]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-stat: convert to callback-based statistics reporting
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i) {
272 cancel_work_sync(&hctx->run_work);
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280
281 /**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292 inline void __blk_run_queue_uncond(struct request_queue *q)
293 {
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
305 q->request_fn(q);
306 q->request_fn_active--;
307 }
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309
310 /**
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
317 */
318 void __blk_run_queue(struct request_queue *q)
319 {
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
323 __blk_run_queue_uncond(q);
324 }
325 EXPORT_SYMBOL(__blk_run_queue);
326
327 /**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
334 */
335 void blk_run_queue_async(struct request_queue *q)
336 {
337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339 }
340 EXPORT_SYMBOL(blk_run_queue_async);
341
342 /**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
349 */
350 void blk_run_queue(struct request_queue *q)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
355 __blk_run_queue(q);
356 spin_unlock_irqrestore(q->queue_lock, flags);
357 }
358 EXPORT_SYMBOL(blk_run_queue);
359
360 void blk_put_queue(struct request_queue *q)
361 {
362 kobject_put(&q->kobj);
363 }
364 EXPORT_SYMBOL(blk_put_queue);
365
366 /**
367 * __blk_drain_queue - drain requests from request_queue
368 * @q: queue to drain
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370 *
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
374 */
375 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
378 {
379 int i;
380
381 lockdep_assert_held(q->queue_lock);
382
383 while (true) {
384 bool drain = false;
385
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
393 blkcg_drain_queue(q);
394
395 /*
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
401 */
402 if (!list_empty(&q->queue_head) && q->request_fn)
403 __blk_run_queue(q);
404
405 drain |= q->nr_rqs_elvpriv;
406 drain |= q->request_fn_active;
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
417 drain |= q->nr_rqs[i];
418 drain |= q->in_flight[i];
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
421 }
422 }
423
424 if (!drain)
425 break;
426
427 spin_unlock_irq(q->queue_lock);
428
429 msleep(10);
430
431 spin_lock_irq(q->queue_lock);
432 }
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
440 struct request_list *rl;
441
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
445 }
446 }
447
448 /**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
457 */
458 void blk_queue_bypass_start(struct request_queue *q)
459 {
460 spin_lock_irq(q->queue_lock);
461 q->bypass_depth++;
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481 /**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
497 void blk_set_queue_dying(struct request_queue *q)
498 {
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
508 spin_lock_irq(q->queue_lock);
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 spin_unlock_irq(q->queue_lock);
516 }
517 }
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
520 /**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
526 */
527 void blk_cleanup_queue(struct request_queue *q)
528 {
529 spinlock_t *lock = q->queue_lock;
530
531 /* mark @q DYING, no new request or merges will be allowed afterwards */
532 mutex_lock(&q->sysfs_lock);
533 blk_set_queue_dying(q);
534 spin_lock_irq(lock);
535
536 /*
537 * A dying queue is permanently in bypass mode till released. Note
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
550 queue_flag_set(QUEUE_FLAG_DYING, q);
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
561 __blk_drain_queue(q, true);
562 queue_flag_set(QUEUE_FLAG_DEAD, q);
563 spin_unlock_irq(lock);
564
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
568 /* @q won't process any more request, flush async actions */
569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
570 blk_sync_queue(q);
571
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
574 percpu_ref_exit(&q->q_usage_counter);
575
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
581 /* @q is and will stay empty, shutdown and put */
582 blk_put_queue(q);
583 }
584 EXPORT_SYMBOL(blk_cleanup_queue);
585
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
588 {
589 struct request_queue *q = data;
590
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
592 }
593
594 static void free_request_simple(void *element, void *data)
595 {
596 kmem_cache_free(request_cachep, element);
597 }
598
599 static void *alloc_request_size(gfp_t gfp_mask, void *data)
600 {
601 struct request_queue *q = data;
602 struct request *rq;
603
604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 q->node);
606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 kfree(rq);
608 rq = NULL;
609 }
610 return rq;
611 }
612
613 static void free_request_size(void *element, void *data)
614 {
615 struct request_queue *q = data;
616
617 if (q->exit_rq_fn)
618 q->exit_rq_fn(q, element);
619 kfree(element);
620 }
621
622 int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
624 {
625 if (unlikely(rl->rq_pool))
626 return 0;
627
628 rl->q = q;
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
633
634 if (q->cmd_size) {
635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 alloc_request_size, free_request_size,
637 q, gfp_mask, q->node);
638 } else {
639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 alloc_request_simple, free_request_simple,
641 q, gfp_mask, q->node);
642 }
643 if (!rl->rq_pool)
644 return -ENOMEM;
645
646 return 0;
647 }
648
649 void blk_exit_rl(struct request_list *rl)
650 {
651 if (rl->rq_pool)
652 mempool_destroy(rl->rq_pool);
653 }
654
655 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
656 {
657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
658 }
659 EXPORT_SYMBOL(blk_alloc_queue);
660
661 int blk_queue_enter(struct request_queue *q, bool nowait)
662 {
663 while (true) {
664 int ret;
665
666 if (percpu_ref_tryget_live(&q->q_usage_counter))
667 return 0;
668
669 if (nowait)
670 return -EBUSY;
671
672 ret = wait_event_interruptible(q->mq_freeze_wq,
673 !atomic_read(&q->mq_freeze_depth) ||
674 blk_queue_dying(q));
675 if (blk_queue_dying(q))
676 return -ENODEV;
677 if (ret)
678 return ret;
679 }
680 }
681
682 void blk_queue_exit(struct request_queue *q)
683 {
684 percpu_ref_put(&q->q_usage_counter);
685 }
686
687 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
688 {
689 struct request_queue *q =
690 container_of(ref, struct request_queue, q_usage_counter);
691
692 wake_up_all(&q->mq_freeze_wq);
693 }
694
695 static void blk_rq_timed_out_timer(unsigned long data)
696 {
697 struct request_queue *q = (struct request_queue *)data;
698
699 kblockd_schedule_work(&q->timeout_work);
700 }
701
702 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
703 {
704 struct request_queue *q;
705
706 q = kmem_cache_alloc_node(blk_requestq_cachep,
707 gfp_mask | __GFP_ZERO, node_id);
708 if (!q)
709 return NULL;
710
711 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
712 if (q->id < 0)
713 goto fail_q;
714
715 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
716 if (!q->bio_split)
717 goto fail_id;
718
719 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
720 if (!q->backing_dev_info)
721 goto fail_split;
722
723 q->backing_dev_info->ra_pages =
724 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
725 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
726 q->backing_dev_info->name = "block";
727 q->node = node_id;
728
729 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
730 laptop_mode_timer_fn, (unsigned long) q);
731 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
732 INIT_LIST_HEAD(&q->queue_head);
733 INIT_LIST_HEAD(&q->timeout_list);
734 INIT_LIST_HEAD(&q->icq_list);
735 #ifdef CONFIG_BLK_CGROUP
736 INIT_LIST_HEAD(&q->blkg_list);
737 #endif
738 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
739
740 kobject_init(&q->kobj, &blk_queue_ktype);
741
742 mutex_init(&q->sysfs_lock);
743 spin_lock_init(&q->__queue_lock);
744
745 /*
746 * By default initialize queue_lock to internal lock and driver can
747 * override it later if need be.
748 */
749 q->queue_lock = &q->__queue_lock;
750
751 /*
752 * A queue starts its life with bypass turned on to avoid
753 * unnecessary bypass on/off overhead and nasty surprises during
754 * init. The initial bypass will be finished when the queue is
755 * registered by blk_register_queue().
756 */
757 q->bypass_depth = 1;
758 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
759
760 init_waitqueue_head(&q->mq_freeze_wq);
761
762 /*
763 * Init percpu_ref in atomic mode so that it's faster to shutdown.
764 * See blk_register_queue() for details.
765 */
766 if (percpu_ref_init(&q->q_usage_counter,
767 blk_queue_usage_counter_release,
768 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
769 goto fail_bdi;
770
771 if (blkcg_init_queue(q))
772 goto fail_ref;
773
774 return q;
775
776 fail_ref:
777 percpu_ref_exit(&q->q_usage_counter);
778 fail_bdi:
779 bdi_put(q->backing_dev_info);
780 fail_split:
781 bioset_free(q->bio_split);
782 fail_id:
783 ida_simple_remove(&blk_queue_ida, q->id);
784 fail_q:
785 kmem_cache_free(blk_requestq_cachep, q);
786 return NULL;
787 }
788 EXPORT_SYMBOL(blk_alloc_queue_node);
789
790 /**
791 * blk_init_queue - prepare a request queue for use with a block device
792 * @rfn: The function to be called to process requests that have been
793 * placed on the queue.
794 * @lock: Request queue spin lock
795 *
796 * Description:
797 * If a block device wishes to use the standard request handling procedures,
798 * which sorts requests and coalesces adjacent requests, then it must
799 * call blk_init_queue(). The function @rfn will be called when there
800 * are requests on the queue that need to be processed. If the device
801 * supports plugging, then @rfn may not be called immediately when requests
802 * are available on the queue, but may be called at some time later instead.
803 * Plugged queues are generally unplugged when a buffer belonging to one
804 * of the requests on the queue is needed, or due to memory pressure.
805 *
806 * @rfn is not required, or even expected, to remove all requests off the
807 * queue, but only as many as it can handle at a time. If it does leave
808 * requests on the queue, it is responsible for arranging that the requests
809 * get dealt with eventually.
810 *
811 * The queue spin lock must be held while manipulating the requests on the
812 * request queue; this lock will be taken also from interrupt context, so irq
813 * disabling is needed for it.
814 *
815 * Function returns a pointer to the initialized request queue, or %NULL if
816 * it didn't succeed.
817 *
818 * Note:
819 * blk_init_queue() must be paired with a blk_cleanup_queue() call
820 * when the block device is deactivated (such as at module unload).
821 **/
822
823 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
824 {
825 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
826 }
827 EXPORT_SYMBOL(blk_init_queue);
828
829 struct request_queue *
830 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
831 {
832 struct request_queue *q;
833
834 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
835 if (!q)
836 return NULL;
837
838 q->request_fn = rfn;
839 if (lock)
840 q->queue_lock = lock;
841 if (blk_init_allocated_queue(q) < 0) {
842 blk_cleanup_queue(q);
843 return NULL;
844 }
845
846 return q;
847 }
848 EXPORT_SYMBOL(blk_init_queue_node);
849
850 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
851
852
853 int blk_init_allocated_queue(struct request_queue *q)
854 {
855 q->stats = blk_alloc_queue_stats();
856 if (!q->stats)
857 return -ENOMEM;
858
859 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
860 if (!q->fq)
861 return -ENOMEM;
862
863 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
864 goto out_free_flush_queue;
865
866 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
867 goto out_exit_flush_rq;
868
869 INIT_WORK(&q->timeout_work, blk_timeout_work);
870 q->queue_flags |= QUEUE_FLAG_DEFAULT;
871
872 /*
873 * This also sets hw/phys segments, boundary and size
874 */
875 blk_queue_make_request(q, blk_queue_bio);
876
877 q->sg_reserved_size = INT_MAX;
878
879 /* Protect q->elevator from elevator_change */
880 mutex_lock(&q->sysfs_lock);
881
882 /* init elevator */
883 if (elevator_init(q, NULL)) {
884 mutex_unlock(&q->sysfs_lock);
885 goto out_exit_flush_rq;
886 }
887
888 mutex_unlock(&q->sysfs_lock);
889 return 0;
890
891 out_exit_flush_rq:
892 if (q->exit_rq_fn)
893 q->exit_rq_fn(q, q->fq->flush_rq);
894 out_free_flush_queue:
895 blk_free_flush_queue(q->fq);
896 return -ENOMEM;
897 }
898 EXPORT_SYMBOL(blk_init_allocated_queue);
899
900 bool blk_get_queue(struct request_queue *q)
901 {
902 if (likely(!blk_queue_dying(q))) {
903 __blk_get_queue(q);
904 return true;
905 }
906
907 return false;
908 }
909 EXPORT_SYMBOL(blk_get_queue);
910
911 static inline void blk_free_request(struct request_list *rl, struct request *rq)
912 {
913 if (rq->rq_flags & RQF_ELVPRIV) {
914 elv_put_request(rl->q, rq);
915 if (rq->elv.icq)
916 put_io_context(rq->elv.icq->ioc);
917 }
918
919 mempool_free(rq, rl->rq_pool);
920 }
921
922 /*
923 * ioc_batching returns true if the ioc is a valid batching request and
924 * should be given priority access to a request.
925 */
926 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
927 {
928 if (!ioc)
929 return 0;
930
931 /*
932 * Make sure the process is able to allocate at least 1 request
933 * even if the batch times out, otherwise we could theoretically
934 * lose wakeups.
935 */
936 return ioc->nr_batch_requests == q->nr_batching ||
937 (ioc->nr_batch_requests > 0
938 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
939 }
940
941 /*
942 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
943 * will cause the process to be a "batcher" on all queues in the system. This
944 * is the behaviour we want though - once it gets a wakeup it should be given
945 * a nice run.
946 */
947 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
948 {
949 if (!ioc || ioc_batching(q, ioc))
950 return;
951
952 ioc->nr_batch_requests = q->nr_batching;
953 ioc->last_waited = jiffies;
954 }
955
956 static void __freed_request(struct request_list *rl, int sync)
957 {
958 struct request_queue *q = rl->q;
959
960 if (rl->count[sync] < queue_congestion_off_threshold(q))
961 blk_clear_congested(rl, sync);
962
963 if (rl->count[sync] + 1 <= q->nr_requests) {
964 if (waitqueue_active(&rl->wait[sync]))
965 wake_up(&rl->wait[sync]);
966
967 blk_clear_rl_full(rl, sync);
968 }
969 }
970
971 /*
972 * A request has just been released. Account for it, update the full and
973 * congestion status, wake up any waiters. Called under q->queue_lock.
974 */
975 static void freed_request(struct request_list *rl, bool sync,
976 req_flags_t rq_flags)
977 {
978 struct request_queue *q = rl->q;
979
980 q->nr_rqs[sync]--;
981 rl->count[sync]--;
982 if (rq_flags & RQF_ELVPRIV)
983 q->nr_rqs_elvpriv--;
984
985 __freed_request(rl, sync);
986
987 if (unlikely(rl->starved[sync ^ 1]))
988 __freed_request(rl, sync ^ 1);
989 }
990
991 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
992 {
993 struct request_list *rl;
994 int on_thresh, off_thresh;
995
996 spin_lock_irq(q->queue_lock);
997 q->nr_requests = nr;
998 blk_queue_congestion_threshold(q);
999 on_thresh = queue_congestion_on_threshold(q);
1000 off_thresh = queue_congestion_off_threshold(q);
1001
1002 blk_queue_for_each_rl(rl, q) {
1003 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1004 blk_set_congested(rl, BLK_RW_SYNC);
1005 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1006 blk_clear_congested(rl, BLK_RW_SYNC);
1007
1008 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1009 blk_set_congested(rl, BLK_RW_ASYNC);
1010 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1011 blk_clear_congested(rl, BLK_RW_ASYNC);
1012
1013 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1014 blk_set_rl_full(rl, BLK_RW_SYNC);
1015 } else {
1016 blk_clear_rl_full(rl, BLK_RW_SYNC);
1017 wake_up(&rl->wait[BLK_RW_SYNC]);
1018 }
1019
1020 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1021 blk_set_rl_full(rl, BLK_RW_ASYNC);
1022 } else {
1023 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1024 wake_up(&rl->wait[BLK_RW_ASYNC]);
1025 }
1026 }
1027
1028 spin_unlock_irq(q->queue_lock);
1029 return 0;
1030 }
1031
1032 /**
1033 * __get_request - get a free request
1034 * @rl: request list to allocate from
1035 * @op: operation and flags
1036 * @bio: bio to allocate request for (can be %NULL)
1037 * @gfp_mask: allocation mask
1038 *
1039 * Get a free request from @q. This function may fail under memory
1040 * pressure or if @q is dead.
1041 *
1042 * Must be called with @q->queue_lock held and,
1043 * Returns ERR_PTR on failure, with @q->queue_lock held.
1044 * Returns request pointer on success, with @q->queue_lock *not held*.
1045 */
1046 static struct request *__get_request(struct request_list *rl, unsigned int op,
1047 struct bio *bio, gfp_t gfp_mask)
1048 {
1049 struct request_queue *q = rl->q;
1050 struct request *rq;
1051 struct elevator_type *et = q->elevator->type;
1052 struct io_context *ioc = rq_ioc(bio);
1053 struct io_cq *icq = NULL;
1054 const bool is_sync = op_is_sync(op);
1055 int may_queue;
1056 req_flags_t rq_flags = RQF_ALLOCED;
1057
1058 if (unlikely(blk_queue_dying(q)))
1059 return ERR_PTR(-ENODEV);
1060
1061 may_queue = elv_may_queue(q, op);
1062 if (may_queue == ELV_MQUEUE_NO)
1063 goto rq_starved;
1064
1065 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1066 if (rl->count[is_sync]+1 >= q->nr_requests) {
1067 /*
1068 * The queue will fill after this allocation, so set
1069 * it as full, and mark this process as "batching".
1070 * This process will be allowed to complete a batch of
1071 * requests, others will be blocked.
1072 */
1073 if (!blk_rl_full(rl, is_sync)) {
1074 ioc_set_batching(q, ioc);
1075 blk_set_rl_full(rl, is_sync);
1076 } else {
1077 if (may_queue != ELV_MQUEUE_MUST
1078 && !ioc_batching(q, ioc)) {
1079 /*
1080 * The queue is full and the allocating
1081 * process is not a "batcher", and not
1082 * exempted by the IO scheduler
1083 */
1084 return ERR_PTR(-ENOMEM);
1085 }
1086 }
1087 }
1088 blk_set_congested(rl, is_sync);
1089 }
1090
1091 /*
1092 * Only allow batching queuers to allocate up to 50% over the defined
1093 * limit of requests, otherwise we could have thousands of requests
1094 * allocated with any setting of ->nr_requests
1095 */
1096 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1097 return ERR_PTR(-ENOMEM);
1098
1099 q->nr_rqs[is_sync]++;
1100 rl->count[is_sync]++;
1101 rl->starved[is_sync] = 0;
1102
1103 /*
1104 * Decide whether the new request will be managed by elevator. If
1105 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1106 * prevent the current elevator from being destroyed until the new
1107 * request is freed. This guarantees icq's won't be destroyed and
1108 * makes creating new ones safe.
1109 *
1110 * Flush requests do not use the elevator so skip initialization.
1111 * This allows a request to share the flush and elevator data.
1112 *
1113 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1114 * it will be created after releasing queue_lock.
1115 */
1116 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1117 rq_flags |= RQF_ELVPRIV;
1118 q->nr_rqs_elvpriv++;
1119 if (et->icq_cache && ioc)
1120 icq = ioc_lookup_icq(ioc, q);
1121 }
1122
1123 if (blk_queue_io_stat(q))
1124 rq_flags |= RQF_IO_STAT;
1125 spin_unlock_irq(q->queue_lock);
1126
1127 /* allocate and init request */
1128 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1129 if (!rq)
1130 goto fail_alloc;
1131
1132 blk_rq_init(q, rq);
1133 blk_rq_set_rl(rq, rl);
1134 blk_rq_set_prio(rq, ioc);
1135 rq->cmd_flags = op;
1136 rq->rq_flags = rq_flags;
1137
1138 /* init elvpriv */
1139 if (rq_flags & RQF_ELVPRIV) {
1140 if (unlikely(et->icq_cache && !icq)) {
1141 if (ioc)
1142 icq = ioc_create_icq(ioc, q, gfp_mask);
1143 if (!icq)
1144 goto fail_elvpriv;
1145 }
1146
1147 rq->elv.icq = icq;
1148 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1149 goto fail_elvpriv;
1150
1151 /* @rq->elv.icq holds io_context until @rq is freed */
1152 if (icq)
1153 get_io_context(icq->ioc);
1154 }
1155 out:
1156 /*
1157 * ioc may be NULL here, and ioc_batching will be false. That's
1158 * OK, if the queue is under the request limit then requests need
1159 * not count toward the nr_batch_requests limit. There will always
1160 * be some limit enforced by BLK_BATCH_TIME.
1161 */
1162 if (ioc_batching(q, ioc))
1163 ioc->nr_batch_requests--;
1164
1165 trace_block_getrq(q, bio, op);
1166 return rq;
1167
1168 fail_elvpriv:
1169 /*
1170 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1171 * and may fail indefinitely under memory pressure and thus
1172 * shouldn't stall IO. Treat this request as !elvpriv. This will
1173 * disturb iosched and blkcg but weird is bettern than dead.
1174 */
1175 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1176 __func__, dev_name(q->backing_dev_info->dev));
1177
1178 rq->rq_flags &= ~RQF_ELVPRIV;
1179 rq->elv.icq = NULL;
1180
1181 spin_lock_irq(q->queue_lock);
1182 q->nr_rqs_elvpriv--;
1183 spin_unlock_irq(q->queue_lock);
1184 goto out;
1185
1186 fail_alloc:
1187 /*
1188 * Allocation failed presumably due to memory. Undo anything we
1189 * might have messed up.
1190 *
1191 * Allocating task should really be put onto the front of the wait
1192 * queue, but this is pretty rare.
1193 */
1194 spin_lock_irq(q->queue_lock);
1195 freed_request(rl, is_sync, rq_flags);
1196
1197 /*
1198 * in the very unlikely event that allocation failed and no
1199 * requests for this direction was pending, mark us starved so that
1200 * freeing of a request in the other direction will notice
1201 * us. another possible fix would be to split the rq mempool into
1202 * READ and WRITE
1203 */
1204 rq_starved:
1205 if (unlikely(rl->count[is_sync] == 0))
1206 rl->starved[is_sync] = 1;
1207 return ERR_PTR(-ENOMEM);
1208 }
1209
1210 /**
1211 * get_request - get a free request
1212 * @q: request_queue to allocate request from
1213 * @op: operation and flags
1214 * @bio: bio to allocate request for (can be %NULL)
1215 * @gfp_mask: allocation mask
1216 *
1217 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1218 * this function keeps retrying under memory pressure and fails iff @q is dead.
1219 *
1220 * Must be called with @q->queue_lock held and,
1221 * Returns ERR_PTR on failure, with @q->queue_lock held.
1222 * Returns request pointer on success, with @q->queue_lock *not held*.
1223 */
1224 static struct request *get_request(struct request_queue *q, unsigned int op,
1225 struct bio *bio, gfp_t gfp_mask)
1226 {
1227 const bool is_sync = op_is_sync(op);
1228 DEFINE_WAIT(wait);
1229 struct request_list *rl;
1230 struct request *rq;
1231
1232 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1233 retry:
1234 rq = __get_request(rl, op, bio, gfp_mask);
1235 if (!IS_ERR(rq))
1236 return rq;
1237
1238 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1239 blk_put_rl(rl);
1240 return rq;
1241 }
1242
1243 /* wait on @rl and retry */
1244 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1245 TASK_UNINTERRUPTIBLE);
1246
1247 trace_block_sleeprq(q, bio, op);
1248
1249 spin_unlock_irq(q->queue_lock);
1250 io_schedule();
1251
1252 /*
1253 * After sleeping, we become a "batching" process and will be able
1254 * to allocate at least one request, and up to a big batch of them
1255 * for a small period time. See ioc_batching, ioc_set_batching
1256 */
1257 ioc_set_batching(q, current->io_context);
1258
1259 spin_lock_irq(q->queue_lock);
1260 finish_wait(&rl->wait[is_sync], &wait);
1261
1262 goto retry;
1263 }
1264
1265 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1266 gfp_t gfp_mask)
1267 {
1268 struct request *rq;
1269
1270 /* create ioc upfront */
1271 create_io_context(gfp_mask, q->node);
1272
1273 spin_lock_irq(q->queue_lock);
1274 rq = get_request(q, rw, NULL, gfp_mask);
1275 if (IS_ERR(rq)) {
1276 spin_unlock_irq(q->queue_lock);
1277 return rq;
1278 }
1279
1280 /* q->queue_lock is unlocked at this point */
1281 rq->__data_len = 0;
1282 rq->__sector = (sector_t) -1;
1283 rq->bio = rq->biotail = NULL;
1284 return rq;
1285 }
1286
1287 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1288 {
1289 if (q->mq_ops)
1290 return blk_mq_alloc_request(q, rw,
1291 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1292 0 : BLK_MQ_REQ_NOWAIT);
1293 else
1294 return blk_old_get_request(q, rw, gfp_mask);
1295 }
1296 EXPORT_SYMBOL(blk_get_request);
1297
1298 /**
1299 * blk_requeue_request - put a request back on queue
1300 * @q: request queue where request should be inserted
1301 * @rq: request to be inserted
1302 *
1303 * Description:
1304 * Drivers often keep queueing requests until the hardware cannot accept
1305 * more, when that condition happens we need to put the request back
1306 * on the queue. Must be called with queue lock held.
1307 */
1308 void blk_requeue_request(struct request_queue *q, struct request *rq)
1309 {
1310 blk_delete_timer(rq);
1311 blk_clear_rq_complete(rq);
1312 trace_block_rq_requeue(q, rq);
1313 wbt_requeue(q->rq_wb, &rq->issue_stat);
1314
1315 if (rq->rq_flags & RQF_QUEUED)
1316 blk_queue_end_tag(q, rq);
1317
1318 BUG_ON(blk_queued_rq(rq));
1319
1320 elv_requeue_request(q, rq);
1321 }
1322 EXPORT_SYMBOL(blk_requeue_request);
1323
1324 static void add_acct_request(struct request_queue *q, struct request *rq,
1325 int where)
1326 {
1327 blk_account_io_start(rq, true);
1328 __elv_add_request(q, rq, where);
1329 }
1330
1331 static void part_round_stats_single(int cpu, struct hd_struct *part,
1332 unsigned long now)
1333 {
1334 int inflight;
1335
1336 if (now == part->stamp)
1337 return;
1338
1339 inflight = part_in_flight(part);
1340 if (inflight) {
1341 __part_stat_add(cpu, part, time_in_queue,
1342 inflight * (now - part->stamp));
1343 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1344 }
1345 part->stamp = now;
1346 }
1347
1348 /**
1349 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1350 * @cpu: cpu number for stats access
1351 * @part: target partition
1352 *
1353 * The average IO queue length and utilisation statistics are maintained
1354 * by observing the current state of the queue length and the amount of
1355 * time it has been in this state for.
1356 *
1357 * Normally, that accounting is done on IO completion, but that can result
1358 * in more than a second's worth of IO being accounted for within any one
1359 * second, leading to >100% utilisation. To deal with that, we call this
1360 * function to do a round-off before returning the results when reading
1361 * /proc/diskstats. This accounts immediately for all queue usage up to
1362 * the current jiffies and restarts the counters again.
1363 */
1364 void part_round_stats(int cpu, struct hd_struct *part)
1365 {
1366 unsigned long now = jiffies;
1367
1368 if (part->partno)
1369 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1370 part_round_stats_single(cpu, part, now);
1371 }
1372 EXPORT_SYMBOL_GPL(part_round_stats);
1373
1374 #ifdef CONFIG_PM
1375 static void blk_pm_put_request(struct request *rq)
1376 {
1377 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1378 pm_runtime_mark_last_busy(rq->q->dev);
1379 }
1380 #else
1381 static inline void blk_pm_put_request(struct request *rq) {}
1382 #endif
1383
1384 /*
1385 * queue lock must be held
1386 */
1387 void __blk_put_request(struct request_queue *q, struct request *req)
1388 {
1389 req_flags_t rq_flags = req->rq_flags;
1390
1391 if (unlikely(!q))
1392 return;
1393
1394 if (q->mq_ops) {
1395 blk_mq_free_request(req);
1396 return;
1397 }
1398
1399 blk_pm_put_request(req);
1400
1401 elv_completed_request(q, req);
1402
1403 /* this is a bio leak */
1404 WARN_ON(req->bio != NULL);
1405
1406 wbt_done(q->rq_wb, &req->issue_stat);
1407
1408 /*
1409 * Request may not have originated from ll_rw_blk. if not,
1410 * it didn't come out of our reserved rq pools
1411 */
1412 if (rq_flags & RQF_ALLOCED) {
1413 struct request_list *rl = blk_rq_rl(req);
1414 bool sync = op_is_sync(req->cmd_flags);
1415
1416 BUG_ON(!list_empty(&req->queuelist));
1417 BUG_ON(ELV_ON_HASH(req));
1418
1419 blk_free_request(rl, req);
1420 freed_request(rl, sync, rq_flags);
1421 blk_put_rl(rl);
1422 }
1423 }
1424 EXPORT_SYMBOL_GPL(__blk_put_request);
1425
1426 void blk_put_request(struct request *req)
1427 {
1428 struct request_queue *q = req->q;
1429
1430 if (q->mq_ops)
1431 blk_mq_free_request(req);
1432 else {
1433 unsigned long flags;
1434
1435 spin_lock_irqsave(q->queue_lock, flags);
1436 __blk_put_request(q, req);
1437 spin_unlock_irqrestore(q->queue_lock, flags);
1438 }
1439 }
1440 EXPORT_SYMBOL(blk_put_request);
1441
1442 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1443 struct bio *bio)
1444 {
1445 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1446
1447 if (!ll_back_merge_fn(q, req, bio))
1448 return false;
1449
1450 trace_block_bio_backmerge(q, req, bio);
1451
1452 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1453 blk_rq_set_mixed_merge(req);
1454
1455 req->biotail->bi_next = bio;
1456 req->biotail = bio;
1457 req->__data_len += bio->bi_iter.bi_size;
1458 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1459
1460 blk_account_io_start(req, false);
1461 return true;
1462 }
1463
1464 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1465 struct bio *bio)
1466 {
1467 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1468
1469 if (!ll_front_merge_fn(q, req, bio))
1470 return false;
1471
1472 trace_block_bio_frontmerge(q, req, bio);
1473
1474 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1475 blk_rq_set_mixed_merge(req);
1476
1477 bio->bi_next = req->bio;
1478 req->bio = bio;
1479
1480 req->__sector = bio->bi_iter.bi_sector;
1481 req->__data_len += bio->bi_iter.bi_size;
1482 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1483
1484 blk_account_io_start(req, false);
1485 return true;
1486 }
1487
1488 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1489 struct bio *bio)
1490 {
1491 unsigned short segments = blk_rq_nr_discard_segments(req);
1492
1493 if (segments >= queue_max_discard_segments(q))
1494 goto no_merge;
1495 if (blk_rq_sectors(req) + bio_sectors(bio) >
1496 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1497 goto no_merge;
1498
1499 req->biotail->bi_next = bio;
1500 req->biotail = bio;
1501 req->__data_len += bio->bi_iter.bi_size;
1502 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1503 req->nr_phys_segments = segments + 1;
1504
1505 blk_account_io_start(req, false);
1506 return true;
1507 no_merge:
1508 req_set_nomerge(q, req);
1509 return false;
1510 }
1511
1512 /**
1513 * blk_attempt_plug_merge - try to merge with %current's plugged list
1514 * @q: request_queue new bio is being queued at
1515 * @bio: new bio being queued
1516 * @request_count: out parameter for number of traversed plugged requests
1517 * @same_queue_rq: pointer to &struct request that gets filled in when
1518 * another request associated with @q is found on the plug list
1519 * (optional, may be %NULL)
1520 *
1521 * Determine whether @bio being queued on @q can be merged with a request
1522 * on %current's plugged list. Returns %true if merge was successful,
1523 * otherwise %false.
1524 *
1525 * Plugging coalesces IOs from the same issuer for the same purpose without
1526 * going through @q->queue_lock. As such it's more of an issuing mechanism
1527 * than scheduling, and the request, while may have elvpriv data, is not
1528 * added on the elevator at this point. In addition, we don't have
1529 * reliable access to the elevator outside queue lock. Only check basic
1530 * merging parameters without querying the elevator.
1531 *
1532 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1533 */
1534 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1535 unsigned int *request_count,
1536 struct request **same_queue_rq)
1537 {
1538 struct blk_plug *plug;
1539 struct request *rq;
1540 struct list_head *plug_list;
1541
1542 plug = current->plug;
1543 if (!plug)
1544 return false;
1545 *request_count = 0;
1546
1547 if (q->mq_ops)
1548 plug_list = &plug->mq_list;
1549 else
1550 plug_list = &plug->list;
1551
1552 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1553 bool merged = false;
1554
1555 if (rq->q == q) {
1556 (*request_count)++;
1557 /*
1558 * Only blk-mq multiple hardware queues case checks the
1559 * rq in the same queue, there should be only one such
1560 * rq in a queue
1561 **/
1562 if (same_queue_rq)
1563 *same_queue_rq = rq;
1564 }
1565
1566 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1567 continue;
1568
1569 switch (blk_try_merge(rq, bio)) {
1570 case ELEVATOR_BACK_MERGE:
1571 merged = bio_attempt_back_merge(q, rq, bio);
1572 break;
1573 case ELEVATOR_FRONT_MERGE:
1574 merged = bio_attempt_front_merge(q, rq, bio);
1575 break;
1576 case ELEVATOR_DISCARD_MERGE:
1577 merged = bio_attempt_discard_merge(q, rq, bio);
1578 break;
1579 default:
1580 break;
1581 }
1582
1583 if (merged)
1584 return true;
1585 }
1586
1587 return false;
1588 }
1589
1590 unsigned int blk_plug_queued_count(struct request_queue *q)
1591 {
1592 struct blk_plug *plug;
1593 struct request *rq;
1594 struct list_head *plug_list;
1595 unsigned int ret = 0;
1596
1597 plug = current->plug;
1598 if (!plug)
1599 goto out;
1600
1601 if (q->mq_ops)
1602 plug_list = &plug->mq_list;
1603 else
1604 plug_list = &plug->list;
1605
1606 list_for_each_entry(rq, plug_list, queuelist) {
1607 if (rq->q == q)
1608 ret++;
1609 }
1610 out:
1611 return ret;
1612 }
1613
1614 void init_request_from_bio(struct request *req, struct bio *bio)
1615 {
1616 if (bio->bi_opf & REQ_RAHEAD)
1617 req->cmd_flags |= REQ_FAILFAST_MASK;
1618
1619 req->errors = 0;
1620 req->__sector = bio->bi_iter.bi_sector;
1621 if (ioprio_valid(bio_prio(bio)))
1622 req->ioprio = bio_prio(bio);
1623 blk_rq_bio_prep(req->q, req, bio);
1624 }
1625
1626 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1627 {
1628 struct blk_plug *plug;
1629 int where = ELEVATOR_INSERT_SORT;
1630 struct request *req, *free;
1631 unsigned int request_count = 0;
1632 unsigned int wb_acct;
1633
1634 /*
1635 * low level driver can indicate that it wants pages above a
1636 * certain limit bounced to low memory (ie for highmem, or even
1637 * ISA dma in theory)
1638 */
1639 blk_queue_bounce(q, &bio);
1640
1641 blk_queue_split(q, &bio, q->bio_split);
1642
1643 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1644 bio->bi_error = -EIO;
1645 bio_endio(bio);
1646 return BLK_QC_T_NONE;
1647 }
1648
1649 if (op_is_flush(bio->bi_opf)) {
1650 spin_lock_irq(q->queue_lock);
1651 where = ELEVATOR_INSERT_FLUSH;
1652 goto get_rq;
1653 }
1654
1655 /*
1656 * Check if we can merge with the plugged list before grabbing
1657 * any locks.
1658 */
1659 if (!blk_queue_nomerges(q)) {
1660 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1661 return BLK_QC_T_NONE;
1662 } else
1663 request_count = blk_plug_queued_count(q);
1664
1665 spin_lock_irq(q->queue_lock);
1666
1667 switch (elv_merge(q, &req, bio)) {
1668 case ELEVATOR_BACK_MERGE:
1669 if (!bio_attempt_back_merge(q, req, bio))
1670 break;
1671 elv_bio_merged(q, req, bio);
1672 free = attempt_back_merge(q, req);
1673 if (free)
1674 __blk_put_request(q, free);
1675 else
1676 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1677 goto out_unlock;
1678 case ELEVATOR_FRONT_MERGE:
1679 if (!bio_attempt_front_merge(q, req, bio))
1680 break;
1681 elv_bio_merged(q, req, bio);
1682 free = attempt_front_merge(q, req);
1683 if (free)
1684 __blk_put_request(q, free);
1685 else
1686 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1687 goto out_unlock;
1688 default:
1689 break;
1690 }
1691
1692 get_rq:
1693 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1694
1695 /*
1696 * Grab a free request. This is might sleep but can not fail.
1697 * Returns with the queue unlocked.
1698 */
1699 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1700 if (IS_ERR(req)) {
1701 __wbt_done(q->rq_wb, wb_acct);
1702 bio->bi_error = PTR_ERR(req);
1703 bio_endio(bio);
1704 goto out_unlock;
1705 }
1706
1707 wbt_track(&req->issue_stat, wb_acct);
1708
1709 /*
1710 * After dropping the lock and possibly sleeping here, our request
1711 * may now be mergeable after it had proven unmergeable (above).
1712 * We don't worry about that case for efficiency. It won't happen
1713 * often, and the elevators are able to handle it.
1714 */
1715 init_request_from_bio(req, bio);
1716
1717 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1718 req->cpu = raw_smp_processor_id();
1719
1720 plug = current->plug;
1721 if (plug) {
1722 /*
1723 * If this is the first request added after a plug, fire
1724 * of a plug trace.
1725 *
1726 * @request_count may become stale because of schedule
1727 * out, so check plug list again.
1728 */
1729 if (!request_count || list_empty(&plug->list))
1730 trace_block_plug(q);
1731 else {
1732 struct request *last = list_entry_rq(plug->list.prev);
1733 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1734 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1735 blk_flush_plug_list(plug, false);
1736 trace_block_plug(q);
1737 }
1738 }
1739 list_add_tail(&req->queuelist, &plug->list);
1740 blk_account_io_start(req, true);
1741 } else {
1742 spin_lock_irq(q->queue_lock);
1743 add_acct_request(q, req, where);
1744 __blk_run_queue(q);
1745 out_unlock:
1746 spin_unlock_irq(q->queue_lock);
1747 }
1748
1749 return BLK_QC_T_NONE;
1750 }
1751
1752 /*
1753 * If bio->bi_dev is a partition, remap the location
1754 */
1755 static inline void blk_partition_remap(struct bio *bio)
1756 {
1757 struct block_device *bdev = bio->bi_bdev;
1758
1759 /*
1760 * Zone reset does not include bi_size so bio_sectors() is always 0.
1761 * Include a test for the reset op code and perform the remap if needed.
1762 */
1763 if (bdev != bdev->bd_contains &&
1764 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1765 struct hd_struct *p = bdev->bd_part;
1766
1767 bio->bi_iter.bi_sector += p->start_sect;
1768 bio->bi_bdev = bdev->bd_contains;
1769
1770 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1771 bdev->bd_dev,
1772 bio->bi_iter.bi_sector - p->start_sect);
1773 }
1774 }
1775
1776 static void handle_bad_sector(struct bio *bio)
1777 {
1778 char b[BDEVNAME_SIZE];
1779
1780 printk(KERN_INFO "attempt to access beyond end of device\n");
1781 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1782 bdevname(bio->bi_bdev, b),
1783 bio->bi_opf,
1784 (unsigned long long)bio_end_sector(bio),
1785 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1786 }
1787
1788 #ifdef CONFIG_FAIL_MAKE_REQUEST
1789
1790 static DECLARE_FAULT_ATTR(fail_make_request);
1791
1792 static int __init setup_fail_make_request(char *str)
1793 {
1794 return setup_fault_attr(&fail_make_request, str);
1795 }
1796 __setup("fail_make_request=", setup_fail_make_request);
1797
1798 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1799 {
1800 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1801 }
1802
1803 static int __init fail_make_request_debugfs(void)
1804 {
1805 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1806 NULL, &fail_make_request);
1807
1808 return PTR_ERR_OR_ZERO(dir);
1809 }
1810
1811 late_initcall(fail_make_request_debugfs);
1812
1813 #else /* CONFIG_FAIL_MAKE_REQUEST */
1814
1815 static inline bool should_fail_request(struct hd_struct *part,
1816 unsigned int bytes)
1817 {
1818 return false;
1819 }
1820
1821 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1822
1823 /*
1824 * Check whether this bio extends beyond the end of the device.
1825 */
1826 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1827 {
1828 sector_t maxsector;
1829
1830 if (!nr_sectors)
1831 return 0;
1832
1833 /* Test device or partition size, when known. */
1834 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1835 if (maxsector) {
1836 sector_t sector = bio->bi_iter.bi_sector;
1837
1838 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1839 /*
1840 * This may well happen - the kernel calls bread()
1841 * without checking the size of the device, e.g., when
1842 * mounting a device.
1843 */
1844 handle_bad_sector(bio);
1845 return 1;
1846 }
1847 }
1848
1849 return 0;
1850 }
1851
1852 static noinline_for_stack bool
1853 generic_make_request_checks(struct bio *bio)
1854 {
1855 struct request_queue *q;
1856 int nr_sectors = bio_sectors(bio);
1857 int err = -EIO;
1858 char b[BDEVNAME_SIZE];
1859 struct hd_struct *part;
1860
1861 might_sleep();
1862
1863 if (bio_check_eod(bio, nr_sectors))
1864 goto end_io;
1865
1866 q = bdev_get_queue(bio->bi_bdev);
1867 if (unlikely(!q)) {
1868 printk(KERN_ERR
1869 "generic_make_request: Trying to access "
1870 "nonexistent block-device %s (%Lu)\n",
1871 bdevname(bio->bi_bdev, b),
1872 (long long) bio->bi_iter.bi_sector);
1873 goto end_io;
1874 }
1875
1876 part = bio->bi_bdev->bd_part;
1877 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1878 should_fail_request(&part_to_disk(part)->part0,
1879 bio->bi_iter.bi_size))
1880 goto end_io;
1881
1882 /*
1883 * If this device has partitions, remap block n
1884 * of partition p to block n+start(p) of the disk.
1885 */
1886 blk_partition_remap(bio);
1887
1888 if (bio_check_eod(bio, nr_sectors))
1889 goto end_io;
1890
1891 /*
1892 * Filter flush bio's early so that make_request based
1893 * drivers without flush support don't have to worry
1894 * about them.
1895 */
1896 if (op_is_flush(bio->bi_opf) &&
1897 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1898 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1899 if (!nr_sectors) {
1900 err = 0;
1901 goto end_io;
1902 }
1903 }
1904
1905 switch (bio_op(bio)) {
1906 case REQ_OP_DISCARD:
1907 if (!blk_queue_discard(q))
1908 goto not_supported;
1909 break;
1910 case REQ_OP_SECURE_ERASE:
1911 if (!blk_queue_secure_erase(q))
1912 goto not_supported;
1913 break;
1914 case REQ_OP_WRITE_SAME:
1915 if (!bdev_write_same(bio->bi_bdev))
1916 goto not_supported;
1917 break;
1918 case REQ_OP_ZONE_REPORT:
1919 case REQ_OP_ZONE_RESET:
1920 if (!bdev_is_zoned(bio->bi_bdev))
1921 goto not_supported;
1922 break;
1923 case REQ_OP_WRITE_ZEROES:
1924 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1925 goto not_supported;
1926 break;
1927 default:
1928 break;
1929 }
1930
1931 /*
1932 * Various block parts want %current->io_context and lazy ioc
1933 * allocation ends up trading a lot of pain for a small amount of
1934 * memory. Just allocate it upfront. This may fail and block
1935 * layer knows how to live with it.
1936 */
1937 create_io_context(GFP_ATOMIC, q->node);
1938
1939 if (!blkcg_bio_issue_check(q, bio))
1940 return false;
1941
1942 trace_block_bio_queue(q, bio);
1943 return true;
1944
1945 not_supported:
1946 err = -EOPNOTSUPP;
1947 end_io:
1948 bio->bi_error = err;
1949 bio_endio(bio);
1950 return false;
1951 }
1952
1953 /**
1954 * generic_make_request - hand a buffer to its device driver for I/O
1955 * @bio: The bio describing the location in memory and on the device.
1956 *
1957 * generic_make_request() is used to make I/O requests of block
1958 * devices. It is passed a &struct bio, which describes the I/O that needs
1959 * to be done.
1960 *
1961 * generic_make_request() does not return any status. The
1962 * success/failure status of the request, along with notification of
1963 * completion, is delivered asynchronously through the bio->bi_end_io
1964 * function described (one day) else where.
1965 *
1966 * The caller of generic_make_request must make sure that bi_io_vec
1967 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1968 * set to describe the device address, and the
1969 * bi_end_io and optionally bi_private are set to describe how
1970 * completion notification should be signaled.
1971 *
1972 * generic_make_request and the drivers it calls may use bi_next if this
1973 * bio happens to be merged with someone else, and may resubmit the bio to
1974 * a lower device by calling into generic_make_request recursively, which
1975 * means the bio should NOT be touched after the call to ->make_request_fn.
1976 */
1977 blk_qc_t generic_make_request(struct bio *bio)
1978 {
1979 /*
1980 * bio_list_on_stack[0] contains bios submitted by the current
1981 * make_request_fn.
1982 * bio_list_on_stack[1] contains bios that were submitted before
1983 * the current make_request_fn, but that haven't been processed
1984 * yet.
1985 */
1986 struct bio_list bio_list_on_stack[2];
1987 blk_qc_t ret = BLK_QC_T_NONE;
1988
1989 if (!generic_make_request_checks(bio))
1990 goto out;
1991
1992 /*
1993 * We only want one ->make_request_fn to be active at a time, else
1994 * stack usage with stacked devices could be a problem. So use
1995 * current->bio_list to keep a list of requests submited by a
1996 * make_request_fn function. current->bio_list is also used as a
1997 * flag to say if generic_make_request is currently active in this
1998 * task or not. If it is NULL, then no make_request is active. If
1999 * it is non-NULL, then a make_request is active, and new requests
2000 * should be added at the tail
2001 */
2002 if (current->bio_list) {
2003 bio_list_add(&current->bio_list[0], bio);
2004 goto out;
2005 }
2006
2007 /* following loop may be a bit non-obvious, and so deserves some
2008 * explanation.
2009 * Before entering the loop, bio->bi_next is NULL (as all callers
2010 * ensure that) so we have a list with a single bio.
2011 * We pretend that we have just taken it off a longer list, so
2012 * we assign bio_list to a pointer to the bio_list_on_stack,
2013 * thus initialising the bio_list of new bios to be
2014 * added. ->make_request() may indeed add some more bios
2015 * through a recursive call to generic_make_request. If it
2016 * did, we find a non-NULL value in bio_list and re-enter the loop
2017 * from the top. In this case we really did just take the bio
2018 * of the top of the list (no pretending) and so remove it from
2019 * bio_list, and call into ->make_request() again.
2020 */
2021 BUG_ON(bio->bi_next);
2022 bio_list_init(&bio_list_on_stack[0]);
2023 current->bio_list = bio_list_on_stack;
2024 do {
2025 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2026
2027 if (likely(blk_queue_enter(q, false) == 0)) {
2028 struct bio_list lower, same;
2029
2030 /* Create a fresh bio_list for all subordinate requests */
2031 bio_list_on_stack[1] = bio_list_on_stack[0];
2032 bio_list_init(&bio_list_on_stack[0]);
2033 ret = q->make_request_fn(q, bio);
2034
2035 blk_queue_exit(q);
2036
2037 /* sort new bios into those for a lower level
2038 * and those for the same level
2039 */
2040 bio_list_init(&lower);
2041 bio_list_init(&same);
2042 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2043 if (q == bdev_get_queue(bio->bi_bdev))
2044 bio_list_add(&same, bio);
2045 else
2046 bio_list_add(&lower, bio);
2047 /* now assemble so we handle the lowest level first */
2048 bio_list_merge(&bio_list_on_stack[0], &lower);
2049 bio_list_merge(&bio_list_on_stack[0], &same);
2050 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2051 } else {
2052 bio_io_error(bio);
2053 }
2054 bio = bio_list_pop(&bio_list_on_stack[0]);
2055 } while (bio);
2056 current->bio_list = NULL; /* deactivate */
2057
2058 out:
2059 return ret;
2060 }
2061 EXPORT_SYMBOL(generic_make_request);
2062
2063 /**
2064 * submit_bio - submit a bio to the block device layer for I/O
2065 * @bio: The &struct bio which describes the I/O
2066 *
2067 * submit_bio() is very similar in purpose to generic_make_request(), and
2068 * uses that function to do most of the work. Both are fairly rough
2069 * interfaces; @bio must be presetup and ready for I/O.
2070 *
2071 */
2072 blk_qc_t submit_bio(struct bio *bio)
2073 {
2074 /*
2075 * If it's a regular read/write or a barrier with data attached,
2076 * go through the normal accounting stuff before submission.
2077 */
2078 if (bio_has_data(bio)) {
2079 unsigned int count;
2080
2081 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2082 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2083 else
2084 count = bio_sectors(bio);
2085
2086 if (op_is_write(bio_op(bio))) {
2087 count_vm_events(PGPGOUT, count);
2088 } else {
2089 task_io_account_read(bio->bi_iter.bi_size);
2090 count_vm_events(PGPGIN, count);
2091 }
2092
2093 if (unlikely(block_dump)) {
2094 char b[BDEVNAME_SIZE];
2095 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2096 current->comm, task_pid_nr(current),
2097 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2098 (unsigned long long)bio->bi_iter.bi_sector,
2099 bdevname(bio->bi_bdev, b),
2100 count);
2101 }
2102 }
2103
2104 return generic_make_request(bio);
2105 }
2106 EXPORT_SYMBOL(submit_bio);
2107
2108 /**
2109 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2110 * for new the queue limits
2111 * @q: the queue
2112 * @rq: the request being checked
2113 *
2114 * Description:
2115 * @rq may have been made based on weaker limitations of upper-level queues
2116 * in request stacking drivers, and it may violate the limitation of @q.
2117 * Since the block layer and the underlying device driver trust @rq
2118 * after it is inserted to @q, it should be checked against @q before
2119 * the insertion using this generic function.
2120 *
2121 * Request stacking drivers like request-based dm may change the queue
2122 * limits when retrying requests on other queues. Those requests need
2123 * to be checked against the new queue limits again during dispatch.
2124 */
2125 static int blk_cloned_rq_check_limits(struct request_queue *q,
2126 struct request *rq)
2127 {
2128 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2129 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2130 return -EIO;
2131 }
2132
2133 /*
2134 * queue's settings related to segment counting like q->bounce_pfn
2135 * may differ from that of other stacking queues.
2136 * Recalculate it to check the request correctly on this queue's
2137 * limitation.
2138 */
2139 blk_recalc_rq_segments(rq);
2140 if (rq->nr_phys_segments > queue_max_segments(q)) {
2141 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2142 return -EIO;
2143 }
2144
2145 return 0;
2146 }
2147
2148 /**
2149 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2150 * @q: the queue to submit the request
2151 * @rq: the request being queued
2152 */
2153 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2154 {
2155 unsigned long flags;
2156 int where = ELEVATOR_INSERT_BACK;
2157
2158 if (blk_cloned_rq_check_limits(q, rq))
2159 return -EIO;
2160
2161 if (rq->rq_disk &&
2162 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2163 return -EIO;
2164
2165 if (q->mq_ops) {
2166 if (blk_queue_io_stat(q))
2167 blk_account_io_start(rq, true);
2168 blk_mq_sched_insert_request(rq, false, true, false, false);
2169 return 0;
2170 }
2171
2172 spin_lock_irqsave(q->queue_lock, flags);
2173 if (unlikely(blk_queue_dying(q))) {
2174 spin_unlock_irqrestore(q->queue_lock, flags);
2175 return -ENODEV;
2176 }
2177
2178 /*
2179 * Submitting request must be dequeued before calling this function
2180 * because it will be linked to another request_queue
2181 */
2182 BUG_ON(blk_queued_rq(rq));
2183
2184 if (op_is_flush(rq->cmd_flags))
2185 where = ELEVATOR_INSERT_FLUSH;
2186
2187 add_acct_request(q, rq, where);
2188 if (where == ELEVATOR_INSERT_FLUSH)
2189 __blk_run_queue(q);
2190 spin_unlock_irqrestore(q->queue_lock, flags);
2191
2192 return 0;
2193 }
2194 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2195
2196 /**
2197 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2198 * @rq: request to examine
2199 *
2200 * Description:
2201 * A request could be merge of IOs which require different failure
2202 * handling. This function determines the number of bytes which
2203 * can be failed from the beginning of the request without
2204 * crossing into area which need to be retried further.
2205 *
2206 * Return:
2207 * The number of bytes to fail.
2208 *
2209 * Context:
2210 * queue_lock must be held.
2211 */
2212 unsigned int blk_rq_err_bytes(const struct request *rq)
2213 {
2214 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2215 unsigned int bytes = 0;
2216 struct bio *bio;
2217
2218 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2219 return blk_rq_bytes(rq);
2220
2221 /*
2222 * Currently the only 'mixing' which can happen is between
2223 * different fastfail types. We can safely fail portions
2224 * which have all the failfast bits that the first one has -
2225 * the ones which are at least as eager to fail as the first
2226 * one.
2227 */
2228 for (bio = rq->bio; bio; bio = bio->bi_next) {
2229 if ((bio->bi_opf & ff) != ff)
2230 break;
2231 bytes += bio->bi_iter.bi_size;
2232 }
2233
2234 /* this could lead to infinite loop */
2235 BUG_ON(blk_rq_bytes(rq) && !bytes);
2236 return bytes;
2237 }
2238 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2239
2240 void blk_account_io_completion(struct request *req, unsigned int bytes)
2241 {
2242 if (blk_do_io_stat(req)) {
2243 const int rw = rq_data_dir(req);
2244 struct hd_struct *part;
2245 int cpu;
2246
2247 cpu = part_stat_lock();
2248 part = req->part;
2249 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2250 part_stat_unlock();
2251 }
2252 }
2253
2254 void blk_account_io_done(struct request *req)
2255 {
2256 /*
2257 * Account IO completion. flush_rq isn't accounted as a
2258 * normal IO on queueing nor completion. Accounting the
2259 * containing request is enough.
2260 */
2261 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2262 unsigned long duration = jiffies - req->start_time;
2263 const int rw = rq_data_dir(req);
2264 struct hd_struct *part;
2265 int cpu;
2266
2267 cpu = part_stat_lock();
2268 part = req->part;
2269
2270 part_stat_inc(cpu, part, ios[rw]);
2271 part_stat_add(cpu, part, ticks[rw], duration);
2272 part_round_stats(cpu, part);
2273 part_dec_in_flight(part, rw);
2274
2275 hd_struct_put(part);
2276 part_stat_unlock();
2277 }
2278 }
2279
2280 #ifdef CONFIG_PM
2281 /*
2282 * Don't process normal requests when queue is suspended
2283 * or in the process of suspending/resuming
2284 */
2285 static struct request *blk_pm_peek_request(struct request_queue *q,
2286 struct request *rq)
2287 {
2288 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2289 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2290 return NULL;
2291 else
2292 return rq;
2293 }
2294 #else
2295 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2296 struct request *rq)
2297 {
2298 return rq;
2299 }
2300 #endif
2301
2302 void blk_account_io_start(struct request *rq, bool new_io)
2303 {
2304 struct hd_struct *part;
2305 int rw = rq_data_dir(rq);
2306 int cpu;
2307
2308 if (!blk_do_io_stat(rq))
2309 return;
2310
2311 cpu = part_stat_lock();
2312
2313 if (!new_io) {
2314 part = rq->part;
2315 part_stat_inc(cpu, part, merges[rw]);
2316 } else {
2317 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2318 if (!hd_struct_try_get(part)) {
2319 /*
2320 * The partition is already being removed,
2321 * the request will be accounted on the disk only
2322 *
2323 * We take a reference on disk->part0 although that
2324 * partition will never be deleted, so we can treat
2325 * it as any other partition.
2326 */
2327 part = &rq->rq_disk->part0;
2328 hd_struct_get(part);
2329 }
2330 part_round_stats(cpu, part);
2331 part_inc_in_flight(part, rw);
2332 rq->part = part;
2333 }
2334
2335 part_stat_unlock();
2336 }
2337
2338 /**
2339 * blk_peek_request - peek at the top of a request queue
2340 * @q: request queue to peek at
2341 *
2342 * Description:
2343 * Return the request at the top of @q. The returned request
2344 * should be started using blk_start_request() before LLD starts
2345 * processing it.
2346 *
2347 * Return:
2348 * Pointer to the request at the top of @q if available. Null
2349 * otherwise.
2350 *
2351 * Context:
2352 * queue_lock must be held.
2353 */
2354 struct request *blk_peek_request(struct request_queue *q)
2355 {
2356 struct request *rq;
2357 int ret;
2358
2359 while ((rq = __elv_next_request(q)) != NULL) {
2360
2361 rq = blk_pm_peek_request(q, rq);
2362 if (!rq)
2363 break;
2364
2365 if (!(rq->rq_flags & RQF_STARTED)) {
2366 /*
2367 * This is the first time the device driver
2368 * sees this request (possibly after
2369 * requeueing). Notify IO scheduler.
2370 */
2371 if (rq->rq_flags & RQF_SORTED)
2372 elv_activate_rq(q, rq);
2373
2374 /*
2375 * just mark as started even if we don't start
2376 * it, a request that has been delayed should
2377 * not be passed by new incoming requests
2378 */
2379 rq->rq_flags |= RQF_STARTED;
2380 trace_block_rq_issue(q, rq);
2381 }
2382
2383 if (!q->boundary_rq || q->boundary_rq == rq) {
2384 q->end_sector = rq_end_sector(rq);
2385 q->boundary_rq = NULL;
2386 }
2387
2388 if (rq->rq_flags & RQF_DONTPREP)
2389 break;
2390
2391 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2392 /*
2393 * make sure space for the drain appears we
2394 * know we can do this because max_hw_segments
2395 * has been adjusted to be one fewer than the
2396 * device can handle
2397 */
2398 rq->nr_phys_segments++;
2399 }
2400
2401 if (!q->prep_rq_fn)
2402 break;
2403
2404 ret = q->prep_rq_fn(q, rq);
2405 if (ret == BLKPREP_OK) {
2406 break;
2407 } else if (ret == BLKPREP_DEFER) {
2408 /*
2409 * the request may have been (partially) prepped.
2410 * we need to keep this request in the front to
2411 * avoid resource deadlock. RQF_STARTED will
2412 * prevent other fs requests from passing this one.
2413 */
2414 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2415 !(rq->rq_flags & RQF_DONTPREP)) {
2416 /*
2417 * remove the space for the drain we added
2418 * so that we don't add it again
2419 */
2420 --rq->nr_phys_segments;
2421 }
2422
2423 rq = NULL;
2424 break;
2425 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2426 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2427
2428 rq->rq_flags |= RQF_QUIET;
2429 /*
2430 * Mark this request as started so we don't trigger
2431 * any debug logic in the end I/O path.
2432 */
2433 blk_start_request(rq);
2434 __blk_end_request_all(rq, err);
2435 } else {
2436 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2437 break;
2438 }
2439 }
2440
2441 return rq;
2442 }
2443 EXPORT_SYMBOL(blk_peek_request);
2444
2445 void blk_dequeue_request(struct request *rq)
2446 {
2447 struct request_queue *q = rq->q;
2448
2449 BUG_ON(list_empty(&rq->queuelist));
2450 BUG_ON(ELV_ON_HASH(rq));
2451
2452 list_del_init(&rq->queuelist);
2453
2454 /*
2455 * the time frame between a request being removed from the lists
2456 * and to it is freed is accounted as io that is in progress at
2457 * the driver side.
2458 */
2459 if (blk_account_rq(rq)) {
2460 q->in_flight[rq_is_sync(rq)]++;
2461 set_io_start_time_ns(rq);
2462 }
2463 }
2464
2465 /**
2466 * blk_start_request - start request processing on the driver
2467 * @req: request to dequeue
2468 *
2469 * Description:
2470 * Dequeue @req and start timeout timer on it. This hands off the
2471 * request to the driver.
2472 *
2473 * Block internal functions which don't want to start timer should
2474 * call blk_dequeue_request().
2475 *
2476 * Context:
2477 * queue_lock must be held.
2478 */
2479 void blk_start_request(struct request *req)
2480 {
2481 blk_dequeue_request(req);
2482
2483 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2484 blk_stat_set_issue_time(&req->issue_stat);
2485 req->rq_flags |= RQF_STATS;
2486 wbt_issue(req->q->rq_wb, &req->issue_stat);
2487 }
2488
2489 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2490 blk_add_timer(req);
2491 }
2492 EXPORT_SYMBOL(blk_start_request);
2493
2494 /**
2495 * blk_fetch_request - fetch a request from a request queue
2496 * @q: request queue to fetch a request from
2497 *
2498 * Description:
2499 * Return the request at the top of @q. The request is started on
2500 * return and LLD can start processing it immediately.
2501 *
2502 * Return:
2503 * Pointer to the request at the top of @q if available. Null
2504 * otherwise.
2505 *
2506 * Context:
2507 * queue_lock must be held.
2508 */
2509 struct request *blk_fetch_request(struct request_queue *q)
2510 {
2511 struct request *rq;
2512
2513 rq = blk_peek_request(q);
2514 if (rq)
2515 blk_start_request(rq);
2516 return rq;
2517 }
2518 EXPORT_SYMBOL(blk_fetch_request);
2519
2520 /**
2521 * blk_update_request - Special helper function for request stacking drivers
2522 * @req: the request being processed
2523 * @error: %0 for success, < %0 for error
2524 * @nr_bytes: number of bytes to complete @req
2525 *
2526 * Description:
2527 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2528 * the request structure even if @req doesn't have leftover.
2529 * If @req has leftover, sets it up for the next range of segments.
2530 *
2531 * This special helper function is only for request stacking drivers
2532 * (e.g. request-based dm) so that they can handle partial completion.
2533 * Actual device drivers should use blk_end_request instead.
2534 *
2535 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2536 * %false return from this function.
2537 *
2538 * Return:
2539 * %false - this request doesn't have any more data
2540 * %true - this request has more data
2541 **/
2542 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2543 {
2544 int total_bytes;
2545
2546 trace_block_rq_complete(req->q, req, nr_bytes);
2547
2548 if (!req->bio)
2549 return false;
2550
2551 /*
2552 * For fs requests, rq is just carrier of independent bio's
2553 * and each partial completion should be handled separately.
2554 * Reset per-request error on each partial completion.
2555 *
2556 * TODO: tj: This is too subtle. It would be better to let
2557 * low level drivers do what they see fit.
2558 */
2559 if (!blk_rq_is_passthrough(req))
2560 req->errors = 0;
2561
2562 if (error && !blk_rq_is_passthrough(req) &&
2563 !(req->rq_flags & RQF_QUIET)) {
2564 char *error_type;
2565
2566 switch (error) {
2567 case -ENOLINK:
2568 error_type = "recoverable transport";
2569 break;
2570 case -EREMOTEIO:
2571 error_type = "critical target";
2572 break;
2573 case -EBADE:
2574 error_type = "critical nexus";
2575 break;
2576 case -ETIMEDOUT:
2577 error_type = "timeout";
2578 break;
2579 case -ENOSPC:
2580 error_type = "critical space allocation";
2581 break;
2582 case -ENODATA:
2583 error_type = "critical medium";
2584 break;
2585 case -EIO:
2586 default:
2587 error_type = "I/O";
2588 break;
2589 }
2590 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2591 __func__, error_type, req->rq_disk ?
2592 req->rq_disk->disk_name : "?",
2593 (unsigned long long)blk_rq_pos(req));
2594
2595 }
2596
2597 blk_account_io_completion(req, nr_bytes);
2598
2599 total_bytes = 0;
2600 while (req->bio) {
2601 struct bio *bio = req->bio;
2602 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2603
2604 if (bio_bytes == bio->bi_iter.bi_size)
2605 req->bio = bio->bi_next;
2606
2607 req_bio_endio(req, bio, bio_bytes, error);
2608
2609 total_bytes += bio_bytes;
2610 nr_bytes -= bio_bytes;
2611
2612 if (!nr_bytes)
2613 break;
2614 }
2615
2616 /*
2617 * completely done
2618 */
2619 if (!req->bio) {
2620 /*
2621 * Reset counters so that the request stacking driver
2622 * can find how many bytes remain in the request
2623 * later.
2624 */
2625 req->__data_len = 0;
2626 return false;
2627 }
2628
2629 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2630
2631 req->__data_len -= total_bytes;
2632
2633 /* update sector only for requests with clear definition of sector */
2634 if (!blk_rq_is_passthrough(req))
2635 req->__sector += total_bytes >> 9;
2636
2637 /* mixed attributes always follow the first bio */
2638 if (req->rq_flags & RQF_MIXED_MERGE) {
2639 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2640 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2641 }
2642
2643 /*
2644 * If total number of sectors is less than the first segment
2645 * size, something has gone terribly wrong.
2646 */
2647 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2648 blk_dump_rq_flags(req, "request botched");
2649 req->__data_len = blk_rq_cur_bytes(req);
2650 }
2651
2652 /* recalculate the number of segments */
2653 blk_recalc_rq_segments(req);
2654
2655 return true;
2656 }
2657 EXPORT_SYMBOL_GPL(blk_update_request);
2658
2659 static bool blk_update_bidi_request(struct request *rq, int error,
2660 unsigned int nr_bytes,
2661 unsigned int bidi_bytes)
2662 {
2663 if (blk_update_request(rq, error, nr_bytes))
2664 return true;
2665
2666 /* Bidi request must be completed as a whole */
2667 if (unlikely(blk_bidi_rq(rq)) &&
2668 blk_update_request(rq->next_rq, error, bidi_bytes))
2669 return true;
2670
2671 if (blk_queue_add_random(rq->q))
2672 add_disk_randomness(rq->rq_disk);
2673
2674 return false;
2675 }
2676
2677 /**
2678 * blk_unprep_request - unprepare a request
2679 * @req: the request
2680 *
2681 * This function makes a request ready for complete resubmission (or
2682 * completion). It happens only after all error handling is complete,
2683 * so represents the appropriate moment to deallocate any resources
2684 * that were allocated to the request in the prep_rq_fn. The queue
2685 * lock is held when calling this.
2686 */
2687 void blk_unprep_request(struct request *req)
2688 {
2689 struct request_queue *q = req->q;
2690
2691 req->rq_flags &= ~RQF_DONTPREP;
2692 if (q->unprep_rq_fn)
2693 q->unprep_rq_fn(q, req);
2694 }
2695 EXPORT_SYMBOL_GPL(blk_unprep_request);
2696
2697 /*
2698 * queue lock must be held
2699 */
2700 void blk_finish_request(struct request *req, int error)
2701 {
2702 struct request_queue *q = req->q;
2703
2704 if (req->rq_flags & RQF_STATS)
2705 blk_stat_add(req);
2706
2707 if (req->rq_flags & RQF_QUEUED)
2708 blk_queue_end_tag(q, req);
2709
2710 BUG_ON(blk_queued_rq(req));
2711
2712 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2713 laptop_io_completion(req->q->backing_dev_info);
2714
2715 blk_delete_timer(req);
2716
2717 if (req->rq_flags & RQF_DONTPREP)
2718 blk_unprep_request(req);
2719
2720 blk_account_io_done(req);
2721
2722 if (req->end_io) {
2723 wbt_done(req->q->rq_wb, &req->issue_stat);
2724 req->end_io(req, error);
2725 } else {
2726 if (blk_bidi_rq(req))
2727 __blk_put_request(req->next_rq->q, req->next_rq);
2728
2729 __blk_put_request(q, req);
2730 }
2731 }
2732 EXPORT_SYMBOL(blk_finish_request);
2733
2734 /**
2735 * blk_end_bidi_request - Complete a bidi request
2736 * @rq: the request to complete
2737 * @error: %0 for success, < %0 for error
2738 * @nr_bytes: number of bytes to complete @rq
2739 * @bidi_bytes: number of bytes to complete @rq->next_rq
2740 *
2741 * Description:
2742 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2743 * Drivers that supports bidi can safely call this member for any
2744 * type of request, bidi or uni. In the later case @bidi_bytes is
2745 * just ignored.
2746 *
2747 * Return:
2748 * %false - we are done with this request
2749 * %true - still buffers pending for this request
2750 **/
2751 static bool blk_end_bidi_request(struct request *rq, int error,
2752 unsigned int nr_bytes, unsigned int bidi_bytes)
2753 {
2754 struct request_queue *q = rq->q;
2755 unsigned long flags;
2756
2757 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2758 return true;
2759
2760 spin_lock_irqsave(q->queue_lock, flags);
2761 blk_finish_request(rq, error);
2762 spin_unlock_irqrestore(q->queue_lock, flags);
2763
2764 return false;
2765 }
2766
2767 /**
2768 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2769 * @rq: the request to complete
2770 * @error: %0 for success, < %0 for error
2771 * @nr_bytes: number of bytes to complete @rq
2772 * @bidi_bytes: number of bytes to complete @rq->next_rq
2773 *
2774 * Description:
2775 * Identical to blk_end_bidi_request() except that queue lock is
2776 * assumed to be locked on entry and remains so on return.
2777 *
2778 * Return:
2779 * %false - we are done with this request
2780 * %true - still buffers pending for this request
2781 **/
2782 bool __blk_end_bidi_request(struct request *rq, int error,
2783 unsigned int nr_bytes, unsigned int bidi_bytes)
2784 {
2785 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2786 return true;
2787
2788 blk_finish_request(rq, error);
2789
2790 return false;
2791 }
2792
2793 /**
2794 * blk_end_request - Helper function for drivers to complete the request.
2795 * @rq: the request being processed
2796 * @error: %0 for success, < %0 for error
2797 * @nr_bytes: number of bytes to complete
2798 *
2799 * Description:
2800 * Ends I/O on a number of bytes attached to @rq.
2801 * If @rq has leftover, sets it up for the next range of segments.
2802 *
2803 * Return:
2804 * %false - we are done with this request
2805 * %true - still buffers pending for this request
2806 **/
2807 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2808 {
2809 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2810 }
2811 EXPORT_SYMBOL(blk_end_request);
2812
2813 /**
2814 * blk_end_request_all - Helper function for drives to finish the request.
2815 * @rq: the request to finish
2816 * @error: %0 for success, < %0 for error
2817 *
2818 * Description:
2819 * Completely finish @rq.
2820 */
2821 void blk_end_request_all(struct request *rq, int error)
2822 {
2823 bool pending;
2824 unsigned int bidi_bytes = 0;
2825
2826 if (unlikely(blk_bidi_rq(rq)))
2827 bidi_bytes = blk_rq_bytes(rq->next_rq);
2828
2829 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2830 BUG_ON(pending);
2831 }
2832 EXPORT_SYMBOL(blk_end_request_all);
2833
2834 /**
2835 * blk_end_request_cur - Helper function to finish the current request chunk.
2836 * @rq: the request to finish the current chunk for
2837 * @error: %0 for success, < %0 for error
2838 *
2839 * Description:
2840 * Complete the current consecutively mapped chunk from @rq.
2841 *
2842 * Return:
2843 * %false - we are done with this request
2844 * %true - still buffers pending for this request
2845 */
2846 bool blk_end_request_cur(struct request *rq, int error)
2847 {
2848 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2849 }
2850 EXPORT_SYMBOL(blk_end_request_cur);
2851
2852 /**
2853 * blk_end_request_err - Finish a request till the next failure boundary.
2854 * @rq: the request to finish till the next failure boundary for
2855 * @error: must be negative errno
2856 *
2857 * Description:
2858 * Complete @rq till the next failure boundary.
2859 *
2860 * Return:
2861 * %false - we are done with this request
2862 * %true - still buffers pending for this request
2863 */
2864 bool blk_end_request_err(struct request *rq, int error)
2865 {
2866 WARN_ON(error >= 0);
2867 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2868 }
2869 EXPORT_SYMBOL_GPL(blk_end_request_err);
2870
2871 /**
2872 * __blk_end_request - Helper function for drivers to complete the request.
2873 * @rq: the request being processed
2874 * @error: %0 for success, < %0 for error
2875 * @nr_bytes: number of bytes to complete
2876 *
2877 * Description:
2878 * Must be called with queue lock held unlike blk_end_request().
2879 *
2880 * Return:
2881 * %false - we are done with this request
2882 * %true - still buffers pending for this request
2883 **/
2884 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2885 {
2886 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2887 }
2888 EXPORT_SYMBOL(__blk_end_request);
2889
2890 /**
2891 * __blk_end_request_all - Helper function for drives to finish the request.
2892 * @rq: the request to finish
2893 * @error: %0 for success, < %0 for error
2894 *
2895 * Description:
2896 * Completely finish @rq. Must be called with queue lock held.
2897 */
2898 void __blk_end_request_all(struct request *rq, int error)
2899 {
2900 bool pending;
2901 unsigned int bidi_bytes = 0;
2902
2903 if (unlikely(blk_bidi_rq(rq)))
2904 bidi_bytes = blk_rq_bytes(rq->next_rq);
2905
2906 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2907 BUG_ON(pending);
2908 }
2909 EXPORT_SYMBOL(__blk_end_request_all);
2910
2911 /**
2912 * __blk_end_request_cur - Helper function to finish the current request chunk.
2913 * @rq: the request to finish the current chunk for
2914 * @error: %0 for success, < %0 for error
2915 *
2916 * Description:
2917 * Complete the current consecutively mapped chunk from @rq. Must
2918 * be called with queue lock held.
2919 *
2920 * Return:
2921 * %false - we are done with this request
2922 * %true - still buffers pending for this request
2923 */
2924 bool __blk_end_request_cur(struct request *rq, int error)
2925 {
2926 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2927 }
2928 EXPORT_SYMBOL(__blk_end_request_cur);
2929
2930 /**
2931 * __blk_end_request_err - Finish a request till the next failure boundary.
2932 * @rq: the request to finish till the next failure boundary for
2933 * @error: must be negative errno
2934 *
2935 * Description:
2936 * Complete @rq till the next failure boundary. Must be called
2937 * with queue lock held.
2938 *
2939 * Return:
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
2942 */
2943 bool __blk_end_request_err(struct request *rq, int error)
2944 {
2945 WARN_ON(error >= 0);
2946 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2947 }
2948 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2949
2950 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2951 struct bio *bio)
2952 {
2953 if (bio_has_data(bio))
2954 rq->nr_phys_segments = bio_phys_segments(q, bio);
2955
2956 rq->__data_len = bio->bi_iter.bi_size;
2957 rq->bio = rq->biotail = bio;
2958
2959 if (bio->bi_bdev)
2960 rq->rq_disk = bio->bi_bdev->bd_disk;
2961 }
2962
2963 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2964 /**
2965 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2966 * @rq: the request to be flushed
2967 *
2968 * Description:
2969 * Flush all pages in @rq.
2970 */
2971 void rq_flush_dcache_pages(struct request *rq)
2972 {
2973 struct req_iterator iter;
2974 struct bio_vec bvec;
2975
2976 rq_for_each_segment(bvec, rq, iter)
2977 flush_dcache_page(bvec.bv_page);
2978 }
2979 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2980 #endif
2981
2982 /**
2983 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2984 * @q : the queue of the device being checked
2985 *
2986 * Description:
2987 * Check if underlying low-level drivers of a device are busy.
2988 * If the drivers want to export their busy state, they must set own
2989 * exporting function using blk_queue_lld_busy() first.
2990 *
2991 * Basically, this function is used only by request stacking drivers
2992 * to stop dispatching requests to underlying devices when underlying
2993 * devices are busy. This behavior helps more I/O merging on the queue
2994 * of the request stacking driver and prevents I/O throughput regression
2995 * on burst I/O load.
2996 *
2997 * Return:
2998 * 0 - Not busy (The request stacking driver should dispatch request)
2999 * 1 - Busy (The request stacking driver should stop dispatching request)
3000 */
3001 int blk_lld_busy(struct request_queue *q)
3002 {
3003 if (q->lld_busy_fn)
3004 return q->lld_busy_fn(q);
3005
3006 return 0;
3007 }
3008 EXPORT_SYMBOL_GPL(blk_lld_busy);
3009
3010 /**
3011 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3012 * @rq: the clone request to be cleaned up
3013 *
3014 * Description:
3015 * Free all bios in @rq for a cloned request.
3016 */
3017 void blk_rq_unprep_clone(struct request *rq)
3018 {
3019 struct bio *bio;
3020
3021 while ((bio = rq->bio) != NULL) {
3022 rq->bio = bio->bi_next;
3023
3024 bio_put(bio);
3025 }
3026 }
3027 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3028
3029 /*
3030 * Copy attributes of the original request to the clone request.
3031 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3032 */
3033 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3034 {
3035 dst->cpu = src->cpu;
3036 dst->__sector = blk_rq_pos(src);
3037 dst->__data_len = blk_rq_bytes(src);
3038 dst->nr_phys_segments = src->nr_phys_segments;
3039 dst->ioprio = src->ioprio;
3040 dst->extra_len = src->extra_len;
3041 }
3042
3043 /**
3044 * blk_rq_prep_clone - Helper function to setup clone request
3045 * @rq: the request to be setup
3046 * @rq_src: original request to be cloned
3047 * @bs: bio_set that bios for clone are allocated from
3048 * @gfp_mask: memory allocation mask for bio
3049 * @bio_ctr: setup function to be called for each clone bio.
3050 * Returns %0 for success, non %0 for failure.
3051 * @data: private data to be passed to @bio_ctr
3052 *
3053 * Description:
3054 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3055 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3056 * are not copied, and copying such parts is the caller's responsibility.
3057 * Also, pages which the original bios are pointing to are not copied
3058 * and the cloned bios just point same pages.
3059 * So cloned bios must be completed before original bios, which means
3060 * the caller must complete @rq before @rq_src.
3061 */
3062 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3063 struct bio_set *bs, gfp_t gfp_mask,
3064 int (*bio_ctr)(struct bio *, struct bio *, void *),
3065 void *data)
3066 {
3067 struct bio *bio, *bio_src;
3068
3069 if (!bs)
3070 bs = fs_bio_set;
3071
3072 __rq_for_each_bio(bio_src, rq_src) {
3073 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3074 if (!bio)
3075 goto free_and_out;
3076
3077 if (bio_ctr && bio_ctr(bio, bio_src, data))
3078 goto free_and_out;
3079
3080 if (rq->bio) {
3081 rq->biotail->bi_next = bio;
3082 rq->biotail = bio;
3083 } else
3084 rq->bio = rq->biotail = bio;
3085 }
3086
3087 __blk_rq_prep_clone(rq, rq_src);
3088
3089 return 0;
3090
3091 free_and_out:
3092 if (bio)
3093 bio_put(bio);
3094 blk_rq_unprep_clone(rq);
3095
3096 return -ENOMEM;
3097 }
3098 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3099
3100 int kblockd_schedule_work(struct work_struct *work)
3101 {
3102 return queue_work(kblockd_workqueue, work);
3103 }
3104 EXPORT_SYMBOL(kblockd_schedule_work);
3105
3106 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3107 {
3108 return queue_work_on(cpu, kblockd_workqueue, work);
3109 }
3110 EXPORT_SYMBOL(kblockd_schedule_work_on);
3111
3112 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3113 unsigned long delay)
3114 {
3115 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3116 }
3117 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3118
3119 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3120 unsigned long delay)
3121 {
3122 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3123 }
3124 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3125
3126 /**
3127 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3128 * @plug: The &struct blk_plug that needs to be initialized
3129 *
3130 * Description:
3131 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3132 * pending I/O should the task end up blocking between blk_start_plug() and
3133 * blk_finish_plug(). This is important from a performance perspective, but
3134 * also ensures that we don't deadlock. For instance, if the task is blocking
3135 * for a memory allocation, memory reclaim could end up wanting to free a
3136 * page belonging to that request that is currently residing in our private
3137 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3138 * this kind of deadlock.
3139 */
3140 void blk_start_plug(struct blk_plug *plug)
3141 {
3142 struct task_struct *tsk = current;
3143
3144 /*
3145 * If this is a nested plug, don't actually assign it.
3146 */
3147 if (tsk->plug)
3148 return;
3149
3150 INIT_LIST_HEAD(&plug->list);
3151 INIT_LIST_HEAD(&plug->mq_list);
3152 INIT_LIST_HEAD(&plug->cb_list);
3153 /*
3154 * Store ordering should not be needed here, since a potential
3155 * preempt will imply a full memory barrier
3156 */
3157 tsk->plug = plug;
3158 }
3159 EXPORT_SYMBOL(blk_start_plug);
3160
3161 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3162 {
3163 struct request *rqa = container_of(a, struct request, queuelist);
3164 struct request *rqb = container_of(b, struct request, queuelist);
3165
3166 return !(rqa->q < rqb->q ||
3167 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3168 }
3169
3170 /*
3171 * If 'from_schedule' is true, then postpone the dispatch of requests
3172 * until a safe kblockd context. We due this to avoid accidental big
3173 * additional stack usage in driver dispatch, in places where the originally
3174 * plugger did not intend it.
3175 */
3176 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3177 bool from_schedule)
3178 __releases(q->queue_lock)
3179 {
3180 trace_block_unplug(q, depth, !from_schedule);
3181
3182 if (from_schedule)
3183 blk_run_queue_async(q);
3184 else
3185 __blk_run_queue(q);
3186 spin_unlock(q->queue_lock);
3187 }
3188
3189 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3190 {
3191 LIST_HEAD(callbacks);
3192
3193 while (!list_empty(&plug->cb_list)) {
3194 list_splice_init(&plug->cb_list, &callbacks);
3195
3196 while (!list_empty(&callbacks)) {
3197 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3198 struct blk_plug_cb,
3199 list);
3200 list_del(&cb->list);
3201 cb->callback(cb, from_schedule);
3202 }
3203 }
3204 }
3205
3206 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3207 int size)
3208 {
3209 struct blk_plug *plug = current->plug;
3210 struct blk_plug_cb *cb;
3211
3212 if (!plug)
3213 return NULL;
3214
3215 list_for_each_entry(cb, &plug->cb_list, list)
3216 if (cb->callback == unplug && cb->data == data)
3217 return cb;
3218
3219 /* Not currently on the callback list */
3220 BUG_ON(size < sizeof(*cb));
3221 cb = kzalloc(size, GFP_ATOMIC);
3222 if (cb) {
3223 cb->data = data;
3224 cb->callback = unplug;
3225 list_add(&cb->list, &plug->cb_list);
3226 }
3227 return cb;
3228 }
3229 EXPORT_SYMBOL(blk_check_plugged);
3230
3231 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3232 {
3233 struct request_queue *q;
3234 unsigned long flags;
3235 struct request *rq;
3236 LIST_HEAD(list);
3237 unsigned int depth;
3238
3239 flush_plug_callbacks(plug, from_schedule);
3240
3241 if (!list_empty(&plug->mq_list))
3242 blk_mq_flush_plug_list(plug, from_schedule);
3243
3244 if (list_empty(&plug->list))
3245 return;
3246
3247 list_splice_init(&plug->list, &list);
3248
3249 list_sort(NULL, &list, plug_rq_cmp);
3250
3251 q = NULL;
3252 depth = 0;
3253
3254 /*
3255 * Save and disable interrupts here, to avoid doing it for every
3256 * queue lock we have to take.
3257 */
3258 local_irq_save(flags);
3259 while (!list_empty(&list)) {
3260 rq = list_entry_rq(list.next);
3261 list_del_init(&rq->queuelist);
3262 BUG_ON(!rq->q);
3263 if (rq->q != q) {
3264 /*
3265 * This drops the queue lock
3266 */
3267 if (q)
3268 queue_unplugged(q, depth, from_schedule);
3269 q = rq->q;
3270 depth = 0;
3271 spin_lock(q->queue_lock);
3272 }
3273
3274 /*
3275 * Short-circuit if @q is dead
3276 */
3277 if (unlikely(blk_queue_dying(q))) {
3278 __blk_end_request_all(rq, -ENODEV);
3279 continue;
3280 }
3281
3282 /*
3283 * rq is already accounted, so use raw insert
3284 */
3285 if (op_is_flush(rq->cmd_flags))
3286 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3287 else
3288 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3289
3290 depth++;
3291 }
3292
3293 /*
3294 * This drops the queue lock
3295 */
3296 if (q)
3297 queue_unplugged(q, depth, from_schedule);
3298
3299 local_irq_restore(flags);
3300 }
3301
3302 void blk_finish_plug(struct blk_plug *plug)
3303 {
3304 if (plug != current->plug)
3305 return;
3306 blk_flush_plug_list(plug, false);
3307
3308 current->plug = NULL;
3309 }
3310 EXPORT_SYMBOL(blk_finish_plug);
3311
3312 #ifdef CONFIG_PM
3313 /**
3314 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3315 * @q: the queue of the device
3316 * @dev: the device the queue belongs to
3317 *
3318 * Description:
3319 * Initialize runtime-PM-related fields for @q and start auto suspend for
3320 * @dev. Drivers that want to take advantage of request-based runtime PM
3321 * should call this function after @dev has been initialized, and its
3322 * request queue @q has been allocated, and runtime PM for it can not happen
3323 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3324 * cases, driver should call this function before any I/O has taken place.
3325 *
3326 * This function takes care of setting up using auto suspend for the device,
3327 * the autosuspend delay is set to -1 to make runtime suspend impossible
3328 * until an updated value is either set by user or by driver. Drivers do
3329 * not need to touch other autosuspend settings.
3330 *
3331 * The block layer runtime PM is request based, so only works for drivers
3332 * that use request as their IO unit instead of those directly use bio's.
3333 */
3334 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3335 {
3336 q->dev = dev;
3337 q->rpm_status = RPM_ACTIVE;
3338 pm_runtime_set_autosuspend_delay(q->dev, -1);
3339 pm_runtime_use_autosuspend(q->dev);
3340 }
3341 EXPORT_SYMBOL(blk_pm_runtime_init);
3342
3343 /**
3344 * blk_pre_runtime_suspend - Pre runtime suspend check
3345 * @q: the queue of the device
3346 *
3347 * Description:
3348 * This function will check if runtime suspend is allowed for the device
3349 * by examining if there are any requests pending in the queue. If there
3350 * are requests pending, the device can not be runtime suspended; otherwise,
3351 * the queue's status will be updated to SUSPENDING and the driver can
3352 * proceed to suspend the device.
3353 *
3354 * For the not allowed case, we mark last busy for the device so that
3355 * runtime PM core will try to autosuspend it some time later.
3356 *
3357 * This function should be called near the start of the device's
3358 * runtime_suspend callback.
3359 *
3360 * Return:
3361 * 0 - OK to runtime suspend the device
3362 * -EBUSY - Device should not be runtime suspended
3363 */
3364 int blk_pre_runtime_suspend(struct request_queue *q)
3365 {
3366 int ret = 0;
3367
3368 if (!q->dev)
3369 return ret;
3370
3371 spin_lock_irq(q->queue_lock);
3372 if (q->nr_pending) {
3373 ret = -EBUSY;
3374 pm_runtime_mark_last_busy(q->dev);
3375 } else {
3376 q->rpm_status = RPM_SUSPENDING;
3377 }
3378 spin_unlock_irq(q->queue_lock);
3379 return ret;
3380 }
3381 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3382
3383 /**
3384 * blk_post_runtime_suspend - Post runtime suspend processing
3385 * @q: the queue of the device
3386 * @err: return value of the device's runtime_suspend function
3387 *
3388 * Description:
3389 * Update the queue's runtime status according to the return value of the
3390 * device's runtime suspend function and mark last busy for the device so
3391 * that PM core will try to auto suspend the device at a later time.
3392 *
3393 * This function should be called near the end of the device's
3394 * runtime_suspend callback.
3395 */
3396 void blk_post_runtime_suspend(struct request_queue *q, int err)
3397 {
3398 if (!q->dev)
3399 return;
3400
3401 spin_lock_irq(q->queue_lock);
3402 if (!err) {
3403 q->rpm_status = RPM_SUSPENDED;
3404 } else {
3405 q->rpm_status = RPM_ACTIVE;
3406 pm_runtime_mark_last_busy(q->dev);
3407 }
3408 spin_unlock_irq(q->queue_lock);
3409 }
3410 EXPORT_SYMBOL(blk_post_runtime_suspend);
3411
3412 /**
3413 * blk_pre_runtime_resume - Pre runtime resume processing
3414 * @q: the queue of the device
3415 *
3416 * Description:
3417 * Update the queue's runtime status to RESUMING in preparation for the
3418 * runtime resume of the device.
3419 *
3420 * This function should be called near the start of the device's
3421 * runtime_resume callback.
3422 */
3423 void blk_pre_runtime_resume(struct request_queue *q)
3424 {
3425 if (!q->dev)
3426 return;
3427
3428 spin_lock_irq(q->queue_lock);
3429 q->rpm_status = RPM_RESUMING;
3430 spin_unlock_irq(q->queue_lock);
3431 }
3432 EXPORT_SYMBOL(blk_pre_runtime_resume);
3433
3434 /**
3435 * blk_post_runtime_resume - Post runtime resume processing
3436 * @q: the queue of the device
3437 * @err: return value of the device's runtime_resume function
3438 *
3439 * Description:
3440 * Update the queue's runtime status according to the return value of the
3441 * device's runtime_resume function. If it is successfully resumed, process
3442 * the requests that are queued into the device's queue when it is resuming
3443 * and then mark last busy and initiate autosuspend for it.
3444 *
3445 * This function should be called near the end of the device's
3446 * runtime_resume callback.
3447 */
3448 void blk_post_runtime_resume(struct request_queue *q, int err)
3449 {
3450 if (!q->dev)
3451 return;
3452
3453 spin_lock_irq(q->queue_lock);
3454 if (!err) {
3455 q->rpm_status = RPM_ACTIVE;
3456 __blk_run_queue(q);
3457 pm_runtime_mark_last_busy(q->dev);
3458 pm_request_autosuspend(q->dev);
3459 } else {
3460 q->rpm_status = RPM_SUSPENDED;
3461 }
3462 spin_unlock_irq(q->queue_lock);
3463 }
3464 EXPORT_SYMBOL(blk_post_runtime_resume);
3465
3466 /**
3467 * blk_set_runtime_active - Force runtime status of the queue to be active
3468 * @q: the queue of the device
3469 *
3470 * If the device is left runtime suspended during system suspend the resume
3471 * hook typically resumes the device and corrects runtime status
3472 * accordingly. However, that does not affect the queue runtime PM status
3473 * which is still "suspended". This prevents processing requests from the
3474 * queue.
3475 *
3476 * This function can be used in driver's resume hook to correct queue
3477 * runtime PM status and re-enable peeking requests from the queue. It
3478 * should be called before first request is added to the queue.
3479 */
3480 void blk_set_runtime_active(struct request_queue *q)
3481 {
3482 spin_lock_irq(q->queue_lock);
3483 q->rpm_status = RPM_ACTIVE;
3484 pm_runtime_mark_last_busy(q->dev);
3485 pm_request_autosuspend(q->dev);
3486 spin_unlock_irq(q->queue_lock);
3487 }
3488 EXPORT_SYMBOL(blk_set_runtime_active);
3489 #endif
3490
3491 int __init blk_dev_init(void)
3492 {
3493 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3494 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3495 FIELD_SIZEOF(struct request, cmd_flags));
3496 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3497 FIELD_SIZEOF(struct bio, bi_opf));
3498
3499 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3500 kblockd_workqueue = alloc_workqueue("kblockd",
3501 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3502 if (!kblockd_workqueue)
3503 panic("Failed to create kblockd\n");
3504
3505 request_cachep = kmem_cache_create("blkdev_requests",
3506 sizeof(struct request), 0, SLAB_PANIC, NULL);
3507
3508 blk_requestq_cachep = kmem_cache_create("request_queue",
3509 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3510
3511 #ifdef CONFIG_DEBUG_FS
3512 blk_debugfs_root = debugfs_create_dir("block", NULL);
3513 #endif
3514
3515 return 0;
3516 }