /* Completion has already been traced */
2660 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2661 req_bio_endio(req, bio, bio_bytes, error);
2662
2663 total_bytes += bio_bytes;
2664 nr_bytes -= bio_bytes;
2665
2666 if (!nr_bytes)
2667 break;
2668 }
2669
2670 /*
2671 * completely done
2672 */
2673 if (!req->bio) {
2674 /*
2675 * Reset counters so that the request stacking driver
2676 * can find how many bytes remain in the request
2677 * later.
2678 */
2679 req->__data_len = 0;
2680 return false;
2681 }
2682
2683 req->__data_len -= total_bytes;
2684
2685 /* update sector only for requests with clear definition of sector */
2686 if (!blk_rq_is_passthrough(req))
2687 req->__sector += total_bytes >> 9;
2688
2689 /* mixed attributes always follow the first bio */
2690 if (req->rq_flags & RQF_MIXED_MERGE) {
2691 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2692 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2693 }
2694
2695 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2696 /*
2697 * If total number of sectors is less than the first segment
2698 * size, something has gone terribly wrong.
2699 */
2700 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2701 blk_dump_rq_flags(req, "request botched");
2702 req->__data_len = blk_rq_cur_bytes(req);
2703 }
2704
2705 /* recalculate the number of segments */
2706 blk_recalc_rq_segments(req);
2707 }
2708
2709 return true;
2710 }
2711 EXPORT_SYMBOL_GPL(blk_update_request);
2712
2713 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2714 unsigned int nr_bytes,
2715 unsigned int bidi_bytes)
2716 {
2717 if (blk_update_request(rq, error, nr_bytes))
2718 return true;
2719
2720 /* Bidi request must be completed as a whole */
2721 if (unlikely(blk_bidi_rq(rq)) &&
2722 blk_update_request(rq->next_rq, error, bidi_bytes))
2723 return true;
2724
2725 if (blk_queue_add_random(rq->q))
2726 add_disk_randomness(rq->rq_disk);
2727
2728 return false;
2729 }
2730
2731 /**
2732 * blk_unprep_request - unprepare a request
2733 * @req: the request
2734 *
2735 * This function makes a request ready for complete resubmission (or
2736 * completion). It happens only after all error handling is complete,
2737 * so represents the appropriate moment to deallocate any resources
2738 * that were allocated to the request in the prep_rq_fn. The queue
2739 * lock is held when calling this.
2740 */
2741 void blk_unprep_request(struct request *req)
2742 {
2743 struct request_queue *q = req->q;
2744
2745 req->rq_flags &= ~RQF_DONTPREP;
2746 if (q->unprep_rq_fn)
2747 q->unprep_rq_fn(q, req);
2748 }
2749 EXPORT_SYMBOL_GPL(blk_unprep_request);
2750
2751 /*
2752 * queue lock must be held
2753 */
2754 void blk_finish_request(struct request *req, blk_status_t error)
2755 {
2756 struct request_queue *q = req->q;
2757
2758 if (req->rq_flags & RQF_STATS)
2759 blk_stat_add(req);
2760
2761 if (req->rq_flags & RQF_QUEUED)
2762 blk_queue_end_tag(q, req);
2763
2764 BUG_ON(blk_queued_rq(req));
2765
2766 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2767 laptop_io_completion(req->q->backing_dev_info);
2768
2769 blk_delete_timer(req);
2770
2771 if (req->rq_flags & RQF_DONTPREP)
2772 blk_unprep_request(req);
2773
2774 blk_account_io_done(req);
2775
2776 if (req->end_io) {
2777 wbt_done(req->q->rq_wb, &req->issue_stat);
2778 req->end_io(req, error);
2779 } else {
2780 if (blk_bidi_rq(req))
2781 __blk_put_request(req->next_rq->q, req->next_rq);
2782
2783 __blk_put_request(q, req);
2784 }
2785 }
2786 EXPORT_SYMBOL(blk_finish_request);
2787
2788 /**
2789 * blk_end_bidi_request - Complete a bidi request
2790 * @rq: the request to complete
2791 * @error: block status code
2792 * @nr_bytes: number of bytes to complete @rq
2793 * @bidi_bytes: number of bytes to complete @rq->next_rq
2794 *
2795 * Description:
2796 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2797 * Drivers that supports bidi can safely call this member for any
2798 * type of request, bidi or uni. In the later case @bidi_bytes is
2799 * just ignored.
2800 *
2801 * Return:
2802 * %false - we are done with this request
2803 * %true - still buffers pending for this request
2804 **/
2805 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2806 unsigned int nr_bytes, unsigned int bidi_bytes)
2807 {
2808 struct request_queue *q = rq->q;
2809 unsigned long flags;
2810
2811 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2812 return true;
2813
2814 spin_lock_irqsave(q->queue_lock, flags);
2815 blk_finish_request(rq, error);
2816 spin_unlock_irqrestore(q->queue_lock, flags);
2817
2818 return false;
2819 }
2820
2821 /**
2822 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2823 * @rq: the request to complete
2824 * @error: block status code
2825 * @nr_bytes: number of bytes to complete @rq
2826 * @bidi_bytes: number of bytes to complete @rq->next_rq
2827 *
2828 * Description:
2829 * Identical to blk_end_bidi_request() except that queue lock is
2830 * assumed to be locked on entry and remains so on return.
2831 *
2832 * Return:
2833 * %false - we are done with this request
2834 * %true - still buffers pending for this request
2835 **/
2836 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2837 unsigned int nr_bytes, unsigned int bidi_bytes)
2838 {
2839 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2840 return true;
2841
2842 blk_finish_request(rq, error);
2843
2844 return false;
2845 }
2846
2847 /**
2848 * blk_end_request - Helper function for drivers to complete the request.
2849 * @rq: the request being processed
2850 * @error: block status code
2851 * @nr_bytes: number of bytes to complete
2852 *
2853 * Description:
2854 * Ends I/O on a number of bytes attached to @rq.
2855 * If @rq has leftover, sets it up for the next range of segments.
2856 *
2857 * Return:
2858 * %false - we are done with this request
2859 * %true - still buffers pending for this request
2860 **/
2861 bool blk_end_request(struct request *rq, blk_status_t error,
2862 unsigned int nr_bytes)
2863 {
2864 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2865 }
2866 EXPORT_SYMBOL(blk_end_request);
2867
2868 /**
2869 * blk_end_request_all - Helper function for drives to finish the request.
2870 * @rq: the request to finish
2871 * @error: block status code
2872 *
2873 * Description:
2874 * Completely finish @rq.
2875 */
2876 void blk_end_request_all(struct request *rq, blk_status_t error)
2877 {
2878 bool pending;
2879 unsigned int bidi_bytes = 0;
2880
2881 if (unlikely(blk_bidi_rq(rq)))
2882 bidi_bytes = blk_rq_bytes(rq->next_rq);
2883
2884 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2885 BUG_ON(pending);
2886 }
2887 EXPORT_SYMBOL(blk_end_request_all);
2888
2889 /**
2890 * __blk_end_request - Helper function for drivers to complete the request.
2891 * @rq: the request being processed
2892 * @error: block status code
2893 * @nr_bytes: number of bytes to complete
2894 *
2895 * Description:
2896 * Must be called with queue lock held unlike blk_end_request().
2897 *
2898 * Return:
2899 * %false - we are done with this request
2900 * %true - still buffers pending for this request
2901 **/
2902 bool __blk_end_request(struct request *rq, blk_status_t error,
2903 unsigned int nr_bytes)
2904 {
2905 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2906 }
2907 EXPORT_SYMBOL(__blk_end_request);
2908
2909 /**
2910 * __blk_end_request_all - Helper function for drives to finish the request.
2911 * @rq: the request to finish
2912 * @error: block status code
2913 *
2914 * Description:
2915 * Completely finish @rq. Must be called with queue lock held.
2916 */
2917 void __blk_end_request_all(struct request *rq, blk_status_t error)
2918 {
2919 bool pending;
2920 unsigned int bidi_bytes = 0;
2921
2922 if (unlikely(blk_bidi_rq(rq)))
2923 bidi_bytes = blk_rq_bytes(rq->next_rq);
2924
2925 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2926 BUG_ON(pending);
2927 }
2928 EXPORT_SYMBOL(__blk_end_request_all);
2929
2930 /**
2931 * __blk_end_request_cur - Helper function to finish the current request chunk.
2932 * @rq: the request to finish the current chunk for
2933 * @error: block status code
2934 *
2935 * Description:
2936 * Complete the current consecutively mapped chunk from @rq. Must
2937 * be called with queue lock held.
2938 *
2939 * Return:
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
2942 */
2943 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
2944 {
2945 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2946 }
2947 EXPORT_SYMBOL(__blk_end_request_cur);
2948
2949 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2950 struct bio *bio)
2951 {
2952 if (bio_has_data(bio))
2953 rq->nr_phys_segments = bio_phys_segments(q, bio);
2954
2955 rq->__data_len = bio->bi_iter.bi_size;
2956 rq->bio = rq->biotail = bio;
2957
2958 if (bio->bi_bdev)
2959 rq->rq_disk = bio->bi_bdev->bd_disk;
2960 }
2961
2962 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2963 /**
2964 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2965 * @rq: the request to be flushed
2966 *
2967 * Description:
2968 * Flush all pages in @rq.
2969 */
2970 void rq_flush_dcache_pages(struct request *rq)
2971 {
2972 struct req_iterator iter;
2973 struct bio_vec bvec;
2974
2975 rq_for_each_segment(bvec, rq, iter)
2976 flush_dcache_page(bvec.bv_page);
2977 }
2978 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2979 #endif
2980
2981 /**
2982 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2983 * @q : the queue of the device being checked
2984 *
2985 * Description:
2986 * Check if underlying low-level drivers of a device are busy.
2987 * If the drivers want to export their busy state, they must set own
2988 * exporting function using blk_queue_lld_busy() first.
2989 *
2990 * Basically, this function is used only by request stacking drivers
2991 * to stop dispatching requests to underlying devices when underlying
2992 * devices are busy. This behavior helps more I/O merging on the queue
2993 * of the request stacking driver and prevents I/O throughput regression
2994 * on burst I/O load.
2995 *
2996 * Return:
2997 * 0 - Not busy (The request stacking driver should dispatch request)
2998 * 1 - Busy (The request stacking driver should stop dispatching request)
2999 */
3000 int blk_lld_busy(struct request_queue *q)
3001 {
3002 if (q->lld_busy_fn)
3003 return q->lld_busy_fn(q);
3004
3005 return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(blk_lld_busy);
3008
3009 /**
3010 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3011 * @rq: the clone request to be cleaned up
3012 *
3013 * Description:
3014 * Free all bios in @rq for a cloned request.
3015 */
3016 void blk_rq_unprep_clone(struct request *rq)
3017 {
3018 struct bio *bio;
3019
3020 while ((bio = rq->bio) != NULL) {
3021 rq->bio = bio->bi_next;
3022
3023 bio_put(bio);
3024 }
3025 }
3026 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3027
3028 /*
3029 * Copy attributes of the original request to the clone request.
3030 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3031 */
3032 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3033 {
3034 dst->cpu = src->cpu;
3035 dst->__sector = blk_rq_pos(src);
3036 dst->__data_len = blk_rq_bytes(src);
3037 dst->nr_phys_segments = src->nr_phys_segments;
3038 dst->ioprio = src->ioprio;
3039 dst->extra_len = src->extra_len;
3040 }
3041
3042 /**
3043 * blk_rq_prep_clone - Helper function to setup clone request
3044 * @rq: the request to be setup
3045 * @rq_src: original request to be cloned
3046 * @bs: bio_set that bios for clone are allocated from
3047 * @gfp_mask: memory allocation mask for bio
3048 * @bio_ctr: setup function to be called for each clone bio.
3049 * Returns %0 for success, non %0 for failure.
3050 * @data: private data to be passed to @bio_ctr
3051 *
3052 * Description:
3053 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3054 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3055 * are not copied, and copying such parts is the caller's responsibility.
3056 * Also, pages which the original bios are pointing to are not copied
3057 * and the cloned bios just point same pages.
3058 * So cloned bios must be completed before original bios, which means
3059 * the caller must complete @rq before @rq_src.
3060 */
3061 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3062 struct bio_set *bs, gfp_t gfp_mask,
3063 int (*bio_ctr)(struct bio *, struct bio *, void *),
3064 void *data)
3065 {
3066 struct bio *bio, *bio_src;
3067
3068 if (!bs)
3069 bs = fs_bio_set;
3070
3071 __rq_for_each_bio(bio_src, rq_src) {
3072 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3073 if (!bio)
3074 goto free_and_out;
3075
3076 if (bio_ctr && bio_ctr(bio, bio_src, data))
3077 goto free_and_out;
3078
3079 if (rq->bio) {
3080 rq->biotail->bi_next = bio;
3081 rq->biotail = bio;
3082 } else
3083 rq->bio = rq->biotail = bio;
3084 }
3085
3086 __blk_rq_prep_clone(rq, rq_src);
3087
3088 return 0;
3089
3090 free_and_out:
3091 if (bio)
3092 bio_put(bio);
3093 blk_rq_unprep_clone(rq);
3094
3095 return -ENOMEM;
3096 }
3097 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3098
3099 int kblockd_schedule_work(struct work_struct *work)
3100 {
3101 return queue_work(kblockd_workqueue, work);
3102 }
3103 EXPORT_SYMBOL(kblockd_schedule_work);
3104
3105 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3106 {
3107 return queue_work_on(cpu, kblockd_workqueue, work);
3108 }
3109 EXPORT_SYMBOL(kblockd_schedule_work_on);
3110
3111 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3112 unsigned long delay)
3113 {
3114 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3115 }
3116 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3117
3118 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3119 unsigned long delay)
3120 {
3121 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3122 }
3123 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3124
3125 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3126 unsigned long delay)
3127 {
3128 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3129 }
3130 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3131
3132 /**
3133 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3134 * @plug: The &struct blk_plug that needs to be initialized
3135 *
3136 * Description:
3137 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3138 * pending I/O should the task end up blocking between blk_start_plug() and
3139 * blk_finish_plug(). This is important from a performance perspective, but
3140 * also ensures that we don't deadlock. For instance, if the task is blocking
3141 * for a memory allocation, memory reclaim could end up wanting to free a
3142 * page belonging to that request that is currently residing in our private
3143 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3144 * this kind of deadlock.
3145 */
3146 void blk_start_plug(struct blk_plug *plug)
3147 {
3148 struct task_struct *tsk = current;
3149
3150 /*
3151 * If this is a nested plug, don't actually assign it.
3152 */
3153 if (tsk->plug)
3154 return;
3155
3156 INIT_LIST_HEAD(&plug->list);
3157 INIT_LIST_HEAD(&plug->mq_list);
3158 INIT_LIST_HEAD(&plug->cb_list);
3159 /*
3160 * Store ordering should not be needed here, since a potential
3161 * preempt will imply a full memory barrier
3162 */
3163 tsk->plug = plug;
3164 }
3165 EXPORT_SYMBOL(blk_start_plug);
3166
3167 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3168 {
3169 struct request *rqa = container_of(a, struct request, queuelist);
3170 struct request *rqb = container_of(b, struct request, queuelist);
3171
3172 return !(rqa->q < rqb->q ||
3173 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3174 }
3175
3176 /*
3177 * If 'from_schedule' is true, then postpone the dispatch of requests
3178 * until a safe kblockd context. We due this to avoid accidental big
3179 * additional stack usage in driver dispatch, in places where the originally
3180 * plugger did not intend it.
3181 */
3182 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3183 bool from_schedule)
3184 __releases(q->queue_lock)
3185 {
3186 trace_block_unplug(q, depth, !from_schedule);
3187
3188 if (from_schedule)
3189 blk_run_queue_async(q);
3190 else
3191 __blk_run_queue(q);
3192 spin_unlock(q->queue_lock);
3193 }
3194
3195 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3196 {
3197 LIST_HEAD(callbacks);
3198
3199 while (!list_empty(&plug->cb_list)) {
3200 list_splice_init(&plug->cb_list, &callbacks);
3201
3202 while (!list_empty(&callbacks)) {
3203 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3204 struct blk_plug_cb,
3205 list);
3206 list_del(&cb->list);
3207 cb->callback(cb, from_schedule);
3208 }
3209 }
3210 }
3211
3212 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3213 int size)
3214 {
3215 struct blk_plug *plug = current->plug;
3216 struct blk_plug_cb *cb;
3217
3218 if (!plug)
3219 return NULL;
3220
3221 list_for_each_entry(cb, &plug->cb_list, list)
3222 if (cb->callback == unplug && cb->data == data)
3223 return cb;
3224
3225 /* Not currently on the callback list */
3226 BUG_ON(size < sizeof(*cb));
3227 cb = kzalloc(size, GFP_ATOMIC);
3228 if (cb) {
3229 cb->data = data;
3230 cb->callback = unplug;
3231 list_add(&cb->list, &plug->cb_list);
3232 }
3233 return cb;
3234 }
3235 EXPORT_SYMBOL(blk_check_plugged);
3236
3237 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3238 {
3239 struct request_queue *q;
3240 unsigned long flags;
3241 struct request *rq;
3242 LIST_HEAD(list);
3243 unsigned int depth;
3244
3245 flush_plug_callbacks(plug, from_schedule);
3246
3247 if (!list_empty(&plug->mq_list))
3248 blk_mq_flush_plug_list(plug, from_schedule);
3249
3250 if (list_empty(&plug->list))
3251 return;
3252
3253 list_splice_init(&plug->list, &list);
3254
3255 list_sort(NULL, &list, plug_rq_cmp);
3256
3257 q = NULL;
3258 depth = 0;
3259
3260 /*
3261 * Save and disable interrupts here, to avoid doing it for every
3262 * queue lock we have to take.
3263 */
3264 local_irq_save(flags);
3265 while (!list_empty(&list)) {
3266 rq = list_entry_rq(list.next);
3267 list_del_init(&rq->queuelist);
3268 BUG_ON(!rq->q);
3269 if (rq->q != q) {
3270 /*
3271 * This drops the queue lock
3272 */
3273 if (q)
3274 queue_unplugged(q, depth, from_schedule);
3275 q = rq->q;
3276 depth = 0;
3277 spin_lock(q->queue_lock);
3278 }
3279
3280 /*
3281 * Short-circuit if @q is dead
3282 */
3283 if (unlikely(blk_queue_dying(q))) {
3284 __blk_end_request_all(rq, BLK_STS_IOERR);
3285 continue;
3286 }
3287
3288 /*
3289 * rq is already accounted, so use raw insert
3290 */
3291 if (op_is_flush(rq->cmd_flags))
3292 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3293 else
3294 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3295
3296 depth++;
3297 }
3298
3299 /*
3300 * This drops the queue lock
3301 */
3302 if (q)
3303 queue_unplugged(q, depth, from_schedule);
3304
3305 local_irq_restore(flags);
3306 }
3307
3308 void blk_finish_plug(struct blk_plug *plug)
3309 {
3310 if (plug != current->plug)
3311 return;
3312 blk_flush_plug_list(plug, false);
3313
3314 current->plug = NULL;
3315 }
3316 EXPORT_SYMBOL(blk_finish_plug);
3317
3318 #ifdef CONFIG_PM
3319 /**
3320 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3321 * @q: the queue of the device
3322 * @dev: the device the queue belongs to
3323 *
3324 * Description:
3325 * Initialize runtime-PM-related fields for @q and start auto suspend for
3326 * @dev. Drivers that want to take advantage of request-based runtime PM
3327 * should call this function after @dev has been initialized, and its
3328 * request queue @q has been allocated, and runtime PM for it can not happen
3329 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3330 * cases, driver should call this function before any I/O has taken place.
3331 *
3332 * This function takes care of setting up using auto suspend for the device,
3333 * the autosuspend delay is set to -1 to make runtime suspend impossible
3334 * until an updated value is either set by user or by driver. Drivers do
3335 * not need to touch other autosuspend settings.
3336 *
3337 * The block layer runtime PM is request based, so only works for drivers
3338 * that use request as their IO unit instead of those directly use bio's.
3339 */
3340 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3341 {
3342 q->dev = dev;
3343 q->rpm_status = RPM_ACTIVE;
3344 pm_runtime_set_autosuspend_delay(q->dev, -1);
3345 pm_runtime_use_autosuspend(q->dev);
3346 }
3347 EXPORT_SYMBOL(blk_pm_runtime_init);
3348
3349 /**
3350 * blk_pre_runtime_suspend - Pre runtime suspend check
3351 * @q: the queue of the device
3352 *
3353 * Description:
3354 * This function will check if runtime suspend is allowed for the device
3355 * by examining if there are any requests pending in the queue. If there
3356 * are requests pending, the device can not be runtime suspended; otherwise,
3357 * the queue's status will be updated to SUSPENDING and the driver can
3358 * proceed to suspend the device.
3359 *
3360 * For the not allowed case, we mark last busy for the device so that
3361 * runtime PM core will try to autosuspend it some time later.
3362 *
3363 * This function should be called near the start of the device's
3364 * runtime_suspend callback.
3365 *
3366 * Return:
3367 * 0 - OK to runtime suspend the device
3368 * -EBUSY - Device should not be runtime suspended
3369 */
3370 int blk_pre_runtime_suspend(struct request_queue *q)
3371 {
3372 int ret = 0;
3373
3374 if (!q->dev)
3375 return ret;
3376
3377 spin_lock_irq(q->queue_lock);
3378 if (q->nr_pending) {
3379 ret = -EBUSY;
3380 pm_runtime_mark_last_busy(q->dev);
3381 } else {
3382 q->rpm_status = RPM_SUSPENDING;
3383 }
3384 spin_unlock_irq(q->queue_lock);
3385 return ret;
3386 }
3387 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3388
3389 /**
3390 * blk_post_runtime_suspend - Post runtime suspend processing
3391 * @q: the queue of the device
3392 * @err: return value of the device's runtime_suspend function
3393 *
3394 * Description:
3395 * Update the queue's runtime status according to the return value of the
3396 * device's runtime suspend function and mark last busy for the device so
3397 * that PM core will try to auto suspend the device at a later time.
3398 *
3399 * This function should be called near the end of the device's
3400 * runtime_suspend callback.
3401 */
3402 void blk_post_runtime_suspend(struct request_queue *q, int err)
3403 {
3404 if (!q->dev)
3405 return;
3406
3407 spin_lock_irq(q->queue_lock);
3408 if (!err) {
3409 q->rpm_status = RPM_SUSPENDED;
3410 } else {
3411 q->rpm_status = RPM_ACTIVE;
3412 pm_runtime_mark_last_busy(q->dev);
3413 }
3414 spin_unlock_irq(q->queue_lock);
3415 }
3416 EXPORT_SYMBOL(blk_post_runtime_suspend);
3417
3418 /**
3419 * blk_pre_runtime_resume - Pre runtime resume processing
3420 * @q: the queue of the device
3421 *
3422 * Description:
3423 * Update the queue's runtime status to RESUMING in preparation for the
3424 * runtime resume of the device.
3425 *
3426 * This function should be called near the start of the device's
3427 * runtime_resume callback.
3428 */
3429 void blk_pre_runtime_resume(struct request_queue *q)
3430 {
3431 if (!q->dev)
3432 return;
3433
3434 spin_lock_irq(q->queue_lock);
3435 q->rpm_status = RPM_RESUMING;
3436 spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_pre_runtime_resume);
3439
3440 /**
3441 * blk_post_runtime_resume - Post runtime resume processing
3442 * @q: the queue of the device
3443 * @err: return value of the device's runtime_resume function
3444 *
3445 * Description:
3446 * Update the queue's runtime status according to the return value of the
3447 * device's runtime_resume function. If it is successfully resumed, process
3448 * the requests that are queued into the device's queue when it is resuming
3449 * and then mark last busy and initiate autosuspend for it.
3450 *
3451 * This function should be called near the end of the device's
3452 * runtime_resume callback.
3453 */
3454 void blk_post_runtime_resume(struct request_queue *q, int err)
3455 {
3456 if (!q->dev)
3457 return;
3458
3459 spin_lock_irq(q->queue_lock);
3460 if (!err) {
3461 q->rpm_status = RPM_ACTIVE;
3462 __blk_run_queue(q);
3463 pm_runtime_mark_last_busy(q->dev);
3464 pm_request_autosuspend(q->dev);
3465 } else {
3466 q->rpm_status = RPM_SUSPENDED;
3467 }
3468 spin_unlock_irq(q->queue_lock);
3469 }
3470 EXPORT_SYMBOL(blk_post_runtime_resume);
3471
3472 /**
3473 * blk_set_runtime_active - Force runtime status of the queue to be active
3474 * @q: the queue of the device
3475 *
3476 * If the device is left runtime suspended during system suspend the resume
3477 * hook typically resumes the device and corrects runtime status
3478 * accordingly. However, that does not affect the queue runtime PM status
3479 * which is still "suspended". This prevents processing requests from the
3480 * queue.
3481 *
3482 * This function can be used in driver's resume hook to correct queue
3483 * runtime PM status and re-enable peeking requests from the queue. It
3484 * should be called before first request is added to the queue.
3485 */
3486 void blk_set_runtime_active(struct request_queue *q)
3487 {
3488 spin_lock_irq(q->queue_lock);
3489 q->rpm_status = RPM_ACTIVE;
3490 pm_runtime_mark_last_busy(q->dev);
3491 pm_request_autosuspend(q->dev);
3492 spin_unlock_irq(q->queue_lock);
3493 }
3494 EXPORT_SYMBOL(blk_set_runtime_active);
3495 #endif
3496
3497 int __init blk_dev_init(void)
3498 {
3499 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3500 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3501 FIELD_SIZEOF(struct request, cmd_flags));
3502 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3503 FIELD_SIZEOF(struct bio, bi_opf));
3504
3505 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3506 kblockd_workqueue = alloc_workqueue("kblockd",
3507 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3508 if (!kblockd_workqueue)
3509 panic("Failed to create kblockd\n");
3510
3511 request_cachep = kmem_cache_create("blkdev_requests",
3512 sizeof(struct request), 0, SLAB_PANIC, NULL);
3513
3514 blk_requestq_cachep = kmem_cache_create("request_queue",
3515 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3516
3517 #ifdef CONFIG_DEBUG_FS
3518 blk_debugfs_root = debugfs_create_dir("block", NULL);
3519 #endif
3520
3521 return 0;
3522 }