]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
39
40 static int __make_request(struct request_queue *q, struct bio *bio);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 part_round_stats(cpu, part);
74 part_inc_in_flight(part, rw);
75 rq->part = part;
76 }
77
78 part_stat_unlock();
79 }
80
81 void blk_queue_congestion_threshold(struct request_queue *q)
82 {
83 int nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) + 1;
86 if (nr > q->nr_requests)
87 nr = q->nr_requests;
88 q->nr_congestion_on = nr;
89
90 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
91 if (nr < 1)
92 nr = 1;
93 q->nr_congestion_off = nr;
94 }
95
96 /**
97 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
98 * @bdev: device
99 *
100 * Locates the passed device's request queue and returns the address of its
101 * backing_dev_info
102 *
103 * Will return NULL if the request queue cannot be located.
104 */
105 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
106 {
107 struct backing_dev_info *ret = NULL;
108 struct request_queue *q = bdev_get_queue(bdev);
109
110 if (q)
111 ret = &q->backing_dev_info;
112 return ret;
113 }
114 EXPORT_SYMBOL(blk_get_backing_dev_info);
115
116 void blk_rq_init(struct request_queue *q, struct request *rq)
117 {
118 memset(rq, 0, sizeof(*rq));
119
120 INIT_LIST_HEAD(&rq->queuelist);
121 INIT_LIST_HEAD(&rq->timeout_list);
122 rq->cpu = -1;
123 rq->q = q;
124 rq->__sector = (sector_t) -1;
125 INIT_HLIST_NODE(&rq->hash);
126 RB_CLEAR_NODE(&rq->rb_node);
127 rq->cmd = rq->__cmd;
128 rq->cmd_len = BLK_MAX_CDB;
129 rq->tag = -1;
130 rq->ref_count = 1;
131 rq->start_time = jiffies;
132 set_start_time_ns(rq);
133 rq->part = NULL;
134 }
135 EXPORT_SYMBOL(blk_rq_init);
136
137 static void req_bio_endio(struct request *rq, struct bio *bio,
138 unsigned int nbytes, int error)
139 {
140 struct request_queue *q = rq->q;
141
142 if (&q->flush_rq != rq) {
143 if (error)
144 clear_bit(BIO_UPTODATE, &bio->bi_flags);
145 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
146 error = -EIO;
147
148 if (unlikely(nbytes > bio->bi_size)) {
149 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
150 __func__, nbytes, bio->bi_size);
151 nbytes = bio->bi_size;
152 }
153
154 if (unlikely(rq->cmd_flags & REQ_QUIET))
155 set_bit(BIO_QUIET, &bio->bi_flags);
156
157 bio->bi_size -= nbytes;
158 bio->bi_sector += (nbytes >> 9);
159
160 if (bio_integrity(bio))
161 bio_integrity_advance(bio, nbytes);
162
163 if (bio->bi_size == 0)
164 bio_endio(bio, error);
165 } else {
166 /*
167 * Okay, this is the sequenced flush request in
168 * progress, just record the error;
169 */
170 if (error && !q->flush_err)
171 q->flush_err = error;
172 }
173 }
174
175 void blk_dump_rq_flags(struct request *rq, char *msg)
176 {
177 int bit;
178
179 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
180 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
181 rq->cmd_flags);
182
183 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
184 (unsigned long long)blk_rq_pos(rq),
185 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
186 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
187 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
188
189 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
190 printk(KERN_INFO " cdb: ");
191 for (bit = 0; bit < BLK_MAX_CDB; bit++)
192 printk("%02x ", rq->cmd[bit]);
193 printk("\n");
194 }
195 }
196 EXPORT_SYMBOL(blk_dump_rq_flags);
197
198 /*
199 * "plug" the device if there are no outstanding requests: this will
200 * force the transfer to start only after we have put all the requests
201 * on the list.
202 *
203 * This is called with interrupts off and no requests on the queue and
204 * with the queue lock held.
205 */
206 void blk_plug_device(struct request_queue *q)
207 {
208 WARN_ON(!irqs_disabled());
209
210 /*
211 * don't plug a stopped queue, it must be paired with blk_start_queue()
212 * which will restart the queueing
213 */
214 if (blk_queue_stopped(q))
215 return;
216
217 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
218 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
219 trace_block_plug(q);
220 }
221 }
222 EXPORT_SYMBOL(blk_plug_device);
223
224 /**
225 * blk_plug_device_unlocked - plug a device without queue lock held
226 * @q: The &struct request_queue to plug
227 *
228 * Description:
229 * Like @blk_plug_device(), but grabs the queue lock and disables
230 * interrupts.
231 **/
232 void blk_plug_device_unlocked(struct request_queue *q)
233 {
234 unsigned long flags;
235
236 spin_lock_irqsave(q->queue_lock, flags);
237 blk_plug_device(q);
238 spin_unlock_irqrestore(q->queue_lock, flags);
239 }
240 EXPORT_SYMBOL(blk_plug_device_unlocked);
241
242 /*
243 * remove the queue from the plugged list, if present. called with
244 * queue lock held and interrupts disabled.
245 */
246 int blk_remove_plug(struct request_queue *q)
247 {
248 WARN_ON(!irqs_disabled());
249
250 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
251 return 0;
252
253 del_timer(&q->unplug_timer);
254 return 1;
255 }
256 EXPORT_SYMBOL(blk_remove_plug);
257
258 /*
259 * remove the plug and let it rip..
260 */
261 void __generic_unplug_device(struct request_queue *q)
262 {
263 if (unlikely(blk_queue_stopped(q)))
264 return;
265 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
266 return;
267
268 q->request_fn(q);
269 }
270
271 /**
272 * generic_unplug_device - fire a request queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * Linux uses plugging to build bigger requests queues before letting
277 * the device have at them. If a queue is plugged, the I/O scheduler
278 * is still adding and merging requests on the queue. Once the queue
279 * gets unplugged, the request_fn defined for the queue is invoked and
280 * transfers started.
281 **/
282 void generic_unplug_device(struct request_queue *q)
283 {
284 if (blk_queue_plugged(q)) {
285 spin_lock_irq(q->queue_lock);
286 __generic_unplug_device(q);
287 spin_unlock_irq(q->queue_lock);
288 }
289 }
290 EXPORT_SYMBOL(generic_unplug_device);
291
292 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
293 struct page *page)
294 {
295 struct request_queue *q = bdi->unplug_io_data;
296
297 blk_unplug(q);
298 }
299
300 void blk_unplug_work(struct work_struct *work)
301 {
302 struct request_queue *q =
303 container_of(work, struct request_queue, unplug_work);
304
305 trace_block_unplug_io(q);
306 q->unplug_fn(q);
307 }
308
309 void blk_unplug_timeout(unsigned long data)
310 {
311 struct request_queue *q = (struct request_queue *)data;
312
313 trace_block_unplug_timer(q);
314 kblockd_schedule_work(q, &q->unplug_work);
315 }
316
317 void blk_unplug(struct request_queue *q)
318 {
319 /*
320 * devices don't necessarily have an ->unplug_fn defined
321 */
322 if (q->unplug_fn) {
323 trace_block_unplug_io(q);
324 q->unplug_fn(q);
325 }
326 }
327 EXPORT_SYMBOL(blk_unplug);
328
329 /**
330 * blk_start_queue - restart a previously stopped queue
331 * @q: The &struct request_queue in question
332 *
333 * Description:
334 * blk_start_queue() will clear the stop flag on the queue, and call
335 * the request_fn for the queue if it was in a stopped state when
336 * entered. Also see blk_stop_queue(). Queue lock must be held.
337 **/
338 void blk_start_queue(struct request_queue *q)
339 {
340 WARN_ON(!irqs_disabled());
341
342 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
343 __blk_run_queue(q);
344 }
345 EXPORT_SYMBOL(blk_start_queue);
346
347 /**
348 * blk_stop_queue - stop a queue
349 * @q: The &struct request_queue in question
350 *
351 * Description:
352 * The Linux block layer assumes that a block driver will consume all
353 * entries on the request queue when the request_fn strategy is called.
354 * Often this will not happen, because of hardware limitations (queue
355 * depth settings). If a device driver gets a 'queue full' response,
356 * or if it simply chooses not to queue more I/O at one point, it can
357 * call this function to prevent the request_fn from being called until
358 * the driver has signalled it's ready to go again. This happens by calling
359 * blk_start_queue() to restart queue operations. Queue lock must be held.
360 **/
361 void blk_stop_queue(struct request_queue *q)
362 {
363 blk_remove_plug(q);
364 queue_flag_set(QUEUE_FLAG_STOPPED, q);
365 }
366 EXPORT_SYMBOL(blk_stop_queue);
367
368 /**
369 * blk_sync_queue - cancel any pending callbacks on a queue
370 * @q: the queue
371 *
372 * Description:
373 * The block layer may perform asynchronous callback activity
374 * on a queue, such as calling the unplug function after a timeout.
375 * A block device may call blk_sync_queue to ensure that any
376 * such activity is cancelled, thus allowing it to release resources
377 * that the callbacks might use. The caller must already have made sure
378 * that its ->make_request_fn will not re-add plugging prior to calling
379 * this function.
380 *
381 */
382 void blk_sync_queue(struct request_queue *q)
383 {
384 del_timer_sync(&q->unplug_timer);
385 del_timer_sync(&q->timeout);
386 cancel_work_sync(&q->unplug_work);
387 throtl_shutdown_timer_wq(q);
388 }
389 EXPORT_SYMBOL(blk_sync_queue);
390
391 /**
392 * __blk_run_queue - run a single device queue
393 * @q: The queue to run
394 *
395 * Description:
396 * See @blk_run_queue. This variant must be called with the queue lock
397 * held and interrupts disabled.
398 *
399 */
400 void __blk_run_queue(struct request_queue *q)
401 {
402 blk_remove_plug(q);
403
404 if (unlikely(blk_queue_stopped(q)))
405 return;
406
407 if (elv_queue_empty(q))
408 return;
409
410 /*
411 * Only recurse once to avoid overrunning the stack, let the unplug
412 * handling reinvoke the handler shortly if we already got there.
413 */
414 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
415 q->request_fn(q);
416 queue_flag_clear(QUEUE_FLAG_REENTER, q);
417 } else {
418 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
419 kblockd_schedule_work(q, &q->unplug_work);
420 }
421 }
422 EXPORT_SYMBOL(__blk_run_queue);
423
424 /**
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
427 *
428 * Description:
429 * Invoke request handling on this queue, if it has pending work to do.
430 * May be used to restart queueing when a request has completed.
431 */
432 void blk_run_queue(struct request_queue *q)
433 {
434 unsigned long flags;
435
436 spin_lock_irqsave(q->queue_lock, flags);
437 __blk_run_queue(q);
438 spin_unlock_irqrestore(q->queue_lock, flags);
439 }
440 EXPORT_SYMBOL(blk_run_queue);
441
442 void blk_put_queue(struct request_queue *q)
443 {
444 kobject_put(&q->kobj);
445 }
446
447 void blk_cleanup_queue(struct request_queue *q)
448 {
449 /*
450 * We know we have process context here, so we can be a little
451 * cautious and ensure that pending block actions on this device
452 * are done before moving on. Going into this function, we should
453 * not have processes doing IO to this device.
454 */
455 blk_sync_queue(q);
456
457 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
458 mutex_lock(&q->sysfs_lock);
459 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
460 mutex_unlock(&q->sysfs_lock);
461
462 if (q->elevator)
463 elevator_exit(q->elevator);
464
465 blk_put_queue(q);
466 }
467 EXPORT_SYMBOL(blk_cleanup_queue);
468
469 static int blk_init_free_list(struct request_queue *q)
470 {
471 struct request_list *rl = &q->rq;
472
473 if (unlikely(rl->rq_pool))
474 return 0;
475
476 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
477 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
478 rl->elvpriv = 0;
479 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
480 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
481
482 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
483 mempool_free_slab, request_cachep, q->node);
484
485 if (!rl->rq_pool)
486 return -ENOMEM;
487
488 return 0;
489 }
490
491 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
492 {
493 return blk_alloc_queue_node(gfp_mask, -1);
494 }
495 EXPORT_SYMBOL(blk_alloc_queue);
496
497 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
498 {
499 struct request_queue *q;
500 int err;
501
502 q = kmem_cache_alloc_node(blk_requestq_cachep,
503 gfp_mask | __GFP_ZERO, node_id);
504 if (!q)
505 return NULL;
506
507 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
508 q->backing_dev_info.unplug_io_data = q;
509 q->backing_dev_info.ra_pages =
510 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
511 q->backing_dev_info.state = 0;
512 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
513 q->backing_dev_info.name = "block";
514
515 err = bdi_init(&q->backing_dev_info);
516 if (err) {
517 kmem_cache_free(blk_requestq_cachep, q);
518 return NULL;
519 }
520
521 if (blk_throtl_init(q)) {
522 kmem_cache_free(blk_requestq_cachep, q);
523 return NULL;
524 }
525
526 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
527 laptop_mode_timer_fn, (unsigned long) q);
528 init_timer(&q->unplug_timer);
529 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
530 INIT_LIST_HEAD(&q->timeout_list);
531 INIT_LIST_HEAD(&q->pending_flushes);
532 INIT_WORK(&q->unplug_work, blk_unplug_work);
533
534 kobject_init(&q->kobj, &blk_queue_ktype);
535
536 mutex_init(&q->sysfs_lock);
537 spin_lock_init(&q->__queue_lock);
538
539 return q;
540 }
541 EXPORT_SYMBOL(blk_alloc_queue_node);
542
543 /**
544 * blk_init_queue - prepare a request queue for use with a block device
545 * @rfn: The function to be called to process requests that have been
546 * placed on the queue.
547 * @lock: Request queue spin lock
548 *
549 * Description:
550 * If a block device wishes to use the standard request handling procedures,
551 * which sorts requests and coalesces adjacent requests, then it must
552 * call blk_init_queue(). The function @rfn will be called when there
553 * are requests on the queue that need to be processed. If the device
554 * supports plugging, then @rfn may not be called immediately when requests
555 * are available on the queue, but may be called at some time later instead.
556 * Plugged queues are generally unplugged when a buffer belonging to one
557 * of the requests on the queue is needed, or due to memory pressure.
558 *
559 * @rfn is not required, or even expected, to remove all requests off the
560 * queue, but only as many as it can handle at a time. If it does leave
561 * requests on the queue, it is responsible for arranging that the requests
562 * get dealt with eventually.
563 *
564 * The queue spin lock must be held while manipulating the requests on the
565 * request queue; this lock will be taken also from interrupt context, so irq
566 * disabling is needed for it.
567 *
568 * Function returns a pointer to the initialized request queue, or %NULL if
569 * it didn't succeed.
570 *
571 * Note:
572 * blk_init_queue() must be paired with a blk_cleanup_queue() call
573 * when the block device is deactivated (such as at module unload).
574 **/
575
576 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
577 {
578 return blk_init_queue_node(rfn, lock, -1);
579 }
580 EXPORT_SYMBOL(blk_init_queue);
581
582 struct request_queue *
583 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
584 {
585 struct request_queue *uninit_q, *q;
586
587 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
588 if (!uninit_q)
589 return NULL;
590
591 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
592 if (!q)
593 blk_cleanup_queue(uninit_q);
594
595 return q;
596 }
597 EXPORT_SYMBOL(blk_init_queue_node);
598
599 struct request_queue *
600 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
601 spinlock_t *lock)
602 {
603 return blk_init_allocated_queue_node(q, rfn, lock, -1);
604 }
605 EXPORT_SYMBOL(blk_init_allocated_queue);
606
607 struct request_queue *
608 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
609 spinlock_t *lock, int node_id)
610 {
611 if (!q)
612 return NULL;
613
614 q->node = node_id;
615 if (blk_init_free_list(q))
616 return NULL;
617
618 q->request_fn = rfn;
619 q->prep_rq_fn = NULL;
620 q->unprep_rq_fn = NULL;
621 q->unplug_fn = generic_unplug_device;
622 q->queue_flags = QUEUE_FLAG_DEFAULT;
623 q->queue_lock = lock;
624
625 /*
626 * This also sets hw/phys segments, boundary and size
627 */
628 blk_queue_make_request(q, __make_request);
629
630 q->sg_reserved_size = INT_MAX;
631
632 /*
633 * all done
634 */
635 if (!elevator_init(q, NULL)) {
636 blk_queue_congestion_threshold(q);
637 return q;
638 }
639
640 return NULL;
641 }
642 EXPORT_SYMBOL(blk_init_allocated_queue_node);
643
644 int blk_get_queue(struct request_queue *q)
645 {
646 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
647 kobject_get(&q->kobj);
648 return 0;
649 }
650
651 return 1;
652 }
653
654 static inline void blk_free_request(struct request_queue *q, struct request *rq)
655 {
656 if (rq->cmd_flags & REQ_ELVPRIV)
657 elv_put_request(q, rq);
658 mempool_free(rq, q->rq.rq_pool);
659 }
660
661 static struct request *
662 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
663 {
664 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
665
666 if (!rq)
667 return NULL;
668
669 blk_rq_init(q, rq);
670
671 rq->cmd_flags = flags | REQ_ALLOCED;
672
673 if (priv) {
674 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
675 mempool_free(rq, q->rq.rq_pool);
676 return NULL;
677 }
678 rq->cmd_flags |= REQ_ELVPRIV;
679 }
680
681 return rq;
682 }
683
684 /*
685 * ioc_batching returns true if the ioc is a valid batching request and
686 * should be given priority access to a request.
687 */
688 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
689 {
690 if (!ioc)
691 return 0;
692
693 /*
694 * Make sure the process is able to allocate at least 1 request
695 * even if the batch times out, otherwise we could theoretically
696 * lose wakeups.
697 */
698 return ioc->nr_batch_requests == q->nr_batching ||
699 (ioc->nr_batch_requests > 0
700 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
701 }
702
703 /*
704 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
705 * will cause the process to be a "batcher" on all queues in the system. This
706 * is the behaviour we want though - once it gets a wakeup it should be given
707 * a nice run.
708 */
709 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
710 {
711 if (!ioc || ioc_batching(q, ioc))
712 return;
713
714 ioc->nr_batch_requests = q->nr_batching;
715 ioc->last_waited = jiffies;
716 }
717
718 static void __freed_request(struct request_queue *q, int sync)
719 {
720 struct request_list *rl = &q->rq;
721
722 if (rl->count[sync] < queue_congestion_off_threshold(q))
723 blk_clear_queue_congested(q, sync);
724
725 if (rl->count[sync] + 1 <= q->nr_requests) {
726 if (waitqueue_active(&rl->wait[sync]))
727 wake_up(&rl->wait[sync]);
728
729 blk_clear_queue_full(q, sync);
730 }
731 }
732
733 /*
734 * A request has just been released. Account for it, update the full and
735 * congestion status, wake up any waiters. Called under q->queue_lock.
736 */
737 static void freed_request(struct request_queue *q, int sync, int priv)
738 {
739 struct request_list *rl = &q->rq;
740
741 rl->count[sync]--;
742 if (priv)
743 rl->elvpriv--;
744
745 __freed_request(q, sync);
746
747 if (unlikely(rl->starved[sync ^ 1]))
748 __freed_request(q, sync ^ 1);
749 }
750
751 /*
752 * Get a free request, queue_lock must be held.
753 * Returns NULL on failure, with queue_lock held.
754 * Returns !NULL on success, with queue_lock *not held*.
755 */
756 static struct request *get_request(struct request_queue *q, int rw_flags,
757 struct bio *bio, gfp_t gfp_mask)
758 {
759 struct request *rq = NULL;
760 struct request_list *rl = &q->rq;
761 struct io_context *ioc = NULL;
762 const bool is_sync = rw_is_sync(rw_flags) != 0;
763 int may_queue, priv;
764
765 may_queue = elv_may_queue(q, rw_flags);
766 if (may_queue == ELV_MQUEUE_NO)
767 goto rq_starved;
768
769 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
770 if (rl->count[is_sync]+1 >= q->nr_requests) {
771 ioc = current_io_context(GFP_ATOMIC, q->node);
772 /*
773 * The queue will fill after this allocation, so set
774 * it as full, and mark this process as "batching".
775 * This process will be allowed to complete a batch of
776 * requests, others will be blocked.
777 */
778 if (!blk_queue_full(q, is_sync)) {
779 ioc_set_batching(q, ioc);
780 blk_set_queue_full(q, is_sync);
781 } else {
782 if (may_queue != ELV_MQUEUE_MUST
783 && !ioc_batching(q, ioc)) {
784 /*
785 * The queue is full and the allocating
786 * process is not a "batcher", and not
787 * exempted by the IO scheduler
788 */
789 goto out;
790 }
791 }
792 }
793 blk_set_queue_congested(q, is_sync);
794 }
795
796 /*
797 * Only allow batching queuers to allocate up to 50% over the defined
798 * limit of requests, otherwise we could have thousands of requests
799 * allocated with any setting of ->nr_requests
800 */
801 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
802 goto out;
803
804 rl->count[is_sync]++;
805 rl->starved[is_sync] = 0;
806
807 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
808 if (priv) {
809 rl->elvpriv++;
810
811 /*
812 * Don't do stats for non-priv requests
813 */
814 if (blk_queue_io_stat(q))
815 rw_flags |= REQ_IO_STAT;
816 }
817
818 spin_unlock_irq(q->queue_lock);
819
820 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
821 if (unlikely(!rq)) {
822 /*
823 * Allocation failed presumably due to memory. Undo anything
824 * we might have messed up.
825 *
826 * Allocating task should really be put onto the front of the
827 * wait queue, but this is pretty rare.
828 */
829 spin_lock_irq(q->queue_lock);
830 freed_request(q, is_sync, priv);
831
832 /*
833 * in the very unlikely event that allocation failed and no
834 * requests for this direction was pending, mark us starved
835 * so that freeing of a request in the other direction will
836 * notice us. another possible fix would be to split the
837 * rq mempool into READ and WRITE
838 */
839 rq_starved:
840 if (unlikely(rl->count[is_sync] == 0))
841 rl->starved[is_sync] = 1;
842
843 goto out;
844 }
845
846 /*
847 * ioc may be NULL here, and ioc_batching will be false. That's
848 * OK, if the queue is under the request limit then requests need
849 * not count toward the nr_batch_requests limit. There will always
850 * be some limit enforced by BLK_BATCH_TIME.
851 */
852 if (ioc_batching(q, ioc))
853 ioc->nr_batch_requests--;
854
855 trace_block_getrq(q, bio, rw_flags & 1);
856 out:
857 return rq;
858 }
859
860 /*
861 * No available requests for this queue, unplug the device and wait for some
862 * requests to become available.
863 *
864 * Called with q->queue_lock held, and returns with it unlocked.
865 */
866 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
867 struct bio *bio)
868 {
869 const bool is_sync = rw_is_sync(rw_flags) != 0;
870 struct request *rq;
871
872 rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 while (!rq) {
874 DEFINE_WAIT(wait);
875 struct io_context *ioc;
876 struct request_list *rl = &q->rq;
877
878 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
879 TASK_UNINTERRUPTIBLE);
880
881 trace_block_sleeprq(q, bio, rw_flags & 1);
882
883 __generic_unplug_device(q);
884 spin_unlock_irq(q->queue_lock);
885 io_schedule();
886
887 /*
888 * After sleeping, we become a "batching" process and
889 * will be able to allocate at least one request, and
890 * up to a big batch of them for a small period time.
891 * See ioc_batching, ioc_set_batching
892 */
893 ioc = current_io_context(GFP_NOIO, q->node);
894 ioc_set_batching(q, ioc);
895
896 spin_lock_irq(q->queue_lock);
897 finish_wait(&rl->wait[is_sync], &wait);
898
899 rq = get_request(q, rw_flags, bio, GFP_NOIO);
900 };
901
902 return rq;
903 }
904
905 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
906 {
907 struct request *rq;
908
909 BUG_ON(rw != READ && rw != WRITE);
910
911 spin_lock_irq(q->queue_lock);
912 if (gfp_mask & __GFP_WAIT) {
913 rq = get_request_wait(q, rw, NULL);
914 } else {
915 rq = get_request(q, rw, NULL, gfp_mask);
916 if (!rq)
917 spin_unlock_irq(q->queue_lock);
918 }
919 /* q->queue_lock is unlocked at this point */
920
921 return rq;
922 }
923 EXPORT_SYMBOL(blk_get_request);
924
925 /**
926 * blk_make_request - given a bio, allocate a corresponding struct request.
927 * @q: target request queue
928 * @bio: The bio describing the memory mappings that will be submitted for IO.
929 * It may be a chained-bio properly constructed by block/bio layer.
930 * @gfp_mask: gfp flags to be used for memory allocation
931 *
932 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
933 * type commands. Where the struct request needs to be farther initialized by
934 * the caller. It is passed a &struct bio, which describes the memory info of
935 * the I/O transfer.
936 *
937 * The caller of blk_make_request must make sure that bi_io_vec
938 * are set to describe the memory buffers. That bio_data_dir() will return
939 * the needed direction of the request. (And all bio's in the passed bio-chain
940 * are properly set accordingly)
941 *
942 * If called under none-sleepable conditions, mapped bio buffers must not
943 * need bouncing, by calling the appropriate masked or flagged allocator,
944 * suitable for the target device. Otherwise the call to blk_queue_bounce will
945 * BUG.
946 *
947 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
948 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
949 * anything but the first bio in the chain. Otherwise you risk waiting for IO
950 * completion of a bio that hasn't been submitted yet, thus resulting in a
951 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
952 * of bio_alloc(), as that avoids the mempool deadlock.
953 * If possible a big IO should be split into smaller parts when allocation
954 * fails. Partial allocation should not be an error, or you risk a live-lock.
955 */
956 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
957 gfp_t gfp_mask)
958 {
959 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
960
961 if (unlikely(!rq))
962 return ERR_PTR(-ENOMEM);
963
964 for_each_bio(bio) {
965 struct bio *bounce_bio = bio;
966 int ret;
967
968 blk_queue_bounce(q, &bounce_bio);
969 ret = blk_rq_append_bio(q, rq, bounce_bio);
970 if (unlikely(ret)) {
971 blk_put_request(rq);
972 return ERR_PTR(ret);
973 }
974 }
975
976 return rq;
977 }
978 EXPORT_SYMBOL(blk_make_request);
979
980 /**
981 * blk_requeue_request - put a request back on queue
982 * @q: request queue where request should be inserted
983 * @rq: request to be inserted
984 *
985 * Description:
986 * Drivers often keep queueing requests until the hardware cannot accept
987 * more, when that condition happens we need to put the request back
988 * on the queue. Must be called with queue lock held.
989 */
990 void blk_requeue_request(struct request_queue *q, struct request *rq)
991 {
992 blk_delete_timer(rq);
993 blk_clear_rq_complete(rq);
994 trace_block_rq_requeue(q, rq);
995
996 if (blk_rq_tagged(rq))
997 blk_queue_end_tag(q, rq);
998
999 BUG_ON(blk_queued_rq(rq));
1000
1001 elv_requeue_request(q, rq);
1002 }
1003 EXPORT_SYMBOL(blk_requeue_request);
1004
1005 /**
1006 * blk_insert_request - insert a special request into a request queue
1007 * @q: request queue where request should be inserted
1008 * @rq: request to be inserted
1009 * @at_head: insert request at head or tail of queue
1010 * @data: private data
1011 *
1012 * Description:
1013 * Many block devices need to execute commands asynchronously, so they don't
1014 * block the whole kernel from preemption during request execution. This is
1015 * accomplished normally by inserting aritficial requests tagged as
1016 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1017 * be scheduled for actual execution by the request queue.
1018 *
1019 * We have the option of inserting the head or the tail of the queue.
1020 * Typically we use the tail for new ioctls and so forth. We use the head
1021 * of the queue for things like a QUEUE_FULL message from a device, or a
1022 * host that is unable to accept a particular command.
1023 */
1024 void blk_insert_request(struct request_queue *q, struct request *rq,
1025 int at_head, void *data)
1026 {
1027 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1028 unsigned long flags;
1029
1030 /*
1031 * tell I/O scheduler that this isn't a regular read/write (ie it
1032 * must not attempt merges on this) and that it acts as a soft
1033 * barrier
1034 */
1035 rq->cmd_type = REQ_TYPE_SPECIAL;
1036
1037 rq->special = data;
1038
1039 spin_lock_irqsave(q->queue_lock, flags);
1040
1041 /*
1042 * If command is tagged, release the tag
1043 */
1044 if (blk_rq_tagged(rq))
1045 blk_queue_end_tag(q, rq);
1046
1047 drive_stat_acct(rq, 1);
1048 __elv_add_request(q, rq, where, 0);
1049 __blk_run_queue(q);
1050 spin_unlock_irqrestore(q->queue_lock, flags);
1051 }
1052 EXPORT_SYMBOL(blk_insert_request);
1053
1054 static void part_round_stats_single(int cpu, struct hd_struct *part,
1055 unsigned long now)
1056 {
1057 if (now == part->stamp)
1058 return;
1059
1060 if (part_in_flight(part)) {
1061 __part_stat_add(cpu, part, time_in_queue,
1062 part_in_flight(part) * (now - part->stamp));
1063 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1064 }
1065 part->stamp = now;
1066 }
1067
1068 /**
1069 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1070 * @cpu: cpu number for stats access
1071 * @part: target partition
1072 *
1073 * The average IO queue length and utilisation statistics are maintained
1074 * by observing the current state of the queue length and the amount of
1075 * time it has been in this state for.
1076 *
1077 * Normally, that accounting is done on IO completion, but that can result
1078 * in more than a second's worth of IO being accounted for within any one
1079 * second, leading to >100% utilisation. To deal with that, we call this
1080 * function to do a round-off before returning the results when reading
1081 * /proc/diskstats. This accounts immediately for all queue usage up to
1082 * the current jiffies and restarts the counters again.
1083 */
1084 void part_round_stats(int cpu, struct hd_struct *part)
1085 {
1086 unsigned long now = jiffies;
1087
1088 if (part->partno)
1089 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1090 part_round_stats_single(cpu, part, now);
1091 }
1092 EXPORT_SYMBOL_GPL(part_round_stats);
1093
1094 /*
1095 * queue lock must be held
1096 */
1097 void __blk_put_request(struct request_queue *q, struct request *req)
1098 {
1099 if (unlikely(!q))
1100 return;
1101 if (unlikely(--req->ref_count))
1102 return;
1103
1104 elv_completed_request(q, req);
1105
1106 /* this is a bio leak */
1107 WARN_ON(req->bio != NULL);
1108
1109 /*
1110 * Request may not have originated from ll_rw_blk. if not,
1111 * it didn't come out of our reserved rq pools
1112 */
1113 if (req->cmd_flags & REQ_ALLOCED) {
1114 int is_sync = rq_is_sync(req) != 0;
1115 int priv = req->cmd_flags & REQ_ELVPRIV;
1116
1117 BUG_ON(!list_empty(&req->queuelist));
1118 BUG_ON(!hlist_unhashed(&req->hash));
1119
1120 blk_free_request(q, req);
1121 freed_request(q, is_sync, priv);
1122 }
1123 }
1124 EXPORT_SYMBOL_GPL(__blk_put_request);
1125
1126 void blk_put_request(struct request *req)
1127 {
1128 unsigned long flags;
1129 struct request_queue *q = req->q;
1130
1131 spin_lock_irqsave(q->queue_lock, flags);
1132 __blk_put_request(q, req);
1133 spin_unlock_irqrestore(q->queue_lock, flags);
1134 }
1135 EXPORT_SYMBOL(blk_put_request);
1136
1137 /**
1138 * blk_add_request_payload - add a payload to a request
1139 * @rq: request to update
1140 * @page: page backing the payload
1141 * @len: length of the payload.
1142 *
1143 * This allows to later add a payload to an already submitted request by
1144 * a block driver. The driver needs to take care of freeing the payload
1145 * itself.
1146 *
1147 * Note that this is a quite horrible hack and nothing but handling of
1148 * discard requests should ever use it.
1149 */
1150 void blk_add_request_payload(struct request *rq, struct page *page,
1151 unsigned int len)
1152 {
1153 struct bio *bio = rq->bio;
1154
1155 bio->bi_io_vec->bv_page = page;
1156 bio->bi_io_vec->bv_offset = 0;
1157 bio->bi_io_vec->bv_len = len;
1158
1159 bio->bi_size = len;
1160 bio->bi_vcnt = 1;
1161 bio->bi_phys_segments = 1;
1162
1163 rq->__data_len = rq->resid_len = len;
1164 rq->nr_phys_segments = 1;
1165 rq->buffer = bio_data(bio);
1166 }
1167 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1168
1169 void init_request_from_bio(struct request *req, struct bio *bio)
1170 {
1171 req->cpu = bio->bi_comp_cpu;
1172 req->cmd_type = REQ_TYPE_FS;
1173
1174 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1175 if (bio->bi_rw & REQ_RAHEAD)
1176 req->cmd_flags |= REQ_FAILFAST_MASK;
1177
1178 req->errors = 0;
1179 req->__sector = bio->bi_sector;
1180 req->ioprio = bio_prio(bio);
1181 blk_rq_bio_prep(req->q, req, bio);
1182 }
1183
1184 /*
1185 * Only disabling plugging for non-rotational devices if it does tagging
1186 * as well, otherwise we do need the proper merging
1187 */
1188 static inline bool queue_should_plug(struct request_queue *q)
1189 {
1190 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1191 }
1192
1193 static int __make_request(struct request_queue *q, struct bio *bio)
1194 {
1195 struct request *req;
1196 int el_ret;
1197 unsigned int bytes = bio->bi_size;
1198 const unsigned short prio = bio_prio(bio);
1199 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1200 const bool unplug = !!(bio->bi_rw & REQ_UNPLUG);
1201 const unsigned long ff = bio->bi_rw & REQ_FAILFAST_MASK;
1202 int where = ELEVATOR_INSERT_SORT;
1203 int rw_flags;
1204
1205 /* REQ_HARDBARRIER is no more */
1206 if (WARN_ONCE(bio->bi_rw & REQ_HARDBARRIER,
1207 "block: HARDBARRIER is deprecated, use FLUSH/FUA instead\n")) {
1208 bio_endio(bio, -EOPNOTSUPP);
1209 return 0;
1210 }
1211
1212 /*
1213 * low level driver can indicate that it wants pages above a
1214 * certain limit bounced to low memory (ie for highmem, or even
1215 * ISA dma in theory)
1216 */
1217 blk_queue_bounce(q, &bio);
1218
1219 spin_lock_irq(q->queue_lock);
1220
1221 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1222 where = ELEVATOR_INSERT_FRONT;
1223 goto get_rq;
1224 }
1225
1226 if (elv_queue_empty(q))
1227 goto get_rq;
1228
1229 el_ret = elv_merge(q, &req, bio);
1230 switch (el_ret) {
1231 case ELEVATOR_BACK_MERGE:
1232 BUG_ON(!rq_mergeable(req));
1233
1234 if (!ll_back_merge_fn(q, req, bio))
1235 break;
1236
1237 trace_block_bio_backmerge(q, bio);
1238
1239 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1240 blk_rq_set_mixed_merge(req);
1241
1242 req->biotail->bi_next = bio;
1243 req->biotail = bio;
1244 req->__data_len += bytes;
1245 req->ioprio = ioprio_best(req->ioprio, prio);
1246 if (!blk_rq_cpu_valid(req))
1247 req->cpu = bio->bi_comp_cpu;
1248 drive_stat_acct(req, 0);
1249 elv_bio_merged(q, req, bio);
1250 if (!attempt_back_merge(q, req))
1251 elv_merged_request(q, req, el_ret);
1252 goto out;
1253
1254 case ELEVATOR_FRONT_MERGE:
1255 BUG_ON(!rq_mergeable(req));
1256
1257 if (!ll_front_merge_fn(q, req, bio))
1258 break;
1259
1260 trace_block_bio_frontmerge(q, bio);
1261
1262 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1263 blk_rq_set_mixed_merge(req);
1264 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1265 req->cmd_flags |= ff;
1266 }
1267
1268 bio->bi_next = req->bio;
1269 req->bio = bio;
1270
1271 /*
1272 * may not be valid. if the low level driver said
1273 * it didn't need a bounce buffer then it better
1274 * not touch req->buffer either...
1275 */
1276 req->buffer = bio_data(bio);
1277 req->__sector = bio->bi_sector;
1278 req->__data_len += bytes;
1279 req->ioprio = ioprio_best(req->ioprio, prio);
1280 if (!blk_rq_cpu_valid(req))
1281 req->cpu = bio->bi_comp_cpu;
1282 drive_stat_acct(req, 0);
1283 elv_bio_merged(q, req, bio);
1284 if (!attempt_front_merge(q, req))
1285 elv_merged_request(q, req, el_ret);
1286 goto out;
1287
1288 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1289 default:
1290 ;
1291 }
1292
1293 get_rq:
1294 /*
1295 * This sync check and mask will be re-done in init_request_from_bio(),
1296 * but we need to set it earlier to expose the sync flag to the
1297 * rq allocator and io schedulers.
1298 */
1299 rw_flags = bio_data_dir(bio);
1300 if (sync)
1301 rw_flags |= REQ_SYNC;
1302
1303 /*
1304 * Grab a free request. This is might sleep but can not fail.
1305 * Returns with the queue unlocked.
1306 */
1307 req = get_request_wait(q, rw_flags, bio);
1308
1309 /*
1310 * After dropping the lock and possibly sleeping here, our request
1311 * may now be mergeable after it had proven unmergeable (above).
1312 * We don't worry about that case for efficiency. It won't happen
1313 * often, and the elevators are able to handle it.
1314 */
1315 init_request_from_bio(req, bio);
1316
1317 spin_lock_irq(q->queue_lock);
1318 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1319 bio_flagged(bio, BIO_CPU_AFFINE))
1320 req->cpu = blk_cpu_to_group(smp_processor_id());
1321 if (queue_should_plug(q) && elv_queue_empty(q))
1322 blk_plug_device(q);
1323
1324 /* insert the request into the elevator */
1325 drive_stat_acct(req, 1);
1326 __elv_add_request(q, req, where, 0);
1327 out:
1328 if (unplug || !queue_should_plug(q))
1329 __generic_unplug_device(q);
1330 spin_unlock_irq(q->queue_lock);
1331 return 0;
1332 }
1333
1334 /*
1335 * If bio->bi_dev is a partition, remap the location
1336 */
1337 static inline void blk_partition_remap(struct bio *bio)
1338 {
1339 struct block_device *bdev = bio->bi_bdev;
1340
1341 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1342 struct hd_struct *p = bdev->bd_part;
1343
1344 bio->bi_sector += p->start_sect;
1345 bio->bi_bdev = bdev->bd_contains;
1346
1347 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1348 bdev->bd_dev,
1349 bio->bi_sector - p->start_sect);
1350 }
1351 }
1352
1353 static void handle_bad_sector(struct bio *bio)
1354 {
1355 char b[BDEVNAME_SIZE];
1356
1357 printk(KERN_INFO "attempt to access beyond end of device\n");
1358 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1359 bdevname(bio->bi_bdev, b),
1360 bio->bi_rw,
1361 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1362 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1363
1364 set_bit(BIO_EOF, &bio->bi_flags);
1365 }
1366
1367 #ifdef CONFIG_FAIL_MAKE_REQUEST
1368
1369 static DECLARE_FAULT_ATTR(fail_make_request);
1370
1371 static int __init setup_fail_make_request(char *str)
1372 {
1373 return setup_fault_attr(&fail_make_request, str);
1374 }
1375 __setup("fail_make_request=", setup_fail_make_request);
1376
1377 static int should_fail_request(struct bio *bio)
1378 {
1379 struct hd_struct *part = bio->bi_bdev->bd_part;
1380
1381 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1382 return should_fail(&fail_make_request, bio->bi_size);
1383
1384 return 0;
1385 }
1386
1387 static int __init fail_make_request_debugfs(void)
1388 {
1389 return init_fault_attr_dentries(&fail_make_request,
1390 "fail_make_request");
1391 }
1392
1393 late_initcall(fail_make_request_debugfs);
1394
1395 #else /* CONFIG_FAIL_MAKE_REQUEST */
1396
1397 static inline int should_fail_request(struct bio *bio)
1398 {
1399 return 0;
1400 }
1401
1402 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1403
1404 /*
1405 * Check whether this bio extends beyond the end of the device.
1406 */
1407 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1408 {
1409 sector_t maxsector;
1410
1411 if (!nr_sectors)
1412 return 0;
1413
1414 /* Test device or partition size, when known. */
1415 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1416 if (maxsector) {
1417 sector_t sector = bio->bi_sector;
1418
1419 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1420 /*
1421 * This may well happen - the kernel calls bread()
1422 * without checking the size of the device, e.g., when
1423 * mounting a device.
1424 */
1425 handle_bad_sector(bio);
1426 return 1;
1427 }
1428 }
1429
1430 return 0;
1431 }
1432
1433 /**
1434 * generic_make_request - hand a buffer to its device driver for I/O
1435 * @bio: The bio describing the location in memory and on the device.
1436 *
1437 * generic_make_request() is used to make I/O requests of block
1438 * devices. It is passed a &struct bio, which describes the I/O that needs
1439 * to be done.
1440 *
1441 * generic_make_request() does not return any status. The
1442 * success/failure status of the request, along with notification of
1443 * completion, is delivered asynchronously through the bio->bi_end_io
1444 * function described (one day) else where.
1445 *
1446 * The caller of generic_make_request must make sure that bi_io_vec
1447 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1448 * set to describe the device address, and the
1449 * bi_end_io and optionally bi_private are set to describe how
1450 * completion notification should be signaled.
1451 *
1452 * generic_make_request and the drivers it calls may use bi_next if this
1453 * bio happens to be merged with someone else, and may change bi_dev and
1454 * bi_sector for remaps as it sees fit. So the values of these fields
1455 * should NOT be depended on after the call to generic_make_request.
1456 */
1457 static inline void __generic_make_request(struct bio *bio)
1458 {
1459 struct request_queue *q;
1460 sector_t old_sector;
1461 int ret, nr_sectors = bio_sectors(bio);
1462 dev_t old_dev;
1463 int err = -EIO;
1464
1465 might_sleep();
1466
1467 if (bio_check_eod(bio, nr_sectors))
1468 goto end_io;
1469
1470 /*
1471 * Resolve the mapping until finished. (drivers are
1472 * still free to implement/resolve their own stacking
1473 * by explicitly returning 0)
1474 *
1475 * NOTE: we don't repeat the blk_size check for each new device.
1476 * Stacking drivers are expected to know what they are doing.
1477 */
1478 old_sector = -1;
1479 old_dev = 0;
1480 do {
1481 char b[BDEVNAME_SIZE];
1482
1483 q = bdev_get_queue(bio->bi_bdev);
1484 if (unlikely(!q)) {
1485 printk(KERN_ERR
1486 "generic_make_request: Trying to access "
1487 "nonexistent block-device %s (%Lu)\n",
1488 bdevname(bio->bi_bdev, b),
1489 (long long) bio->bi_sector);
1490 goto end_io;
1491 }
1492
1493 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1494 nr_sectors > queue_max_hw_sectors(q))) {
1495 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1496 bdevname(bio->bi_bdev, b),
1497 bio_sectors(bio),
1498 queue_max_hw_sectors(q));
1499 goto end_io;
1500 }
1501
1502 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1503 goto end_io;
1504
1505 if (should_fail_request(bio))
1506 goto end_io;
1507
1508 /*
1509 * If this device has partitions, remap block n
1510 * of partition p to block n+start(p) of the disk.
1511 */
1512 blk_partition_remap(bio);
1513
1514 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1515 goto end_io;
1516
1517 if (old_sector != -1)
1518 trace_block_remap(q, bio, old_dev, old_sector);
1519
1520 old_sector = bio->bi_sector;
1521 old_dev = bio->bi_bdev->bd_dev;
1522
1523 if (bio_check_eod(bio, nr_sectors))
1524 goto end_io;
1525
1526 /*
1527 * Filter flush bio's early so that make_request based
1528 * drivers without flush support don't have to worry
1529 * about them.
1530 */
1531 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1532 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1533 if (!nr_sectors) {
1534 err = 0;
1535 goto end_io;
1536 }
1537 }
1538
1539 if ((bio->bi_rw & REQ_DISCARD) &&
1540 (!blk_queue_discard(q) ||
1541 ((bio->bi_rw & REQ_SECURE) &&
1542 !blk_queue_secdiscard(q)))) {
1543 err = -EOPNOTSUPP;
1544 goto end_io;
1545 }
1546
1547 blk_throtl_bio(q, &bio);
1548
1549 /*
1550 * If bio = NULL, bio has been throttled and will be submitted
1551 * later.
1552 */
1553 if (!bio)
1554 break;
1555
1556 trace_block_bio_queue(q, bio);
1557
1558 ret = q->make_request_fn(q, bio);
1559 } while (ret);
1560
1561 return;
1562
1563 end_io:
1564 bio_endio(bio, err);
1565 }
1566
1567 /*
1568 * We only want one ->make_request_fn to be active at a time,
1569 * else stack usage with stacked devices could be a problem.
1570 * So use current->bio_list to keep a list of requests
1571 * submited by a make_request_fn function.
1572 * current->bio_list is also used as a flag to say if
1573 * generic_make_request is currently active in this task or not.
1574 * If it is NULL, then no make_request is active. If it is non-NULL,
1575 * then a make_request is active, and new requests should be added
1576 * at the tail
1577 */
1578 void generic_make_request(struct bio *bio)
1579 {
1580 struct bio_list bio_list_on_stack;
1581
1582 if (current->bio_list) {
1583 /* make_request is active */
1584 bio_list_add(current->bio_list, bio);
1585 return;
1586 }
1587 /* following loop may be a bit non-obvious, and so deserves some
1588 * explanation.
1589 * Before entering the loop, bio->bi_next is NULL (as all callers
1590 * ensure that) so we have a list with a single bio.
1591 * We pretend that we have just taken it off a longer list, so
1592 * we assign bio_list to a pointer to the bio_list_on_stack,
1593 * thus initialising the bio_list of new bios to be
1594 * added. __generic_make_request may indeed add some more bios
1595 * through a recursive call to generic_make_request. If it
1596 * did, we find a non-NULL value in bio_list and re-enter the loop
1597 * from the top. In this case we really did just take the bio
1598 * of the top of the list (no pretending) and so remove it from
1599 * bio_list, and call into __generic_make_request again.
1600 *
1601 * The loop was structured like this to make only one call to
1602 * __generic_make_request (which is important as it is large and
1603 * inlined) and to keep the structure simple.
1604 */
1605 BUG_ON(bio->bi_next);
1606 bio_list_init(&bio_list_on_stack);
1607 current->bio_list = &bio_list_on_stack;
1608 do {
1609 __generic_make_request(bio);
1610 bio = bio_list_pop(current->bio_list);
1611 } while (bio);
1612 current->bio_list = NULL; /* deactivate */
1613 }
1614 EXPORT_SYMBOL(generic_make_request);
1615
1616 /**
1617 * submit_bio - submit a bio to the block device layer for I/O
1618 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1619 * @bio: The &struct bio which describes the I/O
1620 *
1621 * submit_bio() is very similar in purpose to generic_make_request(), and
1622 * uses that function to do most of the work. Both are fairly rough
1623 * interfaces; @bio must be presetup and ready for I/O.
1624 *
1625 */
1626 void submit_bio(int rw, struct bio *bio)
1627 {
1628 int count = bio_sectors(bio);
1629
1630 bio->bi_rw |= rw;
1631
1632 /*
1633 * If it's a regular read/write or a barrier with data attached,
1634 * go through the normal accounting stuff before submission.
1635 */
1636 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1637 if (rw & WRITE) {
1638 count_vm_events(PGPGOUT, count);
1639 } else {
1640 task_io_account_read(bio->bi_size);
1641 count_vm_events(PGPGIN, count);
1642 }
1643
1644 if (unlikely(block_dump)) {
1645 char b[BDEVNAME_SIZE];
1646 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1647 current->comm, task_pid_nr(current),
1648 (rw & WRITE) ? "WRITE" : "READ",
1649 (unsigned long long)bio->bi_sector,
1650 bdevname(bio->bi_bdev, b),
1651 count);
1652 }
1653 }
1654
1655 generic_make_request(bio);
1656 }
1657 EXPORT_SYMBOL(submit_bio);
1658
1659 /**
1660 * blk_rq_check_limits - Helper function to check a request for the queue limit
1661 * @q: the queue
1662 * @rq: the request being checked
1663 *
1664 * Description:
1665 * @rq may have been made based on weaker limitations of upper-level queues
1666 * in request stacking drivers, and it may violate the limitation of @q.
1667 * Since the block layer and the underlying device driver trust @rq
1668 * after it is inserted to @q, it should be checked against @q before
1669 * the insertion using this generic function.
1670 *
1671 * This function should also be useful for request stacking drivers
1672 * in some cases below, so export this function.
1673 * Request stacking drivers like request-based dm may change the queue
1674 * limits while requests are in the queue (e.g. dm's table swapping).
1675 * Such request stacking drivers should check those requests agaist
1676 * the new queue limits again when they dispatch those requests,
1677 * although such checkings are also done against the old queue limits
1678 * when submitting requests.
1679 */
1680 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1681 {
1682 if (rq->cmd_flags & REQ_DISCARD)
1683 return 0;
1684
1685 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1686 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1687 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1688 return -EIO;
1689 }
1690
1691 /*
1692 * queue's settings related to segment counting like q->bounce_pfn
1693 * may differ from that of other stacking queues.
1694 * Recalculate it to check the request correctly on this queue's
1695 * limitation.
1696 */
1697 blk_recalc_rq_segments(rq);
1698 if (rq->nr_phys_segments > queue_max_segments(q)) {
1699 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1700 return -EIO;
1701 }
1702
1703 return 0;
1704 }
1705 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1706
1707 /**
1708 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1709 * @q: the queue to submit the request
1710 * @rq: the request being queued
1711 */
1712 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1713 {
1714 unsigned long flags;
1715
1716 if (blk_rq_check_limits(q, rq))
1717 return -EIO;
1718
1719 #ifdef CONFIG_FAIL_MAKE_REQUEST
1720 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1721 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1722 return -EIO;
1723 #endif
1724
1725 spin_lock_irqsave(q->queue_lock, flags);
1726
1727 /*
1728 * Submitting request must be dequeued before calling this function
1729 * because it will be linked to another request_queue
1730 */
1731 BUG_ON(blk_queued_rq(rq));
1732
1733 drive_stat_acct(rq, 1);
1734 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1735
1736 spin_unlock_irqrestore(q->queue_lock, flags);
1737
1738 return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1741
1742 /**
1743 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1744 * @rq: request to examine
1745 *
1746 * Description:
1747 * A request could be merge of IOs which require different failure
1748 * handling. This function determines the number of bytes which
1749 * can be failed from the beginning of the request without
1750 * crossing into area which need to be retried further.
1751 *
1752 * Return:
1753 * The number of bytes to fail.
1754 *
1755 * Context:
1756 * queue_lock must be held.
1757 */
1758 unsigned int blk_rq_err_bytes(const struct request *rq)
1759 {
1760 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1761 unsigned int bytes = 0;
1762 struct bio *bio;
1763
1764 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1765 return blk_rq_bytes(rq);
1766
1767 /*
1768 * Currently the only 'mixing' which can happen is between
1769 * different fastfail types. We can safely fail portions
1770 * which have all the failfast bits that the first one has -
1771 * the ones which are at least as eager to fail as the first
1772 * one.
1773 */
1774 for (bio = rq->bio; bio; bio = bio->bi_next) {
1775 if ((bio->bi_rw & ff) != ff)
1776 break;
1777 bytes += bio->bi_size;
1778 }
1779
1780 /* this could lead to infinite loop */
1781 BUG_ON(blk_rq_bytes(rq) && !bytes);
1782 return bytes;
1783 }
1784 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1785
1786 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1787 {
1788 if (blk_do_io_stat(req)) {
1789 const int rw = rq_data_dir(req);
1790 struct hd_struct *part;
1791 int cpu;
1792
1793 cpu = part_stat_lock();
1794 part = req->part;
1795 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1796 part_stat_unlock();
1797 }
1798 }
1799
1800 static void blk_account_io_done(struct request *req)
1801 {
1802 /*
1803 * Account IO completion. flush_rq isn't accounted as a
1804 * normal IO on queueing nor completion. Accounting the
1805 * containing request is enough.
1806 */
1807 if (blk_do_io_stat(req) && req != &req->q->flush_rq) {
1808 unsigned long duration = jiffies - req->start_time;
1809 const int rw = rq_data_dir(req);
1810 struct hd_struct *part;
1811 int cpu;
1812
1813 cpu = part_stat_lock();
1814 part = req->part;
1815
1816 part_stat_inc(cpu, part, ios[rw]);
1817 part_stat_add(cpu, part, ticks[rw], duration);
1818 part_round_stats(cpu, part);
1819 part_dec_in_flight(part, rw);
1820
1821 part_stat_unlock();
1822 }
1823 }
1824
1825 /**
1826 * blk_peek_request - peek at the top of a request queue
1827 * @q: request queue to peek at
1828 *
1829 * Description:
1830 * Return the request at the top of @q. The returned request
1831 * should be started using blk_start_request() before LLD starts
1832 * processing it.
1833 *
1834 * Return:
1835 * Pointer to the request at the top of @q if available. Null
1836 * otherwise.
1837 *
1838 * Context:
1839 * queue_lock must be held.
1840 */
1841 struct request *blk_peek_request(struct request_queue *q)
1842 {
1843 struct request *rq;
1844 int ret;
1845
1846 while ((rq = __elv_next_request(q)) != NULL) {
1847 if (!(rq->cmd_flags & REQ_STARTED)) {
1848 /*
1849 * This is the first time the device driver
1850 * sees this request (possibly after
1851 * requeueing). Notify IO scheduler.
1852 */
1853 if (rq->cmd_flags & REQ_SORTED)
1854 elv_activate_rq(q, rq);
1855
1856 /*
1857 * just mark as started even if we don't start
1858 * it, a request that has been delayed should
1859 * not be passed by new incoming requests
1860 */
1861 rq->cmd_flags |= REQ_STARTED;
1862 trace_block_rq_issue(q, rq);
1863 }
1864
1865 if (!q->boundary_rq || q->boundary_rq == rq) {
1866 q->end_sector = rq_end_sector(rq);
1867 q->boundary_rq = NULL;
1868 }
1869
1870 if (rq->cmd_flags & REQ_DONTPREP)
1871 break;
1872
1873 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1874 /*
1875 * make sure space for the drain appears we
1876 * know we can do this because max_hw_segments
1877 * has been adjusted to be one fewer than the
1878 * device can handle
1879 */
1880 rq->nr_phys_segments++;
1881 }
1882
1883 if (!q->prep_rq_fn)
1884 break;
1885
1886 ret = q->prep_rq_fn(q, rq);
1887 if (ret == BLKPREP_OK) {
1888 break;
1889 } else if (ret == BLKPREP_DEFER) {
1890 /*
1891 * the request may have been (partially) prepped.
1892 * we need to keep this request in the front to
1893 * avoid resource deadlock. REQ_STARTED will
1894 * prevent other fs requests from passing this one.
1895 */
1896 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1897 !(rq->cmd_flags & REQ_DONTPREP)) {
1898 /*
1899 * remove the space for the drain we added
1900 * so that we don't add it again
1901 */
1902 --rq->nr_phys_segments;
1903 }
1904
1905 rq = NULL;
1906 break;
1907 } else if (ret == BLKPREP_KILL) {
1908 rq->cmd_flags |= REQ_QUIET;
1909 /*
1910 * Mark this request as started so we don't trigger
1911 * any debug logic in the end I/O path.
1912 */
1913 blk_start_request(rq);
1914 __blk_end_request_all(rq, -EIO);
1915 } else {
1916 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1917 break;
1918 }
1919 }
1920
1921 return rq;
1922 }
1923 EXPORT_SYMBOL(blk_peek_request);
1924
1925 void blk_dequeue_request(struct request *rq)
1926 {
1927 struct request_queue *q = rq->q;
1928
1929 BUG_ON(list_empty(&rq->queuelist));
1930 BUG_ON(ELV_ON_HASH(rq));
1931
1932 list_del_init(&rq->queuelist);
1933
1934 /*
1935 * the time frame between a request being removed from the lists
1936 * and to it is freed is accounted as io that is in progress at
1937 * the driver side.
1938 */
1939 if (blk_account_rq(rq)) {
1940 q->in_flight[rq_is_sync(rq)]++;
1941 set_io_start_time_ns(rq);
1942 }
1943 }
1944
1945 /**
1946 * blk_start_request - start request processing on the driver
1947 * @req: request to dequeue
1948 *
1949 * Description:
1950 * Dequeue @req and start timeout timer on it. This hands off the
1951 * request to the driver.
1952 *
1953 * Block internal functions which don't want to start timer should
1954 * call blk_dequeue_request().
1955 *
1956 * Context:
1957 * queue_lock must be held.
1958 */
1959 void blk_start_request(struct request *req)
1960 {
1961 blk_dequeue_request(req);
1962
1963 /*
1964 * We are now handing the request to the hardware, initialize
1965 * resid_len to full count and add the timeout handler.
1966 */
1967 req->resid_len = blk_rq_bytes(req);
1968 if (unlikely(blk_bidi_rq(req)))
1969 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1970
1971 blk_add_timer(req);
1972 }
1973 EXPORT_SYMBOL(blk_start_request);
1974
1975 /**
1976 * blk_fetch_request - fetch a request from a request queue
1977 * @q: request queue to fetch a request from
1978 *
1979 * Description:
1980 * Return the request at the top of @q. The request is started on
1981 * return and LLD can start processing it immediately.
1982 *
1983 * Return:
1984 * Pointer to the request at the top of @q if available. Null
1985 * otherwise.
1986 *
1987 * Context:
1988 * queue_lock must be held.
1989 */
1990 struct request *blk_fetch_request(struct request_queue *q)
1991 {
1992 struct request *rq;
1993
1994 rq = blk_peek_request(q);
1995 if (rq)
1996 blk_start_request(rq);
1997 return rq;
1998 }
1999 EXPORT_SYMBOL(blk_fetch_request);
2000
2001 /**
2002 * blk_update_request - Special helper function for request stacking drivers
2003 * @req: the request being processed
2004 * @error: %0 for success, < %0 for error
2005 * @nr_bytes: number of bytes to complete @req
2006 *
2007 * Description:
2008 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2009 * the request structure even if @req doesn't have leftover.
2010 * If @req has leftover, sets it up for the next range of segments.
2011 *
2012 * This special helper function is only for request stacking drivers
2013 * (e.g. request-based dm) so that they can handle partial completion.
2014 * Actual device drivers should use blk_end_request instead.
2015 *
2016 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2017 * %false return from this function.
2018 *
2019 * Return:
2020 * %false - this request doesn't have any more data
2021 * %true - this request has more data
2022 **/
2023 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2024 {
2025 int total_bytes, bio_nbytes, next_idx = 0;
2026 struct bio *bio;
2027
2028 if (!req->bio)
2029 return false;
2030
2031 trace_block_rq_complete(req->q, req);
2032
2033 /*
2034 * For fs requests, rq is just carrier of independent bio's
2035 * and each partial completion should be handled separately.
2036 * Reset per-request error on each partial completion.
2037 *
2038 * TODO: tj: This is too subtle. It would be better to let
2039 * low level drivers do what they see fit.
2040 */
2041 if (req->cmd_type == REQ_TYPE_FS)
2042 req->errors = 0;
2043
2044 if (error && req->cmd_type == REQ_TYPE_FS &&
2045 !(req->cmd_flags & REQ_QUIET)) {
2046 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
2047 req->rq_disk ? req->rq_disk->disk_name : "?",
2048 (unsigned long long)blk_rq_pos(req));
2049 }
2050
2051 blk_account_io_completion(req, nr_bytes);
2052
2053 total_bytes = bio_nbytes = 0;
2054 while ((bio = req->bio) != NULL) {
2055 int nbytes;
2056
2057 if (nr_bytes >= bio->bi_size) {
2058 req->bio = bio->bi_next;
2059 nbytes = bio->bi_size;
2060 req_bio_endio(req, bio, nbytes, error);
2061 next_idx = 0;
2062 bio_nbytes = 0;
2063 } else {
2064 int idx = bio->bi_idx + next_idx;
2065
2066 if (unlikely(idx >= bio->bi_vcnt)) {
2067 blk_dump_rq_flags(req, "__end_that");
2068 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2069 __func__, idx, bio->bi_vcnt);
2070 break;
2071 }
2072
2073 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2074 BIO_BUG_ON(nbytes > bio->bi_size);
2075
2076 /*
2077 * not a complete bvec done
2078 */
2079 if (unlikely(nbytes > nr_bytes)) {
2080 bio_nbytes += nr_bytes;
2081 total_bytes += nr_bytes;
2082 break;
2083 }
2084
2085 /*
2086 * advance to the next vector
2087 */
2088 next_idx++;
2089 bio_nbytes += nbytes;
2090 }
2091
2092 total_bytes += nbytes;
2093 nr_bytes -= nbytes;
2094
2095 bio = req->bio;
2096 if (bio) {
2097 /*
2098 * end more in this run, or just return 'not-done'
2099 */
2100 if (unlikely(nr_bytes <= 0))
2101 break;
2102 }
2103 }
2104
2105 /*
2106 * completely done
2107 */
2108 if (!req->bio) {
2109 /*
2110 * Reset counters so that the request stacking driver
2111 * can find how many bytes remain in the request
2112 * later.
2113 */
2114 req->__data_len = 0;
2115 return false;
2116 }
2117
2118 /*
2119 * if the request wasn't completed, update state
2120 */
2121 if (bio_nbytes) {
2122 req_bio_endio(req, bio, bio_nbytes, error);
2123 bio->bi_idx += next_idx;
2124 bio_iovec(bio)->bv_offset += nr_bytes;
2125 bio_iovec(bio)->bv_len -= nr_bytes;
2126 }
2127
2128 req->__data_len -= total_bytes;
2129 req->buffer = bio_data(req->bio);
2130
2131 /* update sector only for requests with clear definition of sector */
2132 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2133 req->__sector += total_bytes >> 9;
2134
2135 /* mixed attributes always follow the first bio */
2136 if (req->cmd_flags & REQ_MIXED_MERGE) {
2137 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2138 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2139 }
2140
2141 /*
2142 * If total number of sectors is less than the first segment
2143 * size, something has gone terribly wrong.
2144 */
2145 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2146 printk(KERN_ERR "blk: request botched\n");
2147 req->__data_len = blk_rq_cur_bytes(req);
2148 }
2149
2150 /* recalculate the number of segments */
2151 blk_recalc_rq_segments(req);
2152
2153 return true;
2154 }
2155 EXPORT_SYMBOL_GPL(blk_update_request);
2156
2157 static bool blk_update_bidi_request(struct request *rq, int error,
2158 unsigned int nr_bytes,
2159 unsigned int bidi_bytes)
2160 {
2161 if (blk_update_request(rq, error, nr_bytes))
2162 return true;
2163
2164 /* Bidi request must be completed as a whole */
2165 if (unlikely(blk_bidi_rq(rq)) &&
2166 blk_update_request(rq->next_rq, error, bidi_bytes))
2167 return true;
2168
2169 if (blk_queue_add_random(rq->q))
2170 add_disk_randomness(rq->rq_disk);
2171
2172 return false;
2173 }
2174
2175 /**
2176 * blk_unprep_request - unprepare a request
2177 * @req: the request
2178 *
2179 * This function makes a request ready for complete resubmission (or
2180 * completion). It happens only after all error handling is complete,
2181 * so represents the appropriate moment to deallocate any resources
2182 * that were allocated to the request in the prep_rq_fn. The queue
2183 * lock is held when calling this.
2184 */
2185 void blk_unprep_request(struct request *req)
2186 {
2187 struct request_queue *q = req->q;
2188
2189 req->cmd_flags &= ~REQ_DONTPREP;
2190 if (q->unprep_rq_fn)
2191 q->unprep_rq_fn(q, req);
2192 }
2193 EXPORT_SYMBOL_GPL(blk_unprep_request);
2194
2195 /*
2196 * queue lock must be held
2197 */
2198 static void blk_finish_request(struct request *req, int error)
2199 {
2200 if (blk_rq_tagged(req))
2201 blk_queue_end_tag(req->q, req);
2202
2203 BUG_ON(blk_queued_rq(req));
2204
2205 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2206 laptop_io_completion(&req->q->backing_dev_info);
2207
2208 blk_delete_timer(req);
2209
2210 if (req->cmd_flags & REQ_DONTPREP)
2211 blk_unprep_request(req);
2212
2213
2214 blk_account_io_done(req);
2215
2216 if (req->end_io)
2217 req->end_io(req, error);
2218 else {
2219 if (blk_bidi_rq(req))
2220 __blk_put_request(req->next_rq->q, req->next_rq);
2221
2222 __blk_put_request(req->q, req);
2223 }
2224 }
2225
2226 /**
2227 * blk_end_bidi_request - Complete a bidi request
2228 * @rq: the request to complete
2229 * @error: %0 for success, < %0 for error
2230 * @nr_bytes: number of bytes to complete @rq
2231 * @bidi_bytes: number of bytes to complete @rq->next_rq
2232 *
2233 * Description:
2234 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2235 * Drivers that supports bidi can safely call this member for any
2236 * type of request, bidi or uni. In the later case @bidi_bytes is
2237 * just ignored.
2238 *
2239 * Return:
2240 * %false - we are done with this request
2241 * %true - still buffers pending for this request
2242 **/
2243 static bool blk_end_bidi_request(struct request *rq, int error,
2244 unsigned int nr_bytes, unsigned int bidi_bytes)
2245 {
2246 struct request_queue *q = rq->q;
2247 unsigned long flags;
2248
2249 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2250 return true;
2251
2252 spin_lock_irqsave(q->queue_lock, flags);
2253 blk_finish_request(rq, error);
2254 spin_unlock_irqrestore(q->queue_lock, flags);
2255
2256 return false;
2257 }
2258
2259 /**
2260 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2261 * @rq: the request to complete
2262 * @error: %0 for success, < %0 for error
2263 * @nr_bytes: number of bytes to complete @rq
2264 * @bidi_bytes: number of bytes to complete @rq->next_rq
2265 *
2266 * Description:
2267 * Identical to blk_end_bidi_request() except that queue lock is
2268 * assumed to be locked on entry and remains so on return.
2269 *
2270 * Return:
2271 * %false - we are done with this request
2272 * %true - still buffers pending for this request
2273 **/
2274 static bool __blk_end_bidi_request(struct request *rq, int error,
2275 unsigned int nr_bytes, unsigned int bidi_bytes)
2276 {
2277 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2278 return true;
2279
2280 blk_finish_request(rq, error);
2281
2282 return false;
2283 }
2284
2285 /**
2286 * blk_end_request - Helper function for drivers to complete the request.
2287 * @rq: the request being processed
2288 * @error: %0 for success, < %0 for error
2289 * @nr_bytes: number of bytes to complete
2290 *
2291 * Description:
2292 * Ends I/O on a number of bytes attached to @rq.
2293 * If @rq has leftover, sets it up for the next range of segments.
2294 *
2295 * Return:
2296 * %false - we are done with this request
2297 * %true - still buffers pending for this request
2298 **/
2299 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2300 {
2301 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2302 }
2303 EXPORT_SYMBOL(blk_end_request);
2304
2305 /**
2306 * blk_end_request_all - Helper function for drives to finish the request.
2307 * @rq: the request to finish
2308 * @error: %0 for success, < %0 for error
2309 *
2310 * Description:
2311 * Completely finish @rq.
2312 */
2313 void blk_end_request_all(struct request *rq, int error)
2314 {
2315 bool pending;
2316 unsigned int bidi_bytes = 0;
2317
2318 if (unlikely(blk_bidi_rq(rq)))
2319 bidi_bytes = blk_rq_bytes(rq->next_rq);
2320
2321 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2322 BUG_ON(pending);
2323 }
2324 EXPORT_SYMBOL(blk_end_request_all);
2325
2326 /**
2327 * blk_end_request_cur - Helper function to finish the current request chunk.
2328 * @rq: the request to finish the current chunk for
2329 * @error: %0 for success, < %0 for error
2330 *
2331 * Description:
2332 * Complete the current consecutively mapped chunk from @rq.
2333 *
2334 * Return:
2335 * %false - we are done with this request
2336 * %true - still buffers pending for this request
2337 */
2338 bool blk_end_request_cur(struct request *rq, int error)
2339 {
2340 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2341 }
2342 EXPORT_SYMBOL(blk_end_request_cur);
2343
2344 /**
2345 * blk_end_request_err - Finish a request till the next failure boundary.
2346 * @rq: the request to finish till the next failure boundary for
2347 * @error: must be negative errno
2348 *
2349 * Description:
2350 * Complete @rq till the next failure boundary.
2351 *
2352 * Return:
2353 * %false - we are done with this request
2354 * %true - still buffers pending for this request
2355 */
2356 bool blk_end_request_err(struct request *rq, int error)
2357 {
2358 WARN_ON(error >= 0);
2359 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2360 }
2361 EXPORT_SYMBOL_GPL(blk_end_request_err);
2362
2363 /**
2364 * __blk_end_request - Helper function for drivers to complete the request.
2365 * @rq: the request being processed
2366 * @error: %0 for success, < %0 for error
2367 * @nr_bytes: number of bytes to complete
2368 *
2369 * Description:
2370 * Must be called with queue lock held unlike blk_end_request().
2371 *
2372 * Return:
2373 * %false - we are done with this request
2374 * %true - still buffers pending for this request
2375 **/
2376 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2377 {
2378 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2379 }
2380 EXPORT_SYMBOL(__blk_end_request);
2381
2382 /**
2383 * __blk_end_request_all - Helper function for drives to finish the request.
2384 * @rq: the request to finish
2385 * @error: %0 for success, < %0 for error
2386 *
2387 * Description:
2388 * Completely finish @rq. Must be called with queue lock held.
2389 */
2390 void __blk_end_request_all(struct request *rq, int error)
2391 {
2392 bool pending;
2393 unsigned int bidi_bytes = 0;
2394
2395 if (unlikely(blk_bidi_rq(rq)))
2396 bidi_bytes = blk_rq_bytes(rq->next_rq);
2397
2398 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2399 BUG_ON(pending);
2400 }
2401 EXPORT_SYMBOL(__blk_end_request_all);
2402
2403 /**
2404 * __blk_end_request_cur - Helper function to finish the current request chunk.
2405 * @rq: the request to finish the current chunk for
2406 * @error: %0 for success, < %0 for error
2407 *
2408 * Description:
2409 * Complete the current consecutively mapped chunk from @rq. Must
2410 * be called with queue lock held.
2411 *
2412 * Return:
2413 * %false - we are done with this request
2414 * %true - still buffers pending for this request
2415 */
2416 bool __blk_end_request_cur(struct request *rq, int error)
2417 {
2418 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2419 }
2420 EXPORT_SYMBOL(__blk_end_request_cur);
2421
2422 /**
2423 * __blk_end_request_err - Finish a request till the next failure boundary.
2424 * @rq: the request to finish till the next failure boundary for
2425 * @error: must be negative errno
2426 *
2427 * Description:
2428 * Complete @rq till the next failure boundary. Must be called
2429 * with queue lock held.
2430 *
2431 * Return:
2432 * %false - we are done with this request
2433 * %true - still buffers pending for this request
2434 */
2435 bool __blk_end_request_err(struct request *rq, int error)
2436 {
2437 WARN_ON(error >= 0);
2438 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2439 }
2440 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2441
2442 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2443 struct bio *bio)
2444 {
2445 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2446 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2447
2448 if (bio_has_data(bio)) {
2449 rq->nr_phys_segments = bio_phys_segments(q, bio);
2450 rq->buffer = bio_data(bio);
2451 }
2452 rq->__data_len = bio->bi_size;
2453 rq->bio = rq->biotail = bio;
2454
2455 if (bio->bi_bdev)
2456 rq->rq_disk = bio->bi_bdev->bd_disk;
2457 }
2458
2459 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2460 /**
2461 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2462 * @rq: the request to be flushed
2463 *
2464 * Description:
2465 * Flush all pages in @rq.
2466 */
2467 void rq_flush_dcache_pages(struct request *rq)
2468 {
2469 struct req_iterator iter;
2470 struct bio_vec *bvec;
2471
2472 rq_for_each_segment(bvec, rq, iter)
2473 flush_dcache_page(bvec->bv_page);
2474 }
2475 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2476 #endif
2477
2478 /**
2479 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2480 * @q : the queue of the device being checked
2481 *
2482 * Description:
2483 * Check if underlying low-level drivers of a device are busy.
2484 * If the drivers want to export their busy state, they must set own
2485 * exporting function using blk_queue_lld_busy() first.
2486 *
2487 * Basically, this function is used only by request stacking drivers
2488 * to stop dispatching requests to underlying devices when underlying
2489 * devices are busy. This behavior helps more I/O merging on the queue
2490 * of the request stacking driver and prevents I/O throughput regression
2491 * on burst I/O load.
2492 *
2493 * Return:
2494 * 0 - Not busy (The request stacking driver should dispatch request)
2495 * 1 - Busy (The request stacking driver should stop dispatching request)
2496 */
2497 int blk_lld_busy(struct request_queue *q)
2498 {
2499 if (q->lld_busy_fn)
2500 return q->lld_busy_fn(q);
2501
2502 return 0;
2503 }
2504 EXPORT_SYMBOL_GPL(blk_lld_busy);
2505
2506 /**
2507 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2508 * @rq: the clone request to be cleaned up
2509 *
2510 * Description:
2511 * Free all bios in @rq for a cloned request.
2512 */
2513 void blk_rq_unprep_clone(struct request *rq)
2514 {
2515 struct bio *bio;
2516
2517 while ((bio = rq->bio) != NULL) {
2518 rq->bio = bio->bi_next;
2519
2520 bio_put(bio);
2521 }
2522 }
2523 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2524
2525 /*
2526 * Copy attributes of the original request to the clone request.
2527 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2528 */
2529 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2530 {
2531 dst->cpu = src->cpu;
2532 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2533 dst->cmd_type = src->cmd_type;
2534 dst->__sector = blk_rq_pos(src);
2535 dst->__data_len = blk_rq_bytes(src);
2536 dst->nr_phys_segments = src->nr_phys_segments;
2537 dst->ioprio = src->ioprio;
2538 dst->extra_len = src->extra_len;
2539 }
2540
2541 /**
2542 * blk_rq_prep_clone - Helper function to setup clone request
2543 * @rq: the request to be setup
2544 * @rq_src: original request to be cloned
2545 * @bs: bio_set that bios for clone are allocated from
2546 * @gfp_mask: memory allocation mask for bio
2547 * @bio_ctr: setup function to be called for each clone bio.
2548 * Returns %0 for success, non %0 for failure.
2549 * @data: private data to be passed to @bio_ctr
2550 *
2551 * Description:
2552 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2553 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2554 * are not copied, and copying such parts is the caller's responsibility.
2555 * Also, pages which the original bios are pointing to are not copied
2556 * and the cloned bios just point same pages.
2557 * So cloned bios must be completed before original bios, which means
2558 * the caller must complete @rq before @rq_src.
2559 */
2560 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2561 struct bio_set *bs, gfp_t gfp_mask,
2562 int (*bio_ctr)(struct bio *, struct bio *, void *),
2563 void *data)
2564 {
2565 struct bio *bio, *bio_src;
2566
2567 if (!bs)
2568 bs = fs_bio_set;
2569
2570 blk_rq_init(NULL, rq);
2571
2572 __rq_for_each_bio(bio_src, rq_src) {
2573 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2574 if (!bio)
2575 goto free_and_out;
2576
2577 __bio_clone(bio, bio_src);
2578
2579 if (bio_integrity(bio_src) &&
2580 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2581 goto free_and_out;
2582
2583 if (bio_ctr && bio_ctr(bio, bio_src, data))
2584 goto free_and_out;
2585
2586 if (rq->bio) {
2587 rq->biotail->bi_next = bio;
2588 rq->biotail = bio;
2589 } else
2590 rq->bio = rq->biotail = bio;
2591 }
2592
2593 __blk_rq_prep_clone(rq, rq_src);
2594
2595 return 0;
2596
2597 free_and_out:
2598 if (bio)
2599 bio_free(bio, bs);
2600 blk_rq_unprep_clone(rq);
2601
2602 return -ENOMEM;
2603 }
2604 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2605
2606 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2607 {
2608 return queue_work(kblockd_workqueue, work);
2609 }
2610 EXPORT_SYMBOL(kblockd_schedule_work);
2611
2612 int kblockd_schedule_delayed_work(struct request_queue *q,
2613 struct delayed_work *dwork, unsigned long delay)
2614 {
2615 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2616 }
2617 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2618
2619 int __init blk_dev_init(void)
2620 {
2621 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2622 sizeof(((struct request *)0)->cmd_flags));
2623
2624 kblockd_workqueue = create_workqueue("kblockd");
2625 if (!kblockd_workqueue)
2626 panic("Failed to create kblockd\n");
2627
2628 request_cachep = kmem_cache_create("blkdev_requests",
2629 sizeof(struct request), 0, SLAB_PANIC, NULL);
2630
2631 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2632 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2633
2634 return 0;
2635 }