]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-core.c
8340f69670d89625a8adc55a24e9c4e547555d7f
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58
59 DEFINE_IDA(blk_queue_ida);
60
61 /*
62 * For queue allocation
63 */
64 struct kmem_cache *blk_requestq_cachep;
65
66 /*
67 * Controlling structure to kblockd
68 */
69 static struct workqueue_struct *kblockd_workqueue;
70
71 /**
72 * blk_queue_flag_set - atomically set a queue flag
73 * @flag: flag to be set
74 * @q: request queue
75 */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81
82 /**
83 * blk_queue_flag_clear - atomically clear a queue flag
84 * @flag: flag to be cleared
85 * @q: request queue
86 */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92
93 /**
94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
95 * @flag: flag to be set
96 * @q: request queue
97 *
98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99 * the flag was already set.
100 */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 memset(rq, 0, sizeof(*rq));
110
111 INIT_LIST_HEAD(&rq->queuelist);
112 rq->q = q;
113 rq->__sector = (sector_t) -1;
114 INIT_HLIST_NODE(&rq->hash);
115 RB_CLEAR_NODE(&rq->rb_node);
116 rq->tag = -1;
117 rq->internal_tag = -1;
118 rq->start_time_ns = ktime_get_ns();
119 rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122
123 static const struct {
124 int errno;
125 const char *name;
126 } blk_errors[] = {
127 [BLK_STS_OK] = { 0, "" },
128 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
129 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
130 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
131 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
132 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
133 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
134 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
135 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
136 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
137 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
138 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
139
140 /* device mapper special case, should not leak out: */
141 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
142
143 /* everything else not covered above: */
144 [BLK_STS_IOERR] = { -EIO, "I/O" },
145 };
146
147 blk_status_t errno_to_blk_status(int errno)
148 {
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
152 if (blk_errors[i].errno == errno)
153 return (__force blk_status_t)i;
154 }
155
156 return BLK_STS_IOERR;
157 }
158 EXPORT_SYMBOL_GPL(errno_to_blk_status);
159
160 int blk_status_to_errno(blk_status_t status)
161 {
162 int idx = (__force int)status;
163
164 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
165 return -EIO;
166 return blk_errors[idx].errno;
167 }
168 EXPORT_SYMBOL_GPL(blk_status_to_errno);
169
170 static void print_req_error(struct request *req, blk_status_t status)
171 {
172 int idx = (__force int)status;
173
174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 return;
176
177 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
178 __func__, blk_errors[idx].name,
179 req->rq_disk ? req->rq_disk->disk_name : "?",
180 (unsigned long long)blk_rq_pos(req),
181 req->cmd_flags);
182 }
183
184 static void req_bio_endio(struct request *rq, struct bio *bio,
185 unsigned int nbytes, blk_status_t error)
186 {
187 if (error)
188 bio->bi_status = error;
189
190 if (unlikely(rq->rq_flags & RQF_QUIET))
191 bio_set_flag(bio, BIO_QUIET);
192
193 bio_advance(bio, nbytes);
194
195 /* don't actually finish bio if it's part of flush sequence */
196 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
197 bio_endio(bio);
198 }
199
200 void blk_dump_rq_flags(struct request *rq, char *msg)
201 {
202 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
203 rq->rq_disk ? rq->rq_disk->disk_name : "?",
204 (unsigned long long) rq->cmd_flags);
205
206 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
207 (unsigned long long)blk_rq_pos(rq),
208 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
209 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
210 rq->bio, rq->biotail, blk_rq_bytes(rq));
211 }
212 EXPORT_SYMBOL(blk_dump_rq_flags);
213
214 /**
215 * blk_sync_queue - cancel any pending callbacks on a queue
216 * @q: the queue
217 *
218 * Description:
219 * The block layer may perform asynchronous callback activity
220 * on a queue, such as calling the unplug function after a timeout.
221 * A block device may call blk_sync_queue to ensure that any
222 * such activity is cancelled, thus allowing it to release resources
223 * that the callbacks might use. The caller must already have made sure
224 * that its ->make_request_fn will not re-add plugging prior to calling
225 * this function.
226 *
227 * This function does not cancel any asynchronous activity arising
228 * out of elevator or throttling code. That would require elevator_exit()
229 * and blkcg_exit_queue() to be called with queue lock initialized.
230 *
231 */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 del_timer_sync(&q->timeout);
235 cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238
239 /**
240 * blk_set_pm_only - increment pm_only counter
241 * @q: request queue pointer
242 */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 int pm_only;
252
253 pm_only = atomic_dec_return(&q->pm_only);
254 WARN_ON_ONCE(pm_only < 0);
255 if (pm_only == 0)
256 wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259
260 void blk_put_queue(struct request_queue *q)
261 {
262 kobject_put(&q->kobj);
263 }
264 EXPORT_SYMBOL(blk_put_queue);
265
266 void blk_set_queue_dying(struct request_queue *q)
267 {
268 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
269
270 /*
271 * When queue DYING flag is set, we need to block new req
272 * entering queue, so we call blk_freeze_queue_start() to
273 * prevent I/O from crossing blk_queue_enter().
274 */
275 blk_freeze_queue_start(q);
276
277 if (queue_is_mq(q))
278 blk_mq_wake_waiters(q);
279
280 /* Make blk_queue_enter() reexamine the DYING flag. */
281 wake_up_all(&q->mq_freeze_wq);
282 }
283 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
284
285 /**
286 * blk_cleanup_queue - shutdown a request queue
287 * @q: request queue to shutdown
288 *
289 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
290 * put it. All future requests will be failed immediately with -ENODEV.
291 */
292 void blk_cleanup_queue(struct request_queue *q)
293 {
294 /* mark @q DYING, no new request or merges will be allowed afterwards */
295 mutex_lock(&q->sysfs_lock);
296 blk_set_queue_dying(q);
297
298 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
299 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
300 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
301 mutex_unlock(&q->sysfs_lock);
302
303 /*
304 * Drain all requests queued before DYING marking. Set DEAD flag to
305 * prevent that q->request_fn() gets invoked after draining finished.
306 */
307 blk_freeze_queue(q);
308
309 rq_qos_exit(q);
310
311 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
312
313 /* for synchronous bio-based driver finish in-flight integrity i/o */
314 blk_flush_integrity();
315
316 /* @q won't process any more request, flush async actions */
317 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
318 blk_sync_queue(q);
319
320 if (queue_is_mq(q))
321 blk_mq_exit_queue(q);
322
323 /*
324 * In theory, request pool of sched_tags belongs to request queue.
325 * However, the current implementation requires tag_set for freeing
326 * requests, so free the pool now.
327 *
328 * Queue has become frozen, there can't be any in-queue requests, so
329 * it is safe to free requests now.
330 */
331 mutex_lock(&q->sysfs_lock);
332 if (q->elevator)
333 blk_mq_sched_free_requests(q);
334 mutex_unlock(&q->sysfs_lock);
335
336 percpu_ref_exit(&q->q_usage_counter);
337
338 /* @q is and will stay empty, shutdown and put */
339 blk_put_queue(q);
340 }
341 EXPORT_SYMBOL(blk_cleanup_queue);
342
343 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
344 {
345 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
346 }
347 EXPORT_SYMBOL(blk_alloc_queue);
348
349 /**
350 * blk_queue_enter() - try to increase q->q_usage_counter
351 * @q: request queue pointer
352 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
353 */
354 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
355 {
356 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
357
358 while (true) {
359 bool success = false;
360
361 rcu_read_lock();
362 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
363 /*
364 * The code that increments the pm_only counter is
365 * responsible for ensuring that that counter is
366 * globally visible before the queue is unfrozen.
367 */
368 if (pm || !blk_queue_pm_only(q)) {
369 success = true;
370 } else {
371 percpu_ref_put(&q->q_usage_counter);
372 }
373 }
374 rcu_read_unlock();
375
376 if (success)
377 return 0;
378
379 if (flags & BLK_MQ_REQ_NOWAIT)
380 return -EBUSY;
381
382 /*
383 * read pair of barrier in blk_freeze_queue_start(),
384 * we need to order reading __PERCPU_REF_DEAD flag of
385 * .q_usage_counter and reading .mq_freeze_depth or
386 * queue dying flag, otherwise the following wait may
387 * never return if the two reads are reordered.
388 */
389 smp_rmb();
390
391 wait_event(q->mq_freeze_wq,
392 (!q->mq_freeze_depth &&
393 (pm || (blk_pm_request_resume(q),
394 !blk_queue_pm_only(q)))) ||
395 blk_queue_dying(q));
396 if (blk_queue_dying(q))
397 return -ENODEV;
398 }
399 }
400
401 void blk_queue_exit(struct request_queue *q)
402 {
403 percpu_ref_put(&q->q_usage_counter);
404 }
405
406 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
407 {
408 struct request_queue *q =
409 container_of(ref, struct request_queue, q_usage_counter);
410
411 wake_up_all(&q->mq_freeze_wq);
412 }
413
414 static void blk_rq_timed_out_timer(struct timer_list *t)
415 {
416 struct request_queue *q = from_timer(q, t, timeout);
417
418 kblockd_schedule_work(&q->timeout_work);
419 }
420
421 static void blk_timeout_work(struct work_struct *work)
422 {
423 }
424
425 /**
426 * blk_alloc_queue_node - allocate a request queue
427 * @gfp_mask: memory allocation flags
428 * @node_id: NUMA node to allocate memory from
429 */
430 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
431 {
432 struct request_queue *q;
433 int ret;
434
435 q = kmem_cache_alloc_node(blk_requestq_cachep,
436 gfp_mask | __GFP_ZERO, node_id);
437 if (!q)
438 return NULL;
439
440 INIT_LIST_HEAD(&q->queue_head);
441 q->last_merge = NULL;
442
443 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
444 if (q->id < 0)
445 goto fail_q;
446
447 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
448 if (ret)
449 goto fail_id;
450
451 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
452 if (!q->backing_dev_info)
453 goto fail_split;
454
455 q->stats = blk_alloc_queue_stats();
456 if (!q->stats)
457 goto fail_stats;
458
459 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
460 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
461 q->backing_dev_info->name = "block";
462 q->node = node_id;
463
464 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
465 laptop_mode_timer_fn, 0);
466 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
467 INIT_WORK(&q->timeout_work, blk_timeout_work);
468 INIT_LIST_HEAD(&q->icq_list);
469 #ifdef CONFIG_BLK_CGROUP
470 INIT_LIST_HEAD(&q->blkg_list);
471 #endif
472
473 kobject_init(&q->kobj, &blk_queue_ktype);
474
475 #ifdef CONFIG_BLK_DEV_IO_TRACE
476 mutex_init(&q->blk_trace_mutex);
477 #endif
478 mutex_init(&q->sysfs_lock);
479 spin_lock_init(&q->queue_lock);
480
481 init_waitqueue_head(&q->mq_freeze_wq);
482 mutex_init(&q->mq_freeze_lock);
483
484 /*
485 * Init percpu_ref in atomic mode so that it's faster to shutdown.
486 * See blk_register_queue() for details.
487 */
488 if (percpu_ref_init(&q->q_usage_counter,
489 blk_queue_usage_counter_release,
490 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
491 goto fail_bdi;
492
493 if (blkcg_init_queue(q))
494 goto fail_ref;
495
496 return q;
497
498 fail_ref:
499 percpu_ref_exit(&q->q_usage_counter);
500 fail_bdi:
501 blk_free_queue_stats(q->stats);
502 fail_stats:
503 bdi_put(q->backing_dev_info);
504 fail_split:
505 bioset_exit(&q->bio_split);
506 fail_id:
507 ida_simple_remove(&blk_queue_ida, q->id);
508 fail_q:
509 kmem_cache_free(blk_requestq_cachep, q);
510 return NULL;
511 }
512 EXPORT_SYMBOL(blk_alloc_queue_node);
513
514 bool blk_get_queue(struct request_queue *q)
515 {
516 if (likely(!blk_queue_dying(q))) {
517 __blk_get_queue(q);
518 return true;
519 }
520
521 return false;
522 }
523 EXPORT_SYMBOL(blk_get_queue);
524
525 /**
526 * blk_get_request - allocate a request
527 * @q: request queue to allocate a request for
528 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
529 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
530 */
531 struct request *blk_get_request(struct request_queue *q, unsigned int op,
532 blk_mq_req_flags_t flags)
533 {
534 struct request *req;
535
536 WARN_ON_ONCE(op & REQ_NOWAIT);
537 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
538
539 req = blk_mq_alloc_request(q, op, flags);
540 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
541 q->mq_ops->initialize_rq_fn(req);
542
543 return req;
544 }
545 EXPORT_SYMBOL(blk_get_request);
546
547 void blk_put_request(struct request *req)
548 {
549 blk_mq_free_request(req);
550 }
551 EXPORT_SYMBOL(blk_put_request);
552
553 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
554 struct bio *bio)
555 {
556 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
557
558 if (!ll_back_merge_fn(q, req, bio))
559 return false;
560
561 trace_block_bio_backmerge(q, req, bio);
562
563 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
564 blk_rq_set_mixed_merge(req);
565
566 req->biotail->bi_next = bio;
567 req->biotail = bio;
568 req->__data_len += bio->bi_iter.bi_size;
569
570 blk_account_io_start(req, false);
571 return true;
572 }
573
574 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
575 struct bio *bio)
576 {
577 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
578
579 if (!ll_front_merge_fn(q, req, bio))
580 return false;
581
582 trace_block_bio_frontmerge(q, req, bio);
583
584 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
585 blk_rq_set_mixed_merge(req);
586
587 bio->bi_next = req->bio;
588 req->bio = bio;
589
590 req->__sector = bio->bi_iter.bi_sector;
591 req->__data_len += bio->bi_iter.bi_size;
592
593 blk_account_io_start(req, false);
594 return true;
595 }
596
597 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
598 struct bio *bio)
599 {
600 unsigned short segments = blk_rq_nr_discard_segments(req);
601
602 if (segments >= queue_max_discard_segments(q))
603 goto no_merge;
604 if (blk_rq_sectors(req) + bio_sectors(bio) >
605 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
606 goto no_merge;
607
608 req->biotail->bi_next = bio;
609 req->biotail = bio;
610 req->__data_len += bio->bi_iter.bi_size;
611 req->nr_phys_segments = segments + 1;
612
613 blk_account_io_start(req, false);
614 return true;
615 no_merge:
616 req_set_nomerge(q, req);
617 return false;
618 }
619
620 /**
621 * blk_attempt_plug_merge - try to merge with %current's plugged list
622 * @q: request_queue new bio is being queued at
623 * @bio: new bio being queued
624 * @same_queue_rq: pointer to &struct request that gets filled in when
625 * another request associated with @q is found on the plug list
626 * (optional, may be %NULL)
627 *
628 * Determine whether @bio being queued on @q can be merged with a request
629 * on %current's plugged list. Returns %true if merge was successful,
630 * otherwise %false.
631 *
632 * Plugging coalesces IOs from the same issuer for the same purpose without
633 * going through @q->queue_lock. As such it's more of an issuing mechanism
634 * than scheduling, and the request, while may have elvpriv data, is not
635 * added on the elevator at this point. In addition, we don't have
636 * reliable access to the elevator outside queue lock. Only check basic
637 * merging parameters without querying the elevator.
638 *
639 * Caller must ensure !blk_queue_nomerges(q) beforehand.
640 */
641 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
642 struct request **same_queue_rq)
643 {
644 struct blk_plug *plug;
645 struct request *rq;
646 struct list_head *plug_list;
647
648 plug = current->plug;
649 if (!plug)
650 return false;
651
652 plug_list = &plug->mq_list;
653
654 list_for_each_entry_reverse(rq, plug_list, queuelist) {
655 bool merged = false;
656
657 if (rq->q == q && same_queue_rq) {
658 /*
659 * Only blk-mq multiple hardware queues case checks the
660 * rq in the same queue, there should be only one such
661 * rq in a queue
662 **/
663 *same_queue_rq = rq;
664 }
665
666 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
667 continue;
668
669 switch (blk_try_merge(rq, bio)) {
670 case ELEVATOR_BACK_MERGE:
671 merged = bio_attempt_back_merge(q, rq, bio);
672 break;
673 case ELEVATOR_FRONT_MERGE:
674 merged = bio_attempt_front_merge(q, rq, bio);
675 break;
676 case ELEVATOR_DISCARD_MERGE:
677 merged = bio_attempt_discard_merge(q, rq, bio);
678 break;
679 default:
680 break;
681 }
682
683 if (merged)
684 return true;
685 }
686
687 return false;
688 }
689
690 void blk_init_request_from_bio(struct request *req, struct bio *bio)
691 {
692 if (bio->bi_opf & REQ_RAHEAD)
693 req->cmd_flags |= REQ_FAILFAST_MASK;
694
695 req->__sector = bio->bi_iter.bi_sector;
696 req->ioprio = bio_prio(bio);
697 req->write_hint = bio->bi_write_hint;
698 blk_rq_bio_prep(req->q, req, bio);
699 }
700 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
701
702 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
703 {
704 char b[BDEVNAME_SIZE];
705
706 printk(KERN_INFO "attempt to access beyond end of device\n");
707 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
708 bio_devname(bio, b), bio->bi_opf,
709 (unsigned long long)bio_end_sector(bio),
710 (long long)maxsector);
711 }
712
713 #ifdef CONFIG_FAIL_MAKE_REQUEST
714
715 static DECLARE_FAULT_ATTR(fail_make_request);
716
717 static int __init setup_fail_make_request(char *str)
718 {
719 return setup_fault_attr(&fail_make_request, str);
720 }
721 __setup("fail_make_request=", setup_fail_make_request);
722
723 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
724 {
725 return part->make_it_fail && should_fail(&fail_make_request, bytes);
726 }
727
728 static int __init fail_make_request_debugfs(void)
729 {
730 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
731 NULL, &fail_make_request);
732
733 return PTR_ERR_OR_ZERO(dir);
734 }
735
736 late_initcall(fail_make_request_debugfs);
737
738 #else /* CONFIG_FAIL_MAKE_REQUEST */
739
740 static inline bool should_fail_request(struct hd_struct *part,
741 unsigned int bytes)
742 {
743 return false;
744 }
745
746 #endif /* CONFIG_FAIL_MAKE_REQUEST */
747
748 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
749 {
750 const int op = bio_op(bio);
751
752 if (part->policy && op_is_write(op)) {
753 char b[BDEVNAME_SIZE];
754
755 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
756 return false;
757
758 WARN_ONCE(1,
759 "generic_make_request: Trying to write "
760 "to read-only block-device %s (partno %d)\n",
761 bio_devname(bio, b), part->partno);
762 /* Older lvm-tools actually trigger this */
763 return false;
764 }
765
766 return false;
767 }
768
769 static noinline int should_fail_bio(struct bio *bio)
770 {
771 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
772 return -EIO;
773 return 0;
774 }
775 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
776
777 /*
778 * Check whether this bio extends beyond the end of the device or partition.
779 * This may well happen - the kernel calls bread() without checking the size of
780 * the device, e.g., when mounting a file system.
781 */
782 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
783 {
784 unsigned int nr_sectors = bio_sectors(bio);
785
786 if (nr_sectors && maxsector &&
787 (nr_sectors > maxsector ||
788 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
789 handle_bad_sector(bio, maxsector);
790 return -EIO;
791 }
792 return 0;
793 }
794
795 /*
796 * Remap block n of partition p to block n+start(p) of the disk.
797 */
798 static inline int blk_partition_remap(struct bio *bio)
799 {
800 struct hd_struct *p;
801 int ret = -EIO;
802
803 rcu_read_lock();
804 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
805 if (unlikely(!p))
806 goto out;
807 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
808 goto out;
809 if (unlikely(bio_check_ro(bio, p)))
810 goto out;
811
812 /*
813 * Zone reset does not include bi_size so bio_sectors() is always 0.
814 * Include a test for the reset op code and perform the remap if needed.
815 */
816 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
817 if (bio_check_eod(bio, part_nr_sects_read(p)))
818 goto out;
819 bio->bi_iter.bi_sector += p->start_sect;
820 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
821 bio->bi_iter.bi_sector - p->start_sect);
822 }
823 bio->bi_partno = 0;
824 ret = 0;
825 out:
826 rcu_read_unlock();
827 return ret;
828 }
829
830 static noinline_for_stack bool
831 generic_make_request_checks(struct bio *bio)
832 {
833 struct request_queue *q;
834 int nr_sectors = bio_sectors(bio);
835 blk_status_t status = BLK_STS_IOERR;
836 char b[BDEVNAME_SIZE];
837
838 might_sleep();
839
840 q = bio->bi_disk->queue;
841 if (unlikely(!q)) {
842 printk(KERN_ERR
843 "generic_make_request: Trying to access "
844 "nonexistent block-device %s (%Lu)\n",
845 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
846 goto end_io;
847 }
848
849 /*
850 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
851 * if queue is not a request based queue.
852 */
853 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
854 goto not_supported;
855
856 if (should_fail_bio(bio))
857 goto end_io;
858
859 if (bio->bi_partno) {
860 if (unlikely(blk_partition_remap(bio)))
861 goto end_io;
862 } else {
863 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
864 goto end_io;
865 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
866 goto end_io;
867 }
868
869 /*
870 * Filter flush bio's early so that make_request based
871 * drivers without flush support don't have to worry
872 * about them.
873 */
874 if (op_is_flush(bio->bi_opf) &&
875 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
876 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
877 if (!nr_sectors) {
878 status = BLK_STS_OK;
879 goto end_io;
880 }
881 }
882
883 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
884 bio->bi_opf &= ~REQ_HIPRI;
885
886 switch (bio_op(bio)) {
887 case REQ_OP_DISCARD:
888 if (!blk_queue_discard(q))
889 goto not_supported;
890 break;
891 case REQ_OP_SECURE_ERASE:
892 if (!blk_queue_secure_erase(q))
893 goto not_supported;
894 break;
895 case REQ_OP_WRITE_SAME:
896 if (!q->limits.max_write_same_sectors)
897 goto not_supported;
898 break;
899 case REQ_OP_ZONE_RESET:
900 if (!blk_queue_is_zoned(q))
901 goto not_supported;
902 break;
903 case REQ_OP_WRITE_ZEROES:
904 if (!q->limits.max_write_zeroes_sectors)
905 goto not_supported;
906 break;
907 default:
908 break;
909 }
910
911 /*
912 * Various block parts want %current->io_context and lazy ioc
913 * allocation ends up trading a lot of pain for a small amount of
914 * memory. Just allocate it upfront. This may fail and block
915 * layer knows how to live with it.
916 */
917 create_io_context(GFP_ATOMIC, q->node);
918
919 if (!blkcg_bio_issue_check(q, bio))
920 return false;
921
922 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
923 trace_block_bio_queue(q, bio);
924 /* Now that enqueuing has been traced, we need to trace
925 * completion as well.
926 */
927 bio_set_flag(bio, BIO_TRACE_COMPLETION);
928 }
929 return true;
930
931 not_supported:
932 status = BLK_STS_NOTSUPP;
933 end_io:
934 bio->bi_status = status;
935 bio_endio(bio);
936 return false;
937 }
938
939 /**
940 * generic_make_request - hand a buffer to its device driver for I/O
941 * @bio: The bio describing the location in memory and on the device.
942 *
943 * generic_make_request() is used to make I/O requests of block
944 * devices. It is passed a &struct bio, which describes the I/O that needs
945 * to be done.
946 *
947 * generic_make_request() does not return any status. The
948 * success/failure status of the request, along with notification of
949 * completion, is delivered asynchronously through the bio->bi_end_io
950 * function described (one day) else where.
951 *
952 * The caller of generic_make_request must make sure that bi_io_vec
953 * are set to describe the memory buffer, and that bi_dev and bi_sector are
954 * set to describe the device address, and the
955 * bi_end_io and optionally bi_private are set to describe how
956 * completion notification should be signaled.
957 *
958 * generic_make_request and the drivers it calls may use bi_next if this
959 * bio happens to be merged with someone else, and may resubmit the bio to
960 * a lower device by calling into generic_make_request recursively, which
961 * means the bio should NOT be touched after the call to ->make_request_fn.
962 */
963 blk_qc_t generic_make_request(struct bio *bio)
964 {
965 /*
966 * bio_list_on_stack[0] contains bios submitted by the current
967 * make_request_fn.
968 * bio_list_on_stack[1] contains bios that were submitted before
969 * the current make_request_fn, but that haven't been processed
970 * yet.
971 */
972 struct bio_list bio_list_on_stack[2];
973 blk_qc_t ret = BLK_QC_T_NONE;
974
975 if (!generic_make_request_checks(bio))
976 goto out;
977
978 /*
979 * We only want one ->make_request_fn to be active at a time, else
980 * stack usage with stacked devices could be a problem. So use
981 * current->bio_list to keep a list of requests submited by a
982 * make_request_fn function. current->bio_list is also used as a
983 * flag to say if generic_make_request is currently active in this
984 * task or not. If it is NULL, then no make_request is active. If
985 * it is non-NULL, then a make_request is active, and new requests
986 * should be added at the tail
987 */
988 if (current->bio_list) {
989 bio_list_add(&current->bio_list[0], bio);
990 goto out;
991 }
992
993 /* following loop may be a bit non-obvious, and so deserves some
994 * explanation.
995 * Before entering the loop, bio->bi_next is NULL (as all callers
996 * ensure that) so we have a list with a single bio.
997 * We pretend that we have just taken it off a longer list, so
998 * we assign bio_list to a pointer to the bio_list_on_stack,
999 * thus initialising the bio_list of new bios to be
1000 * added. ->make_request() may indeed add some more bios
1001 * through a recursive call to generic_make_request. If it
1002 * did, we find a non-NULL value in bio_list and re-enter the loop
1003 * from the top. In this case we really did just take the bio
1004 * of the top of the list (no pretending) and so remove it from
1005 * bio_list, and call into ->make_request() again.
1006 */
1007 BUG_ON(bio->bi_next);
1008 bio_list_init(&bio_list_on_stack[0]);
1009 current->bio_list = bio_list_on_stack;
1010 do {
1011 struct request_queue *q = bio->bi_disk->queue;
1012 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1013 BLK_MQ_REQ_NOWAIT : 0;
1014
1015 if (likely(blk_queue_enter(q, flags) == 0)) {
1016 struct bio_list lower, same;
1017
1018 /* Create a fresh bio_list for all subordinate requests */
1019 bio_list_on_stack[1] = bio_list_on_stack[0];
1020 bio_list_init(&bio_list_on_stack[0]);
1021 ret = q->make_request_fn(q, bio);
1022
1023 blk_queue_exit(q);
1024
1025 /* sort new bios into those for a lower level
1026 * and those for the same level
1027 */
1028 bio_list_init(&lower);
1029 bio_list_init(&same);
1030 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1031 if (q == bio->bi_disk->queue)
1032 bio_list_add(&same, bio);
1033 else
1034 bio_list_add(&lower, bio);
1035 /* now assemble so we handle the lowest level first */
1036 bio_list_merge(&bio_list_on_stack[0], &lower);
1037 bio_list_merge(&bio_list_on_stack[0], &same);
1038 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1039 } else {
1040 if (unlikely(!blk_queue_dying(q) &&
1041 (bio->bi_opf & REQ_NOWAIT)))
1042 bio_wouldblock_error(bio);
1043 else
1044 bio_io_error(bio);
1045 }
1046 bio = bio_list_pop(&bio_list_on_stack[0]);
1047 } while (bio);
1048 current->bio_list = NULL; /* deactivate */
1049
1050 out:
1051 return ret;
1052 }
1053 EXPORT_SYMBOL(generic_make_request);
1054
1055 /**
1056 * direct_make_request - hand a buffer directly to its device driver for I/O
1057 * @bio: The bio describing the location in memory and on the device.
1058 *
1059 * This function behaves like generic_make_request(), but does not protect
1060 * against recursion. Must only be used if the called driver is known
1061 * to not call generic_make_request (or direct_make_request) again from
1062 * its make_request function. (Calling direct_make_request again from
1063 * a workqueue is perfectly fine as that doesn't recurse).
1064 */
1065 blk_qc_t direct_make_request(struct bio *bio)
1066 {
1067 struct request_queue *q = bio->bi_disk->queue;
1068 bool nowait = bio->bi_opf & REQ_NOWAIT;
1069 blk_qc_t ret;
1070
1071 if (!generic_make_request_checks(bio))
1072 return BLK_QC_T_NONE;
1073
1074 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1075 if (nowait && !blk_queue_dying(q))
1076 bio->bi_status = BLK_STS_AGAIN;
1077 else
1078 bio->bi_status = BLK_STS_IOERR;
1079 bio_endio(bio);
1080 return BLK_QC_T_NONE;
1081 }
1082
1083 ret = q->make_request_fn(q, bio);
1084 blk_queue_exit(q);
1085 return ret;
1086 }
1087 EXPORT_SYMBOL_GPL(direct_make_request);
1088
1089 /**
1090 * submit_bio - submit a bio to the block device layer for I/O
1091 * @bio: The &struct bio which describes the I/O
1092 *
1093 * submit_bio() is very similar in purpose to generic_make_request(), and
1094 * uses that function to do most of the work. Both are fairly rough
1095 * interfaces; @bio must be presetup and ready for I/O.
1096 *
1097 */
1098 blk_qc_t submit_bio(struct bio *bio)
1099 {
1100 /*
1101 * If it's a regular read/write or a barrier with data attached,
1102 * go through the normal accounting stuff before submission.
1103 */
1104 if (bio_has_data(bio)) {
1105 unsigned int count;
1106
1107 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1108 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1109 else
1110 count = bio_sectors(bio);
1111
1112 if (op_is_write(bio_op(bio))) {
1113 count_vm_events(PGPGOUT, count);
1114 } else {
1115 task_io_account_read(bio->bi_iter.bi_size);
1116 count_vm_events(PGPGIN, count);
1117 }
1118
1119 if (unlikely(block_dump)) {
1120 char b[BDEVNAME_SIZE];
1121 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1122 current->comm, task_pid_nr(current),
1123 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1124 (unsigned long long)bio->bi_iter.bi_sector,
1125 bio_devname(bio, b), count);
1126 }
1127 }
1128
1129 return generic_make_request(bio);
1130 }
1131 EXPORT_SYMBOL(submit_bio);
1132
1133 /**
1134 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1135 * for new the queue limits
1136 * @q: the queue
1137 * @rq: the request being checked
1138 *
1139 * Description:
1140 * @rq may have been made based on weaker limitations of upper-level queues
1141 * in request stacking drivers, and it may violate the limitation of @q.
1142 * Since the block layer and the underlying device driver trust @rq
1143 * after it is inserted to @q, it should be checked against @q before
1144 * the insertion using this generic function.
1145 *
1146 * Request stacking drivers like request-based dm may change the queue
1147 * limits when retrying requests on other queues. Those requests need
1148 * to be checked against the new queue limits again during dispatch.
1149 */
1150 static int blk_cloned_rq_check_limits(struct request_queue *q,
1151 struct request *rq)
1152 {
1153 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1154 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1155 __func__, blk_rq_sectors(rq),
1156 blk_queue_get_max_sectors(q, req_op(rq)));
1157 return -EIO;
1158 }
1159
1160 /*
1161 * queue's settings related to segment counting like q->bounce_pfn
1162 * may differ from that of other stacking queues.
1163 * Recalculate it to check the request correctly on this queue's
1164 * limitation.
1165 */
1166 blk_recalc_rq_segments(rq);
1167 if (rq->nr_phys_segments > queue_max_segments(q)) {
1168 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1169 __func__, rq->nr_phys_segments, queue_max_segments(q));
1170 return -EIO;
1171 }
1172
1173 return 0;
1174 }
1175
1176 /**
1177 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1178 * @q: the queue to submit the request
1179 * @rq: the request being queued
1180 */
1181 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1182 {
1183 if (blk_cloned_rq_check_limits(q, rq))
1184 return BLK_STS_IOERR;
1185
1186 if (rq->rq_disk &&
1187 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1188 return BLK_STS_IOERR;
1189
1190 if (blk_queue_io_stat(q))
1191 blk_account_io_start(rq, true);
1192
1193 /*
1194 * Since we have a scheduler attached on the top device,
1195 * bypass a potential scheduler on the bottom device for
1196 * insert.
1197 */
1198 return blk_mq_request_issue_directly(rq, true);
1199 }
1200 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1201
1202 /**
1203 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1204 * @rq: request to examine
1205 *
1206 * Description:
1207 * A request could be merge of IOs which require different failure
1208 * handling. This function determines the number of bytes which
1209 * can be failed from the beginning of the request without
1210 * crossing into area which need to be retried further.
1211 *
1212 * Return:
1213 * The number of bytes to fail.
1214 */
1215 unsigned int blk_rq_err_bytes(const struct request *rq)
1216 {
1217 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1218 unsigned int bytes = 0;
1219 struct bio *bio;
1220
1221 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1222 return blk_rq_bytes(rq);
1223
1224 /*
1225 * Currently the only 'mixing' which can happen is between
1226 * different fastfail types. We can safely fail portions
1227 * which have all the failfast bits that the first one has -
1228 * the ones which are at least as eager to fail as the first
1229 * one.
1230 */
1231 for (bio = rq->bio; bio; bio = bio->bi_next) {
1232 if ((bio->bi_opf & ff) != ff)
1233 break;
1234 bytes += bio->bi_iter.bi_size;
1235 }
1236
1237 /* this could lead to infinite loop */
1238 BUG_ON(blk_rq_bytes(rq) && !bytes);
1239 return bytes;
1240 }
1241 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1242
1243 void blk_account_io_completion(struct request *req, unsigned int bytes)
1244 {
1245 if (blk_do_io_stat(req)) {
1246 const int sgrp = op_stat_group(req_op(req));
1247 struct hd_struct *part;
1248
1249 part_stat_lock();
1250 part = req->part;
1251 part_stat_add(part, sectors[sgrp], bytes >> 9);
1252 part_stat_unlock();
1253 }
1254 }
1255
1256 void blk_account_io_done(struct request *req, u64 now)
1257 {
1258 /*
1259 * Account IO completion. flush_rq isn't accounted as a
1260 * normal IO on queueing nor completion. Accounting the
1261 * containing request is enough.
1262 */
1263 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1264 const int sgrp = op_stat_group(req_op(req));
1265 struct hd_struct *part;
1266
1267 part_stat_lock();
1268 part = req->part;
1269
1270 update_io_ticks(part, jiffies);
1271 part_stat_inc(part, ios[sgrp]);
1272 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1273 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1274 part_dec_in_flight(req->q, part, rq_data_dir(req));
1275
1276 hd_struct_put(part);
1277 part_stat_unlock();
1278 }
1279 }
1280
1281 void blk_account_io_start(struct request *rq, bool new_io)
1282 {
1283 struct hd_struct *part;
1284 int rw = rq_data_dir(rq);
1285
1286 if (!blk_do_io_stat(rq))
1287 return;
1288
1289 part_stat_lock();
1290
1291 if (!new_io) {
1292 part = rq->part;
1293 part_stat_inc(part, merges[rw]);
1294 } else {
1295 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1296 if (!hd_struct_try_get(part)) {
1297 /*
1298 * The partition is already being removed,
1299 * the request will be accounted on the disk only
1300 *
1301 * We take a reference on disk->part0 although that
1302 * partition will never be deleted, so we can treat
1303 * it as any other partition.
1304 */
1305 part = &rq->rq_disk->part0;
1306 hd_struct_get(part);
1307 }
1308 part_inc_in_flight(rq->q, part, rw);
1309 rq->part = part;
1310 }
1311
1312 update_io_ticks(part, jiffies);
1313
1314 part_stat_unlock();
1315 }
1316
1317 /*
1318 * Steal bios from a request and add them to a bio list.
1319 * The request must not have been partially completed before.
1320 */
1321 void blk_steal_bios(struct bio_list *list, struct request *rq)
1322 {
1323 if (rq->bio) {
1324 if (list->tail)
1325 list->tail->bi_next = rq->bio;
1326 else
1327 list->head = rq->bio;
1328 list->tail = rq->biotail;
1329
1330 rq->bio = NULL;
1331 rq->biotail = NULL;
1332 }
1333
1334 rq->__data_len = 0;
1335 }
1336 EXPORT_SYMBOL_GPL(blk_steal_bios);
1337
1338 /**
1339 * blk_update_request - Special helper function for request stacking drivers
1340 * @req: the request being processed
1341 * @error: block status code
1342 * @nr_bytes: number of bytes to complete @req
1343 *
1344 * Description:
1345 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1346 * the request structure even if @req doesn't have leftover.
1347 * If @req has leftover, sets it up for the next range of segments.
1348 *
1349 * This special helper function is only for request stacking drivers
1350 * (e.g. request-based dm) so that they can handle partial completion.
1351 * Actual device drivers should use blk_end_request instead.
1352 *
1353 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1354 * %false return from this function.
1355 *
1356 * Note:
1357 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1358 * blk_rq_bytes() and in blk_update_request().
1359 *
1360 * Return:
1361 * %false - this request doesn't have any more data
1362 * %true - this request has more data
1363 **/
1364 bool blk_update_request(struct request *req, blk_status_t error,
1365 unsigned int nr_bytes)
1366 {
1367 int total_bytes;
1368
1369 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1370
1371 if (!req->bio)
1372 return false;
1373
1374 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1375 !(req->rq_flags & RQF_QUIET)))
1376 print_req_error(req, error);
1377
1378 blk_account_io_completion(req, nr_bytes);
1379
1380 total_bytes = 0;
1381 while (req->bio) {
1382 struct bio *bio = req->bio;
1383 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1384
1385 if (bio_bytes == bio->bi_iter.bi_size)
1386 req->bio = bio->bi_next;
1387
1388 /* Completion has already been traced */
1389 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1390 req_bio_endio(req, bio, bio_bytes, error);
1391
1392 total_bytes += bio_bytes;
1393 nr_bytes -= bio_bytes;
1394
1395 if (!nr_bytes)
1396 break;
1397 }
1398
1399 /*
1400 * completely done
1401 */
1402 if (!req->bio) {
1403 /*
1404 * Reset counters so that the request stacking driver
1405 * can find how many bytes remain in the request
1406 * later.
1407 */
1408 req->__data_len = 0;
1409 return false;
1410 }
1411
1412 req->__data_len -= total_bytes;
1413
1414 /* update sector only for requests with clear definition of sector */
1415 if (!blk_rq_is_passthrough(req))
1416 req->__sector += total_bytes >> 9;
1417
1418 /* mixed attributes always follow the first bio */
1419 if (req->rq_flags & RQF_MIXED_MERGE) {
1420 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1421 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1422 }
1423
1424 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1425 /*
1426 * If total number of sectors is less than the first segment
1427 * size, something has gone terribly wrong.
1428 */
1429 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1430 blk_dump_rq_flags(req, "request botched");
1431 req->__data_len = blk_rq_cur_bytes(req);
1432 }
1433
1434 /* recalculate the number of segments */
1435 blk_recalc_rq_segments(req);
1436 }
1437
1438 return true;
1439 }
1440 EXPORT_SYMBOL_GPL(blk_update_request);
1441
1442 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1443 struct bio *bio)
1444 {
1445 if (bio_has_data(bio))
1446 rq->nr_phys_segments = bio_phys_segments(q, bio);
1447 else if (bio_op(bio) == REQ_OP_DISCARD)
1448 rq->nr_phys_segments = 1;
1449
1450 rq->__data_len = bio->bi_iter.bi_size;
1451 rq->bio = rq->biotail = bio;
1452
1453 if (bio->bi_disk)
1454 rq->rq_disk = bio->bi_disk;
1455 }
1456
1457 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1458 /**
1459 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1460 * @rq: the request to be flushed
1461 *
1462 * Description:
1463 * Flush all pages in @rq.
1464 */
1465 void rq_flush_dcache_pages(struct request *rq)
1466 {
1467 struct req_iterator iter;
1468 struct bio_vec bvec;
1469
1470 rq_for_each_segment(bvec, rq, iter)
1471 flush_dcache_page(bvec.bv_page);
1472 }
1473 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1474 #endif
1475
1476 /**
1477 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1478 * @q : the queue of the device being checked
1479 *
1480 * Description:
1481 * Check if underlying low-level drivers of a device are busy.
1482 * If the drivers want to export their busy state, they must set own
1483 * exporting function using blk_queue_lld_busy() first.
1484 *
1485 * Basically, this function is used only by request stacking drivers
1486 * to stop dispatching requests to underlying devices when underlying
1487 * devices are busy. This behavior helps more I/O merging on the queue
1488 * of the request stacking driver and prevents I/O throughput regression
1489 * on burst I/O load.
1490 *
1491 * Return:
1492 * 0 - Not busy (The request stacking driver should dispatch request)
1493 * 1 - Busy (The request stacking driver should stop dispatching request)
1494 */
1495 int blk_lld_busy(struct request_queue *q)
1496 {
1497 if (queue_is_mq(q) && q->mq_ops->busy)
1498 return q->mq_ops->busy(q);
1499
1500 return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(blk_lld_busy);
1503
1504 /**
1505 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1506 * @rq: the clone request to be cleaned up
1507 *
1508 * Description:
1509 * Free all bios in @rq for a cloned request.
1510 */
1511 void blk_rq_unprep_clone(struct request *rq)
1512 {
1513 struct bio *bio;
1514
1515 while ((bio = rq->bio) != NULL) {
1516 rq->bio = bio->bi_next;
1517
1518 bio_put(bio);
1519 }
1520 }
1521 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1522
1523 /*
1524 * Copy attributes of the original request to the clone request.
1525 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1526 */
1527 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1528 {
1529 dst->__sector = blk_rq_pos(src);
1530 dst->__data_len = blk_rq_bytes(src);
1531 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1532 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1533 dst->special_vec = src->special_vec;
1534 }
1535 dst->nr_phys_segments = src->nr_phys_segments;
1536 dst->ioprio = src->ioprio;
1537 dst->extra_len = src->extra_len;
1538 }
1539
1540 /**
1541 * blk_rq_prep_clone - Helper function to setup clone request
1542 * @rq: the request to be setup
1543 * @rq_src: original request to be cloned
1544 * @bs: bio_set that bios for clone are allocated from
1545 * @gfp_mask: memory allocation mask for bio
1546 * @bio_ctr: setup function to be called for each clone bio.
1547 * Returns %0 for success, non %0 for failure.
1548 * @data: private data to be passed to @bio_ctr
1549 *
1550 * Description:
1551 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1552 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1553 * are not copied, and copying such parts is the caller's responsibility.
1554 * Also, pages which the original bios are pointing to are not copied
1555 * and the cloned bios just point same pages.
1556 * So cloned bios must be completed before original bios, which means
1557 * the caller must complete @rq before @rq_src.
1558 */
1559 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1560 struct bio_set *bs, gfp_t gfp_mask,
1561 int (*bio_ctr)(struct bio *, struct bio *, void *),
1562 void *data)
1563 {
1564 struct bio *bio, *bio_src;
1565
1566 if (!bs)
1567 bs = &fs_bio_set;
1568
1569 __rq_for_each_bio(bio_src, rq_src) {
1570 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1571 if (!bio)
1572 goto free_and_out;
1573
1574 if (bio_ctr && bio_ctr(bio, bio_src, data))
1575 goto free_and_out;
1576
1577 if (rq->bio) {
1578 rq->biotail->bi_next = bio;
1579 rq->biotail = bio;
1580 } else
1581 rq->bio = rq->biotail = bio;
1582 }
1583
1584 __blk_rq_prep_clone(rq, rq_src);
1585
1586 return 0;
1587
1588 free_and_out:
1589 if (bio)
1590 bio_put(bio);
1591 blk_rq_unprep_clone(rq);
1592
1593 return -ENOMEM;
1594 }
1595 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1596
1597 int kblockd_schedule_work(struct work_struct *work)
1598 {
1599 return queue_work(kblockd_workqueue, work);
1600 }
1601 EXPORT_SYMBOL(kblockd_schedule_work);
1602
1603 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1604 {
1605 return queue_work_on(cpu, kblockd_workqueue, work);
1606 }
1607 EXPORT_SYMBOL(kblockd_schedule_work_on);
1608
1609 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1610 unsigned long delay)
1611 {
1612 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1613 }
1614 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1615
1616 /**
1617 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1618 * @plug: The &struct blk_plug that needs to be initialized
1619 *
1620 * Description:
1621 * blk_start_plug() indicates to the block layer an intent by the caller
1622 * to submit multiple I/O requests in a batch. The block layer may use
1623 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1624 * is called. However, the block layer may choose to submit requests
1625 * before a call to blk_finish_plug() if the number of queued I/Os
1626 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1627 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1628 * the task schedules (see below).
1629 *
1630 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1631 * pending I/O should the task end up blocking between blk_start_plug() and
1632 * blk_finish_plug(). This is important from a performance perspective, but
1633 * also ensures that we don't deadlock. For instance, if the task is blocking
1634 * for a memory allocation, memory reclaim could end up wanting to free a
1635 * page belonging to that request that is currently residing in our private
1636 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1637 * this kind of deadlock.
1638 */
1639 void blk_start_plug(struct blk_plug *plug)
1640 {
1641 struct task_struct *tsk = current;
1642
1643 /*
1644 * If this is a nested plug, don't actually assign it.
1645 */
1646 if (tsk->plug)
1647 return;
1648
1649 INIT_LIST_HEAD(&plug->mq_list);
1650 INIT_LIST_HEAD(&plug->cb_list);
1651 plug->rq_count = 0;
1652 plug->multiple_queues = false;
1653
1654 /*
1655 * Store ordering should not be needed here, since a potential
1656 * preempt will imply a full memory barrier
1657 */
1658 tsk->plug = plug;
1659 }
1660 EXPORT_SYMBOL(blk_start_plug);
1661
1662 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1663 {
1664 LIST_HEAD(callbacks);
1665
1666 while (!list_empty(&plug->cb_list)) {
1667 list_splice_init(&plug->cb_list, &callbacks);
1668
1669 while (!list_empty(&callbacks)) {
1670 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1671 struct blk_plug_cb,
1672 list);
1673 list_del(&cb->list);
1674 cb->callback(cb, from_schedule);
1675 }
1676 }
1677 }
1678
1679 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1680 int size)
1681 {
1682 struct blk_plug *plug = current->plug;
1683 struct blk_plug_cb *cb;
1684
1685 if (!plug)
1686 return NULL;
1687
1688 list_for_each_entry(cb, &plug->cb_list, list)
1689 if (cb->callback == unplug && cb->data == data)
1690 return cb;
1691
1692 /* Not currently on the callback list */
1693 BUG_ON(size < sizeof(*cb));
1694 cb = kzalloc(size, GFP_ATOMIC);
1695 if (cb) {
1696 cb->data = data;
1697 cb->callback = unplug;
1698 list_add(&cb->list, &plug->cb_list);
1699 }
1700 return cb;
1701 }
1702 EXPORT_SYMBOL(blk_check_plugged);
1703
1704 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1705 {
1706 flush_plug_callbacks(plug, from_schedule);
1707
1708 if (!list_empty(&plug->mq_list))
1709 blk_mq_flush_plug_list(plug, from_schedule);
1710 }
1711
1712 /**
1713 * blk_finish_plug - mark the end of a batch of submitted I/O
1714 * @plug: The &struct blk_plug passed to blk_start_plug()
1715 *
1716 * Description:
1717 * Indicate that a batch of I/O submissions is complete. This function
1718 * must be paired with an initial call to blk_start_plug(). The intent
1719 * is to allow the block layer to optimize I/O submission. See the
1720 * documentation for blk_start_plug() for more information.
1721 */
1722 void blk_finish_plug(struct blk_plug *plug)
1723 {
1724 if (plug != current->plug)
1725 return;
1726 blk_flush_plug_list(plug, false);
1727
1728 current->plug = NULL;
1729 }
1730 EXPORT_SYMBOL(blk_finish_plug);
1731
1732 int __init blk_dev_init(void)
1733 {
1734 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1735 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1736 FIELD_SIZEOF(struct request, cmd_flags));
1737 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1738 FIELD_SIZEOF(struct bio, bi_opf));
1739
1740 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1741 kblockd_workqueue = alloc_workqueue("kblockd",
1742 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1743 if (!kblockd_workqueue)
1744 panic("Failed to create kblockd\n");
1745
1746 blk_requestq_cachep = kmem_cache_create("request_queue",
1747 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1748
1749 #ifdef CONFIG_DEBUG_FS
1750 blk_debugfs_root = debugfs_create_dir("block", NULL);
1751 #endif
1752
1753 return 0;
1754 }