]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
net: tulip: de4x5: Drop redundant MODULE_DEVICE_TABLE()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 queue_for_each_hw_ctx(q, hctx, i)
343 cancel_delayed_work_sync(&hctx->run_work);
344 } else {
345 cancel_delayed_work_sync(&q->delay_work);
346 }
347 }
348 EXPORT_SYMBOL(blk_sync_queue);
349
350 /**
351 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
352 * @q: request queue pointer
353 *
354 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
355 * set and 1 if the flag was already set.
356 */
357 int blk_set_preempt_only(struct request_queue *q)
358 {
359 unsigned long flags;
360 int res;
361
362 spin_lock_irqsave(q->queue_lock, flags);
363 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
364 spin_unlock_irqrestore(q->queue_lock, flags);
365
366 return res;
367 }
368 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
369
370 void blk_clear_preempt_only(struct request_queue *q)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
375 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
376 wake_up_all(&q->mq_freeze_wq);
377 spin_unlock_irqrestore(q->queue_lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
380
381 /**
382 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
383 * @q: The queue to run
384 *
385 * Description:
386 * Invoke request handling on a queue if there are any pending requests.
387 * May be used to restart request handling after a request has completed.
388 * This variant runs the queue whether or not the queue has been
389 * stopped. Must be called with the queue lock held and interrupts
390 * disabled. See also @blk_run_queue.
391 */
392 inline void __blk_run_queue_uncond(struct request_queue *q)
393 {
394 lockdep_assert_held(q->queue_lock);
395 WARN_ON_ONCE(q->mq_ops);
396
397 if (unlikely(blk_queue_dead(q)))
398 return;
399
400 /*
401 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
402 * the queue lock internally. As a result multiple threads may be
403 * running such a request function concurrently. Keep track of the
404 * number of active request_fn invocations such that blk_drain_queue()
405 * can wait until all these request_fn calls have finished.
406 */
407 q->request_fn_active++;
408 q->request_fn(q);
409 q->request_fn_active--;
410 }
411 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
412
413 /**
414 * __blk_run_queue - run a single device queue
415 * @q: The queue to run
416 *
417 * Description:
418 * See @blk_run_queue.
419 */
420 void __blk_run_queue(struct request_queue *q)
421 {
422 lockdep_assert_held(q->queue_lock);
423 WARN_ON_ONCE(q->mq_ops);
424
425 if (unlikely(blk_queue_stopped(q)))
426 return;
427
428 __blk_run_queue_uncond(q);
429 }
430 EXPORT_SYMBOL(__blk_run_queue);
431
432 /**
433 * blk_run_queue_async - run a single device queue in workqueue context
434 * @q: The queue to run
435 *
436 * Description:
437 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
438 * of us.
439 *
440 * Note:
441 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
442 * has canceled q->delay_work, callers must hold the queue lock to avoid
443 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
444 */
445 void blk_run_queue_async(struct request_queue *q)
446 {
447 lockdep_assert_held(q->queue_lock);
448 WARN_ON_ONCE(q->mq_ops);
449
450 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
451 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
452 }
453 EXPORT_SYMBOL(blk_run_queue_async);
454
455 /**
456 * blk_run_queue - run a single device queue
457 * @q: The queue to run
458 *
459 * Description:
460 * Invoke request handling on this queue, if it has pending work to do.
461 * May be used to restart queueing when a request has completed.
462 */
463 void blk_run_queue(struct request_queue *q)
464 {
465 unsigned long flags;
466
467 WARN_ON_ONCE(q->mq_ops);
468
469 spin_lock_irqsave(q->queue_lock, flags);
470 __blk_run_queue(q);
471 spin_unlock_irqrestore(q->queue_lock, flags);
472 }
473 EXPORT_SYMBOL(blk_run_queue);
474
475 void blk_put_queue(struct request_queue *q)
476 {
477 kobject_put(&q->kobj);
478 }
479 EXPORT_SYMBOL(blk_put_queue);
480
481 /**
482 * __blk_drain_queue - drain requests from request_queue
483 * @q: queue to drain
484 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
485 *
486 * Drain requests from @q. If @drain_all is set, all requests are drained.
487 * If not, only ELVPRIV requests are drained. The caller is responsible
488 * for ensuring that no new requests which need to be drained are queued.
489 */
490 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
491 __releases(q->queue_lock)
492 __acquires(q->queue_lock)
493 {
494 int i;
495
496 lockdep_assert_held(q->queue_lock);
497 WARN_ON_ONCE(q->mq_ops);
498
499 while (true) {
500 bool drain = false;
501
502 /*
503 * The caller might be trying to drain @q before its
504 * elevator is initialized.
505 */
506 if (q->elevator)
507 elv_drain_elevator(q);
508
509 blkcg_drain_queue(q);
510
511 /*
512 * This function might be called on a queue which failed
513 * driver init after queue creation or is not yet fully
514 * active yet. Some drivers (e.g. fd and loop) get unhappy
515 * in such cases. Kick queue iff dispatch queue has
516 * something on it and @q has request_fn set.
517 */
518 if (!list_empty(&q->queue_head) && q->request_fn)
519 __blk_run_queue(q);
520
521 drain |= q->nr_rqs_elvpriv;
522 drain |= q->request_fn_active;
523
524 /*
525 * Unfortunately, requests are queued at and tracked from
526 * multiple places and there's no single counter which can
527 * be drained. Check all the queues and counters.
528 */
529 if (drain_all) {
530 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
531 drain |= !list_empty(&q->queue_head);
532 for (i = 0; i < 2; i++) {
533 drain |= q->nr_rqs[i];
534 drain |= q->in_flight[i];
535 if (fq)
536 drain |= !list_empty(&fq->flush_queue[i]);
537 }
538 }
539
540 if (!drain)
541 break;
542
543 spin_unlock_irq(q->queue_lock);
544
545 msleep(10);
546
547 spin_lock_irq(q->queue_lock);
548 }
549
550 /*
551 * With queue marked dead, any woken up waiter will fail the
552 * allocation path, so the wakeup chaining is lost and we're
553 * left with hung waiters. We need to wake up those waiters.
554 */
555 if (q->request_fn) {
556 struct request_list *rl;
557
558 blk_queue_for_each_rl(rl, q)
559 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
560 wake_up_all(&rl->wait[i]);
561 }
562 }
563
564 void blk_drain_queue(struct request_queue *q)
565 {
566 spin_lock_irq(q->queue_lock);
567 __blk_drain_queue(q, true);
568 spin_unlock_irq(q->queue_lock);
569 }
570
571 /**
572 * blk_queue_bypass_start - enter queue bypass mode
573 * @q: queue of interest
574 *
575 * In bypass mode, only the dispatch FIFO queue of @q is used. This
576 * function makes @q enter bypass mode and drains all requests which were
577 * throttled or issued before. On return, it's guaranteed that no request
578 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
579 * inside queue or RCU read lock.
580 */
581 void blk_queue_bypass_start(struct request_queue *q)
582 {
583 WARN_ON_ONCE(q->mq_ops);
584
585 spin_lock_irq(q->queue_lock);
586 q->bypass_depth++;
587 queue_flag_set(QUEUE_FLAG_BYPASS, q);
588 spin_unlock_irq(q->queue_lock);
589
590 /*
591 * Queues start drained. Skip actual draining till init is
592 * complete. This avoids lenghty delays during queue init which
593 * can happen many times during boot.
594 */
595 if (blk_queue_init_done(q)) {
596 spin_lock_irq(q->queue_lock);
597 __blk_drain_queue(q, false);
598 spin_unlock_irq(q->queue_lock);
599
600 /* ensure blk_queue_bypass() is %true inside RCU read lock */
601 synchronize_rcu();
602 }
603 }
604 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
605
606 /**
607 * blk_queue_bypass_end - leave queue bypass mode
608 * @q: queue of interest
609 *
610 * Leave bypass mode and restore the normal queueing behavior.
611 *
612 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
613 * this function is called for both blk-sq and blk-mq queues.
614 */
615 void blk_queue_bypass_end(struct request_queue *q)
616 {
617 spin_lock_irq(q->queue_lock);
618 if (!--q->bypass_depth)
619 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
620 WARN_ON_ONCE(q->bypass_depth < 0);
621 spin_unlock_irq(q->queue_lock);
622 }
623 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
624
625 void blk_set_queue_dying(struct request_queue *q)
626 {
627 spin_lock_irq(q->queue_lock);
628 queue_flag_set(QUEUE_FLAG_DYING, q);
629 spin_unlock_irq(q->queue_lock);
630
631 /*
632 * When queue DYING flag is set, we need to block new req
633 * entering queue, so we call blk_freeze_queue_start() to
634 * prevent I/O from crossing blk_queue_enter().
635 */
636 blk_freeze_queue_start(q);
637
638 if (q->mq_ops)
639 blk_mq_wake_waiters(q);
640 else {
641 struct request_list *rl;
642
643 spin_lock_irq(q->queue_lock);
644 blk_queue_for_each_rl(rl, q) {
645 if (rl->rq_pool) {
646 wake_up_all(&rl->wait[BLK_RW_SYNC]);
647 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
648 }
649 }
650 spin_unlock_irq(q->queue_lock);
651 }
652
653 /* Make blk_queue_enter() reexamine the DYING flag. */
654 wake_up_all(&q->mq_freeze_wq);
655 }
656 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
657
658 /**
659 * blk_cleanup_queue - shutdown a request queue
660 * @q: request queue to shutdown
661 *
662 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
663 * put it. All future requests will be failed immediately with -ENODEV.
664 */
665 void blk_cleanup_queue(struct request_queue *q)
666 {
667 spinlock_t *lock = q->queue_lock;
668
669 /* mark @q DYING, no new request or merges will be allowed afterwards */
670 mutex_lock(&q->sysfs_lock);
671 blk_set_queue_dying(q);
672 spin_lock_irq(lock);
673
674 /*
675 * A dying queue is permanently in bypass mode till released. Note
676 * that, unlike blk_queue_bypass_start(), we aren't performing
677 * synchronize_rcu() after entering bypass mode to avoid the delay
678 * as some drivers create and destroy a lot of queues while
679 * probing. This is still safe because blk_release_queue() will be
680 * called only after the queue refcnt drops to zero and nothing,
681 * RCU or not, would be traversing the queue by then.
682 */
683 q->bypass_depth++;
684 queue_flag_set(QUEUE_FLAG_BYPASS, q);
685
686 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
687 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
688 queue_flag_set(QUEUE_FLAG_DYING, q);
689 spin_unlock_irq(lock);
690 mutex_unlock(&q->sysfs_lock);
691
692 /*
693 * Drain all requests queued before DYING marking. Set DEAD flag to
694 * prevent that q->request_fn() gets invoked after draining finished.
695 */
696 blk_freeze_queue(q);
697 spin_lock_irq(lock);
698 queue_flag_set(QUEUE_FLAG_DEAD, q);
699 spin_unlock_irq(lock);
700
701 /*
702 * make sure all in-progress dispatch are completed because
703 * blk_freeze_queue() can only complete all requests, and
704 * dispatch may still be in-progress since we dispatch requests
705 * from more than one contexts.
706 *
707 * We rely on driver to deal with the race in case that queue
708 * initialization isn't done.
709 */
710 if (q->mq_ops && blk_queue_init_done(q))
711 blk_mq_quiesce_queue(q);
712
713 /* for synchronous bio-based driver finish in-flight integrity i/o */
714 blk_flush_integrity();
715
716 /* @q won't process any more request, flush async actions */
717 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
718 blk_sync_queue(q);
719
720 if (q->mq_ops)
721 blk_mq_free_queue(q);
722 percpu_ref_exit(&q->q_usage_counter);
723
724 spin_lock_irq(lock);
725 if (q->queue_lock != &q->__queue_lock)
726 q->queue_lock = &q->__queue_lock;
727 spin_unlock_irq(lock);
728
729 /* @q is and will stay empty, shutdown and put */
730 blk_put_queue(q);
731 }
732 EXPORT_SYMBOL(blk_cleanup_queue);
733
734 /* Allocate memory local to the request queue */
735 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
736 {
737 struct request_queue *q = data;
738
739 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
740 }
741
742 static void free_request_simple(void *element, void *data)
743 {
744 kmem_cache_free(request_cachep, element);
745 }
746
747 static void *alloc_request_size(gfp_t gfp_mask, void *data)
748 {
749 struct request_queue *q = data;
750 struct request *rq;
751
752 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
753 q->node);
754 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
755 kfree(rq);
756 rq = NULL;
757 }
758 return rq;
759 }
760
761 static void free_request_size(void *element, void *data)
762 {
763 struct request_queue *q = data;
764
765 if (q->exit_rq_fn)
766 q->exit_rq_fn(q, element);
767 kfree(element);
768 }
769
770 int blk_init_rl(struct request_list *rl, struct request_queue *q,
771 gfp_t gfp_mask)
772 {
773 if (unlikely(rl->rq_pool) || q->mq_ops)
774 return 0;
775
776 rl->q = q;
777 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
778 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
779 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
780 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
781
782 if (q->cmd_size) {
783 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
784 alloc_request_size, free_request_size,
785 q, gfp_mask, q->node);
786 } else {
787 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
788 alloc_request_simple, free_request_simple,
789 q, gfp_mask, q->node);
790 }
791 if (!rl->rq_pool)
792 return -ENOMEM;
793
794 if (rl != &q->root_rl)
795 WARN_ON_ONCE(!blk_get_queue(q));
796
797 return 0;
798 }
799
800 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
801 {
802 if (rl->rq_pool) {
803 mempool_destroy(rl->rq_pool);
804 if (rl != &q->root_rl)
805 blk_put_queue(q);
806 }
807 }
808
809 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
810 {
811 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
812 }
813 EXPORT_SYMBOL(blk_alloc_queue);
814
815 /**
816 * blk_queue_enter() - try to increase q->q_usage_counter
817 * @q: request queue pointer
818 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
819 */
820 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
821 {
822 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
823
824 while (true) {
825 bool success = false;
826
827 rcu_read_lock();
828 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
829 /*
830 * The code that sets the PREEMPT_ONLY flag is
831 * responsible for ensuring that that flag is globally
832 * visible before the queue is unfrozen.
833 */
834 if (preempt || !blk_queue_preempt_only(q)) {
835 success = true;
836 } else {
837 percpu_ref_put(&q->q_usage_counter);
838 }
839 }
840 rcu_read_unlock();
841
842 if (success)
843 return 0;
844
845 if (flags & BLK_MQ_REQ_NOWAIT)
846 return -EBUSY;
847
848 /*
849 * read pair of barrier in blk_freeze_queue_start(),
850 * we need to order reading __PERCPU_REF_DEAD flag of
851 * .q_usage_counter and reading .mq_freeze_depth or
852 * queue dying flag, otherwise the following wait may
853 * never return if the two reads are reordered.
854 */
855 smp_rmb();
856
857 wait_event(q->mq_freeze_wq,
858 (atomic_read(&q->mq_freeze_depth) == 0 &&
859 (preempt || !blk_queue_preempt_only(q))) ||
860 blk_queue_dying(q));
861 if (blk_queue_dying(q))
862 return -ENODEV;
863 }
864 }
865
866 void blk_queue_exit(struct request_queue *q)
867 {
868 percpu_ref_put(&q->q_usage_counter);
869 }
870
871 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
872 {
873 struct request_queue *q =
874 container_of(ref, struct request_queue, q_usage_counter);
875
876 wake_up_all(&q->mq_freeze_wq);
877 }
878
879 static void blk_rq_timed_out_timer(struct timer_list *t)
880 {
881 struct request_queue *q = from_timer(q, t, timeout);
882
883 kblockd_schedule_work(&q->timeout_work);
884 }
885
886 static void blk_timeout_work_dummy(struct work_struct *work)
887 {
888 }
889
890 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
891 {
892 struct request_queue *q;
893
894 q = kmem_cache_alloc_node(blk_requestq_cachep,
895 gfp_mask | __GFP_ZERO, node_id);
896 if (!q)
897 return NULL;
898
899 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
900 if (q->id < 0)
901 goto fail_q;
902
903 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
904 if (!q->bio_split)
905 goto fail_id;
906
907 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
908 if (!q->backing_dev_info)
909 goto fail_split;
910
911 q->stats = blk_alloc_queue_stats();
912 if (!q->stats)
913 goto fail_stats;
914
915 q->backing_dev_info->ra_pages =
916 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
917 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
918 q->backing_dev_info->name = "block";
919 q->node = node_id;
920
921 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
922 laptop_mode_timer_fn, 0);
923 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
924 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
925 INIT_LIST_HEAD(&q->queue_head);
926 INIT_LIST_HEAD(&q->timeout_list);
927 INIT_LIST_HEAD(&q->icq_list);
928 #ifdef CONFIG_BLK_CGROUP
929 INIT_LIST_HEAD(&q->blkg_list);
930 #endif
931 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
932
933 kobject_init(&q->kobj, &blk_queue_ktype);
934
935 #ifdef CONFIG_BLK_DEV_IO_TRACE
936 mutex_init(&q->blk_trace_mutex);
937 #endif
938 mutex_init(&q->sysfs_lock);
939 spin_lock_init(&q->__queue_lock);
940
941 /*
942 * By default initialize queue_lock to internal lock and driver can
943 * override it later if need be.
944 */
945 q->queue_lock = &q->__queue_lock;
946
947 /*
948 * A queue starts its life with bypass turned on to avoid
949 * unnecessary bypass on/off overhead and nasty surprises during
950 * init. The initial bypass will be finished when the queue is
951 * registered by blk_register_queue().
952 */
953 q->bypass_depth = 1;
954 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
955
956 init_waitqueue_head(&q->mq_freeze_wq);
957
958 /*
959 * Init percpu_ref in atomic mode so that it's faster to shutdown.
960 * See blk_register_queue() for details.
961 */
962 if (percpu_ref_init(&q->q_usage_counter,
963 blk_queue_usage_counter_release,
964 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
965 goto fail_bdi;
966
967 if (blkcg_init_queue(q))
968 goto fail_ref;
969
970 return q;
971
972 fail_ref:
973 percpu_ref_exit(&q->q_usage_counter);
974 fail_bdi:
975 blk_free_queue_stats(q->stats);
976 fail_stats:
977 bdi_put(q->backing_dev_info);
978 fail_split:
979 bioset_free(q->bio_split);
980 fail_id:
981 ida_simple_remove(&blk_queue_ida, q->id);
982 fail_q:
983 kmem_cache_free(blk_requestq_cachep, q);
984 return NULL;
985 }
986 EXPORT_SYMBOL(blk_alloc_queue_node);
987
988 /**
989 * blk_init_queue - prepare a request queue for use with a block device
990 * @rfn: The function to be called to process requests that have been
991 * placed on the queue.
992 * @lock: Request queue spin lock
993 *
994 * Description:
995 * If a block device wishes to use the standard request handling procedures,
996 * which sorts requests and coalesces adjacent requests, then it must
997 * call blk_init_queue(). The function @rfn will be called when there
998 * are requests on the queue that need to be processed. If the device
999 * supports plugging, then @rfn may not be called immediately when requests
1000 * are available on the queue, but may be called at some time later instead.
1001 * Plugged queues are generally unplugged when a buffer belonging to one
1002 * of the requests on the queue is needed, or due to memory pressure.
1003 *
1004 * @rfn is not required, or even expected, to remove all requests off the
1005 * queue, but only as many as it can handle at a time. If it does leave
1006 * requests on the queue, it is responsible for arranging that the requests
1007 * get dealt with eventually.
1008 *
1009 * The queue spin lock must be held while manipulating the requests on the
1010 * request queue; this lock will be taken also from interrupt context, so irq
1011 * disabling is needed for it.
1012 *
1013 * Function returns a pointer to the initialized request queue, or %NULL if
1014 * it didn't succeed.
1015 *
1016 * Note:
1017 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1018 * when the block device is deactivated (such as at module unload).
1019 **/
1020
1021 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1022 {
1023 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1024 }
1025 EXPORT_SYMBOL(blk_init_queue);
1026
1027 struct request_queue *
1028 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1029 {
1030 struct request_queue *q;
1031
1032 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1033 if (!q)
1034 return NULL;
1035
1036 q->request_fn = rfn;
1037 if (lock)
1038 q->queue_lock = lock;
1039 if (blk_init_allocated_queue(q) < 0) {
1040 blk_cleanup_queue(q);
1041 return NULL;
1042 }
1043
1044 return q;
1045 }
1046 EXPORT_SYMBOL(blk_init_queue_node);
1047
1048 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1049
1050
1051 int blk_init_allocated_queue(struct request_queue *q)
1052 {
1053 WARN_ON_ONCE(q->mq_ops);
1054
1055 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1056 if (!q->fq)
1057 return -ENOMEM;
1058
1059 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1060 goto out_free_flush_queue;
1061
1062 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1063 goto out_exit_flush_rq;
1064
1065 INIT_WORK(&q->timeout_work, blk_timeout_work);
1066 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1067
1068 /*
1069 * This also sets hw/phys segments, boundary and size
1070 */
1071 blk_queue_make_request(q, blk_queue_bio);
1072
1073 q->sg_reserved_size = INT_MAX;
1074
1075 /* Protect q->elevator from elevator_change */
1076 mutex_lock(&q->sysfs_lock);
1077
1078 /* init elevator */
1079 if (elevator_init(q, NULL)) {
1080 mutex_unlock(&q->sysfs_lock);
1081 goto out_exit_flush_rq;
1082 }
1083
1084 mutex_unlock(&q->sysfs_lock);
1085 return 0;
1086
1087 out_exit_flush_rq:
1088 if (q->exit_rq_fn)
1089 q->exit_rq_fn(q, q->fq->flush_rq);
1090 out_free_flush_queue:
1091 blk_free_flush_queue(q->fq);
1092 q->fq = NULL;
1093 return -ENOMEM;
1094 }
1095 EXPORT_SYMBOL(blk_init_allocated_queue);
1096
1097 bool blk_get_queue(struct request_queue *q)
1098 {
1099 if (likely(!blk_queue_dying(q))) {
1100 __blk_get_queue(q);
1101 return true;
1102 }
1103
1104 return false;
1105 }
1106 EXPORT_SYMBOL(blk_get_queue);
1107
1108 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1109 {
1110 if (rq->rq_flags & RQF_ELVPRIV) {
1111 elv_put_request(rl->q, rq);
1112 if (rq->elv.icq)
1113 put_io_context(rq->elv.icq->ioc);
1114 }
1115
1116 mempool_free(rq, rl->rq_pool);
1117 }
1118
1119 /*
1120 * ioc_batching returns true if the ioc is a valid batching request and
1121 * should be given priority access to a request.
1122 */
1123 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1124 {
1125 if (!ioc)
1126 return 0;
1127
1128 /*
1129 * Make sure the process is able to allocate at least 1 request
1130 * even if the batch times out, otherwise we could theoretically
1131 * lose wakeups.
1132 */
1133 return ioc->nr_batch_requests == q->nr_batching ||
1134 (ioc->nr_batch_requests > 0
1135 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1136 }
1137
1138 /*
1139 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1140 * will cause the process to be a "batcher" on all queues in the system. This
1141 * is the behaviour we want though - once it gets a wakeup it should be given
1142 * a nice run.
1143 */
1144 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1145 {
1146 if (!ioc || ioc_batching(q, ioc))
1147 return;
1148
1149 ioc->nr_batch_requests = q->nr_batching;
1150 ioc->last_waited = jiffies;
1151 }
1152
1153 static void __freed_request(struct request_list *rl, int sync)
1154 {
1155 struct request_queue *q = rl->q;
1156
1157 if (rl->count[sync] < queue_congestion_off_threshold(q))
1158 blk_clear_congested(rl, sync);
1159
1160 if (rl->count[sync] + 1 <= q->nr_requests) {
1161 if (waitqueue_active(&rl->wait[sync]))
1162 wake_up(&rl->wait[sync]);
1163
1164 blk_clear_rl_full(rl, sync);
1165 }
1166 }
1167
1168 /*
1169 * A request has just been released. Account for it, update the full and
1170 * congestion status, wake up any waiters. Called under q->queue_lock.
1171 */
1172 static void freed_request(struct request_list *rl, bool sync,
1173 req_flags_t rq_flags)
1174 {
1175 struct request_queue *q = rl->q;
1176
1177 q->nr_rqs[sync]--;
1178 rl->count[sync]--;
1179 if (rq_flags & RQF_ELVPRIV)
1180 q->nr_rqs_elvpriv--;
1181
1182 __freed_request(rl, sync);
1183
1184 if (unlikely(rl->starved[sync ^ 1]))
1185 __freed_request(rl, sync ^ 1);
1186 }
1187
1188 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1189 {
1190 struct request_list *rl;
1191 int on_thresh, off_thresh;
1192
1193 WARN_ON_ONCE(q->mq_ops);
1194
1195 spin_lock_irq(q->queue_lock);
1196 q->nr_requests = nr;
1197 blk_queue_congestion_threshold(q);
1198 on_thresh = queue_congestion_on_threshold(q);
1199 off_thresh = queue_congestion_off_threshold(q);
1200
1201 blk_queue_for_each_rl(rl, q) {
1202 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1203 blk_set_congested(rl, BLK_RW_SYNC);
1204 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1205 blk_clear_congested(rl, BLK_RW_SYNC);
1206
1207 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1208 blk_set_congested(rl, BLK_RW_ASYNC);
1209 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1210 blk_clear_congested(rl, BLK_RW_ASYNC);
1211
1212 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1213 blk_set_rl_full(rl, BLK_RW_SYNC);
1214 } else {
1215 blk_clear_rl_full(rl, BLK_RW_SYNC);
1216 wake_up(&rl->wait[BLK_RW_SYNC]);
1217 }
1218
1219 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1220 blk_set_rl_full(rl, BLK_RW_ASYNC);
1221 } else {
1222 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1223 wake_up(&rl->wait[BLK_RW_ASYNC]);
1224 }
1225 }
1226
1227 spin_unlock_irq(q->queue_lock);
1228 return 0;
1229 }
1230
1231 /**
1232 * __get_request - get a free request
1233 * @rl: request list to allocate from
1234 * @op: operation and flags
1235 * @bio: bio to allocate request for (can be %NULL)
1236 * @flags: BLQ_MQ_REQ_* flags
1237 *
1238 * Get a free request from @q. This function may fail under memory
1239 * pressure or if @q is dead.
1240 *
1241 * Must be called with @q->queue_lock held and,
1242 * Returns ERR_PTR on failure, with @q->queue_lock held.
1243 * Returns request pointer on success, with @q->queue_lock *not held*.
1244 */
1245 static struct request *__get_request(struct request_list *rl, unsigned int op,
1246 struct bio *bio, blk_mq_req_flags_t flags)
1247 {
1248 struct request_queue *q = rl->q;
1249 struct request *rq;
1250 struct elevator_type *et = q->elevator->type;
1251 struct io_context *ioc = rq_ioc(bio);
1252 struct io_cq *icq = NULL;
1253 const bool is_sync = op_is_sync(op);
1254 int may_queue;
1255 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1256 __GFP_DIRECT_RECLAIM;
1257 req_flags_t rq_flags = RQF_ALLOCED;
1258
1259 lockdep_assert_held(q->queue_lock);
1260
1261 if (unlikely(blk_queue_dying(q)))
1262 return ERR_PTR(-ENODEV);
1263
1264 may_queue = elv_may_queue(q, op);
1265 if (may_queue == ELV_MQUEUE_NO)
1266 goto rq_starved;
1267
1268 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1269 if (rl->count[is_sync]+1 >= q->nr_requests) {
1270 /*
1271 * The queue will fill after this allocation, so set
1272 * it as full, and mark this process as "batching".
1273 * This process will be allowed to complete a batch of
1274 * requests, others will be blocked.
1275 */
1276 if (!blk_rl_full(rl, is_sync)) {
1277 ioc_set_batching(q, ioc);
1278 blk_set_rl_full(rl, is_sync);
1279 } else {
1280 if (may_queue != ELV_MQUEUE_MUST
1281 && !ioc_batching(q, ioc)) {
1282 /*
1283 * The queue is full and the allocating
1284 * process is not a "batcher", and not
1285 * exempted by the IO scheduler
1286 */
1287 return ERR_PTR(-ENOMEM);
1288 }
1289 }
1290 }
1291 blk_set_congested(rl, is_sync);
1292 }
1293
1294 /*
1295 * Only allow batching queuers to allocate up to 50% over the defined
1296 * limit of requests, otherwise we could have thousands of requests
1297 * allocated with any setting of ->nr_requests
1298 */
1299 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1300 return ERR_PTR(-ENOMEM);
1301
1302 q->nr_rqs[is_sync]++;
1303 rl->count[is_sync]++;
1304 rl->starved[is_sync] = 0;
1305
1306 /*
1307 * Decide whether the new request will be managed by elevator. If
1308 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1309 * prevent the current elevator from being destroyed until the new
1310 * request is freed. This guarantees icq's won't be destroyed and
1311 * makes creating new ones safe.
1312 *
1313 * Flush requests do not use the elevator so skip initialization.
1314 * This allows a request to share the flush and elevator data.
1315 *
1316 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1317 * it will be created after releasing queue_lock.
1318 */
1319 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1320 rq_flags |= RQF_ELVPRIV;
1321 q->nr_rqs_elvpriv++;
1322 if (et->icq_cache && ioc)
1323 icq = ioc_lookup_icq(ioc, q);
1324 }
1325
1326 if (blk_queue_io_stat(q))
1327 rq_flags |= RQF_IO_STAT;
1328 spin_unlock_irq(q->queue_lock);
1329
1330 /* allocate and init request */
1331 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1332 if (!rq)
1333 goto fail_alloc;
1334
1335 blk_rq_init(q, rq);
1336 blk_rq_set_rl(rq, rl);
1337 rq->cmd_flags = op;
1338 rq->rq_flags = rq_flags;
1339 if (flags & BLK_MQ_REQ_PREEMPT)
1340 rq->rq_flags |= RQF_PREEMPT;
1341
1342 /* init elvpriv */
1343 if (rq_flags & RQF_ELVPRIV) {
1344 if (unlikely(et->icq_cache && !icq)) {
1345 if (ioc)
1346 icq = ioc_create_icq(ioc, q, gfp_mask);
1347 if (!icq)
1348 goto fail_elvpriv;
1349 }
1350
1351 rq->elv.icq = icq;
1352 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1353 goto fail_elvpriv;
1354
1355 /* @rq->elv.icq holds io_context until @rq is freed */
1356 if (icq)
1357 get_io_context(icq->ioc);
1358 }
1359 out:
1360 /*
1361 * ioc may be NULL here, and ioc_batching will be false. That's
1362 * OK, if the queue is under the request limit then requests need
1363 * not count toward the nr_batch_requests limit. There will always
1364 * be some limit enforced by BLK_BATCH_TIME.
1365 */
1366 if (ioc_batching(q, ioc))
1367 ioc->nr_batch_requests--;
1368
1369 trace_block_getrq(q, bio, op);
1370 return rq;
1371
1372 fail_elvpriv:
1373 /*
1374 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1375 * and may fail indefinitely under memory pressure and thus
1376 * shouldn't stall IO. Treat this request as !elvpriv. This will
1377 * disturb iosched and blkcg but weird is bettern than dead.
1378 */
1379 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1380 __func__, dev_name(q->backing_dev_info->dev));
1381
1382 rq->rq_flags &= ~RQF_ELVPRIV;
1383 rq->elv.icq = NULL;
1384
1385 spin_lock_irq(q->queue_lock);
1386 q->nr_rqs_elvpriv--;
1387 spin_unlock_irq(q->queue_lock);
1388 goto out;
1389
1390 fail_alloc:
1391 /*
1392 * Allocation failed presumably due to memory. Undo anything we
1393 * might have messed up.
1394 *
1395 * Allocating task should really be put onto the front of the wait
1396 * queue, but this is pretty rare.
1397 */
1398 spin_lock_irq(q->queue_lock);
1399 freed_request(rl, is_sync, rq_flags);
1400
1401 /*
1402 * in the very unlikely event that allocation failed and no
1403 * requests for this direction was pending, mark us starved so that
1404 * freeing of a request in the other direction will notice
1405 * us. another possible fix would be to split the rq mempool into
1406 * READ and WRITE
1407 */
1408 rq_starved:
1409 if (unlikely(rl->count[is_sync] == 0))
1410 rl->starved[is_sync] = 1;
1411 return ERR_PTR(-ENOMEM);
1412 }
1413
1414 /**
1415 * get_request - get a free request
1416 * @q: request_queue to allocate request from
1417 * @op: operation and flags
1418 * @bio: bio to allocate request for (can be %NULL)
1419 * @flags: BLK_MQ_REQ_* flags.
1420 *
1421 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1422 * this function keeps retrying under memory pressure and fails iff @q is dead.
1423 *
1424 * Must be called with @q->queue_lock held and,
1425 * Returns ERR_PTR on failure, with @q->queue_lock held.
1426 * Returns request pointer on success, with @q->queue_lock *not held*.
1427 */
1428 static struct request *get_request(struct request_queue *q, unsigned int op,
1429 struct bio *bio, blk_mq_req_flags_t flags)
1430 {
1431 const bool is_sync = op_is_sync(op);
1432 DEFINE_WAIT(wait);
1433 struct request_list *rl;
1434 struct request *rq;
1435
1436 lockdep_assert_held(q->queue_lock);
1437 WARN_ON_ONCE(q->mq_ops);
1438
1439 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1440 retry:
1441 rq = __get_request(rl, op, bio, flags);
1442 if (!IS_ERR(rq))
1443 return rq;
1444
1445 if (op & REQ_NOWAIT) {
1446 blk_put_rl(rl);
1447 return ERR_PTR(-EAGAIN);
1448 }
1449
1450 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1451 blk_put_rl(rl);
1452 return rq;
1453 }
1454
1455 /* wait on @rl and retry */
1456 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1457 TASK_UNINTERRUPTIBLE);
1458
1459 trace_block_sleeprq(q, bio, op);
1460
1461 spin_unlock_irq(q->queue_lock);
1462 io_schedule();
1463
1464 /*
1465 * After sleeping, we become a "batching" process and will be able
1466 * to allocate at least one request, and up to a big batch of them
1467 * for a small period time. See ioc_batching, ioc_set_batching
1468 */
1469 ioc_set_batching(q, current->io_context);
1470
1471 spin_lock_irq(q->queue_lock);
1472 finish_wait(&rl->wait[is_sync], &wait);
1473
1474 goto retry;
1475 }
1476
1477 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1478 static struct request *blk_old_get_request(struct request_queue *q,
1479 unsigned int op, blk_mq_req_flags_t flags)
1480 {
1481 struct request *rq;
1482 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1483 __GFP_DIRECT_RECLAIM;
1484 int ret = 0;
1485
1486 WARN_ON_ONCE(q->mq_ops);
1487
1488 /* create ioc upfront */
1489 create_io_context(gfp_mask, q->node);
1490
1491 ret = blk_queue_enter(q, flags);
1492 if (ret)
1493 return ERR_PTR(ret);
1494 spin_lock_irq(q->queue_lock);
1495 rq = get_request(q, op, NULL, flags);
1496 if (IS_ERR(rq)) {
1497 spin_unlock_irq(q->queue_lock);
1498 blk_queue_exit(q);
1499 return rq;
1500 }
1501
1502 /* q->queue_lock is unlocked at this point */
1503 rq->__data_len = 0;
1504 rq->__sector = (sector_t) -1;
1505 rq->bio = rq->biotail = NULL;
1506 return rq;
1507 }
1508
1509 /**
1510 * blk_get_request_flags - allocate a request
1511 * @q: request queue to allocate a request for
1512 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1513 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1514 */
1515 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1516 blk_mq_req_flags_t flags)
1517 {
1518 struct request *req;
1519
1520 WARN_ON_ONCE(op & REQ_NOWAIT);
1521 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1522
1523 if (q->mq_ops) {
1524 req = blk_mq_alloc_request(q, op, flags);
1525 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1526 q->mq_ops->initialize_rq_fn(req);
1527 } else {
1528 req = blk_old_get_request(q, op, flags);
1529 if (!IS_ERR(req) && q->initialize_rq_fn)
1530 q->initialize_rq_fn(req);
1531 }
1532
1533 return req;
1534 }
1535 EXPORT_SYMBOL(blk_get_request_flags);
1536
1537 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1538 gfp_t gfp_mask)
1539 {
1540 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1541 0 : BLK_MQ_REQ_NOWAIT);
1542 }
1543 EXPORT_SYMBOL(blk_get_request);
1544
1545 /**
1546 * blk_requeue_request - put a request back on queue
1547 * @q: request queue where request should be inserted
1548 * @rq: request to be inserted
1549 *
1550 * Description:
1551 * Drivers often keep queueing requests until the hardware cannot accept
1552 * more, when that condition happens we need to put the request back
1553 * on the queue. Must be called with queue lock held.
1554 */
1555 void blk_requeue_request(struct request_queue *q, struct request *rq)
1556 {
1557 lockdep_assert_held(q->queue_lock);
1558 WARN_ON_ONCE(q->mq_ops);
1559
1560 blk_delete_timer(rq);
1561 blk_clear_rq_complete(rq);
1562 trace_block_rq_requeue(q, rq);
1563 wbt_requeue(q->rq_wb, &rq->issue_stat);
1564
1565 if (rq->rq_flags & RQF_QUEUED)
1566 blk_queue_end_tag(q, rq);
1567
1568 BUG_ON(blk_queued_rq(rq));
1569
1570 elv_requeue_request(q, rq);
1571 }
1572 EXPORT_SYMBOL(blk_requeue_request);
1573
1574 static void add_acct_request(struct request_queue *q, struct request *rq,
1575 int where)
1576 {
1577 blk_account_io_start(rq, true);
1578 __elv_add_request(q, rq, where);
1579 }
1580
1581 static void part_round_stats_single(struct request_queue *q, int cpu,
1582 struct hd_struct *part, unsigned long now,
1583 unsigned int inflight)
1584 {
1585 if (inflight) {
1586 __part_stat_add(cpu, part, time_in_queue,
1587 inflight * (now - part->stamp));
1588 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1589 }
1590 part->stamp = now;
1591 }
1592
1593 /**
1594 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1595 * @q: target block queue
1596 * @cpu: cpu number for stats access
1597 * @part: target partition
1598 *
1599 * The average IO queue length and utilisation statistics are maintained
1600 * by observing the current state of the queue length and the amount of
1601 * time it has been in this state for.
1602 *
1603 * Normally, that accounting is done on IO completion, but that can result
1604 * in more than a second's worth of IO being accounted for within any one
1605 * second, leading to >100% utilisation. To deal with that, we call this
1606 * function to do a round-off before returning the results when reading
1607 * /proc/diskstats. This accounts immediately for all queue usage up to
1608 * the current jiffies and restarts the counters again.
1609 */
1610 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1611 {
1612 struct hd_struct *part2 = NULL;
1613 unsigned long now = jiffies;
1614 unsigned int inflight[2];
1615 int stats = 0;
1616
1617 if (part->stamp != now)
1618 stats |= 1;
1619
1620 if (part->partno) {
1621 part2 = &part_to_disk(part)->part0;
1622 if (part2->stamp != now)
1623 stats |= 2;
1624 }
1625
1626 if (!stats)
1627 return;
1628
1629 part_in_flight(q, part, inflight);
1630
1631 if (stats & 2)
1632 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1633 if (stats & 1)
1634 part_round_stats_single(q, cpu, part, now, inflight[0]);
1635 }
1636 EXPORT_SYMBOL_GPL(part_round_stats);
1637
1638 #ifdef CONFIG_PM
1639 static void blk_pm_put_request(struct request *rq)
1640 {
1641 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1642 pm_runtime_mark_last_busy(rq->q->dev);
1643 }
1644 #else
1645 static inline void blk_pm_put_request(struct request *rq) {}
1646 #endif
1647
1648 void __blk_put_request(struct request_queue *q, struct request *req)
1649 {
1650 req_flags_t rq_flags = req->rq_flags;
1651
1652 if (unlikely(!q))
1653 return;
1654
1655 if (q->mq_ops) {
1656 blk_mq_free_request(req);
1657 return;
1658 }
1659
1660 lockdep_assert_held(q->queue_lock);
1661
1662 blk_pm_put_request(req);
1663
1664 elv_completed_request(q, req);
1665
1666 /* this is a bio leak */
1667 WARN_ON(req->bio != NULL);
1668
1669 wbt_done(q->rq_wb, &req->issue_stat);
1670
1671 /*
1672 * Request may not have originated from ll_rw_blk. if not,
1673 * it didn't come out of our reserved rq pools
1674 */
1675 if (rq_flags & RQF_ALLOCED) {
1676 struct request_list *rl = blk_rq_rl(req);
1677 bool sync = op_is_sync(req->cmd_flags);
1678
1679 BUG_ON(!list_empty(&req->queuelist));
1680 BUG_ON(ELV_ON_HASH(req));
1681
1682 blk_free_request(rl, req);
1683 freed_request(rl, sync, rq_flags);
1684 blk_put_rl(rl);
1685 blk_queue_exit(q);
1686 }
1687 }
1688 EXPORT_SYMBOL_GPL(__blk_put_request);
1689
1690 void blk_put_request(struct request *req)
1691 {
1692 struct request_queue *q = req->q;
1693
1694 if (q->mq_ops)
1695 blk_mq_free_request(req);
1696 else {
1697 unsigned long flags;
1698
1699 spin_lock_irqsave(q->queue_lock, flags);
1700 __blk_put_request(q, req);
1701 spin_unlock_irqrestore(q->queue_lock, flags);
1702 }
1703 }
1704 EXPORT_SYMBOL(blk_put_request);
1705
1706 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1707 struct bio *bio)
1708 {
1709 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1710
1711 if (!ll_back_merge_fn(q, req, bio))
1712 return false;
1713
1714 trace_block_bio_backmerge(q, req, bio);
1715
1716 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1717 blk_rq_set_mixed_merge(req);
1718
1719 req->biotail->bi_next = bio;
1720 req->biotail = bio;
1721 req->__data_len += bio->bi_iter.bi_size;
1722 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1723
1724 blk_account_io_start(req, false);
1725 return true;
1726 }
1727
1728 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1729 struct bio *bio)
1730 {
1731 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1732
1733 if (!ll_front_merge_fn(q, req, bio))
1734 return false;
1735
1736 trace_block_bio_frontmerge(q, req, bio);
1737
1738 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1739 blk_rq_set_mixed_merge(req);
1740
1741 bio->bi_next = req->bio;
1742 req->bio = bio;
1743
1744 req->__sector = bio->bi_iter.bi_sector;
1745 req->__data_len += bio->bi_iter.bi_size;
1746 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1747
1748 blk_account_io_start(req, false);
1749 return true;
1750 }
1751
1752 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1753 struct bio *bio)
1754 {
1755 unsigned short segments = blk_rq_nr_discard_segments(req);
1756
1757 if (segments >= queue_max_discard_segments(q))
1758 goto no_merge;
1759 if (blk_rq_sectors(req) + bio_sectors(bio) >
1760 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1761 goto no_merge;
1762
1763 req->biotail->bi_next = bio;
1764 req->biotail = bio;
1765 req->__data_len += bio->bi_iter.bi_size;
1766 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1767 req->nr_phys_segments = segments + 1;
1768
1769 blk_account_io_start(req, false);
1770 return true;
1771 no_merge:
1772 req_set_nomerge(q, req);
1773 return false;
1774 }
1775
1776 /**
1777 * blk_attempt_plug_merge - try to merge with %current's plugged list
1778 * @q: request_queue new bio is being queued at
1779 * @bio: new bio being queued
1780 * @request_count: out parameter for number of traversed plugged requests
1781 * @same_queue_rq: pointer to &struct request that gets filled in when
1782 * another request associated with @q is found on the plug list
1783 * (optional, may be %NULL)
1784 *
1785 * Determine whether @bio being queued on @q can be merged with a request
1786 * on %current's plugged list. Returns %true if merge was successful,
1787 * otherwise %false.
1788 *
1789 * Plugging coalesces IOs from the same issuer for the same purpose without
1790 * going through @q->queue_lock. As such it's more of an issuing mechanism
1791 * than scheduling, and the request, while may have elvpriv data, is not
1792 * added on the elevator at this point. In addition, we don't have
1793 * reliable access to the elevator outside queue lock. Only check basic
1794 * merging parameters without querying the elevator.
1795 *
1796 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1797 */
1798 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1799 unsigned int *request_count,
1800 struct request **same_queue_rq)
1801 {
1802 struct blk_plug *plug;
1803 struct request *rq;
1804 struct list_head *plug_list;
1805
1806 plug = current->plug;
1807 if (!plug)
1808 return false;
1809 *request_count = 0;
1810
1811 if (q->mq_ops)
1812 plug_list = &plug->mq_list;
1813 else
1814 plug_list = &plug->list;
1815
1816 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1817 bool merged = false;
1818
1819 if (rq->q == q) {
1820 (*request_count)++;
1821 /*
1822 * Only blk-mq multiple hardware queues case checks the
1823 * rq in the same queue, there should be only one such
1824 * rq in a queue
1825 **/
1826 if (same_queue_rq)
1827 *same_queue_rq = rq;
1828 }
1829
1830 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1831 continue;
1832
1833 switch (blk_try_merge(rq, bio)) {
1834 case ELEVATOR_BACK_MERGE:
1835 merged = bio_attempt_back_merge(q, rq, bio);
1836 break;
1837 case ELEVATOR_FRONT_MERGE:
1838 merged = bio_attempt_front_merge(q, rq, bio);
1839 break;
1840 case ELEVATOR_DISCARD_MERGE:
1841 merged = bio_attempt_discard_merge(q, rq, bio);
1842 break;
1843 default:
1844 break;
1845 }
1846
1847 if (merged)
1848 return true;
1849 }
1850
1851 return false;
1852 }
1853
1854 unsigned int blk_plug_queued_count(struct request_queue *q)
1855 {
1856 struct blk_plug *plug;
1857 struct request *rq;
1858 struct list_head *plug_list;
1859 unsigned int ret = 0;
1860
1861 plug = current->plug;
1862 if (!plug)
1863 goto out;
1864
1865 if (q->mq_ops)
1866 plug_list = &plug->mq_list;
1867 else
1868 plug_list = &plug->list;
1869
1870 list_for_each_entry(rq, plug_list, queuelist) {
1871 if (rq->q == q)
1872 ret++;
1873 }
1874 out:
1875 return ret;
1876 }
1877
1878 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1879 {
1880 struct io_context *ioc = rq_ioc(bio);
1881
1882 if (bio->bi_opf & REQ_RAHEAD)
1883 req->cmd_flags |= REQ_FAILFAST_MASK;
1884
1885 req->__sector = bio->bi_iter.bi_sector;
1886 if (ioprio_valid(bio_prio(bio)))
1887 req->ioprio = bio_prio(bio);
1888 else if (ioc)
1889 req->ioprio = ioc->ioprio;
1890 else
1891 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1892 req->write_hint = bio->bi_write_hint;
1893 blk_rq_bio_prep(req->q, req, bio);
1894 }
1895 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1896
1897 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1898 {
1899 struct blk_plug *plug;
1900 int where = ELEVATOR_INSERT_SORT;
1901 struct request *req, *free;
1902 unsigned int request_count = 0;
1903 unsigned int wb_acct;
1904
1905 /*
1906 * low level driver can indicate that it wants pages above a
1907 * certain limit bounced to low memory (ie for highmem, or even
1908 * ISA dma in theory)
1909 */
1910 blk_queue_bounce(q, &bio);
1911
1912 blk_queue_split(q, &bio);
1913
1914 if (!bio_integrity_prep(bio))
1915 return BLK_QC_T_NONE;
1916
1917 if (op_is_flush(bio->bi_opf)) {
1918 spin_lock_irq(q->queue_lock);
1919 where = ELEVATOR_INSERT_FLUSH;
1920 goto get_rq;
1921 }
1922
1923 /*
1924 * Check if we can merge with the plugged list before grabbing
1925 * any locks.
1926 */
1927 if (!blk_queue_nomerges(q)) {
1928 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1929 return BLK_QC_T_NONE;
1930 } else
1931 request_count = blk_plug_queued_count(q);
1932
1933 spin_lock_irq(q->queue_lock);
1934
1935 switch (elv_merge(q, &req, bio)) {
1936 case ELEVATOR_BACK_MERGE:
1937 if (!bio_attempt_back_merge(q, req, bio))
1938 break;
1939 elv_bio_merged(q, req, bio);
1940 free = attempt_back_merge(q, req);
1941 if (free)
1942 __blk_put_request(q, free);
1943 else
1944 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1945 goto out_unlock;
1946 case ELEVATOR_FRONT_MERGE:
1947 if (!bio_attempt_front_merge(q, req, bio))
1948 break;
1949 elv_bio_merged(q, req, bio);
1950 free = attempt_front_merge(q, req);
1951 if (free)
1952 __blk_put_request(q, free);
1953 else
1954 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1955 goto out_unlock;
1956 default:
1957 break;
1958 }
1959
1960 get_rq:
1961 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1962
1963 /*
1964 * Grab a free request. This is might sleep but can not fail.
1965 * Returns with the queue unlocked.
1966 */
1967 blk_queue_enter_live(q);
1968 req = get_request(q, bio->bi_opf, bio, 0);
1969 if (IS_ERR(req)) {
1970 blk_queue_exit(q);
1971 __wbt_done(q->rq_wb, wb_acct);
1972 if (PTR_ERR(req) == -ENOMEM)
1973 bio->bi_status = BLK_STS_RESOURCE;
1974 else
1975 bio->bi_status = BLK_STS_IOERR;
1976 bio_endio(bio);
1977 goto out_unlock;
1978 }
1979
1980 wbt_track(&req->issue_stat, wb_acct);
1981
1982 /*
1983 * After dropping the lock and possibly sleeping here, our request
1984 * may now be mergeable after it had proven unmergeable (above).
1985 * We don't worry about that case for efficiency. It won't happen
1986 * often, and the elevators are able to handle it.
1987 */
1988 blk_init_request_from_bio(req, bio);
1989
1990 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1991 req->cpu = raw_smp_processor_id();
1992
1993 plug = current->plug;
1994 if (plug) {
1995 /*
1996 * If this is the first request added after a plug, fire
1997 * of a plug trace.
1998 *
1999 * @request_count may become stale because of schedule
2000 * out, so check plug list again.
2001 */
2002 if (!request_count || list_empty(&plug->list))
2003 trace_block_plug(q);
2004 else {
2005 struct request *last = list_entry_rq(plug->list.prev);
2006 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2007 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2008 blk_flush_plug_list(plug, false);
2009 trace_block_plug(q);
2010 }
2011 }
2012 list_add_tail(&req->queuelist, &plug->list);
2013 blk_account_io_start(req, true);
2014 } else {
2015 spin_lock_irq(q->queue_lock);
2016 add_acct_request(q, req, where);
2017 __blk_run_queue(q);
2018 out_unlock:
2019 spin_unlock_irq(q->queue_lock);
2020 }
2021
2022 return BLK_QC_T_NONE;
2023 }
2024
2025 static void handle_bad_sector(struct bio *bio)
2026 {
2027 char b[BDEVNAME_SIZE];
2028
2029 printk(KERN_INFO "attempt to access beyond end of device\n");
2030 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2031 bio_devname(bio, b), bio->bi_opf,
2032 (unsigned long long)bio_end_sector(bio),
2033 (long long)get_capacity(bio->bi_disk));
2034 }
2035
2036 #ifdef CONFIG_FAIL_MAKE_REQUEST
2037
2038 static DECLARE_FAULT_ATTR(fail_make_request);
2039
2040 static int __init setup_fail_make_request(char *str)
2041 {
2042 return setup_fault_attr(&fail_make_request, str);
2043 }
2044 __setup("fail_make_request=", setup_fail_make_request);
2045
2046 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2047 {
2048 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2049 }
2050
2051 static int __init fail_make_request_debugfs(void)
2052 {
2053 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2054 NULL, &fail_make_request);
2055
2056 return PTR_ERR_OR_ZERO(dir);
2057 }
2058
2059 late_initcall(fail_make_request_debugfs);
2060
2061 #else /* CONFIG_FAIL_MAKE_REQUEST */
2062
2063 static inline bool should_fail_request(struct hd_struct *part,
2064 unsigned int bytes)
2065 {
2066 return false;
2067 }
2068
2069 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2070
2071 /*
2072 * Remap block n of partition p to block n+start(p) of the disk.
2073 */
2074 static inline int blk_partition_remap(struct bio *bio)
2075 {
2076 struct hd_struct *p;
2077 int ret = 0;
2078
2079 /*
2080 * Zone reset does not include bi_size so bio_sectors() is always 0.
2081 * Include a test for the reset op code and perform the remap if needed.
2082 */
2083 if (!bio->bi_partno ||
2084 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2085 return 0;
2086
2087 rcu_read_lock();
2088 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2089 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2090 bio->bi_iter.bi_sector += p->start_sect;
2091 bio->bi_partno = 0;
2092 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2093 bio->bi_iter.bi_sector - p->start_sect);
2094 } else {
2095 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2096 ret = -EIO;
2097 }
2098 rcu_read_unlock();
2099
2100 return ret;
2101 }
2102
2103 /*
2104 * Check whether this bio extends beyond the end of the device.
2105 */
2106 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2107 {
2108 sector_t maxsector;
2109
2110 if (!nr_sectors)
2111 return 0;
2112
2113 /* Test device or partition size, when known. */
2114 maxsector = get_capacity(bio->bi_disk);
2115 if (maxsector) {
2116 sector_t sector = bio->bi_iter.bi_sector;
2117
2118 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2119 /*
2120 * This may well happen - the kernel calls bread()
2121 * without checking the size of the device, e.g., when
2122 * mounting a device.
2123 */
2124 handle_bad_sector(bio);
2125 return 1;
2126 }
2127 }
2128
2129 return 0;
2130 }
2131
2132 static noinline_for_stack bool
2133 generic_make_request_checks(struct bio *bio)
2134 {
2135 struct request_queue *q;
2136 int nr_sectors = bio_sectors(bio);
2137 blk_status_t status = BLK_STS_IOERR;
2138 char b[BDEVNAME_SIZE];
2139
2140 might_sleep();
2141
2142 if (bio_check_eod(bio, nr_sectors))
2143 goto end_io;
2144
2145 q = bio->bi_disk->queue;
2146 if (unlikely(!q)) {
2147 printk(KERN_ERR
2148 "generic_make_request: Trying to access "
2149 "nonexistent block-device %s (%Lu)\n",
2150 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2151 goto end_io;
2152 }
2153
2154 /*
2155 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2156 * if queue is not a request based queue.
2157 */
2158
2159 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2160 goto not_supported;
2161
2162 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2163 goto end_io;
2164
2165 if (blk_partition_remap(bio))
2166 goto end_io;
2167
2168 if (bio_check_eod(bio, nr_sectors))
2169 goto end_io;
2170
2171 /*
2172 * Filter flush bio's early so that make_request based
2173 * drivers without flush support don't have to worry
2174 * about them.
2175 */
2176 if (op_is_flush(bio->bi_opf) &&
2177 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2178 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2179 if (!nr_sectors) {
2180 status = BLK_STS_OK;
2181 goto end_io;
2182 }
2183 }
2184
2185 switch (bio_op(bio)) {
2186 case REQ_OP_DISCARD:
2187 if (!blk_queue_discard(q))
2188 goto not_supported;
2189 break;
2190 case REQ_OP_SECURE_ERASE:
2191 if (!blk_queue_secure_erase(q))
2192 goto not_supported;
2193 break;
2194 case REQ_OP_WRITE_SAME:
2195 if (!q->limits.max_write_same_sectors)
2196 goto not_supported;
2197 break;
2198 case REQ_OP_ZONE_REPORT:
2199 case REQ_OP_ZONE_RESET:
2200 if (!blk_queue_is_zoned(q))
2201 goto not_supported;
2202 break;
2203 case REQ_OP_WRITE_ZEROES:
2204 if (!q->limits.max_write_zeroes_sectors)
2205 goto not_supported;
2206 break;
2207 default:
2208 break;
2209 }
2210
2211 /*
2212 * Various block parts want %current->io_context and lazy ioc
2213 * allocation ends up trading a lot of pain for a small amount of
2214 * memory. Just allocate it upfront. This may fail and block
2215 * layer knows how to live with it.
2216 */
2217 create_io_context(GFP_ATOMIC, q->node);
2218
2219 if (!blkcg_bio_issue_check(q, bio))
2220 return false;
2221
2222 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2223 trace_block_bio_queue(q, bio);
2224 /* Now that enqueuing has been traced, we need to trace
2225 * completion as well.
2226 */
2227 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2228 }
2229 return true;
2230
2231 not_supported:
2232 status = BLK_STS_NOTSUPP;
2233 end_io:
2234 bio->bi_status = status;
2235 bio_endio(bio);
2236 return false;
2237 }
2238
2239 /**
2240 * generic_make_request - hand a buffer to its device driver for I/O
2241 * @bio: The bio describing the location in memory and on the device.
2242 *
2243 * generic_make_request() is used to make I/O requests of block
2244 * devices. It is passed a &struct bio, which describes the I/O that needs
2245 * to be done.
2246 *
2247 * generic_make_request() does not return any status. The
2248 * success/failure status of the request, along with notification of
2249 * completion, is delivered asynchronously through the bio->bi_end_io
2250 * function described (one day) else where.
2251 *
2252 * The caller of generic_make_request must make sure that bi_io_vec
2253 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2254 * set to describe the device address, and the
2255 * bi_end_io and optionally bi_private are set to describe how
2256 * completion notification should be signaled.
2257 *
2258 * generic_make_request and the drivers it calls may use bi_next if this
2259 * bio happens to be merged with someone else, and may resubmit the bio to
2260 * a lower device by calling into generic_make_request recursively, which
2261 * means the bio should NOT be touched after the call to ->make_request_fn.
2262 */
2263 blk_qc_t generic_make_request(struct bio *bio)
2264 {
2265 /*
2266 * bio_list_on_stack[0] contains bios submitted by the current
2267 * make_request_fn.
2268 * bio_list_on_stack[1] contains bios that were submitted before
2269 * the current make_request_fn, but that haven't been processed
2270 * yet.
2271 */
2272 struct bio_list bio_list_on_stack[2];
2273 blk_qc_t ret = BLK_QC_T_NONE;
2274
2275 if (!generic_make_request_checks(bio))
2276 goto out;
2277
2278 /*
2279 * We only want one ->make_request_fn to be active at a time, else
2280 * stack usage with stacked devices could be a problem. So use
2281 * current->bio_list to keep a list of requests submited by a
2282 * make_request_fn function. current->bio_list is also used as a
2283 * flag to say if generic_make_request is currently active in this
2284 * task or not. If it is NULL, then no make_request is active. If
2285 * it is non-NULL, then a make_request is active, and new requests
2286 * should be added at the tail
2287 */
2288 if (current->bio_list) {
2289 bio_list_add(&current->bio_list[0], bio);
2290 goto out;
2291 }
2292
2293 /* following loop may be a bit non-obvious, and so deserves some
2294 * explanation.
2295 * Before entering the loop, bio->bi_next is NULL (as all callers
2296 * ensure that) so we have a list with a single bio.
2297 * We pretend that we have just taken it off a longer list, so
2298 * we assign bio_list to a pointer to the bio_list_on_stack,
2299 * thus initialising the bio_list of new bios to be
2300 * added. ->make_request() may indeed add some more bios
2301 * through a recursive call to generic_make_request. If it
2302 * did, we find a non-NULL value in bio_list and re-enter the loop
2303 * from the top. In this case we really did just take the bio
2304 * of the top of the list (no pretending) and so remove it from
2305 * bio_list, and call into ->make_request() again.
2306 */
2307 BUG_ON(bio->bi_next);
2308 bio_list_init(&bio_list_on_stack[0]);
2309 current->bio_list = bio_list_on_stack;
2310 do {
2311 struct request_queue *q = bio->bi_disk->queue;
2312 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2313 BLK_MQ_REQ_NOWAIT : 0;
2314
2315 if (likely(blk_queue_enter(q, flags) == 0)) {
2316 struct bio_list lower, same;
2317
2318 /* Create a fresh bio_list for all subordinate requests */
2319 bio_list_on_stack[1] = bio_list_on_stack[0];
2320 bio_list_init(&bio_list_on_stack[0]);
2321 ret = q->make_request_fn(q, bio);
2322
2323 blk_queue_exit(q);
2324
2325 /* sort new bios into those for a lower level
2326 * and those for the same level
2327 */
2328 bio_list_init(&lower);
2329 bio_list_init(&same);
2330 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2331 if (q == bio->bi_disk->queue)
2332 bio_list_add(&same, bio);
2333 else
2334 bio_list_add(&lower, bio);
2335 /* now assemble so we handle the lowest level first */
2336 bio_list_merge(&bio_list_on_stack[0], &lower);
2337 bio_list_merge(&bio_list_on_stack[0], &same);
2338 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2339 } else {
2340 if (unlikely(!blk_queue_dying(q) &&
2341 (bio->bi_opf & REQ_NOWAIT)))
2342 bio_wouldblock_error(bio);
2343 else
2344 bio_io_error(bio);
2345 }
2346 bio = bio_list_pop(&bio_list_on_stack[0]);
2347 } while (bio);
2348 current->bio_list = NULL; /* deactivate */
2349
2350 out:
2351 return ret;
2352 }
2353 EXPORT_SYMBOL(generic_make_request);
2354
2355 /**
2356 * direct_make_request - hand a buffer directly to its device driver for I/O
2357 * @bio: The bio describing the location in memory and on the device.
2358 *
2359 * This function behaves like generic_make_request(), but does not protect
2360 * against recursion. Must only be used if the called driver is known
2361 * to not call generic_make_request (or direct_make_request) again from
2362 * its make_request function. (Calling direct_make_request again from
2363 * a workqueue is perfectly fine as that doesn't recurse).
2364 */
2365 blk_qc_t direct_make_request(struct bio *bio)
2366 {
2367 struct request_queue *q = bio->bi_disk->queue;
2368 bool nowait = bio->bi_opf & REQ_NOWAIT;
2369 blk_qc_t ret;
2370
2371 if (!generic_make_request_checks(bio))
2372 return BLK_QC_T_NONE;
2373
2374 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2375 if (nowait && !blk_queue_dying(q))
2376 bio->bi_status = BLK_STS_AGAIN;
2377 else
2378 bio->bi_status = BLK_STS_IOERR;
2379 bio_endio(bio);
2380 return BLK_QC_T_NONE;
2381 }
2382
2383 ret = q->make_request_fn(q, bio);
2384 blk_queue_exit(q);
2385 return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(direct_make_request);
2388
2389 /**
2390 * submit_bio - submit a bio to the block device layer for I/O
2391 * @bio: The &struct bio which describes the I/O
2392 *
2393 * submit_bio() is very similar in purpose to generic_make_request(), and
2394 * uses that function to do most of the work. Both are fairly rough
2395 * interfaces; @bio must be presetup and ready for I/O.
2396 *
2397 */
2398 blk_qc_t submit_bio(struct bio *bio)
2399 {
2400 /*
2401 * If it's a regular read/write or a barrier with data attached,
2402 * go through the normal accounting stuff before submission.
2403 */
2404 if (bio_has_data(bio)) {
2405 unsigned int count;
2406
2407 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2408 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2409 else
2410 count = bio_sectors(bio);
2411
2412 if (op_is_write(bio_op(bio))) {
2413 count_vm_events(PGPGOUT, count);
2414 } else {
2415 task_io_account_read(bio->bi_iter.bi_size);
2416 count_vm_events(PGPGIN, count);
2417 }
2418
2419 if (unlikely(block_dump)) {
2420 char b[BDEVNAME_SIZE];
2421 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2422 current->comm, task_pid_nr(current),
2423 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2424 (unsigned long long)bio->bi_iter.bi_sector,
2425 bio_devname(bio, b), count);
2426 }
2427 }
2428
2429 return generic_make_request(bio);
2430 }
2431 EXPORT_SYMBOL(submit_bio);
2432
2433 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2434 {
2435 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2436 return false;
2437
2438 if (current->plug)
2439 blk_flush_plug_list(current->plug, false);
2440 return q->poll_fn(q, cookie);
2441 }
2442 EXPORT_SYMBOL_GPL(blk_poll);
2443
2444 /**
2445 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2446 * for new the queue limits
2447 * @q: the queue
2448 * @rq: the request being checked
2449 *
2450 * Description:
2451 * @rq may have been made based on weaker limitations of upper-level queues
2452 * in request stacking drivers, and it may violate the limitation of @q.
2453 * Since the block layer and the underlying device driver trust @rq
2454 * after it is inserted to @q, it should be checked against @q before
2455 * the insertion using this generic function.
2456 *
2457 * Request stacking drivers like request-based dm may change the queue
2458 * limits when retrying requests on other queues. Those requests need
2459 * to be checked against the new queue limits again during dispatch.
2460 */
2461 static int blk_cloned_rq_check_limits(struct request_queue *q,
2462 struct request *rq)
2463 {
2464 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2465 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2466 return -EIO;
2467 }
2468
2469 /*
2470 * queue's settings related to segment counting like q->bounce_pfn
2471 * may differ from that of other stacking queues.
2472 * Recalculate it to check the request correctly on this queue's
2473 * limitation.
2474 */
2475 blk_recalc_rq_segments(rq);
2476 if (rq->nr_phys_segments > queue_max_segments(q)) {
2477 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2478 return -EIO;
2479 }
2480
2481 return 0;
2482 }
2483
2484 /**
2485 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2486 * @q: the queue to submit the request
2487 * @rq: the request being queued
2488 */
2489 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2490 {
2491 unsigned long flags;
2492 int where = ELEVATOR_INSERT_BACK;
2493
2494 if (blk_cloned_rq_check_limits(q, rq))
2495 return BLK_STS_IOERR;
2496
2497 if (rq->rq_disk &&
2498 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2499 return BLK_STS_IOERR;
2500
2501 if (q->mq_ops) {
2502 if (blk_queue_io_stat(q))
2503 blk_account_io_start(rq, true);
2504 /*
2505 * Since we have a scheduler attached on the top device,
2506 * bypass a potential scheduler on the bottom device for
2507 * insert.
2508 */
2509 blk_mq_request_bypass_insert(rq, true);
2510 return BLK_STS_OK;
2511 }
2512
2513 spin_lock_irqsave(q->queue_lock, flags);
2514 if (unlikely(blk_queue_dying(q))) {
2515 spin_unlock_irqrestore(q->queue_lock, flags);
2516 return BLK_STS_IOERR;
2517 }
2518
2519 /*
2520 * Submitting request must be dequeued before calling this function
2521 * because it will be linked to another request_queue
2522 */
2523 BUG_ON(blk_queued_rq(rq));
2524
2525 if (op_is_flush(rq->cmd_flags))
2526 where = ELEVATOR_INSERT_FLUSH;
2527
2528 add_acct_request(q, rq, where);
2529 if (where == ELEVATOR_INSERT_FLUSH)
2530 __blk_run_queue(q);
2531 spin_unlock_irqrestore(q->queue_lock, flags);
2532
2533 return BLK_STS_OK;
2534 }
2535 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2536
2537 /**
2538 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2539 * @rq: request to examine
2540 *
2541 * Description:
2542 * A request could be merge of IOs which require different failure
2543 * handling. This function determines the number of bytes which
2544 * can be failed from the beginning of the request without
2545 * crossing into area which need to be retried further.
2546 *
2547 * Return:
2548 * The number of bytes to fail.
2549 */
2550 unsigned int blk_rq_err_bytes(const struct request *rq)
2551 {
2552 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2553 unsigned int bytes = 0;
2554 struct bio *bio;
2555
2556 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2557 return blk_rq_bytes(rq);
2558
2559 /*
2560 * Currently the only 'mixing' which can happen is between
2561 * different fastfail types. We can safely fail portions
2562 * which have all the failfast bits that the first one has -
2563 * the ones which are at least as eager to fail as the first
2564 * one.
2565 */
2566 for (bio = rq->bio; bio; bio = bio->bi_next) {
2567 if ((bio->bi_opf & ff) != ff)
2568 break;
2569 bytes += bio->bi_iter.bi_size;
2570 }
2571
2572 /* this could lead to infinite loop */
2573 BUG_ON(blk_rq_bytes(rq) && !bytes);
2574 return bytes;
2575 }
2576 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2577
2578 void blk_account_io_completion(struct request *req, unsigned int bytes)
2579 {
2580 if (blk_do_io_stat(req)) {
2581 const int rw = rq_data_dir(req);
2582 struct hd_struct *part;
2583 int cpu;
2584
2585 cpu = part_stat_lock();
2586 part = req->part;
2587 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2588 part_stat_unlock();
2589 }
2590 }
2591
2592 void blk_account_io_done(struct request *req)
2593 {
2594 /*
2595 * Account IO completion. flush_rq isn't accounted as a
2596 * normal IO on queueing nor completion. Accounting the
2597 * containing request is enough.
2598 */
2599 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2600 unsigned long duration = jiffies - req->start_time;
2601 const int rw = rq_data_dir(req);
2602 struct hd_struct *part;
2603 int cpu;
2604
2605 cpu = part_stat_lock();
2606 part = req->part;
2607
2608 part_stat_inc(cpu, part, ios[rw]);
2609 part_stat_add(cpu, part, ticks[rw], duration);
2610 part_round_stats(req->q, cpu, part);
2611 part_dec_in_flight(req->q, part, rw);
2612
2613 hd_struct_put(part);
2614 part_stat_unlock();
2615 }
2616 }
2617
2618 #ifdef CONFIG_PM
2619 /*
2620 * Don't process normal requests when queue is suspended
2621 * or in the process of suspending/resuming
2622 */
2623 static bool blk_pm_allow_request(struct request *rq)
2624 {
2625 switch (rq->q->rpm_status) {
2626 case RPM_RESUMING:
2627 case RPM_SUSPENDING:
2628 return rq->rq_flags & RQF_PM;
2629 case RPM_SUSPENDED:
2630 return false;
2631 }
2632
2633 return true;
2634 }
2635 #else
2636 static bool blk_pm_allow_request(struct request *rq)
2637 {
2638 return true;
2639 }
2640 #endif
2641
2642 void blk_account_io_start(struct request *rq, bool new_io)
2643 {
2644 struct hd_struct *part;
2645 int rw = rq_data_dir(rq);
2646 int cpu;
2647
2648 if (!blk_do_io_stat(rq))
2649 return;
2650
2651 cpu = part_stat_lock();
2652
2653 if (!new_io) {
2654 part = rq->part;
2655 part_stat_inc(cpu, part, merges[rw]);
2656 } else {
2657 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2658 if (!hd_struct_try_get(part)) {
2659 /*
2660 * The partition is already being removed,
2661 * the request will be accounted on the disk only
2662 *
2663 * We take a reference on disk->part0 although that
2664 * partition will never be deleted, so we can treat
2665 * it as any other partition.
2666 */
2667 part = &rq->rq_disk->part0;
2668 hd_struct_get(part);
2669 }
2670 part_round_stats(rq->q, cpu, part);
2671 part_inc_in_flight(rq->q, part, rw);
2672 rq->part = part;
2673 }
2674
2675 part_stat_unlock();
2676 }
2677
2678 static struct request *elv_next_request(struct request_queue *q)
2679 {
2680 struct request *rq;
2681 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2682
2683 WARN_ON_ONCE(q->mq_ops);
2684
2685 while (1) {
2686 list_for_each_entry(rq, &q->queue_head, queuelist) {
2687 if (blk_pm_allow_request(rq))
2688 return rq;
2689
2690 if (rq->rq_flags & RQF_SOFTBARRIER)
2691 break;
2692 }
2693
2694 /*
2695 * Flush request is running and flush request isn't queueable
2696 * in the drive, we can hold the queue till flush request is
2697 * finished. Even we don't do this, driver can't dispatch next
2698 * requests and will requeue them. And this can improve
2699 * throughput too. For example, we have request flush1, write1,
2700 * flush 2. flush1 is dispatched, then queue is hold, write1
2701 * isn't inserted to queue. After flush1 is finished, flush2
2702 * will be dispatched. Since disk cache is already clean,
2703 * flush2 will be finished very soon, so looks like flush2 is
2704 * folded to flush1.
2705 * Since the queue is hold, a flag is set to indicate the queue
2706 * should be restarted later. Please see flush_end_io() for
2707 * details.
2708 */
2709 if (fq->flush_pending_idx != fq->flush_running_idx &&
2710 !queue_flush_queueable(q)) {
2711 fq->flush_queue_delayed = 1;
2712 return NULL;
2713 }
2714 if (unlikely(blk_queue_bypass(q)) ||
2715 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2716 return NULL;
2717 }
2718 }
2719
2720 /**
2721 * blk_peek_request - peek at the top of a request queue
2722 * @q: request queue to peek at
2723 *
2724 * Description:
2725 * Return the request at the top of @q. The returned request
2726 * should be started using blk_start_request() before LLD starts
2727 * processing it.
2728 *
2729 * Return:
2730 * Pointer to the request at the top of @q if available. Null
2731 * otherwise.
2732 */
2733 struct request *blk_peek_request(struct request_queue *q)
2734 {
2735 struct request *rq;
2736 int ret;
2737
2738 lockdep_assert_held(q->queue_lock);
2739 WARN_ON_ONCE(q->mq_ops);
2740
2741 while ((rq = elv_next_request(q)) != NULL) {
2742 if (!(rq->rq_flags & RQF_STARTED)) {
2743 /*
2744 * This is the first time the device driver
2745 * sees this request (possibly after
2746 * requeueing). Notify IO scheduler.
2747 */
2748 if (rq->rq_flags & RQF_SORTED)
2749 elv_activate_rq(q, rq);
2750
2751 /*
2752 * just mark as started even if we don't start
2753 * it, a request that has been delayed should
2754 * not be passed by new incoming requests
2755 */
2756 rq->rq_flags |= RQF_STARTED;
2757 trace_block_rq_issue(q, rq);
2758 }
2759
2760 if (!q->boundary_rq || q->boundary_rq == rq) {
2761 q->end_sector = rq_end_sector(rq);
2762 q->boundary_rq = NULL;
2763 }
2764
2765 if (rq->rq_flags & RQF_DONTPREP)
2766 break;
2767
2768 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2769 /*
2770 * make sure space for the drain appears we
2771 * know we can do this because max_hw_segments
2772 * has been adjusted to be one fewer than the
2773 * device can handle
2774 */
2775 rq->nr_phys_segments++;
2776 }
2777
2778 if (!q->prep_rq_fn)
2779 break;
2780
2781 ret = q->prep_rq_fn(q, rq);
2782 if (ret == BLKPREP_OK) {
2783 break;
2784 } else if (ret == BLKPREP_DEFER) {
2785 /*
2786 * the request may have been (partially) prepped.
2787 * we need to keep this request in the front to
2788 * avoid resource deadlock. RQF_STARTED will
2789 * prevent other fs requests from passing this one.
2790 */
2791 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2792 !(rq->rq_flags & RQF_DONTPREP)) {
2793 /*
2794 * remove the space for the drain we added
2795 * so that we don't add it again
2796 */
2797 --rq->nr_phys_segments;
2798 }
2799
2800 rq = NULL;
2801 break;
2802 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2803 rq->rq_flags |= RQF_QUIET;
2804 /*
2805 * Mark this request as started so we don't trigger
2806 * any debug logic in the end I/O path.
2807 */
2808 blk_start_request(rq);
2809 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2810 BLK_STS_TARGET : BLK_STS_IOERR);
2811 } else {
2812 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2813 break;
2814 }
2815 }
2816
2817 return rq;
2818 }
2819 EXPORT_SYMBOL(blk_peek_request);
2820
2821 static void blk_dequeue_request(struct request *rq)
2822 {
2823 struct request_queue *q = rq->q;
2824
2825 BUG_ON(list_empty(&rq->queuelist));
2826 BUG_ON(ELV_ON_HASH(rq));
2827
2828 list_del_init(&rq->queuelist);
2829
2830 /*
2831 * the time frame between a request being removed from the lists
2832 * and to it is freed is accounted as io that is in progress at
2833 * the driver side.
2834 */
2835 if (blk_account_rq(rq)) {
2836 q->in_flight[rq_is_sync(rq)]++;
2837 set_io_start_time_ns(rq);
2838 }
2839 }
2840
2841 /**
2842 * blk_start_request - start request processing on the driver
2843 * @req: request to dequeue
2844 *
2845 * Description:
2846 * Dequeue @req and start timeout timer on it. This hands off the
2847 * request to the driver.
2848 */
2849 void blk_start_request(struct request *req)
2850 {
2851 lockdep_assert_held(req->q->queue_lock);
2852 WARN_ON_ONCE(req->q->mq_ops);
2853
2854 blk_dequeue_request(req);
2855
2856 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2857 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2858 req->rq_flags |= RQF_STATS;
2859 wbt_issue(req->q->rq_wb, &req->issue_stat);
2860 }
2861
2862 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2863 blk_add_timer(req);
2864 }
2865 EXPORT_SYMBOL(blk_start_request);
2866
2867 /**
2868 * blk_fetch_request - fetch a request from a request queue
2869 * @q: request queue to fetch a request from
2870 *
2871 * Description:
2872 * Return the request at the top of @q. The request is started on
2873 * return and LLD can start processing it immediately.
2874 *
2875 * Return:
2876 * Pointer to the request at the top of @q if available. Null
2877 * otherwise.
2878 */
2879 struct request *blk_fetch_request(struct request_queue *q)
2880 {
2881 struct request *rq;
2882
2883 lockdep_assert_held(q->queue_lock);
2884 WARN_ON_ONCE(q->mq_ops);
2885
2886 rq = blk_peek_request(q);
2887 if (rq)
2888 blk_start_request(rq);
2889 return rq;
2890 }
2891 EXPORT_SYMBOL(blk_fetch_request);
2892
2893 /*
2894 * Steal bios from a request and add them to a bio list.
2895 * The request must not have been partially completed before.
2896 */
2897 void blk_steal_bios(struct bio_list *list, struct request *rq)
2898 {
2899 if (rq->bio) {
2900 if (list->tail)
2901 list->tail->bi_next = rq->bio;
2902 else
2903 list->head = rq->bio;
2904 list->tail = rq->biotail;
2905
2906 rq->bio = NULL;
2907 rq->biotail = NULL;
2908 }
2909
2910 rq->__data_len = 0;
2911 }
2912 EXPORT_SYMBOL_GPL(blk_steal_bios);
2913
2914 /**
2915 * blk_update_request - Special helper function for request stacking drivers
2916 * @req: the request being processed
2917 * @error: block status code
2918 * @nr_bytes: number of bytes to complete @req
2919 *
2920 * Description:
2921 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2922 * the request structure even if @req doesn't have leftover.
2923 * If @req has leftover, sets it up for the next range of segments.
2924 *
2925 * This special helper function is only for request stacking drivers
2926 * (e.g. request-based dm) so that they can handle partial completion.
2927 * Actual device drivers should use blk_end_request instead.
2928 *
2929 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2930 * %false return from this function.
2931 *
2932 * Return:
2933 * %false - this request doesn't have any more data
2934 * %true - this request has more data
2935 **/
2936 bool blk_update_request(struct request *req, blk_status_t error,
2937 unsigned int nr_bytes)
2938 {
2939 int total_bytes;
2940
2941 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2942
2943 if (!req->bio)
2944 return false;
2945
2946 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2947 !(req->rq_flags & RQF_QUIET)))
2948 print_req_error(req, error);
2949
2950 blk_account_io_completion(req, nr_bytes);
2951
2952 total_bytes = 0;
2953 while (req->bio) {
2954 struct bio *bio = req->bio;
2955 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2956
2957 if (bio_bytes == bio->bi_iter.bi_size)
2958 req->bio = bio->bi_next;
2959
2960 /* Completion has already been traced */
2961 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2962 req_bio_endio(req, bio, bio_bytes, error);
2963
2964 total_bytes += bio_bytes;
2965 nr_bytes -= bio_bytes;
2966
2967 if (!nr_bytes)
2968 break;
2969 }
2970
2971 /*
2972 * completely done
2973 */
2974 if (!req->bio) {
2975 /*
2976 * Reset counters so that the request stacking driver
2977 * can find how many bytes remain in the request
2978 * later.
2979 */
2980 req->__data_len = 0;
2981 return false;
2982 }
2983
2984 req->__data_len -= total_bytes;
2985
2986 /* update sector only for requests with clear definition of sector */
2987 if (!blk_rq_is_passthrough(req))
2988 req->__sector += total_bytes >> 9;
2989
2990 /* mixed attributes always follow the first bio */
2991 if (req->rq_flags & RQF_MIXED_MERGE) {
2992 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2993 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2994 }
2995
2996 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2997 /*
2998 * If total number of sectors is less than the first segment
2999 * size, something has gone terribly wrong.
3000 */
3001 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3002 blk_dump_rq_flags(req, "request botched");
3003 req->__data_len = blk_rq_cur_bytes(req);
3004 }
3005
3006 /* recalculate the number of segments */
3007 blk_recalc_rq_segments(req);
3008 }
3009
3010 return true;
3011 }
3012 EXPORT_SYMBOL_GPL(blk_update_request);
3013
3014 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3015 unsigned int nr_bytes,
3016 unsigned int bidi_bytes)
3017 {
3018 if (blk_update_request(rq, error, nr_bytes))
3019 return true;
3020
3021 /* Bidi request must be completed as a whole */
3022 if (unlikely(blk_bidi_rq(rq)) &&
3023 blk_update_request(rq->next_rq, error, bidi_bytes))
3024 return true;
3025
3026 if (blk_queue_add_random(rq->q))
3027 add_disk_randomness(rq->rq_disk);
3028
3029 return false;
3030 }
3031
3032 /**
3033 * blk_unprep_request - unprepare a request
3034 * @req: the request
3035 *
3036 * This function makes a request ready for complete resubmission (or
3037 * completion). It happens only after all error handling is complete,
3038 * so represents the appropriate moment to deallocate any resources
3039 * that were allocated to the request in the prep_rq_fn. The queue
3040 * lock is held when calling this.
3041 */
3042 void blk_unprep_request(struct request *req)
3043 {
3044 struct request_queue *q = req->q;
3045
3046 req->rq_flags &= ~RQF_DONTPREP;
3047 if (q->unprep_rq_fn)
3048 q->unprep_rq_fn(q, req);
3049 }
3050 EXPORT_SYMBOL_GPL(blk_unprep_request);
3051
3052 void blk_finish_request(struct request *req, blk_status_t error)
3053 {
3054 struct request_queue *q = req->q;
3055
3056 lockdep_assert_held(req->q->queue_lock);
3057 WARN_ON_ONCE(q->mq_ops);
3058
3059 if (req->rq_flags & RQF_STATS)
3060 blk_stat_add(req);
3061
3062 if (req->rq_flags & RQF_QUEUED)
3063 blk_queue_end_tag(q, req);
3064
3065 BUG_ON(blk_queued_rq(req));
3066
3067 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3068 laptop_io_completion(req->q->backing_dev_info);
3069
3070 blk_delete_timer(req);
3071
3072 if (req->rq_flags & RQF_DONTPREP)
3073 blk_unprep_request(req);
3074
3075 blk_account_io_done(req);
3076
3077 if (req->end_io) {
3078 wbt_done(req->q->rq_wb, &req->issue_stat);
3079 req->end_io(req, error);
3080 } else {
3081 if (blk_bidi_rq(req))
3082 __blk_put_request(req->next_rq->q, req->next_rq);
3083
3084 __blk_put_request(q, req);
3085 }
3086 }
3087 EXPORT_SYMBOL(blk_finish_request);
3088
3089 /**
3090 * blk_end_bidi_request - Complete a bidi request
3091 * @rq: the request to complete
3092 * @error: block status code
3093 * @nr_bytes: number of bytes to complete @rq
3094 * @bidi_bytes: number of bytes to complete @rq->next_rq
3095 *
3096 * Description:
3097 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3098 * Drivers that supports bidi can safely call this member for any
3099 * type of request, bidi or uni. In the later case @bidi_bytes is
3100 * just ignored.
3101 *
3102 * Return:
3103 * %false - we are done with this request
3104 * %true - still buffers pending for this request
3105 **/
3106 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3107 unsigned int nr_bytes, unsigned int bidi_bytes)
3108 {
3109 struct request_queue *q = rq->q;
3110 unsigned long flags;
3111
3112 WARN_ON_ONCE(q->mq_ops);
3113
3114 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3115 return true;
3116
3117 spin_lock_irqsave(q->queue_lock, flags);
3118 blk_finish_request(rq, error);
3119 spin_unlock_irqrestore(q->queue_lock, flags);
3120
3121 return false;
3122 }
3123
3124 /**
3125 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3126 * @rq: the request to complete
3127 * @error: block status code
3128 * @nr_bytes: number of bytes to complete @rq
3129 * @bidi_bytes: number of bytes to complete @rq->next_rq
3130 *
3131 * Description:
3132 * Identical to blk_end_bidi_request() except that queue lock is
3133 * assumed to be locked on entry and remains so on return.
3134 *
3135 * Return:
3136 * %false - we are done with this request
3137 * %true - still buffers pending for this request
3138 **/
3139 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3140 unsigned int nr_bytes, unsigned int bidi_bytes)
3141 {
3142 lockdep_assert_held(rq->q->queue_lock);
3143 WARN_ON_ONCE(rq->q->mq_ops);
3144
3145 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3146 return true;
3147
3148 blk_finish_request(rq, error);
3149
3150 return false;
3151 }
3152
3153 /**
3154 * blk_end_request - Helper function for drivers to complete the request.
3155 * @rq: the request being processed
3156 * @error: block status code
3157 * @nr_bytes: number of bytes to complete
3158 *
3159 * Description:
3160 * Ends I/O on a number of bytes attached to @rq.
3161 * If @rq has leftover, sets it up for the next range of segments.
3162 *
3163 * Return:
3164 * %false - we are done with this request
3165 * %true - still buffers pending for this request
3166 **/
3167 bool blk_end_request(struct request *rq, blk_status_t error,
3168 unsigned int nr_bytes)
3169 {
3170 WARN_ON_ONCE(rq->q->mq_ops);
3171 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3172 }
3173 EXPORT_SYMBOL(blk_end_request);
3174
3175 /**
3176 * blk_end_request_all - Helper function for drives to finish the request.
3177 * @rq: the request to finish
3178 * @error: block status code
3179 *
3180 * Description:
3181 * Completely finish @rq.
3182 */
3183 void blk_end_request_all(struct request *rq, blk_status_t error)
3184 {
3185 bool pending;
3186 unsigned int bidi_bytes = 0;
3187
3188 if (unlikely(blk_bidi_rq(rq)))
3189 bidi_bytes = blk_rq_bytes(rq->next_rq);
3190
3191 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3192 BUG_ON(pending);
3193 }
3194 EXPORT_SYMBOL(blk_end_request_all);
3195
3196 /**
3197 * __blk_end_request - Helper function for drivers to complete the request.
3198 * @rq: the request being processed
3199 * @error: block status code
3200 * @nr_bytes: number of bytes to complete
3201 *
3202 * Description:
3203 * Must be called with queue lock held unlike blk_end_request().
3204 *
3205 * Return:
3206 * %false - we are done with this request
3207 * %true - still buffers pending for this request
3208 **/
3209 bool __blk_end_request(struct request *rq, blk_status_t error,
3210 unsigned int nr_bytes)
3211 {
3212 lockdep_assert_held(rq->q->queue_lock);
3213 WARN_ON_ONCE(rq->q->mq_ops);
3214
3215 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3216 }
3217 EXPORT_SYMBOL(__blk_end_request);
3218
3219 /**
3220 * __blk_end_request_all - Helper function for drives to finish the request.
3221 * @rq: the request to finish
3222 * @error: block status code
3223 *
3224 * Description:
3225 * Completely finish @rq. Must be called with queue lock held.
3226 */
3227 void __blk_end_request_all(struct request *rq, blk_status_t error)
3228 {
3229 bool pending;
3230 unsigned int bidi_bytes = 0;
3231
3232 lockdep_assert_held(rq->q->queue_lock);
3233 WARN_ON_ONCE(rq->q->mq_ops);
3234
3235 if (unlikely(blk_bidi_rq(rq)))
3236 bidi_bytes = blk_rq_bytes(rq->next_rq);
3237
3238 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3239 BUG_ON(pending);
3240 }
3241 EXPORT_SYMBOL(__blk_end_request_all);
3242
3243 /**
3244 * __blk_end_request_cur - Helper function to finish the current request chunk.
3245 * @rq: the request to finish the current chunk for
3246 * @error: block status code
3247 *
3248 * Description:
3249 * Complete the current consecutively mapped chunk from @rq. Must
3250 * be called with queue lock held.
3251 *
3252 * Return:
3253 * %false - we are done with this request
3254 * %true - still buffers pending for this request
3255 */
3256 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3257 {
3258 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3259 }
3260 EXPORT_SYMBOL(__blk_end_request_cur);
3261
3262 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3263 struct bio *bio)
3264 {
3265 if (bio_has_data(bio))
3266 rq->nr_phys_segments = bio_phys_segments(q, bio);
3267 else if (bio_op(bio) == REQ_OP_DISCARD)
3268 rq->nr_phys_segments = 1;
3269
3270 rq->__data_len = bio->bi_iter.bi_size;
3271 rq->bio = rq->biotail = bio;
3272
3273 if (bio->bi_disk)
3274 rq->rq_disk = bio->bi_disk;
3275 }
3276
3277 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3278 /**
3279 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3280 * @rq: the request to be flushed
3281 *
3282 * Description:
3283 * Flush all pages in @rq.
3284 */
3285 void rq_flush_dcache_pages(struct request *rq)
3286 {
3287 struct req_iterator iter;
3288 struct bio_vec bvec;
3289
3290 rq_for_each_segment(bvec, rq, iter)
3291 flush_dcache_page(bvec.bv_page);
3292 }
3293 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3294 #endif
3295
3296 /**
3297 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3298 * @q : the queue of the device being checked
3299 *
3300 * Description:
3301 * Check if underlying low-level drivers of a device are busy.
3302 * If the drivers want to export their busy state, they must set own
3303 * exporting function using blk_queue_lld_busy() first.
3304 *
3305 * Basically, this function is used only by request stacking drivers
3306 * to stop dispatching requests to underlying devices when underlying
3307 * devices are busy. This behavior helps more I/O merging on the queue
3308 * of the request stacking driver and prevents I/O throughput regression
3309 * on burst I/O load.
3310 *
3311 * Return:
3312 * 0 - Not busy (The request stacking driver should dispatch request)
3313 * 1 - Busy (The request stacking driver should stop dispatching request)
3314 */
3315 int blk_lld_busy(struct request_queue *q)
3316 {
3317 if (q->lld_busy_fn)
3318 return q->lld_busy_fn(q);
3319
3320 return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(blk_lld_busy);
3323
3324 /**
3325 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3326 * @rq: the clone request to be cleaned up
3327 *
3328 * Description:
3329 * Free all bios in @rq for a cloned request.
3330 */
3331 void blk_rq_unprep_clone(struct request *rq)
3332 {
3333 struct bio *bio;
3334
3335 while ((bio = rq->bio) != NULL) {
3336 rq->bio = bio->bi_next;
3337
3338 bio_put(bio);
3339 }
3340 }
3341 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3342
3343 /*
3344 * Copy attributes of the original request to the clone request.
3345 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3346 */
3347 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3348 {
3349 dst->cpu = src->cpu;
3350 dst->__sector = blk_rq_pos(src);
3351 dst->__data_len = blk_rq_bytes(src);
3352 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3353 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3354 dst->special_vec = src->special_vec;
3355 }
3356 dst->nr_phys_segments = src->nr_phys_segments;
3357 dst->ioprio = src->ioprio;
3358 dst->extra_len = src->extra_len;
3359 }
3360
3361 /**
3362 * blk_rq_prep_clone - Helper function to setup clone request
3363 * @rq: the request to be setup
3364 * @rq_src: original request to be cloned
3365 * @bs: bio_set that bios for clone are allocated from
3366 * @gfp_mask: memory allocation mask for bio
3367 * @bio_ctr: setup function to be called for each clone bio.
3368 * Returns %0 for success, non %0 for failure.
3369 * @data: private data to be passed to @bio_ctr
3370 *
3371 * Description:
3372 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3373 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3374 * are not copied, and copying such parts is the caller's responsibility.
3375 * Also, pages which the original bios are pointing to are not copied
3376 * and the cloned bios just point same pages.
3377 * So cloned bios must be completed before original bios, which means
3378 * the caller must complete @rq before @rq_src.
3379 */
3380 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3381 struct bio_set *bs, gfp_t gfp_mask,
3382 int (*bio_ctr)(struct bio *, struct bio *, void *),
3383 void *data)
3384 {
3385 struct bio *bio, *bio_src;
3386
3387 if (!bs)
3388 bs = fs_bio_set;
3389
3390 __rq_for_each_bio(bio_src, rq_src) {
3391 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3392 if (!bio)
3393 goto free_and_out;
3394
3395 if (bio_ctr && bio_ctr(bio, bio_src, data))
3396 goto free_and_out;
3397
3398 if (rq->bio) {
3399 rq->biotail->bi_next = bio;
3400 rq->biotail = bio;
3401 } else
3402 rq->bio = rq->biotail = bio;
3403 }
3404
3405 __blk_rq_prep_clone(rq, rq_src);
3406
3407 return 0;
3408
3409 free_and_out:
3410 if (bio)
3411 bio_put(bio);
3412 blk_rq_unprep_clone(rq);
3413
3414 return -ENOMEM;
3415 }
3416 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3417
3418 int kblockd_schedule_work(struct work_struct *work)
3419 {
3420 return queue_work(kblockd_workqueue, work);
3421 }
3422 EXPORT_SYMBOL(kblockd_schedule_work);
3423
3424 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3425 {
3426 return queue_work_on(cpu, kblockd_workqueue, work);
3427 }
3428 EXPORT_SYMBOL(kblockd_schedule_work_on);
3429
3430 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3431 unsigned long delay)
3432 {
3433 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3434 }
3435 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3436
3437 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3438 unsigned long delay)
3439 {
3440 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3441 }
3442 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3443
3444 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3445 unsigned long delay)
3446 {
3447 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3448 }
3449 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3450
3451 /**
3452 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3453 * @plug: The &struct blk_plug that needs to be initialized
3454 *
3455 * Description:
3456 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3457 * pending I/O should the task end up blocking between blk_start_plug() and
3458 * blk_finish_plug(). This is important from a performance perspective, but
3459 * also ensures that we don't deadlock. For instance, if the task is blocking
3460 * for a memory allocation, memory reclaim could end up wanting to free a
3461 * page belonging to that request that is currently residing in our private
3462 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3463 * this kind of deadlock.
3464 */
3465 void blk_start_plug(struct blk_plug *plug)
3466 {
3467 struct task_struct *tsk = current;
3468
3469 /*
3470 * If this is a nested plug, don't actually assign it.
3471 */
3472 if (tsk->plug)
3473 return;
3474
3475 INIT_LIST_HEAD(&plug->list);
3476 INIT_LIST_HEAD(&plug->mq_list);
3477 INIT_LIST_HEAD(&plug->cb_list);
3478 /*
3479 * Store ordering should not be needed here, since a potential
3480 * preempt will imply a full memory barrier
3481 */
3482 tsk->plug = plug;
3483 }
3484 EXPORT_SYMBOL(blk_start_plug);
3485
3486 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3487 {
3488 struct request *rqa = container_of(a, struct request, queuelist);
3489 struct request *rqb = container_of(b, struct request, queuelist);
3490
3491 return !(rqa->q < rqb->q ||
3492 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3493 }
3494
3495 /*
3496 * If 'from_schedule' is true, then postpone the dispatch of requests
3497 * until a safe kblockd context. We due this to avoid accidental big
3498 * additional stack usage in driver dispatch, in places where the originally
3499 * plugger did not intend it.
3500 */
3501 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3502 bool from_schedule)
3503 __releases(q->queue_lock)
3504 {
3505 lockdep_assert_held(q->queue_lock);
3506
3507 trace_block_unplug(q, depth, !from_schedule);
3508
3509 if (from_schedule)
3510 blk_run_queue_async(q);
3511 else
3512 __blk_run_queue(q);
3513 spin_unlock(q->queue_lock);
3514 }
3515
3516 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3517 {
3518 LIST_HEAD(callbacks);
3519
3520 while (!list_empty(&plug->cb_list)) {
3521 list_splice_init(&plug->cb_list, &callbacks);
3522
3523 while (!list_empty(&callbacks)) {
3524 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3525 struct blk_plug_cb,
3526 list);
3527 list_del(&cb->list);
3528 cb->callback(cb, from_schedule);
3529 }
3530 }
3531 }
3532
3533 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3534 int size)
3535 {
3536 struct blk_plug *plug = current->plug;
3537 struct blk_plug_cb *cb;
3538
3539 if (!plug)
3540 return NULL;
3541
3542 list_for_each_entry(cb, &plug->cb_list, list)
3543 if (cb->callback == unplug && cb->data == data)
3544 return cb;
3545
3546 /* Not currently on the callback list */
3547 BUG_ON(size < sizeof(*cb));
3548 cb = kzalloc(size, GFP_ATOMIC);
3549 if (cb) {
3550 cb->data = data;
3551 cb->callback = unplug;
3552 list_add(&cb->list, &plug->cb_list);
3553 }
3554 return cb;
3555 }
3556 EXPORT_SYMBOL(blk_check_plugged);
3557
3558 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3559 {
3560 struct request_queue *q;
3561 unsigned long flags;
3562 struct request *rq;
3563 LIST_HEAD(list);
3564 unsigned int depth;
3565
3566 flush_plug_callbacks(plug, from_schedule);
3567
3568 if (!list_empty(&plug->mq_list))
3569 blk_mq_flush_plug_list(plug, from_schedule);
3570
3571 if (list_empty(&plug->list))
3572 return;
3573
3574 list_splice_init(&plug->list, &list);
3575
3576 list_sort(NULL, &list, plug_rq_cmp);
3577
3578 q = NULL;
3579 depth = 0;
3580
3581 /*
3582 * Save and disable interrupts here, to avoid doing it for every
3583 * queue lock we have to take.
3584 */
3585 local_irq_save(flags);
3586 while (!list_empty(&list)) {
3587 rq = list_entry_rq(list.next);
3588 list_del_init(&rq->queuelist);
3589 BUG_ON(!rq->q);
3590 if (rq->q != q) {
3591 /*
3592 * This drops the queue lock
3593 */
3594 if (q)
3595 queue_unplugged(q, depth, from_schedule);
3596 q = rq->q;
3597 depth = 0;
3598 spin_lock(q->queue_lock);
3599 }
3600
3601 /*
3602 * Short-circuit if @q is dead
3603 */
3604 if (unlikely(blk_queue_dying(q))) {
3605 __blk_end_request_all(rq, BLK_STS_IOERR);
3606 continue;
3607 }
3608
3609 /*
3610 * rq is already accounted, so use raw insert
3611 */
3612 if (op_is_flush(rq->cmd_flags))
3613 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3614 else
3615 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3616
3617 depth++;
3618 }
3619
3620 /*
3621 * This drops the queue lock
3622 */
3623 if (q)
3624 queue_unplugged(q, depth, from_schedule);
3625
3626 local_irq_restore(flags);
3627 }
3628
3629 void blk_finish_plug(struct blk_plug *plug)
3630 {
3631 if (plug != current->plug)
3632 return;
3633 blk_flush_plug_list(plug, false);
3634
3635 current->plug = NULL;
3636 }
3637 EXPORT_SYMBOL(blk_finish_plug);
3638
3639 #ifdef CONFIG_PM
3640 /**
3641 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3642 * @q: the queue of the device
3643 * @dev: the device the queue belongs to
3644 *
3645 * Description:
3646 * Initialize runtime-PM-related fields for @q and start auto suspend for
3647 * @dev. Drivers that want to take advantage of request-based runtime PM
3648 * should call this function after @dev has been initialized, and its
3649 * request queue @q has been allocated, and runtime PM for it can not happen
3650 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3651 * cases, driver should call this function before any I/O has taken place.
3652 *
3653 * This function takes care of setting up using auto suspend for the device,
3654 * the autosuspend delay is set to -1 to make runtime suspend impossible
3655 * until an updated value is either set by user or by driver. Drivers do
3656 * not need to touch other autosuspend settings.
3657 *
3658 * The block layer runtime PM is request based, so only works for drivers
3659 * that use request as their IO unit instead of those directly use bio's.
3660 */
3661 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3662 {
3663 /* Don't enable runtime PM for blk-mq until it is ready */
3664 if (q->mq_ops) {
3665 pm_runtime_disable(dev);
3666 return;
3667 }
3668
3669 q->dev = dev;
3670 q->rpm_status = RPM_ACTIVE;
3671 pm_runtime_set_autosuspend_delay(q->dev, -1);
3672 pm_runtime_use_autosuspend(q->dev);
3673 }
3674 EXPORT_SYMBOL(blk_pm_runtime_init);
3675
3676 /**
3677 * blk_pre_runtime_suspend - Pre runtime suspend check
3678 * @q: the queue of the device
3679 *
3680 * Description:
3681 * This function will check if runtime suspend is allowed for the device
3682 * by examining if there are any requests pending in the queue. If there
3683 * are requests pending, the device can not be runtime suspended; otherwise,
3684 * the queue's status will be updated to SUSPENDING and the driver can
3685 * proceed to suspend the device.
3686 *
3687 * For the not allowed case, we mark last busy for the device so that
3688 * runtime PM core will try to autosuspend it some time later.
3689 *
3690 * This function should be called near the start of the device's
3691 * runtime_suspend callback.
3692 *
3693 * Return:
3694 * 0 - OK to runtime suspend the device
3695 * -EBUSY - Device should not be runtime suspended
3696 */
3697 int blk_pre_runtime_suspend(struct request_queue *q)
3698 {
3699 int ret = 0;
3700
3701 if (!q->dev)
3702 return ret;
3703
3704 spin_lock_irq(q->queue_lock);
3705 if (q->nr_pending) {
3706 ret = -EBUSY;
3707 pm_runtime_mark_last_busy(q->dev);
3708 } else {
3709 q->rpm_status = RPM_SUSPENDING;
3710 }
3711 spin_unlock_irq(q->queue_lock);
3712 return ret;
3713 }
3714 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3715
3716 /**
3717 * blk_post_runtime_suspend - Post runtime suspend processing
3718 * @q: the queue of the device
3719 * @err: return value of the device's runtime_suspend function
3720 *
3721 * Description:
3722 * Update the queue's runtime status according to the return value of the
3723 * device's runtime suspend function and mark last busy for the device so
3724 * that PM core will try to auto suspend the device at a later time.
3725 *
3726 * This function should be called near the end of the device's
3727 * runtime_suspend callback.
3728 */
3729 void blk_post_runtime_suspend(struct request_queue *q, int err)
3730 {
3731 if (!q->dev)
3732 return;
3733
3734 spin_lock_irq(q->queue_lock);
3735 if (!err) {
3736 q->rpm_status = RPM_SUSPENDED;
3737 } else {
3738 q->rpm_status = RPM_ACTIVE;
3739 pm_runtime_mark_last_busy(q->dev);
3740 }
3741 spin_unlock_irq(q->queue_lock);
3742 }
3743 EXPORT_SYMBOL(blk_post_runtime_suspend);
3744
3745 /**
3746 * blk_pre_runtime_resume - Pre runtime resume processing
3747 * @q: the queue of the device
3748 *
3749 * Description:
3750 * Update the queue's runtime status to RESUMING in preparation for the
3751 * runtime resume of the device.
3752 *
3753 * This function should be called near the start of the device's
3754 * runtime_resume callback.
3755 */
3756 void blk_pre_runtime_resume(struct request_queue *q)
3757 {
3758 if (!q->dev)
3759 return;
3760
3761 spin_lock_irq(q->queue_lock);
3762 q->rpm_status = RPM_RESUMING;
3763 spin_unlock_irq(q->queue_lock);
3764 }
3765 EXPORT_SYMBOL(blk_pre_runtime_resume);
3766
3767 /**
3768 * blk_post_runtime_resume - Post runtime resume processing
3769 * @q: the queue of the device
3770 * @err: return value of the device's runtime_resume function
3771 *
3772 * Description:
3773 * Update the queue's runtime status according to the return value of the
3774 * device's runtime_resume function. If it is successfully resumed, process
3775 * the requests that are queued into the device's queue when it is resuming
3776 * and then mark last busy and initiate autosuspend for it.
3777 *
3778 * This function should be called near the end of the device's
3779 * runtime_resume callback.
3780 */
3781 void blk_post_runtime_resume(struct request_queue *q, int err)
3782 {
3783 if (!q->dev)
3784 return;
3785
3786 spin_lock_irq(q->queue_lock);
3787 if (!err) {
3788 q->rpm_status = RPM_ACTIVE;
3789 __blk_run_queue(q);
3790 pm_runtime_mark_last_busy(q->dev);
3791 pm_request_autosuspend(q->dev);
3792 } else {
3793 q->rpm_status = RPM_SUSPENDED;
3794 }
3795 spin_unlock_irq(q->queue_lock);
3796 }
3797 EXPORT_SYMBOL(blk_post_runtime_resume);
3798
3799 /**
3800 * blk_set_runtime_active - Force runtime status of the queue to be active
3801 * @q: the queue of the device
3802 *
3803 * If the device is left runtime suspended during system suspend the resume
3804 * hook typically resumes the device and corrects runtime status
3805 * accordingly. However, that does not affect the queue runtime PM status
3806 * which is still "suspended". This prevents processing requests from the
3807 * queue.
3808 *
3809 * This function can be used in driver's resume hook to correct queue
3810 * runtime PM status and re-enable peeking requests from the queue. It
3811 * should be called before first request is added to the queue.
3812 */
3813 void blk_set_runtime_active(struct request_queue *q)
3814 {
3815 spin_lock_irq(q->queue_lock);
3816 q->rpm_status = RPM_ACTIVE;
3817 pm_runtime_mark_last_busy(q->dev);
3818 pm_request_autosuspend(q->dev);
3819 spin_unlock_irq(q->queue_lock);
3820 }
3821 EXPORT_SYMBOL(blk_set_runtime_active);
3822 #endif
3823
3824 int __init blk_dev_init(void)
3825 {
3826 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3827 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3828 FIELD_SIZEOF(struct request, cmd_flags));
3829 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3830 FIELD_SIZEOF(struct bio, bi_opf));
3831
3832 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3833 kblockd_workqueue = alloc_workqueue("kblockd",
3834 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3835 if (!kblockd_workqueue)
3836 panic("Failed to create kblockd\n");
3837
3838 request_cachep = kmem_cache_create("blkdev_requests",
3839 sizeof(struct request), 0, SLAB_PANIC, NULL);
3840
3841 blk_requestq_cachep = kmem_cache_create("request_queue",
3842 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3843
3844 #ifdef CONFIG_DEBUG_FS
3845 blk_debugfs_root = debugfs_create_dir("block", NULL);
3846 #endif
3847
3848 return 0;
3849 }