]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - block/blk-core.c
Merge branch 'i2c/for-mergewindow' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63
64 DEFINE_IDA(blk_queue_ida);
65
66 /*
67 * For queue allocation
68 */
69 struct kmem_cache *blk_requestq_cachep;
70
71 /*
72 * Controlling structure to kblockd
73 */
74 static struct workqueue_struct *kblockd_workqueue;
75
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 memset(rq, 0, sizeof(*rq));
115
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 refcount_set(&rq->ref, 1);
126 blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 REQ_OP_NAME(READ),
133 REQ_OP_NAME(WRITE),
134 REQ_OP_NAME(FLUSH),
135 REQ_OP_NAME(DISCARD),
136 REQ_OP_NAME(SECURE_ERASE),
137 REQ_OP_NAME(ZONE_RESET),
138 REQ_OP_NAME(ZONE_RESET_ALL),
139 REQ_OP_NAME(ZONE_OPEN),
140 REQ_OP_NAME(ZONE_CLOSE),
141 REQ_OP_NAME(ZONE_FINISH),
142 REQ_OP_NAME(ZONE_APPEND),
143 REQ_OP_NAME(WRITE_SAME),
144 REQ_OP_NAME(WRITE_ZEROES),
145 REQ_OP_NAME(SCSI_IN),
146 REQ_OP_NAME(SCSI_OUT),
147 REQ_OP_NAME(DRV_IN),
148 REQ_OP_NAME(DRV_OUT),
149 };
150 #undef REQ_OP_NAME
151
152 /**
153 * blk_op_str - Return string XXX in the REQ_OP_XXX.
154 * @op: REQ_OP_XXX.
155 *
156 * Description: Centralize block layer function to convert REQ_OP_XXX into
157 * string format. Useful in the debugging and tracing bio or request. For
158 * invalid REQ_OP_XXX it returns string "UNKNOWN".
159 */
160 inline const char *blk_op_str(unsigned int op)
161 {
162 const char *op_str = "UNKNOWN";
163
164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 op_str = blk_op_name[op];
166
167 return op_str;
168 }
169 EXPORT_SYMBOL_GPL(blk_op_str);
170
171 static const struct {
172 int errno;
173 const char *name;
174 } blk_errors[] = {
175 [BLK_STS_OK] = { 0, "" },
176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
187
188 /* device mapper special case, should not leak out: */
189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
190
191 /* zone device specific errors */
192 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
193 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
194
195 /* everything else not covered above: */
196 [BLK_STS_IOERR] = { -EIO, "I/O" },
197 };
198
199 blk_status_t errno_to_blk_status(int errno)
200 {
201 int i;
202
203 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
204 if (blk_errors[i].errno == errno)
205 return (__force blk_status_t)i;
206 }
207
208 return BLK_STS_IOERR;
209 }
210 EXPORT_SYMBOL_GPL(errno_to_blk_status);
211
212 int blk_status_to_errno(blk_status_t status)
213 {
214 int idx = (__force int)status;
215
216 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
217 return -EIO;
218 return blk_errors[idx].errno;
219 }
220 EXPORT_SYMBOL_GPL(blk_status_to_errno);
221
222 static void print_req_error(struct request *req, blk_status_t status,
223 const char *caller)
224 {
225 int idx = (__force int)status;
226
227 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
228 return;
229
230 printk_ratelimited(KERN_ERR
231 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
232 "phys_seg %u prio class %u\n",
233 caller, blk_errors[idx].name,
234 req->rq_disk ? req->rq_disk->disk_name : "?",
235 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
236 req->cmd_flags & ~REQ_OP_MASK,
237 req->nr_phys_segments,
238 IOPRIO_PRIO_CLASS(req->ioprio));
239 }
240
241 static void req_bio_endio(struct request *rq, struct bio *bio,
242 unsigned int nbytes, blk_status_t error)
243 {
244 if (error)
245 bio->bi_status = error;
246
247 if (unlikely(rq->rq_flags & RQF_QUIET))
248 bio_set_flag(bio, BIO_QUIET);
249
250 bio_advance(bio, nbytes);
251
252 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
253 /*
254 * Partial zone append completions cannot be supported as the
255 * BIO fragments may end up not being written sequentially.
256 */
257 if (bio->bi_iter.bi_size)
258 bio->bi_status = BLK_STS_IOERR;
259 else
260 bio->bi_iter.bi_sector = rq->__sector;
261 }
262
263 /* don't actually finish bio if it's part of flush sequence */
264 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
265 bio_endio(bio);
266 }
267
268 void blk_dump_rq_flags(struct request *rq, char *msg)
269 {
270 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
271 rq->rq_disk ? rq->rq_disk->disk_name : "?",
272 (unsigned long long) rq->cmd_flags);
273
274 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
275 (unsigned long long)blk_rq_pos(rq),
276 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
277 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
278 rq->bio, rq->biotail, blk_rq_bytes(rq));
279 }
280 EXPORT_SYMBOL(blk_dump_rq_flags);
281
282 /**
283 * blk_sync_queue - cancel any pending callbacks on a queue
284 * @q: the queue
285 *
286 * Description:
287 * The block layer may perform asynchronous callback activity
288 * on a queue, such as calling the unplug function after a timeout.
289 * A block device may call blk_sync_queue to ensure that any
290 * such activity is cancelled, thus allowing it to release resources
291 * that the callbacks might use. The caller must already have made sure
292 * that its ->submit_bio will not re-add plugging prior to calling
293 * this function.
294 *
295 * This function does not cancel any asynchronous activity arising
296 * out of elevator or throttling code. That would require elevator_exit()
297 * and blkcg_exit_queue() to be called with queue lock initialized.
298 *
299 */
300 void blk_sync_queue(struct request_queue *q)
301 {
302 del_timer_sync(&q->timeout);
303 cancel_work_sync(&q->timeout_work);
304 }
305 EXPORT_SYMBOL(blk_sync_queue);
306
307 /**
308 * blk_set_pm_only - increment pm_only counter
309 * @q: request queue pointer
310 */
311 void blk_set_pm_only(struct request_queue *q)
312 {
313 atomic_inc(&q->pm_only);
314 }
315 EXPORT_SYMBOL_GPL(blk_set_pm_only);
316
317 void blk_clear_pm_only(struct request_queue *q)
318 {
319 int pm_only;
320
321 pm_only = atomic_dec_return(&q->pm_only);
322 WARN_ON_ONCE(pm_only < 0);
323 if (pm_only == 0)
324 wake_up_all(&q->mq_freeze_wq);
325 }
326 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
327
328 /**
329 * blk_put_queue - decrement the request_queue refcount
330 * @q: the request_queue structure to decrement the refcount for
331 *
332 * Decrements the refcount of the request_queue kobject. When this reaches 0
333 * we'll have blk_release_queue() called.
334 *
335 * Context: Any context, but the last reference must not be dropped from
336 * atomic context.
337 */
338 void blk_put_queue(struct request_queue *q)
339 {
340 kobject_put(&q->kobj);
341 }
342 EXPORT_SYMBOL(blk_put_queue);
343
344 void blk_set_queue_dying(struct request_queue *q)
345 {
346 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
347
348 /*
349 * When queue DYING flag is set, we need to block new req
350 * entering queue, so we call blk_freeze_queue_start() to
351 * prevent I/O from crossing blk_queue_enter().
352 */
353 blk_freeze_queue_start(q);
354
355 if (queue_is_mq(q))
356 blk_mq_wake_waiters(q);
357
358 /* Make blk_queue_enter() reexamine the DYING flag. */
359 wake_up_all(&q->mq_freeze_wq);
360 }
361 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
362
363 /**
364 * blk_cleanup_queue - shutdown a request queue
365 * @q: request queue to shutdown
366 *
367 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
368 * put it. All future requests will be failed immediately with -ENODEV.
369 *
370 * Context: can sleep
371 */
372 void blk_cleanup_queue(struct request_queue *q)
373 {
374 /* cannot be called from atomic context */
375 might_sleep();
376
377 WARN_ON_ONCE(blk_queue_registered(q));
378
379 /* mark @q DYING, no new request or merges will be allowed afterwards */
380 blk_set_queue_dying(q);
381
382 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
383 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
384
385 /*
386 * Drain all requests queued before DYING marking. Set DEAD flag to
387 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
388 * after draining finished.
389 */
390 blk_freeze_queue(q);
391
392 rq_qos_exit(q);
393
394 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
395
396 /* for synchronous bio-based driver finish in-flight integrity i/o */
397 blk_flush_integrity();
398
399 /* @q won't process any more request, flush async actions */
400 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
401 blk_sync_queue(q);
402
403 if (queue_is_mq(q))
404 blk_mq_exit_queue(q);
405
406 /*
407 * In theory, request pool of sched_tags belongs to request queue.
408 * However, the current implementation requires tag_set for freeing
409 * requests, so free the pool now.
410 *
411 * Queue has become frozen, there can't be any in-queue requests, so
412 * it is safe to free requests now.
413 */
414 mutex_lock(&q->sysfs_lock);
415 if (q->elevator)
416 blk_mq_sched_free_requests(q);
417 mutex_unlock(&q->sysfs_lock);
418
419 percpu_ref_exit(&q->q_usage_counter);
420
421 /* @q is and will stay empty, shutdown and put */
422 blk_put_queue(q);
423 }
424 EXPORT_SYMBOL(blk_cleanup_queue);
425
426 /**
427 * blk_queue_enter() - try to increase q->q_usage_counter
428 * @q: request queue pointer
429 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
430 */
431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
432 {
433 const bool pm = flags & BLK_MQ_REQ_PM;
434
435 while (true) {
436 bool success = false;
437
438 rcu_read_lock();
439 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
440 /*
441 * The code that increments the pm_only counter is
442 * responsible for ensuring that that counter is
443 * globally visible before the queue is unfrozen.
444 */
445 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
446 !blk_queue_pm_only(q)) {
447 success = true;
448 } else {
449 percpu_ref_put(&q->q_usage_counter);
450 }
451 }
452 rcu_read_unlock();
453
454 if (success)
455 return 0;
456
457 if (flags & BLK_MQ_REQ_NOWAIT)
458 return -EBUSY;
459
460 /*
461 * read pair of barrier in blk_freeze_queue_start(),
462 * we need to order reading __PERCPU_REF_DEAD flag of
463 * .q_usage_counter and reading .mq_freeze_depth or
464 * queue dying flag, otherwise the following wait may
465 * never return if the two reads are reordered.
466 */
467 smp_rmb();
468
469 wait_event(q->mq_freeze_wq,
470 (!q->mq_freeze_depth &&
471 blk_pm_resume_queue(pm, q)) ||
472 blk_queue_dying(q));
473 if (blk_queue_dying(q))
474 return -ENODEV;
475 }
476 }
477
478 static inline int bio_queue_enter(struct bio *bio)
479 {
480 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
481 bool nowait = bio->bi_opf & REQ_NOWAIT;
482 int ret;
483
484 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
485 if (unlikely(ret)) {
486 if (nowait && !blk_queue_dying(q))
487 bio_wouldblock_error(bio);
488 else
489 bio_io_error(bio);
490 }
491
492 return ret;
493 }
494
495 void blk_queue_exit(struct request_queue *q)
496 {
497 percpu_ref_put(&q->q_usage_counter);
498 }
499
500 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
501 {
502 struct request_queue *q =
503 container_of(ref, struct request_queue, q_usage_counter);
504
505 wake_up_all(&q->mq_freeze_wq);
506 }
507
508 static void blk_rq_timed_out_timer(struct timer_list *t)
509 {
510 struct request_queue *q = from_timer(q, t, timeout);
511
512 kblockd_schedule_work(&q->timeout_work);
513 }
514
515 static void blk_timeout_work(struct work_struct *work)
516 {
517 }
518
519 struct request_queue *blk_alloc_queue(int node_id)
520 {
521 struct request_queue *q;
522 int ret;
523
524 q = kmem_cache_alloc_node(blk_requestq_cachep,
525 GFP_KERNEL | __GFP_ZERO, node_id);
526 if (!q)
527 return NULL;
528
529 q->last_merge = NULL;
530
531 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
532 if (q->id < 0)
533 goto fail_q;
534
535 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
536 if (ret)
537 goto fail_id;
538
539 q->backing_dev_info = bdi_alloc(node_id);
540 if (!q->backing_dev_info)
541 goto fail_split;
542
543 q->stats = blk_alloc_queue_stats();
544 if (!q->stats)
545 goto fail_stats;
546
547 q->node = node_id;
548
549 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
550
551 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
552 laptop_mode_timer_fn, 0);
553 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
554 INIT_WORK(&q->timeout_work, blk_timeout_work);
555 INIT_LIST_HEAD(&q->icq_list);
556 #ifdef CONFIG_BLK_CGROUP
557 INIT_LIST_HEAD(&q->blkg_list);
558 #endif
559
560 kobject_init(&q->kobj, &blk_queue_ktype);
561
562 mutex_init(&q->debugfs_mutex);
563 mutex_init(&q->sysfs_lock);
564 mutex_init(&q->sysfs_dir_lock);
565 spin_lock_init(&q->queue_lock);
566
567 init_waitqueue_head(&q->mq_freeze_wq);
568 mutex_init(&q->mq_freeze_lock);
569
570 /*
571 * Init percpu_ref in atomic mode so that it's faster to shutdown.
572 * See blk_register_queue() for details.
573 */
574 if (percpu_ref_init(&q->q_usage_counter,
575 blk_queue_usage_counter_release,
576 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
577 goto fail_bdi;
578
579 if (blkcg_init_queue(q))
580 goto fail_ref;
581
582 blk_queue_dma_alignment(q, 511);
583 blk_set_default_limits(&q->limits);
584 q->nr_requests = BLKDEV_MAX_RQ;
585
586 return q;
587
588 fail_ref:
589 percpu_ref_exit(&q->q_usage_counter);
590 fail_bdi:
591 blk_free_queue_stats(q->stats);
592 fail_stats:
593 bdi_put(q->backing_dev_info);
594 fail_split:
595 bioset_exit(&q->bio_split);
596 fail_id:
597 ida_simple_remove(&blk_queue_ida, q->id);
598 fail_q:
599 kmem_cache_free(blk_requestq_cachep, q);
600 return NULL;
601 }
602
603 /**
604 * blk_get_queue - increment the request_queue refcount
605 * @q: the request_queue structure to increment the refcount for
606 *
607 * Increment the refcount of the request_queue kobject.
608 *
609 * Context: Any context.
610 */
611 bool blk_get_queue(struct request_queue *q)
612 {
613 if (likely(!blk_queue_dying(q))) {
614 __blk_get_queue(q);
615 return true;
616 }
617
618 return false;
619 }
620 EXPORT_SYMBOL(blk_get_queue);
621
622 /**
623 * blk_get_request - allocate a request
624 * @q: request queue to allocate a request for
625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
627 */
628 struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 blk_mq_req_flags_t flags)
630 {
631 struct request *req;
632
633 WARN_ON_ONCE(op & REQ_NOWAIT);
634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
635
636 req = blk_mq_alloc_request(q, op, flags);
637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 q->mq_ops->initialize_rq_fn(req);
639
640 return req;
641 }
642 EXPORT_SYMBOL(blk_get_request);
643
644 void blk_put_request(struct request *req)
645 {
646 blk_mq_free_request(req);
647 }
648 EXPORT_SYMBOL(blk_put_request);
649
650 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
651 {
652 char b[BDEVNAME_SIZE];
653
654 pr_info_ratelimited("attempt to access beyond end of device\n"
655 "%s: rw=%d, want=%llu, limit=%llu\n",
656 bio_devname(bio, b), bio->bi_opf,
657 bio_end_sector(bio), maxsector);
658 }
659
660 #ifdef CONFIG_FAIL_MAKE_REQUEST
661
662 static DECLARE_FAULT_ATTR(fail_make_request);
663
664 static int __init setup_fail_make_request(char *str)
665 {
666 return setup_fault_attr(&fail_make_request, str);
667 }
668 __setup("fail_make_request=", setup_fail_make_request);
669
670 static bool should_fail_request(struct block_device *part, unsigned int bytes)
671 {
672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
673 }
674
675 static int __init fail_make_request_debugfs(void)
676 {
677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 NULL, &fail_make_request);
679
680 return PTR_ERR_OR_ZERO(dir);
681 }
682
683 late_initcall(fail_make_request_debugfs);
684
685 #else /* CONFIG_FAIL_MAKE_REQUEST */
686
687 static inline bool should_fail_request(struct block_device *part,
688 unsigned int bytes)
689 {
690 return false;
691 }
692
693 #endif /* CONFIG_FAIL_MAKE_REQUEST */
694
695 static inline bool bio_check_ro(struct bio *bio)
696 {
697 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
698 char b[BDEVNAME_SIZE];
699
700 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701 return false;
702
703 WARN_ONCE(1,
704 "Trying to write to read-only block-device %s (partno %d)\n",
705 bio_devname(bio, b), bio->bi_bdev->bd_partno);
706 /* Older lvm-tools actually trigger this */
707 return false;
708 }
709
710 return false;
711 }
712
713 static noinline int should_fail_bio(struct bio *bio)
714 {
715 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
716 return -EIO;
717 return 0;
718 }
719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720
721 /*
722 * Check whether this bio extends beyond the end of the device or partition.
723 * This may well happen - the kernel calls bread() without checking the size of
724 * the device, e.g., when mounting a file system.
725 */
726 static inline int bio_check_eod(struct bio *bio)
727 {
728 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
729 unsigned int nr_sectors = bio_sectors(bio);
730
731 if (nr_sectors && maxsector &&
732 (nr_sectors > maxsector ||
733 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 handle_bad_sector(bio, maxsector);
735 return -EIO;
736 }
737 return 0;
738 }
739
740 /*
741 * Remap block n of partition p to block n+start(p) of the disk.
742 */
743 static int blk_partition_remap(struct bio *bio)
744 {
745 struct block_device *p = bio->bi_bdev;
746
747 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
748 return -EIO;
749 if (bio_sectors(bio)) {
750 bio->bi_iter.bi_sector += p->bd_start_sect;
751 trace_block_bio_remap(bio, p->bd_dev,
752 bio->bi_iter.bi_sector -
753 p->bd_start_sect);
754 }
755 bio_set_flag(bio, BIO_REMAPPED);
756 return 0;
757 }
758
759 /*
760 * Check write append to a zoned block device.
761 */
762 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
763 struct bio *bio)
764 {
765 sector_t pos = bio->bi_iter.bi_sector;
766 int nr_sectors = bio_sectors(bio);
767
768 /* Only applicable to zoned block devices */
769 if (!blk_queue_is_zoned(q))
770 return BLK_STS_NOTSUPP;
771
772 /* The bio sector must point to the start of a sequential zone */
773 if (pos & (blk_queue_zone_sectors(q) - 1) ||
774 !blk_queue_zone_is_seq(q, pos))
775 return BLK_STS_IOERR;
776
777 /*
778 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
779 * split and could result in non-contiguous sectors being written in
780 * different zones.
781 */
782 if (nr_sectors > q->limits.chunk_sectors)
783 return BLK_STS_IOERR;
784
785 /* Make sure the BIO is small enough and will not get split */
786 if (nr_sectors > q->limits.max_zone_append_sectors)
787 return BLK_STS_IOERR;
788
789 bio->bi_opf |= REQ_NOMERGE;
790
791 return BLK_STS_OK;
792 }
793
794 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
795 {
796 struct block_device *bdev = bio->bi_bdev;
797 struct request_queue *q = bdev->bd_disk->queue;
798 blk_status_t status = BLK_STS_IOERR;
799 struct blk_plug *plug;
800
801 might_sleep();
802
803 plug = blk_mq_plug(q, bio);
804 if (plug && plug->nowait)
805 bio->bi_opf |= REQ_NOWAIT;
806
807 /*
808 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
809 * if queue does not support NOWAIT.
810 */
811 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
812 goto not_supported;
813
814 if (should_fail_bio(bio))
815 goto end_io;
816 if (unlikely(bio_check_ro(bio)))
817 goto end_io;
818 if (!bio_flagged(bio, BIO_REMAPPED)) {
819 if (unlikely(bio_check_eod(bio)))
820 goto end_io;
821 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
822 goto end_io;
823 }
824
825 /*
826 * Filter flush bio's early so that bio based drivers without flush
827 * support don't have to worry about them.
828 */
829 if (op_is_flush(bio->bi_opf) &&
830 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
831 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
832 if (!bio_sectors(bio)) {
833 status = BLK_STS_OK;
834 goto end_io;
835 }
836 }
837
838 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
839 bio->bi_opf &= ~REQ_HIPRI;
840
841 switch (bio_op(bio)) {
842 case REQ_OP_DISCARD:
843 if (!blk_queue_discard(q))
844 goto not_supported;
845 break;
846 case REQ_OP_SECURE_ERASE:
847 if (!blk_queue_secure_erase(q))
848 goto not_supported;
849 break;
850 case REQ_OP_WRITE_SAME:
851 if (!q->limits.max_write_same_sectors)
852 goto not_supported;
853 break;
854 case REQ_OP_ZONE_APPEND:
855 status = blk_check_zone_append(q, bio);
856 if (status != BLK_STS_OK)
857 goto end_io;
858 break;
859 case REQ_OP_ZONE_RESET:
860 case REQ_OP_ZONE_OPEN:
861 case REQ_OP_ZONE_CLOSE:
862 case REQ_OP_ZONE_FINISH:
863 if (!blk_queue_is_zoned(q))
864 goto not_supported;
865 break;
866 case REQ_OP_ZONE_RESET_ALL:
867 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
868 goto not_supported;
869 break;
870 case REQ_OP_WRITE_ZEROES:
871 if (!q->limits.max_write_zeroes_sectors)
872 goto not_supported;
873 break;
874 default:
875 break;
876 }
877
878 /*
879 * Various block parts want %current->io_context, so allocate it up
880 * front rather than dealing with lots of pain to allocate it only
881 * where needed. This may fail and the block layer knows how to live
882 * with it.
883 */
884 if (unlikely(!current->io_context))
885 create_task_io_context(current, GFP_ATOMIC, q->node);
886
887 if (blk_throtl_bio(bio)) {
888 blkcg_bio_issue_init(bio);
889 return false;
890 }
891
892 blk_cgroup_bio_start(bio);
893 blkcg_bio_issue_init(bio);
894
895 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
896 trace_block_bio_queue(bio);
897 /* Now that enqueuing has been traced, we need to trace
898 * completion as well.
899 */
900 bio_set_flag(bio, BIO_TRACE_COMPLETION);
901 }
902 return true;
903
904 not_supported:
905 status = BLK_STS_NOTSUPP;
906 end_io:
907 bio->bi_status = status;
908 bio_endio(bio);
909 return false;
910 }
911
912 static blk_qc_t __submit_bio(struct bio *bio)
913 {
914 struct gendisk *disk = bio->bi_bdev->bd_disk;
915 blk_qc_t ret = BLK_QC_T_NONE;
916
917 if (blk_crypto_bio_prep(&bio)) {
918 if (!disk->fops->submit_bio)
919 return blk_mq_submit_bio(bio);
920 ret = disk->fops->submit_bio(bio);
921 }
922 blk_queue_exit(disk->queue);
923 return ret;
924 }
925
926 /*
927 * The loop in this function may be a bit non-obvious, and so deserves some
928 * explanation:
929 *
930 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
931 * that), so we have a list with a single bio.
932 * - We pretend that we have just taken it off a longer list, so we assign
933 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
934 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
935 * bios through a recursive call to submit_bio_noacct. If it did, we find a
936 * non-NULL value in bio_list and re-enter the loop from the top.
937 * - In this case we really did just take the bio of the top of the list (no
938 * pretending) and so remove it from bio_list, and call into ->submit_bio()
939 * again.
940 *
941 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
942 * bio_list_on_stack[1] contains bios that were submitted before the current
943 * ->submit_bio_bio, but that haven't been processed yet.
944 */
945 static blk_qc_t __submit_bio_noacct(struct bio *bio)
946 {
947 struct bio_list bio_list_on_stack[2];
948 blk_qc_t ret = BLK_QC_T_NONE;
949
950 BUG_ON(bio->bi_next);
951
952 bio_list_init(&bio_list_on_stack[0]);
953 current->bio_list = bio_list_on_stack;
954
955 do {
956 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
957 struct bio_list lower, same;
958
959 if (unlikely(bio_queue_enter(bio) != 0))
960 continue;
961
962 /*
963 * Create a fresh bio_list for all subordinate requests.
964 */
965 bio_list_on_stack[1] = bio_list_on_stack[0];
966 bio_list_init(&bio_list_on_stack[0]);
967
968 ret = __submit_bio(bio);
969
970 /*
971 * Sort new bios into those for a lower level and those for the
972 * same level.
973 */
974 bio_list_init(&lower);
975 bio_list_init(&same);
976 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
977 if (q == bio->bi_bdev->bd_disk->queue)
978 bio_list_add(&same, bio);
979 else
980 bio_list_add(&lower, bio);
981
982 /*
983 * Now assemble so we handle the lowest level first.
984 */
985 bio_list_merge(&bio_list_on_stack[0], &lower);
986 bio_list_merge(&bio_list_on_stack[0], &same);
987 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
988 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
989
990 current->bio_list = NULL;
991 return ret;
992 }
993
994 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
995 {
996 struct bio_list bio_list[2] = { };
997 blk_qc_t ret = BLK_QC_T_NONE;
998
999 current->bio_list = bio_list;
1000
1001 do {
1002 struct gendisk *disk = bio->bi_bdev->bd_disk;
1003
1004 if (unlikely(bio_queue_enter(bio) != 0))
1005 continue;
1006
1007 if (!blk_crypto_bio_prep(&bio)) {
1008 blk_queue_exit(disk->queue);
1009 ret = BLK_QC_T_NONE;
1010 continue;
1011 }
1012
1013 ret = blk_mq_submit_bio(bio);
1014 } while ((bio = bio_list_pop(&bio_list[0])));
1015
1016 current->bio_list = NULL;
1017 return ret;
1018 }
1019
1020 /**
1021 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1022 * @bio: The bio describing the location in memory and on the device.
1023 *
1024 * This is a version of submit_bio() that shall only be used for I/O that is
1025 * resubmitted to lower level drivers by stacking block drivers. All file
1026 * systems and other upper level users of the block layer should use
1027 * submit_bio() instead.
1028 */
1029 blk_qc_t submit_bio_noacct(struct bio *bio)
1030 {
1031 if (!submit_bio_checks(bio))
1032 return BLK_QC_T_NONE;
1033
1034 /*
1035 * We only want one ->submit_bio to be active at a time, else stack
1036 * usage with stacked devices could be a problem. Use current->bio_list
1037 * to collect a list of requests submited by a ->submit_bio method while
1038 * it is active, and then process them after it returned.
1039 */
1040 if (current->bio_list) {
1041 bio_list_add(&current->bio_list[0], bio);
1042 return BLK_QC_T_NONE;
1043 }
1044
1045 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1046 return __submit_bio_noacct_mq(bio);
1047 return __submit_bio_noacct(bio);
1048 }
1049 EXPORT_SYMBOL(submit_bio_noacct);
1050
1051 /**
1052 * submit_bio - submit a bio to the block device layer for I/O
1053 * @bio: The &struct bio which describes the I/O
1054 *
1055 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1056 * fully set up &struct bio that describes the I/O that needs to be done. The
1057 * bio will be send to the device described by the bi_bdev field.
1058 *
1059 * The success/failure status of the request, along with notification of
1060 * completion, is delivered asynchronously through the ->bi_end_io() callback
1061 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1062 * been called.
1063 */
1064 blk_qc_t submit_bio(struct bio *bio)
1065 {
1066 if (blkcg_punt_bio_submit(bio))
1067 return BLK_QC_T_NONE;
1068
1069 /*
1070 * If it's a regular read/write or a barrier with data attached,
1071 * go through the normal accounting stuff before submission.
1072 */
1073 if (bio_has_data(bio)) {
1074 unsigned int count;
1075
1076 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1077 count = queue_logical_block_size(
1078 bio->bi_bdev->bd_disk->queue) >> 9;
1079 else
1080 count = bio_sectors(bio);
1081
1082 if (op_is_write(bio_op(bio))) {
1083 count_vm_events(PGPGOUT, count);
1084 } else {
1085 task_io_account_read(bio->bi_iter.bi_size);
1086 count_vm_events(PGPGIN, count);
1087 }
1088 }
1089
1090 /*
1091 * If we're reading data that is part of the userspace workingset, count
1092 * submission time as memory stall. When the device is congested, or
1093 * the submitting cgroup IO-throttled, submission can be a significant
1094 * part of overall IO time.
1095 */
1096 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1097 bio_flagged(bio, BIO_WORKINGSET))) {
1098 unsigned long pflags;
1099 blk_qc_t ret;
1100
1101 psi_memstall_enter(&pflags);
1102 ret = submit_bio_noacct(bio);
1103 psi_memstall_leave(&pflags);
1104
1105 return ret;
1106 }
1107
1108 return submit_bio_noacct(bio);
1109 }
1110 EXPORT_SYMBOL(submit_bio);
1111
1112 /**
1113 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1114 * for the new queue limits
1115 * @q: the queue
1116 * @rq: the request being checked
1117 *
1118 * Description:
1119 * @rq may have been made based on weaker limitations of upper-level queues
1120 * in request stacking drivers, and it may violate the limitation of @q.
1121 * Since the block layer and the underlying device driver trust @rq
1122 * after it is inserted to @q, it should be checked against @q before
1123 * the insertion using this generic function.
1124 *
1125 * Request stacking drivers like request-based dm may change the queue
1126 * limits when retrying requests on other queues. Those requests need
1127 * to be checked against the new queue limits again during dispatch.
1128 */
1129 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1130 struct request *rq)
1131 {
1132 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1133
1134 if (blk_rq_sectors(rq) > max_sectors) {
1135 /*
1136 * SCSI device does not have a good way to return if
1137 * Write Same/Zero is actually supported. If a device rejects
1138 * a non-read/write command (discard, write same,etc.) the
1139 * low-level device driver will set the relevant queue limit to
1140 * 0 to prevent blk-lib from issuing more of the offending
1141 * operations. Commands queued prior to the queue limit being
1142 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1143 * errors being propagated to upper layers.
1144 */
1145 if (max_sectors == 0)
1146 return BLK_STS_NOTSUPP;
1147
1148 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1149 __func__, blk_rq_sectors(rq), max_sectors);
1150 return BLK_STS_IOERR;
1151 }
1152
1153 /*
1154 * The queue settings related to segment counting may differ from the
1155 * original queue.
1156 */
1157 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1158 if (rq->nr_phys_segments > queue_max_segments(q)) {
1159 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1160 __func__, rq->nr_phys_segments, queue_max_segments(q));
1161 return BLK_STS_IOERR;
1162 }
1163
1164 return BLK_STS_OK;
1165 }
1166
1167 /**
1168 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1169 * @q: the queue to submit the request
1170 * @rq: the request being queued
1171 */
1172 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1173 {
1174 blk_status_t ret;
1175
1176 ret = blk_cloned_rq_check_limits(q, rq);
1177 if (ret != BLK_STS_OK)
1178 return ret;
1179
1180 if (rq->rq_disk &&
1181 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1182 return BLK_STS_IOERR;
1183
1184 if (blk_crypto_insert_cloned_request(rq))
1185 return BLK_STS_IOERR;
1186
1187 if (blk_queue_io_stat(q))
1188 blk_account_io_start(rq);
1189
1190 /*
1191 * Since we have a scheduler attached on the top device,
1192 * bypass a potential scheduler on the bottom device for
1193 * insert.
1194 */
1195 return blk_mq_request_issue_directly(rq, true);
1196 }
1197 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1198
1199 /**
1200 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1201 * @rq: request to examine
1202 *
1203 * Description:
1204 * A request could be merge of IOs which require different failure
1205 * handling. This function determines the number of bytes which
1206 * can be failed from the beginning of the request without
1207 * crossing into area which need to be retried further.
1208 *
1209 * Return:
1210 * The number of bytes to fail.
1211 */
1212 unsigned int blk_rq_err_bytes(const struct request *rq)
1213 {
1214 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1215 unsigned int bytes = 0;
1216 struct bio *bio;
1217
1218 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1219 return blk_rq_bytes(rq);
1220
1221 /*
1222 * Currently the only 'mixing' which can happen is between
1223 * different fastfail types. We can safely fail portions
1224 * which have all the failfast bits that the first one has -
1225 * the ones which are at least as eager to fail as the first
1226 * one.
1227 */
1228 for (bio = rq->bio; bio; bio = bio->bi_next) {
1229 if ((bio->bi_opf & ff) != ff)
1230 break;
1231 bytes += bio->bi_iter.bi_size;
1232 }
1233
1234 /* this could lead to infinite loop */
1235 BUG_ON(blk_rq_bytes(rq) && !bytes);
1236 return bytes;
1237 }
1238 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1239
1240 static void update_io_ticks(struct block_device *part, unsigned long now,
1241 bool end)
1242 {
1243 unsigned long stamp;
1244 again:
1245 stamp = READ_ONCE(part->bd_stamp);
1246 if (unlikely(stamp != now)) {
1247 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1248 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1249 }
1250 if (part->bd_partno) {
1251 part = bdev_whole(part);
1252 goto again;
1253 }
1254 }
1255
1256 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1257 {
1258 if (req->part && blk_do_io_stat(req)) {
1259 const int sgrp = op_stat_group(req_op(req));
1260
1261 part_stat_lock();
1262 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1263 part_stat_unlock();
1264 }
1265 }
1266
1267 void blk_account_io_done(struct request *req, u64 now)
1268 {
1269 /*
1270 * Account IO completion. flush_rq isn't accounted as a
1271 * normal IO on queueing nor completion. Accounting the
1272 * containing request is enough.
1273 */
1274 if (req->part && blk_do_io_stat(req) &&
1275 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1276 const int sgrp = op_stat_group(req_op(req));
1277
1278 part_stat_lock();
1279 update_io_ticks(req->part, jiffies, true);
1280 part_stat_inc(req->part, ios[sgrp]);
1281 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1282 part_stat_unlock();
1283 }
1284 }
1285
1286 void blk_account_io_start(struct request *rq)
1287 {
1288 if (!blk_do_io_stat(rq))
1289 return;
1290
1291 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1292 if (rq->bio && rq->bio->bi_bdev)
1293 rq->part = rq->bio->bi_bdev;
1294 else
1295 rq->part = rq->rq_disk->part0;
1296
1297 part_stat_lock();
1298 update_io_ticks(rq->part, jiffies, false);
1299 part_stat_unlock();
1300 }
1301
1302 static unsigned long __part_start_io_acct(struct block_device *part,
1303 unsigned int sectors, unsigned int op)
1304 {
1305 const int sgrp = op_stat_group(op);
1306 unsigned long now = READ_ONCE(jiffies);
1307
1308 part_stat_lock();
1309 update_io_ticks(part, now, false);
1310 part_stat_inc(part, ios[sgrp]);
1311 part_stat_add(part, sectors[sgrp], sectors);
1312 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1313 part_stat_unlock();
1314
1315 return now;
1316 }
1317
1318 /**
1319 * bio_start_io_acct - start I/O accounting for bio based drivers
1320 * @bio: bio to start account for
1321 *
1322 * Returns the start time that should be passed back to bio_end_io_acct().
1323 */
1324 unsigned long bio_start_io_acct(struct bio *bio)
1325 {
1326 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1327 }
1328 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1329
1330 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1331 unsigned int op)
1332 {
1333 return __part_start_io_acct(disk->part0, sectors, op);
1334 }
1335 EXPORT_SYMBOL(disk_start_io_acct);
1336
1337 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1338 unsigned long start_time)
1339 {
1340 const int sgrp = op_stat_group(op);
1341 unsigned long now = READ_ONCE(jiffies);
1342 unsigned long duration = now - start_time;
1343
1344 part_stat_lock();
1345 update_io_ticks(part, now, true);
1346 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1347 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1348 part_stat_unlock();
1349 }
1350
1351 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1352 struct block_device *orig_bdev)
1353 {
1354 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1355 }
1356 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1357
1358 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1359 unsigned long start_time)
1360 {
1361 __part_end_io_acct(disk->part0, op, start_time);
1362 }
1363 EXPORT_SYMBOL(disk_end_io_acct);
1364
1365 /*
1366 * Steal bios from a request and add them to a bio list.
1367 * The request must not have been partially completed before.
1368 */
1369 void blk_steal_bios(struct bio_list *list, struct request *rq)
1370 {
1371 if (rq->bio) {
1372 if (list->tail)
1373 list->tail->bi_next = rq->bio;
1374 else
1375 list->head = rq->bio;
1376 list->tail = rq->biotail;
1377
1378 rq->bio = NULL;
1379 rq->biotail = NULL;
1380 }
1381
1382 rq->__data_len = 0;
1383 }
1384 EXPORT_SYMBOL_GPL(blk_steal_bios);
1385
1386 /**
1387 * blk_update_request - Complete multiple bytes without completing the request
1388 * @req: the request being processed
1389 * @error: block status code
1390 * @nr_bytes: number of bytes to complete for @req
1391 *
1392 * Description:
1393 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1394 * the request structure even if @req doesn't have leftover.
1395 * If @req has leftover, sets it up for the next range of segments.
1396 *
1397 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1398 * %false return from this function.
1399 *
1400 * Note:
1401 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1402 * except in the consistency check at the end of this function.
1403 *
1404 * Return:
1405 * %false - this request doesn't have any more data
1406 * %true - this request has more data
1407 **/
1408 bool blk_update_request(struct request *req, blk_status_t error,
1409 unsigned int nr_bytes)
1410 {
1411 int total_bytes;
1412
1413 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1414
1415 if (!req->bio)
1416 return false;
1417
1418 #ifdef CONFIG_BLK_DEV_INTEGRITY
1419 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1420 error == BLK_STS_OK)
1421 req->q->integrity.profile->complete_fn(req, nr_bytes);
1422 #endif
1423
1424 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1425 !(req->rq_flags & RQF_QUIET)))
1426 print_req_error(req, error, __func__);
1427
1428 blk_account_io_completion(req, nr_bytes);
1429
1430 total_bytes = 0;
1431 while (req->bio) {
1432 struct bio *bio = req->bio;
1433 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1434
1435 if (bio_bytes == bio->bi_iter.bi_size)
1436 req->bio = bio->bi_next;
1437
1438 /* Completion has already been traced */
1439 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1440 req_bio_endio(req, bio, bio_bytes, error);
1441
1442 total_bytes += bio_bytes;
1443 nr_bytes -= bio_bytes;
1444
1445 if (!nr_bytes)
1446 break;
1447 }
1448
1449 /*
1450 * completely done
1451 */
1452 if (!req->bio) {
1453 /*
1454 * Reset counters so that the request stacking driver
1455 * can find how many bytes remain in the request
1456 * later.
1457 */
1458 req->__data_len = 0;
1459 return false;
1460 }
1461
1462 req->__data_len -= total_bytes;
1463
1464 /* update sector only for requests with clear definition of sector */
1465 if (!blk_rq_is_passthrough(req))
1466 req->__sector += total_bytes >> 9;
1467
1468 /* mixed attributes always follow the first bio */
1469 if (req->rq_flags & RQF_MIXED_MERGE) {
1470 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1471 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1472 }
1473
1474 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1475 /*
1476 * If total number of sectors is less than the first segment
1477 * size, something has gone terribly wrong.
1478 */
1479 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1480 blk_dump_rq_flags(req, "request botched");
1481 req->__data_len = blk_rq_cur_bytes(req);
1482 }
1483
1484 /* recalculate the number of segments */
1485 req->nr_phys_segments = blk_recalc_rq_segments(req);
1486 }
1487
1488 return true;
1489 }
1490 EXPORT_SYMBOL_GPL(blk_update_request);
1491
1492 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1493 /**
1494 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1495 * @rq: the request to be flushed
1496 *
1497 * Description:
1498 * Flush all pages in @rq.
1499 */
1500 void rq_flush_dcache_pages(struct request *rq)
1501 {
1502 struct req_iterator iter;
1503 struct bio_vec bvec;
1504
1505 rq_for_each_segment(bvec, rq, iter)
1506 flush_dcache_page(bvec.bv_page);
1507 }
1508 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1509 #endif
1510
1511 /**
1512 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1513 * @q : the queue of the device being checked
1514 *
1515 * Description:
1516 * Check if underlying low-level drivers of a device are busy.
1517 * If the drivers want to export their busy state, they must set own
1518 * exporting function using blk_queue_lld_busy() first.
1519 *
1520 * Basically, this function is used only by request stacking drivers
1521 * to stop dispatching requests to underlying devices when underlying
1522 * devices are busy. This behavior helps more I/O merging on the queue
1523 * of the request stacking driver and prevents I/O throughput regression
1524 * on burst I/O load.
1525 *
1526 * Return:
1527 * 0 - Not busy (The request stacking driver should dispatch request)
1528 * 1 - Busy (The request stacking driver should stop dispatching request)
1529 */
1530 int blk_lld_busy(struct request_queue *q)
1531 {
1532 if (queue_is_mq(q) && q->mq_ops->busy)
1533 return q->mq_ops->busy(q);
1534
1535 return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(blk_lld_busy);
1538
1539 /**
1540 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1541 * @rq: the clone request to be cleaned up
1542 *
1543 * Description:
1544 * Free all bios in @rq for a cloned request.
1545 */
1546 void blk_rq_unprep_clone(struct request *rq)
1547 {
1548 struct bio *bio;
1549
1550 while ((bio = rq->bio) != NULL) {
1551 rq->bio = bio->bi_next;
1552
1553 bio_put(bio);
1554 }
1555 }
1556 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1557
1558 /**
1559 * blk_rq_prep_clone - Helper function to setup clone request
1560 * @rq: the request to be setup
1561 * @rq_src: original request to be cloned
1562 * @bs: bio_set that bios for clone are allocated from
1563 * @gfp_mask: memory allocation mask for bio
1564 * @bio_ctr: setup function to be called for each clone bio.
1565 * Returns %0 for success, non %0 for failure.
1566 * @data: private data to be passed to @bio_ctr
1567 *
1568 * Description:
1569 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1570 * Also, pages which the original bios are pointing to are not copied
1571 * and the cloned bios just point same pages.
1572 * So cloned bios must be completed before original bios, which means
1573 * the caller must complete @rq before @rq_src.
1574 */
1575 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1576 struct bio_set *bs, gfp_t gfp_mask,
1577 int (*bio_ctr)(struct bio *, struct bio *, void *),
1578 void *data)
1579 {
1580 struct bio *bio, *bio_src;
1581
1582 if (!bs)
1583 bs = &fs_bio_set;
1584
1585 __rq_for_each_bio(bio_src, rq_src) {
1586 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1587 if (!bio)
1588 goto free_and_out;
1589
1590 if (bio_ctr && bio_ctr(bio, bio_src, data))
1591 goto free_and_out;
1592
1593 if (rq->bio) {
1594 rq->biotail->bi_next = bio;
1595 rq->biotail = bio;
1596 } else {
1597 rq->bio = rq->biotail = bio;
1598 }
1599 bio = NULL;
1600 }
1601
1602 /* Copy attributes of the original request to the clone request. */
1603 rq->__sector = blk_rq_pos(rq_src);
1604 rq->__data_len = blk_rq_bytes(rq_src);
1605 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1606 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1607 rq->special_vec = rq_src->special_vec;
1608 }
1609 rq->nr_phys_segments = rq_src->nr_phys_segments;
1610 rq->ioprio = rq_src->ioprio;
1611
1612 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1613 goto free_and_out;
1614
1615 return 0;
1616
1617 free_and_out:
1618 if (bio)
1619 bio_put(bio);
1620 blk_rq_unprep_clone(rq);
1621
1622 return -ENOMEM;
1623 }
1624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1625
1626 int kblockd_schedule_work(struct work_struct *work)
1627 {
1628 return queue_work(kblockd_workqueue, work);
1629 }
1630 EXPORT_SYMBOL(kblockd_schedule_work);
1631
1632 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1633 unsigned long delay)
1634 {
1635 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1636 }
1637 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1638
1639 /**
1640 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1641 * @plug: The &struct blk_plug that needs to be initialized
1642 *
1643 * Description:
1644 * blk_start_plug() indicates to the block layer an intent by the caller
1645 * to submit multiple I/O requests in a batch. The block layer may use
1646 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1647 * is called. However, the block layer may choose to submit requests
1648 * before a call to blk_finish_plug() if the number of queued I/Os
1649 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1650 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1651 * the task schedules (see below).
1652 *
1653 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1654 * pending I/O should the task end up blocking between blk_start_plug() and
1655 * blk_finish_plug(). This is important from a performance perspective, but
1656 * also ensures that we don't deadlock. For instance, if the task is blocking
1657 * for a memory allocation, memory reclaim could end up wanting to free a
1658 * page belonging to that request that is currently residing in our private
1659 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1660 * this kind of deadlock.
1661 */
1662 void blk_start_plug(struct blk_plug *plug)
1663 {
1664 struct task_struct *tsk = current;
1665
1666 /*
1667 * If this is a nested plug, don't actually assign it.
1668 */
1669 if (tsk->plug)
1670 return;
1671
1672 INIT_LIST_HEAD(&plug->mq_list);
1673 INIT_LIST_HEAD(&plug->cb_list);
1674 plug->rq_count = 0;
1675 plug->multiple_queues = false;
1676 plug->nowait = false;
1677
1678 /*
1679 * Store ordering should not be needed here, since a potential
1680 * preempt will imply a full memory barrier
1681 */
1682 tsk->plug = plug;
1683 }
1684 EXPORT_SYMBOL(blk_start_plug);
1685
1686 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1687 {
1688 LIST_HEAD(callbacks);
1689
1690 while (!list_empty(&plug->cb_list)) {
1691 list_splice_init(&plug->cb_list, &callbacks);
1692
1693 while (!list_empty(&callbacks)) {
1694 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1695 struct blk_plug_cb,
1696 list);
1697 list_del(&cb->list);
1698 cb->callback(cb, from_schedule);
1699 }
1700 }
1701 }
1702
1703 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1704 int size)
1705 {
1706 struct blk_plug *plug = current->plug;
1707 struct blk_plug_cb *cb;
1708
1709 if (!plug)
1710 return NULL;
1711
1712 list_for_each_entry(cb, &plug->cb_list, list)
1713 if (cb->callback == unplug && cb->data == data)
1714 return cb;
1715
1716 /* Not currently on the callback list */
1717 BUG_ON(size < sizeof(*cb));
1718 cb = kzalloc(size, GFP_ATOMIC);
1719 if (cb) {
1720 cb->data = data;
1721 cb->callback = unplug;
1722 list_add(&cb->list, &plug->cb_list);
1723 }
1724 return cb;
1725 }
1726 EXPORT_SYMBOL(blk_check_plugged);
1727
1728 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1729 {
1730 flush_plug_callbacks(plug, from_schedule);
1731
1732 if (!list_empty(&plug->mq_list))
1733 blk_mq_flush_plug_list(plug, from_schedule);
1734 }
1735
1736 /**
1737 * blk_finish_plug - mark the end of a batch of submitted I/O
1738 * @plug: The &struct blk_plug passed to blk_start_plug()
1739 *
1740 * Description:
1741 * Indicate that a batch of I/O submissions is complete. This function
1742 * must be paired with an initial call to blk_start_plug(). The intent
1743 * is to allow the block layer to optimize I/O submission. See the
1744 * documentation for blk_start_plug() for more information.
1745 */
1746 void blk_finish_plug(struct blk_plug *plug)
1747 {
1748 if (plug != current->plug)
1749 return;
1750 blk_flush_plug_list(plug, false);
1751
1752 current->plug = NULL;
1753 }
1754 EXPORT_SYMBOL(blk_finish_plug);
1755
1756 void blk_io_schedule(void)
1757 {
1758 /* Prevent hang_check timer from firing at us during very long I/O */
1759 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1760
1761 if (timeout)
1762 io_schedule_timeout(timeout);
1763 else
1764 io_schedule();
1765 }
1766 EXPORT_SYMBOL_GPL(blk_io_schedule);
1767
1768 int __init blk_dev_init(void)
1769 {
1770 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1771 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1772 sizeof_field(struct request, cmd_flags));
1773 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1774 sizeof_field(struct bio, bi_opf));
1775
1776 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1777 kblockd_workqueue = alloc_workqueue("kblockd",
1778 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1779 if (!kblockd_workqueue)
1780 panic("Failed to create kblockd\n");
1781
1782 blk_requestq_cachep = kmem_cache_create("request_queue",
1783 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1784
1785 blk_debugfs_root = debugfs_create_dir("block", NULL);
1786
1787 return 0;
1788 }