]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - block/blk-core.c
NFS: swap-out must always use STABLE writes.
[mirror_ubuntu-focal-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
44
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
50
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60
61 DEFINE_IDA(blk_queue_ida);
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 /**
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
76 * @q: request queue
77 */
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 {
80 set_bit(flag, &q->queue_flags);
81 }
82 EXPORT_SYMBOL(blk_queue_flag_set);
83
84 /**
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
87 * @q: request queue
88 */
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 {
91 clear_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_clear);
94
95 /**
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
98 * @q: request queue
99 *
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
102 */
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 {
105 return test_and_set_bit(flag, &q->queue_flags);
106 }
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108
109 void blk_rq_init(struct request_queue *q, struct request *rq)
110 {
111 memset(rq, 0, sizeof(*rq));
112
113 INIT_LIST_HEAD(&rq->queuelist);
114 rq->q = q;
115 rq->__sector = (sector_t) -1;
116 INIT_HLIST_NODE(&rq->hash);
117 RB_CLEAR_NODE(&rq->rb_node);
118 rq->tag = -1;
119 rq->internal_tag = -1;
120 rq->start_time_ns = ktime_get_ns();
121 rq->part = NULL;
122 refcount_set(&rq->ref, 1);
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 REQ_OP_NAME(READ),
129 REQ_OP_NAME(WRITE),
130 REQ_OP_NAME(FLUSH),
131 REQ_OP_NAME(DISCARD),
132 REQ_OP_NAME(SECURE_ERASE),
133 REQ_OP_NAME(ZONE_RESET),
134 REQ_OP_NAME(ZONE_RESET_ALL),
135 REQ_OP_NAME(WRITE_SAME),
136 REQ_OP_NAME(WRITE_ZEROES),
137 REQ_OP_NAME(SCSI_IN),
138 REQ_OP_NAME(SCSI_OUT),
139 REQ_OP_NAME(DRV_IN),
140 REQ_OP_NAME(DRV_OUT),
141 };
142 #undef REQ_OP_NAME
143
144 /**
145 * blk_op_str - Return string XXX in the REQ_OP_XXX.
146 * @op: REQ_OP_XXX.
147 *
148 * Description: Centralize block layer function to convert REQ_OP_XXX into
149 * string format. Useful in the debugging and tracing bio or request. For
150 * invalid REQ_OP_XXX it returns string "UNKNOWN".
151 */
152 inline const char *blk_op_str(unsigned int op)
153 {
154 const char *op_str = "UNKNOWN";
155
156 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
157 op_str = blk_op_name[op];
158
159 return op_str;
160 }
161 EXPORT_SYMBOL_GPL(blk_op_str);
162
163 static const struct {
164 int errno;
165 const char *name;
166 } blk_errors[] = {
167 [BLK_STS_OK] = { 0, "" },
168 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
169 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
170 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
171 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
172 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
173 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
174 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
175 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
176 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
177 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
178 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
179
180 /* device mapper special case, should not leak out: */
181 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
182
183 /* everything else not covered above: */
184 [BLK_STS_IOERR] = { -EIO, "I/O" },
185 };
186
187 blk_status_t errno_to_blk_status(int errno)
188 {
189 int i;
190
191 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
192 if (blk_errors[i].errno == errno)
193 return (__force blk_status_t)i;
194 }
195
196 return BLK_STS_IOERR;
197 }
198 EXPORT_SYMBOL_GPL(errno_to_blk_status);
199
200 int blk_status_to_errno(blk_status_t status)
201 {
202 int idx = (__force int)status;
203
204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 return -EIO;
206 return blk_errors[idx].errno;
207 }
208 EXPORT_SYMBOL_GPL(blk_status_to_errno);
209
210 static void print_req_error(struct request *req, blk_status_t status,
211 const char *caller)
212 {
213 int idx = (__force int)status;
214
215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 return;
217
218 printk_ratelimited(KERN_ERR
219 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
220 "phys_seg %u prio class %u\n",
221 caller, blk_errors[idx].name,
222 req->rq_disk ? req->rq_disk->disk_name : "?",
223 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
224 req->cmd_flags & ~REQ_OP_MASK,
225 req->nr_phys_segments,
226 IOPRIO_PRIO_CLASS(req->ioprio));
227 }
228
229 static void req_bio_endio(struct request *rq, struct bio *bio,
230 unsigned int nbytes, blk_status_t error)
231 {
232 if (error)
233 bio->bi_status = error;
234
235 if (unlikely(rq->rq_flags & RQF_QUIET))
236 bio_set_flag(bio, BIO_QUIET);
237
238 bio_advance(bio, nbytes);
239
240 /* don't actually finish bio if it's part of flush sequence */
241 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
242 bio_endio(bio);
243 }
244
245 void blk_dump_rq_flags(struct request *rq, char *msg)
246 {
247 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
248 rq->rq_disk ? rq->rq_disk->disk_name : "?",
249 (unsigned long long) rq->cmd_flags);
250
251 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
252 (unsigned long long)blk_rq_pos(rq),
253 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
254 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
255 rq->bio, rq->biotail, blk_rq_bytes(rq));
256 }
257 EXPORT_SYMBOL(blk_dump_rq_flags);
258
259 /**
260 * blk_sync_queue - cancel any pending callbacks on a queue
261 * @q: the queue
262 *
263 * Description:
264 * The block layer may perform asynchronous callback activity
265 * on a queue, such as calling the unplug function after a timeout.
266 * A block device may call blk_sync_queue to ensure that any
267 * such activity is cancelled, thus allowing it to release resources
268 * that the callbacks might use. The caller must already have made sure
269 * that its ->make_request_fn will not re-add plugging prior to calling
270 * this function.
271 *
272 * This function does not cancel any asynchronous activity arising
273 * out of elevator or throttling code. That would require elevator_exit()
274 * and blkcg_exit_queue() to be called with queue lock initialized.
275 *
276 */
277 void blk_sync_queue(struct request_queue *q)
278 {
279 del_timer_sync(&q->timeout);
280 cancel_work_sync(&q->timeout_work);
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283
284 /**
285 * blk_set_pm_only - increment pm_only counter
286 * @q: request queue pointer
287 */
288 void blk_set_pm_only(struct request_queue *q)
289 {
290 atomic_inc(&q->pm_only);
291 }
292 EXPORT_SYMBOL_GPL(blk_set_pm_only);
293
294 void blk_clear_pm_only(struct request_queue *q)
295 {
296 int pm_only;
297
298 pm_only = atomic_dec_return(&q->pm_only);
299 WARN_ON_ONCE(pm_only < 0);
300 if (pm_only == 0)
301 wake_up_all(&q->mq_freeze_wq);
302 }
303 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
304
305 void blk_put_queue(struct request_queue *q)
306 {
307 kobject_put(&q->kobj);
308 }
309 EXPORT_SYMBOL(blk_put_queue);
310
311 void blk_set_queue_dying(struct request_queue *q)
312 {
313 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
314
315 /*
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
319 */
320 blk_freeze_queue_start(q);
321
322 if (queue_is_mq(q))
323 blk_mq_wake_waiters(q);
324
325 /* Make blk_queue_enter() reexamine the DYING flag. */
326 wake_up_all(&q->mq_freeze_wq);
327 }
328 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
329
330 /**
331 * blk_cleanup_queue - shutdown a request queue
332 * @q: request queue to shutdown
333 *
334 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
335 * put it. All future requests will be failed immediately with -ENODEV.
336 */
337 void blk_cleanup_queue(struct request_queue *q)
338 {
339 /* mark @q DYING, no new request or merges will be allowed afterwards */
340 mutex_lock(&q->sysfs_lock);
341 blk_set_queue_dying(q);
342
343 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
344 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 mutex_unlock(&q->sysfs_lock);
347
348 /*
349 * Drain all requests queued before DYING marking. Set DEAD flag to
350 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
351 * after draining finished.
352 */
353 blk_freeze_queue(q);
354
355 rq_qos_exit(q);
356
357 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
358
359 /* for synchronous bio-based driver finish in-flight integrity i/o */
360 blk_flush_integrity();
361
362 /* @q won't process any more request, flush async actions */
363 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
364 blk_sync_queue(q);
365
366 if (queue_is_mq(q))
367 blk_mq_exit_queue(q);
368
369 /*
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
373 *
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
376 */
377 mutex_lock(&q->sysfs_lock);
378 if (q->elevator)
379 blk_mq_sched_free_requests(q);
380 mutex_unlock(&q->sysfs_lock);
381
382 percpu_ref_exit(&q->q_usage_counter);
383
384 /* @q is and will stay empty, shutdown and put */
385 blk_put_queue(q);
386 }
387 EXPORT_SYMBOL(blk_cleanup_queue);
388
389 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
390 {
391 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
392 }
393 EXPORT_SYMBOL(blk_alloc_queue);
394
395 /**
396 * blk_queue_enter() - try to increase q->q_usage_counter
397 * @q: request queue pointer
398 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
399 */
400 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
401 {
402 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
403
404 while (true) {
405 bool success = false;
406
407 rcu_read_lock();
408 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
409 /*
410 * The code that increments the pm_only counter is
411 * responsible for ensuring that that counter is
412 * globally visible before the queue is unfrozen.
413 */
414 if (pm || !blk_queue_pm_only(q)) {
415 success = true;
416 } else {
417 percpu_ref_put(&q->q_usage_counter);
418 }
419 }
420 rcu_read_unlock();
421
422 if (success)
423 return 0;
424
425 if (flags & BLK_MQ_REQ_NOWAIT)
426 return -EBUSY;
427
428 /*
429 * read pair of barrier in blk_freeze_queue_start(),
430 * we need to order reading __PERCPU_REF_DEAD flag of
431 * .q_usage_counter and reading .mq_freeze_depth or
432 * queue dying flag, otherwise the following wait may
433 * never return if the two reads are reordered.
434 */
435 smp_rmb();
436
437 wait_event(q->mq_freeze_wq,
438 (!q->mq_freeze_depth &&
439 (pm || (blk_pm_request_resume(q),
440 !blk_queue_pm_only(q)))) ||
441 blk_queue_dying(q));
442 if (blk_queue_dying(q))
443 return -ENODEV;
444 }
445 }
446
447 void blk_queue_exit(struct request_queue *q)
448 {
449 percpu_ref_put(&q->q_usage_counter);
450 }
451
452 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
453 {
454 struct request_queue *q =
455 container_of(ref, struct request_queue, q_usage_counter);
456
457 wake_up_all(&q->mq_freeze_wq);
458 }
459
460 static void blk_rq_timed_out_timer(struct timer_list *t)
461 {
462 struct request_queue *q = from_timer(q, t, timeout);
463
464 kblockd_schedule_work(&q->timeout_work);
465 }
466
467 static void blk_timeout_work(struct work_struct *work)
468 {
469 }
470
471 /**
472 * blk_alloc_queue_node - allocate a request queue
473 * @gfp_mask: memory allocation flags
474 * @node_id: NUMA node to allocate memory from
475 */
476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 struct request_queue *q;
479 int ret;
480
481 q = kmem_cache_alloc_node(blk_requestq_cachep,
482 gfp_mask | __GFP_ZERO, node_id);
483 if (!q)
484 return NULL;
485
486 q->last_merge = NULL;
487
488 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
489 if (q->id < 0)
490 goto fail_q;
491
492 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
493 if (ret)
494 goto fail_id;
495
496 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
497 if (!q->backing_dev_info)
498 goto fail_split;
499
500 q->stats = blk_alloc_queue_stats();
501 if (!q->stats)
502 goto fail_stats;
503
504 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
505 q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
506 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
507 q->backing_dev_info->name = "block";
508 q->node = node_id;
509
510 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
511 laptop_mode_timer_fn, 0);
512 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
513 INIT_WORK(&q->timeout_work, blk_timeout_work);
514 INIT_LIST_HEAD(&q->icq_list);
515 #ifdef CONFIG_BLK_CGROUP
516 INIT_LIST_HEAD(&q->blkg_list);
517 #endif
518
519 kobject_init(&q->kobj, &blk_queue_ktype);
520
521 #ifdef CONFIG_BLK_DEV_IO_TRACE
522 mutex_init(&q->blk_trace_mutex);
523 #endif
524 mutex_init(&q->sysfs_lock);
525 mutex_init(&q->sysfs_dir_lock);
526 spin_lock_init(&q->queue_lock);
527
528 init_waitqueue_head(&q->mq_freeze_wq);
529 mutex_init(&q->mq_freeze_lock);
530
531 /*
532 * Init percpu_ref in atomic mode so that it's faster to shutdown.
533 * See blk_register_queue() for details.
534 */
535 if (percpu_ref_init(&q->q_usage_counter,
536 blk_queue_usage_counter_release,
537 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
538 goto fail_bdi;
539
540 if (blkcg_init_queue(q))
541 goto fail_ref;
542
543 return q;
544
545 fail_ref:
546 percpu_ref_exit(&q->q_usage_counter);
547 fail_bdi:
548 blk_free_queue_stats(q->stats);
549 fail_stats:
550 bdi_put(q->backing_dev_info);
551 fail_split:
552 bioset_exit(&q->bio_split);
553 fail_id:
554 ida_simple_remove(&blk_queue_ida, q->id);
555 fail_q:
556 kmem_cache_free(blk_requestq_cachep, q);
557 return NULL;
558 }
559 EXPORT_SYMBOL(blk_alloc_queue_node);
560
561 bool blk_get_queue(struct request_queue *q)
562 {
563 if (likely(!blk_queue_dying(q))) {
564 __blk_get_queue(q);
565 return true;
566 }
567
568 return false;
569 }
570 EXPORT_SYMBOL(blk_get_queue);
571
572 /**
573 * blk_get_request - allocate a request
574 * @q: request queue to allocate a request for
575 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
576 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
577 */
578 struct request *blk_get_request(struct request_queue *q, unsigned int op,
579 blk_mq_req_flags_t flags)
580 {
581 struct request *req;
582
583 WARN_ON_ONCE(op & REQ_NOWAIT);
584 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
585
586 req = blk_mq_alloc_request(q, op, flags);
587 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
588 q->mq_ops->initialize_rq_fn(req);
589
590 return req;
591 }
592 EXPORT_SYMBOL(blk_get_request);
593
594 void blk_put_request(struct request *req)
595 {
596 blk_mq_free_request(req);
597 }
598 EXPORT_SYMBOL(blk_put_request);
599
600 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
601 unsigned int nr_segs)
602 {
603 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
604
605 if (!ll_back_merge_fn(req, bio, nr_segs))
606 return false;
607
608 trace_block_bio_backmerge(req->q, req, bio);
609 rq_qos_merge(req->q, req, bio);
610
611 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
612 blk_rq_set_mixed_merge(req);
613
614 req->biotail->bi_next = bio;
615 req->biotail = bio;
616 req->__data_len += bio->bi_iter.bi_size;
617
618 blk_account_io_start(req, false);
619 return true;
620 }
621
622 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
623 unsigned int nr_segs)
624 {
625 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
626
627 if (!ll_front_merge_fn(req, bio, nr_segs))
628 return false;
629
630 trace_block_bio_frontmerge(req->q, req, bio);
631 rq_qos_merge(req->q, req, bio);
632
633 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
634 blk_rq_set_mixed_merge(req);
635
636 bio->bi_next = req->bio;
637 req->bio = bio;
638
639 req->__sector = bio->bi_iter.bi_sector;
640 req->__data_len += bio->bi_iter.bi_size;
641
642 blk_account_io_start(req, false);
643 return true;
644 }
645
646 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
647 struct bio *bio)
648 {
649 unsigned short segments = blk_rq_nr_discard_segments(req);
650
651 if (segments >= queue_max_discard_segments(q))
652 goto no_merge;
653 if (blk_rq_sectors(req) + bio_sectors(bio) >
654 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
655 goto no_merge;
656
657 rq_qos_merge(q, req, bio);
658
659 req->biotail->bi_next = bio;
660 req->biotail = bio;
661 req->__data_len += bio->bi_iter.bi_size;
662 req->nr_phys_segments = segments + 1;
663
664 blk_account_io_start(req, false);
665 return true;
666 no_merge:
667 req_set_nomerge(q, req);
668 return false;
669 }
670
671 /**
672 * blk_attempt_plug_merge - try to merge with %current's plugged list
673 * @q: request_queue new bio is being queued at
674 * @bio: new bio being queued
675 * @nr_segs: number of segments in @bio
676 * @same_queue_rq: pointer to &struct request that gets filled in when
677 * another request associated with @q is found on the plug list
678 * (optional, may be %NULL)
679 *
680 * Determine whether @bio being queued on @q can be merged with a request
681 * on %current's plugged list. Returns %true if merge was successful,
682 * otherwise %false.
683 *
684 * Plugging coalesces IOs from the same issuer for the same purpose without
685 * going through @q->queue_lock. As such it's more of an issuing mechanism
686 * than scheduling, and the request, while may have elvpriv data, is not
687 * added on the elevator at this point. In addition, we don't have
688 * reliable access to the elevator outside queue lock. Only check basic
689 * merging parameters without querying the elevator.
690 *
691 * Caller must ensure !blk_queue_nomerges(q) beforehand.
692 */
693 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
694 unsigned int nr_segs, struct request **same_queue_rq)
695 {
696 struct blk_plug *plug;
697 struct request *rq;
698 struct list_head *plug_list;
699
700 plug = blk_mq_plug(q, bio);
701 if (!plug)
702 return false;
703
704 plug_list = &plug->mq_list;
705
706 list_for_each_entry_reverse(rq, plug_list, queuelist) {
707 bool merged = false;
708
709 if (rq->q == q && same_queue_rq) {
710 /*
711 * Only blk-mq multiple hardware queues case checks the
712 * rq in the same queue, there should be only one such
713 * rq in a queue
714 **/
715 *same_queue_rq = rq;
716 }
717
718 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
719 continue;
720
721 switch (blk_try_merge(rq, bio)) {
722 case ELEVATOR_BACK_MERGE:
723 merged = bio_attempt_back_merge(rq, bio, nr_segs);
724 break;
725 case ELEVATOR_FRONT_MERGE:
726 merged = bio_attempt_front_merge(rq, bio, nr_segs);
727 break;
728 case ELEVATOR_DISCARD_MERGE:
729 merged = bio_attempt_discard_merge(q, rq, bio);
730 break;
731 default:
732 break;
733 }
734
735 if (merged)
736 return true;
737 }
738
739 return false;
740 }
741
742 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
743 {
744 char b[BDEVNAME_SIZE];
745
746 pr_info_ratelimited("attempt to access beyond end of device\n"
747 "%s: rw=%d, want=%llu, limit=%llu\n",
748 bio_devname(bio, b), bio->bi_opf,
749 bio_end_sector(bio), maxsector);
750 }
751
752 #ifdef CONFIG_FAIL_MAKE_REQUEST
753
754 static DECLARE_FAULT_ATTR(fail_make_request);
755
756 static int __init setup_fail_make_request(char *str)
757 {
758 return setup_fault_attr(&fail_make_request, str);
759 }
760 __setup("fail_make_request=", setup_fail_make_request);
761
762 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
763 {
764 return part->make_it_fail && should_fail(&fail_make_request, bytes);
765 }
766
767 static int __init fail_make_request_debugfs(void)
768 {
769 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
770 NULL, &fail_make_request);
771
772 return PTR_ERR_OR_ZERO(dir);
773 }
774
775 late_initcall(fail_make_request_debugfs);
776
777 #else /* CONFIG_FAIL_MAKE_REQUEST */
778
779 static inline bool should_fail_request(struct hd_struct *part,
780 unsigned int bytes)
781 {
782 return false;
783 }
784
785 #endif /* CONFIG_FAIL_MAKE_REQUEST */
786
787 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
788 {
789 const int op = bio_op(bio);
790
791 if (part->policy && op_is_write(op)) {
792 char b[BDEVNAME_SIZE];
793
794 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
795 return false;
796
797 WARN_ONCE(1,
798 "generic_make_request: Trying to write "
799 "to read-only block-device %s (partno %d)\n",
800 bio_devname(bio, b), part->partno);
801 /* Older lvm-tools actually trigger this */
802 return false;
803 }
804
805 return false;
806 }
807
808 static noinline int should_fail_bio(struct bio *bio)
809 {
810 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
811 return -EIO;
812 return 0;
813 }
814 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
815
816 /*
817 * Check whether this bio extends beyond the end of the device or partition.
818 * This may well happen - the kernel calls bread() without checking the size of
819 * the device, e.g., when mounting a file system.
820 */
821 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
822 {
823 unsigned int nr_sectors = bio_sectors(bio);
824
825 if (nr_sectors && maxsector &&
826 (nr_sectors > maxsector ||
827 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
828 handle_bad_sector(bio, maxsector);
829 return -EIO;
830 }
831 return 0;
832 }
833
834 /*
835 * Remap block n of partition p to block n+start(p) of the disk.
836 */
837 static inline int blk_partition_remap(struct bio *bio)
838 {
839 struct hd_struct *p;
840 int ret = -EIO;
841
842 rcu_read_lock();
843 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
844 if (unlikely(!p))
845 goto out;
846 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
847 goto out;
848 if (unlikely(bio_check_ro(bio, p)))
849 goto out;
850
851 /*
852 * Zone reset does not include bi_size so bio_sectors() is always 0.
853 * Include a test for the reset op code and perform the remap if needed.
854 */
855 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
856 if (bio_check_eod(bio, part_nr_sects_read(p)))
857 goto out;
858 bio->bi_iter.bi_sector += p->start_sect;
859 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
860 bio->bi_iter.bi_sector - p->start_sect);
861 }
862 bio->bi_partno = 0;
863 ret = 0;
864 out:
865 rcu_read_unlock();
866 return ret;
867 }
868
869 static noinline_for_stack bool
870 generic_make_request_checks(struct bio *bio)
871 {
872 struct request_queue *q;
873 int nr_sectors = bio_sectors(bio);
874 blk_status_t status = BLK_STS_IOERR;
875 char b[BDEVNAME_SIZE];
876
877 might_sleep();
878
879 q = bio->bi_disk->queue;
880 if (unlikely(!q)) {
881 printk(KERN_ERR
882 "generic_make_request: Trying to access "
883 "nonexistent block-device %s (%Lu)\n",
884 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
885 goto end_io;
886 }
887
888 /*
889 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
890 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
891 * to give a chance to the caller to repeat request gracefully.
892 */
893 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
894 status = BLK_STS_AGAIN;
895 goto end_io;
896 }
897
898 if (should_fail_bio(bio))
899 goto end_io;
900
901 if (bio->bi_partno) {
902 if (unlikely(blk_partition_remap(bio)))
903 goto end_io;
904 } else {
905 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
906 goto end_io;
907 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
908 goto end_io;
909 }
910
911 /*
912 * Filter flush bio's early so that make_request based
913 * drivers without flush support don't have to worry
914 * about them.
915 */
916 if (op_is_flush(bio->bi_opf) &&
917 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
918 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
919 if (!nr_sectors) {
920 status = BLK_STS_OK;
921 goto end_io;
922 }
923 }
924
925 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
926 bio->bi_opf &= ~REQ_HIPRI;
927
928 switch (bio_op(bio)) {
929 case REQ_OP_DISCARD:
930 if (!blk_queue_discard(q))
931 goto not_supported;
932 break;
933 case REQ_OP_SECURE_ERASE:
934 if (!blk_queue_secure_erase(q))
935 goto not_supported;
936 break;
937 case REQ_OP_WRITE_SAME:
938 if (!q->limits.max_write_same_sectors)
939 goto not_supported;
940 break;
941 case REQ_OP_ZONE_RESET:
942 if (!blk_queue_is_zoned(q))
943 goto not_supported;
944 break;
945 case REQ_OP_ZONE_RESET_ALL:
946 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
947 goto not_supported;
948 break;
949 case REQ_OP_WRITE_ZEROES:
950 if (!q->limits.max_write_zeroes_sectors)
951 goto not_supported;
952 break;
953 default:
954 break;
955 }
956
957 /*
958 * Various block parts want %current->io_context and lazy ioc
959 * allocation ends up trading a lot of pain for a small amount of
960 * memory. Just allocate it upfront. This may fail and block
961 * layer knows how to live with it.
962 */
963 create_io_context(GFP_ATOMIC, q->node);
964
965 if (!blkcg_bio_issue_check(q, bio))
966 return false;
967
968 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
969 trace_block_bio_queue(q, bio);
970 /* Now that enqueuing has been traced, we need to trace
971 * completion as well.
972 */
973 bio_set_flag(bio, BIO_TRACE_COMPLETION);
974 }
975 return true;
976
977 not_supported:
978 status = BLK_STS_NOTSUPP;
979 end_io:
980 bio->bi_status = status;
981 bio_endio(bio);
982 return false;
983 }
984
985 /**
986 * generic_make_request - hand a buffer to its device driver for I/O
987 * @bio: The bio describing the location in memory and on the device.
988 *
989 * generic_make_request() is used to make I/O requests of block
990 * devices. It is passed a &struct bio, which describes the I/O that needs
991 * to be done.
992 *
993 * generic_make_request() does not return any status. The
994 * success/failure status of the request, along with notification of
995 * completion, is delivered asynchronously through the bio->bi_end_io
996 * function described (one day) else where.
997 *
998 * The caller of generic_make_request must make sure that bi_io_vec
999 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1000 * set to describe the device address, and the
1001 * bi_end_io and optionally bi_private are set to describe how
1002 * completion notification should be signaled.
1003 *
1004 * generic_make_request and the drivers it calls may use bi_next if this
1005 * bio happens to be merged with someone else, and may resubmit the bio to
1006 * a lower device by calling into generic_make_request recursively, which
1007 * means the bio should NOT be touched after the call to ->make_request_fn.
1008 */
1009 blk_qc_t generic_make_request(struct bio *bio)
1010 {
1011 /*
1012 * bio_list_on_stack[0] contains bios submitted by the current
1013 * make_request_fn.
1014 * bio_list_on_stack[1] contains bios that were submitted before
1015 * the current make_request_fn, but that haven't been processed
1016 * yet.
1017 */
1018 struct bio_list bio_list_on_stack[2];
1019 blk_qc_t ret = BLK_QC_T_NONE;
1020
1021 if (!generic_make_request_checks(bio))
1022 goto out;
1023
1024 /*
1025 * We only want one ->make_request_fn to be active at a time, else
1026 * stack usage with stacked devices could be a problem. So use
1027 * current->bio_list to keep a list of requests submited by a
1028 * make_request_fn function. current->bio_list is also used as a
1029 * flag to say if generic_make_request is currently active in this
1030 * task or not. If it is NULL, then no make_request is active. If
1031 * it is non-NULL, then a make_request is active, and new requests
1032 * should be added at the tail
1033 */
1034 if (current->bio_list) {
1035 bio_list_add(&current->bio_list[0], bio);
1036 goto out;
1037 }
1038
1039 /* following loop may be a bit non-obvious, and so deserves some
1040 * explanation.
1041 * Before entering the loop, bio->bi_next is NULL (as all callers
1042 * ensure that) so we have a list with a single bio.
1043 * We pretend that we have just taken it off a longer list, so
1044 * we assign bio_list to a pointer to the bio_list_on_stack,
1045 * thus initialising the bio_list of new bios to be
1046 * added. ->make_request() may indeed add some more bios
1047 * through a recursive call to generic_make_request. If it
1048 * did, we find a non-NULL value in bio_list and re-enter the loop
1049 * from the top. In this case we really did just take the bio
1050 * of the top of the list (no pretending) and so remove it from
1051 * bio_list, and call into ->make_request() again.
1052 */
1053 BUG_ON(bio->bi_next);
1054 bio_list_init(&bio_list_on_stack[0]);
1055 current->bio_list = bio_list_on_stack;
1056 do {
1057 struct request_queue *q = bio->bi_disk->queue;
1058 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1059 BLK_MQ_REQ_NOWAIT : 0;
1060
1061 if (likely(blk_queue_enter(q, flags) == 0)) {
1062 struct bio_list lower, same;
1063
1064 /* Create a fresh bio_list for all subordinate requests */
1065 bio_list_on_stack[1] = bio_list_on_stack[0];
1066 bio_list_init(&bio_list_on_stack[0]);
1067 ret = q->make_request_fn(q, bio);
1068
1069 blk_queue_exit(q);
1070
1071 /* sort new bios into those for a lower level
1072 * and those for the same level
1073 */
1074 bio_list_init(&lower);
1075 bio_list_init(&same);
1076 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1077 if (q == bio->bi_disk->queue)
1078 bio_list_add(&same, bio);
1079 else
1080 bio_list_add(&lower, bio);
1081 /* now assemble so we handle the lowest level first */
1082 bio_list_merge(&bio_list_on_stack[0], &lower);
1083 bio_list_merge(&bio_list_on_stack[0], &same);
1084 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1085 } else {
1086 if (unlikely(!blk_queue_dying(q) &&
1087 (bio->bi_opf & REQ_NOWAIT)))
1088 bio_wouldblock_error(bio);
1089 else
1090 bio_io_error(bio);
1091 }
1092 bio = bio_list_pop(&bio_list_on_stack[0]);
1093 } while (bio);
1094 current->bio_list = NULL; /* deactivate */
1095
1096 out:
1097 return ret;
1098 }
1099 EXPORT_SYMBOL(generic_make_request);
1100
1101 /**
1102 * direct_make_request - hand a buffer directly to its device driver for I/O
1103 * @bio: The bio describing the location in memory and on the device.
1104 *
1105 * This function behaves like generic_make_request(), but does not protect
1106 * against recursion. Must only be used if the called driver is known
1107 * to not call generic_make_request (or direct_make_request) again from
1108 * its make_request function. (Calling direct_make_request again from
1109 * a workqueue is perfectly fine as that doesn't recurse).
1110 */
1111 blk_qc_t direct_make_request(struct bio *bio)
1112 {
1113 struct request_queue *q = bio->bi_disk->queue;
1114 bool nowait = bio->bi_opf & REQ_NOWAIT;
1115 blk_qc_t ret;
1116
1117 if (!generic_make_request_checks(bio))
1118 return BLK_QC_T_NONE;
1119
1120 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1121 if (nowait && !blk_queue_dying(q))
1122 bio->bi_status = BLK_STS_AGAIN;
1123 else
1124 bio->bi_status = BLK_STS_IOERR;
1125 bio_endio(bio);
1126 return BLK_QC_T_NONE;
1127 }
1128
1129 ret = q->make_request_fn(q, bio);
1130 blk_queue_exit(q);
1131 return ret;
1132 }
1133 EXPORT_SYMBOL_GPL(direct_make_request);
1134
1135 /**
1136 * submit_bio - submit a bio to the block device layer for I/O
1137 * @bio: The &struct bio which describes the I/O
1138 *
1139 * submit_bio() is very similar in purpose to generic_make_request(), and
1140 * uses that function to do most of the work. Both are fairly rough
1141 * interfaces; @bio must be presetup and ready for I/O.
1142 *
1143 */
1144 blk_qc_t submit_bio(struct bio *bio)
1145 {
1146 bool workingset_read = false;
1147 unsigned long pflags;
1148 blk_qc_t ret;
1149
1150 if (blkcg_punt_bio_submit(bio))
1151 return BLK_QC_T_NONE;
1152
1153 /*
1154 * If it's a regular read/write or a barrier with data attached,
1155 * go through the normal accounting stuff before submission.
1156 */
1157 if (bio_has_data(bio)) {
1158 unsigned int count;
1159
1160 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1161 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1162 else
1163 count = bio_sectors(bio);
1164
1165 if (op_is_write(bio_op(bio))) {
1166 count_vm_events(PGPGOUT, count);
1167 } else {
1168 if (bio_flagged(bio, BIO_WORKINGSET))
1169 workingset_read = true;
1170 task_io_account_read(bio->bi_iter.bi_size);
1171 count_vm_events(PGPGIN, count);
1172 }
1173
1174 if (unlikely(block_dump)) {
1175 char b[BDEVNAME_SIZE];
1176 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1177 current->comm, task_pid_nr(current),
1178 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1179 (unsigned long long)bio->bi_iter.bi_sector,
1180 bio_devname(bio, b), count);
1181 }
1182 }
1183
1184 /*
1185 * If we're reading data that is part of the userspace
1186 * workingset, count submission time as memory stall. When the
1187 * device is congested, or the submitting cgroup IO-throttled,
1188 * submission can be a significant part of overall IO time.
1189 */
1190 if (workingset_read)
1191 psi_memstall_enter(&pflags);
1192
1193 ret = generic_make_request(bio);
1194
1195 if (workingset_read)
1196 psi_memstall_leave(&pflags);
1197
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(submit_bio);
1201
1202 /**
1203 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1204 * for new the queue limits
1205 * @q: the queue
1206 * @rq: the request being checked
1207 *
1208 * Description:
1209 * @rq may have been made based on weaker limitations of upper-level queues
1210 * in request stacking drivers, and it may violate the limitation of @q.
1211 * Since the block layer and the underlying device driver trust @rq
1212 * after it is inserted to @q, it should be checked against @q before
1213 * the insertion using this generic function.
1214 *
1215 * Request stacking drivers like request-based dm may change the queue
1216 * limits when retrying requests on other queues. Those requests need
1217 * to be checked against the new queue limits again during dispatch.
1218 */
1219 static int blk_cloned_rq_check_limits(struct request_queue *q,
1220 struct request *rq)
1221 {
1222 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1223 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1224 __func__, blk_rq_sectors(rq),
1225 blk_queue_get_max_sectors(q, req_op(rq)));
1226 return -EIO;
1227 }
1228
1229 /*
1230 * queue's settings related to segment counting like q->bounce_pfn
1231 * may differ from that of other stacking queues.
1232 * Recalculate it to check the request correctly on this queue's
1233 * limitation.
1234 */
1235 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1236 if (rq->nr_phys_segments > queue_max_segments(q)) {
1237 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1238 __func__, rq->nr_phys_segments, queue_max_segments(q));
1239 return -EIO;
1240 }
1241
1242 return 0;
1243 }
1244
1245 /**
1246 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1247 * @q: the queue to submit the request
1248 * @rq: the request being queued
1249 */
1250 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1251 {
1252 if (blk_cloned_rq_check_limits(q, rq))
1253 return BLK_STS_IOERR;
1254
1255 if (rq->rq_disk &&
1256 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1257 return BLK_STS_IOERR;
1258
1259 if (blk_queue_io_stat(q))
1260 blk_account_io_start(rq, true);
1261
1262 /*
1263 * Since we have a scheduler attached on the top device,
1264 * bypass a potential scheduler on the bottom device for
1265 * insert.
1266 */
1267 return blk_mq_request_issue_directly(rq, true);
1268 }
1269 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1270
1271 /**
1272 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1273 * @rq: request to examine
1274 *
1275 * Description:
1276 * A request could be merge of IOs which require different failure
1277 * handling. This function determines the number of bytes which
1278 * can be failed from the beginning of the request without
1279 * crossing into area which need to be retried further.
1280 *
1281 * Return:
1282 * The number of bytes to fail.
1283 */
1284 unsigned int blk_rq_err_bytes(const struct request *rq)
1285 {
1286 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1287 unsigned int bytes = 0;
1288 struct bio *bio;
1289
1290 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1291 return blk_rq_bytes(rq);
1292
1293 /*
1294 * Currently the only 'mixing' which can happen is between
1295 * different fastfail types. We can safely fail portions
1296 * which have all the failfast bits that the first one has -
1297 * the ones which are at least as eager to fail as the first
1298 * one.
1299 */
1300 for (bio = rq->bio; bio; bio = bio->bi_next) {
1301 if ((bio->bi_opf & ff) != ff)
1302 break;
1303 bytes += bio->bi_iter.bi_size;
1304 }
1305
1306 /* this could lead to infinite loop */
1307 BUG_ON(blk_rq_bytes(rq) && !bytes);
1308 return bytes;
1309 }
1310 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1311
1312 void blk_account_io_completion(struct request *req, unsigned int bytes)
1313 {
1314 if (blk_do_io_stat(req)) {
1315 const int sgrp = op_stat_group(req_op(req));
1316 struct hd_struct *part;
1317
1318 part_stat_lock();
1319 part = req->part;
1320 part_stat_add(part, sectors[sgrp], bytes >> 9);
1321 part_stat_unlock();
1322 }
1323 }
1324
1325 void blk_account_io_done(struct request *req, u64 now)
1326 {
1327 /*
1328 * Account IO completion. flush_rq isn't accounted as a
1329 * normal IO on queueing nor completion. Accounting the
1330 * containing request is enough.
1331 */
1332 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1333 const int sgrp = op_stat_group(req_op(req));
1334 struct hd_struct *part;
1335
1336 part_stat_lock();
1337 part = req->part;
1338
1339 update_io_ticks(part, jiffies, true);
1340 part_stat_inc(part, ios[sgrp]);
1341 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1342 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1343 part_dec_in_flight(req->q, part, rq_data_dir(req));
1344
1345 hd_struct_put(part);
1346 part_stat_unlock();
1347 }
1348 }
1349
1350 void blk_account_io_start(struct request *rq, bool new_io)
1351 {
1352 struct hd_struct *part;
1353 int rw = rq_data_dir(rq);
1354
1355 if (!blk_do_io_stat(rq))
1356 return;
1357
1358 part_stat_lock();
1359
1360 if (!new_io) {
1361 part = rq->part;
1362 part_stat_inc(part, merges[rw]);
1363 } else {
1364 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1365 if (!hd_struct_try_get(part)) {
1366 /*
1367 * The partition is already being removed,
1368 * the request will be accounted on the disk only
1369 *
1370 * We take a reference on disk->part0 although that
1371 * partition will never be deleted, so we can treat
1372 * it as any other partition.
1373 */
1374 part = &rq->rq_disk->part0;
1375 hd_struct_get(part);
1376 }
1377 part_inc_in_flight(rq->q, part, rw);
1378 rq->part = part;
1379 }
1380
1381 update_io_ticks(part, jiffies, false);
1382
1383 part_stat_unlock();
1384 }
1385
1386 /*
1387 * Steal bios from a request and add them to a bio list.
1388 * The request must not have been partially completed before.
1389 */
1390 void blk_steal_bios(struct bio_list *list, struct request *rq)
1391 {
1392 if (rq->bio) {
1393 if (list->tail)
1394 list->tail->bi_next = rq->bio;
1395 else
1396 list->head = rq->bio;
1397 list->tail = rq->biotail;
1398
1399 rq->bio = NULL;
1400 rq->biotail = NULL;
1401 }
1402
1403 rq->__data_len = 0;
1404 }
1405 EXPORT_SYMBOL_GPL(blk_steal_bios);
1406
1407 /**
1408 * blk_update_request - Special helper function for request stacking drivers
1409 * @req: the request being processed
1410 * @error: block status code
1411 * @nr_bytes: number of bytes to complete @req
1412 *
1413 * Description:
1414 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1415 * the request structure even if @req doesn't have leftover.
1416 * If @req has leftover, sets it up for the next range of segments.
1417 *
1418 * This special helper function is only for request stacking drivers
1419 * (e.g. request-based dm) so that they can handle partial completion.
1420 * Actual device drivers should use blk_mq_end_request instead.
1421 *
1422 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1423 * %false return from this function.
1424 *
1425 * Note:
1426 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1427 * blk_rq_bytes() and in blk_update_request().
1428 *
1429 * Return:
1430 * %false - this request doesn't have any more data
1431 * %true - this request has more data
1432 **/
1433 bool blk_update_request(struct request *req, blk_status_t error,
1434 unsigned int nr_bytes)
1435 {
1436 int total_bytes;
1437
1438 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1439
1440 if (!req->bio)
1441 return false;
1442
1443 #ifdef CONFIG_BLK_DEV_INTEGRITY
1444 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1445 error == BLK_STS_OK)
1446 req->q->integrity.profile->complete_fn(req, nr_bytes);
1447 #endif
1448
1449 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1450 !(req->rq_flags & RQF_QUIET)))
1451 print_req_error(req, error, __func__);
1452
1453 blk_account_io_completion(req, nr_bytes);
1454
1455 total_bytes = 0;
1456 while (req->bio) {
1457 struct bio *bio = req->bio;
1458 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1459
1460 if (bio_bytes == bio->bi_iter.bi_size)
1461 req->bio = bio->bi_next;
1462
1463 /* Completion has already been traced */
1464 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1465 req_bio_endio(req, bio, bio_bytes, error);
1466
1467 total_bytes += bio_bytes;
1468 nr_bytes -= bio_bytes;
1469
1470 if (!nr_bytes)
1471 break;
1472 }
1473
1474 /*
1475 * completely done
1476 */
1477 if (!req->bio) {
1478 /*
1479 * Reset counters so that the request stacking driver
1480 * can find how many bytes remain in the request
1481 * later.
1482 */
1483 req->__data_len = 0;
1484 return false;
1485 }
1486
1487 req->__data_len -= total_bytes;
1488
1489 /* update sector only for requests with clear definition of sector */
1490 if (!blk_rq_is_passthrough(req))
1491 req->__sector += total_bytes >> 9;
1492
1493 /* mixed attributes always follow the first bio */
1494 if (req->rq_flags & RQF_MIXED_MERGE) {
1495 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1496 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1497 }
1498
1499 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1500 /*
1501 * If total number of sectors is less than the first segment
1502 * size, something has gone terribly wrong.
1503 */
1504 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1505 blk_dump_rq_flags(req, "request botched");
1506 req->__data_len = blk_rq_cur_bytes(req);
1507 }
1508
1509 /* recalculate the number of segments */
1510 req->nr_phys_segments = blk_recalc_rq_segments(req);
1511 }
1512
1513 return true;
1514 }
1515 EXPORT_SYMBOL_GPL(blk_update_request);
1516
1517 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1518 /**
1519 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1520 * @rq: the request to be flushed
1521 *
1522 * Description:
1523 * Flush all pages in @rq.
1524 */
1525 void rq_flush_dcache_pages(struct request *rq)
1526 {
1527 struct req_iterator iter;
1528 struct bio_vec bvec;
1529
1530 rq_for_each_segment(bvec, rq, iter)
1531 flush_dcache_page(bvec.bv_page);
1532 }
1533 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1534 #endif
1535
1536 /**
1537 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1538 * @q : the queue of the device being checked
1539 *
1540 * Description:
1541 * Check if underlying low-level drivers of a device are busy.
1542 * If the drivers want to export their busy state, they must set own
1543 * exporting function using blk_queue_lld_busy() first.
1544 *
1545 * Basically, this function is used only by request stacking drivers
1546 * to stop dispatching requests to underlying devices when underlying
1547 * devices are busy. This behavior helps more I/O merging on the queue
1548 * of the request stacking driver and prevents I/O throughput regression
1549 * on burst I/O load.
1550 *
1551 * Return:
1552 * 0 - Not busy (The request stacking driver should dispatch request)
1553 * 1 - Busy (The request stacking driver should stop dispatching request)
1554 */
1555 int blk_lld_busy(struct request_queue *q)
1556 {
1557 if (queue_is_mq(q) && q->mq_ops->busy)
1558 return q->mq_ops->busy(q);
1559
1560 return 0;
1561 }
1562 EXPORT_SYMBOL_GPL(blk_lld_busy);
1563
1564 /**
1565 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1566 * @rq: the clone request to be cleaned up
1567 *
1568 * Description:
1569 * Free all bios in @rq for a cloned request.
1570 */
1571 void blk_rq_unprep_clone(struct request *rq)
1572 {
1573 struct bio *bio;
1574
1575 while ((bio = rq->bio) != NULL) {
1576 rq->bio = bio->bi_next;
1577
1578 bio_put(bio);
1579 }
1580 }
1581 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1582
1583 /*
1584 * Copy attributes of the original request to the clone request.
1585 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1586 */
1587 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1588 {
1589 dst->__sector = blk_rq_pos(src);
1590 dst->__data_len = blk_rq_bytes(src);
1591 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1592 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1593 dst->special_vec = src->special_vec;
1594 }
1595 dst->nr_phys_segments = src->nr_phys_segments;
1596 dst->ioprio = src->ioprio;
1597 dst->extra_len = src->extra_len;
1598 }
1599
1600 /**
1601 * blk_rq_prep_clone - Helper function to setup clone request
1602 * @rq: the request to be setup
1603 * @rq_src: original request to be cloned
1604 * @bs: bio_set that bios for clone are allocated from
1605 * @gfp_mask: memory allocation mask for bio
1606 * @bio_ctr: setup function to be called for each clone bio.
1607 * Returns %0 for success, non %0 for failure.
1608 * @data: private data to be passed to @bio_ctr
1609 *
1610 * Description:
1611 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1612 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1613 * are not copied, and copying such parts is the caller's responsibility.
1614 * Also, pages which the original bios are pointing to are not copied
1615 * and the cloned bios just point same pages.
1616 * So cloned bios must be completed before original bios, which means
1617 * the caller must complete @rq before @rq_src.
1618 */
1619 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1620 struct bio_set *bs, gfp_t gfp_mask,
1621 int (*bio_ctr)(struct bio *, struct bio *, void *),
1622 void *data)
1623 {
1624 struct bio *bio, *bio_src;
1625
1626 if (!bs)
1627 bs = &fs_bio_set;
1628
1629 __rq_for_each_bio(bio_src, rq_src) {
1630 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1631 if (!bio)
1632 goto free_and_out;
1633
1634 if (bio_ctr && bio_ctr(bio, bio_src, data))
1635 goto free_and_out;
1636
1637 if (rq->bio) {
1638 rq->biotail->bi_next = bio;
1639 rq->biotail = bio;
1640 } else
1641 rq->bio = rq->biotail = bio;
1642 }
1643
1644 __blk_rq_prep_clone(rq, rq_src);
1645
1646 return 0;
1647
1648 free_and_out:
1649 if (bio)
1650 bio_put(bio);
1651 blk_rq_unprep_clone(rq);
1652
1653 return -ENOMEM;
1654 }
1655 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1656
1657 int kblockd_schedule_work(struct work_struct *work)
1658 {
1659 return queue_work(kblockd_workqueue, work);
1660 }
1661 EXPORT_SYMBOL(kblockd_schedule_work);
1662
1663 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1664 {
1665 return queue_work_on(cpu, kblockd_workqueue, work);
1666 }
1667 EXPORT_SYMBOL(kblockd_schedule_work_on);
1668
1669 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1670 unsigned long delay)
1671 {
1672 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1673 }
1674 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1675
1676 /**
1677 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1678 * @plug: The &struct blk_plug that needs to be initialized
1679 *
1680 * Description:
1681 * blk_start_plug() indicates to the block layer an intent by the caller
1682 * to submit multiple I/O requests in a batch. The block layer may use
1683 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1684 * is called. However, the block layer may choose to submit requests
1685 * before a call to blk_finish_plug() if the number of queued I/Os
1686 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1687 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1688 * the task schedules (see below).
1689 *
1690 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1691 * pending I/O should the task end up blocking between blk_start_plug() and
1692 * blk_finish_plug(). This is important from a performance perspective, but
1693 * also ensures that we don't deadlock. For instance, if the task is blocking
1694 * for a memory allocation, memory reclaim could end up wanting to free a
1695 * page belonging to that request that is currently residing in our private
1696 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1697 * this kind of deadlock.
1698 */
1699 void blk_start_plug(struct blk_plug *plug)
1700 {
1701 struct task_struct *tsk = current;
1702
1703 /*
1704 * If this is a nested plug, don't actually assign it.
1705 */
1706 if (tsk->plug)
1707 return;
1708
1709 INIT_LIST_HEAD(&plug->mq_list);
1710 INIT_LIST_HEAD(&plug->cb_list);
1711 plug->rq_count = 0;
1712 plug->multiple_queues = false;
1713
1714 /*
1715 * Store ordering should not be needed here, since a potential
1716 * preempt will imply a full memory barrier
1717 */
1718 tsk->plug = plug;
1719 }
1720 EXPORT_SYMBOL(blk_start_plug);
1721
1722 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1723 {
1724 LIST_HEAD(callbacks);
1725
1726 while (!list_empty(&plug->cb_list)) {
1727 list_splice_init(&plug->cb_list, &callbacks);
1728
1729 while (!list_empty(&callbacks)) {
1730 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1731 struct blk_plug_cb,
1732 list);
1733 list_del(&cb->list);
1734 cb->callback(cb, from_schedule);
1735 }
1736 }
1737 }
1738
1739 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1740 int size)
1741 {
1742 struct blk_plug *plug = current->plug;
1743 struct blk_plug_cb *cb;
1744
1745 if (!plug)
1746 return NULL;
1747
1748 list_for_each_entry(cb, &plug->cb_list, list)
1749 if (cb->callback == unplug && cb->data == data)
1750 return cb;
1751
1752 /* Not currently on the callback list */
1753 BUG_ON(size < sizeof(*cb));
1754 cb = kzalloc(size, GFP_ATOMIC);
1755 if (cb) {
1756 cb->data = data;
1757 cb->callback = unplug;
1758 list_add(&cb->list, &plug->cb_list);
1759 }
1760 return cb;
1761 }
1762 EXPORT_SYMBOL(blk_check_plugged);
1763
1764 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1765 {
1766 flush_plug_callbacks(plug, from_schedule);
1767
1768 if (!list_empty(&plug->mq_list))
1769 blk_mq_flush_plug_list(plug, from_schedule);
1770 }
1771
1772 /**
1773 * blk_finish_plug - mark the end of a batch of submitted I/O
1774 * @plug: The &struct blk_plug passed to blk_start_plug()
1775 *
1776 * Description:
1777 * Indicate that a batch of I/O submissions is complete. This function
1778 * must be paired with an initial call to blk_start_plug(). The intent
1779 * is to allow the block layer to optimize I/O submission. See the
1780 * documentation for blk_start_plug() for more information.
1781 */
1782 void blk_finish_plug(struct blk_plug *plug)
1783 {
1784 if (plug != current->plug)
1785 return;
1786 blk_flush_plug_list(plug, false);
1787
1788 current->plug = NULL;
1789 }
1790 EXPORT_SYMBOL(blk_finish_plug);
1791
1792 int __init blk_dev_init(void)
1793 {
1794 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1796 FIELD_SIZEOF(struct request, cmd_flags));
1797 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1798 FIELD_SIZEOF(struct bio, bi_opf));
1799
1800 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1801 kblockd_workqueue = alloc_workqueue("kblockd",
1802 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1803 if (!kblockd_workqueue)
1804 panic("Failed to create kblockd\n");
1805
1806 blk_requestq_cachep = kmem_cache_create("request_queue",
1807 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1808
1809 #ifdef CONFIG_DEBUG_FS
1810 blk_debugfs_root = debugfs_create_dir("block", NULL);
1811 #endif
1812
1813 return 0;
1814 }