]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge remote-tracking branches 'regulator/topic/max8649', 'regulator/topic/mode'...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
133 }
134
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 int bit;
138
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
142
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
148
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157
158 static void blk_delay_work(struct work_struct *work)
159 {
160 struct request_queue *q;
161
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
166 }
167
168 /**
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
172 *
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
177 */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185
186 /**
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 WARN_ON(!irqs_disabled());
198
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203
204 /**
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224
225 /**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
241 *
242 */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 del_timer_sync(&q->timeout);
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260
261 /**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
287 }
288
289 /**
290 * __blk_run_queue - run a single device queue
291 * @q: The queue to run
292 *
293 * Description:
294 * See @blk_run_queue. This variant must be called with the queue lock
295 * held and interrupts disabled.
296 */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 if (unlikely(blk_queue_stopped(q)))
300 return;
301
302 __blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305
306 /**
307 * blk_run_queue_async - run a single device queue in workqueue context
308 * @q: The queue to run
309 *
310 * Description:
311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312 * of us. The caller must hold the queue lock.
313 */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320
321 /**
322 * blk_run_queue - run a single device queue
323 * @q: The queue to run
324 *
325 * Description:
326 * Invoke request handling on this queue, if it has pending work to do.
327 * May be used to restart queueing when a request has completed.
328 */
329 void blk_run_queue(struct request_queue *q)
330 {
331 unsigned long flags;
332
333 spin_lock_irqsave(q->queue_lock, flags);
334 __blk_run_queue(q);
335 spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338
339 void blk_put_queue(struct request_queue *q)
340 {
341 kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344
345 /**
346 * __blk_drain_queue - drain requests from request_queue
347 * @q: queue to drain
348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349 *
350 * Drain requests from @q. If @drain_all is set, all requests are drained.
351 * If not, only ELVPRIV requests are drained. The caller is responsible
352 * for ensuring that no new requests which need to be drained are queued.
353 */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 __releases(q->queue_lock)
356 __acquires(q->queue_lock)
357 {
358 int i;
359
360 lockdep_assert_held(q->queue_lock);
361
362 while (true) {
363 bool drain = false;
364
365 /*
366 * The caller might be trying to drain @q before its
367 * elevator is initialized.
368 */
369 if (q->elevator)
370 elv_drain_elevator(q);
371
372 blkcg_drain_queue(q);
373
374 /*
375 * This function might be called on a queue which failed
376 * driver init after queue creation or is not yet fully
377 * active yet. Some drivers (e.g. fd and loop) get unhappy
378 * in such cases. Kick queue iff dispatch queue has
379 * something on it and @q has request_fn set.
380 */
381 if (!list_empty(&q->queue_head) && q->request_fn)
382 __blk_run_queue(q);
383
384 drain |= q->nr_rqs_elvpriv;
385 drain |= q->request_fn_active;
386
387 /*
388 * Unfortunately, requests are queued at and tracked from
389 * multiple places and there's no single counter which can
390 * be drained. Check all the queues and counters.
391 */
392 if (drain_all) {
393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 if (fq)
399 drain |= !list_empty(&fq->flush_queue[i]);
400 }
401 }
402
403 if (!drain)
404 break;
405
406 spin_unlock_irq(q->queue_lock);
407
408 msleep(10);
409
410 spin_lock_irq(q->queue_lock);
411 }
412
413 /*
414 * With queue marked dead, any woken up waiter will fail the
415 * allocation path, so the wakeup chaining is lost and we're
416 * left with hung waiters. We need to wake up those waiters.
417 */
418 if (q->request_fn) {
419 struct request_list *rl;
420
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
424 }
425 }
426
427 /**
428 * blk_queue_bypass_start - enter queue bypass mode
429 * @q: queue of interest
430 *
431 * In bypass mode, only the dispatch FIFO queue of @q is used. This
432 * function makes @q enter bypass mode and drains all requests which were
433 * throttled or issued before. On return, it's guaranteed that no request
434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435 * inside queue or RCU read lock.
436 */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 spin_lock_irq(q->queue_lock);
440 q->bypass_depth++;
441 queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 spin_unlock_irq(q->queue_lock);
443
444 /*
445 * Queues start drained. Skip actual draining till init is
446 * complete. This avoids lenghty delays during queue init which
447 * can happen many times during boot.
448 */
449 if (blk_queue_init_done(q)) {
450 spin_lock_irq(q->queue_lock);
451 __blk_drain_queue(q, false);
452 spin_unlock_irq(q->queue_lock);
453
454 /* ensure blk_queue_bypass() is %true inside RCU read lock */
455 synchronize_rcu();
456 }
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459
460 /**
461 * blk_queue_bypass_end - leave queue bypass mode
462 * @q: queue of interest
463 *
464 * Leave bypass mode and restore the normal queueing behavior.
465 */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 spin_lock_irq(q->queue_lock);
469 if (!--q->bypass_depth)
470 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 WARN_ON_ONCE(q->bypass_depth < 0);
472 spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479
480 if (q->mq_ops)
481 blk_mq_wake_waiters(q);
482 else {
483 struct request_list *rl;
484
485 blk_queue_for_each_rl(rl, q) {
486 if (rl->rq_pool) {
487 wake_up(&rl->wait[BLK_RW_SYNC]);
488 wake_up(&rl->wait[BLK_RW_ASYNC]);
489 }
490 }
491 }
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494
495 /**
496 * blk_cleanup_queue - shutdown a request queue
497 * @q: request queue to shutdown
498 *
499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500 * put it. All future requests will be failed immediately with -ENODEV.
501 */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 spinlock_t *lock = q->queue_lock;
505
506 /* mark @q DYING, no new request or merges will be allowed afterwards */
507 mutex_lock(&q->sysfs_lock);
508 blk_set_queue_dying(q);
509 spin_lock_irq(lock);
510
511 /*
512 * A dying queue is permanently in bypass mode till released. Note
513 * that, unlike blk_queue_bypass_start(), we aren't performing
514 * synchronize_rcu() after entering bypass mode to avoid the delay
515 * as some drivers create and destroy a lot of queues while
516 * probing. This is still safe because blk_release_queue() will be
517 * called only after the queue refcnt drops to zero and nothing,
518 * RCU or not, would be traversing the queue by then.
519 */
520 q->bypass_depth++;
521 queue_flag_set(QUEUE_FLAG_BYPASS, q);
522
523 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 queue_flag_set(QUEUE_FLAG_DYING, q);
526 spin_unlock_irq(lock);
527 mutex_unlock(&q->sysfs_lock);
528
529 /*
530 * Drain all requests queued before DYING marking. Set DEAD flag to
531 * prevent that q->request_fn() gets invoked after draining finished.
532 */
533 if (q->mq_ops) {
534 blk_mq_freeze_queue(q);
535 spin_lock_irq(lock);
536 } else {
537 spin_lock_irq(lock);
538 __blk_drain_queue(q, true);
539 }
540 queue_flag_set(QUEUE_FLAG_DEAD, q);
541 spin_unlock_irq(lock);
542
543 /* @q won't process any more request, flush async actions */
544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 blk_sync_queue(q);
546
547 if (q->mq_ops)
548 blk_mq_free_queue(q);
549
550 spin_lock_irq(lock);
551 if (q->queue_lock != &q->__queue_lock)
552 q->queue_lock = &q->__queue_lock;
553 spin_unlock_irq(lock);
554
555 /* @q is and will stay empty, shutdown and put */
556 blk_put_queue(q);
557 }
558 EXPORT_SYMBOL(blk_cleanup_queue);
559
560 int blk_init_rl(struct request_list *rl, struct request_queue *q,
561 gfp_t gfp_mask)
562 {
563 if (unlikely(rl->rq_pool))
564 return 0;
565
566 rl->q = q;
567 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
568 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
569 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
570 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
571
572 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
573 mempool_free_slab, request_cachep,
574 gfp_mask, q->node);
575 if (!rl->rq_pool)
576 return -ENOMEM;
577
578 return 0;
579 }
580
581 void blk_exit_rl(struct request_list *rl)
582 {
583 if (rl->rq_pool)
584 mempool_destroy(rl->rq_pool);
585 }
586
587 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
588 {
589 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
590 }
591 EXPORT_SYMBOL(blk_alloc_queue);
592
593 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
594 {
595 struct request_queue *q;
596 int err;
597
598 q = kmem_cache_alloc_node(blk_requestq_cachep,
599 gfp_mask | __GFP_ZERO, node_id);
600 if (!q)
601 return NULL;
602
603 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
604 if (q->id < 0)
605 goto fail_q;
606
607 q->backing_dev_info.ra_pages =
608 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
609 q->backing_dev_info.state = 0;
610 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
611 q->backing_dev_info.name = "block";
612 q->node = node_id;
613
614 err = bdi_init(&q->backing_dev_info);
615 if (err)
616 goto fail_id;
617
618 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
619 laptop_mode_timer_fn, (unsigned long) q);
620 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
621 INIT_LIST_HEAD(&q->queue_head);
622 INIT_LIST_HEAD(&q->timeout_list);
623 INIT_LIST_HEAD(&q->icq_list);
624 #ifdef CONFIG_BLK_CGROUP
625 INIT_LIST_HEAD(&q->blkg_list);
626 #endif
627 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
628
629 kobject_init(&q->kobj, &blk_queue_ktype);
630
631 mutex_init(&q->sysfs_lock);
632 spin_lock_init(&q->__queue_lock);
633
634 /*
635 * By default initialize queue_lock to internal lock and driver can
636 * override it later if need be.
637 */
638 q->queue_lock = &q->__queue_lock;
639
640 /*
641 * A queue starts its life with bypass turned on to avoid
642 * unnecessary bypass on/off overhead and nasty surprises during
643 * init. The initial bypass will be finished when the queue is
644 * registered by blk_register_queue().
645 */
646 q->bypass_depth = 1;
647 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
648
649 init_waitqueue_head(&q->mq_freeze_wq);
650
651 if (blkcg_init_queue(q))
652 goto fail_bdi;
653
654 return q;
655
656 fail_bdi:
657 bdi_destroy(&q->backing_dev_info);
658 fail_id:
659 ida_simple_remove(&blk_queue_ida, q->id);
660 fail_q:
661 kmem_cache_free(blk_requestq_cachep, q);
662 return NULL;
663 }
664 EXPORT_SYMBOL(blk_alloc_queue_node);
665
666 /**
667 * blk_init_queue - prepare a request queue for use with a block device
668 * @rfn: The function to be called to process requests that have been
669 * placed on the queue.
670 * @lock: Request queue spin lock
671 *
672 * Description:
673 * If a block device wishes to use the standard request handling procedures,
674 * which sorts requests and coalesces adjacent requests, then it must
675 * call blk_init_queue(). The function @rfn will be called when there
676 * are requests on the queue that need to be processed. If the device
677 * supports plugging, then @rfn may not be called immediately when requests
678 * are available on the queue, but may be called at some time later instead.
679 * Plugged queues are generally unplugged when a buffer belonging to one
680 * of the requests on the queue is needed, or due to memory pressure.
681 *
682 * @rfn is not required, or even expected, to remove all requests off the
683 * queue, but only as many as it can handle at a time. If it does leave
684 * requests on the queue, it is responsible for arranging that the requests
685 * get dealt with eventually.
686 *
687 * The queue spin lock must be held while manipulating the requests on the
688 * request queue; this lock will be taken also from interrupt context, so irq
689 * disabling is needed for it.
690 *
691 * Function returns a pointer to the initialized request queue, or %NULL if
692 * it didn't succeed.
693 *
694 * Note:
695 * blk_init_queue() must be paired with a blk_cleanup_queue() call
696 * when the block device is deactivated (such as at module unload).
697 **/
698
699 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
700 {
701 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
702 }
703 EXPORT_SYMBOL(blk_init_queue);
704
705 struct request_queue *
706 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
707 {
708 struct request_queue *uninit_q, *q;
709
710 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
711 if (!uninit_q)
712 return NULL;
713
714 q = blk_init_allocated_queue(uninit_q, rfn, lock);
715 if (!q)
716 blk_cleanup_queue(uninit_q);
717
718 return q;
719 }
720 EXPORT_SYMBOL(blk_init_queue_node);
721
722 struct request_queue *
723 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
724 spinlock_t *lock)
725 {
726 if (!q)
727 return NULL;
728
729 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
730 if (!q->fq)
731 return NULL;
732
733 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
734 goto fail;
735
736 q->request_fn = rfn;
737 q->prep_rq_fn = NULL;
738 q->unprep_rq_fn = NULL;
739 q->queue_flags |= QUEUE_FLAG_DEFAULT;
740
741 /* Override internal queue lock with supplied lock pointer */
742 if (lock)
743 q->queue_lock = lock;
744
745 /*
746 * This also sets hw/phys segments, boundary and size
747 */
748 blk_queue_make_request(q, blk_queue_bio);
749
750 q->sg_reserved_size = INT_MAX;
751
752 /* Protect q->elevator from elevator_change */
753 mutex_lock(&q->sysfs_lock);
754
755 /* init elevator */
756 if (elevator_init(q, NULL)) {
757 mutex_unlock(&q->sysfs_lock);
758 goto fail;
759 }
760
761 mutex_unlock(&q->sysfs_lock);
762
763 return q;
764
765 fail:
766 blk_free_flush_queue(q->fq);
767 return NULL;
768 }
769 EXPORT_SYMBOL(blk_init_allocated_queue);
770
771 bool blk_get_queue(struct request_queue *q)
772 {
773 if (likely(!blk_queue_dying(q))) {
774 __blk_get_queue(q);
775 return true;
776 }
777
778 return false;
779 }
780 EXPORT_SYMBOL(blk_get_queue);
781
782 static inline void blk_free_request(struct request_list *rl, struct request *rq)
783 {
784 if (rq->cmd_flags & REQ_ELVPRIV) {
785 elv_put_request(rl->q, rq);
786 if (rq->elv.icq)
787 put_io_context(rq->elv.icq->ioc);
788 }
789
790 mempool_free(rq, rl->rq_pool);
791 }
792
793 /*
794 * ioc_batching returns true if the ioc is a valid batching request and
795 * should be given priority access to a request.
796 */
797 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
798 {
799 if (!ioc)
800 return 0;
801
802 /*
803 * Make sure the process is able to allocate at least 1 request
804 * even if the batch times out, otherwise we could theoretically
805 * lose wakeups.
806 */
807 return ioc->nr_batch_requests == q->nr_batching ||
808 (ioc->nr_batch_requests > 0
809 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
810 }
811
812 /*
813 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
814 * will cause the process to be a "batcher" on all queues in the system. This
815 * is the behaviour we want though - once it gets a wakeup it should be given
816 * a nice run.
817 */
818 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
819 {
820 if (!ioc || ioc_batching(q, ioc))
821 return;
822
823 ioc->nr_batch_requests = q->nr_batching;
824 ioc->last_waited = jiffies;
825 }
826
827 static void __freed_request(struct request_list *rl, int sync)
828 {
829 struct request_queue *q = rl->q;
830
831 /*
832 * bdi isn't aware of blkcg yet. As all async IOs end up root
833 * blkcg anyway, just use root blkcg state.
834 */
835 if (rl == &q->root_rl &&
836 rl->count[sync] < queue_congestion_off_threshold(q))
837 blk_clear_queue_congested(q, sync);
838
839 if (rl->count[sync] + 1 <= q->nr_requests) {
840 if (waitqueue_active(&rl->wait[sync]))
841 wake_up(&rl->wait[sync]);
842
843 blk_clear_rl_full(rl, sync);
844 }
845 }
846
847 /*
848 * A request has just been released. Account for it, update the full and
849 * congestion status, wake up any waiters. Called under q->queue_lock.
850 */
851 static void freed_request(struct request_list *rl, unsigned int flags)
852 {
853 struct request_queue *q = rl->q;
854 int sync = rw_is_sync(flags);
855
856 q->nr_rqs[sync]--;
857 rl->count[sync]--;
858 if (flags & REQ_ELVPRIV)
859 q->nr_rqs_elvpriv--;
860
861 __freed_request(rl, sync);
862
863 if (unlikely(rl->starved[sync ^ 1]))
864 __freed_request(rl, sync ^ 1);
865 }
866
867 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
868 {
869 struct request_list *rl;
870
871 spin_lock_irq(q->queue_lock);
872 q->nr_requests = nr;
873 blk_queue_congestion_threshold(q);
874
875 /* congestion isn't cgroup aware and follows root blkcg for now */
876 rl = &q->root_rl;
877
878 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
879 blk_set_queue_congested(q, BLK_RW_SYNC);
880 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
881 blk_clear_queue_congested(q, BLK_RW_SYNC);
882
883 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
884 blk_set_queue_congested(q, BLK_RW_ASYNC);
885 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
886 blk_clear_queue_congested(q, BLK_RW_ASYNC);
887
888 blk_queue_for_each_rl(rl, q) {
889 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
890 blk_set_rl_full(rl, BLK_RW_SYNC);
891 } else {
892 blk_clear_rl_full(rl, BLK_RW_SYNC);
893 wake_up(&rl->wait[BLK_RW_SYNC]);
894 }
895
896 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
897 blk_set_rl_full(rl, BLK_RW_ASYNC);
898 } else {
899 blk_clear_rl_full(rl, BLK_RW_ASYNC);
900 wake_up(&rl->wait[BLK_RW_ASYNC]);
901 }
902 }
903
904 spin_unlock_irq(q->queue_lock);
905 return 0;
906 }
907
908 /*
909 * Determine if elevator data should be initialized when allocating the
910 * request associated with @bio.
911 */
912 static bool blk_rq_should_init_elevator(struct bio *bio)
913 {
914 if (!bio)
915 return true;
916
917 /*
918 * Flush requests do not use the elevator so skip initialization.
919 * This allows a request to share the flush and elevator data.
920 */
921 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
922 return false;
923
924 return true;
925 }
926
927 /**
928 * rq_ioc - determine io_context for request allocation
929 * @bio: request being allocated is for this bio (can be %NULL)
930 *
931 * Determine io_context to use for request allocation for @bio. May return
932 * %NULL if %current->io_context doesn't exist.
933 */
934 static struct io_context *rq_ioc(struct bio *bio)
935 {
936 #ifdef CONFIG_BLK_CGROUP
937 if (bio && bio->bi_ioc)
938 return bio->bi_ioc;
939 #endif
940 return current->io_context;
941 }
942
943 /**
944 * __get_request - get a free request
945 * @rl: request list to allocate from
946 * @rw_flags: RW and SYNC flags
947 * @bio: bio to allocate request for (can be %NULL)
948 * @gfp_mask: allocation mask
949 *
950 * Get a free request from @q. This function may fail under memory
951 * pressure or if @q is dead.
952 *
953 * Must be called with @q->queue_lock held and,
954 * Returns ERR_PTR on failure, with @q->queue_lock held.
955 * Returns request pointer on success, with @q->queue_lock *not held*.
956 */
957 static struct request *__get_request(struct request_list *rl, int rw_flags,
958 struct bio *bio, gfp_t gfp_mask)
959 {
960 struct request_queue *q = rl->q;
961 struct request *rq;
962 struct elevator_type *et = q->elevator->type;
963 struct io_context *ioc = rq_ioc(bio);
964 struct io_cq *icq = NULL;
965 const bool is_sync = rw_is_sync(rw_flags) != 0;
966 int may_queue;
967
968 if (unlikely(blk_queue_dying(q)))
969 return ERR_PTR(-ENODEV);
970
971 may_queue = elv_may_queue(q, rw_flags);
972 if (may_queue == ELV_MQUEUE_NO)
973 goto rq_starved;
974
975 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
976 if (rl->count[is_sync]+1 >= q->nr_requests) {
977 /*
978 * The queue will fill after this allocation, so set
979 * it as full, and mark this process as "batching".
980 * This process will be allowed to complete a batch of
981 * requests, others will be blocked.
982 */
983 if (!blk_rl_full(rl, is_sync)) {
984 ioc_set_batching(q, ioc);
985 blk_set_rl_full(rl, is_sync);
986 } else {
987 if (may_queue != ELV_MQUEUE_MUST
988 && !ioc_batching(q, ioc)) {
989 /*
990 * The queue is full and the allocating
991 * process is not a "batcher", and not
992 * exempted by the IO scheduler
993 */
994 return ERR_PTR(-ENOMEM);
995 }
996 }
997 }
998 /*
999 * bdi isn't aware of blkcg yet. As all async IOs end up
1000 * root blkcg anyway, just use root blkcg state.
1001 */
1002 if (rl == &q->root_rl)
1003 blk_set_queue_congested(q, is_sync);
1004 }
1005
1006 /*
1007 * Only allow batching queuers to allocate up to 50% over the defined
1008 * limit of requests, otherwise we could have thousands of requests
1009 * allocated with any setting of ->nr_requests
1010 */
1011 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1012 return ERR_PTR(-ENOMEM);
1013
1014 q->nr_rqs[is_sync]++;
1015 rl->count[is_sync]++;
1016 rl->starved[is_sync] = 0;
1017
1018 /*
1019 * Decide whether the new request will be managed by elevator. If
1020 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1021 * prevent the current elevator from being destroyed until the new
1022 * request is freed. This guarantees icq's won't be destroyed and
1023 * makes creating new ones safe.
1024 *
1025 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1026 * it will be created after releasing queue_lock.
1027 */
1028 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1029 rw_flags |= REQ_ELVPRIV;
1030 q->nr_rqs_elvpriv++;
1031 if (et->icq_cache && ioc)
1032 icq = ioc_lookup_icq(ioc, q);
1033 }
1034
1035 if (blk_queue_io_stat(q))
1036 rw_flags |= REQ_IO_STAT;
1037 spin_unlock_irq(q->queue_lock);
1038
1039 /* allocate and init request */
1040 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1041 if (!rq)
1042 goto fail_alloc;
1043
1044 blk_rq_init(q, rq);
1045 blk_rq_set_rl(rq, rl);
1046 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1047
1048 /* init elvpriv */
1049 if (rw_flags & REQ_ELVPRIV) {
1050 if (unlikely(et->icq_cache && !icq)) {
1051 if (ioc)
1052 icq = ioc_create_icq(ioc, q, gfp_mask);
1053 if (!icq)
1054 goto fail_elvpriv;
1055 }
1056
1057 rq->elv.icq = icq;
1058 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1059 goto fail_elvpriv;
1060
1061 /* @rq->elv.icq holds io_context until @rq is freed */
1062 if (icq)
1063 get_io_context(icq->ioc);
1064 }
1065 out:
1066 /*
1067 * ioc may be NULL here, and ioc_batching will be false. That's
1068 * OK, if the queue is under the request limit then requests need
1069 * not count toward the nr_batch_requests limit. There will always
1070 * be some limit enforced by BLK_BATCH_TIME.
1071 */
1072 if (ioc_batching(q, ioc))
1073 ioc->nr_batch_requests--;
1074
1075 trace_block_getrq(q, bio, rw_flags & 1);
1076 return rq;
1077
1078 fail_elvpriv:
1079 /*
1080 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1081 * and may fail indefinitely under memory pressure and thus
1082 * shouldn't stall IO. Treat this request as !elvpriv. This will
1083 * disturb iosched and blkcg but weird is bettern than dead.
1084 */
1085 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1086 __func__, dev_name(q->backing_dev_info.dev));
1087
1088 rq->cmd_flags &= ~REQ_ELVPRIV;
1089 rq->elv.icq = NULL;
1090
1091 spin_lock_irq(q->queue_lock);
1092 q->nr_rqs_elvpriv--;
1093 spin_unlock_irq(q->queue_lock);
1094 goto out;
1095
1096 fail_alloc:
1097 /*
1098 * Allocation failed presumably due to memory. Undo anything we
1099 * might have messed up.
1100 *
1101 * Allocating task should really be put onto the front of the wait
1102 * queue, but this is pretty rare.
1103 */
1104 spin_lock_irq(q->queue_lock);
1105 freed_request(rl, rw_flags);
1106
1107 /*
1108 * in the very unlikely event that allocation failed and no
1109 * requests for this direction was pending, mark us starved so that
1110 * freeing of a request in the other direction will notice
1111 * us. another possible fix would be to split the rq mempool into
1112 * READ and WRITE
1113 */
1114 rq_starved:
1115 if (unlikely(rl->count[is_sync] == 0))
1116 rl->starved[is_sync] = 1;
1117 return ERR_PTR(-ENOMEM);
1118 }
1119
1120 /**
1121 * get_request - get a free request
1122 * @q: request_queue to allocate request from
1123 * @rw_flags: RW and SYNC flags
1124 * @bio: bio to allocate request for (can be %NULL)
1125 * @gfp_mask: allocation mask
1126 *
1127 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1128 * function keeps retrying under memory pressure and fails iff @q is dead.
1129 *
1130 * Must be called with @q->queue_lock held and,
1131 * Returns ERR_PTR on failure, with @q->queue_lock held.
1132 * Returns request pointer on success, with @q->queue_lock *not held*.
1133 */
1134 static struct request *get_request(struct request_queue *q, int rw_flags,
1135 struct bio *bio, gfp_t gfp_mask)
1136 {
1137 const bool is_sync = rw_is_sync(rw_flags) != 0;
1138 DEFINE_WAIT(wait);
1139 struct request_list *rl;
1140 struct request *rq;
1141
1142 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1143 retry:
1144 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1145 if (!IS_ERR(rq))
1146 return rq;
1147
1148 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1149 blk_put_rl(rl);
1150 return rq;
1151 }
1152
1153 /* wait on @rl and retry */
1154 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1155 TASK_UNINTERRUPTIBLE);
1156
1157 trace_block_sleeprq(q, bio, rw_flags & 1);
1158
1159 spin_unlock_irq(q->queue_lock);
1160 io_schedule();
1161
1162 /*
1163 * After sleeping, we become a "batching" process and will be able
1164 * to allocate at least one request, and up to a big batch of them
1165 * for a small period time. See ioc_batching, ioc_set_batching
1166 */
1167 ioc_set_batching(q, current->io_context);
1168
1169 spin_lock_irq(q->queue_lock);
1170 finish_wait(&rl->wait[is_sync], &wait);
1171
1172 goto retry;
1173 }
1174
1175 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1176 gfp_t gfp_mask)
1177 {
1178 struct request *rq;
1179
1180 BUG_ON(rw != READ && rw != WRITE);
1181
1182 /* create ioc upfront */
1183 create_io_context(gfp_mask, q->node);
1184
1185 spin_lock_irq(q->queue_lock);
1186 rq = get_request(q, rw, NULL, gfp_mask);
1187 if (IS_ERR(rq))
1188 spin_unlock_irq(q->queue_lock);
1189 /* q->queue_lock is unlocked at this point */
1190
1191 return rq;
1192 }
1193
1194 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1195 {
1196 if (q->mq_ops)
1197 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1198 else
1199 return blk_old_get_request(q, rw, gfp_mask);
1200 }
1201 EXPORT_SYMBOL(blk_get_request);
1202
1203 /**
1204 * blk_make_request - given a bio, allocate a corresponding struct request.
1205 * @q: target request queue
1206 * @bio: The bio describing the memory mappings that will be submitted for IO.
1207 * It may be a chained-bio properly constructed by block/bio layer.
1208 * @gfp_mask: gfp flags to be used for memory allocation
1209 *
1210 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1211 * type commands. Where the struct request needs to be farther initialized by
1212 * the caller. It is passed a &struct bio, which describes the memory info of
1213 * the I/O transfer.
1214 *
1215 * The caller of blk_make_request must make sure that bi_io_vec
1216 * are set to describe the memory buffers. That bio_data_dir() will return
1217 * the needed direction of the request. (And all bio's in the passed bio-chain
1218 * are properly set accordingly)
1219 *
1220 * If called under none-sleepable conditions, mapped bio buffers must not
1221 * need bouncing, by calling the appropriate masked or flagged allocator,
1222 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1223 * BUG.
1224 *
1225 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1226 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1227 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1228 * completion of a bio that hasn't been submitted yet, thus resulting in a
1229 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1230 * of bio_alloc(), as that avoids the mempool deadlock.
1231 * If possible a big IO should be split into smaller parts when allocation
1232 * fails. Partial allocation should not be an error, or you risk a live-lock.
1233 */
1234 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1235 gfp_t gfp_mask)
1236 {
1237 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1238
1239 if (IS_ERR(rq))
1240 return rq;
1241
1242 blk_rq_set_block_pc(rq);
1243
1244 for_each_bio(bio) {
1245 struct bio *bounce_bio = bio;
1246 int ret;
1247
1248 blk_queue_bounce(q, &bounce_bio);
1249 ret = blk_rq_append_bio(q, rq, bounce_bio);
1250 if (unlikely(ret)) {
1251 blk_put_request(rq);
1252 return ERR_PTR(ret);
1253 }
1254 }
1255
1256 return rq;
1257 }
1258 EXPORT_SYMBOL(blk_make_request);
1259
1260 /**
1261 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1262 * @rq: request to be initialized
1263 *
1264 */
1265 void blk_rq_set_block_pc(struct request *rq)
1266 {
1267 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1268 rq->__data_len = 0;
1269 rq->__sector = (sector_t) -1;
1270 rq->bio = rq->biotail = NULL;
1271 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1272 }
1273 EXPORT_SYMBOL(blk_rq_set_block_pc);
1274
1275 /**
1276 * blk_requeue_request - put a request back on queue
1277 * @q: request queue where request should be inserted
1278 * @rq: request to be inserted
1279 *
1280 * Description:
1281 * Drivers often keep queueing requests until the hardware cannot accept
1282 * more, when that condition happens we need to put the request back
1283 * on the queue. Must be called with queue lock held.
1284 */
1285 void blk_requeue_request(struct request_queue *q, struct request *rq)
1286 {
1287 blk_delete_timer(rq);
1288 blk_clear_rq_complete(rq);
1289 trace_block_rq_requeue(q, rq);
1290
1291 if (rq->cmd_flags & REQ_QUEUED)
1292 blk_queue_end_tag(q, rq);
1293
1294 BUG_ON(blk_queued_rq(rq));
1295
1296 elv_requeue_request(q, rq);
1297 }
1298 EXPORT_SYMBOL(blk_requeue_request);
1299
1300 static void add_acct_request(struct request_queue *q, struct request *rq,
1301 int where)
1302 {
1303 blk_account_io_start(rq, true);
1304 __elv_add_request(q, rq, where);
1305 }
1306
1307 static void part_round_stats_single(int cpu, struct hd_struct *part,
1308 unsigned long now)
1309 {
1310 int inflight;
1311
1312 if (now == part->stamp)
1313 return;
1314
1315 inflight = part_in_flight(part);
1316 if (inflight) {
1317 __part_stat_add(cpu, part, time_in_queue,
1318 inflight * (now - part->stamp));
1319 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1320 }
1321 part->stamp = now;
1322 }
1323
1324 /**
1325 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1326 * @cpu: cpu number for stats access
1327 * @part: target partition
1328 *
1329 * The average IO queue length and utilisation statistics are maintained
1330 * by observing the current state of the queue length and the amount of
1331 * time it has been in this state for.
1332 *
1333 * Normally, that accounting is done on IO completion, but that can result
1334 * in more than a second's worth of IO being accounted for within any one
1335 * second, leading to >100% utilisation. To deal with that, we call this
1336 * function to do a round-off before returning the results when reading
1337 * /proc/diskstats. This accounts immediately for all queue usage up to
1338 * the current jiffies and restarts the counters again.
1339 */
1340 void part_round_stats(int cpu, struct hd_struct *part)
1341 {
1342 unsigned long now = jiffies;
1343
1344 if (part->partno)
1345 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1346 part_round_stats_single(cpu, part, now);
1347 }
1348 EXPORT_SYMBOL_GPL(part_round_stats);
1349
1350 #ifdef CONFIG_PM
1351 static void blk_pm_put_request(struct request *rq)
1352 {
1353 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1354 pm_runtime_mark_last_busy(rq->q->dev);
1355 }
1356 #else
1357 static inline void blk_pm_put_request(struct request *rq) {}
1358 #endif
1359
1360 /*
1361 * queue lock must be held
1362 */
1363 void __blk_put_request(struct request_queue *q, struct request *req)
1364 {
1365 if (unlikely(!q))
1366 return;
1367
1368 if (q->mq_ops) {
1369 blk_mq_free_request(req);
1370 return;
1371 }
1372
1373 blk_pm_put_request(req);
1374
1375 elv_completed_request(q, req);
1376
1377 /* this is a bio leak */
1378 WARN_ON(req->bio != NULL);
1379
1380 /*
1381 * Request may not have originated from ll_rw_blk. if not,
1382 * it didn't come out of our reserved rq pools
1383 */
1384 if (req->cmd_flags & REQ_ALLOCED) {
1385 unsigned int flags = req->cmd_flags;
1386 struct request_list *rl = blk_rq_rl(req);
1387
1388 BUG_ON(!list_empty(&req->queuelist));
1389 BUG_ON(ELV_ON_HASH(req));
1390
1391 blk_free_request(rl, req);
1392 freed_request(rl, flags);
1393 blk_put_rl(rl);
1394 }
1395 }
1396 EXPORT_SYMBOL_GPL(__blk_put_request);
1397
1398 void blk_put_request(struct request *req)
1399 {
1400 struct request_queue *q = req->q;
1401
1402 if (q->mq_ops)
1403 blk_mq_free_request(req);
1404 else {
1405 unsigned long flags;
1406
1407 spin_lock_irqsave(q->queue_lock, flags);
1408 __blk_put_request(q, req);
1409 spin_unlock_irqrestore(q->queue_lock, flags);
1410 }
1411 }
1412 EXPORT_SYMBOL(blk_put_request);
1413
1414 /**
1415 * blk_add_request_payload - add a payload to a request
1416 * @rq: request to update
1417 * @page: page backing the payload
1418 * @len: length of the payload.
1419 *
1420 * This allows to later add a payload to an already submitted request by
1421 * a block driver. The driver needs to take care of freeing the payload
1422 * itself.
1423 *
1424 * Note that this is a quite horrible hack and nothing but handling of
1425 * discard requests should ever use it.
1426 */
1427 void blk_add_request_payload(struct request *rq, struct page *page,
1428 unsigned int len)
1429 {
1430 struct bio *bio = rq->bio;
1431
1432 bio->bi_io_vec->bv_page = page;
1433 bio->bi_io_vec->bv_offset = 0;
1434 bio->bi_io_vec->bv_len = len;
1435
1436 bio->bi_iter.bi_size = len;
1437 bio->bi_vcnt = 1;
1438 bio->bi_phys_segments = 1;
1439
1440 rq->__data_len = rq->resid_len = len;
1441 rq->nr_phys_segments = 1;
1442 }
1443 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1444
1445 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1446 struct bio *bio)
1447 {
1448 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1449
1450 if (!ll_back_merge_fn(q, req, bio))
1451 return false;
1452
1453 trace_block_bio_backmerge(q, req, bio);
1454
1455 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1456 blk_rq_set_mixed_merge(req);
1457
1458 req->biotail->bi_next = bio;
1459 req->biotail = bio;
1460 req->__data_len += bio->bi_iter.bi_size;
1461 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1462
1463 blk_account_io_start(req, false);
1464 return true;
1465 }
1466
1467 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1468 struct bio *bio)
1469 {
1470 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1471
1472 if (!ll_front_merge_fn(q, req, bio))
1473 return false;
1474
1475 trace_block_bio_frontmerge(q, req, bio);
1476
1477 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1478 blk_rq_set_mixed_merge(req);
1479
1480 bio->bi_next = req->bio;
1481 req->bio = bio;
1482
1483 req->__sector = bio->bi_iter.bi_sector;
1484 req->__data_len += bio->bi_iter.bi_size;
1485 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1486
1487 blk_account_io_start(req, false);
1488 return true;
1489 }
1490
1491 /**
1492 * blk_attempt_plug_merge - try to merge with %current's plugged list
1493 * @q: request_queue new bio is being queued at
1494 * @bio: new bio being queued
1495 * @request_count: out parameter for number of traversed plugged requests
1496 *
1497 * Determine whether @bio being queued on @q can be merged with a request
1498 * on %current's plugged list. Returns %true if merge was successful,
1499 * otherwise %false.
1500 *
1501 * Plugging coalesces IOs from the same issuer for the same purpose without
1502 * going through @q->queue_lock. As such it's more of an issuing mechanism
1503 * than scheduling, and the request, while may have elvpriv data, is not
1504 * added on the elevator at this point. In addition, we don't have
1505 * reliable access to the elevator outside queue lock. Only check basic
1506 * merging parameters without querying the elevator.
1507 *
1508 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1509 */
1510 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1511 unsigned int *request_count)
1512 {
1513 struct blk_plug *plug;
1514 struct request *rq;
1515 bool ret = false;
1516 struct list_head *plug_list;
1517
1518 plug = current->plug;
1519 if (!plug)
1520 goto out;
1521 *request_count = 0;
1522
1523 if (q->mq_ops)
1524 plug_list = &plug->mq_list;
1525 else
1526 plug_list = &plug->list;
1527
1528 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1529 int el_ret;
1530
1531 if (rq->q == q)
1532 (*request_count)++;
1533
1534 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1535 continue;
1536
1537 el_ret = blk_try_merge(rq, bio);
1538 if (el_ret == ELEVATOR_BACK_MERGE) {
1539 ret = bio_attempt_back_merge(q, rq, bio);
1540 if (ret)
1541 break;
1542 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1543 ret = bio_attempt_front_merge(q, rq, bio);
1544 if (ret)
1545 break;
1546 }
1547 }
1548 out:
1549 return ret;
1550 }
1551
1552 void init_request_from_bio(struct request *req, struct bio *bio)
1553 {
1554 req->cmd_type = REQ_TYPE_FS;
1555
1556 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1557 if (bio->bi_rw & REQ_RAHEAD)
1558 req->cmd_flags |= REQ_FAILFAST_MASK;
1559
1560 req->errors = 0;
1561 req->__sector = bio->bi_iter.bi_sector;
1562 req->ioprio = bio_prio(bio);
1563 blk_rq_bio_prep(req->q, req, bio);
1564 }
1565
1566 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1567 {
1568 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1569 struct blk_plug *plug;
1570 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1571 struct request *req;
1572 unsigned int request_count = 0;
1573
1574 /*
1575 * low level driver can indicate that it wants pages above a
1576 * certain limit bounced to low memory (ie for highmem, or even
1577 * ISA dma in theory)
1578 */
1579 blk_queue_bounce(q, &bio);
1580
1581 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1582 bio_endio(bio, -EIO);
1583 return;
1584 }
1585
1586 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1587 spin_lock_irq(q->queue_lock);
1588 where = ELEVATOR_INSERT_FLUSH;
1589 goto get_rq;
1590 }
1591
1592 /*
1593 * Check if we can merge with the plugged list before grabbing
1594 * any locks.
1595 */
1596 if (!blk_queue_nomerges(q) &&
1597 blk_attempt_plug_merge(q, bio, &request_count))
1598 return;
1599
1600 spin_lock_irq(q->queue_lock);
1601
1602 el_ret = elv_merge(q, &req, bio);
1603 if (el_ret == ELEVATOR_BACK_MERGE) {
1604 if (bio_attempt_back_merge(q, req, bio)) {
1605 elv_bio_merged(q, req, bio);
1606 if (!attempt_back_merge(q, req))
1607 elv_merged_request(q, req, el_ret);
1608 goto out_unlock;
1609 }
1610 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1611 if (bio_attempt_front_merge(q, req, bio)) {
1612 elv_bio_merged(q, req, bio);
1613 if (!attempt_front_merge(q, req))
1614 elv_merged_request(q, req, el_ret);
1615 goto out_unlock;
1616 }
1617 }
1618
1619 get_rq:
1620 /*
1621 * This sync check and mask will be re-done in init_request_from_bio(),
1622 * but we need to set it earlier to expose the sync flag to the
1623 * rq allocator and io schedulers.
1624 */
1625 rw_flags = bio_data_dir(bio);
1626 if (sync)
1627 rw_flags |= REQ_SYNC;
1628
1629 /*
1630 * Grab a free request. This is might sleep but can not fail.
1631 * Returns with the queue unlocked.
1632 */
1633 req = get_request(q, rw_flags, bio, GFP_NOIO);
1634 if (IS_ERR(req)) {
1635 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1636 goto out_unlock;
1637 }
1638
1639 /*
1640 * After dropping the lock and possibly sleeping here, our request
1641 * may now be mergeable after it had proven unmergeable (above).
1642 * We don't worry about that case for efficiency. It won't happen
1643 * often, and the elevators are able to handle it.
1644 */
1645 init_request_from_bio(req, bio);
1646
1647 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1648 req->cpu = raw_smp_processor_id();
1649
1650 plug = current->plug;
1651 if (plug) {
1652 /*
1653 * If this is the first request added after a plug, fire
1654 * of a plug trace.
1655 */
1656 if (!request_count)
1657 trace_block_plug(q);
1658 else {
1659 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1660 blk_flush_plug_list(plug, false);
1661 trace_block_plug(q);
1662 }
1663 }
1664 list_add_tail(&req->queuelist, &plug->list);
1665 blk_account_io_start(req, true);
1666 } else {
1667 spin_lock_irq(q->queue_lock);
1668 add_acct_request(q, req, where);
1669 __blk_run_queue(q);
1670 out_unlock:
1671 spin_unlock_irq(q->queue_lock);
1672 }
1673 }
1674 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1675
1676 /*
1677 * If bio->bi_dev is a partition, remap the location
1678 */
1679 static inline void blk_partition_remap(struct bio *bio)
1680 {
1681 struct block_device *bdev = bio->bi_bdev;
1682
1683 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1684 struct hd_struct *p = bdev->bd_part;
1685
1686 bio->bi_iter.bi_sector += p->start_sect;
1687 bio->bi_bdev = bdev->bd_contains;
1688
1689 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1690 bdev->bd_dev,
1691 bio->bi_iter.bi_sector - p->start_sect);
1692 }
1693 }
1694
1695 static void handle_bad_sector(struct bio *bio)
1696 {
1697 char b[BDEVNAME_SIZE];
1698
1699 printk(KERN_INFO "attempt to access beyond end of device\n");
1700 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1701 bdevname(bio->bi_bdev, b),
1702 bio->bi_rw,
1703 (unsigned long long)bio_end_sector(bio),
1704 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1705
1706 set_bit(BIO_EOF, &bio->bi_flags);
1707 }
1708
1709 #ifdef CONFIG_FAIL_MAKE_REQUEST
1710
1711 static DECLARE_FAULT_ATTR(fail_make_request);
1712
1713 static int __init setup_fail_make_request(char *str)
1714 {
1715 return setup_fault_attr(&fail_make_request, str);
1716 }
1717 __setup("fail_make_request=", setup_fail_make_request);
1718
1719 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1720 {
1721 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1722 }
1723
1724 static int __init fail_make_request_debugfs(void)
1725 {
1726 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1727 NULL, &fail_make_request);
1728
1729 return PTR_ERR_OR_ZERO(dir);
1730 }
1731
1732 late_initcall(fail_make_request_debugfs);
1733
1734 #else /* CONFIG_FAIL_MAKE_REQUEST */
1735
1736 static inline bool should_fail_request(struct hd_struct *part,
1737 unsigned int bytes)
1738 {
1739 return false;
1740 }
1741
1742 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1743
1744 /*
1745 * Check whether this bio extends beyond the end of the device.
1746 */
1747 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1748 {
1749 sector_t maxsector;
1750
1751 if (!nr_sectors)
1752 return 0;
1753
1754 /* Test device or partition size, when known. */
1755 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1756 if (maxsector) {
1757 sector_t sector = bio->bi_iter.bi_sector;
1758
1759 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1760 /*
1761 * This may well happen - the kernel calls bread()
1762 * without checking the size of the device, e.g., when
1763 * mounting a device.
1764 */
1765 handle_bad_sector(bio);
1766 return 1;
1767 }
1768 }
1769
1770 return 0;
1771 }
1772
1773 static noinline_for_stack bool
1774 generic_make_request_checks(struct bio *bio)
1775 {
1776 struct request_queue *q;
1777 int nr_sectors = bio_sectors(bio);
1778 int err = -EIO;
1779 char b[BDEVNAME_SIZE];
1780 struct hd_struct *part;
1781
1782 might_sleep();
1783
1784 if (bio_check_eod(bio, nr_sectors))
1785 goto end_io;
1786
1787 q = bdev_get_queue(bio->bi_bdev);
1788 if (unlikely(!q)) {
1789 printk(KERN_ERR
1790 "generic_make_request: Trying to access "
1791 "nonexistent block-device %s (%Lu)\n",
1792 bdevname(bio->bi_bdev, b),
1793 (long long) bio->bi_iter.bi_sector);
1794 goto end_io;
1795 }
1796
1797 if (likely(bio_is_rw(bio) &&
1798 nr_sectors > queue_max_hw_sectors(q))) {
1799 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1800 bdevname(bio->bi_bdev, b),
1801 bio_sectors(bio),
1802 queue_max_hw_sectors(q));
1803 goto end_io;
1804 }
1805
1806 part = bio->bi_bdev->bd_part;
1807 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1808 should_fail_request(&part_to_disk(part)->part0,
1809 bio->bi_iter.bi_size))
1810 goto end_io;
1811
1812 /*
1813 * If this device has partitions, remap block n
1814 * of partition p to block n+start(p) of the disk.
1815 */
1816 blk_partition_remap(bio);
1817
1818 if (bio_check_eod(bio, nr_sectors))
1819 goto end_io;
1820
1821 /*
1822 * Filter flush bio's early so that make_request based
1823 * drivers without flush support don't have to worry
1824 * about them.
1825 */
1826 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1827 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1828 if (!nr_sectors) {
1829 err = 0;
1830 goto end_io;
1831 }
1832 }
1833
1834 if ((bio->bi_rw & REQ_DISCARD) &&
1835 (!blk_queue_discard(q) ||
1836 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1837 err = -EOPNOTSUPP;
1838 goto end_io;
1839 }
1840
1841 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1842 err = -EOPNOTSUPP;
1843 goto end_io;
1844 }
1845
1846 /*
1847 * Various block parts want %current->io_context and lazy ioc
1848 * allocation ends up trading a lot of pain for a small amount of
1849 * memory. Just allocate it upfront. This may fail and block
1850 * layer knows how to live with it.
1851 */
1852 create_io_context(GFP_ATOMIC, q->node);
1853
1854 if (blk_throtl_bio(q, bio))
1855 return false; /* throttled, will be resubmitted later */
1856
1857 trace_block_bio_queue(q, bio);
1858 return true;
1859
1860 end_io:
1861 bio_endio(bio, err);
1862 return false;
1863 }
1864
1865 /**
1866 * generic_make_request - hand a buffer to its device driver for I/O
1867 * @bio: The bio describing the location in memory and on the device.
1868 *
1869 * generic_make_request() is used to make I/O requests of block
1870 * devices. It is passed a &struct bio, which describes the I/O that needs
1871 * to be done.
1872 *
1873 * generic_make_request() does not return any status. The
1874 * success/failure status of the request, along with notification of
1875 * completion, is delivered asynchronously through the bio->bi_end_io
1876 * function described (one day) else where.
1877 *
1878 * The caller of generic_make_request must make sure that bi_io_vec
1879 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1880 * set to describe the device address, and the
1881 * bi_end_io and optionally bi_private are set to describe how
1882 * completion notification should be signaled.
1883 *
1884 * generic_make_request and the drivers it calls may use bi_next if this
1885 * bio happens to be merged with someone else, and may resubmit the bio to
1886 * a lower device by calling into generic_make_request recursively, which
1887 * means the bio should NOT be touched after the call to ->make_request_fn.
1888 */
1889 void generic_make_request(struct bio *bio)
1890 {
1891 struct bio_list bio_list_on_stack;
1892
1893 if (!generic_make_request_checks(bio))
1894 return;
1895
1896 /*
1897 * We only want one ->make_request_fn to be active at a time, else
1898 * stack usage with stacked devices could be a problem. So use
1899 * current->bio_list to keep a list of requests submited by a
1900 * make_request_fn function. current->bio_list is also used as a
1901 * flag to say if generic_make_request is currently active in this
1902 * task or not. If it is NULL, then no make_request is active. If
1903 * it is non-NULL, then a make_request is active, and new requests
1904 * should be added at the tail
1905 */
1906 if (current->bio_list) {
1907 bio_list_add(current->bio_list, bio);
1908 return;
1909 }
1910
1911 /* following loop may be a bit non-obvious, and so deserves some
1912 * explanation.
1913 * Before entering the loop, bio->bi_next is NULL (as all callers
1914 * ensure that) so we have a list with a single bio.
1915 * We pretend that we have just taken it off a longer list, so
1916 * we assign bio_list to a pointer to the bio_list_on_stack,
1917 * thus initialising the bio_list of new bios to be
1918 * added. ->make_request() may indeed add some more bios
1919 * through a recursive call to generic_make_request. If it
1920 * did, we find a non-NULL value in bio_list and re-enter the loop
1921 * from the top. In this case we really did just take the bio
1922 * of the top of the list (no pretending) and so remove it from
1923 * bio_list, and call into ->make_request() again.
1924 */
1925 BUG_ON(bio->bi_next);
1926 bio_list_init(&bio_list_on_stack);
1927 current->bio_list = &bio_list_on_stack;
1928 do {
1929 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1930
1931 q->make_request_fn(q, bio);
1932
1933 bio = bio_list_pop(current->bio_list);
1934 } while (bio);
1935 current->bio_list = NULL; /* deactivate */
1936 }
1937 EXPORT_SYMBOL(generic_make_request);
1938
1939 /**
1940 * submit_bio - submit a bio to the block device layer for I/O
1941 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1942 * @bio: The &struct bio which describes the I/O
1943 *
1944 * submit_bio() is very similar in purpose to generic_make_request(), and
1945 * uses that function to do most of the work. Both are fairly rough
1946 * interfaces; @bio must be presetup and ready for I/O.
1947 *
1948 */
1949 void submit_bio(int rw, struct bio *bio)
1950 {
1951 bio->bi_rw |= rw;
1952
1953 /*
1954 * If it's a regular read/write or a barrier with data attached,
1955 * go through the normal accounting stuff before submission.
1956 */
1957 if (bio_has_data(bio)) {
1958 unsigned int count;
1959
1960 if (unlikely(rw & REQ_WRITE_SAME))
1961 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1962 else
1963 count = bio_sectors(bio);
1964
1965 if (rw & WRITE) {
1966 count_vm_events(PGPGOUT, count);
1967 } else {
1968 task_io_account_read(bio->bi_iter.bi_size);
1969 count_vm_events(PGPGIN, count);
1970 }
1971
1972 if (unlikely(block_dump)) {
1973 char b[BDEVNAME_SIZE];
1974 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1975 current->comm, task_pid_nr(current),
1976 (rw & WRITE) ? "WRITE" : "READ",
1977 (unsigned long long)bio->bi_iter.bi_sector,
1978 bdevname(bio->bi_bdev, b),
1979 count);
1980 }
1981 }
1982
1983 generic_make_request(bio);
1984 }
1985 EXPORT_SYMBOL(submit_bio);
1986
1987 /**
1988 * blk_rq_check_limits - Helper function to check a request for the queue limit
1989 * @q: the queue
1990 * @rq: the request being checked
1991 *
1992 * Description:
1993 * @rq may have been made based on weaker limitations of upper-level queues
1994 * in request stacking drivers, and it may violate the limitation of @q.
1995 * Since the block layer and the underlying device driver trust @rq
1996 * after it is inserted to @q, it should be checked against @q before
1997 * the insertion using this generic function.
1998 *
1999 * This function should also be useful for request stacking drivers
2000 * in some cases below, so export this function.
2001 * Request stacking drivers like request-based dm may change the queue
2002 * limits while requests are in the queue (e.g. dm's table swapping).
2003 * Such request stacking drivers should check those requests against
2004 * the new queue limits again when they dispatch those requests,
2005 * although such checkings are also done against the old queue limits
2006 * when submitting requests.
2007 */
2008 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2009 {
2010 if (!rq_mergeable(rq))
2011 return 0;
2012
2013 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2014 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2015 return -EIO;
2016 }
2017
2018 /*
2019 * queue's settings related to segment counting like q->bounce_pfn
2020 * may differ from that of other stacking queues.
2021 * Recalculate it to check the request correctly on this queue's
2022 * limitation.
2023 */
2024 blk_recalc_rq_segments(rq);
2025 if (rq->nr_phys_segments > queue_max_segments(q)) {
2026 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2027 return -EIO;
2028 }
2029
2030 return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2033
2034 /**
2035 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2036 * @q: the queue to submit the request
2037 * @rq: the request being queued
2038 */
2039 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2040 {
2041 unsigned long flags;
2042 int where = ELEVATOR_INSERT_BACK;
2043
2044 if (blk_rq_check_limits(q, rq))
2045 return -EIO;
2046
2047 if (rq->rq_disk &&
2048 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2049 return -EIO;
2050
2051 spin_lock_irqsave(q->queue_lock, flags);
2052 if (unlikely(blk_queue_dying(q))) {
2053 spin_unlock_irqrestore(q->queue_lock, flags);
2054 return -ENODEV;
2055 }
2056
2057 /*
2058 * Submitting request must be dequeued before calling this function
2059 * because it will be linked to another request_queue
2060 */
2061 BUG_ON(blk_queued_rq(rq));
2062
2063 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2064 where = ELEVATOR_INSERT_FLUSH;
2065
2066 add_acct_request(q, rq, where);
2067 if (where == ELEVATOR_INSERT_FLUSH)
2068 __blk_run_queue(q);
2069 spin_unlock_irqrestore(q->queue_lock, flags);
2070
2071 return 0;
2072 }
2073 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2074
2075 /**
2076 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2077 * @rq: request to examine
2078 *
2079 * Description:
2080 * A request could be merge of IOs which require different failure
2081 * handling. This function determines the number of bytes which
2082 * can be failed from the beginning of the request without
2083 * crossing into area which need to be retried further.
2084 *
2085 * Return:
2086 * The number of bytes to fail.
2087 *
2088 * Context:
2089 * queue_lock must be held.
2090 */
2091 unsigned int blk_rq_err_bytes(const struct request *rq)
2092 {
2093 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2094 unsigned int bytes = 0;
2095 struct bio *bio;
2096
2097 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2098 return blk_rq_bytes(rq);
2099
2100 /*
2101 * Currently the only 'mixing' which can happen is between
2102 * different fastfail types. We can safely fail portions
2103 * which have all the failfast bits that the first one has -
2104 * the ones which are at least as eager to fail as the first
2105 * one.
2106 */
2107 for (bio = rq->bio; bio; bio = bio->bi_next) {
2108 if ((bio->bi_rw & ff) != ff)
2109 break;
2110 bytes += bio->bi_iter.bi_size;
2111 }
2112
2113 /* this could lead to infinite loop */
2114 BUG_ON(blk_rq_bytes(rq) && !bytes);
2115 return bytes;
2116 }
2117 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2118
2119 void blk_account_io_completion(struct request *req, unsigned int bytes)
2120 {
2121 if (blk_do_io_stat(req)) {
2122 const int rw = rq_data_dir(req);
2123 struct hd_struct *part;
2124 int cpu;
2125
2126 cpu = part_stat_lock();
2127 part = req->part;
2128 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2129 part_stat_unlock();
2130 }
2131 }
2132
2133 void blk_account_io_done(struct request *req)
2134 {
2135 /*
2136 * Account IO completion. flush_rq isn't accounted as a
2137 * normal IO on queueing nor completion. Accounting the
2138 * containing request is enough.
2139 */
2140 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2141 unsigned long duration = jiffies - req->start_time;
2142 const int rw = rq_data_dir(req);
2143 struct hd_struct *part;
2144 int cpu;
2145
2146 cpu = part_stat_lock();
2147 part = req->part;
2148
2149 part_stat_inc(cpu, part, ios[rw]);
2150 part_stat_add(cpu, part, ticks[rw], duration);
2151 part_round_stats(cpu, part);
2152 part_dec_in_flight(part, rw);
2153
2154 hd_struct_put(part);
2155 part_stat_unlock();
2156 }
2157 }
2158
2159 #ifdef CONFIG_PM
2160 /*
2161 * Don't process normal requests when queue is suspended
2162 * or in the process of suspending/resuming
2163 */
2164 static struct request *blk_pm_peek_request(struct request_queue *q,
2165 struct request *rq)
2166 {
2167 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2168 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2169 return NULL;
2170 else
2171 return rq;
2172 }
2173 #else
2174 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2175 struct request *rq)
2176 {
2177 return rq;
2178 }
2179 #endif
2180
2181 void blk_account_io_start(struct request *rq, bool new_io)
2182 {
2183 struct hd_struct *part;
2184 int rw = rq_data_dir(rq);
2185 int cpu;
2186
2187 if (!blk_do_io_stat(rq))
2188 return;
2189
2190 cpu = part_stat_lock();
2191
2192 if (!new_io) {
2193 part = rq->part;
2194 part_stat_inc(cpu, part, merges[rw]);
2195 } else {
2196 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2197 if (!hd_struct_try_get(part)) {
2198 /*
2199 * The partition is already being removed,
2200 * the request will be accounted on the disk only
2201 *
2202 * We take a reference on disk->part0 although that
2203 * partition will never be deleted, so we can treat
2204 * it as any other partition.
2205 */
2206 part = &rq->rq_disk->part0;
2207 hd_struct_get(part);
2208 }
2209 part_round_stats(cpu, part);
2210 part_inc_in_flight(part, rw);
2211 rq->part = part;
2212 }
2213
2214 part_stat_unlock();
2215 }
2216
2217 /**
2218 * blk_peek_request - peek at the top of a request queue
2219 * @q: request queue to peek at
2220 *
2221 * Description:
2222 * Return the request at the top of @q. The returned request
2223 * should be started using blk_start_request() before LLD starts
2224 * processing it.
2225 *
2226 * Return:
2227 * Pointer to the request at the top of @q if available. Null
2228 * otherwise.
2229 *
2230 * Context:
2231 * queue_lock must be held.
2232 */
2233 struct request *blk_peek_request(struct request_queue *q)
2234 {
2235 struct request *rq;
2236 int ret;
2237
2238 while ((rq = __elv_next_request(q)) != NULL) {
2239
2240 rq = blk_pm_peek_request(q, rq);
2241 if (!rq)
2242 break;
2243
2244 if (!(rq->cmd_flags & REQ_STARTED)) {
2245 /*
2246 * This is the first time the device driver
2247 * sees this request (possibly after
2248 * requeueing). Notify IO scheduler.
2249 */
2250 if (rq->cmd_flags & REQ_SORTED)
2251 elv_activate_rq(q, rq);
2252
2253 /*
2254 * just mark as started even if we don't start
2255 * it, a request that has been delayed should
2256 * not be passed by new incoming requests
2257 */
2258 rq->cmd_flags |= REQ_STARTED;
2259 trace_block_rq_issue(q, rq);
2260 }
2261
2262 if (!q->boundary_rq || q->boundary_rq == rq) {
2263 q->end_sector = rq_end_sector(rq);
2264 q->boundary_rq = NULL;
2265 }
2266
2267 if (rq->cmd_flags & REQ_DONTPREP)
2268 break;
2269
2270 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2271 /*
2272 * make sure space for the drain appears we
2273 * know we can do this because max_hw_segments
2274 * has been adjusted to be one fewer than the
2275 * device can handle
2276 */
2277 rq->nr_phys_segments++;
2278 }
2279
2280 if (!q->prep_rq_fn)
2281 break;
2282
2283 ret = q->prep_rq_fn(q, rq);
2284 if (ret == BLKPREP_OK) {
2285 break;
2286 } else if (ret == BLKPREP_DEFER) {
2287 /*
2288 * the request may have been (partially) prepped.
2289 * we need to keep this request in the front to
2290 * avoid resource deadlock. REQ_STARTED will
2291 * prevent other fs requests from passing this one.
2292 */
2293 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2294 !(rq->cmd_flags & REQ_DONTPREP)) {
2295 /*
2296 * remove the space for the drain we added
2297 * so that we don't add it again
2298 */
2299 --rq->nr_phys_segments;
2300 }
2301
2302 rq = NULL;
2303 break;
2304 } else if (ret == BLKPREP_KILL) {
2305 rq->cmd_flags |= REQ_QUIET;
2306 /*
2307 * Mark this request as started so we don't trigger
2308 * any debug logic in the end I/O path.
2309 */
2310 blk_start_request(rq);
2311 __blk_end_request_all(rq, -EIO);
2312 } else {
2313 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2314 break;
2315 }
2316 }
2317
2318 return rq;
2319 }
2320 EXPORT_SYMBOL(blk_peek_request);
2321
2322 void blk_dequeue_request(struct request *rq)
2323 {
2324 struct request_queue *q = rq->q;
2325
2326 BUG_ON(list_empty(&rq->queuelist));
2327 BUG_ON(ELV_ON_HASH(rq));
2328
2329 list_del_init(&rq->queuelist);
2330
2331 /*
2332 * the time frame between a request being removed from the lists
2333 * and to it is freed is accounted as io that is in progress at
2334 * the driver side.
2335 */
2336 if (blk_account_rq(rq)) {
2337 q->in_flight[rq_is_sync(rq)]++;
2338 set_io_start_time_ns(rq);
2339 }
2340 }
2341
2342 /**
2343 * blk_start_request - start request processing on the driver
2344 * @req: request to dequeue
2345 *
2346 * Description:
2347 * Dequeue @req and start timeout timer on it. This hands off the
2348 * request to the driver.
2349 *
2350 * Block internal functions which don't want to start timer should
2351 * call blk_dequeue_request().
2352 *
2353 * Context:
2354 * queue_lock must be held.
2355 */
2356 void blk_start_request(struct request *req)
2357 {
2358 blk_dequeue_request(req);
2359
2360 /*
2361 * We are now handing the request to the hardware, initialize
2362 * resid_len to full count and add the timeout handler.
2363 */
2364 req->resid_len = blk_rq_bytes(req);
2365 if (unlikely(blk_bidi_rq(req)))
2366 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2367
2368 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2369 blk_add_timer(req);
2370 }
2371 EXPORT_SYMBOL(blk_start_request);
2372
2373 /**
2374 * blk_fetch_request - fetch a request from a request queue
2375 * @q: request queue to fetch a request from
2376 *
2377 * Description:
2378 * Return the request at the top of @q. The request is started on
2379 * return and LLD can start processing it immediately.
2380 *
2381 * Return:
2382 * Pointer to the request at the top of @q if available. Null
2383 * otherwise.
2384 *
2385 * Context:
2386 * queue_lock must be held.
2387 */
2388 struct request *blk_fetch_request(struct request_queue *q)
2389 {
2390 struct request *rq;
2391
2392 rq = blk_peek_request(q);
2393 if (rq)
2394 blk_start_request(rq);
2395 return rq;
2396 }
2397 EXPORT_SYMBOL(blk_fetch_request);
2398
2399 /**
2400 * blk_update_request - Special helper function for request stacking drivers
2401 * @req: the request being processed
2402 * @error: %0 for success, < %0 for error
2403 * @nr_bytes: number of bytes to complete @req
2404 *
2405 * Description:
2406 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2407 * the request structure even if @req doesn't have leftover.
2408 * If @req has leftover, sets it up for the next range of segments.
2409 *
2410 * This special helper function is only for request stacking drivers
2411 * (e.g. request-based dm) so that they can handle partial completion.
2412 * Actual device drivers should use blk_end_request instead.
2413 *
2414 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2415 * %false return from this function.
2416 *
2417 * Return:
2418 * %false - this request doesn't have any more data
2419 * %true - this request has more data
2420 **/
2421 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2422 {
2423 int total_bytes;
2424
2425 trace_block_rq_complete(req->q, req, nr_bytes);
2426
2427 if (!req->bio)
2428 return false;
2429
2430 /*
2431 * For fs requests, rq is just carrier of independent bio's
2432 * and each partial completion should be handled separately.
2433 * Reset per-request error on each partial completion.
2434 *
2435 * TODO: tj: This is too subtle. It would be better to let
2436 * low level drivers do what they see fit.
2437 */
2438 if (req->cmd_type == REQ_TYPE_FS)
2439 req->errors = 0;
2440
2441 if (error && req->cmd_type == REQ_TYPE_FS &&
2442 !(req->cmd_flags & REQ_QUIET)) {
2443 char *error_type;
2444
2445 switch (error) {
2446 case -ENOLINK:
2447 error_type = "recoverable transport";
2448 break;
2449 case -EREMOTEIO:
2450 error_type = "critical target";
2451 break;
2452 case -EBADE:
2453 error_type = "critical nexus";
2454 break;
2455 case -ETIMEDOUT:
2456 error_type = "timeout";
2457 break;
2458 case -ENOSPC:
2459 error_type = "critical space allocation";
2460 break;
2461 case -ENODATA:
2462 error_type = "critical medium";
2463 break;
2464 case -EIO:
2465 default:
2466 error_type = "I/O";
2467 break;
2468 }
2469 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2470 __func__, error_type, req->rq_disk ?
2471 req->rq_disk->disk_name : "?",
2472 (unsigned long long)blk_rq_pos(req));
2473
2474 }
2475
2476 blk_account_io_completion(req, nr_bytes);
2477
2478 total_bytes = 0;
2479 while (req->bio) {
2480 struct bio *bio = req->bio;
2481 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2482
2483 if (bio_bytes == bio->bi_iter.bi_size)
2484 req->bio = bio->bi_next;
2485
2486 req_bio_endio(req, bio, bio_bytes, error);
2487
2488 total_bytes += bio_bytes;
2489 nr_bytes -= bio_bytes;
2490
2491 if (!nr_bytes)
2492 break;
2493 }
2494
2495 /*
2496 * completely done
2497 */
2498 if (!req->bio) {
2499 /*
2500 * Reset counters so that the request stacking driver
2501 * can find how many bytes remain in the request
2502 * later.
2503 */
2504 req->__data_len = 0;
2505 return false;
2506 }
2507
2508 req->__data_len -= total_bytes;
2509
2510 /* update sector only for requests with clear definition of sector */
2511 if (req->cmd_type == REQ_TYPE_FS)
2512 req->__sector += total_bytes >> 9;
2513
2514 /* mixed attributes always follow the first bio */
2515 if (req->cmd_flags & REQ_MIXED_MERGE) {
2516 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2517 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2518 }
2519
2520 /*
2521 * If total number of sectors is less than the first segment
2522 * size, something has gone terribly wrong.
2523 */
2524 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2525 blk_dump_rq_flags(req, "request botched");
2526 req->__data_len = blk_rq_cur_bytes(req);
2527 }
2528
2529 /* recalculate the number of segments */
2530 blk_recalc_rq_segments(req);
2531
2532 return true;
2533 }
2534 EXPORT_SYMBOL_GPL(blk_update_request);
2535
2536 static bool blk_update_bidi_request(struct request *rq, int error,
2537 unsigned int nr_bytes,
2538 unsigned int bidi_bytes)
2539 {
2540 if (blk_update_request(rq, error, nr_bytes))
2541 return true;
2542
2543 /* Bidi request must be completed as a whole */
2544 if (unlikely(blk_bidi_rq(rq)) &&
2545 blk_update_request(rq->next_rq, error, bidi_bytes))
2546 return true;
2547
2548 if (blk_queue_add_random(rq->q))
2549 add_disk_randomness(rq->rq_disk);
2550
2551 return false;
2552 }
2553
2554 /**
2555 * blk_unprep_request - unprepare a request
2556 * @req: the request
2557 *
2558 * This function makes a request ready for complete resubmission (or
2559 * completion). It happens only after all error handling is complete,
2560 * so represents the appropriate moment to deallocate any resources
2561 * that were allocated to the request in the prep_rq_fn. The queue
2562 * lock is held when calling this.
2563 */
2564 void blk_unprep_request(struct request *req)
2565 {
2566 struct request_queue *q = req->q;
2567
2568 req->cmd_flags &= ~REQ_DONTPREP;
2569 if (q->unprep_rq_fn)
2570 q->unprep_rq_fn(q, req);
2571 }
2572 EXPORT_SYMBOL_GPL(blk_unprep_request);
2573
2574 /*
2575 * queue lock must be held
2576 */
2577 void blk_finish_request(struct request *req, int error)
2578 {
2579 if (req->cmd_flags & REQ_QUEUED)
2580 blk_queue_end_tag(req->q, req);
2581
2582 BUG_ON(blk_queued_rq(req));
2583
2584 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2585 laptop_io_completion(&req->q->backing_dev_info);
2586
2587 blk_delete_timer(req);
2588
2589 if (req->cmd_flags & REQ_DONTPREP)
2590 blk_unprep_request(req);
2591
2592 blk_account_io_done(req);
2593
2594 if (req->end_io)
2595 req->end_io(req, error);
2596 else {
2597 if (blk_bidi_rq(req))
2598 __blk_put_request(req->next_rq->q, req->next_rq);
2599
2600 __blk_put_request(req->q, req);
2601 }
2602 }
2603 EXPORT_SYMBOL(blk_finish_request);
2604
2605 /**
2606 * blk_end_bidi_request - Complete a bidi request
2607 * @rq: the request to complete
2608 * @error: %0 for success, < %0 for error
2609 * @nr_bytes: number of bytes to complete @rq
2610 * @bidi_bytes: number of bytes to complete @rq->next_rq
2611 *
2612 * Description:
2613 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2614 * Drivers that supports bidi can safely call this member for any
2615 * type of request, bidi or uni. In the later case @bidi_bytes is
2616 * just ignored.
2617 *
2618 * Return:
2619 * %false - we are done with this request
2620 * %true - still buffers pending for this request
2621 **/
2622 static bool blk_end_bidi_request(struct request *rq, int error,
2623 unsigned int nr_bytes, unsigned int bidi_bytes)
2624 {
2625 struct request_queue *q = rq->q;
2626 unsigned long flags;
2627
2628 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2629 return true;
2630
2631 spin_lock_irqsave(q->queue_lock, flags);
2632 blk_finish_request(rq, error);
2633 spin_unlock_irqrestore(q->queue_lock, flags);
2634
2635 return false;
2636 }
2637
2638 /**
2639 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2640 * @rq: the request to complete
2641 * @error: %0 for success, < %0 for error
2642 * @nr_bytes: number of bytes to complete @rq
2643 * @bidi_bytes: number of bytes to complete @rq->next_rq
2644 *
2645 * Description:
2646 * Identical to blk_end_bidi_request() except that queue lock is
2647 * assumed to be locked on entry and remains so on return.
2648 *
2649 * Return:
2650 * %false - we are done with this request
2651 * %true - still buffers pending for this request
2652 **/
2653 bool __blk_end_bidi_request(struct request *rq, int error,
2654 unsigned int nr_bytes, unsigned int bidi_bytes)
2655 {
2656 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2657 return true;
2658
2659 blk_finish_request(rq, error);
2660
2661 return false;
2662 }
2663
2664 /**
2665 * blk_end_request - Helper function for drivers to complete the request.
2666 * @rq: the request being processed
2667 * @error: %0 for success, < %0 for error
2668 * @nr_bytes: number of bytes to complete
2669 *
2670 * Description:
2671 * Ends I/O on a number of bytes attached to @rq.
2672 * If @rq has leftover, sets it up for the next range of segments.
2673 *
2674 * Return:
2675 * %false - we are done with this request
2676 * %true - still buffers pending for this request
2677 **/
2678 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2679 {
2680 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2681 }
2682 EXPORT_SYMBOL(blk_end_request);
2683
2684 /**
2685 * blk_end_request_all - Helper function for drives to finish the request.
2686 * @rq: the request to finish
2687 * @error: %0 for success, < %0 for error
2688 *
2689 * Description:
2690 * Completely finish @rq.
2691 */
2692 void blk_end_request_all(struct request *rq, int error)
2693 {
2694 bool pending;
2695 unsigned int bidi_bytes = 0;
2696
2697 if (unlikely(blk_bidi_rq(rq)))
2698 bidi_bytes = blk_rq_bytes(rq->next_rq);
2699
2700 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2701 BUG_ON(pending);
2702 }
2703 EXPORT_SYMBOL(blk_end_request_all);
2704
2705 /**
2706 * blk_end_request_cur - Helper function to finish the current request chunk.
2707 * @rq: the request to finish the current chunk for
2708 * @error: %0 for success, < %0 for error
2709 *
2710 * Description:
2711 * Complete the current consecutively mapped chunk from @rq.
2712 *
2713 * Return:
2714 * %false - we are done with this request
2715 * %true - still buffers pending for this request
2716 */
2717 bool blk_end_request_cur(struct request *rq, int error)
2718 {
2719 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2720 }
2721 EXPORT_SYMBOL(blk_end_request_cur);
2722
2723 /**
2724 * blk_end_request_err - Finish a request till the next failure boundary.
2725 * @rq: the request to finish till the next failure boundary for
2726 * @error: must be negative errno
2727 *
2728 * Description:
2729 * Complete @rq till the next failure boundary.
2730 *
2731 * Return:
2732 * %false - we are done with this request
2733 * %true - still buffers pending for this request
2734 */
2735 bool blk_end_request_err(struct request *rq, int error)
2736 {
2737 WARN_ON(error >= 0);
2738 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2739 }
2740 EXPORT_SYMBOL_GPL(blk_end_request_err);
2741
2742 /**
2743 * __blk_end_request - Helper function for drivers to complete the request.
2744 * @rq: the request being processed
2745 * @error: %0 for success, < %0 for error
2746 * @nr_bytes: number of bytes to complete
2747 *
2748 * Description:
2749 * Must be called with queue lock held unlike blk_end_request().
2750 *
2751 * Return:
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
2754 **/
2755 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2756 {
2757 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2758 }
2759 EXPORT_SYMBOL(__blk_end_request);
2760
2761 /**
2762 * __blk_end_request_all - Helper function for drives to finish the request.
2763 * @rq: the request to finish
2764 * @error: %0 for success, < %0 for error
2765 *
2766 * Description:
2767 * Completely finish @rq. Must be called with queue lock held.
2768 */
2769 void __blk_end_request_all(struct request *rq, int error)
2770 {
2771 bool pending;
2772 unsigned int bidi_bytes = 0;
2773
2774 if (unlikely(blk_bidi_rq(rq)))
2775 bidi_bytes = blk_rq_bytes(rq->next_rq);
2776
2777 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2778 BUG_ON(pending);
2779 }
2780 EXPORT_SYMBOL(__blk_end_request_all);
2781
2782 /**
2783 * __blk_end_request_cur - Helper function to finish the current request chunk.
2784 * @rq: the request to finish the current chunk for
2785 * @error: %0 for success, < %0 for error
2786 *
2787 * Description:
2788 * Complete the current consecutively mapped chunk from @rq. Must
2789 * be called with queue lock held.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 */
2795 bool __blk_end_request_cur(struct request *rq, int error)
2796 {
2797 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2798 }
2799 EXPORT_SYMBOL(__blk_end_request_cur);
2800
2801 /**
2802 * __blk_end_request_err - Finish a request till the next failure boundary.
2803 * @rq: the request to finish till the next failure boundary for
2804 * @error: must be negative errno
2805 *
2806 * Description:
2807 * Complete @rq till the next failure boundary. Must be called
2808 * with queue lock held.
2809 *
2810 * Return:
2811 * %false - we are done with this request
2812 * %true - still buffers pending for this request
2813 */
2814 bool __blk_end_request_err(struct request *rq, int error)
2815 {
2816 WARN_ON(error >= 0);
2817 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2818 }
2819 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2820
2821 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2822 struct bio *bio)
2823 {
2824 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2825 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2826
2827 if (bio_has_data(bio))
2828 rq->nr_phys_segments = bio_phys_segments(q, bio);
2829
2830 rq->__data_len = bio->bi_iter.bi_size;
2831 rq->bio = rq->biotail = bio;
2832
2833 if (bio->bi_bdev)
2834 rq->rq_disk = bio->bi_bdev->bd_disk;
2835 }
2836
2837 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2838 /**
2839 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2840 * @rq: the request to be flushed
2841 *
2842 * Description:
2843 * Flush all pages in @rq.
2844 */
2845 void rq_flush_dcache_pages(struct request *rq)
2846 {
2847 struct req_iterator iter;
2848 struct bio_vec bvec;
2849
2850 rq_for_each_segment(bvec, rq, iter)
2851 flush_dcache_page(bvec.bv_page);
2852 }
2853 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2854 #endif
2855
2856 /**
2857 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2858 * @q : the queue of the device being checked
2859 *
2860 * Description:
2861 * Check if underlying low-level drivers of a device are busy.
2862 * If the drivers want to export their busy state, they must set own
2863 * exporting function using blk_queue_lld_busy() first.
2864 *
2865 * Basically, this function is used only by request stacking drivers
2866 * to stop dispatching requests to underlying devices when underlying
2867 * devices are busy. This behavior helps more I/O merging on the queue
2868 * of the request stacking driver and prevents I/O throughput regression
2869 * on burst I/O load.
2870 *
2871 * Return:
2872 * 0 - Not busy (The request stacking driver should dispatch request)
2873 * 1 - Busy (The request stacking driver should stop dispatching request)
2874 */
2875 int blk_lld_busy(struct request_queue *q)
2876 {
2877 if (q->lld_busy_fn)
2878 return q->lld_busy_fn(q);
2879
2880 return 0;
2881 }
2882 EXPORT_SYMBOL_GPL(blk_lld_busy);
2883
2884 /**
2885 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2886 * @rq: the clone request to be cleaned up
2887 *
2888 * Description:
2889 * Free all bios in @rq for a cloned request.
2890 */
2891 void blk_rq_unprep_clone(struct request *rq)
2892 {
2893 struct bio *bio;
2894
2895 while ((bio = rq->bio) != NULL) {
2896 rq->bio = bio->bi_next;
2897
2898 bio_put(bio);
2899 }
2900 }
2901 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2902
2903 /*
2904 * Copy attributes of the original request to the clone request.
2905 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2906 */
2907 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2908 {
2909 dst->cpu = src->cpu;
2910 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2911 dst->cmd_type = src->cmd_type;
2912 dst->__sector = blk_rq_pos(src);
2913 dst->__data_len = blk_rq_bytes(src);
2914 dst->nr_phys_segments = src->nr_phys_segments;
2915 dst->ioprio = src->ioprio;
2916 dst->extra_len = src->extra_len;
2917 }
2918
2919 /**
2920 * blk_rq_prep_clone - Helper function to setup clone request
2921 * @rq: the request to be setup
2922 * @rq_src: original request to be cloned
2923 * @bs: bio_set that bios for clone are allocated from
2924 * @gfp_mask: memory allocation mask for bio
2925 * @bio_ctr: setup function to be called for each clone bio.
2926 * Returns %0 for success, non %0 for failure.
2927 * @data: private data to be passed to @bio_ctr
2928 *
2929 * Description:
2930 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2931 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2932 * are not copied, and copying such parts is the caller's responsibility.
2933 * Also, pages which the original bios are pointing to are not copied
2934 * and the cloned bios just point same pages.
2935 * So cloned bios must be completed before original bios, which means
2936 * the caller must complete @rq before @rq_src.
2937 */
2938 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2939 struct bio_set *bs, gfp_t gfp_mask,
2940 int (*bio_ctr)(struct bio *, struct bio *, void *),
2941 void *data)
2942 {
2943 struct bio *bio, *bio_src;
2944
2945 if (!bs)
2946 bs = fs_bio_set;
2947
2948 blk_rq_init(NULL, rq);
2949
2950 __rq_for_each_bio(bio_src, rq_src) {
2951 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2952 if (!bio)
2953 goto free_and_out;
2954
2955 if (bio_ctr && bio_ctr(bio, bio_src, data))
2956 goto free_and_out;
2957
2958 if (rq->bio) {
2959 rq->biotail->bi_next = bio;
2960 rq->biotail = bio;
2961 } else
2962 rq->bio = rq->biotail = bio;
2963 }
2964
2965 __blk_rq_prep_clone(rq, rq_src);
2966
2967 return 0;
2968
2969 free_and_out:
2970 if (bio)
2971 bio_put(bio);
2972 blk_rq_unprep_clone(rq);
2973
2974 return -ENOMEM;
2975 }
2976 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2977
2978 int kblockd_schedule_work(struct work_struct *work)
2979 {
2980 return queue_work(kblockd_workqueue, work);
2981 }
2982 EXPORT_SYMBOL(kblockd_schedule_work);
2983
2984 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2985 unsigned long delay)
2986 {
2987 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2988 }
2989 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2990
2991 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2992 unsigned long delay)
2993 {
2994 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2995 }
2996 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2997
2998 /**
2999 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3000 * @plug: The &struct blk_plug that needs to be initialized
3001 *
3002 * Description:
3003 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3004 * pending I/O should the task end up blocking between blk_start_plug() and
3005 * blk_finish_plug(). This is important from a performance perspective, but
3006 * also ensures that we don't deadlock. For instance, if the task is blocking
3007 * for a memory allocation, memory reclaim could end up wanting to free a
3008 * page belonging to that request that is currently residing in our private
3009 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3010 * this kind of deadlock.
3011 */
3012 void blk_start_plug(struct blk_plug *plug)
3013 {
3014 struct task_struct *tsk = current;
3015
3016 INIT_LIST_HEAD(&plug->list);
3017 INIT_LIST_HEAD(&plug->mq_list);
3018 INIT_LIST_HEAD(&plug->cb_list);
3019
3020 /*
3021 * If this is a nested plug, don't actually assign it. It will be
3022 * flushed on its own.
3023 */
3024 if (!tsk->plug) {
3025 /*
3026 * Store ordering should not be needed here, since a potential
3027 * preempt will imply a full memory barrier
3028 */
3029 tsk->plug = plug;
3030 }
3031 }
3032 EXPORT_SYMBOL(blk_start_plug);
3033
3034 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3035 {
3036 struct request *rqa = container_of(a, struct request, queuelist);
3037 struct request *rqb = container_of(b, struct request, queuelist);
3038
3039 return !(rqa->q < rqb->q ||
3040 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3041 }
3042
3043 /*
3044 * If 'from_schedule' is true, then postpone the dispatch of requests
3045 * until a safe kblockd context. We due this to avoid accidental big
3046 * additional stack usage in driver dispatch, in places where the originally
3047 * plugger did not intend it.
3048 */
3049 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3050 bool from_schedule)
3051 __releases(q->queue_lock)
3052 {
3053 trace_block_unplug(q, depth, !from_schedule);
3054
3055 if (from_schedule)
3056 blk_run_queue_async(q);
3057 else
3058 __blk_run_queue(q);
3059 spin_unlock(q->queue_lock);
3060 }
3061
3062 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3063 {
3064 LIST_HEAD(callbacks);
3065
3066 while (!list_empty(&plug->cb_list)) {
3067 list_splice_init(&plug->cb_list, &callbacks);
3068
3069 while (!list_empty(&callbacks)) {
3070 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3071 struct blk_plug_cb,
3072 list);
3073 list_del(&cb->list);
3074 cb->callback(cb, from_schedule);
3075 }
3076 }
3077 }
3078
3079 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3080 int size)
3081 {
3082 struct blk_plug *plug = current->plug;
3083 struct blk_plug_cb *cb;
3084
3085 if (!plug)
3086 return NULL;
3087
3088 list_for_each_entry(cb, &plug->cb_list, list)
3089 if (cb->callback == unplug && cb->data == data)
3090 return cb;
3091
3092 /* Not currently on the callback list */
3093 BUG_ON(size < sizeof(*cb));
3094 cb = kzalloc(size, GFP_ATOMIC);
3095 if (cb) {
3096 cb->data = data;
3097 cb->callback = unplug;
3098 list_add(&cb->list, &plug->cb_list);
3099 }
3100 return cb;
3101 }
3102 EXPORT_SYMBOL(blk_check_plugged);
3103
3104 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3105 {
3106 struct request_queue *q;
3107 unsigned long flags;
3108 struct request *rq;
3109 LIST_HEAD(list);
3110 unsigned int depth;
3111
3112 flush_plug_callbacks(plug, from_schedule);
3113
3114 if (!list_empty(&plug->mq_list))
3115 blk_mq_flush_plug_list(plug, from_schedule);
3116
3117 if (list_empty(&plug->list))
3118 return;
3119
3120 list_splice_init(&plug->list, &list);
3121
3122 list_sort(NULL, &list, plug_rq_cmp);
3123
3124 q = NULL;
3125 depth = 0;
3126
3127 /*
3128 * Save and disable interrupts here, to avoid doing it for every
3129 * queue lock we have to take.
3130 */
3131 local_irq_save(flags);
3132 while (!list_empty(&list)) {
3133 rq = list_entry_rq(list.next);
3134 list_del_init(&rq->queuelist);
3135 BUG_ON(!rq->q);
3136 if (rq->q != q) {
3137 /*
3138 * This drops the queue lock
3139 */
3140 if (q)
3141 queue_unplugged(q, depth, from_schedule);
3142 q = rq->q;
3143 depth = 0;
3144 spin_lock(q->queue_lock);
3145 }
3146
3147 /*
3148 * Short-circuit if @q is dead
3149 */
3150 if (unlikely(blk_queue_dying(q))) {
3151 __blk_end_request_all(rq, -ENODEV);
3152 continue;
3153 }
3154
3155 /*
3156 * rq is already accounted, so use raw insert
3157 */
3158 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3159 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3160 else
3161 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3162
3163 depth++;
3164 }
3165
3166 /*
3167 * This drops the queue lock
3168 */
3169 if (q)
3170 queue_unplugged(q, depth, from_schedule);
3171
3172 local_irq_restore(flags);
3173 }
3174
3175 void blk_finish_plug(struct blk_plug *plug)
3176 {
3177 blk_flush_plug_list(plug, false);
3178
3179 if (plug == current->plug)
3180 current->plug = NULL;
3181 }
3182 EXPORT_SYMBOL(blk_finish_plug);
3183
3184 #ifdef CONFIG_PM
3185 /**
3186 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3187 * @q: the queue of the device
3188 * @dev: the device the queue belongs to
3189 *
3190 * Description:
3191 * Initialize runtime-PM-related fields for @q and start auto suspend for
3192 * @dev. Drivers that want to take advantage of request-based runtime PM
3193 * should call this function after @dev has been initialized, and its
3194 * request queue @q has been allocated, and runtime PM for it can not happen
3195 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3196 * cases, driver should call this function before any I/O has taken place.
3197 *
3198 * This function takes care of setting up using auto suspend for the device,
3199 * the autosuspend delay is set to -1 to make runtime suspend impossible
3200 * until an updated value is either set by user or by driver. Drivers do
3201 * not need to touch other autosuspend settings.
3202 *
3203 * The block layer runtime PM is request based, so only works for drivers
3204 * that use request as their IO unit instead of those directly use bio's.
3205 */
3206 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3207 {
3208 q->dev = dev;
3209 q->rpm_status = RPM_ACTIVE;
3210 pm_runtime_set_autosuspend_delay(q->dev, -1);
3211 pm_runtime_use_autosuspend(q->dev);
3212 }
3213 EXPORT_SYMBOL(blk_pm_runtime_init);
3214
3215 /**
3216 * blk_pre_runtime_suspend - Pre runtime suspend check
3217 * @q: the queue of the device
3218 *
3219 * Description:
3220 * This function will check if runtime suspend is allowed for the device
3221 * by examining if there are any requests pending in the queue. If there
3222 * are requests pending, the device can not be runtime suspended; otherwise,
3223 * the queue's status will be updated to SUSPENDING and the driver can
3224 * proceed to suspend the device.
3225 *
3226 * For the not allowed case, we mark last busy for the device so that
3227 * runtime PM core will try to autosuspend it some time later.
3228 *
3229 * This function should be called near the start of the device's
3230 * runtime_suspend callback.
3231 *
3232 * Return:
3233 * 0 - OK to runtime suspend the device
3234 * -EBUSY - Device should not be runtime suspended
3235 */
3236 int blk_pre_runtime_suspend(struct request_queue *q)
3237 {
3238 int ret = 0;
3239
3240 spin_lock_irq(q->queue_lock);
3241 if (q->nr_pending) {
3242 ret = -EBUSY;
3243 pm_runtime_mark_last_busy(q->dev);
3244 } else {
3245 q->rpm_status = RPM_SUSPENDING;
3246 }
3247 spin_unlock_irq(q->queue_lock);
3248 return ret;
3249 }
3250 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3251
3252 /**
3253 * blk_post_runtime_suspend - Post runtime suspend processing
3254 * @q: the queue of the device
3255 * @err: return value of the device's runtime_suspend function
3256 *
3257 * Description:
3258 * Update the queue's runtime status according to the return value of the
3259 * device's runtime suspend function and mark last busy for the device so
3260 * that PM core will try to auto suspend the device at a later time.
3261 *
3262 * This function should be called near the end of the device's
3263 * runtime_suspend callback.
3264 */
3265 void blk_post_runtime_suspend(struct request_queue *q, int err)
3266 {
3267 spin_lock_irq(q->queue_lock);
3268 if (!err) {
3269 q->rpm_status = RPM_SUSPENDED;
3270 } else {
3271 q->rpm_status = RPM_ACTIVE;
3272 pm_runtime_mark_last_busy(q->dev);
3273 }
3274 spin_unlock_irq(q->queue_lock);
3275 }
3276 EXPORT_SYMBOL(blk_post_runtime_suspend);
3277
3278 /**
3279 * blk_pre_runtime_resume - Pre runtime resume processing
3280 * @q: the queue of the device
3281 *
3282 * Description:
3283 * Update the queue's runtime status to RESUMING in preparation for the
3284 * runtime resume of the device.
3285 *
3286 * This function should be called near the start of the device's
3287 * runtime_resume callback.
3288 */
3289 void blk_pre_runtime_resume(struct request_queue *q)
3290 {
3291 spin_lock_irq(q->queue_lock);
3292 q->rpm_status = RPM_RESUMING;
3293 spin_unlock_irq(q->queue_lock);
3294 }
3295 EXPORT_SYMBOL(blk_pre_runtime_resume);
3296
3297 /**
3298 * blk_post_runtime_resume - Post runtime resume processing
3299 * @q: the queue of the device
3300 * @err: return value of the device's runtime_resume function
3301 *
3302 * Description:
3303 * Update the queue's runtime status according to the return value of the
3304 * device's runtime_resume function. If it is successfully resumed, process
3305 * the requests that are queued into the device's queue when it is resuming
3306 * and then mark last busy and initiate autosuspend for it.
3307 *
3308 * This function should be called near the end of the device's
3309 * runtime_resume callback.
3310 */
3311 void blk_post_runtime_resume(struct request_queue *q, int err)
3312 {
3313 spin_lock_irq(q->queue_lock);
3314 if (!err) {
3315 q->rpm_status = RPM_ACTIVE;
3316 __blk_run_queue(q);
3317 pm_runtime_mark_last_busy(q->dev);
3318 pm_request_autosuspend(q->dev);
3319 } else {
3320 q->rpm_status = RPM_SUSPENDED;
3321 }
3322 spin_unlock_irq(q->queue_lock);
3323 }
3324 EXPORT_SYMBOL(blk_post_runtime_resume);
3325 #endif
3326
3327 int __init blk_dev_init(void)
3328 {
3329 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3330 sizeof(((struct request *)0)->cmd_flags));
3331
3332 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3333 kblockd_workqueue = alloc_workqueue("kblockd",
3334 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3335 if (!kblockd_workqueue)
3336 panic("Failed to create kblockd\n");
3337
3338 request_cachep = kmem_cache_create("blkdev_requests",
3339 sizeof(struct request), 0, SLAB_PANIC, NULL);
3340
3341 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3342 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3343
3344 return 0;
3345 }