]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
net_sched: change "foo* bar" to "foo *bar"
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
46
47 DEFINE_IDA(blk_queue_ida);
48
49 /*
50 * For the allocated request tables
51 */
52 struct kmem_cache *request_cachep = NULL;
53
54 /*
55 * For queue allocation
56 */
57 struct kmem_cache *blk_requestq_cachep;
58
59 /*
60 * Controlling structure to kblockd
61 */
62 static struct workqueue_struct *kblockd_workqueue;
63
64 void blk_queue_congestion_threshold(struct request_queue *q)
65 {
66 int nr;
67
68 nr = q->nr_requests - (q->nr_requests / 8) + 1;
69 if (nr > q->nr_requests)
70 nr = q->nr_requests;
71 q->nr_congestion_on = nr;
72
73 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
74 if (nr < 1)
75 nr = 1;
76 q->nr_congestion_off = nr;
77 }
78
79 /**
80 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
81 * @bdev: device
82 *
83 * Locates the passed device's request queue and returns the address of its
84 * backing_dev_info
85 *
86 * Will return NULL if the request queue cannot be located.
87 */
88 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
89 {
90 struct backing_dev_info *ret = NULL;
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 if (q)
94 ret = &q->backing_dev_info;
95 return ret;
96 }
97 EXPORT_SYMBOL(blk_get_backing_dev_info);
98
99 void blk_rq_init(struct request_queue *q, struct request *rq)
100 {
101 memset(rq, 0, sizeof(*rq));
102
103 INIT_LIST_HEAD(&rq->queuelist);
104 INIT_LIST_HEAD(&rq->timeout_list);
105 rq->cpu = -1;
106 rq->q = q;
107 rq->__sector = (sector_t) -1;
108 INIT_HLIST_NODE(&rq->hash);
109 RB_CLEAR_NODE(&rq->rb_node);
110 rq->cmd = rq->__cmd;
111 rq->cmd_len = BLK_MAX_CDB;
112 rq->tag = -1;
113 rq->start_time = jiffies;
114 set_start_time_ns(rq);
115 rq->part = NULL;
116 }
117 EXPORT_SYMBOL(blk_rq_init);
118
119 static void req_bio_endio(struct request *rq, struct bio *bio,
120 unsigned int nbytes, int error)
121 {
122 if (error)
123 clear_bit(BIO_UPTODATE, &bio->bi_flags);
124 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
125 error = -EIO;
126
127 if (unlikely(rq->cmd_flags & REQ_QUIET))
128 set_bit(BIO_QUIET, &bio->bi_flags);
129
130 bio_advance(bio, nbytes);
131
132 /* don't actually finish bio if it's part of flush sequence */
133 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
134 bio_endio(bio, error);
135 }
136
137 void blk_dump_rq_flags(struct request *rq, char *msg)
138 {
139 int bit;
140
141 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
142 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
143 (unsigned long long) rq->cmd_flags);
144
145 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
146 (unsigned long long)blk_rq_pos(rq),
147 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
148 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
149 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
150
151 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
152 printk(KERN_INFO " cdb: ");
153 for (bit = 0; bit < BLK_MAX_CDB; bit++)
154 printk("%02x ", rq->cmd[bit]);
155 printk("\n");
156 }
157 }
158 EXPORT_SYMBOL(blk_dump_rq_flags);
159
160 static void blk_delay_work(struct work_struct *work)
161 {
162 struct request_queue *q;
163
164 q = container_of(work, struct request_queue, delay_work.work);
165 spin_lock_irq(q->queue_lock);
166 __blk_run_queue(q);
167 spin_unlock_irq(q->queue_lock);
168 }
169
170 /**
171 * blk_delay_queue - restart queueing after defined interval
172 * @q: The &struct request_queue in question
173 * @msecs: Delay in msecs
174 *
175 * Description:
176 * Sometimes queueing needs to be postponed for a little while, to allow
177 * resources to come back. This function will make sure that queueing is
178 * restarted around the specified time. Queue lock must be held.
179 */
180 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
181 {
182 if (likely(!blk_queue_dead(q)))
183 queue_delayed_work(kblockd_workqueue, &q->delay_work,
184 msecs_to_jiffies(msecs));
185 }
186 EXPORT_SYMBOL(blk_delay_queue);
187
188 /**
189 * blk_start_queue - restart a previously stopped queue
190 * @q: The &struct request_queue in question
191 *
192 * Description:
193 * blk_start_queue() will clear the stop flag on the queue, and call
194 * the request_fn for the queue if it was in a stopped state when
195 * entered. Also see blk_stop_queue(). Queue lock must be held.
196 **/
197 void blk_start_queue(struct request_queue *q)
198 {
199 WARN_ON(!irqs_disabled());
200
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 __blk_run_queue(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue);
205
206 /**
207 * blk_stop_queue - stop a queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * The Linux block layer assumes that a block driver will consume all
212 * entries on the request queue when the request_fn strategy is called.
213 * Often this will not happen, because of hardware limitations (queue
214 * depth settings). If a device driver gets a 'queue full' response,
215 * or if it simply chooses not to queue more I/O at one point, it can
216 * call this function to prevent the request_fn from being called until
217 * the driver has signalled it's ready to go again. This happens by calling
218 * blk_start_queue() to restart queue operations. Queue lock must be held.
219 **/
220 void blk_stop_queue(struct request_queue *q)
221 {
222 cancel_delayed_work(&q->delay_work);
223 queue_flag_set(QUEUE_FLAG_STOPPED, q);
224 }
225 EXPORT_SYMBOL(blk_stop_queue);
226
227 /**
228 * blk_sync_queue - cancel any pending callbacks on a queue
229 * @q: the queue
230 *
231 * Description:
232 * The block layer may perform asynchronous callback activity
233 * on a queue, such as calling the unplug function after a timeout.
234 * A block device may call blk_sync_queue to ensure that any
235 * such activity is cancelled, thus allowing it to release resources
236 * that the callbacks might use. The caller must already have made sure
237 * that its ->make_request_fn will not re-add plugging prior to calling
238 * this function.
239 *
240 * This function does not cancel any asynchronous activity arising
241 * out of elevator or throttling code. That would require elevaotor_exit()
242 * and blkcg_exit_queue() to be called with queue lock initialized.
243 *
244 */
245 void blk_sync_queue(struct request_queue *q)
246 {
247 del_timer_sync(&q->timeout);
248 cancel_delayed_work_sync(&q->delay_work);
249 }
250 EXPORT_SYMBOL(blk_sync_queue);
251
252 /**
253 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
254 * @q: The queue to run
255 *
256 * Description:
257 * Invoke request handling on a queue if there are any pending requests.
258 * May be used to restart request handling after a request has completed.
259 * This variant runs the queue whether or not the queue has been
260 * stopped. Must be called with the queue lock held and interrupts
261 * disabled. See also @blk_run_queue.
262 */
263 inline void __blk_run_queue_uncond(struct request_queue *q)
264 {
265 if (unlikely(blk_queue_dead(q)))
266 return;
267
268 /*
269 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
270 * the queue lock internally. As a result multiple threads may be
271 * running such a request function concurrently. Keep track of the
272 * number of active request_fn invocations such that blk_drain_queue()
273 * can wait until all these request_fn calls have finished.
274 */
275 q->request_fn_active++;
276 q->request_fn(q);
277 q->request_fn_active--;
278 }
279
280 /**
281 * __blk_run_queue - run a single device queue
282 * @q: The queue to run
283 *
284 * Description:
285 * See @blk_run_queue. This variant must be called with the queue lock
286 * held and interrupts disabled.
287 */
288 void __blk_run_queue(struct request_queue *q)
289 {
290 if (unlikely(blk_queue_stopped(q)))
291 return;
292
293 __blk_run_queue_uncond(q);
294 }
295 EXPORT_SYMBOL(__blk_run_queue);
296
297 /**
298 * blk_run_queue_async - run a single device queue in workqueue context
299 * @q: The queue to run
300 *
301 * Description:
302 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
303 * of us. The caller must hold the queue lock.
304 */
305 void blk_run_queue_async(struct request_queue *q)
306 {
307 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
308 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
309 }
310 EXPORT_SYMBOL(blk_run_queue_async);
311
312 /**
313 * blk_run_queue - run a single device queue
314 * @q: The queue to run
315 *
316 * Description:
317 * Invoke request handling on this queue, if it has pending work to do.
318 * May be used to restart queueing when a request has completed.
319 */
320 void blk_run_queue(struct request_queue *q)
321 {
322 unsigned long flags;
323
324 spin_lock_irqsave(q->queue_lock, flags);
325 __blk_run_queue(q);
326 spin_unlock_irqrestore(q->queue_lock, flags);
327 }
328 EXPORT_SYMBOL(blk_run_queue);
329
330 void blk_put_queue(struct request_queue *q)
331 {
332 kobject_put(&q->kobj);
333 }
334 EXPORT_SYMBOL(blk_put_queue);
335
336 /**
337 * __blk_drain_queue - drain requests from request_queue
338 * @q: queue to drain
339 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
340 *
341 * Drain requests from @q. If @drain_all is set, all requests are drained.
342 * If not, only ELVPRIV requests are drained. The caller is responsible
343 * for ensuring that no new requests which need to be drained are queued.
344 */
345 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
346 __releases(q->queue_lock)
347 __acquires(q->queue_lock)
348 {
349 int i;
350
351 lockdep_assert_held(q->queue_lock);
352
353 while (true) {
354 bool drain = false;
355
356 /*
357 * The caller might be trying to drain @q before its
358 * elevator is initialized.
359 */
360 if (q->elevator)
361 elv_drain_elevator(q);
362
363 blkcg_drain_queue(q);
364
365 /*
366 * This function might be called on a queue which failed
367 * driver init after queue creation or is not yet fully
368 * active yet. Some drivers (e.g. fd and loop) get unhappy
369 * in such cases. Kick queue iff dispatch queue has
370 * something on it and @q has request_fn set.
371 */
372 if (!list_empty(&q->queue_head) && q->request_fn)
373 __blk_run_queue(q);
374
375 drain |= q->nr_rqs_elvpriv;
376 drain |= q->request_fn_active;
377
378 /*
379 * Unfortunately, requests are queued at and tracked from
380 * multiple places and there's no single counter which can
381 * be drained. Check all the queues and counters.
382 */
383 if (drain_all) {
384 drain |= !list_empty(&q->queue_head);
385 for (i = 0; i < 2; i++) {
386 drain |= q->nr_rqs[i];
387 drain |= q->in_flight[i];
388 drain |= !list_empty(&q->flush_queue[i]);
389 }
390 }
391
392 if (!drain)
393 break;
394
395 spin_unlock_irq(q->queue_lock);
396
397 msleep(10);
398
399 spin_lock_irq(q->queue_lock);
400 }
401
402 /*
403 * With queue marked dead, any woken up waiter will fail the
404 * allocation path, so the wakeup chaining is lost and we're
405 * left with hung waiters. We need to wake up those waiters.
406 */
407 if (q->request_fn) {
408 struct request_list *rl;
409
410 blk_queue_for_each_rl(rl, q)
411 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
412 wake_up_all(&rl->wait[i]);
413 }
414 }
415
416 /**
417 * blk_queue_bypass_start - enter queue bypass mode
418 * @q: queue of interest
419 *
420 * In bypass mode, only the dispatch FIFO queue of @q is used. This
421 * function makes @q enter bypass mode and drains all requests which were
422 * throttled or issued before. On return, it's guaranteed that no request
423 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
424 * inside queue or RCU read lock.
425 */
426 void blk_queue_bypass_start(struct request_queue *q)
427 {
428 bool drain;
429
430 spin_lock_irq(q->queue_lock);
431 drain = !q->bypass_depth++;
432 queue_flag_set(QUEUE_FLAG_BYPASS, q);
433 spin_unlock_irq(q->queue_lock);
434
435 if (drain) {
436 spin_lock_irq(q->queue_lock);
437 __blk_drain_queue(q, false);
438 spin_unlock_irq(q->queue_lock);
439
440 /* ensure blk_queue_bypass() is %true inside RCU read lock */
441 synchronize_rcu();
442 }
443 }
444 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
445
446 /**
447 * blk_queue_bypass_end - leave queue bypass mode
448 * @q: queue of interest
449 *
450 * Leave bypass mode and restore the normal queueing behavior.
451 */
452 void blk_queue_bypass_end(struct request_queue *q)
453 {
454 spin_lock_irq(q->queue_lock);
455 if (!--q->bypass_depth)
456 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
457 WARN_ON_ONCE(q->bypass_depth < 0);
458 spin_unlock_irq(q->queue_lock);
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
461
462 /**
463 * blk_cleanup_queue - shutdown a request queue
464 * @q: request queue to shutdown
465 *
466 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
467 * put it. All future requests will be failed immediately with -ENODEV.
468 */
469 void blk_cleanup_queue(struct request_queue *q)
470 {
471 spinlock_t *lock = q->queue_lock;
472
473 /* mark @q DYING, no new request or merges will be allowed afterwards */
474 mutex_lock(&q->sysfs_lock);
475 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
476 spin_lock_irq(lock);
477
478 /*
479 * A dying queue is permanently in bypass mode till released. Note
480 * that, unlike blk_queue_bypass_start(), we aren't performing
481 * synchronize_rcu() after entering bypass mode to avoid the delay
482 * as some drivers create and destroy a lot of queues while
483 * probing. This is still safe because blk_release_queue() will be
484 * called only after the queue refcnt drops to zero and nothing,
485 * RCU or not, would be traversing the queue by then.
486 */
487 q->bypass_depth++;
488 queue_flag_set(QUEUE_FLAG_BYPASS, q);
489
490 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
491 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
492 queue_flag_set(QUEUE_FLAG_DYING, q);
493 spin_unlock_irq(lock);
494 mutex_unlock(&q->sysfs_lock);
495
496 /*
497 * Drain all requests queued before DYING marking. Set DEAD flag to
498 * prevent that q->request_fn() gets invoked after draining finished.
499 */
500 spin_lock_irq(lock);
501 __blk_drain_queue(q, true);
502 queue_flag_set(QUEUE_FLAG_DEAD, q);
503 spin_unlock_irq(lock);
504
505 /* @q won't process any more request, flush async actions */
506 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
507 blk_sync_queue(q);
508
509 spin_lock_irq(lock);
510 if (q->queue_lock != &q->__queue_lock)
511 q->queue_lock = &q->__queue_lock;
512 spin_unlock_irq(lock);
513
514 /* @q is and will stay empty, shutdown and put */
515 blk_put_queue(q);
516 }
517 EXPORT_SYMBOL(blk_cleanup_queue);
518
519 int blk_init_rl(struct request_list *rl, struct request_queue *q,
520 gfp_t gfp_mask)
521 {
522 if (unlikely(rl->rq_pool))
523 return 0;
524
525 rl->q = q;
526 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
527 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
528 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
529 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
530
531 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
532 mempool_free_slab, request_cachep,
533 gfp_mask, q->node);
534 if (!rl->rq_pool)
535 return -ENOMEM;
536
537 return 0;
538 }
539
540 void blk_exit_rl(struct request_list *rl)
541 {
542 if (rl->rq_pool)
543 mempool_destroy(rl->rq_pool);
544 }
545
546 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
547 {
548 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
549 }
550 EXPORT_SYMBOL(blk_alloc_queue);
551
552 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
553 {
554 struct request_queue *q;
555 int err;
556
557 q = kmem_cache_alloc_node(blk_requestq_cachep,
558 gfp_mask | __GFP_ZERO, node_id);
559 if (!q)
560 return NULL;
561
562 if (percpu_counter_init(&q->mq_usage_counter, 0))
563 goto fail_q;
564
565 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
566 if (q->id < 0)
567 goto fail_c;
568
569 q->backing_dev_info.ra_pages =
570 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
571 q->backing_dev_info.state = 0;
572 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
573 q->backing_dev_info.name = "block";
574 q->node = node_id;
575
576 err = bdi_init(&q->backing_dev_info);
577 if (err)
578 goto fail_id;
579
580 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
581 laptop_mode_timer_fn, (unsigned long) q);
582 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
583 INIT_LIST_HEAD(&q->queue_head);
584 INIT_LIST_HEAD(&q->timeout_list);
585 INIT_LIST_HEAD(&q->icq_list);
586 #ifdef CONFIG_BLK_CGROUP
587 INIT_LIST_HEAD(&q->blkg_list);
588 #endif
589 INIT_LIST_HEAD(&q->flush_queue[0]);
590 INIT_LIST_HEAD(&q->flush_queue[1]);
591 INIT_LIST_HEAD(&q->flush_data_in_flight);
592 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
593
594 kobject_init(&q->kobj, &blk_queue_ktype);
595
596 mutex_init(&q->sysfs_lock);
597 spin_lock_init(&q->__queue_lock);
598
599 /*
600 * By default initialize queue_lock to internal lock and driver can
601 * override it later if need be.
602 */
603 q->queue_lock = &q->__queue_lock;
604
605 /*
606 * A queue starts its life with bypass turned on to avoid
607 * unnecessary bypass on/off overhead and nasty surprises during
608 * init. The initial bypass will be finished when the queue is
609 * registered by blk_register_queue().
610 */
611 q->bypass_depth = 1;
612 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
613
614 init_waitqueue_head(&q->mq_freeze_wq);
615
616 if (blkcg_init_queue(q))
617 goto fail_bdi;
618
619 return q;
620
621 fail_bdi:
622 bdi_destroy(&q->backing_dev_info);
623 fail_id:
624 ida_simple_remove(&blk_queue_ida, q->id);
625 fail_c:
626 percpu_counter_destroy(&q->mq_usage_counter);
627 fail_q:
628 kmem_cache_free(blk_requestq_cachep, q);
629 return NULL;
630 }
631 EXPORT_SYMBOL(blk_alloc_queue_node);
632
633 /**
634 * blk_init_queue - prepare a request queue for use with a block device
635 * @rfn: The function to be called to process requests that have been
636 * placed on the queue.
637 * @lock: Request queue spin lock
638 *
639 * Description:
640 * If a block device wishes to use the standard request handling procedures,
641 * which sorts requests and coalesces adjacent requests, then it must
642 * call blk_init_queue(). The function @rfn will be called when there
643 * are requests on the queue that need to be processed. If the device
644 * supports plugging, then @rfn may not be called immediately when requests
645 * are available on the queue, but may be called at some time later instead.
646 * Plugged queues are generally unplugged when a buffer belonging to one
647 * of the requests on the queue is needed, or due to memory pressure.
648 *
649 * @rfn is not required, or even expected, to remove all requests off the
650 * queue, but only as many as it can handle at a time. If it does leave
651 * requests on the queue, it is responsible for arranging that the requests
652 * get dealt with eventually.
653 *
654 * The queue spin lock must be held while manipulating the requests on the
655 * request queue; this lock will be taken also from interrupt context, so irq
656 * disabling is needed for it.
657 *
658 * Function returns a pointer to the initialized request queue, or %NULL if
659 * it didn't succeed.
660 *
661 * Note:
662 * blk_init_queue() must be paired with a blk_cleanup_queue() call
663 * when the block device is deactivated (such as at module unload).
664 **/
665
666 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
667 {
668 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_init_queue);
671
672 struct request_queue *
673 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
674 {
675 struct request_queue *uninit_q, *q;
676
677 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
678 if (!uninit_q)
679 return NULL;
680
681 q = blk_init_allocated_queue(uninit_q, rfn, lock);
682 if (!q)
683 blk_cleanup_queue(uninit_q);
684
685 return q;
686 }
687 EXPORT_SYMBOL(blk_init_queue_node);
688
689 struct request_queue *
690 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
691 spinlock_t *lock)
692 {
693 if (!q)
694 return NULL;
695
696 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
697 return NULL;
698
699 q->request_fn = rfn;
700 q->prep_rq_fn = NULL;
701 q->unprep_rq_fn = NULL;
702 q->queue_flags |= QUEUE_FLAG_DEFAULT;
703
704 /* Override internal queue lock with supplied lock pointer */
705 if (lock)
706 q->queue_lock = lock;
707
708 /*
709 * This also sets hw/phys segments, boundary and size
710 */
711 blk_queue_make_request(q, blk_queue_bio);
712
713 q->sg_reserved_size = INT_MAX;
714
715 /* Protect q->elevator from elevator_change */
716 mutex_lock(&q->sysfs_lock);
717
718 /* init elevator */
719 if (elevator_init(q, NULL)) {
720 mutex_unlock(&q->sysfs_lock);
721 return NULL;
722 }
723
724 mutex_unlock(&q->sysfs_lock);
725
726 return q;
727 }
728 EXPORT_SYMBOL(blk_init_allocated_queue);
729
730 bool blk_get_queue(struct request_queue *q)
731 {
732 if (likely(!blk_queue_dying(q))) {
733 __blk_get_queue(q);
734 return true;
735 }
736
737 return false;
738 }
739 EXPORT_SYMBOL(blk_get_queue);
740
741 static inline void blk_free_request(struct request_list *rl, struct request *rq)
742 {
743 if (rq->cmd_flags & REQ_ELVPRIV) {
744 elv_put_request(rl->q, rq);
745 if (rq->elv.icq)
746 put_io_context(rq->elv.icq->ioc);
747 }
748
749 mempool_free(rq, rl->rq_pool);
750 }
751
752 /*
753 * ioc_batching returns true if the ioc is a valid batching request and
754 * should be given priority access to a request.
755 */
756 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
757 {
758 if (!ioc)
759 return 0;
760
761 /*
762 * Make sure the process is able to allocate at least 1 request
763 * even if the batch times out, otherwise we could theoretically
764 * lose wakeups.
765 */
766 return ioc->nr_batch_requests == q->nr_batching ||
767 (ioc->nr_batch_requests > 0
768 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
769 }
770
771 /*
772 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
773 * will cause the process to be a "batcher" on all queues in the system. This
774 * is the behaviour we want though - once it gets a wakeup it should be given
775 * a nice run.
776 */
777 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
778 {
779 if (!ioc || ioc_batching(q, ioc))
780 return;
781
782 ioc->nr_batch_requests = q->nr_batching;
783 ioc->last_waited = jiffies;
784 }
785
786 static void __freed_request(struct request_list *rl, int sync)
787 {
788 struct request_queue *q = rl->q;
789
790 /*
791 * bdi isn't aware of blkcg yet. As all async IOs end up root
792 * blkcg anyway, just use root blkcg state.
793 */
794 if (rl == &q->root_rl &&
795 rl->count[sync] < queue_congestion_off_threshold(q))
796 blk_clear_queue_congested(q, sync);
797
798 if (rl->count[sync] + 1 <= q->nr_requests) {
799 if (waitqueue_active(&rl->wait[sync]))
800 wake_up(&rl->wait[sync]);
801
802 blk_clear_rl_full(rl, sync);
803 }
804 }
805
806 /*
807 * A request has just been released. Account for it, update the full and
808 * congestion status, wake up any waiters. Called under q->queue_lock.
809 */
810 static void freed_request(struct request_list *rl, unsigned int flags)
811 {
812 struct request_queue *q = rl->q;
813 int sync = rw_is_sync(flags);
814
815 q->nr_rqs[sync]--;
816 rl->count[sync]--;
817 if (flags & REQ_ELVPRIV)
818 q->nr_rqs_elvpriv--;
819
820 __freed_request(rl, sync);
821
822 if (unlikely(rl->starved[sync ^ 1]))
823 __freed_request(rl, sync ^ 1);
824 }
825
826 /*
827 * Determine if elevator data should be initialized when allocating the
828 * request associated with @bio.
829 */
830 static bool blk_rq_should_init_elevator(struct bio *bio)
831 {
832 if (!bio)
833 return true;
834
835 /*
836 * Flush requests do not use the elevator so skip initialization.
837 * This allows a request to share the flush and elevator data.
838 */
839 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
840 return false;
841
842 return true;
843 }
844
845 /**
846 * rq_ioc - determine io_context for request allocation
847 * @bio: request being allocated is for this bio (can be %NULL)
848 *
849 * Determine io_context to use for request allocation for @bio. May return
850 * %NULL if %current->io_context doesn't exist.
851 */
852 static struct io_context *rq_ioc(struct bio *bio)
853 {
854 #ifdef CONFIG_BLK_CGROUP
855 if (bio && bio->bi_ioc)
856 return bio->bi_ioc;
857 #endif
858 return current->io_context;
859 }
860
861 /**
862 * __get_request - get a free request
863 * @rl: request list to allocate from
864 * @rw_flags: RW and SYNC flags
865 * @bio: bio to allocate request for (can be %NULL)
866 * @gfp_mask: allocation mask
867 *
868 * Get a free request from @q. This function may fail under memory
869 * pressure or if @q is dead.
870 *
871 * Must be callled with @q->queue_lock held and,
872 * Returns %NULL on failure, with @q->queue_lock held.
873 * Returns !%NULL on success, with @q->queue_lock *not held*.
874 */
875 static struct request *__get_request(struct request_list *rl, int rw_flags,
876 struct bio *bio, gfp_t gfp_mask)
877 {
878 struct request_queue *q = rl->q;
879 struct request *rq;
880 struct elevator_type *et = q->elevator->type;
881 struct io_context *ioc = rq_ioc(bio);
882 struct io_cq *icq = NULL;
883 const bool is_sync = rw_is_sync(rw_flags) != 0;
884 int may_queue;
885
886 if (unlikely(blk_queue_dying(q)))
887 return NULL;
888
889 may_queue = elv_may_queue(q, rw_flags);
890 if (may_queue == ELV_MQUEUE_NO)
891 goto rq_starved;
892
893 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
894 if (rl->count[is_sync]+1 >= q->nr_requests) {
895 /*
896 * The queue will fill after this allocation, so set
897 * it as full, and mark this process as "batching".
898 * This process will be allowed to complete a batch of
899 * requests, others will be blocked.
900 */
901 if (!blk_rl_full(rl, is_sync)) {
902 ioc_set_batching(q, ioc);
903 blk_set_rl_full(rl, is_sync);
904 } else {
905 if (may_queue != ELV_MQUEUE_MUST
906 && !ioc_batching(q, ioc)) {
907 /*
908 * The queue is full and the allocating
909 * process is not a "batcher", and not
910 * exempted by the IO scheduler
911 */
912 return NULL;
913 }
914 }
915 }
916 /*
917 * bdi isn't aware of blkcg yet. As all async IOs end up
918 * root blkcg anyway, just use root blkcg state.
919 */
920 if (rl == &q->root_rl)
921 blk_set_queue_congested(q, is_sync);
922 }
923
924 /*
925 * Only allow batching queuers to allocate up to 50% over the defined
926 * limit of requests, otherwise we could have thousands of requests
927 * allocated with any setting of ->nr_requests
928 */
929 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
930 return NULL;
931
932 q->nr_rqs[is_sync]++;
933 rl->count[is_sync]++;
934 rl->starved[is_sync] = 0;
935
936 /*
937 * Decide whether the new request will be managed by elevator. If
938 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
939 * prevent the current elevator from being destroyed until the new
940 * request is freed. This guarantees icq's won't be destroyed and
941 * makes creating new ones safe.
942 *
943 * Also, lookup icq while holding queue_lock. If it doesn't exist,
944 * it will be created after releasing queue_lock.
945 */
946 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
947 rw_flags |= REQ_ELVPRIV;
948 q->nr_rqs_elvpriv++;
949 if (et->icq_cache && ioc)
950 icq = ioc_lookup_icq(ioc, q);
951 }
952
953 if (blk_queue_io_stat(q))
954 rw_flags |= REQ_IO_STAT;
955 spin_unlock_irq(q->queue_lock);
956
957 /* allocate and init request */
958 rq = mempool_alloc(rl->rq_pool, gfp_mask);
959 if (!rq)
960 goto fail_alloc;
961
962 blk_rq_init(q, rq);
963 blk_rq_set_rl(rq, rl);
964 rq->cmd_flags = rw_flags | REQ_ALLOCED;
965
966 /* init elvpriv */
967 if (rw_flags & REQ_ELVPRIV) {
968 if (unlikely(et->icq_cache && !icq)) {
969 if (ioc)
970 icq = ioc_create_icq(ioc, q, gfp_mask);
971 if (!icq)
972 goto fail_elvpriv;
973 }
974
975 rq->elv.icq = icq;
976 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
977 goto fail_elvpriv;
978
979 /* @rq->elv.icq holds io_context until @rq is freed */
980 if (icq)
981 get_io_context(icq->ioc);
982 }
983 out:
984 /*
985 * ioc may be NULL here, and ioc_batching will be false. That's
986 * OK, if the queue is under the request limit then requests need
987 * not count toward the nr_batch_requests limit. There will always
988 * be some limit enforced by BLK_BATCH_TIME.
989 */
990 if (ioc_batching(q, ioc))
991 ioc->nr_batch_requests--;
992
993 trace_block_getrq(q, bio, rw_flags & 1);
994 return rq;
995
996 fail_elvpriv:
997 /*
998 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
999 * and may fail indefinitely under memory pressure and thus
1000 * shouldn't stall IO. Treat this request as !elvpriv. This will
1001 * disturb iosched and blkcg but weird is bettern than dead.
1002 */
1003 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1004 dev_name(q->backing_dev_info.dev));
1005
1006 rq->cmd_flags &= ~REQ_ELVPRIV;
1007 rq->elv.icq = NULL;
1008
1009 spin_lock_irq(q->queue_lock);
1010 q->nr_rqs_elvpriv--;
1011 spin_unlock_irq(q->queue_lock);
1012 goto out;
1013
1014 fail_alloc:
1015 /*
1016 * Allocation failed presumably due to memory. Undo anything we
1017 * might have messed up.
1018 *
1019 * Allocating task should really be put onto the front of the wait
1020 * queue, but this is pretty rare.
1021 */
1022 spin_lock_irq(q->queue_lock);
1023 freed_request(rl, rw_flags);
1024
1025 /*
1026 * in the very unlikely event that allocation failed and no
1027 * requests for this direction was pending, mark us starved so that
1028 * freeing of a request in the other direction will notice
1029 * us. another possible fix would be to split the rq mempool into
1030 * READ and WRITE
1031 */
1032 rq_starved:
1033 if (unlikely(rl->count[is_sync] == 0))
1034 rl->starved[is_sync] = 1;
1035 return NULL;
1036 }
1037
1038 /**
1039 * get_request - get a free request
1040 * @q: request_queue to allocate request from
1041 * @rw_flags: RW and SYNC flags
1042 * @bio: bio to allocate request for (can be %NULL)
1043 * @gfp_mask: allocation mask
1044 *
1045 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1046 * function keeps retrying under memory pressure and fails iff @q is dead.
1047 *
1048 * Must be callled with @q->queue_lock held and,
1049 * Returns %NULL on failure, with @q->queue_lock held.
1050 * Returns !%NULL on success, with @q->queue_lock *not held*.
1051 */
1052 static struct request *get_request(struct request_queue *q, int rw_flags,
1053 struct bio *bio, gfp_t gfp_mask)
1054 {
1055 const bool is_sync = rw_is_sync(rw_flags) != 0;
1056 DEFINE_WAIT(wait);
1057 struct request_list *rl;
1058 struct request *rq;
1059
1060 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1061 retry:
1062 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1063 if (rq)
1064 return rq;
1065
1066 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1067 blk_put_rl(rl);
1068 return NULL;
1069 }
1070
1071 /* wait on @rl and retry */
1072 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1073 TASK_UNINTERRUPTIBLE);
1074
1075 trace_block_sleeprq(q, bio, rw_flags & 1);
1076
1077 spin_unlock_irq(q->queue_lock);
1078 io_schedule();
1079
1080 /*
1081 * After sleeping, we become a "batching" process and will be able
1082 * to allocate at least one request, and up to a big batch of them
1083 * for a small period time. See ioc_batching, ioc_set_batching
1084 */
1085 ioc_set_batching(q, current->io_context);
1086
1087 spin_lock_irq(q->queue_lock);
1088 finish_wait(&rl->wait[is_sync], &wait);
1089
1090 goto retry;
1091 }
1092
1093 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1094 gfp_t gfp_mask)
1095 {
1096 struct request *rq;
1097
1098 BUG_ON(rw != READ && rw != WRITE);
1099
1100 /* create ioc upfront */
1101 create_io_context(gfp_mask, q->node);
1102
1103 spin_lock_irq(q->queue_lock);
1104 rq = get_request(q, rw, NULL, gfp_mask);
1105 if (!rq)
1106 spin_unlock_irq(q->queue_lock);
1107 /* q->queue_lock is unlocked at this point */
1108
1109 return rq;
1110 }
1111
1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1113 {
1114 if (q->mq_ops)
1115 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1116 else
1117 return blk_old_get_request(q, rw, gfp_mask);
1118 }
1119 EXPORT_SYMBOL(blk_get_request);
1120
1121 /**
1122 * blk_make_request - given a bio, allocate a corresponding struct request.
1123 * @q: target request queue
1124 * @bio: The bio describing the memory mappings that will be submitted for IO.
1125 * It may be a chained-bio properly constructed by block/bio layer.
1126 * @gfp_mask: gfp flags to be used for memory allocation
1127 *
1128 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1129 * type commands. Where the struct request needs to be farther initialized by
1130 * the caller. It is passed a &struct bio, which describes the memory info of
1131 * the I/O transfer.
1132 *
1133 * The caller of blk_make_request must make sure that bi_io_vec
1134 * are set to describe the memory buffers. That bio_data_dir() will return
1135 * the needed direction of the request. (And all bio's in the passed bio-chain
1136 * are properly set accordingly)
1137 *
1138 * If called under none-sleepable conditions, mapped bio buffers must not
1139 * need bouncing, by calling the appropriate masked or flagged allocator,
1140 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1141 * BUG.
1142 *
1143 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1144 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1145 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1146 * completion of a bio that hasn't been submitted yet, thus resulting in a
1147 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1148 * of bio_alloc(), as that avoids the mempool deadlock.
1149 * If possible a big IO should be split into smaller parts when allocation
1150 * fails. Partial allocation should not be an error, or you risk a live-lock.
1151 */
1152 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1153 gfp_t gfp_mask)
1154 {
1155 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1156
1157 if (unlikely(!rq))
1158 return ERR_PTR(-ENOMEM);
1159
1160 for_each_bio(bio) {
1161 struct bio *bounce_bio = bio;
1162 int ret;
1163
1164 blk_queue_bounce(q, &bounce_bio);
1165 ret = blk_rq_append_bio(q, rq, bounce_bio);
1166 if (unlikely(ret)) {
1167 blk_put_request(rq);
1168 return ERR_PTR(ret);
1169 }
1170 }
1171
1172 return rq;
1173 }
1174 EXPORT_SYMBOL(blk_make_request);
1175
1176 /**
1177 * blk_requeue_request - put a request back on queue
1178 * @q: request queue where request should be inserted
1179 * @rq: request to be inserted
1180 *
1181 * Description:
1182 * Drivers often keep queueing requests until the hardware cannot accept
1183 * more, when that condition happens we need to put the request back
1184 * on the queue. Must be called with queue lock held.
1185 */
1186 void blk_requeue_request(struct request_queue *q, struct request *rq)
1187 {
1188 blk_delete_timer(rq);
1189 blk_clear_rq_complete(rq);
1190 trace_block_rq_requeue(q, rq);
1191
1192 if (blk_rq_tagged(rq))
1193 blk_queue_end_tag(q, rq);
1194
1195 BUG_ON(blk_queued_rq(rq));
1196
1197 elv_requeue_request(q, rq);
1198 }
1199 EXPORT_SYMBOL(blk_requeue_request);
1200
1201 static void add_acct_request(struct request_queue *q, struct request *rq,
1202 int where)
1203 {
1204 blk_account_io_start(rq, true);
1205 __elv_add_request(q, rq, where);
1206 }
1207
1208 static void part_round_stats_single(int cpu, struct hd_struct *part,
1209 unsigned long now)
1210 {
1211 if (now == part->stamp)
1212 return;
1213
1214 if (part_in_flight(part)) {
1215 __part_stat_add(cpu, part, time_in_queue,
1216 part_in_flight(part) * (now - part->stamp));
1217 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1218 }
1219 part->stamp = now;
1220 }
1221
1222 /**
1223 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1224 * @cpu: cpu number for stats access
1225 * @part: target partition
1226 *
1227 * The average IO queue length and utilisation statistics are maintained
1228 * by observing the current state of the queue length and the amount of
1229 * time it has been in this state for.
1230 *
1231 * Normally, that accounting is done on IO completion, but that can result
1232 * in more than a second's worth of IO being accounted for within any one
1233 * second, leading to >100% utilisation. To deal with that, we call this
1234 * function to do a round-off before returning the results when reading
1235 * /proc/diskstats. This accounts immediately for all queue usage up to
1236 * the current jiffies and restarts the counters again.
1237 */
1238 void part_round_stats(int cpu, struct hd_struct *part)
1239 {
1240 unsigned long now = jiffies;
1241
1242 if (part->partno)
1243 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1244 part_round_stats_single(cpu, part, now);
1245 }
1246 EXPORT_SYMBOL_GPL(part_round_stats);
1247
1248 #ifdef CONFIG_PM_RUNTIME
1249 static void blk_pm_put_request(struct request *rq)
1250 {
1251 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1252 pm_runtime_mark_last_busy(rq->q->dev);
1253 }
1254 #else
1255 static inline void blk_pm_put_request(struct request *rq) {}
1256 #endif
1257
1258 /*
1259 * queue lock must be held
1260 */
1261 void __blk_put_request(struct request_queue *q, struct request *req)
1262 {
1263 if (unlikely(!q))
1264 return;
1265
1266 blk_pm_put_request(req);
1267
1268 elv_completed_request(q, req);
1269
1270 /* this is a bio leak */
1271 WARN_ON(req->bio != NULL);
1272
1273 /*
1274 * Request may not have originated from ll_rw_blk. if not,
1275 * it didn't come out of our reserved rq pools
1276 */
1277 if (req->cmd_flags & REQ_ALLOCED) {
1278 unsigned int flags = req->cmd_flags;
1279 struct request_list *rl = blk_rq_rl(req);
1280
1281 BUG_ON(!list_empty(&req->queuelist));
1282 BUG_ON(!hlist_unhashed(&req->hash));
1283
1284 blk_free_request(rl, req);
1285 freed_request(rl, flags);
1286 blk_put_rl(rl);
1287 }
1288 }
1289 EXPORT_SYMBOL_GPL(__blk_put_request);
1290
1291 void blk_put_request(struct request *req)
1292 {
1293 struct request_queue *q = req->q;
1294
1295 if (q->mq_ops)
1296 blk_mq_free_request(req);
1297 else {
1298 unsigned long flags;
1299
1300 spin_lock_irqsave(q->queue_lock, flags);
1301 __blk_put_request(q, req);
1302 spin_unlock_irqrestore(q->queue_lock, flags);
1303 }
1304 }
1305 EXPORT_SYMBOL(blk_put_request);
1306
1307 /**
1308 * blk_add_request_payload - add a payload to a request
1309 * @rq: request to update
1310 * @page: page backing the payload
1311 * @len: length of the payload.
1312 *
1313 * This allows to later add a payload to an already submitted request by
1314 * a block driver. The driver needs to take care of freeing the payload
1315 * itself.
1316 *
1317 * Note that this is a quite horrible hack and nothing but handling of
1318 * discard requests should ever use it.
1319 */
1320 void blk_add_request_payload(struct request *rq, struct page *page,
1321 unsigned int len)
1322 {
1323 struct bio *bio = rq->bio;
1324
1325 bio->bi_io_vec->bv_page = page;
1326 bio->bi_io_vec->bv_offset = 0;
1327 bio->bi_io_vec->bv_len = len;
1328
1329 bio->bi_size = len;
1330 bio->bi_vcnt = 1;
1331 bio->bi_phys_segments = 1;
1332
1333 rq->__data_len = rq->resid_len = len;
1334 rq->nr_phys_segments = 1;
1335 rq->buffer = bio_data(bio);
1336 }
1337 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1338
1339 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1340 struct bio *bio)
1341 {
1342 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1343
1344 if (!ll_back_merge_fn(q, req, bio))
1345 return false;
1346
1347 trace_block_bio_backmerge(q, req, bio);
1348
1349 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1350 blk_rq_set_mixed_merge(req);
1351
1352 req->biotail->bi_next = bio;
1353 req->biotail = bio;
1354 req->__data_len += bio->bi_size;
1355 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1356
1357 blk_account_io_start(req, false);
1358 return true;
1359 }
1360
1361 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1362 struct bio *bio)
1363 {
1364 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1365
1366 if (!ll_front_merge_fn(q, req, bio))
1367 return false;
1368
1369 trace_block_bio_frontmerge(q, req, bio);
1370
1371 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1372 blk_rq_set_mixed_merge(req);
1373
1374 bio->bi_next = req->bio;
1375 req->bio = bio;
1376
1377 /*
1378 * may not be valid. if the low level driver said
1379 * it didn't need a bounce buffer then it better
1380 * not touch req->buffer either...
1381 */
1382 req->buffer = bio_data(bio);
1383 req->__sector = bio->bi_sector;
1384 req->__data_len += bio->bi_size;
1385 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1386
1387 blk_account_io_start(req, false);
1388 return true;
1389 }
1390
1391 /**
1392 * blk_attempt_plug_merge - try to merge with %current's plugged list
1393 * @q: request_queue new bio is being queued at
1394 * @bio: new bio being queued
1395 * @request_count: out parameter for number of traversed plugged requests
1396 *
1397 * Determine whether @bio being queued on @q can be merged with a request
1398 * on %current's plugged list. Returns %true if merge was successful,
1399 * otherwise %false.
1400 *
1401 * Plugging coalesces IOs from the same issuer for the same purpose without
1402 * going through @q->queue_lock. As such it's more of an issuing mechanism
1403 * than scheduling, and the request, while may have elvpriv data, is not
1404 * added on the elevator at this point. In addition, we don't have
1405 * reliable access to the elevator outside queue lock. Only check basic
1406 * merging parameters without querying the elevator.
1407 */
1408 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1409 unsigned int *request_count)
1410 {
1411 struct blk_plug *plug;
1412 struct request *rq;
1413 bool ret = false;
1414 struct list_head *plug_list;
1415
1416 if (blk_queue_nomerges(q))
1417 goto out;
1418
1419 plug = current->plug;
1420 if (!plug)
1421 goto out;
1422 *request_count = 0;
1423
1424 if (q->mq_ops)
1425 plug_list = &plug->mq_list;
1426 else
1427 plug_list = &plug->list;
1428
1429 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1430 int el_ret;
1431
1432 if (rq->q == q)
1433 (*request_count)++;
1434
1435 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1436 continue;
1437
1438 el_ret = blk_try_merge(rq, bio);
1439 if (el_ret == ELEVATOR_BACK_MERGE) {
1440 ret = bio_attempt_back_merge(q, rq, bio);
1441 if (ret)
1442 break;
1443 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1444 ret = bio_attempt_front_merge(q, rq, bio);
1445 if (ret)
1446 break;
1447 }
1448 }
1449 out:
1450 return ret;
1451 }
1452
1453 void init_request_from_bio(struct request *req, struct bio *bio)
1454 {
1455 req->cmd_type = REQ_TYPE_FS;
1456
1457 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1458 if (bio->bi_rw & REQ_RAHEAD)
1459 req->cmd_flags |= REQ_FAILFAST_MASK;
1460
1461 req->errors = 0;
1462 req->__sector = bio->bi_sector;
1463 req->ioprio = bio_prio(bio);
1464 blk_rq_bio_prep(req->q, req, bio);
1465 }
1466
1467 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1468 {
1469 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1470 struct blk_plug *plug;
1471 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1472 struct request *req;
1473 unsigned int request_count = 0;
1474
1475 /*
1476 * low level driver can indicate that it wants pages above a
1477 * certain limit bounced to low memory (ie for highmem, or even
1478 * ISA dma in theory)
1479 */
1480 blk_queue_bounce(q, &bio);
1481
1482 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1483 bio_endio(bio, -EIO);
1484 return;
1485 }
1486
1487 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1488 spin_lock_irq(q->queue_lock);
1489 where = ELEVATOR_INSERT_FLUSH;
1490 goto get_rq;
1491 }
1492
1493 /*
1494 * Check if we can merge with the plugged list before grabbing
1495 * any locks.
1496 */
1497 if (blk_attempt_plug_merge(q, bio, &request_count))
1498 return;
1499
1500 spin_lock_irq(q->queue_lock);
1501
1502 el_ret = elv_merge(q, &req, bio);
1503 if (el_ret == ELEVATOR_BACK_MERGE) {
1504 if (bio_attempt_back_merge(q, req, bio)) {
1505 elv_bio_merged(q, req, bio);
1506 if (!attempt_back_merge(q, req))
1507 elv_merged_request(q, req, el_ret);
1508 goto out_unlock;
1509 }
1510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1511 if (bio_attempt_front_merge(q, req, bio)) {
1512 elv_bio_merged(q, req, bio);
1513 if (!attempt_front_merge(q, req))
1514 elv_merged_request(q, req, el_ret);
1515 goto out_unlock;
1516 }
1517 }
1518
1519 get_rq:
1520 /*
1521 * This sync check and mask will be re-done in init_request_from_bio(),
1522 * but we need to set it earlier to expose the sync flag to the
1523 * rq allocator and io schedulers.
1524 */
1525 rw_flags = bio_data_dir(bio);
1526 if (sync)
1527 rw_flags |= REQ_SYNC;
1528
1529 /*
1530 * Grab a free request. This is might sleep but can not fail.
1531 * Returns with the queue unlocked.
1532 */
1533 req = get_request(q, rw_flags, bio, GFP_NOIO);
1534 if (unlikely(!req)) {
1535 bio_endio(bio, -ENODEV); /* @q is dead */
1536 goto out_unlock;
1537 }
1538
1539 /*
1540 * After dropping the lock and possibly sleeping here, our request
1541 * may now be mergeable after it had proven unmergeable (above).
1542 * We don't worry about that case for efficiency. It won't happen
1543 * often, and the elevators are able to handle it.
1544 */
1545 init_request_from_bio(req, bio);
1546
1547 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1548 req->cpu = raw_smp_processor_id();
1549
1550 plug = current->plug;
1551 if (plug) {
1552 /*
1553 * If this is the first request added after a plug, fire
1554 * of a plug trace.
1555 */
1556 if (!request_count)
1557 trace_block_plug(q);
1558 else {
1559 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1560 blk_flush_plug_list(plug, false);
1561 trace_block_plug(q);
1562 }
1563 }
1564 list_add_tail(&req->queuelist, &plug->list);
1565 blk_account_io_start(req, true);
1566 } else {
1567 spin_lock_irq(q->queue_lock);
1568 add_acct_request(q, req, where);
1569 __blk_run_queue(q);
1570 out_unlock:
1571 spin_unlock_irq(q->queue_lock);
1572 }
1573 }
1574 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1575
1576 /*
1577 * If bio->bi_dev is a partition, remap the location
1578 */
1579 static inline void blk_partition_remap(struct bio *bio)
1580 {
1581 struct block_device *bdev = bio->bi_bdev;
1582
1583 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1584 struct hd_struct *p = bdev->bd_part;
1585
1586 bio->bi_sector += p->start_sect;
1587 bio->bi_bdev = bdev->bd_contains;
1588
1589 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1590 bdev->bd_dev,
1591 bio->bi_sector - p->start_sect);
1592 }
1593 }
1594
1595 static void handle_bad_sector(struct bio *bio)
1596 {
1597 char b[BDEVNAME_SIZE];
1598
1599 printk(KERN_INFO "attempt to access beyond end of device\n");
1600 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601 bdevname(bio->bi_bdev, b),
1602 bio->bi_rw,
1603 (unsigned long long)bio_end_sector(bio),
1604 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1605
1606 set_bit(BIO_EOF, &bio->bi_flags);
1607 }
1608
1609 #ifdef CONFIG_FAIL_MAKE_REQUEST
1610
1611 static DECLARE_FAULT_ATTR(fail_make_request);
1612
1613 static int __init setup_fail_make_request(char *str)
1614 {
1615 return setup_fault_attr(&fail_make_request, str);
1616 }
1617 __setup("fail_make_request=", setup_fail_make_request);
1618
1619 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1620 {
1621 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1622 }
1623
1624 static int __init fail_make_request_debugfs(void)
1625 {
1626 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1627 NULL, &fail_make_request);
1628
1629 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1630 }
1631
1632 late_initcall(fail_make_request_debugfs);
1633
1634 #else /* CONFIG_FAIL_MAKE_REQUEST */
1635
1636 static inline bool should_fail_request(struct hd_struct *part,
1637 unsigned int bytes)
1638 {
1639 return false;
1640 }
1641
1642 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1643
1644 /*
1645 * Check whether this bio extends beyond the end of the device.
1646 */
1647 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1648 {
1649 sector_t maxsector;
1650
1651 if (!nr_sectors)
1652 return 0;
1653
1654 /* Test device or partition size, when known. */
1655 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1656 if (maxsector) {
1657 sector_t sector = bio->bi_sector;
1658
1659 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1660 /*
1661 * This may well happen - the kernel calls bread()
1662 * without checking the size of the device, e.g., when
1663 * mounting a device.
1664 */
1665 handle_bad_sector(bio);
1666 return 1;
1667 }
1668 }
1669
1670 return 0;
1671 }
1672
1673 static noinline_for_stack bool
1674 generic_make_request_checks(struct bio *bio)
1675 {
1676 struct request_queue *q;
1677 int nr_sectors = bio_sectors(bio);
1678 int err = -EIO;
1679 char b[BDEVNAME_SIZE];
1680 struct hd_struct *part;
1681
1682 might_sleep();
1683
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1686
1687 q = bdev_get_queue(bio->bi_bdev);
1688 if (unlikely(!q)) {
1689 printk(KERN_ERR
1690 "generic_make_request: Trying to access "
1691 "nonexistent block-device %s (%Lu)\n",
1692 bdevname(bio->bi_bdev, b),
1693 (long long) bio->bi_sector);
1694 goto end_io;
1695 }
1696
1697 if (likely(bio_is_rw(bio) &&
1698 nr_sectors > queue_max_hw_sectors(q))) {
1699 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1700 bdevname(bio->bi_bdev, b),
1701 bio_sectors(bio),
1702 queue_max_hw_sectors(q));
1703 goto end_io;
1704 }
1705
1706 part = bio->bi_bdev->bd_part;
1707 if (should_fail_request(part, bio->bi_size) ||
1708 should_fail_request(&part_to_disk(part)->part0,
1709 bio->bi_size))
1710 goto end_io;
1711
1712 /*
1713 * If this device has partitions, remap block n
1714 * of partition p to block n+start(p) of the disk.
1715 */
1716 blk_partition_remap(bio);
1717
1718 if (bio_check_eod(bio, nr_sectors))
1719 goto end_io;
1720
1721 /*
1722 * Filter flush bio's early so that make_request based
1723 * drivers without flush support don't have to worry
1724 * about them.
1725 */
1726 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1727 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1728 if (!nr_sectors) {
1729 err = 0;
1730 goto end_io;
1731 }
1732 }
1733
1734 if ((bio->bi_rw & REQ_DISCARD) &&
1735 (!blk_queue_discard(q) ||
1736 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1737 err = -EOPNOTSUPP;
1738 goto end_io;
1739 }
1740
1741 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1742 err = -EOPNOTSUPP;
1743 goto end_io;
1744 }
1745
1746 /*
1747 * Various block parts want %current->io_context and lazy ioc
1748 * allocation ends up trading a lot of pain for a small amount of
1749 * memory. Just allocate it upfront. This may fail and block
1750 * layer knows how to live with it.
1751 */
1752 create_io_context(GFP_ATOMIC, q->node);
1753
1754 if (blk_throtl_bio(q, bio))
1755 return false; /* throttled, will be resubmitted later */
1756
1757 trace_block_bio_queue(q, bio);
1758 return true;
1759
1760 end_io:
1761 bio_endio(bio, err);
1762 return false;
1763 }
1764
1765 /**
1766 * generic_make_request - hand a buffer to its device driver for I/O
1767 * @bio: The bio describing the location in memory and on the device.
1768 *
1769 * generic_make_request() is used to make I/O requests of block
1770 * devices. It is passed a &struct bio, which describes the I/O that needs
1771 * to be done.
1772 *
1773 * generic_make_request() does not return any status. The
1774 * success/failure status of the request, along with notification of
1775 * completion, is delivered asynchronously through the bio->bi_end_io
1776 * function described (one day) else where.
1777 *
1778 * The caller of generic_make_request must make sure that bi_io_vec
1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780 * set to describe the device address, and the
1781 * bi_end_io and optionally bi_private are set to describe how
1782 * completion notification should be signaled.
1783 *
1784 * generic_make_request and the drivers it calls may use bi_next if this
1785 * bio happens to be merged with someone else, and may resubmit the bio to
1786 * a lower device by calling into generic_make_request recursively, which
1787 * means the bio should NOT be touched after the call to ->make_request_fn.
1788 */
1789 void generic_make_request(struct bio *bio)
1790 {
1791 struct bio_list bio_list_on_stack;
1792
1793 if (!generic_make_request_checks(bio))
1794 return;
1795
1796 /*
1797 * We only want one ->make_request_fn to be active at a time, else
1798 * stack usage with stacked devices could be a problem. So use
1799 * current->bio_list to keep a list of requests submited by a
1800 * make_request_fn function. current->bio_list is also used as a
1801 * flag to say if generic_make_request is currently active in this
1802 * task or not. If it is NULL, then no make_request is active. If
1803 * it is non-NULL, then a make_request is active, and new requests
1804 * should be added at the tail
1805 */
1806 if (current->bio_list) {
1807 bio_list_add(current->bio_list, bio);
1808 return;
1809 }
1810
1811 /* following loop may be a bit non-obvious, and so deserves some
1812 * explanation.
1813 * Before entering the loop, bio->bi_next is NULL (as all callers
1814 * ensure that) so we have a list with a single bio.
1815 * We pretend that we have just taken it off a longer list, so
1816 * we assign bio_list to a pointer to the bio_list_on_stack,
1817 * thus initialising the bio_list of new bios to be
1818 * added. ->make_request() may indeed add some more bios
1819 * through a recursive call to generic_make_request. If it
1820 * did, we find a non-NULL value in bio_list and re-enter the loop
1821 * from the top. In this case we really did just take the bio
1822 * of the top of the list (no pretending) and so remove it from
1823 * bio_list, and call into ->make_request() again.
1824 */
1825 BUG_ON(bio->bi_next);
1826 bio_list_init(&bio_list_on_stack);
1827 current->bio_list = &bio_list_on_stack;
1828 do {
1829 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1830
1831 q->make_request_fn(q, bio);
1832
1833 bio = bio_list_pop(current->bio_list);
1834 } while (bio);
1835 current->bio_list = NULL; /* deactivate */
1836 }
1837 EXPORT_SYMBOL(generic_make_request);
1838
1839 /**
1840 * submit_bio - submit a bio to the block device layer for I/O
1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842 * @bio: The &struct bio which describes the I/O
1843 *
1844 * submit_bio() is very similar in purpose to generic_make_request(), and
1845 * uses that function to do most of the work. Both are fairly rough
1846 * interfaces; @bio must be presetup and ready for I/O.
1847 *
1848 */
1849 void submit_bio(int rw, struct bio *bio)
1850 {
1851 bio->bi_rw |= rw;
1852
1853 /*
1854 * If it's a regular read/write or a barrier with data attached,
1855 * go through the normal accounting stuff before submission.
1856 */
1857 if (bio_has_data(bio)) {
1858 unsigned int count;
1859
1860 if (unlikely(rw & REQ_WRITE_SAME))
1861 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1862 else
1863 count = bio_sectors(bio);
1864
1865 if (rw & WRITE) {
1866 count_vm_events(PGPGOUT, count);
1867 } else {
1868 task_io_account_read(bio->bi_size);
1869 count_vm_events(PGPGIN, count);
1870 }
1871
1872 if (unlikely(block_dump)) {
1873 char b[BDEVNAME_SIZE];
1874 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1875 current->comm, task_pid_nr(current),
1876 (rw & WRITE) ? "WRITE" : "READ",
1877 (unsigned long long)bio->bi_sector,
1878 bdevname(bio->bi_bdev, b),
1879 count);
1880 }
1881 }
1882
1883 generic_make_request(bio);
1884 }
1885 EXPORT_SYMBOL(submit_bio);
1886
1887 /**
1888 * blk_rq_check_limits - Helper function to check a request for the queue limit
1889 * @q: the queue
1890 * @rq: the request being checked
1891 *
1892 * Description:
1893 * @rq may have been made based on weaker limitations of upper-level queues
1894 * in request stacking drivers, and it may violate the limitation of @q.
1895 * Since the block layer and the underlying device driver trust @rq
1896 * after it is inserted to @q, it should be checked against @q before
1897 * the insertion using this generic function.
1898 *
1899 * This function should also be useful for request stacking drivers
1900 * in some cases below, so export this function.
1901 * Request stacking drivers like request-based dm may change the queue
1902 * limits while requests are in the queue (e.g. dm's table swapping).
1903 * Such request stacking drivers should check those requests agaist
1904 * the new queue limits again when they dispatch those requests,
1905 * although such checkings are also done against the old queue limits
1906 * when submitting requests.
1907 */
1908 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1909 {
1910 if (!rq_mergeable(rq))
1911 return 0;
1912
1913 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1914 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1915 return -EIO;
1916 }
1917
1918 /*
1919 * queue's settings related to segment counting like q->bounce_pfn
1920 * may differ from that of other stacking queues.
1921 * Recalculate it to check the request correctly on this queue's
1922 * limitation.
1923 */
1924 blk_recalc_rq_segments(rq);
1925 if (rq->nr_phys_segments > queue_max_segments(q)) {
1926 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1927 return -EIO;
1928 }
1929
1930 return 0;
1931 }
1932 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1933
1934 /**
1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936 * @q: the queue to submit the request
1937 * @rq: the request being queued
1938 */
1939 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1940 {
1941 unsigned long flags;
1942 int where = ELEVATOR_INSERT_BACK;
1943
1944 if (blk_rq_check_limits(q, rq))
1945 return -EIO;
1946
1947 if (rq->rq_disk &&
1948 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1949 return -EIO;
1950
1951 spin_lock_irqsave(q->queue_lock, flags);
1952 if (unlikely(blk_queue_dying(q))) {
1953 spin_unlock_irqrestore(q->queue_lock, flags);
1954 return -ENODEV;
1955 }
1956
1957 /*
1958 * Submitting request must be dequeued before calling this function
1959 * because it will be linked to another request_queue
1960 */
1961 BUG_ON(blk_queued_rq(rq));
1962
1963 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1964 where = ELEVATOR_INSERT_FLUSH;
1965
1966 add_acct_request(q, rq, where);
1967 if (where == ELEVATOR_INSERT_FLUSH)
1968 __blk_run_queue(q);
1969 spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971 return 0;
1972 }
1973 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1974
1975 /**
1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977 * @rq: request to examine
1978 *
1979 * Description:
1980 * A request could be merge of IOs which require different failure
1981 * handling. This function determines the number of bytes which
1982 * can be failed from the beginning of the request without
1983 * crossing into area which need to be retried further.
1984 *
1985 * Return:
1986 * The number of bytes to fail.
1987 *
1988 * Context:
1989 * queue_lock must be held.
1990 */
1991 unsigned int blk_rq_err_bytes(const struct request *rq)
1992 {
1993 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1994 unsigned int bytes = 0;
1995 struct bio *bio;
1996
1997 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1998 return blk_rq_bytes(rq);
1999
2000 /*
2001 * Currently the only 'mixing' which can happen is between
2002 * different fastfail types. We can safely fail portions
2003 * which have all the failfast bits that the first one has -
2004 * the ones which are at least as eager to fail as the first
2005 * one.
2006 */
2007 for (bio = rq->bio; bio; bio = bio->bi_next) {
2008 if ((bio->bi_rw & ff) != ff)
2009 break;
2010 bytes += bio->bi_size;
2011 }
2012
2013 /* this could lead to infinite loop */
2014 BUG_ON(blk_rq_bytes(rq) && !bytes);
2015 return bytes;
2016 }
2017 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2018
2019 void blk_account_io_completion(struct request *req, unsigned int bytes)
2020 {
2021 if (blk_do_io_stat(req)) {
2022 const int rw = rq_data_dir(req);
2023 struct hd_struct *part;
2024 int cpu;
2025
2026 cpu = part_stat_lock();
2027 part = req->part;
2028 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2029 part_stat_unlock();
2030 }
2031 }
2032
2033 void blk_account_io_done(struct request *req)
2034 {
2035 /*
2036 * Account IO completion. flush_rq isn't accounted as a
2037 * normal IO on queueing nor completion. Accounting the
2038 * containing request is enough.
2039 */
2040 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2041 unsigned long duration = jiffies - req->start_time;
2042 const int rw = rq_data_dir(req);
2043 struct hd_struct *part;
2044 int cpu;
2045
2046 cpu = part_stat_lock();
2047 part = req->part;
2048
2049 part_stat_inc(cpu, part, ios[rw]);
2050 part_stat_add(cpu, part, ticks[rw], duration);
2051 part_round_stats(cpu, part);
2052 part_dec_in_flight(part, rw);
2053
2054 hd_struct_put(part);
2055 part_stat_unlock();
2056 }
2057 }
2058
2059 #ifdef CONFIG_PM_RUNTIME
2060 /*
2061 * Don't process normal requests when queue is suspended
2062 * or in the process of suspending/resuming
2063 */
2064 static struct request *blk_pm_peek_request(struct request_queue *q,
2065 struct request *rq)
2066 {
2067 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2068 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2069 return NULL;
2070 else
2071 return rq;
2072 }
2073 #else
2074 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2075 struct request *rq)
2076 {
2077 return rq;
2078 }
2079 #endif
2080
2081 void blk_account_io_start(struct request *rq, bool new_io)
2082 {
2083 struct hd_struct *part;
2084 int rw = rq_data_dir(rq);
2085 int cpu;
2086
2087 if (!blk_do_io_stat(rq))
2088 return;
2089
2090 cpu = part_stat_lock();
2091
2092 if (!new_io) {
2093 part = rq->part;
2094 part_stat_inc(cpu, part, merges[rw]);
2095 } else {
2096 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2097 if (!hd_struct_try_get(part)) {
2098 /*
2099 * The partition is already being removed,
2100 * the request will be accounted on the disk only
2101 *
2102 * We take a reference on disk->part0 although that
2103 * partition will never be deleted, so we can treat
2104 * it as any other partition.
2105 */
2106 part = &rq->rq_disk->part0;
2107 hd_struct_get(part);
2108 }
2109 part_round_stats(cpu, part);
2110 part_inc_in_flight(part, rw);
2111 rq->part = part;
2112 }
2113
2114 part_stat_unlock();
2115 }
2116
2117 /**
2118 * blk_peek_request - peek at the top of a request queue
2119 * @q: request queue to peek at
2120 *
2121 * Description:
2122 * Return the request at the top of @q. The returned request
2123 * should be started using blk_start_request() before LLD starts
2124 * processing it.
2125 *
2126 * Return:
2127 * Pointer to the request at the top of @q if available. Null
2128 * otherwise.
2129 *
2130 * Context:
2131 * queue_lock must be held.
2132 */
2133 struct request *blk_peek_request(struct request_queue *q)
2134 {
2135 struct request *rq;
2136 int ret;
2137
2138 while ((rq = __elv_next_request(q)) != NULL) {
2139
2140 rq = blk_pm_peek_request(q, rq);
2141 if (!rq)
2142 break;
2143
2144 if (!(rq->cmd_flags & REQ_STARTED)) {
2145 /*
2146 * This is the first time the device driver
2147 * sees this request (possibly after
2148 * requeueing). Notify IO scheduler.
2149 */
2150 if (rq->cmd_flags & REQ_SORTED)
2151 elv_activate_rq(q, rq);
2152
2153 /*
2154 * just mark as started even if we don't start
2155 * it, a request that has been delayed should
2156 * not be passed by new incoming requests
2157 */
2158 rq->cmd_flags |= REQ_STARTED;
2159 trace_block_rq_issue(q, rq);
2160 }
2161
2162 if (!q->boundary_rq || q->boundary_rq == rq) {
2163 q->end_sector = rq_end_sector(rq);
2164 q->boundary_rq = NULL;
2165 }
2166
2167 if (rq->cmd_flags & REQ_DONTPREP)
2168 break;
2169
2170 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2171 /*
2172 * make sure space for the drain appears we
2173 * know we can do this because max_hw_segments
2174 * has been adjusted to be one fewer than the
2175 * device can handle
2176 */
2177 rq->nr_phys_segments++;
2178 }
2179
2180 if (!q->prep_rq_fn)
2181 break;
2182
2183 ret = q->prep_rq_fn(q, rq);
2184 if (ret == BLKPREP_OK) {
2185 break;
2186 } else if (ret == BLKPREP_DEFER) {
2187 /*
2188 * the request may have been (partially) prepped.
2189 * we need to keep this request in the front to
2190 * avoid resource deadlock. REQ_STARTED will
2191 * prevent other fs requests from passing this one.
2192 */
2193 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2194 !(rq->cmd_flags & REQ_DONTPREP)) {
2195 /*
2196 * remove the space for the drain we added
2197 * so that we don't add it again
2198 */
2199 --rq->nr_phys_segments;
2200 }
2201
2202 rq = NULL;
2203 break;
2204 } else if (ret == BLKPREP_KILL) {
2205 rq->cmd_flags |= REQ_QUIET;
2206 /*
2207 * Mark this request as started so we don't trigger
2208 * any debug logic in the end I/O path.
2209 */
2210 blk_start_request(rq);
2211 __blk_end_request_all(rq, -EIO);
2212 } else {
2213 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2214 break;
2215 }
2216 }
2217
2218 return rq;
2219 }
2220 EXPORT_SYMBOL(blk_peek_request);
2221
2222 void blk_dequeue_request(struct request *rq)
2223 {
2224 struct request_queue *q = rq->q;
2225
2226 BUG_ON(list_empty(&rq->queuelist));
2227 BUG_ON(ELV_ON_HASH(rq));
2228
2229 list_del_init(&rq->queuelist);
2230
2231 /*
2232 * the time frame between a request being removed from the lists
2233 * and to it is freed is accounted as io that is in progress at
2234 * the driver side.
2235 */
2236 if (blk_account_rq(rq)) {
2237 q->in_flight[rq_is_sync(rq)]++;
2238 set_io_start_time_ns(rq);
2239 }
2240 }
2241
2242 /**
2243 * blk_start_request - start request processing on the driver
2244 * @req: request to dequeue
2245 *
2246 * Description:
2247 * Dequeue @req and start timeout timer on it. This hands off the
2248 * request to the driver.
2249 *
2250 * Block internal functions which don't want to start timer should
2251 * call blk_dequeue_request().
2252 *
2253 * Context:
2254 * queue_lock must be held.
2255 */
2256 void blk_start_request(struct request *req)
2257 {
2258 blk_dequeue_request(req);
2259
2260 /*
2261 * We are now handing the request to the hardware, initialize
2262 * resid_len to full count and add the timeout handler.
2263 */
2264 req->resid_len = blk_rq_bytes(req);
2265 if (unlikely(blk_bidi_rq(req)))
2266 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2267
2268 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2269 blk_add_timer(req);
2270 }
2271 EXPORT_SYMBOL(blk_start_request);
2272
2273 /**
2274 * blk_fetch_request - fetch a request from a request queue
2275 * @q: request queue to fetch a request from
2276 *
2277 * Description:
2278 * Return the request at the top of @q. The request is started on
2279 * return and LLD can start processing it immediately.
2280 *
2281 * Return:
2282 * Pointer to the request at the top of @q if available. Null
2283 * otherwise.
2284 *
2285 * Context:
2286 * queue_lock must be held.
2287 */
2288 struct request *blk_fetch_request(struct request_queue *q)
2289 {
2290 struct request *rq;
2291
2292 rq = blk_peek_request(q);
2293 if (rq)
2294 blk_start_request(rq);
2295 return rq;
2296 }
2297 EXPORT_SYMBOL(blk_fetch_request);
2298
2299 /**
2300 * blk_update_request - Special helper function for request stacking drivers
2301 * @req: the request being processed
2302 * @error: %0 for success, < %0 for error
2303 * @nr_bytes: number of bytes to complete @req
2304 *
2305 * Description:
2306 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2307 * the request structure even if @req doesn't have leftover.
2308 * If @req has leftover, sets it up for the next range of segments.
2309 *
2310 * This special helper function is only for request stacking drivers
2311 * (e.g. request-based dm) so that they can handle partial completion.
2312 * Actual device drivers should use blk_end_request instead.
2313 *
2314 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2315 * %false return from this function.
2316 *
2317 * Return:
2318 * %false - this request doesn't have any more data
2319 * %true - this request has more data
2320 **/
2321 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2322 {
2323 int total_bytes;
2324
2325 if (!req->bio)
2326 return false;
2327
2328 trace_block_rq_complete(req->q, req);
2329
2330 /*
2331 * For fs requests, rq is just carrier of independent bio's
2332 * and each partial completion should be handled separately.
2333 * Reset per-request error on each partial completion.
2334 *
2335 * TODO: tj: This is too subtle. It would be better to let
2336 * low level drivers do what they see fit.
2337 */
2338 if (req->cmd_type == REQ_TYPE_FS)
2339 req->errors = 0;
2340
2341 if (error && req->cmd_type == REQ_TYPE_FS &&
2342 !(req->cmd_flags & REQ_QUIET)) {
2343 char *error_type;
2344
2345 switch (error) {
2346 case -ENOLINK:
2347 error_type = "recoverable transport";
2348 break;
2349 case -EREMOTEIO:
2350 error_type = "critical target";
2351 break;
2352 case -EBADE:
2353 error_type = "critical nexus";
2354 break;
2355 case -ETIMEDOUT:
2356 error_type = "timeout";
2357 break;
2358 case -ENOSPC:
2359 error_type = "critical space allocation";
2360 break;
2361 case -ENODATA:
2362 error_type = "critical medium";
2363 break;
2364 case -EIO:
2365 default:
2366 error_type = "I/O";
2367 break;
2368 }
2369 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2370 error_type, req->rq_disk ?
2371 req->rq_disk->disk_name : "?",
2372 (unsigned long long)blk_rq_pos(req));
2373
2374 }
2375
2376 blk_account_io_completion(req, nr_bytes);
2377
2378 total_bytes = 0;
2379 while (req->bio) {
2380 struct bio *bio = req->bio;
2381 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2382
2383 if (bio_bytes == bio->bi_size)
2384 req->bio = bio->bi_next;
2385
2386 req_bio_endio(req, bio, bio_bytes, error);
2387
2388 total_bytes += bio_bytes;
2389 nr_bytes -= bio_bytes;
2390
2391 if (!nr_bytes)
2392 break;
2393 }
2394
2395 /*
2396 * completely done
2397 */
2398 if (!req->bio) {
2399 /*
2400 * Reset counters so that the request stacking driver
2401 * can find how many bytes remain in the request
2402 * later.
2403 */
2404 req->__data_len = 0;
2405 return false;
2406 }
2407
2408 req->__data_len -= total_bytes;
2409 req->buffer = bio_data(req->bio);
2410
2411 /* update sector only for requests with clear definition of sector */
2412 if (req->cmd_type == REQ_TYPE_FS)
2413 req->__sector += total_bytes >> 9;
2414
2415 /* mixed attributes always follow the first bio */
2416 if (req->cmd_flags & REQ_MIXED_MERGE) {
2417 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2418 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2419 }
2420
2421 /*
2422 * If total number of sectors is less than the first segment
2423 * size, something has gone terribly wrong.
2424 */
2425 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2426 blk_dump_rq_flags(req, "request botched");
2427 req->__data_len = blk_rq_cur_bytes(req);
2428 }
2429
2430 /* recalculate the number of segments */
2431 blk_recalc_rq_segments(req);
2432
2433 return true;
2434 }
2435 EXPORT_SYMBOL_GPL(blk_update_request);
2436
2437 static bool blk_update_bidi_request(struct request *rq, int error,
2438 unsigned int nr_bytes,
2439 unsigned int bidi_bytes)
2440 {
2441 if (blk_update_request(rq, error, nr_bytes))
2442 return true;
2443
2444 /* Bidi request must be completed as a whole */
2445 if (unlikely(blk_bidi_rq(rq)) &&
2446 blk_update_request(rq->next_rq, error, bidi_bytes))
2447 return true;
2448
2449 if (blk_queue_add_random(rq->q))
2450 add_disk_randomness(rq->rq_disk);
2451
2452 return false;
2453 }
2454
2455 /**
2456 * blk_unprep_request - unprepare a request
2457 * @req: the request
2458 *
2459 * This function makes a request ready for complete resubmission (or
2460 * completion). It happens only after all error handling is complete,
2461 * so represents the appropriate moment to deallocate any resources
2462 * that were allocated to the request in the prep_rq_fn. The queue
2463 * lock is held when calling this.
2464 */
2465 void blk_unprep_request(struct request *req)
2466 {
2467 struct request_queue *q = req->q;
2468
2469 req->cmd_flags &= ~REQ_DONTPREP;
2470 if (q->unprep_rq_fn)
2471 q->unprep_rq_fn(q, req);
2472 }
2473 EXPORT_SYMBOL_GPL(blk_unprep_request);
2474
2475 /*
2476 * queue lock must be held
2477 */
2478 static void blk_finish_request(struct request *req, int error)
2479 {
2480 if (blk_rq_tagged(req))
2481 blk_queue_end_tag(req->q, req);
2482
2483 BUG_ON(blk_queued_rq(req));
2484
2485 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2486 laptop_io_completion(&req->q->backing_dev_info);
2487
2488 blk_delete_timer(req);
2489
2490 if (req->cmd_flags & REQ_DONTPREP)
2491 blk_unprep_request(req);
2492
2493 blk_account_io_done(req);
2494
2495 if (req->end_io)
2496 req->end_io(req, error);
2497 else {
2498 if (blk_bidi_rq(req))
2499 __blk_put_request(req->next_rq->q, req->next_rq);
2500
2501 __blk_put_request(req->q, req);
2502 }
2503 }
2504
2505 /**
2506 * blk_end_bidi_request - Complete a bidi request
2507 * @rq: the request to complete
2508 * @error: %0 for success, < %0 for error
2509 * @nr_bytes: number of bytes to complete @rq
2510 * @bidi_bytes: number of bytes to complete @rq->next_rq
2511 *
2512 * Description:
2513 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2514 * Drivers that supports bidi can safely call this member for any
2515 * type of request, bidi or uni. In the later case @bidi_bytes is
2516 * just ignored.
2517 *
2518 * Return:
2519 * %false - we are done with this request
2520 * %true - still buffers pending for this request
2521 **/
2522 static bool blk_end_bidi_request(struct request *rq, int error,
2523 unsigned int nr_bytes, unsigned int bidi_bytes)
2524 {
2525 struct request_queue *q = rq->q;
2526 unsigned long flags;
2527
2528 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2529 return true;
2530
2531 spin_lock_irqsave(q->queue_lock, flags);
2532 blk_finish_request(rq, error);
2533 spin_unlock_irqrestore(q->queue_lock, flags);
2534
2535 return false;
2536 }
2537
2538 /**
2539 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2540 * @rq: the request to complete
2541 * @error: %0 for success, < %0 for error
2542 * @nr_bytes: number of bytes to complete @rq
2543 * @bidi_bytes: number of bytes to complete @rq->next_rq
2544 *
2545 * Description:
2546 * Identical to blk_end_bidi_request() except that queue lock is
2547 * assumed to be locked on entry and remains so on return.
2548 *
2549 * Return:
2550 * %false - we are done with this request
2551 * %true - still buffers pending for this request
2552 **/
2553 bool __blk_end_bidi_request(struct request *rq, int error,
2554 unsigned int nr_bytes, unsigned int bidi_bytes)
2555 {
2556 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557 return true;
2558
2559 blk_finish_request(rq, error);
2560
2561 return false;
2562 }
2563
2564 /**
2565 * blk_end_request - Helper function for drivers to complete the request.
2566 * @rq: the request being processed
2567 * @error: %0 for success, < %0 for error
2568 * @nr_bytes: number of bytes to complete
2569 *
2570 * Description:
2571 * Ends I/O on a number of bytes attached to @rq.
2572 * If @rq has leftover, sets it up for the next range of segments.
2573 *
2574 * Return:
2575 * %false - we are done with this request
2576 * %true - still buffers pending for this request
2577 **/
2578 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2579 {
2580 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2581 }
2582 EXPORT_SYMBOL(blk_end_request);
2583
2584 /**
2585 * blk_end_request_all - Helper function for drives to finish the request.
2586 * @rq: the request to finish
2587 * @error: %0 for success, < %0 for error
2588 *
2589 * Description:
2590 * Completely finish @rq.
2591 */
2592 void blk_end_request_all(struct request *rq, int error)
2593 {
2594 bool pending;
2595 unsigned int bidi_bytes = 0;
2596
2597 if (unlikely(blk_bidi_rq(rq)))
2598 bidi_bytes = blk_rq_bytes(rq->next_rq);
2599
2600 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2601 BUG_ON(pending);
2602 }
2603 EXPORT_SYMBOL(blk_end_request_all);
2604
2605 /**
2606 * blk_end_request_cur - Helper function to finish the current request chunk.
2607 * @rq: the request to finish the current chunk for
2608 * @error: %0 for success, < %0 for error
2609 *
2610 * Description:
2611 * Complete the current consecutively mapped chunk from @rq.
2612 *
2613 * Return:
2614 * %false - we are done with this request
2615 * %true - still buffers pending for this request
2616 */
2617 bool blk_end_request_cur(struct request *rq, int error)
2618 {
2619 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2620 }
2621 EXPORT_SYMBOL(blk_end_request_cur);
2622
2623 /**
2624 * blk_end_request_err - Finish a request till the next failure boundary.
2625 * @rq: the request to finish till the next failure boundary for
2626 * @error: must be negative errno
2627 *
2628 * Description:
2629 * Complete @rq till the next failure boundary.
2630 *
2631 * Return:
2632 * %false - we are done with this request
2633 * %true - still buffers pending for this request
2634 */
2635 bool blk_end_request_err(struct request *rq, int error)
2636 {
2637 WARN_ON(error >= 0);
2638 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2639 }
2640 EXPORT_SYMBOL_GPL(blk_end_request_err);
2641
2642 /**
2643 * __blk_end_request - Helper function for drivers to complete the request.
2644 * @rq: the request being processed
2645 * @error: %0 for success, < %0 for error
2646 * @nr_bytes: number of bytes to complete
2647 *
2648 * Description:
2649 * Must be called with queue lock held unlike blk_end_request().
2650 *
2651 * Return:
2652 * %false - we are done with this request
2653 * %true - still buffers pending for this request
2654 **/
2655 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2656 {
2657 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2658 }
2659 EXPORT_SYMBOL(__blk_end_request);
2660
2661 /**
2662 * __blk_end_request_all - Helper function for drives to finish the request.
2663 * @rq: the request to finish
2664 * @error: %0 for success, < %0 for error
2665 *
2666 * Description:
2667 * Completely finish @rq. Must be called with queue lock held.
2668 */
2669 void __blk_end_request_all(struct request *rq, int error)
2670 {
2671 bool pending;
2672 unsigned int bidi_bytes = 0;
2673
2674 if (unlikely(blk_bidi_rq(rq)))
2675 bidi_bytes = blk_rq_bytes(rq->next_rq);
2676
2677 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2678 BUG_ON(pending);
2679 }
2680 EXPORT_SYMBOL(__blk_end_request_all);
2681
2682 /**
2683 * __blk_end_request_cur - Helper function to finish the current request chunk.
2684 * @rq: the request to finish the current chunk for
2685 * @error: %0 for success, < %0 for error
2686 *
2687 * Description:
2688 * Complete the current consecutively mapped chunk from @rq. Must
2689 * be called with queue lock held.
2690 *
2691 * Return:
2692 * %false - we are done with this request
2693 * %true - still buffers pending for this request
2694 */
2695 bool __blk_end_request_cur(struct request *rq, int error)
2696 {
2697 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2698 }
2699 EXPORT_SYMBOL(__blk_end_request_cur);
2700
2701 /**
2702 * __blk_end_request_err - Finish a request till the next failure boundary.
2703 * @rq: the request to finish till the next failure boundary for
2704 * @error: must be negative errno
2705 *
2706 * Description:
2707 * Complete @rq till the next failure boundary. Must be called
2708 * with queue lock held.
2709 *
2710 * Return:
2711 * %false - we are done with this request
2712 * %true - still buffers pending for this request
2713 */
2714 bool __blk_end_request_err(struct request *rq, int error)
2715 {
2716 WARN_ON(error >= 0);
2717 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2718 }
2719 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2720
2721 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2722 struct bio *bio)
2723 {
2724 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2725 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2726
2727 if (bio_has_data(bio)) {
2728 rq->nr_phys_segments = bio_phys_segments(q, bio);
2729 rq->buffer = bio_data(bio);
2730 }
2731 rq->__data_len = bio->bi_size;
2732 rq->bio = rq->biotail = bio;
2733
2734 if (bio->bi_bdev)
2735 rq->rq_disk = bio->bi_bdev->bd_disk;
2736 }
2737
2738 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2739 /**
2740 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2741 * @rq: the request to be flushed
2742 *
2743 * Description:
2744 * Flush all pages in @rq.
2745 */
2746 void rq_flush_dcache_pages(struct request *rq)
2747 {
2748 struct req_iterator iter;
2749 struct bio_vec *bvec;
2750
2751 rq_for_each_segment(bvec, rq, iter)
2752 flush_dcache_page(bvec->bv_page);
2753 }
2754 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2755 #endif
2756
2757 /**
2758 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2759 * @q : the queue of the device being checked
2760 *
2761 * Description:
2762 * Check if underlying low-level drivers of a device are busy.
2763 * If the drivers want to export their busy state, they must set own
2764 * exporting function using blk_queue_lld_busy() first.
2765 *
2766 * Basically, this function is used only by request stacking drivers
2767 * to stop dispatching requests to underlying devices when underlying
2768 * devices are busy. This behavior helps more I/O merging on the queue
2769 * of the request stacking driver and prevents I/O throughput regression
2770 * on burst I/O load.
2771 *
2772 * Return:
2773 * 0 - Not busy (The request stacking driver should dispatch request)
2774 * 1 - Busy (The request stacking driver should stop dispatching request)
2775 */
2776 int blk_lld_busy(struct request_queue *q)
2777 {
2778 if (q->lld_busy_fn)
2779 return q->lld_busy_fn(q);
2780
2781 return 0;
2782 }
2783 EXPORT_SYMBOL_GPL(blk_lld_busy);
2784
2785 /**
2786 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2787 * @rq: the clone request to be cleaned up
2788 *
2789 * Description:
2790 * Free all bios in @rq for a cloned request.
2791 */
2792 void blk_rq_unprep_clone(struct request *rq)
2793 {
2794 struct bio *bio;
2795
2796 while ((bio = rq->bio) != NULL) {
2797 rq->bio = bio->bi_next;
2798
2799 bio_put(bio);
2800 }
2801 }
2802 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2803
2804 /*
2805 * Copy attributes of the original request to the clone request.
2806 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2807 */
2808 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2809 {
2810 dst->cpu = src->cpu;
2811 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2812 dst->cmd_type = src->cmd_type;
2813 dst->__sector = blk_rq_pos(src);
2814 dst->__data_len = blk_rq_bytes(src);
2815 dst->nr_phys_segments = src->nr_phys_segments;
2816 dst->ioprio = src->ioprio;
2817 dst->extra_len = src->extra_len;
2818 }
2819
2820 /**
2821 * blk_rq_prep_clone - Helper function to setup clone request
2822 * @rq: the request to be setup
2823 * @rq_src: original request to be cloned
2824 * @bs: bio_set that bios for clone are allocated from
2825 * @gfp_mask: memory allocation mask for bio
2826 * @bio_ctr: setup function to be called for each clone bio.
2827 * Returns %0 for success, non %0 for failure.
2828 * @data: private data to be passed to @bio_ctr
2829 *
2830 * Description:
2831 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2832 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2833 * are not copied, and copying such parts is the caller's responsibility.
2834 * Also, pages which the original bios are pointing to are not copied
2835 * and the cloned bios just point same pages.
2836 * So cloned bios must be completed before original bios, which means
2837 * the caller must complete @rq before @rq_src.
2838 */
2839 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2840 struct bio_set *bs, gfp_t gfp_mask,
2841 int (*bio_ctr)(struct bio *, struct bio *, void *),
2842 void *data)
2843 {
2844 struct bio *bio, *bio_src;
2845
2846 if (!bs)
2847 bs = fs_bio_set;
2848
2849 blk_rq_init(NULL, rq);
2850
2851 __rq_for_each_bio(bio_src, rq_src) {
2852 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2853 if (!bio)
2854 goto free_and_out;
2855
2856 if (bio_ctr && bio_ctr(bio, bio_src, data))
2857 goto free_and_out;
2858
2859 if (rq->bio) {
2860 rq->biotail->bi_next = bio;
2861 rq->biotail = bio;
2862 } else
2863 rq->bio = rq->biotail = bio;
2864 }
2865
2866 __blk_rq_prep_clone(rq, rq_src);
2867
2868 return 0;
2869
2870 free_and_out:
2871 if (bio)
2872 bio_put(bio);
2873 blk_rq_unprep_clone(rq);
2874
2875 return -ENOMEM;
2876 }
2877 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2878
2879 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2880 {
2881 return queue_work(kblockd_workqueue, work);
2882 }
2883 EXPORT_SYMBOL(kblockd_schedule_work);
2884
2885 int kblockd_schedule_delayed_work(struct request_queue *q,
2886 struct delayed_work *dwork, unsigned long delay)
2887 {
2888 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2889 }
2890 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2891
2892 #define PLUG_MAGIC 0x91827364
2893
2894 /**
2895 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2896 * @plug: The &struct blk_plug that needs to be initialized
2897 *
2898 * Description:
2899 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2900 * pending I/O should the task end up blocking between blk_start_plug() and
2901 * blk_finish_plug(). This is important from a performance perspective, but
2902 * also ensures that we don't deadlock. For instance, if the task is blocking
2903 * for a memory allocation, memory reclaim could end up wanting to free a
2904 * page belonging to that request that is currently residing in our private
2905 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2906 * this kind of deadlock.
2907 */
2908 void blk_start_plug(struct blk_plug *plug)
2909 {
2910 struct task_struct *tsk = current;
2911
2912 plug->magic = PLUG_MAGIC;
2913 INIT_LIST_HEAD(&plug->list);
2914 INIT_LIST_HEAD(&plug->mq_list);
2915 INIT_LIST_HEAD(&plug->cb_list);
2916
2917 /*
2918 * If this is a nested plug, don't actually assign it. It will be
2919 * flushed on its own.
2920 */
2921 if (!tsk->plug) {
2922 /*
2923 * Store ordering should not be needed here, since a potential
2924 * preempt will imply a full memory barrier
2925 */
2926 tsk->plug = plug;
2927 }
2928 }
2929 EXPORT_SYMBOL(blk_start_plug);
2930
2931 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2932 {
2933 struct request *rqa = container_of(a, struct request, queuelist);
2934 struct request *rqb = container_of(b, struct request, queuelist);
2935
2936 return !(rqa->q < rqb->q ||
2937 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2938 }
2939
2940 /*
2941 * If 'from_schedule' is true, then postpone the dispatch of requests
2942 * until a safe kblockd context. We due this to avoid accidental big
2943 * additional stack usage in driver dispatch, in places where the originally
2944 * plugger did not intend it.
2945 */
2946 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2947 bool from_schedule)
2948 __releases(q->queue_lock)
2949 {
2950 trace_block_unplug(q, depth, !from_schedule);
2951
2952 if (from_schedule)
2953 blk_run_queue_async(q);
2954 else
2955 __blk_run_queue(q);
2956 spin_unlock(q->queue_lock);
2957 }
2958
2959 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2960 {
2961 LIST_HEAD(callbacks);
2962
2963 while (!list_empty(&plug->cb_list)) {
2964 list_splice_init(&plug->cb_list, &callbacks);
2965
2966 while (!list_empty(&callbacks)) {
2967 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2968 struct blk_plug_cb,
2969 list);
2970 list_del(&cb->list);
2971 cb->callback(cb, from_schedule);
2972 }
2973 }
2974 }
2975
2976 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2977 int size)
2978 {
2979 struct blk_plug *plug = current->plug;
2980 struct blk_plug_cb *cb;
2981
2982 if (!plug)
2983 return NULL;
2984
2985 list_for_each_entry(cb, &plug->cb_list, list)
2986 if (cb->callback == unplug && cb->data == data)
2987 return cb;
2988
2989 /* Not currently on the callback list */
2990 BUG_ON(size < sizeof(*cb));
2991 cb = kzalloc(size, GFP_ATOMIC);
2992 if (cb) {
2993 cb->data = data;
2994 cb->callback = unplug;
2995 list_add(&cb->list, &plug->cb_list);
2996 }
2997 return cb;
2998 }
2999 EXPORT_SYMBOL(blk_check_plugged);
3000
3001 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3002 {
3003 struct request_queue *q;
3004 unsigned long flags;
3005 struct request *rq;
3006 LIST_HEAD(list);
3007 unsigned int depth;
3008
3009 BUG_ON(plug->magic != PLUG_MAGIC);
3010
3011 flush_plug_callbacks(plug, from_schedule);
3012
3013 if (!list_empty(&plug->mq_list))
3014 blk_mq_flush_plug_list(plug, from_schedule);
3015
3016 if (list_empty(&plug->list))
3017 return;
3018
3019 list_splice_init(&plug->list, &list);
3020
3021 list_sort(NULL, &list, plug_rq_cmp);
3022
3023 q = NULL;
3024 depth = 0;
3025
3026 /*
3027 * Save and disable interrupts here, to avoid doing it for every
3028 * queue lock we have to take.
3029 */
3030 local_irq_save(flags);
3031 while (!list_empty(&list)) {
3032 rq = list_entry_rq(list.next);
3033 list_del_init(&rq->queuelist);
3034 BUG_ON(!rq->q);
3035 if (rq->q != q) {
3036 /*
3037 * This drops the queue lock
3038 */
3039 if (q)
3040 queue_unplugged(q, depth, from_schedule);
3041 q = rq->q;
3042 depth = 0;
3043 spin_lock(q->queue_lock);
3044 }
3045
3046 /*
3047 * Short-circuit if @q is dead
3048 */
3049 if (unlikely(blk_queue_dying(q))) {
3050 __blk_end_request_all(rq, -ENODEV);
3051 continue;
3052 }
3053
3054 /*
3055 * rq is already accounted, so use raw insert
3056 */
3057 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3058 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3059 else
3060 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3061
3062 depth++;
3063 }
3064
3065 /*
3066 * This drops the queue lock
3067 */
3068 if (q)
3069 queue_unplugged(q, depth, from_schedule);
3070
3071 local_irq_restore(flags);
3072 }
3073
3074 void blk_finish_plug(struct blk_plug *plug)
3075 {
3076 blk_flush_plug_list(plug, false);
3077
3078 if (plug == current->plug)
3079 current->plug = NULL;
3080 }
3081 EXPORT_SYMBOL(blk_finish_plug);
3082
3083 #ifdef CONFIG_PM_RUNTIME
3084 /**
3085 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3086 * @q: the queue of the device
3087 * @dev: the device the queue belongs to
3088 *
3089 * Description:
3090 * Initialize runtime-PM-related fields for @q and start auto suspend for
3091 * @dev. Drivers that want to take advantage of request-based runtime PM
3092 * should call this function after @dev has been initialized, and its
3093 * request queue @q has been allocated, and runtime PM for it can not happen
3094 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3095 * cases, driver should call this function before any I/O has taken place.
3096 *
3097 * This function takes care of setting up using auto suspend for the device,
3098 * the autosuspend delay is set to -1 to make runtime suspend impossible
3099 * until an updated value is either set by user or by driver. Drivers do
3100 * not need to touch other autosuspend settings.
3101 *
3102 * The block layer runtime PM is request based, so only works for drivers
3103 * that use request as their IO unit instead of those directly use bio's.
3104 */
3105 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3106 {
3107 q->dev = dev;
3108 q->rpm_status = RPM_ACTIVE;
3109 pm_runtime_set_autosuspend_delay(q->dev, -1);
3110 pm_runtime_use_autosuspend(q->dev);
3111 }
3112 EXPORT_SYMBOL(blk_pm_runtime_init);
3113
3114 /**
3115 * blk_pre_runtime_suspend - Pre runtime suspend check
3116 * @q: the queue of the device
3117 *
3118 * Description:
3119 * This function will check if runtime suspend is allowed for the device
3120 * by examining if there are any requests pending in the queue. If there
3121 * are requests pending, the device can not be runtime suspended; otherwise,
3122 * the queue's status will be updated to SUSPENDING and the driver can
3123 * proceed to suspend the device.
3124 *
3125 * For the not allowed case, we mark last busy for the device so that
3126 * runtime PM core will try to autosuspend it some time later.
3127 *
3128 * This function should be called near the start of the device's
3129 * runtime_suspend callback.
3130 *
3131 * Return:
3132 * 0 - OK to runtime suspend the device
3133 * -EBUSY - Device should not be runtime suspended
3134 */
3135 int blk_pre_runtime_suspend(struct request_queue *q)
3136 {
3137 int ret = 0;
3138
3139 spin_lock_irq(q->queue_lock);
3140 if (q->nr_pending) {
3141 ret = -EBUSY;
3142 pm_runtime_mark_last_busy(q->dev);
3143 } else {
3144 q->rpm_status = RPM_SUSPENDING;
3145 }
3146 spin_unlock_irq(q->queue_lock);
3147 return ret;
3148 }
3149 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3150
3151 /**
3152 * blk_post_runtime_suspend - Post runtime suspend processing
3153 * @q: the queue of the device
3154 * @err: return value of the device's runtime_suspend function
3155 *
3156 * Description:
3157 * Update the queue's runtime status according to the return value of the
3158 * device's runtime suspend function and mark last busy for the device so
3159 * that PM core will try to auto suspend the device at a later time.
3160 *
3161 * This function should be called near the end of the device's
3162 * runtime_suspend callback.
3163 */
3164 void blk_post_runtime_suspend(struct request_queue *q, int err)
3165 {
3166 spin_lock_irq(q->queue_lock);
3167 if (!err) {
3168 q->rpm_status = RPM_SUSPENDED;
3169 } else {
3170 q->rpm_status = RPM_ACTIVE;
3171 pm_runtime_mark_last_busy(q->dev);
3172 }
3173 spin_unlock_irq(q->queue_lock);
3174 }
3175 EXPORT_SYMBOL(blk_post_runtime_suspend);
3176
3177 /**
3178 * blk_pre_runtime_resume - Pre runtime resume processing
3179 * @q: the queue of the device
3180 *
3181 * Description:
3182 * Update the queue's runtime status to RESUMING in preparation for the
3183 * runtime resume of the device.
3184 *
3185 * This function should be called near the start of the device's
3186 * runtime_resume callback.
3187 */
3188 void blk_pre_runtime_resume(struct request_queue *q)
3189 {
3190 spin_lock_irq(q->queue_lock);
3191 q->rpm_status = RPM_RESUMING;
3192 spin_unlock_irq(q->queue_lock);
3193 }
3194 EXPORT_SYMBOL(blk_pre_runtime_resume);
3195
3196 /**
3197 * blk_post_runtime_resume - Post runtime resume processing
3198 * @q: the queue of the device
3199 * @err: return value of the device's runtime_resume function
3200 *
3201 * Description:
3202 * Update the queue's runtime status according to the return value of the
3203 * device's runtime_resume function. If it is successfully resumed, process
3204 * the requests that are queued into the device's queue when it is resuming
3205 * and then mark last busy and initiate autosuspend for it.
3206 *
3207 * This function should be called near the end of the device's
3208 * runtime_resume callback.
3209 */
3210 void blk_post_runtime_resume(struct request_queue *q, int err)
3211 {
3212 spin_lock_irq(q->queue_lock);
3213 if (!err) {
3214 q->rpm_status = RPM_ACTIVE;
3215 __blk_run_queue(q);
3216 pm_runtime_mark_last_busy(q->dev);
3217 pm_request_autosuspend(q->dev);
3218 } else {
3219 q->rpm_status = RPM_SUSPENDED;
3220 }
3221 spin_unlock_irq(q->queue_lock);
3222 }
3223 EXPORT_SYMBOL(blk_post_runtime_resume);
3224 #endif
3225
3226 int __init blk_dev_init(void)
3227 {
3228 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3229 sizeof(((struct request *)0)->cmd_flags));
3230
3231 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3232 kblockd_workqueue = alloc_workqueue("kblockd",
3233 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3234 WQ_POWER_EFFICIENT, 0);
3235 if (!kblockd_workqueue)
3236 panic("Failed to create kblockd\n");
3237
3238 request_cachep = kmem_cache_create("blkdev_requests",
3239 sizeof(struct request), 0, SLAB_PANIC, NULL);
3240
3241 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3242 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3243
3244 return 0;
3245 }