]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blkcg: move block/blk-cgroup.h to include/linux/blk-cgroup.h
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error && !(rq->cmd_flags & REQ_CLONE))
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 &&
132 !(rq->cmd_flags & (REQ_FLUSH_SEQ|REQ_CLONE)))
133 bio_endio(bio, error);
134 }
135
136 void blk_dump_rq_flags(struct request *rq, char *msg)
137 {
138 int bit;
139
140 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
141 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
142 (unsigned long long) rq->cmd_flags);
143
144 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
145 (unsigned long long)blk_rq_pos(rq),
146 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
147 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
148 rq->bio, rq->biotail, blk_rq_bytes(rq));
149
150 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
151 printk(KERN_INFO " cdb: ");
152 for (bit = 0; bit < BLK_MAX_CDB; bit++)
153 printk("%02x ", rq->cmd[bit]);
154 printk("\n");
155 }
156 }
157 EXPORT_SYMBOL(blk_dump_rq_flags);
158
159 static void blk_delay_work(struct work_struct *work)
160 {
161 struct request_queue *q;
162
163 q = container_of(work, struct request_queue, delay_work.work);
164 spin_lock_irq(q->queue_lock);
165 __blk_run_queue(q);
166 spin_unlock_irq(q->queue_lock);
167 }
168
169 /**
170 * blk_delay_queue - restart queueing after defined interval
171 * @q: The &struct request_queue in question
172 * @msecs: Delay in msecs
173 *
174 * Description:
175 * Sometimes queueing needs to be postponed for a little while, to allow
176 * resources to come back. This function will make sure that queueing is
177 * restarted around the specified time. Queue lock must be held.
178 */
179 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
180 {
181 if (likely(!blk_queue_dead(q)))
182 queue_delayed_work(kblockd_workqueue, &q->delay_work,
183 msecs_to_jiffies(msecs));
184 }
185 EXPORT_SYMBOL(blk_delay_queue);
186
187 /**
188 * blk_start_queue - restart a previously stopped queue
189 * @q: The &struct request_queue in question
190 *
191 * Description:
192 * blk_start_queue() will clear the stop flag on the queue, and call
193 * the request_fn for the queue if it was in a stopped state when
194 * entered. Also see blk_stop_queue(). Queue lock must be held.
195 **/
196 void blk_start_queue(struct request_queue *q)
197 {
198 WARN_ON(!irqs_disabled());
199
200 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
201 __blk_run_queue(q);
202 }
203 EXPORT_SYMBOL(blk_start_queue);
204
205 /**
206 * blk_stop_queue - stop a queue
207 * @q: The &struct request_queue in question
208 *
209 * Description:
210 * The Linux block layer assumes that a block driver will consume all
211 * entries on the request queue when the request_fn strategy is called.
212 * Often this will not happen, because of hardware limitations (queue
213 * depth settings). If a device driver gets a 'queue full' response,
214 * or if it simply chooses not to queue more I/O at one point, it can
215 * call this function to prevent the request_fn from being called until
216 * the driver has signalled it's ready to go again. This happens by calling
217 * blk_start_queue() to restart queue operations. Queue lock must be held.
218 **/
219 void blk_stop_queue(struct request_queue *q)
220 {
221 cancel_delayed_work(&q->delay_work);
222 queue_flag_set(QUEUE_FLAG_STOPPED, q);
223 }
224 EXPORT_SYMBOL(blk_stop_queue);
225
226 /**
227 * blk_sync_queue - cancel any pending callbacks on a queue
228 * @q: the queue
229 *
230 * Description:
231 * The block layer may perform asynchronous callback activity
232 * on a queue, such as calling the unplug function after a timeout.
233 * A block device may call blk_sync_queue to ensure that any
234 * such activity is cancelled, thus allowing it to release resources
235 * that the callbacks might use. The caller must already have made sure
236 * that its ->make_request_fn will not re-add plugging prior to calling
237 * this function.
238 *
239 * This function does not cancel any asynchronous activity arising
240 * out of elevator or throttling code. That would require elevator_exit()
241 * and blkcg_exit_queue() to be called with queue lock initialized.
242 *
243 */
244 void blk_sync_queue(struct request_queue *q)
245 {
246 del_timer_sync(&q->timeout);
247
248 if (q->mq_ops) {
249 struct blk_mq_hw_ctx *hctx;
250 int i;
251
252 queue_for_each_hw_ctx(q, hctx, i) {
253 cancel_delayed_work_sync(&hctx->run_work);
254 cancel_delayed_work_sync(&hctx->delay_work);
255 }
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261
262 /**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288 }
289 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
290
291 /**
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
298 */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
304 __blk_run_queue_uncond(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307
308 /**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us. The caller must hold the queue lock.
315 */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
319 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
320 }
321 EXPORT_SYMBOL(blk_run_queue_async);
322
323 /**
324 * blk_run_queue - run a single device queue
325 * @q: The queue to run
326 *
327 * Description:
328 * Invoke request handling on this queue, if it has pending work to do.
329 * May be used to restart queueing when a request has completed.
330 */
331 void blk_run_queue(struct request_queue *q)
332 {
333 unsigned long flags;
334
335 spin_lock_irqsave(q->queue_lock, flags);
336 __blk_run_queue(q);
337 spin_unlock_irqrestore(q->queue_lock, flags);
338 }
339 EXPORT_SYMBOL(blk_run_queue);
340
341 void blk_put_queue(struct request_queue *q)
342 {
343 kobject_put(&q->kobj);
344 }
345 EXPORT_SYMBOL(blk_put_queue);
346
347 /**
348 * __blk_drain_queue - drain requests from request_queue
349 * @q: queue to drain
350 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
351 *
352 * Drain requests from @q. If @drain_all is set, all requests are drained.
353 * If not, only ELVPRIV requests are drained. The caller is responsible
354 * for ensuring that no new requests which need to be drained are queued.
355 */
356 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
357 __releases(q->queue_lock)
358 __acquires(q->queue_lock)
359 {
360 int i;
361
362 lockdep_assert_held(q->queue_lock);
363
364 while (true) {
365 bool drain = false;
366
367 /*
368 * The caller might be trying to drain @q before its
369 * elevator is initialized.
370 */
371 if (q->elevator)
372 elv_drain_elevator(q);
373
374 blkcg_drain_queue(q);
375
376 /*
377 * This function might be called on a queue which failed
378 * driver init after queue creation or is not yet fully
379 * active yet. Some drivers (e.g. fd and loop) get unhappy
380 * in such cases. Kick queue iff dispatch queue has
381 * something on it and @q has request_fn set.
382 */
383 if (!list_empty(&q->queue_head) && q->request_fn)
384 __blk_run_queue(q);
385
386 drain |= q->nr_rqs_elvpriv;
387 drain |= q->request_fn_active;
388
389 /*
390 * Unfortunately, requests are queued at and tracked from
391 * multiple places and there's no single counter which can
392 * be drained. Check all the queues and counters.
393 */
394 if (drain_all) {
395 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 if (fq)
401 drain |= !list_empty(&fq->flush_queue[i]);
402 }
403 }
404
405 if (!drain)
406 break;
407
408 spin_unlock_irq(q->queue_lock);
409
410 msleep(10);
411
412 spin_lock_irq(q->queue_lock);
413 }
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
421 struct request_list *rl;
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 spin_lock_irq(q->queue_lock);
442 q->bypass_depth++;
443 queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 spin_unlock_irq(q->queue_lock);
445
446 /*
447 * Queues start drained. Skip actual draining till init is
448 * complete. This avoids lenghty delays during queue init which
449 * can happen many times during boot.
450 */
451 if (blk_queue_init_done(q)) {
452 spin_lock_irq(q->queue_lock);
453 __blk_drain_queue(q, false);
454 spin_unlock_irq(q->queue_lock);
455
456 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 synchronize_rcu();
458 }
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461
462 /**
463 * blk_queue_bypass_end - leave queue bypass mode
464 * @q: queue of interest
465 *
466 * Leave bypass mode and restore the normal queueing behavior.
467 */
468 void blk_queue_bypass_end(struct request_queue *q)
469 {
470 spin_lock_irq(q->queue_lock);
471 if (!--q->bypass_depth)
472 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 WARN_ON_ONCE(q->bypass_depth < 0);
474 spin_unlock_irq(q->queue_lock);
475 }
476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477
478 void blk_set_queue_dying(struct request_queue *q)
479 {
480 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
481
482 if (q->mq_ops)
483 blk_mq_wake_waiters(q);
484 else {
485 struct request_list *rl;
486
487 blk_queue_for_each_rl(rl, q) {
488 if (rl->rq_pool) {
489 wake_up(&rl->wait[BLK_RW_SYNC]);
490 wake_up(&rl->wait[BLK_RW_ASYNC]);
491 }
492 }
493 }
494 }
495 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
496
497 /**
498 * blk_cleanup_queue - shutdown a request queue
499 * @q: request queue to shutdown
500 *
501 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
502 * put it. All future requests will be failed immediately with -ENODEV.
503 */
504 void blk_cleanup_queue(struct request_queue *q)
505 {
506 spinlock_t *lock = q->queue_lock;
507
508 /* mark @q DYING, no new request or merges will be allowed afterwards */
509 mutex_lock(&q->sysfs_lock);
510 blk_set_queue_dying(q);
511 spin_lock_irq(lock);
512
513 /*
514 * A dying queue is permanently in bypass mode till released. Note
515 * that, unlike blk_queue_bypass_start(), we aren't performing
516 * synchronize_rcu() after entering bypass mode to avoid the delay
517 * as some drivers create and destroy a lot of queues while
518 * probing. This is still safe because blk_release_queue() will be
519 * called only after the queue refcnt drops to zero and nothing,
520 * RCU or not, would be traversing the queue by then.
521 */
522 q->bypass_depth++;
523 queue_flag_set(QUEUE_FLAG_BYPASS, q);
524
525 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
526 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
527 queue_flag_set(QUEUE_FLAG_DYING, q);
528 spin_unlock_irq(lock);
529 mutex_unlock(&q->sysfs_lock);
530
531 /*
532 * Drain all requests queued before DYING marking. Set DEAD flag to
533 * prevent that q->request_fn() gets invoked after draining finished.
534 */
535 if (q->mq_ops) {
536 blk_mq_freeze_queue(q);
537 spin_lock_irq(lock);
538 } else {
539 spin_lock_irq(lock);
540 __blk_drain_queue(q, true);
541 }
542 queue_flag_set(QUEUE_FLAG_DEAD, q);
543 spin_unlock_irq(lock);
544
545 /* @q won't process any more request, flush async actions */
546 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
547 blk_sync_queue(q);
548
549 if (q->mq_ops)
550 blk_mq_free_queue(q);
551
552 spin_lock_irq(lock);
553 if (q->queue_lock != &q->__queue_lock)
554 q->queue_lock = &q->__queue_lock;
555 spin_unlock_irq(lock);
556
557 /* @q is and will stay empty, shutdown and put */
558 blk_put_queue(q);
559 }
560 EXPORT_SYMBOL(blk_cleanup_queue);
561
562 /* Allocate memory local to the request queue */
563 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
564 {
565 int nid = (int)(long)data;
566 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
567 }
568
569 static void free_request_struct(void *element, void *unused)
570 {
571 kmem_cache_free(request_cachep, element);
572 }
573
574 int blk_init_rl(struct request_list *rl, struct request_queue *q,
575 gfp_t gfp_mask)
576 {
577 if (unlikely(rl->rq_pool))
578 return 0;
579
580 rl->q = q;
581 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
582 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
583 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
584 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
585
586 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
587 free_request_struct,
588 (void *)(long)q->node, gfp_mask,
589 q->node);
590 if (!rl->rq_pool)
591 return -ENOMEM;
592
593 return 0;
594 }
595
596 void blk_exit_rl(struct request_list *rl)
597 {
598 if (rl->rq_pool)
599 mempool_destroy(rl->rq_pool);
600 }
601
602 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
603 {
604 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
605 }
606 EXPORT_SYMBOL(blk_alloc_queue);
607
608 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
609 {
610 struct request_queue *q;
611 int err;
612
613 q = kmem_cache_alloc_node(blk_requestq_cachep,
614 gfp_mask | __GFP_ZERO, node_id);
615 if (!q)
616 return NULL;
617
618 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
619 if (q->id < 0)
620 goto fail_q;
621
622 q->backing_dev_info.ra_pages =
623 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
624 q->backing_dev_info.state = 0;
625 q->backing_dev_info.capabilities = 0;
626 q->backing_dev_info.name = "block";
627 q->node = node_id;
628
629 err = bdi_init(&q->backing_dev_info);
630 if (err)
631 goto fail_id;
632
633 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
634 laptop_mode_timer_fn, (unsigned long) q);
635 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
636 INIT_LIST_HEAD(&q->queue_head);
637 INIT_LIST_HEAD(&q->timeout_list);
638 INIT_LIST_HEAD(&q->icq_list);
639 #ifdef CONFIG_BLK_CGROUP
640 INIT_LIST_HEAD(&q->blkg_list);
641 #endif
642 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
643
644 kobject_init(&q->kobj, &blk_queue_ktype);
645
646 mutex_init(&q->sysfs_lock);
647 spin_lock_init(&q->__queue_lock);
648
649 /*
650 * By default initialize queue_lock to internal lock and driver can
651 * override it later if need be.
652 */
653 q->queue_lock = &q->__queue_lock;
654
655 /*
656 * A queue starts its life with bypass turned on to avoid
657 * unnecessary bypass on/off overhead and nasty surprises during
658 * init. The initial bypass will be finished when the queue is
659 * registered by blk_register_queue().
660 */
661 q->bypass_depth = 1;
662 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
663
664 init_waitqueue_head(&q->mq_freeze_wq);
665
666 if (blkcg_init_queue(q))
667 goto fail_bdi;
668
669 return q;
670
671 fail_bdi:
672 bdi_destroy(&q->backing_dev_info);
673 fail_id:
674 ida_simple_remove(&blk_queue_ida, q->id);
675 fail_q:
676 kmem_cache_free(blk_requestq_cachep, q);
677 return NULL;
678 }
679 EXPORT_SYMBOL(blk_alloc_queue_node);
680
681 /**
682 * blk_init_queue - prepare a request queue for use with a block device
683 * @rfn: The function to be called to process requests that have been
684 * placed on the queue.
685 * @lock: Request queue spin lock
686 *
687 * Description:
688 * If a block device wishes to use the standard request handling procedures,
689 * which sorts requests and coalesces adjacent requests, then it must
690 * call blk_init_queue(). The function @rfn will be called when there
691 * are requests on the queue that need to be processed. If the device
692 * supports plugging, then @rfn may not be called immediately when requests
693 * are available on the queue, but may be called at some time later instead.
694 * Plugged queues are generally unplugged when a buffer belonging to one
695 * of the requests on the queue is needed, or due to memory pressure.
696 *
697 * @rfn is not required, or even expected, to remove all requests off the
698 * queue, but only as many as it can handle at a time. If it does leave
699 * requests on the queue, it is responsible for arranging that the requests
700 * get dealt with eventually.
701 *
702 * The queue spin lock must be held while manipulating the requests on the
703 * request queue; this lock will be taken also from interrupt context, so irq
704 * disabling is needed for it.
705 *
706 * Function returns a pointer to the initialized request queue, or %NULL if
707 * it didn't succeed.
708 *
709 * Note:
710 * blk_init_queue() must be paired with a blk_cleanup_queue() call
711 * when the block device is deactivated (such as at module unload).
712 **/
713
714 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
715 {
716 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
717 }
718 EXPORT_SYMBOL(blk_init_queue);
719
720 struct request_queue *
721 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
722 {
723 struct request_queue *uninit_q, *q;
724
725 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
726 if (!uninit_q)
727 return NULL;
728
729 q = blk_init_allocated_queue(uninit_q, rfn, lock);
730 if (!q)
731 blk_cleanup_queue(uninit_q);
732
733 return q;
734 }
735 EXPORT_SYMBOL(blk_init_queue_node);
736
737 struct request_queue *
738 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
739 spinlock_t *lock)
740 {
741 if (!q)
742 return NULL;
743
744 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
745 if (!q->fq)
746 return NULL;
747
748 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
749 goto fail;
750
751 q->request_fn = rfn;
752 q->prep_rq_fn = NULL;
753 q->unprep_rq_fn = NULL;
754 q->queue_flags |= QUEUE_FLAG_DEFAULT;
755
756 /* Override internal queue lock with supplied lock pointer */
757 if (lock)
758 q->queue_lock = lock;
759
760 /*
761 * This also sets hw/phys segments, boundary and size
762 */
763 blk_queue_make_request(q, blk_queue_bio);
764
765 q->sg_reserved_size = INT_MAX;
766
767 /* Protect q->elevator from elevator_change */
768 mutex_lock(&q->sysfs_lock);
769
770 /* init elevator */
771 if (elevator_init(q, NULL)) {
772 mutex_unlock(&q->sysfs_lock);
773 goto fail;
774 }
775
776 mutex_unlock(&q->sysfs_lock);
777
778 return q;
779
780 fail:
781 blk_free_flush_queue(q->fq);
782 return NULL;
783 }
784 EXPORT_SYMBOL(blk_init_allocated_queue);
785
786 bool blk_get_queue(struct request_queue *q)
787 {
788 if (likely(!blk_queue_dying(q))) {
789 __blk_get_queue(q);
790 return true;
791 }
792
793 return false;
794 }
795 EXPORT_SYMBOL(blk_get_queue);
796
797 static inline void blk_free_request(struct request_list *rl, struct request *rq)
798 {
799 if (rq->cmd_flags & REQ_ELVPRIV) {
800 elv_put_request(rl->q, rq);
801 if (rq->elv.icq)
802 put_io_context(rq->elv.icq->ioc);
803 }
804
805 mempool_free(rq, rl->rq_pool);
806 }
807
808 /*
809 * ioc_batching returns true if the ioc is a valid batching request and
810 * should be given priority access to a request.
811 */
812 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
813 {
814 if (!ioc)
815 return 0;
816
817 /*
818 * Make sure the process is able to allocate at least 1 request
819 * even if the batch times out, otherwise we could theoretically
820 * lose wakeups.
821 */
822 return ioc->nr_batch_requests == q->nr_batching ||
823 (ioc->nr_batch_requests > 0
824 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
825 }
826
827 /*
828 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
829 * will cause the process to be a "batcher" on all queues in the system. This
830 * is the behaviour we want though - once it gets a wakeup it should be given
831 * a nice run.
832 */
833 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
834 {
835 if (!ioc || ioc_batching(q, ioc))
836 return;
837
838 ioc->nr_batch_requests = q->nr_batching;
839 ioc->last_waited = jiffies;
840 }
841
842 static void __freed_request(struct request_list *rl, int sync)
843 {
844 struct request_queue *q = rl->q;
845
846 /*
847 * bdi isn't aware of blkcg yet. As all async IOs end up root
848 * blkcg anyway, just use root blkcg state.
849 */
850 if (rl == &q->root_rl &&
851 rl->count[sync] < queue_congestion_off_threshold(q))
852 blk_clear_queue_congested(q, sync);
853
854 if (rl->count[sync] + 1 <= q->nr_requests) {
855 if (waitqueue_active(&rl->wait[sync]))
856 wake_up(&rl->wait[sync]);
857
858 blk_clear_rl_full(rl, sync);
859 }
860 }
861
862 /*
863 * A request has just been released. Account for it, update the full and
864 * congestion status, wake up any waiters. Called under q->queue_lock.
865 */
866 static void freed_request(struct request_list *rl, unsigned int flags)
867 {
868 struct request_queue *q = rl->q;
869 int sync = rw_is_sync(flags);
870
871 q->nr_rqs[sync]--;
872 rl->count[sync]--;
873 if (flags & REQ_ELVPRIV)
874 q->nr_rqs_elvpriv--;
875
876 __freed_request(rl, sync);
877
878 if (unlikely(rl->starved[sync ^ 1]))
879 __freed_request(rl, sync ^ 1);
880 }
881
882 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
883 {
884 struct request_list *rl;
885
886 spin_lock_irq(q->queue_lock);
887 q->nr_requests = nr;
888 blk_queue_congestion_threshold(q);
889
890 /* congestion isn't cgroup aware and follows root blkcg for now */
891 rl = &q->root_rl;
892
893 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
894 blk_set_queue_congested(q, BLK_RW_SYNC);
895 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
896 blk_clear_queue_congested(q, BLK_RW_SYNC);
897
898 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
899 blk_set_queue_congested(q, BLK_RW_ASYNC);
900 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
901 blk_clear_queue_congested(q, BLK_RW_ASYNC);
902
903 blk_queue_for_each_rl(rl, q) {
904 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
905 blk_set_rl_full(rl, BLK_RW_SYNC);
906 } else {
907 blk_clear_rl_full(rl, BLK_RW_SYNC);
908 wake_up(&rl->wait[BLK_RW_SYNC]);
909 }
910
911 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
912 blk_set_rl_full(rl, BLK_RW_ASYNC);
913 } else {
914 blk_clear_rl_full(rl, BLK_RW_ASYNC);
915 wake_up(&rl->wait[BLK_RW_ASYNC]);
916 }
917 }
918
919 spin_unlock_irq(q->queue_lock);
920 return 0;
921 }
922
923 /*
924 * Determine if elevator data should be initialized when allocating the
925 * request associated with @bio.
926 */
927 static bool blk_rq_should_init_elevator(struct bio *bio)
928 {
929 if (!bio)
930 return true;
931
932 /*
933 * Flush requests do not use the elevator so skip initialization.
934 * This allows a request to share the flush and elevator data.
935 */
936 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
937 return false;
938
939 return true;
940 }
941
942 /**
943 * rq_ioc - determine io_context for request allocation
944 * @bio: request being allocated is for this bio (can be %NULL)
945 *
946 * Determine io_context to use for request allocation for @bio. May return
947 * %NULL if %current->io_context doesn't exist.
948 */
949 static struct io_context *rq_ioc(struct bio *bio)
950 {
951 #ifdef CONFIG_BLK_CGROUP
952 if (bio && bio->bi_ioc)
953 return bio->bi_ioc;
954 #endif
955 return current->io_context;
956 }
957
958 /**
959 * __get_request - get a free request
960 * @rl: request list to allocate from
961 * @rw_flags: RW and SYNC flags
962 * @bio: bio to allocate request for (can be %NULL)
963 * @gfp_mask: allocation mask
964 *
965 * Get a free request from @q. This function may fail under memory
966 * pressure or if @q is dead.
967 *
968 * Must be called with @q->queue_lock held and,
969 * Returns ERR_PTR on failure, with @q->queue_lock held.
970 * Returns request pointer on success, with @q->queue_lock *not held*.
971 */
972 static struct request *__get_request(struct request_list *rl, int rw_flags,
973 struct bio *bio, gfp_t gfp_mask)
974 {
975 struct request_queue *q = rl->q;
976 struct request *rq;
977 struct elevator_type *et = q->elevator->type;
978 struct io_context *ioc = rq_ioc(bio);
979 struct io_cq *icq = NULL;
980 const bool is_sync = rw_is_sync(rw_flags) != 0;
981 int may_queue;
982
983 if (unlikely(blk_queue_dying(q)))
984 return ERR_PTR(-ENODEV);
985
986 may_queue = elv_may_queue(q, rw_flags);
987 if (may_queue == ELV_MQUEUE_NO)
988 goto rq_starved;
989
990 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
991 if (rl->count[is_sync]+1 >= q->nr_requests) {
992 /*
993 * The queue will fill after this allocation, so set
994 * it as full, and mark this process as "batching".
995 * This process will be allowed to complete a batch of
996 * requests, others will be blocked.
997 */
998 if (!blk_rl_full(rl, is_sync)) {
999 ioc_set_batching(q, ioc);
1000 blk_set_rl_full(rl, is_sync);
1001 } else {
1002 if (may_queue != ELV_MQUEUE_MUST
1003 && !ioc_batching(q, ioc)) {
1004 /*
1005 * The queue is full and the allocating
1006 * process is not a "batcher", and not
1007 * exempted by the IO scheduler
1008 */
1009 return ERR_PTR(-ENOMEM);
1010 }
1011 }
1012 }
1013 /*
1014 * bdi isn't aware of blkcg yet. As all async IOs end up
1015 * root blkcg anyway, just use root blkcg state.
1016 */
1017 if (rl == &q->root_rl)
1018 blk_set_queue_congested(q, is_sync);
1019 }
1020
1021 /*
1022 * Only allow batching queuers to allocate up to 50% over the defined
1023 * limit of requests, otherwise we could have thousands of requests
1024 * allocated with any setting of ->nr_requests
1025 */
1026 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1027 return ERR_PTR(-ENOMEM);
1028
1029 q->nr_rqs[is_sync]++;
1030 rl->count[is_sync]++;
1031 rl->starved[is_sync] = 0;
1032
1033 /*
1034 * Decide whether the new request will be managed by elevator. If
1035 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1036 * prevent the current elevator from being destroyed until the new
1037 * request is freed. This guarantees icq's won't be destroyed and
1038 * makes creating new ones safe.
1039 *
1040 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1041 * it will be created after releasing queue_lock.
1042 */
1043 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1044 rw_flags |= REQ_ELVPRIV;
1045 q->nr_rqs_elvpriv++;
1046 if (et->icq_cache && ioc)
1047 icq = ioc_lookup_icq(ioc, q);
1048 }
1049
1050 if (blk_queue_io_stat(q))
1051 rw_flags |= REQ_IO_STAT;
1052 spin_unlock_irq(q->queue_lock);
1053
1054 /* allocate and init request */
1055 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1056 if (!rq)
1057 goto fail_alloc;
1058
1059 blk_rq_init(q, rq);
1060 blk_rq_set_rl(rq, rl);
1061 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1062
1063 /* init elvpriv */
1064 if (rw_flags & REQ_ELVPRIV) {
1065 if (unlikely(et->icq_cache && !icq)) {
1066 if (ioc)
1067 icq = ioc_create_icq(ioc, q, gfp_mask);
1068 if (!icq)
1069 goto fail_elvpriv;
1070 }
1071
1072 rq->elv.icq = icq;
1073 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1074 goto fail_elvpriv;
1075
1076 /* @rq->elv.icq holds io_context until @rq is freed */
1077 if (icq)
1078 get_io_context(icq->ioc);
1079 }
1080 out:
1081 /*
1082 * ioc may be NULL here, and ioc_batching will be false. That's
1083 * OK, if the queue is under the request limit then requests need
1084 * not count toward the nr_batch_requests limit. There will always
1085 * be some limit enforced by BLK_BATCH_TIME.
1086 */
1087 if (ioc_batching(q, ioc))
1088 ioc->nr_batch_requests--;
1089
1090 trace_block_getrq(q, bio, rw_flags & 1);
1091 return rq;
1092
1093 fail_elvpriv:
1094 /*
1095 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1096 * and may fail indefinitely under memory pressure and thus
1097 * shouldn't stall IO. Treat this request as !elvpriv. This will
1098 * disturb iosched and blkcg but weird is bettern than dead.
1099 */
1100 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1101 __func__, dev_name(q->backing_dev_info.dev));
1102
1103 rq->cmd_flags &= ~REQ_ELVPRIV;
1104 rq->elv.icq = NULL;
1105
1106 spin_lock_irq(q->queue_lock);
1107 q->nr_rqs_elvpriv--;
1108 spin_unlock_irq(q->queue_lock);
1109 goto out;
1110
1111 fail_alloc:
1112 /*
1113 * Allocation failed presumably due to memory. Undo anything we
1114 * might have messed up.
1115 *
1116 * Allocating task should really be put onto the front of the wait
1117 * queue, but this is pretty rare.
1118 */
1119 spin_lock_irq(q->queue_lock);
1120 freed_request(rl, rw_flags);
1121
1122 /*
1123 * in the very unlikely event that allocation failed and no
1124 * requests for this direction was pending, mark us starved so that
1125 * freeing of a request in the other direction will notice
1126 * us. another possible fix would be to split the rq mempool into
1127 * READ and WRITE
1128 */
1129 rq_starved:
1130 if (unlikely(rl->count[is_sync] == 0))
1131 rl->starved[is_sync] = 1;
1132 return ERR_PTR(-ENOMEM);
1133 }
1134
1135 /**
1136 * get_request - get a free request
1137 * @q: request_queue to allocate request from
1138 * @rw_flags: RW and SYNC flags
1139 * @bio: bio to allocate request for (can be %NULL)
1140 * @gfp_mask: allocation mask
1141 *
1142 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1143 * function keeps retrying under memory pressure and fails iff @q is dead.
1144 *
1145 * Must be called with @q->queue_lock held and,
1146 * Returns ERR_PTR on failure, with @q->queue_lock held.
1147 * Returns request pointer on success, with @q->queue_lock *not held*.
1148 */
1149 static struct request *get_request(struct request_queue *q, int rw_flags,
1150 struct bio *bio, gfp_t gfp_mask)
1151 {
1152 const bool is_sync = rw_is_sync(rw_flags) != 0;
1153 DEFINE_WAIT(wait);
1154 struct request_list *rl;
1155 struct request *rq;
1156
1157 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1158 retry:
1159 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1160 if (!IS_ERR(rq))
1161 return rq;
1162
1163 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1164 blk_put_rl(rl);
1165 return rq;
1166 }
1167
1168 /* wait on @rl and retry */
1169 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1170 TASK_UNINTERRUPTIBLE);
1171
1172 trace_block_sleeprq(q, bio, rw_flags & 1);
1173
1174 spin_unlock_irq(q->queue_lock);
1175 io_schedule();
1176
1177 /*
1178 * After sleeping, we become a "batching" process and will be able
1179 * to allocate at least one request, and up to a big batch of them
1180 * for a small period time. See ioc_batching, ioc_set_batching
1181 */
1182 ioc_set_batching(q, current->io_context);
1183
1184 spin_lock_irq(q->queue_lock);
1185 finish_wait(&rl->wait[is_sync], &wait);
1186
1187 goto retry;
1188 }
1189
1190 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1191 gfp_t gfp_mask)
1192 {
1193 struct request *rq;
1194
1195 BUG_ON(rw != READ && rw != WRITE);
1196
1197 /* create ioc upfront */
1198 create_io_context(gfp_mask, q->node);
1199
1200 spin_lock_irq(q->queue_lock);
1201 rq = get_request(q, rw, NULL, gfp_mask);
1202 if (IS_ERR(rq))
1203 spin_unlock_irq(q->queue_lock);
1204 /* q->queue_lock is unlocked at this point */
1205
1206 return rq;
1207 }
1208
1209 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1210 {
1211 if (q->mq_ops)
1212 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1213 else
1214 return blk_old_get_request(q, rw, gfp_mask);
1215 }
1216 EXPORT_SYMBOL(blk_get_request);
1217
1218 /**
1219 * blk_make_request - given a bio, allocate a corresponding struct request.
1220 * @q: target request queue
1221 * @bio: The bio describing the memory mappings that will be submitted for IO.
1222 * It may be a chained-bio properly constructed by block/bio layer.
1223 * @gfp_mask: gfp flags to be used for memory allocation
1224 *
1225 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1226 * type commands. Where the struct request needs to be farther initialized by
1227 * the caller. It is passed a &struct bio, which describes the memory info of
1228 * the I/O transfer.
1229 *
1230 * The caller of blk_make_request must make sure that bi_io_vec
1231 * are set to describe the memory buffers. That bio_data_dir() will return
1232 * the needed direction of the request. (And all bio's in the passed bio-chain
1233 * are properly set accordingly)
1234 *
1235 * If called under none-sleepable conditions, mapped bio buffers must not
1236 * need bouncing, by calling the appropriate masked or flagged allocator,
1237 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1238 * BUG.
1239 *
1240 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1241 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1242 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1243 * completion of a bio that hasn't been submitted yet, thus resulting in a
1244 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1245 * of bio_alloc(), as that avoids the mempool deadlock.
1246 * If possible a big IO should be split into smaller parts when allocation
1247 * fails. Partial allocation should not be an error, or you risk a live-lock.
1248 */
1249 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1250 gfp_t gfp_mask)
1251 {
1252 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1253
1254 if (IS_ERR(rq))
1255 return rq;
1256
1257 blk_rq_set_block_pc(rq);
1258
1259 for_each_bio(bio) {
1260 struct bio *bounce_bio = bio;
1261 int ret;
1262
1263 blk_queue_bounce(q, &bounce_bio);
1264 ret = blk_rq_append_bio(q, rq, bounce_bio);
1265 if (unlikely(ret)) {
1266 blk_put_request(rq);
1267 return ERR_PTR(ret);
1268 }
1269 }
1270
1271 return rq;
1272 }
1273 EXPORT_SYMBOL(blk_make_request);
1274
1275 /**
1276 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1277 * @rq: request to be initialized
1278 *
1279 */
1280 void blk_rq_set_block_pc(struct request *rq)
1281 {
1282 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1283 rq->__data_len = 0;
1284 rq->__sector = (sector_t) -1;
1285 rq->bio = rq->biotail = NULL;
1286 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1287 }
1288 EXPORT_SYMBOL(blk_rq_set_block_pc);
1289
1290 /**
1291 * blk_requeue_request - put a request back on queue
1292 * @q: request queue where request should be inserted
1293 * @rq: request to be inserted
1294 *
1295 * Description:
1296 * Drivers often keep queueing requests until the hardware cannot accept
1297 * more, when that condition happens we need to put the request back
1298 * on the queue. Must be called with queue lock held.
1299 */
1300 void blk_requeue_request(struct request_queue *q, struct request *rq)
1301 {
1302 blk_delete_timer(rq);
1303 blk_clear_rq_complete(rq);
1304 trace_block_rq_requeue(q, rq);
1305
1306 if (rq->cmd_flags & REQ_QUEUED)
1307 blk_queue_end_tag(q, rq);
1308
1309 BUG_ON(blk_queued_rq(rq));
1310
1311 elv_requeue_request(q, rq);
1312 }
1313 EXPORT_SYMBOL(blk_requeue_request);
1314
1315 static void add_acct_request(struct request_queue *q, struct request *rq,
1316 int where)
1317 {
1318 blk_account_io_start(rq, true);
1319 __elv_add_request(q, rq, where);
1320 }
1321
1322 static void part_round_stats_single(int cpu, struct hd_struct *part,
1323 unsigned long now)
1324 {
1325 int inflight;
1326
1327 if (now == part->stamp)
1328 return;
1329
1330 inflight = part_in_flight(part);
1331 if (inflight) {
1332 __part_stat_add(cpu, part, time_in_queue,
1333 inflight * (now - part->stamp));
1334 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1335 }
1336 part->stamp = now;
1337 }
1338
1339 /**
1340 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1341 * @cpu: cpu number for stats access
1342 * @part: target partition
1343 *
1344 * The average IO queue length and utilisation statistics are maintained
1345 * by observing the current state of the queue length and the amount of
1346 * time it has been in this state for.
1347 *
1348 * Normally, that accounting is done on IO completion, but that can result
1349 * in more than a second's worth of IO being accounted for within any one
1350 * second, leading to >100% utilisation. To deal with that, we call this
1351 * function to do a round-off before returning the results when reading
1352 * /proc/diskstats. This accounts immediately for all queue usage up to
1353 * the current jiffies and restarts the counters again.
1354 */
1355 void part_round_stats(int cpu, struct hd_struct *part)
1356 {
1357 unsigned long now = jiffies;
1358
1359 if (part->partno)
1360 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1361 part_round_stats_single(cpu, part, now);
1362 }
1363 EXPORT_SYMBOL_GPL(part_round_stats);
1364
1365 #ifdef CONFIG_PM
1366 static void blk_pm_put_request(struct request *rq)
1367 {
1368 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1369 pm_runtime_mark_last_busy(rq->q->dev);
1370 }
1371 #else
1372 static inline void blk_pm_put_request(struct request *rq) {}
1373 #endif
1374
1375 /*
1376 * queue lock must be held
1377 */
1378 void __blk_put_request(struct request_queue *q, struct request *req)
1379 {
1380 if (unlikely(!q))
1381 return;
1382
1383 if (q->mq_ops) {
1384 blk_mq_free_request(req);
1385 return;
1386 }
1387
1388 blk_pm_put_request(req);
1389
1390 elv_completed_request(q, req);
1391
1392 /* this is a bio leak */
1393 WARN_ON(req->bio != NULL);
1394
1395 /*
1396 * Request may not have originated from ll_rw_blk. if not,
1397 * it didn't come out of our reserved rq pools
1398 */
1399 if (req->cmd_flags & REQ_ALLOCED) {
1400 unsigned int flags = req->cmd_flags;
1401 struct request_list *rl = blk_rq_rl(req);
1402
1403 BUG_ON(!list_empty(&req->queuelist));
1404 BUG_ON(ELV_ON_HASH(req));
1405
1406 blk_free_request(rl, req);
1407 freed_request(rl, flags);
1408 blk_put_rl(rl);
1409 }
1410 }
1411 EXPORT_SYMBOL_GPL(__blk_put_request);
1412
1413 void blk_put_request(struct request *req)
1414 {
1415 struct request_queue *q = req->q;
1416
1417 if (q->mq_ops)
1418 blk_mq_free_request(req);
1419 else {
1420 unsigned long flags;
1421
1422 spin_lock_irqsave(q->queue_lock, flags);
1423 __blk_put_request(q, req);
1424 spin_unlock_irqrestore(q->queue_lock, flags);
1425 }
1426 }
1427 EXPORT_SYMBOL(blk_put_request);
1428
1429 /**
1430 * blk_add_request_payload - add a payload to a request
1431 * @rq: request to update
1432 * @page: page backing the payload
1433 * @len: length of the payload.
1434 *
1435 * This allows to later add a payload to an already submitted request by
1436 * a block driver. The driver needs to take care of freeing the payload
1437 * itself.
1438 *
1439 * Note that this is a quite horrible hack and nothing but handling of
1440 * discard requests should ever use it.
1441 */
1442 void blk_add_request_payload(struct request *rq, struct page *page,
1443 unsigned int len)
1444 {
1445 struct bio *bio = rq->bio;
1446
1447 bio->bi_io_vec->bv_page = page;
1448 bio->bi_io_vec->bv_offset = 0;
1449 bio->bi_io_vec->bv_len = len;
1450
1451 bio->bi_iter.bi_size = len;
1452 bio->bi_vcnt = 1;
1453 bio->bi_phys_segments = 1;
1454
1455 rq->__data_len = rq->resid_len = len;
1456 rq->nr_phys_segments = 1;
1457 }
1458 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1459
1460 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1461 struct bio *bio)
1462 {
1463 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1464
1465 if (!ll_back_merge_fn(q, req, bio))
1466 return false;
1467
1468 trace_block_bio_backmerge(q, req, bio);
1469
1470 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1471 blk_rq_set_mixed_merge(req);
1472
1473 req->biotail->bi_next = bio;
1474 req->biotail = bio;
1475 req->__data_len += bio->bi_iter.bi_size;
1476 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1477
1478 blk_account_io_start(req, false);
1479 return true;
1480 }
1481
1482 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1483 struct bio *bio)
1484 {
1485 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1486
1487 if (!ll_front_merge_fn(q, req, bio))
1488 return false;
1489
1490 trace_block_bio_frontmerge(q, req, bio);
1491
1492 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1493 blk_rq_set_mixed_merge(req);
1494
1495 bio->bi_next = req->bio;
1496 req->bio = bio;
1497
1498 req->__sector = bio->bi_iter.bi_sector;
1499 req->__data_len += bio->bi_iter.bi_size;
1500 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1501
1502 blk_account_io_start(req, false);
1503 return true;
1504 }
1505
1506 /**
1507 * blk_attempt_plug_merge - try to merge with %current's plugged list
1508 * @q: request_queue new bio is being queued at
1509 * @bio: new bio being queued
1510 * @request_count: out parameter for number of traversed plugged requests
1511 *
1512 * Determine whether @bio being queued on @q can be merged with a request
1513 * on %current's plugged list. Returns %true if merge was successful,
1514 * otherwise %false.
1515 *
1516 * Plugging coalesces IOs from the same issuer for the same purpose without
1517 * going through @q->queue_lock. As such it's more of an issuing mechanism
1518 * than scheduling, and the request, while may have elvpriv data, is not
1519 * added on the elevator at this point. In addition, we don't have
1520 * reliable access to the elevator outside queue lock. Only check basic
1521 * merging parameters without querying the elevator.
1522 *
1523 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1524 */
1525 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1526 unsigned int *request_count,
1527 struct request **same_queue_rq)
1528 {
1529 struct blk_plug *plug;
1530 struct request *rq;
1531 bool ret = false;
1532 struct list_head *plug_list;
1533
1534 plug = current->plug;
1535 if (!plug)
1536 goto out;
1537 *request_count = 0;
1538
1539 if (q->mq_ops)
1540 plug_list = &plug->mq_list;
1541 else
1542 plug_list = &plug->list;
1543
1544 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1545 int el_ret;
1546
1547 if (rq->q == q) {
1548 (*request_count)++;
1549 /*
1550 * Only blk-mq multiple hardware queues case checks the
1551 * rq in the same queue, there should be only one such
1552 * rq in a queue
1553 **/
1554 if (same_queue_rq)
1555 *same_queue_rq = rq;
1556 }
1557
1558 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1559 continue;
1560
1561 el_ret = blk_try_merge(rq, bio);
1562 if (el_ret == ELEVATOR_BACK_MERGE) {
1563 ret = bio_attempt_back_merge(q, rq, bio);
1564 if (ret)
1565 break;
1566 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1567 ret = bio_attempt_front_merge(q, rq, bio);
1568 if (ret)
1569 break;
1570 }
1571 }
1572 out:
1573 return ret;
1574 }
1575
1576 void init_request_from_bio(struct request *req, struct bio *bio)
1577 {
1578 req->cmd_type = REQ_TYPE_FS;
1579
1580 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1581 if (bio->bi_rw & REQ_RAHEAD)
1582 req->cmd_flags |= REQ_FAILFAST_MASK;
1583
1584 req->errors = 0;
1585 req->__sector = bio->bi_iter.bi_sector;
1586 req->ioprio = bio_prio(bio);
1587 blk_rq_bio_prep(req->q, req, bio);
1588 }
1589
1590 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1591 {
1592 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1593 struct blk_plug *plug;
1594 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1595 struct request *req;
1596 unsigned int request_count = 0;
1597
1598 /*
1599 * low level driver can indicate that it wants pages above a
1600 * certain limit bounced to low memory (ie for highmem, or even
1601 * ISA dma in theory)
1602 */
1603 blk_queue_bounce(q, &bio);
1604
1605 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1606 bio_endio(bio, -EIO);
1607 return;
1608 }
1609
1610 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1611 spin_lock_irq(q->queue_lock);
1612 where = ELEVATOR_INSERT_FLUSH;
1613 goto get_rq;
1614 }
1615
1616 /*
1617 * Check if we can merge with the plugged list before grabbing
1618 * any locks.
1619 */
1620 if (!blk_queue_nomerges(q) &&
1621 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1622 return;
1623
1624 spin_lock_irq(q->queue_lock);
1625
1626 el_ret = elv_merge(q, &req, bio);
1627 if (el_ret == ELEVATOR_BACK_MERGE) {
1628 if (bio_attempt_back_merge(q, req, bio)) {
1629 elv_bio_merged(q, req, bio);
1630 if (!attempt_back_merge(q, req))
1631 elv_merged_request(q, req, el_ret);
1632 goto out_unlock;
1633 }
1634 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1635 if (bio_attempt_front_merge(q, req, bio)) {
1636 elv_bio_merged(q, req, bio);
1637 if (!attempt_front_merge(q, req))
1638 elv_merged_request(q, req, el_ret);
1639 goto out_unlock;
1640 }
1641 }
1642
1643 get_rq:
1644 /*
1645 * This sync check and mask will be re-done in init_request_from_bio(),
1646 * but we need to set it earlier to expose the sync flag to the
1647 * rq allocator and io schedulers.
1648 */
1649 rw_flags = bio_data_dir(bio);
1650 if (sync)
1651 rw_flags |= REQ_SYNC;
1652
1653 /*
1654 * Grab a free request. This is might sleep but can not fail.
1655 * Returns with the queue unlocked.
1656 */
1657 req = get_request(q, rw_flags, bio, GFP_NOIO);
1658 if (IS_ERR(req)) {
1659 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1660 goto out_unlock;
1661 }
1662
1663 /*
1664 * After dropping the lock and possibly sleeping here, our request
1665 * may now be mergeable after it had proven unmergeable (above).
1666 * We don't worry about that case for efficiency. It won't happen
1667 * often, and the elevators are able to handle it.
1668 */
1669 init_request_from_bio(req, bio);
1670
1671 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1672 req->cpu = raw_smp_processor_id();
1673
1674 plug = current->plug;
1675 if (plug) {
1676 /*
1677 * If this is the first request added after a plug, fire
1678 * of a plug trace.
1679 */
1680 if (!request_count)
1681 trace_block_plug(q);
1682 else {
1683 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1684 blk_flush_plug_list(plug, false);
1685 trace_block_plug(q);
1686 }
1687 }
1688 list_add_tail(&req->queuelist, &plug->list);
1689 blk_account_io_start(req, true);
1690 } else {
1691 spin_lock_irq(q->queue_lock);
1692 add_acct_request(q, req, where);
1693 __blk_run_queue(q);
1694 out_unlock:
1695 spin_unlock_irq(q->queue_lock);
1696 }
1697 }
1698 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1699
1700 /*
1701 * If bio->bi_dev is a partition, remap the location
1702 */
1703 static inline void blk_partition_remap(struct bio *bio)
1704 {
1705 struct block_device *bdev = bio->bi_bdev;
1706
1707 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1708 struct hd_struct *p = bdev->bd_part;
1709
1710 bio->bi_iter.bi_sector += p->start_sect;
1711 bio->bi_bdev = bdev->bd_contains;
1712
1713 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1714 bdev->bd_dev,
1715 bio->bi_iter.bi_sector - p->start_sect);
1716 }
1717 }
1718
1719 static void handle_bad_sector(struct bio *bio)
1720 {
1721 char b[BDEVNAME_SIZE];
1722
1723 printk(KERN_INFO "attempt to access beyond end of device\n");
1724 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1725 bdevname(bio->bi_bdev, b),
1726 bio->bi_rw,
1727 (unsigned long long)bio_end_sector(bio),
1728 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1729 }
1730
1731 #ifdef CONFIG_FAIL_MAKE_REQUEST
1732
1733 static DECLARE_FAULT_ATTR(fail_make_request);
1734
1735 static int __init setup_fail_make_request(char *str)
1736 {
1737 return setup_fault_attr(&fail_make_request, str);
1738 }
1739 __setup("fail_make_request=", setup_fail_make_request);
1740
1741 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1742 {
1743 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1744 }
1745
1746 static int __init fail_make_request_debugfs(void)
1747 {
1748 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1749 NULL, &fail_make_request);
1750
1751 return PTR_ERR_OR_ZERO(dir);
1752 }
1753
1754 late_initcall(fail_make_request_debugfs);
1755
1756 #else /* CONFIG_FAIL_MAKE_REQUEST */
1757
1758 static inline bool should_fail_request(struct hd_struct *part,
1759 unsigned int bytes)
1760 {
1761 return false;
1762 }
1763
1764 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1765
1766 /*
1767 * Check whether this bio extends beyond the end of the device.
1768 */
1769 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1770 {
1771 sector_t maxsector;
1772
1773 if (!nr_sectors)
1774 return 0;
1775
1776 /* Test device or partition size, when known. */
1777 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1778 if (maxsector) {
1779 sector_t sector = bio->bi_iter.bi_sector;
1780
1781 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1782 /*
1783 * This may well happen - the kernel calls bread()
1784 * without checking the size of the device, e.g., when
1785 * mounting a device.
1786 */
1787 handle_bad_sector(bio);
1788 return 1;
1789 }
1790 }
1791
1792 return 0;
1793 }
1794
1795 static noinline_for_stack bool
1796 generic_make_request_checks(struct bio *bio)
1797 {
1798 struct request_queue *q;
1799 int nr_sectors = bio_sectors(bio);
1800 int err = -EIO;
1801 char b[BDEVNAME_SIZE];
1802 struct hd_struct *part;
1803
1804 might_sleep();
1805
1806 if (bio_check_eod(bio, nr_sectors))
1807 goto end_io;
1808
1809 q = bdev_get_queue(bio->bi_bdev);
1810 if (unlikely(!q)) {
1811 printk(KERN_ERR
1812 "generic_make_request: Trying to access "
1813 "nonexistent block-device %s (%Lu)\n",
1814 bdevname(bio->bi_bdev, b),
1815 (long long) bio->bi_iter.bi_sector);
1816 goto end_io;
1817 }
1818
1819 if (likely(bio_is_rw(bio) &&
1820 nr_sectors > queue_max_hw_sectors(q))) {
1821 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1822 bdevname(bio->bi_bdev, b),
1823 bio_sectors(bio),
1824 queue_max_hw_sectors(q));
1825 goto end_io;
1826 }
1827
1828 part = bio->bi_bdev->bd_part;
1829 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1830 should_fail_request(&part_to_disk(part)->part0,
1831 bio->bi_iter.bi_size))
1832 goto end_io;
1833
1834 /*
1835 * If this device has partitions, remap block n
1836 * of partition p to block n+start(p) of the disk.
1837 */
1838 blk_partition_remap(bio);
1839
1840 if (bio_check_eod(bio, nr_sectors))
1841 goto end_io;
1842
1843 /*
1844 * Filter flush bio's early so that make_request based
1845 * drivers without flush support don't have to worry
1846 * about them.
1847 */
1848 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1849 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1850 if (!nr_sectors) {
1851 err = 0;
1852 goto end_io;
1853 }
1854 }
1855
1856 if ((bio->bi_rw & REQ_DISCARD) &&
1857 (!blk_queue_discard(q) ||
1858 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1859 err = -EOPNOTSUPP;
1860 goto end_io;
1861 }
1862
1863 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1864 err = -EOPNOTSUPP;
1865 goto end_io;
1866 }
1867
1868 /*
1869 * Various block parts want %current->io_context and lazy ioc
1870 * allocation ends up trading a lot of pain for a small amount of
1871 * memory. Just allocate it upfront. This may fail and block
1872 * layer knows how to live with it.
1873 */
1874 create_io_context(GFP_ATOMIC, q->node);
1875
1876 if (blk_throtl_bio(q, bio))
1877 return false; /* throttled, will be resubmitted later */
1878
1879 trace_block_bio_queue(q, bio);
1880 return true;
1881
1882 end_io:
1883 bio_endio(bio, err);
1884 return false;
1885 }
1886
1887 /**
1888 * generic_make_request - hand a buffer to its device driver for I/O
1889 * @bio: The bio describing the location in memory and on the device.
1890 *
1891 * generic_make_request() is used to make I/O requests of block
1892 * devices. It is passed a &struct bio, which describes the I/O that needs
1893 * to be done.
1894 *
1895 * generic_make_request() does not return any status. The
1896 * success/failure status of the request, along with notification of
1897 * completion, is delivered asynchronously through the bio->bi_end_io
1898 * function described (one day) else where.
1899 *
1900 * The caller of generic_make_request must make sure that bi_io_vec
1901 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1902 * set to describe the device address, and the
1903 * bi_end_io and optionally bi_private are set to describe how
1904 * completion notification should be signaled.
1905 *
1906 * generic_make_request and the drivers it calls may use bi_next if this
1907 * bio happens to be merged with someone else, and may resubmit the bio to
1908 * a lower device by calling into generic_make_request recursively, which
1909 * means the bio should NOT be touched after the call to ->make_request_fn.
1910 */
1911 void generic_make_request(struct bio *bio)
1912 {
1913 struct bio_list bio_list_on_stack;
1914
1915 if (!generic_make_request_checks(bio))
1916 return;
1917
1918 /*
1919 * We only want one ->make_request_fn to be active at a time, else
1920 * stack usage with stacked devices could be a problem. So use
1921 * current->bio_list to keep a list of requests submited by a
1922 * make_request_fn function. current->bio_list is also used as a
1923 * flag to say if generic_make_request is currently active in this
1924 * task or not. If it is NULL, then no make_request is active. If
1925 * it is non-NULL, then a make_request is active, and new requests
1926 * should be added at the tail
1927 */
1928 if (current->bio_list) {
1929 bio_list_add(current->bio_list, bio);
1930 return;
1931 }
1932
1933 /* following loop may be a bit non-obvious, and so deserves some
1934 * explanation.
1935 * Before entering the loop, bio->bi_next is NULL (as all callers
1936 * ensure that) so we have a list with a single bio.
1937 * We pretend that we have just taken it off a longer list, so
1938 * we assign bio_list to a pointer to the bio_list_on_stack,
1939 * thus initialising the bio_list of new bios to be
1940 * added. ->make_request() may indeed add some more bios
1941 * through a recursive call to generic_make_request. If it
1942 * did, we find a non-NULL value in bio_list and re-enter the loop
1943 * from the top. In this case we really did just take the bio
1944 * of the top of the list (no pretending) and so remove it from
1945 * bio_list, and call into ->make_request() again.
1946 */
1947 BUG_ON(bio->bi_next);
1948 bio_list_init(&bio_list_on_stack);
1949 current->bio_list = &bio_list_on_stack;
1950 do {
1951 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1952
1953 q->make_request_fn(q, bio);
1954
1955 bio = bio_list_pop(current->bio_list);
1956 } while (bio);
1957 current->bio_list = NULL; /* deactivate */
1958 }
1959 EXPORT_SYMBOL(generic_make_request);
1960
1961 /**
1962 * submit_bio - submit a bio to the block device layer for I/O
1963 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1964 * @bio: The &struct bio which describes the I/O
1965 *
1966 * submit_bio() is very similar in purpose to generic_make_request(), and
1967 * uses that function to do most of the work. Both are fairly rough
1968 * interfaces; @bio must be presetup and ready for I/O.
1969 *
1970 */
1971 void submit_bio(int rw, struct bio *bio)
1972 {
1973 bio->bi_rw |= rw;
1974
1975 /*
1976 * If it's a regular read/write or a barrier with data attached,
1977 * go through the normal accounting stuff before submission.
1978 */
1979 if (bio_has_data(bio)) {
1980 unsigned int count;
1981
1982 if (unlikely(rw & REQ_WRITE_SAME))
1983 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1984 else
1985 count = bio_sectors(bio);
1986
1987 if (rw & WRITE) {
1988 count_vm_events(PGPGOUT, count);
1989 } else {
1990 task_io_account_read(bio->bi_iter.bi_size);
1991 count_vm_events(PGPGIN, count);
1992 }
1993
1994 if (unlikely(block_dump)) {
1995 char b[BDEVNAME_SIZE];
1996 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1997 current->comm, task_pid_nr(current),
1998 (rw & WRITE) ? "WRITE" : "READ",
1999 (unsigned long long)bio->bi_iter.bi_sector,
2000 bdevname(bio->bi_bdev, b),
2001 count);
2002 }
2003 }
2004
2005 generic_make_request(bio);
2006 }
2007 EXPORT_SYMBOL(submit_bio);
2008
2009 /**
2010 * blk_rq_check_limits - Helper function to check a request for the queue limit
2011 * @q: the queue
2012 * @rq: the request being checked
2013 *
2014 * Description:
2015 * @rq may have been made based on weaker limitations of upper-level queues
2016 * in request stacking drivers, and it may violate the limitation of @q.
2017 * Since the block layer and the underlying device driver trust @rq
2018 * after it is inserted to @q, it should be checked against @q before
2019 * the insertion using this generic function.
2020 *
2021 * This function should also be useful for request stacking drivers
2022 * in some cases below, so export this function.
2023 * Request stacking drivers like request-based dm may change the queue
2024 * limits while requests are in the queue (e.g. dm's table swapping).
2025 * Such request stacking drivers should check those requests against
2026 * the new queue limits again when they dispatch those requests,
2027 * although such checkings are also done against the old queue limits
2028 * when submitting requests.
2029 */
2030 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2031 {
2032 if (!rq_mergeable(rq))
2033 return 0;
2034
2035 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2036 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2037 return -EIO;
2038 }
2039
2040 /*
2041 * queue's settings related to segment counting like q->bounce_pfn
2042 * may differ from that of other stacking queues.
2043 * Recalculate it to check the request correctly on this queue's
2044 * limitation.
2045 */
2046 blk_recalc_rq_segments(rq);
2047 if (rq->nr_phys_segments > queue_max_segments(q)) {
2048 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2049 return -EIO;
2050 }
2051
2052 return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2055
2056 /**
2057 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2058 * @q: the queue to submit the request
2059 * @rq: the request being queued
2060 */
2061 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2062 {
2063 unsigned long flags;
2064 int where = ELEVATOR_INSERT_BACK;
2065
2066 if (blk_rq_check_limits(q, rq))
2067 return -EIO;
2068
2069 if (rq->rq_disk &&
2070 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2071 return -EIO;
2072
2073 if (q->mq_ops) {
2074 if (blk_queue_io_stat(q))
2075 blk_account_io_start(rq, true);
2076 blk_mq_insert_request(rq, false, true, true);
2077 return 0;
2078 }
2079
2080 spin_lock_irqsave(q->queue_lock, flags);
2081 if (unlikely(blk_queue_dying(q))) {
2082 spin_unlock_irqrestore(q->queue_lock, flags);
2083 return -ENODEV;
2084 }
2085
2086 /*
2087 * Submitting request must be dequeued before calling this function
2088 * because it will be linked to another request_queue
2089 */
2090 BUG_ON(blk_queued_rq(rq));
2091
2092 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2093 where = ELEVATOR_INSERT_FLUSH;
2094
2095 add_acct_request(q, rq, where);
2096 if (where == ELEVATOR_INSERT_FLUSH)
2097 __blk_run_queue(q);
2098 spin_unlock_irqrestore(q->queue_lock, flags);
2099
2100 return 0;
2101 }
2102 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2103
2104 /**
2105 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2106 * @rq: request to examine
2107 *
2108 * Description:
2109 * A request could be merge of IOs which require different failure
2110 * handling. This function determines the number of bytes which
2111 * can be failed from the beginning of the request without
2112 * crossing into area which need to be retried further.
2113 *
2114 * Return:
2115 * The number of bytes to fail.
2116 *
2117 * Context:
2118 * queue_lock must be held.
2119 */
2120 unsigned int blk_rq_err_bytes(const struct request *rq)
2121 {
2122 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2123 unsigned int bytes = 0;
2124 struct bio *bio;
2125
2126 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2127 return blk_rq_bytes(rq);
2128
2129 /*
2130 * Currently the only 'mixing' which can happen is between
2131 * different fastfail types. We can safely fail portions
2132 * which have all the failfast bits that the first one has -
2133 * the ones which are at least as eager to fail as the first
2134 * one.
2135 */
2136 for (bio = rq->bio; bio; bio = bio->bi_next) {
2137 if ((bio->bi_rw & ff) != ff)
2138 break;
2139 bytes += bio->bi_iter.bi_size;
2140 }
2141
2142 /* this could lead to infinite loop */
2143 BUG_ON(blk_rq_bytes(rq) && !bytes);
2144 return bytes;
2145 }
2146 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2147
2148 void blk_account_io_completion(struct request *req, unsigned int bytes)
2149 {
2150 if (blk_do_io_stat(req)) {
2151 const int rw = rq_data_dir(req);
2152 struct hd_struct *part;
2153 int cpu;
2154
2155 cpu = part_stat_lock();
2156 part = req->part;
2157 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2158 part_stat_unlock();
2159 }
2160 }
2161
2162 void blk_account_io_done(struct request *req)
2163 {
2164 /*
2165 * Account IO completion. flush_rq isn't accounted as a
2166 * normal IO on queueing nor completion. Accounting the
2167 * containing request is enough.
2168 */
2169 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2170 unsigned long duration = jiffies - req->start_time;
2171 const int rw = rq_data_dir(req);
2172 struct hd_struct *part;
2173 int cpu;
2174
2175 cpu = part_stat_lock();
2176 part = req->part;
2177
2178 part_stat_inc(cpu, part, ios[rw]);
2179 part_stat_add(cpu, part, ticks[rw], duration);
2180 part_round_stats(cpu, part);
2181 part_dec_in_flight(part, rw);
2182
2183 hd_struct_put(part);
2184 part_stat_unlock();
2185 }
2186 }
2187
2188 #ifdef CONFIG_PM
2189 /*
2190 * Don't process normal requests when queue is suspended
2191 * or in the process of suspending/resuming
2192 */
2193 static struct request *blk_pm_peek_request(struct request_queue *q,
2194 struct request *rq)
2195 {
2196 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2197 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2198 return NULL;
2199 else
2200 return rq;
2201 }
2202 #else
2203 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2204 struct request *rq)
2205 {
2206 return rq;
2207 }
2208 #endif
2209
2210 void blk_account_io_start(struct request *rq, bool new_io)
2211 {
2212 struct hd_struct *part;
2213 int rw = rq_data_dir(rq);
2214 int cpu;
2215
2216 if (!blk_do_io_stat(rq))
2217 return;
2218
2219 cpu = part_stat_lock();
2220
2221 if (!new_io) {
2222 part = rq->part;
2223 part_stat_inc(cpu, part, merges[rw]);
2224 } else {
2225 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2226 if (!hd_struct_try_get(part)) {
2227 /*
2228 * The partition is already being removed,
2229 * the request will be accounted on the disk only
2230 *
2231 * We take a reference on disk->part0 although that
2232 * partition will never be deleted, so we can treat
2233 * it as any other partition.
2234 */
2235 part = &rq->rq_disk->part0;
2236 hd_struct_get(part);
2237 }
2238 part_round_stats(cpu, part);
2239 part_inc_in_flight(part, rw);
2240 rq->part = part;
2241 }
2242
2243 part_stat_unlock();
2244 }
2245
2246 /**
2247 * blk_peek_request - peek at the top of a request queue
2248 * @q: request queue to peek at
2249 *
2250 * Description:
2251 * Return the request at the top of @q. The returned request
2252 * should be started using blk_start_request() before LLD starts
2253 * processing it.
2254 *
2255 * Return:
2256 * Pointer to the request at the top of @q if available. Null
2257 * otherwise.
2258 *
2259 * Context:
2260 * queue_lock must be held.
2261 */
2262 struct request *blk_peek_request(struct request_queue *q)
2263 {
2264 struct request *rq;
2265 int ret;
2266
2267 while ((rq = __elv_next_request(q)) != NULL) {
2268
2269 rq = blk_pm_peek_request(q, rq);
2270 if (!rq)
2271 break;
2272
2273 if (!(rq->cmd_flags & REQ_STARTED)) {
2274 /*
2275 * This is the first time the device driver
2276 * sees this request (possibly after
2277 * requeueing). Notify IO scheduler.
2278 */
2279 if (rq->cmd_flags & REQ_SORTED)
2280 elv_activate_rq(q, rq);
2281
2282 /*
2283 * just mark as started even if we don't start
2284 * it, a request that has been delayed should
2285 * not be passed by new incoming requests
2286 */
2287 rq->cmd_flags |= REQ_STARTED;
2288 trace_block_rq_issue(q, rq);
2289 }
2290
2291 if (!q->boundary_rq || q->boundary_rq == rq) {
2292 q->end_sector = rq_end_sector(rq);
2293 q->boundary_rq = NULL;
2294 }
2295
2296 if (rq->cmd_flags & REQ_DONTPREP)
2297 break;
2298
2299 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2300 /*
2301 * make sure space for the drain appears we
2302 * know we can do this because max_hw_segments
2303 * has been adjusted to be one fewer than the
2304 * device can handle
2305 */
2306 rq->nr_phys_segments++;
2307 }
2308
2309 if (!q->prep_rq_fn)
2310 break;
2311
2312 ret = q->prep_rq_fn(q, rq);
2313 if (ret == BLKPREP_OK) {
2314 break;
2315 } else if (ret == BLKPREP_DEFER) {
2316 /*
2317 * the request may have been (partially) prepped.
2318 * we need to keep this request in the front to
2319 * avoid resource deadlock. REQ_STARTED will
2320 * prevent other fs requests from passing this one.
2321 */
2322 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2323 !(rq->cmd_flags & REQ_DONTPREP)) {
2324 /*
2325 * remove the space for the drain we added
2326 * so that we don't add it again
2327 */
2328 --rq->nr_phys_segments;
2329 }
2330
2331 rq = NULL;
2332 break;
2333 } else if (ret == BLKPREP_KILL) {
2334 rq->cmd_flags |= REQ_QUIET;
2335 /*
2336 * Mark this request as started so we don't trigger
2337 * any debug logic in the end I/O path.
2338 */
2339 blk_start_request(rq);
2340 __blk_end_request_all(rq, -EIO);
2341 } else {
2342 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2343 break;
2344 }
2345 }
2346
2347 return rq;
2348 }
2349 EXPORT_SYMBOL(blk_peek_request);
2350
2351 void blk_dequeue_request(struct request *rq)
2352 {
2353 struct request_queue *q = rq->q;
2354
2355 BUG_ON(list_empty(&rq->queuelist));
2356 BUG_ON(ELV_ON_HASH(rq));
2357
2358 list_del_init(&rq->queuelist);
2359
2360 /*
2361 * the time frame between a request being removed from the lists
2362 * and to it is freed is accounted as io that is in progress at
2363 * the driver side.
2364 */
2365 if (blk_account_rq(rq)) {
2366 q->in_flight[rq_is_sync(rq)]++;
2367 set_io_start_time_ns(rq);
2368 }
2369 }
2370
2371 /**
2372 * blk_start_request - start request processing on the driver
2373 * @req: request to dequeue
2374 *
2375 * Description:
2376 * Dequeue @req and start timeout timer on it. This hands off the
2377 * request to the driver.
2378 *
2379 * Block internal functions which don't want to start timer should
2380 * call blk_dequeue_request().
2381 *
2382 * Context:
2383 * queue_lock must be held.
2384 */
2385 void blk_start_request(struct request *req)
2386 {
2387 blk_dequeue_request(req);
2388
2389 /*
2390 * We are now handing the request to the hardware, initialize
2391 * resid_len to full count and add the timeout handler.
2392 */
2393 req->resid_len = blk_rq_bytes(req);
2394 if (unlikely(blk_bidi_rq(req)))
2395 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2396
2397 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2398 blk_add_timer(req);
2399 }
2400 EXPORT_SYMBOL(blk_start_request);
2401
2402 /**
2403 * blk_fetch_request - fetch a request from a request queue
2404 * @q: request queue to fetch a request from
2405 *
2406 * Description:
2407 * Return the request at the top of @q. The request is started on
2408 * return and LLD can start processing it immediately.
2409 *
2410 * Return:
2411 * Pointer to the request at the top of @q if available. Null
2412 * otherwise.
2413 *
2414 * Context:
2415 * queue_lock must be held.
2416 */
2417 struct request *blk_fetch_request(struct request_queue *q)
2418 {
2419 struct request *rq;
2420
2421 rq = blk_peek_request(q);
2422 if (rq)
2423 blk_start_request(rq);
2424 return rq;
2425 }
2426 EXPORT_SYMBOL(blk_fetch_request);
2427
2428 /**
2429 * blk_update_request - Special helper function for request stacking drivers
2430 * @req: the request being processed
2431 * @error: %0 for success, < %0 for error
2432 * @nr_bytes: number of bytes to complete @req
2433 *
2434 * Description:
2435 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2436 * the request structure even if @req doesn't have leftover.
2437 * If @req has leftover, sets it up for the next range of segments.
2438 *
2439 * This special helper function is only for request stacking drivers
2440 * (e.g. request-based dm) so that they can handle partial completion.
2441 * Actual device drivers should use blk_end_request instead.
2442 *
2443 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2444 * %false return from this function.
2445 *
2446 * Return:
2447 * %false - this request doesn't have any more data
2448 * %true - this request has more data
2449 **/
2450 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2451 {
2452 int total_bytes;
2453
2454 trace_block_rq_complete(req->q, req, nr_bytes);
2455
2456 if (!req->bio)
2457 return false;
2458
2459 /*
2460 * For fs requests, rq is just carrier of independent bio's
2461 * and each partial completion should be handled separately.
2462 * Reset per-request error on each partial completion.
2463 *
2464 * TODO: tj: This is too subtle. It would be better to let
2465 * low level drivers do what they see fit.
2466 */
2467 if (req->cmd_type == REQ_TYPE_FS)
2468 req->errors = 0;
2469
2470 if (error && req->cmd_type == REQ_TYPE_FS &&
2471 !(req->cmd_flags & REQ_QUIET)) {
2472 char *error_type;
2473
2474 switch (error) {
2475 case -ENOLINK:
2476 error_type = "recoverable transport";
2477 break;
2478 case -EREMOTEIO:
2479 error_type = "critical target";
2480 break;
2481 case -EBADE:
2482 error_type = "critical nexus";
2483 break;
2484 case -ETIMEDOUT:
2485 error_type = "timeout";
2486 break;
2487 case -ENOSPC:
2488 error_type = "critical space allocation";
2489 break;
2490 case -ENODATA:
2491 error_type = "critical medium";
2492 break;
2493 case -EIO:
2494 default:
2495 error_type = "I/O";
2496 break;
2497 }
2498 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2499 __func__, error_type, req->rq_disk ?
2500 req->rq_disk->disk_name : "?",
2501 (unsigned long long)blk_rq_pos(req));
2502
2503 }
2504
2505 blk_account_io_completion(req, nr_bytes);
2506
2507 total_bytes = 0;
2508 while (req->bio) {
2509 struct bio *bio = req->bio;
2510 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2511
2512 if (bio_bytes == bio->bi_iter.bi_size)
2513 req->bio = bio->bi_next;
2514
2515 req_bio_endio(req, bio, bio_bytes, error);
2516
2517 total_bytes += bio_bytes;
2518 nr_bytes -= bio_bytes;
2519
2520 if (!nr_bytes)
2521 break;
2522 }
2523
2524 /*
2525 * completely done
2526 */
2527 if (!req->bio) {
2528 /*
2529 * Reset counters so that the request stacking driver
2530 * can find how many bytes remain in the request
2531 * later.
2532 */
2533 req->__data_len = 0;
2534 return false;
2535 }
2536
2537 req->__data_len -= total_bytes;
2538
2539 /* update sector only for requests with clear definition of sector */
2540 if (req->cmd_type == REQ_TYPE_FS)
2541 req->__sector += total_bytes >> 9;
2542
2543 /* mixed attributes always follow the first bio */
2544 if (req->cmd_flags & REQ_MIXED_MERGE) {
2545 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2546 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2547 }
2548
2549 /*
2550 * If total number of sectors is less than the first segment
2551 * size, something has gone terribly wrong.
2552 */
2553 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2554 blk_dump_rq_flags(req, "request botched");
2555 req->__data_len = blk_rq_cur_bytes(req);
2556 }
2557
2558 /* recalculate the number of segments */
2559 blk_recalc_rq_segments(req);
2560
2561 return true;
2562 }
2563 EXPORT_SYMBOL_GPL(blk_update_request);
2564
2565 static bool blk_update_bidi_request(struct request *rq, int error,
2566 unsigned int nr_bytes,
2567 unsigned int bidi_bytes)
2568 {
2569 if (blk_update_request(rq, error, nr_bytes))
2570 return true;
2571
2572 /* Bidi request must be completed as a whole */
2573 if (unlikely(blk_bidi_rq(rq)) &&
2574 blk_update_request(rq->next_rq, error, bidi_bytes))
2575 return true;
2576
2577 if (blk_queue_add_random(rq->q))
2578 add_disk_randomness(rq->rq_disk);
2579
2580 return false;
2581 }
2582
2583 /**
2584 * blk_unprep_request - unprepare a request
2585 * @req: the request
2586 *
2587 * This function makes a request ready for complete resubmission (or
2588 * completion). It happens only after all error handling is complete,
2589 * so represents the appropriate moment to deallocate any resources
2590 * that were allocated to the request in the prep_rq_fn. The queue
2591 * lock is held when calling this.
2592 */
2593 void blk_unprep_request(struct request *req)
2594 {
2595 struct request_queue *q = req->q;
2596
2597 req->cmd_flags &= ~REQ_DONTPREP;
2598 if (q->unprep_rq_fn)
2599 q->unprep_rq_fn(q, req);
2600 }
2601 EXPORT_SYMBOL_GPL(blk_unprep_request);
2602
2603 /*
2604 * queue lock must be held
2605 */
2606 void blk_finish_request(struct request *req, int error)
2607 {
2608 if (req->cmd_flags & REQ_QUEUED)
2609 blk_queue_end_tag(req->q, req);
2610
2611 BUG_ON(blk_queued_rq(req));
2612
2613 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2614 laptop_io_completion(&req->q->backing_dev_info);
2615
2616 blk_delete_timer(req);
2617
2618 if (req->cmd_flags & REQ_DONTPREP)
2619 blk_unprep_request(req);
2620
2621 blk_account_io_done(req);
2622
2623 if (req->end_io)
2624 req->end_io(req, error);
2625 else {
2626 if (blk_bidi_rq(req))
2627 __blk_put_request(req->next_rq->q, req->next_rq);
2628
2629 __blk_put_request(req->q, req);
2630 }
2631 }
2632 EXPORT_SYMBOL(blk_finish_request);
2633
2634 /**
2635 * blk_end_bidi_request - Complete a bidi request
2636 * @rq: the request to complete
2637 * @error: %0 for success, < %0 for error
2638 * @nr_bytes: number of bytes to complete @rq
2639 * @bidi_bytes: number of bytes to complete @rq->next_rq
2640 *
2641 * Description:
2642 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2643 * Drivers that supports bidi can safely call this member for any
2644 * type of request, bidi or uni. In the later case @bidi_bytes is
2645 * just ignored.
2646 *
2647 * Return:
2648 * %false - we are done with this request
2649 * %true - still buffers pending for this request
2650 **/
2651 static bool blk_end_bidi_request(struct request *rq, int error,
2652 unsigned int nr_bytes, unsigned int bidi_bytes)
2653 {
2654 struct request_queue *q = rq->q;
2655 unsigned long flags;
2656
2657 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2658 return true;
2659
2660 spin_lock_irqsave(q->queue_lock, flags);
2661 blk_finish_request(rq, error);
2662 spin_unlock_irqrestore(q->queue_lock, flags);
2663
2664 return false;
2665 }
2666
2667 /**
2668 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2669 * @rq: the request to complete
2670 * @error: %0 for success, < %0 for error
2671 * @nr_bytes: number of bytes to complete @rq
2672 * @bidi_bytes: number of bytes to complete @rq->next_rq
2673 *
2674 * Description:
2675 * Identical to blk_end_bidi_request() except that queue lock is
2676 * assumed to be locked on entry and remains so on return.
2677 *
2678 * Return:
2679 * %false - we are done with this request
2680 * %true - still buffers pending for this request
2681 **/
2682 bool __blk_end_bidi_request(struct request *rq, int error,
2683 unsigned int nr_bytes, unsigned int bidi_bytes)
2684 {
2685 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2686 return true;
2687
2688 blk_finish_request(rq, error);
2689
2690 return false;
2691 }
2692
2693 /**
2694 * blk_end_request - Helper function for drivers to complete the request.
2695 * @rq: the request being processed
2696 * @error: %0 for success, < %0 for error
2697 * @nr_bytes: number of bytes to complete
2698 *
2699 * Description:
2700 * Ends I/O on a number of bytes attached to @rq.
2701 * If @rq has leftover, sets it up for the next range of segments.
2702 *
2703 * Return:
2704 * %false - we are done with this request
2705 * %true - still buffers pending for this request
2706 **/
2707 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2708 {
2709 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2710 }
2711 EXPORT_SYMBOL(blk_end_request);
2712
2713 /**
2714 * blk_end_request_all - Helper function for drives to finish the request.
2715 * @rq: the request to finish
2716 * @error: %0 for success, < %0 for error
2717 *
2718 * Description:
2719 * Completely finish @rq.
2720 */
2721 void blk_end_request_all(struct request *rq, int error)
2722 {
2723 bool pending;
2724 unsigned int bidi_bytes = 0;
2725
2726 if (unlikely(blk_bidi_rq(rq)))
2727 bidi_bytes = blk_rq_bytes(rq->next_rq);
2728
2729 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2730 BUG_ON(pending);
2731 }
2732 EXPORT_SYMBOL(blk_end_request_all);
2733
2734 /**
2735 * blk_end_request_cur - Helper function to finish the current request chunk.
2736 * @rq: the request to finish the current chunk for
2737 * @error: %0 for success, < %0 for error
2738 *
2739 * Description:
2740 * Complete the current consecutively mapped chunk from @rq.
2741 *
2742 * Return:
2743 * %false - we are done with this request
2744 * %true - still buffers pending for this request
2745 */
2746 bool blk_end_request_cur(struct request *rq, int error)
2747 {
2748 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2749 }
2750 EXPORT_SYMBOL(blk_end_request_cur);
2751
2752 /**
2753 * blk_end_request_err - Finish a request till the next failure boundary.
2754 * @rq: the request to finish till the next failure boundary for
2755 * @error: must be negative errno
2756 *
2757 * Description:
2758 * Complete @rq till the next failure boundary.
2759 *
2760 * Return:
2761 * %false - we are done with this request
2762 * %true - still buffers pending for this request
2763 */
2764 bool blk_end_request_err(struct request *rq, int error)
2765 {
2766 WARN_ON(error >= 0);
2767 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2768 }
2769 EXPORT_SYMBOL_GPL(blk_end_request_err);
2770
2771 /**
2772 * __blk_end_request - Helper function for drivers to complete the request.
2773 * @rq: the request being processed
2774 * @error: %0 for success, < %0 for error
2775 * @nr_bytes: number of bytes to complete
2776 *
2777 * Description:
2778 * Must be called with queue lock held unlike blk_end_request().
2779 *
2780 * Return:
2781 * %false - we are done with this request
2782 * %true - still buffers pending for this request
2783 **/
2784 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2785 {
2786 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2787 }
2788 EXPORT_SYMBOL(__blk_end_request);
2789
2790 /**
2791 * __blk_end_request_all - Helper function for drives to finish the request.
2792 * @rq: the request to finish
2793 * @error: %0 for success, < %0 for error
2794 *
2795 * Description:
2796 * Completely finish @rq. Must be called with queue lock held.
2797 */
2798 void __blk_end_request_all(struct request *rq, int error)
2799 {
2800 bool pending;
2801 unsigned int bidi_bytes = 0;
2802
2803 if (unlikely(blk_bidi_rq(rq)))
2804 bidi_bytes = blk_rq_bytes(rq->next_rq);
2805
2806 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2807 BUG_ON(pending);
2808 }
2809 EXPORT_SYMBOL(__blk_end_request_all);
2810
2811 /**
2812 * __blk_end_request_cur - Helper function to finish the current request chunk.
2813 * @rq: the request to finish the current chunk for
2814 * @error: %0 for success, < %0 for error
2815 *
2816 * Description:
2817 * Complete the current consecutively mapped chunk from @rq. Must
2818 * be called with queue lock held.
2819 *
2820 * Return:
2821 * %false - we are done with this request
2822 * %true - still buffers pending for this request
2823 */
2824 bool __blk_end_request_cur(struct request *rq, int error)
2825 {
2826 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2827 }
2828 EXPORT_SYMBOL(__blk_end_request_cur);
2829
2830 /**
2831 * __blk_end_request_err - Finish a request till the next failure boundary.
2832 * @rq: the request to finish till the next failure boundary for
2833 * @error: must be negative errno
2834 *
2835 * Description:
2836 * Complete @rq till the next failure boundary. Must be called
2837 * with queue lock held.
2838 *
2839 * Return:
2840 * %false - we are done with this request
2841 * %true - still buffers pending for this request
2842 */
2843 bool __blk_end_request_err(struct request *rq, int error)
2844 {
2845 WARN_ON(error >= 0);
2846 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2847 }
2848 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2849
2850 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2851 struct bio *bio)
2852 {
2853 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2854 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2855
2856 if (bio_has_data(bio))
2857 rq->nr_phys_segments = bio_phys_segments(q, bio);
2858
2859 rq->__data_len = bio->bi_iter.bi_size;
2860 rq->bio = rq->biotail = bio;
2861
2862 if (bio->bi_bdev)
2863 rq->rq_disk = bio->bi_bdev->bd_disk;
2864 }
2865
2866 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2867 /**
2868 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2869 * @rq: the request to be flushed
2870 *
2871 * Description:
2872 * Flush all pages in @rq.
2873 */
2874 void rq_flush_dcache_pages(struct request *rq)
2875 {
2876 struct req_iterator iter;
2877 struct bio_vec bvec;
2878
2879 rq_for_each_segment(bvec, rq, iter)
2880 flush_dcache_page(bvec.bv_page);
2881 }
2882 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2883 #endif
2884
2885 /**
2886 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2887 * @q : the queue of the device being checked
2888 *
2889 * Description:
2890 * Check if underlying low-level drivers of a device are busy.
2891 * If the drivers want to export their busy state, they must set own
2892 * exporting function using blk_queue_lld_busy() first.
2893 *
2894 * Basically, this function is used only by request stacking drivers
2895 * to stop dispatching requests to underlying devices when underlying
2896 * devices are busy. This behavior helps more I/O merging on the queue
2897 * of the request stacking driver and prevents I/O throughput regression
2898 * on burst I/O load.
2899 *
2900 * Return:
2901 * 0 - Not busy (The request stacking driver should dispatch request)
2902 * 1 - Busy (The request stacking driver should stop dispatching request)
2903 */
2904 int blk_lld_busy(struct request_queue *q)
2905 {
2906 if (q->lld_busy_fn)
2907 return q->lld_busy_fn(q);
2908
2909 return 0;
2910 }
2911 EXPORT_SYMBOL_GPL(blk_lld_busy);
2912
2913 void blk_rq_prep_clone(struct request *dst, struct request *src)
2914 {
2915 dst->cpu = src->cpu;
2916 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK);
2917 dst->cmd_flags |= REQ_NOMERGE | REQ_CLONE;
2918 dst->cmd_type = src->cmd_type;
2919 dst->__sector = blk_rq_pos(src);
2920 dst->__data_len = blk_rq_bytes(src);
2921 dst->nr_phys_segments = src->nr_phys_segments;
2922 dst->ioprio = src->ioprio;
2923 dst->extra_len = src->extra_len;
2924 dst->bio = src->bio;
2925 dst->biotail = src->biotail;
2926 dst->cmd = src->cmd;
2927 dst->cmd_len = src->cmd_len;
2928 dst->sense = src->sense;
2929 }
2930 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2931
2932 int kblockd_schedule_work(struct work_struct *work)
2933 {
2934 return queue_work(kblockd_workqueue, work);
2935 }
2936 EXPORT_SYMBOL(kblockd_schedule_work);
2937
2938 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2939 unsigned long delay)
2940 {
2941 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2942 }
2943 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2944
2945 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2946 unsigned long delay)
2947 {
2948 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2949 }
2950 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2951
2952 /**
2953 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2954 * @plug: The &struct blk_plug that needs to be initialized
2955 *
2956 * Description:
2957 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2958 * pending I/O should the task end up blocking between blk_start_plug() and
2959 * blk_finish_plug(). This is important from a performance perspective, but
2960 * also ensures that we don't deadlock. For instance, if the task is blocking
2961 * for a memory allocation, memory reclaim could end up wanting to free a
2962 * page belonging to that request that is currently residing in our private
2963 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2964 * this kind of deadlock.
2965 */
2966 void blk_start_plug(struct blk_plug *plug)
2967 {
2968 struct task_struct *tsk = current;
2969
2970 /*
2971 * If this is a nested plug, don't actually assign it.
2972 */
2973 if (tsk->plug)
2974 return;
2975
2976 INIT_LIST_HEAD(&plug->list);
2977 INIT_LIST_HEAD(&plug->mq_list);
2978 INIT_LIST_HEAD(&plug->cb_list);
2979 /*
2980 * Store ordering should not be needed here, since a potential
2981 * preempt will imply a full memory barrier
2982 */
2983 tsk->plug = plug;
2984 }
2985 EXPORT_SYMBOL(blk_start_plug);
2986
2987 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2988 {
2989 struct request *rqa = container_of(a, struct request, queuelist);
2990 struct request *rqb = container_of(b, struct request, queuelist);
2991
2992 return !(rqa->q < rqb->q ||
2993 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2994 }
2995
2996 /*
2997 * If 'from_schedule' is true, then postpone the dispatch of requests
2998 * until a safe kblockd context. We due this to avoid accidental big
2999 * additional stack usage in driver dispatch, in places where the originally
3000 * plugger did not intend it.
3001 */
3002 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3003 bool from_schedule)
3004 __releases(q->queue_lock)
3005 {
3006 trace_block_unplug(q, depth, !from_schedule);
3007
3008 if (from_schedule)
3009 blk_run_queue_async(q);
3010 else
3011 __blk_run_queue(q);
3012 spin_unlock(q->queue_lock);
3013 }
3014
3015 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3016 {
3017 LIST_HEAD(callbacks);
3018
3019 while (!list_empty(&plug->cb_list)) {
3020 list_splice_init(&plug->cb_list, &callbacks);
3021
3022 while (!list_empty(&callbacks)) {
3023 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3024 struct blk_plug_cb,
3025 list);
3026 list_del(&cb->list);
3027 cb->callback(cb, from_schedule);
3028 }
3029 }
3030 }
3031
3032 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3033 int size)
3034 {
3035 struct blk_plug *plug = current->plug;
3036 struct blk_plug_cb *cb;
3037
3038 if (!plug)
3039 return NULL;
3040
3041 list_for_each_entry(cb, &plug->cb_list, list)
3042 if (cb->callback == unplug && cb->data == data)
3043 return cb;
3044
3045 /* Not currently on the callback list */
3046 BUG_ON(size < sizeof(*cb));
3047 cb = kzalloc(size, GFP_ATOMIC);
3048 if (cb) {
3049 cb->data = data;
3050 cb->callback = unplug;
3051 list_add(&cb->list, &plug->cb_list);
3052 }
3053 return cb;
3054 }
3055 EXPORT_SYMBOL(blk_check_plugged);
3056
3057 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3058 {
3059 struct request_queue *q;
3060 unsigned long flags;
3061 struct request *rq;
3062 LIST_HEAD(list);
3063 unsigned int depth;
3064
3065 flush_plug_callbacks(plug, from_schedule);
3066
3067 if (!list_empty(&plug->mq_list))
3068 blk_mq_flush_plug_list(plug, from_schedule);
3069
3070 if (list_empty(&plug->list))
3071 return;
3072
3073 list_splice_init(&plug->list, &list);
3074
3075 list_sort(NULL, &list, plug_rq_cmp);
3076
3077 q = NULL;
3078 depth = 0;
3079
3080 /*
3081 * Save and disable interrupts here, to avoid doing it for every
3082 * queue lock we have to take.
3083 */
3084 local_irq_save(flags);
3085 while (!list_empty(&list)) {
3086 rq = list_entry_rq(list.next);
3087 list_del_init(&rq->queuelist);
3088 BUG_ON(!rq->q);
3089 if (rq->q != q) {
3090 /*
3091 * This drops the queue lock
3092 */
3093 if (q)
3094 queue_unplugged(q, depth, from_schedule);
3095 q = rq->q;
3096 depth = 0;
3097 spin_lock(q->queue_lock);
3098 }
3099
3100 /*
3101 * Short-circuit if @q is dead
3102 */
3103 if (unlikely(blk_queue_dying(q))) {
3104 __blk_end_request_all(rq, -ENODEV);
3105 continue;
3106 }
3107
3108 /*
3109 * rq is already accounted, so use raw insert
3110 */
3111 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3112 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3113 else
3114 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3115
3116 depth++;
3117 }
3118
3119 /*
3120 * This drops the queue lock
3121 */
3122 if (q)
3123 queue_unplugged(q, depth, from_schedule);
3124
3125 local_irq_restore(flags);
3126 }
3127
3128 void blk_finish_plug(struct blk_plug *plug)
3129 {
3130 if (plug != current->plug)
3131 return;
3132 blk_flush_plug_list(plug, false);
3133
3134 current->plug = NULL;
3135 }
3136 EXPORT_SYMBOL(blk_finish_plug);
3137
3138 #ifdef CONFIG_PM
3139 /**
3140 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3141 * @q: the queue of the device
3142 * @dev: the device the queue belongs to
3143 *
3144 * Description:
3145 * Initialize runtime-PM-related fields for @q and start auto suspend for
3146 * @dev. Drivers that want to take advantage of request-based runtime PM
3147 * should call this function after @dev has been initialized, and its
3148 * request queue @q has been allocated, and runtime PM for it can not happen
3149 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3150 * cases, driver should call this function before any I/O has taken place.
3151 *
3152 * This function takes care of setting up using auto suspend for the device,
3153 * the autosuspend delay is set to -1 to make runtime suspend impossible
3154 * until an updated value is either set by user or by driver. Drivers do
3155 * not need to touch other autosuspend settings.
3156 *
3157 * The block layer runtime PM is request based, so only works for drivers
3158 * that use request as their IO unit instead of those directly use bio's.
3159 */
3160 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3161 {
3162 q->dev = dev;
3163 q->rpm_status = RPM_ACTIVE;
3164 pm_runtime_set_autosuspend_delay(q->dev, -1);
3165 pm_runtime_use_autosuspend(q->dev);
3166 }
3167 EXPORT_SYMBOL(blk_pm_runtime_init);
3168
3169 /**
3170 * blk_pre_runtime_suspend - Pre runtime suspend check
3171 * @q: the queue of the device
3172 *
3173 * Description:
3174 * This function will check if runtime suspend is allowed for the device
3175 * by examining if there are any requests pending in the queue. If there
3176 * are requests pending, the device can not be runtime suspended; otherwise,
3177 * the queue's status will be updated to SUSPENDING and the driver can
3178 * proceed to suspend the device.
3179 *
3180 * For the not allowed case, we mark last busy for the device so that
3181 * runtime PM core will try to autosuspend it some time later.
3182 *
3183 * This function should be called near the start of the device's
3184 * runtime_suspend callback.
3185 *
3186 * Return:
3187 * 0 - OK to runtime suspend the device
3188 * -EBUSY - Device should not be runtime suspended
3189 */
3190 int blk_pre_runtime_suspend(struct request_queue *q)
3191 {
3192 int ret = 0;
3193
3194 spin_lock_irq(q->queue_lock);
3195 if (q->nr_pending) {
3196 ret = -EBUSY;
3197 pm_runtime_mark_last_busy(q->dev);
3198 } else {
3199 q->rpm_status = RPM_SUSPENDING;
3200 }
3201 spin_unlock_irq(q->queue_lock);
3202 return ret;
3203 }
3204 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3205
3206 /**
3207 * blk_post_runtime_suspend - Post runtime suspend processing
3208 * @q: the queue of the device
3209 * @err: return value of the device's runtime_suspend function
3210 *
3211 * Description:
3212 * Update the queue's runtime status according to the return value of the
3213 * device's runtime suspend function and mark last busy for the device so
3214 * that PM core will try to auto suspend the device at a later time.
3215 *
3216 * This function should be called near the end of the device's
3217 * runtime_suspend callback.
3218 */
3219 void blk_post_runtime_suspend(struct request_queue *q, int err)
3220 {
3221 spin_lock_irq(q->queue_lock);
3222 if (!err) {
3223 q->rpm_status = RPM_SUSPENDED;
3224 } else {
3225 q->rpm_status = RPM_ACTIVE;
3226 pm_runtime_mark_last_busy(q->dev);
3227 }
3228 spin_unlock_irq(q->queue_lock);
3229 }
3230 EXPORT_SYMBOL(blk_post_runtime_suspend);
3231
3232 /**
3233 * blk_pre_runtime_resume - Pre runtime resume processing
3234 * @q: the queue of the device
3235 *
3236 * Description:
3237 * Update the queue's runtime status to RESUMING in preparation for the
3238 * runtime resume of the device.
3239 *
3240 * This function should be called near the start of the device's
3241 * runtime_resume callback.
3242 */
3243 void blk_pre_runtime_resume(struct request_queue *q)
3244 {
3245 spin_lock_irq(q->queue_lock);
3246 q->rpm_status = RPM_RESUMING;
3247 spin_unlock_irq(q->queue_lock);
3248 }
3249 EXPORT_SYMBOL(blk_pre_runtime_resume);
3250
3251 /**
3252 * blk_post_runtime_resume - Post runtime resume processing
3253 * @q: the queue of the device
3254 * @err: return value of the device's runtime_resume function
3255 *
3256 * Description:
3257 * Update the queue's runtime status according to the return value of the
3258 * device's runtime_resume function. If it is successfully resumed, process
3259 * the requests that are queued into the device's queue when it is resuming
3260 * and then mark last busy and initiate autosuspend for it.
3261 *
3262 * This function should be called near the end of the device's
3263 * runtime_resume callback.
3264 */
3265 void blk_post_runtime_resume(struct request_queue *q, int err)
3266 {
3267 spin_lock_irq(q->queue_lock);
3268 if (!err) {
3269 q->rpm_status = RPM_ACTIVE;
3270 __blk_run_queue(q);
3271 pm_runtime_mark_last_busy(q->dev);
3272 pm_request_autosuspend(q->dev);
3273 } else {
3274 q->rpm_status = RPM_SUSPENDED;
3275 }
3276 spin_unlock_irq(q->queue_lock);
3277 }
3278 EXPORT_SYMBOL(blk_post_runtime_resume);
3279 #endif
3280
3281 int __init blk_dev_init(void)
3282 {
3283 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3284 sizeof(((struct request *)0)->cmd_flags));
3285
3286 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3287 kblockd_workqueue = alloc_workqueue("kblockd",
3288 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3289 if (!kblockd_workqueue)
3290 panic("Failed to create kblockd\n");
3291
3292 request_cachep = kmem_cache_create("blkdev_requests",
3293 sizeof(struct request), 0, SLAB_PANIC, NULL);
3294
3295 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3296 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3297
3298 return 0;
3299 }