]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blktrace: fix accounting of partially completed requests
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47
48 DEFINE_IDA(blk_queue_ida);
49
50 /*
51 * For the allocated request tables
52 */
53 struct kmem_cache *request_cachep = NULL;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78 }
79
80 /**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 memset(rq, 0, sizeof(*rq));
103
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
122 {
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
127
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
130
131 bio_advance(bio, nbytes);
132
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
136 }
137
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 int bit;
141
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
145
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
150 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
151
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160
161 static void blk_delay_work(struct work_struct *work)
162 {
163 struct request_queue *q;
164
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
169 }
170
171 /**
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
175 *
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
180 */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188
189 /**
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 WARN_ON(!irqs_disabled());
201
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206
207 /**
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227
228 /**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
244 *
245 */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 del_timer_sync(&q->timeout);
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i)
255 cancel_delayed_work_sync(&hctx->delayed_work);
256 } else {
257 cancel_delayed_work_sync(&q->delay_work);
258 }
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261
262 /**
263 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264 * @q: The queue to run
265 *
266 * Description:
267 * Invoke request handling on a queue if there are any pending requests.
268 * May be used to restart request handling after a request has completed.
269 * This variant runs the queue whether or not the queue has been
270 * stopped. Must be called with the queue lock held and interrupts
271 * disabled. See also @blk_run_queue.
272 */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 if (unlikely(blk_queue_dead(q)))
276 return;
277
278 /*
279 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 * the queue lock internally. As a result multiple threads may be
281 * running such a request function concurrently. Keep track of the
282 * number of active request_fn invocations such that blk_drain_queue()
283 * can wait until all these request_fn calls have finished.
284 */
285 q->request_fn_active++;
286 q->request_fn(q);
287 q->request_fn_active--;
288 }
289
290 /**
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
297 */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
303 __blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306
307 /**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
314 */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321
322 /**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
329 */
330 void blk_run_queue(struct request_queue *q)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
335 __blk_run_queue(q);
336 spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339
340 void blk_put_queue(struct request_queue *q)
341 {
342 kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345
346 /**
347 * __blk_drain_queue - drain requests from request_queue
348 * @q: queue to drain
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 *
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
354 */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
358 {
359 int i;
360
361 lockdep_assert_held(q->queue_lock);
362
363 while (true) {
364 bool drain = false;
365
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
373 blkcg_drain_queue(q);
374
375 /*
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
381 */
382 if (!list_empty(&q->queue_head) && q->request_fn)
383 __blk_run_queue(q);
384
385 drain |= q->nr_rqs_elvpriv;
386 drain |= q->request_fn_active;
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 drain |= !list_empty(&q->queue_head);
395 for (i = 0; i < 2; i++) {
396 drain |= q->nr_rqs[i];
397 drain |= q->in_flight[i];
398 drain |= !list_empty(&q->flush_queue[i]);
399 }
400 }
401
402 if (!drain)
403 break;
404
405 spin_unlock_irq(q->queue_lock);
406
407 msleep(10);
408
409 spin_lock_irq(q->queue_lock);
410 }
411
412 /*
413 * With queue marked dead, any woken up waiter will fail the
414 * allocation path, so the wakeup chaining is lost and we're
415 * left with hung waiters. We need to wake up those waiters.
416 */
417 if (q->request_fn) {
418 struct request_list *rl;
419
420 blk_queue_for_each_rl(rl, q)
421 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 wake_up_all(&rl->wait[i]);
423 }
424 }
425
426 /**
427 * blk_queue_bypass_start - enter queue bypass mode
428 * @q: queue of interest
429 *
430 * In bypass mode, only the dispatch FIFO queue of @q is used. This
431 * function makes @q enter bypass mode and drains all requests which were
432 * throttled or issued before. On return, it's guaranteed that no request
433 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434 * inside queue or RCU read lock.
435 */
436 void blk_queue_bypass_start(struct request_queue *q)
437 {
438 bool drain;
439
440 spin_lock_irq(q->queue_lock);
441 drain = !q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 if (drain) {
446 spin_lock_irq(q->queue_lock);
447 __blk_drain_queue(q, false);
448 spin_unlock_irq(q->queue_lock);
449
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456 /**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
472 /**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
476 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477 * put it. All future requests will be failed immediately with -ENODEV.
478 */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 spinlock_t *lock = q->queue_lock;
482
483 /* mark @q DYING, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
486 spin_lock_irq(lock);
487
488 /*
489 * A dying queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DYING, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
506 /*
507 * Drain all requests queued before DYING marking. Set DEAD flag to
508 * prevent that q->request_fn() gets invoked after draining finished.
509 */
510 if (q->mq_ops) {
511 blk_mq_drain_queue(q);
512 spin_lock_irq(lock);
513 } else {
514 spin_lock_irq(lock);
515 __blk_drain_queue(q, true);
516 }
517 queue_flag_set(QUEUE_FLAG_DEAD, q);
518 spin_unlock_irq(lock);
519
520 /* @q won't process any more request, flush async actions */
521 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 blk_sync_queue(q);
523
524 spin_lock_irq(lock);
525 if (q->queue_lock != &q->__queue_lock)
526 q->queue_lock = &q->__queue_lock;
527 spin_unlock_irq(lock);
528
529 /* @q is and will stay empty, shutdown and put */
530 blk_put_queue(q);
531 }
532 EXPORT_SYMBOL(blk_cleanup_queue);
533
534 int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 gfp_t gfp_mask)
536 {
537 if (unlikely(rl->rq_pool))
538 return 0;
539
540 rl->q = q;
541 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
543 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
545
546 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
547 mempool_free_slab, request_cachep,
548 gfp_mask, q->node);
549 if (!rl->rq_pool)
550 return -ENOMEM;
551
552 return 0;
553 }
554
555 void blk_exit_rl(struct request_list *rl)
556 {
557 if (rl->rq_pool)
558 mempool_destroy(rl->rq_pool);
559 }
560
561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
562 {
563 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
564 }
565 EXPORT_SYMBOL(blk_alloc_queue);
566
567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
568 {
569 struct request_queue *q;
570 int err;
571
572 q = kmem_cache_alloc_node(blk_requestq_cachep,
573 gfp_mask | __GFP_ZERO, node_id);
574 if (!q)
575 return NULL;
576
577 if (percpu_counter_init(&q->mq_usage_counter, 0))
578 goto fail_q;
579
580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 if (q->id < 0)
582 goto fail_c;
583
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 q->backing_dev_info.name = "block";
589 q->node = node_id;
590
591 err = bdi_init(&q->backing_dev_info);
592 if (err)
593 goto fail_id;
594
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 INIT_LIST_HEAD(&q->queue_head);
599 INIT_LIST_HEAD(&q->timeout_list);
600 INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608
609 kobject_init(&q->kobj, &blk_queue_ktype);
610
611 mutex_init(&q->sysfs_lock);
612 spin_lock_init(&q->__queue_lock);
613
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
629 init_waitqueue_head(&q->mq_freeze_wq);
630
631 if (blkcg_init_queue(q))
632 goto fail_bdi;
633
634 return q;
635
636 fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
640 fail_c:
641 percpu_counter_destroy(&q->mq_usage_counter);
642 fail_q:
643 kmem_cache_free(blk_requestq_cachep, q);
644 return NULL;
645 }
646 EXPORT_SYMBOL(blk_alloc_queue_node);
647
648 /**
649 * blk_init_queue - prepare a request queue for use with a block device
650 * @rfn: The function to be called to process requests that have been
651 * placed on the queue.
652 * @lock: Request queue spin lock
653 *
654 * Description:
655 * If a block device wishes to use the standard request handling procedures,
656 * which sorts requests and coalesces adjacent requests, then it must
657 * call blk_init_queue(). The function @rfn will be called when there
658 * are requests on the queue that need to be processed. If the device
659 * supports plugging, then @rfn may not be called immediately when requests
660 * are available on the queue, but may be called at some time later instead.
661 * Plugged queues are generally unplugged when a buffer belonging to one
662 * of the requests on the queue is needed, or due to memory pressure.
663 *
664 * @rfn is not required, or even expected, to remove all requests off the
665 * queue, but only as many as it can handle at a time. If it does leave
666 * requests on the queue, it is responsible for arranging that the requests
667 * get dealt with eventually.
668 *
669 * The queue spin lock must be held while manipulating the requests on the
670 * request queue; this lock will be taken also from interrupt context, so irq
671 * disabling is needed for it.
672 *
673 * Function returns a pointer to the initialized request queue, or %NULL if
674 * it didn't succeed.
675 *
676 * Note:
677 * blk_init_queue() must be paired with a blk_cleanup_queue() call
678 * when the block device is deactivated (such as at module unload).
679 **/
680
681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
682 {
683 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
684 }
685 EXPORT_SYMBOL(blk_init_queue);
686
687 struct request_queue *
688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689 {
690 struct request_queue *uninit_q, *q;
691
692 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 if (!uninit_q)
694 return NULL;
695
696 uninit_q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
697 if (!uninit_q->flush_rq)
698 goto out_cleanup_queue;
699
700 q = blk_init_allocated_queue(uninit_q, rfn, lock);
701 if (!q)
702 goto out_free_flush_rq;
703 return q;
704
705 out_free_flush_rq:
706 kfree(uninit_q->flush_rq);
707 out_cleanup_queue:
708 blk_cleanup_queue(uninit_q);
709 return NULL;
710 }
711 EXPORT_SYMBOL(blk_init_queue_node);
712
713 struct request_queue *
714 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
715 spinlock_t *lock)
716 {
717 if (!q)
718 return NULL;
719
720 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
721 return NULL;
722
723 q->request_fn = rfn;
724 q->prep_rq_fn = NULL;
725 q->unprep_rq_fn = NULL;
726 q->queue_flags |= QUEUE_FLAG_DEFAULT;
727
728 /* Override internal queue lock with supplied lock pointer */
729 if (lock)
730 q->queue_lock = lock;
731
732 /*
733 * This also sets hw/phys segments, boundary and size
734 */
735 blk_queue_make_request(q, blk_queue_bio);
736
737 q->sg_reserved_size = INT_MAX;
738
739 /* Protect q->elevator from elevator_change */
740 mutex_lock(&q->sysfs_lock);
741
742 /* init elevator */
743 if (elevator_init(q, NULL)) {
744 mutex_unlock(&q->sysfs_lock);
745 return NULL;
746 }
747
748 mutex_unlock(&q->sysfs_lock);
749
750 return q;
751 }
752 EXPORT_SYMBOL(blk_init_allocated_queue);
753
754 bool blk_get_queue(struct request_queue *q)
755 {
756 if (likely(!blk_queue_dying(q))) {
757 __blk_get_queue(q);
758 return true;
759 }
760
761 return false;
762 }
763 EXPORT_SYMBOL(blk_get_queue);
764
765 static inline void blk_free_request(struct request_list *rl, struct request *rq)
766 {
767 if (rq->cmd_flags & REQ_ELVPRIV) {
768 elv_put_request(rl->q, rq);
769 if (rq->elv.icq)
770 put_io_context(rq->elv.icq->ioc);
771 }
772
773 mempool_free(rq, rl->rq_pool);
774 }
775
776 /*
777 * ioc_batching returns true if the ioc is a valid batching request and
778 * should be given priority access to a request.
779 */
780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
781 {
782 if (!ioc)
783 return 0;
784
785 /*
786 * Make sure the process is able to allocate at least 1 request
787 * even if the batch times out, otherwise we could theoretically
788 * lose wakeups.
789 */
790 return ioc->nr_batch_requests == q->nr_batching ||
791 (ioc->nr_batch_requests > 0
792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
793 }
794
795 /*
796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797 * will cause the process to be a "batcher" on all queues in the system. This
798 * is the behaviour we want though - once it gets a wakeup it should be given
799 * a nice run.
800 */
801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
802 {
803 if (!ioc || ioc_batching(q, ioc))
804 return;
805
806 ioc->nr_batch_requests = q->nr_batching;
807 ioc->last_waited = jiffies;
808 }
809
810 static void __freed_request(struct request_list *rl, int sync)
811 {
812 struct request_queue *q = rl->q;
813
814 /*
815 * bdi isn't aware of blkcg yet. As all async IOs end up root
816 * blkcg anyway, just use root blkcg state.
817 */
818 if (rl == &q->root_rl &&
819 rl->count[sync] < queue_congestion_off_threshold(q))
820 blk_clear_queue_congested(q, sync);
821
822 if (rl->count[sync] + 1 <= q->nr_requests) {
823 if (waitqueue_active(&rl->wait[sync]))
824 wake_up(&rl->wait[sync]);
825
826 blk_clear_rl_full(rl, sync);
827 }
828 }
829
830 /*
831 * A request has just been released. Account for it, update the full and
832 * congestion status, wake up any waiters. Called under q->queue_lock.
833 */
834 static void freed_request(struct request_list *rl, unsigned int flags)
835 {
836 struct request_queue *q = rl->q;
837 int sync = rw_is_sync(flags);
838
839 q->nr_rqs[sync]--;
840 rl->count[sync]--;
841 if (flags & REQ_ELVPRIV)
842 q->nr_rqs_elvpriv--;
843
844 __freed_request(rl, sync);
845
846 if (unlikely(rl->starved[sync ^ 1]))
847 __freed_request(rl, sync ^ 1);
848 }
849
850 /*
851 * Determine if elevator data should be initialized when allocating the
852 * request associated with @bio.
853 */
854 static bool blk_rq_should_init_elevator(struct bio *bio)
855 {
856 if (!bio)
857 return true;
858
859 /*
860 * Flush requests do not use the elevator so skip initialization.
861 * This allows a request to share the flush and elevator data.
862 */
863 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
864 return false;
865
866 return true;
867 }
868
869 /**
870 * rq_ioc - determine io_context for request allocation
871 * @bio: request being allocated is for this bio (can be %NULL)
872 *
873 * Determine io_context to use for request allocation for @bio. May return
874 * %NULL if %current->io_context doesn't exist.
875 */
876 static struct io_context *rq_ioc(struct bio *bio)
877 {
878 #ifdef CONFIG_BLK_CGROUP
879 if (bio && bio->bi_ioc)
880 return bio->bi_ioc;
881 #endif
882 return current->io_context;
883 }
884
885 /**
886 * __get_request - get a free request
887 * @rl: request list to allocate from
888 * @rw_flags: RW and SYNC flags
889 * @bio: bio to allocate request for (can be %NULL)
890 * @gfp_mask: allocation mask
891 *
892 * Get a free request from @q. This function may fail under memory
893 * pressure or if @q is dead.
894 *
895 * Must be callled with @q->queue_lock held and,
896 * Returns %NULL on failure, with @q->queue_lock held.
897 * Returns !%NULL on success, with @q->queue_lock *not held*.
898 */
899 static struct request *__get_request(struct request_list *rl, int rw_flags,
900 struct bio *bio, gfp_t gfp_mask)
901 {
902 struct request_queue *q = rl->q;
903 struct request *rq;
904 struct elevator_type *et = q->elevator->type;
905 struct io_context *ioc = rq_ioc(bio);
906 struct io_cq *icq = NULL;
907 const bool is_sync = rw_is_sync(rw_flags) != 0;
908 int may_queue;
909
910 if (unlikely(blk_queue_dying(q)))
911 return NULL;
912
913 may_queue = elv_may_queue(q, rw_flags);
914 if (may_queue == ELV_MQUEUE_NO)
915 goto rq_starved;
916
917 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
918 if (rl->count[is_sync]+1 >= q->nr_requests) {
919 /*
920 * The queue will fill after this allocation, so set
921 * it as full, and mark this process as "batching".
922 * This process will be allowed to complete a batch of
923 * requests, others will be blocked.
924 */
925 if (!blk_rl_full(rl, is_sync)) {
926 ioc_set_batching(q, ioc);
927 blk_set_rl_full(rl, is_sync);
928 } else {
929 if (may_queue != ELV_MQUEUE_MUST
930 && !ioc_batching(q, ioc)) {
931 /*
932 * The queue is full and the allocating
933 * process is not a "batcher", and not
934 * exempted by the IO scheduler
935 */
936 return NULL;
937 }
938 }
939 }
940 /*
941 * bdi isn't aware of blkcg yet. As all async IOs end up
942 * root blkcg anyway, just use root blkcg state.
943 */
944 if (rl == &q->root_rl)
945 blk_set_queue_congested(q, is_sync);
946 }
947
948 /*
949 * Only allow batching queuers to allocate up to 50% over the defined
950 * limit of requests, otherwise we could have thousands of requests
951 * allocated with any setting of ->nr_requests
952 */
953 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
954 return NULL;
955
956 q->nr_rqs[is_sync]++;
957 rl->count[is_sync]++;
958 rl->starved[is_sync] = 0;
959
960 /*
961 * Decide whether the new request will be managed by elevator. If
962 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
963 * prevent the current elevator from being destroyed until the new
964 * request is freed. This guarantees icq's won't be destroyed and
965 * makes creating new ones safe.
966 *
967 * Also, lookup icq while holding queue_lock. If it doesn't exist,
968 * it will be created after releasing queue_lock.
969 */
970 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
971 rw_flags |= REQ_ELVPRIV;
972 q->nr_rqs_elvpriv++;
973 if (et->icq_cache && ioc)
974 icq = ioc_lookup_icq(ioc, q);
975 }
976
977 if (blk_queue_io_stat(q))
978 rw_flags |= REQ_IO_STAT;
979 spin_unlock_irq(q->queue_lock);
980
981 /* allocate and init request */
982 rq = mempool_alloc(rl->rq_pool, gfp_mask);
983 if (!rq)
984 goto fail_alloc;
985
986 blk_rq_init(q, rq);
987 blk_rq_set_rl(rq, rl);
988 rq->cmd_flags = rw_flags | REQ_ALLOCED;
989
990 /* init elvpriv */
991 if (rw_flags & REQ_ELVPRIV) {
992 if (unlikely(et->icq_cache && !icq)) {
993 if (ioc)
994 icq = ioc_create_icq(ioc, q, gfp_mask);
995 if (!icq)
996 goto fail_elvpriv;
997 }
998
999 rq->elv.icq = icq;
1000 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1001 goto fail_elvpriv;
1002
1003 /* @rq->elv.icq holds io_context until @rq is freed */
1004 if (icq)
1005 get_io_context(icq->ioc);
1006 }
1007 out:
1008 /*
1009 * ioc may be NULL here, and ioc_batching will be false. That's
1010 * OK, if the queue is under the request limit then requests need
1011 * not count toward the nr_batch_requests limit. There will always
1012 * be some limit enforced by BLK_BATCH_TIME.
1013 */
1014 if (ioc_batching(q, ioc))
1015 ioc->nr_batch_requests--;
1016
1017 trace_block_getrq(q, bio, rw_flags & 1);
1018 return rq;
1019
1020 fail_elvpriv:
1021 /*
1022 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1023 * and may fail indefinitely under memory pressure and thus
1024 * shouldn't stall IO. Treat this request as !elvpriv. This will
1025 * disturb iosched and blkcg but weird is bettern than dead.
1026 */
1027 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1028 dev_name(q->backing_dev_info.dev));
1029
1030 rq->cmd_flags &= ~REQ_ELVPRIV;
1031 rq->elv.icq = NULL;
1032
1033 spin_lock_irq(q->queue_lock);
1034 q->nr_rqs_elvpriv--;
1035 spin_unlock_irq(q->queue_lock);
1036 goto out;
1037
1038 fail_alloc:
1039 /*
1040 * Allocation failed presumably due to memory. Undo anything we
1041 * might have messed up.
1042 *
1043 * Allocating task should really be put onto the front of the wait
1044 * queue, but this is pretty rare.
1045 */
1046 spin_lock_irq(q->queue_lock);
1047 freed_request(rl, rw_flags);
1048
1049 /*
1050 * in the very unlikely event that allocation failed and no
1051 * requests for this direction was pending, mark us starved so that
1052 * freeing of a request in the other direction will notice
1053 * us. another possible fix would be to split the rq mempool into
1054 * READ and WRITE
1055 */
1056 rq_starved:
1057 if (unlikely(rl->count[is_sync] == 0))
1058 rl->starved[is_sync] = 1;
1059 return NULL;
1060 }
1061
1062 /**
1063 * get_request - get a free request
1064 * @q: request_queue to allocate request from
1065 * @rw_flags: RW and SYNC flags
1066 * @bio: bio to allocate request for (can be %NULL)
1067 * @gfp_mask: allocation mask
1068 *
1069 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1070 * function keeps retrying under memory pressure and fails iff @q is dead.
1071 *
1072 * Must be callled with @q->queue_lock held and,
1073 * Returns %NULL on failure, with @q->queue_lock held.
1074 * Returns !%NULL on success, with @q->queue_lock *not held*.
1075 */
1076 static struct request *get_request(struct request_queue *q, int rw_flags,
1077 struct bio *bio, gfp_t gfp_mask)
1078 {
1079 const bool is_sync = rw_is_sync(rw_flags) != 0;
1080 DEFINE_WAIT(wait);
1081 struct request_list *rl;
1082 struct request *rq;
1083
1084 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1085 retry:
1086 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1087 if (rq)
1088 return rq;
1089
1090 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1091 blk_put_rl(rl);
1092 return NULL;
1093 }
1094
1095 /* wait on @rl and retry */
1096 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1097 TASK_UNINTERRUPTIBLE);
1098
1099 trace_block_sleeprq(q, bio, rw_flags & 1);
1100
1101 spin_unlock_irq(q->queue_lock);
1102 io_schedule();
1103
1104 /*
1105 * After sleeping, we become a "batching" process and will be able
1106 * to allocate at least one request, and up to a big batch of them
1107 * for a small period time. See ioc_batching, ioc_set_batching
1108 */
1109 ioc_set_batching(q, current->io_context);
1110
1111 spin_lock_irq(q->queue_lock);
1112 finish_wait(&rl->wait[is_sync], &wait);
1113
1114 goto retry;
1115 }
1116
1117 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1118 gfp_t gfp_mask)
1119 {
1120 struct request *rq;
1121
1122 BUG_ON(rw != READ && rw != WRITE);
1123
1124 /* create ioc upfront */
1125 create_io_context(gfp_mask, q->node);
1126
1127 spin_lock_irq(q->queue_lock);
1128 rq = get_request(q, rw, NULL, gfp_mask);
1129 if (!rq)
1130 spin_unlock_irq(q->queue_lock);
1131 /* q->queue_lock is unlocked at this point */
1132
1133 return rq;
1134 }
1135
1136 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1137 {
1138 if (q->mq_ops)
1139 return blk_mq_alloc_request(q, rw, gfp_mask);
1140 else
1141 return blk_old_get_request(q, rw, gfp_mask);
1142 }
1143 EXPORT_SYMBOL(blk_get_request);
1144
1145 /**
1146 * blk_make_request - given a bio, allocate a corresponding struct request.
1147 * @q: target request queue
1148 * @bio: The bio describing the memory mappings that will be submitted for IO.
1149 * It may be a chained-bio properly constructed by block/bio layer.
1150 * @gfp_mask: gfp flags to be used for memory allocation
1151 *
1152 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1153 * type commands. Where the struct request needs to be farther initialized by
1154 * the caller. It is passed a &struct bio, which describes the memory info of
1155 * the I/O transfer.
1156 *
1157 * The caller of blk_make_request must make sure that bi_io_vec
1158 * are set to describe the memory buffers. That bio_data_dir() will return
1159 * the needed direction of the request. (And all bio's in the passed bio-chain
1160 * are properly set accordingly)
1161 *
1162 * If called under none-sleepable conditions, mapped bio buffers must not
1163 * need bouncing, by calling the appropriate masked or flagged allocator,
1164 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1165 * BUG.
1166 *
1167 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1168 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1169 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1170 * completion of a bio that hasn't been submitted yet, thus resulting in a
1171 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1172 * of bio_alloc(), as that avoids the mempool deadlock.
1173 * If possible a big IO should be split into smaller parts when allocation
1174 * fails. Partial allocation should not be an error, or you risk a live-lock.
1175 */
1176 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1177 gfp_t gfp_mask)
1178 {
1179 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1180
1181 if (unlikely(!rq))
1182 return ERR_PTR(-ENOMEM);
1183
1184 for_each_bio(bio) {
1185 struct bio *bounce_bio = bio;
1186 int ret;
1187
1188 blk_queue_bounce(q, &bounce_bio);
1189 ret = blk_rq_append_bio(q, rq, bounce_bio);
1190 if (unlikely(ret)) {
1191 blk_put_request(rq);
1192 return ERR_PTR(ret);
1193 }
1194 }
1195
1196 return rq;
1197 }
1198 EXPORT_SYMBOL(blk_make_request);
1199
1200 /**
1201 * blk_requeue_request - put a request back on queue
1202 * @q: request queue where request should be inserted
1203 * @rq: request to be inserted
1204 *
1205 * Description:
1206 * Drivers often keep queueing requests until the hardware cannot accept
1207 * more, when that condition happens we need to put the request back
1208 * on the queue. Must be called with queue lock held.
1209 */
1210 void blk_requeue_request(struct request_queue *q, struct request *rq)
1211 {
1212 blk_delete_timer(rq);
1213 blk_clear_rq_complete(rq);
1214 trace_block_rq_requeue(q, rq);
1215
1216 if (blk_rq_tagged(rq))
1217 blk_queue_end_tag(q, rq);
1218
1219 BUG_ON(blk_queued_rq(rq));
1220
1221 elv_requeue_request(q, rq);
1222 }
1223 EXPORT_SYMBOL(blk_requeue_request);
1224
1225 static void add_acct_request(struct request_queue *q, struct request *rq,
1226 int where)
1227 {
1228 blk_account_io_start(rq, true);
1229 __elv_add_request(q, rq, where);
1230 }
1231
1232 static void part_round_stats_single(int cpu, struct hd_struct *part,
1233 unsigned long now)
1234 {
1235 if (now == part->stamp)
1236 return;
1237
1238 if (part_in_flight(part)) {
1239 __part_stat_add(cpu, part, time_in_queue,
1240 part_in_flight(part) * (now - part->stamp));
1241 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1242 }
1243 part->stamp = now;
1244 }
1245
1246 /**
1247 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1248 * @cpu: cpu number for stats access
1249 * @part: target partition
1250 *
1251 * The average IO queue length and utilisation statistics are maintained
1252 * by observing the current state of the queue length and the amount of
1253 * time it has been in this state for.
1254 *
1255 * Normally, that accounting is done on IO completion, but that can result
1256 * in more than a second's worth of IO being accounted for within any one
1257 * second, leading to >100% utilisation. To deal with that, we call this
1258 * function to do a round-off before returning the results when reading
1259 * /proc/diskstats. This accounts immediately for all queue usage up to
1260 * the current jiffies and restarts the counters again.
1261 */
1262 void part_round_stats(int cpu, struct hd_struct *part)
1263 {
1264 unsigned long now = jiffies;
1265
1266 if (part->partno)
1267 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1268 part_round_stats_single(cpu, part, now);
1269 }
1270 EXPORT_SYMBOL_GPL(part_round_stats);
1271
1272 #ifdef CONFIG_PM_RUNTIME
1273 static void blk_pm_put_request(struct request *rq)
1274 {
1275 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1276 pm_runtime_mark_last_busy(rq->q->dev);
1277 }
1278 #else
1279 static inline void blk_pm_put_request(struct request *rq) {}
1280 #endif
1281
1282 /*
1283 * queue lock must be held
1284 */
1285 void __blk_put_request(struct request_queue *q, struct request *req)
1286 {
1287 if (unlikely(!q))
1288 return;
1289
1290 if (q->mq_ops) {
1291 blk_mq_free_request(req);
1292 return;
1293 }
1294
1295 blk_pm_put_request(req);
1296
1297 elv_completed_request(q, req);
1298
1299 /* this is a bio leak */
1300 WARN_ON(req->bio != NULL);
1301
1302 /*
1303 * Request may not have originated from ll_rw_blk. if not,
1304 * it didn't come out of our reserved rq pools
1305 */
1306 if (req->cmd_flags & REQ_ALLOCED) {
1307 unsigned int flags = req->cmd_flags;
1308 struct request_list *rl = blk_rq_rl(req);
1309
1310 BUG_ON(!list_empty(&req->queuelist));
1311 BUG_ON(!hlist_unhashed(&req->hash));
1312
1313 blk_free_request(rl, req);
1314 freed_request(rl, flags);
1315 blk_put_rl(rl);
1316 }
1317 }
1318 EXPORT_SYMBOL_GPL(__blk_put_request);
1319
1320 void blk_put_request(struct request *req)
1321 {
1322 struct request_queue *q = req->q;
1323
1324 if (q->mq_ops)
1325 blk_mq_free_request(req);
1326 else {
1327 unsigned long flags;
1328
1329 spin_lock_irqsave(q->queue_lock, flags);
1330 __blk_put_request(q, req);
1331 spin_unlock_irqrestore(q->queue_lock, flags);
1332 }
1333 }
1334 EXPORT_SYMBOL(blk_put_request);
1335
1336 /**
1337 * blk_add_request_payload - add a payload to a request
1338 * @rq: request to update
1339 * @page: page backing the payload
1340 * @len: length of the payload.
1341 *
1342 * This allows to later add a payload to an already submitted request by
1343 * a block driver. The driver needs to take care of freeing the payload
1344 * itself.
1345 *
1346 * Note that this is a quite horrible hack and nothing but handling of
1347 * discard requests should ever use it.
1348 */
1349 void blk_add_request_payload(struct request *rq, struct page *page,
1350 unsigned int len)
1351 {
1352 struct bio *bio = rq->bio;
1353
1354 bio->bi_io_vec->bv_page = page;
1355 bio->bi_io_vec->bv_offset = 0;
1356 bio->bi_io_vec->bv_len = len;
1357
1358 bio->bi_iter.bi_size = len;
1359 bio->bi_vcnt = 1;
1360 bio->bi_phys_segments = 1;
1361
1362 rq->__data_len = rq->resid_len = len;
1363 rq->nr_phys_segments = 1;
1364 rq->buffer = bio_data(bio);
1365 }
1366 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1367
1368 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1369 struct bio *bio)
1370 {
1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372
1373 if (!ll_back_merge_fn(q, req, bio))
1374 return false;
1375
1376 trace_block_bio_backmerge(q, req, bio);
1377
1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 blk_rq_set_mixed_merge(req);
1380
1381 req->biotail->bi_next = bio;
1382 req->biotail = bio;
1383 req->__data_len += bio->bi_iter.bi_size;
1384 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1385
1386 blk_account_io_start(req, false);
1387 return true;
1388 }
1389
1390 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1391 struct bio *bio)
1392 {
1393 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1394
1395 if (!ll_front_merge_fn(q, req, bio))
1396 return false;
1397
1398 trace_block_bio_frontmerge(q, req, bio);
1399
1400 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1401 blk_rq_set_mixed_merge(req);
1402
1403 bio->bi_next = req->bio;
1404 req->bio = bio;
1405
1406 /*
1407 * may not be valid. if the low level driver said
1408 * it didn't need a bounce buffer then it better
1409 * not touch req->buffer either...
1410 */
1411 req->buffer = bio_data(bio);
1412 req->__sector = bio->bi_iter.bi_sector;
1413 req->__data_len += bio->bi_iter.bi_size;
1414 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1415
1416 blk_account_io_start(req, false);
1417 return true;
1418 }
1419
1420 /**
1421 * blk_attempt_plug_merge - try to merge with %current's plugged list
1422 * @q: request_queue new bio is being queued at
1423 * @bio: new bio being queued
1424 * @request_count: out parameter for number of traversed plugged requests
1425 *
1426 * Determine whether @bio being queued on @q can be merged with a request
1427 * on %current's plugged list. Returns %true if merge was successful,
1428 * otherwise %false.
1429 *
1430 * Plugging coalesces IOs from the same issuer for the same purpose without
1431 * going through @q->queue_lock. As such it's more of an issuing mechanism
1432 * than scheduling, and the request, while may have elvpriv data, is not
1433 * added on the elevator at this point. In addition, we don't have
1434 * reliable access to the elevator outside queue lock. Only check basic
1435 * merging parameters without querying the elevator.
1436 */
1437 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1438 unsigned int *request_count)
1439 {
1440 struct blk_plug *plug;
1441 struct request *rq;
1442 bool ret = false;
1443 struct list_head *plug_list;
1444
1445 if (blk_queue_nomerges(q))
1446 goto out;
1447
1448 plug = current->plug;
1449 if (!plug)
1450 goto out;
1451 *request_count = 0;
1452
1453 if (q->mq_ops)
1454 plug_list = &plug->mq_list;
1455 else
1456 plug_list = &plug->list;
1457
1458 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1459 int el_ret;
1460
1461 if (rq->q == q)
1462 (*request_count)++;
1463
1464 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1465 continue;
1466
1467 el_ret = blk_try_merge(rq, bio);
1468 if (el_ret == ELEVATOR_BACK_MERGE) {
1469 ret = bio_attempt_back_merge(q, rq, bio);
1470 if (ret)
1471 break;
1472 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1473 ret = bio_attempt_front_merge(q, rq, bio);
1474 if (ret)
1475 break;
1476 }
1477 }
1478 out:
1479 return ret;
1480 }
1481
1482 void init_request_from_bio(struct request *req, struct bio *bio)
1483 {
1484 req->cmd_type = REQ_TYPE_FS;
1485
1486 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1487 if (bio->bi_rw & REQ_RAHEAD)
1488 req->cmd_flags |= REQ_FAILFAST_MASK;
1489
1490 req->errors = 0;
1491 req->__sector = bio->bi_iter.bi_sector;
1492 req->ioprio = bio_prio(bio);
1493 blk_rq_bio_prep(req->q, req, bio);
1494 }
1495
1496 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1497 {
1498 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1499 struct blk_plug *plug;
1500 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1501 struct request *req;
1502 unsigned int request_count = 0;
1503
1504 /*
1505 * low level driver can indicate that it wants pages above a
1506 * certain limit bounced to low memory (ie for highmem, or even
1507 * ISA dma in theory)
1508 */
1509 blk_queue_bounce(q, &bio);
1510
1511 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1512 bio_endio(bio, -EIO);
1513 return;
1514 }
1515
1516 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1517 spin_lock_irq(q->queue_lock);
1518 where = ELEVATOR_INSERT_FLUSH;
1519 goto get_rq;
1520 }
1521
1522 /*
1523 * Check if we can merge with the plugged list before grabbing
1524 * any locks.
1525 */
1526 if (blk_attempt_plug_merge(q, bio, &request_count))
1527 return;
1528
1529 spin_lock_irq(q->queue_lock);
1530
1531 el_ret = elv_merge(q, &req, bio);
1532 if (el_ret == ELEVATOR_BACK_MERGE) {
1533 if (bio_attempt_back_merge(q, req, bio)) {
1534 elv_bio_merged(q, req, bio);
1535 if (!attempt_back_merge(q, req))
1536 elv_merged_request(q, req, el_ret);
1537 goto out_unlock;
1538 }
1539 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1540 if (bio_attempt_front_merge(q, req, bio)) {
1541 elv_bio_merged(q, req, bio);
1542 if (!attempt_front_merge(q, req))
1543 elv_merged_request(q, req, el_ret);
1544 goto out_unlock;
1545 }
1546 }
1547
1548 get_rq:
1549 /*
1550 * This sync check and mask will be re-done in init_request_from_bio(),
1551 * but we need to set it earlier to expose the sync flag to the
1552 * rq allocator and io schedulers.
1553 */
1554 rw_flags = bio_data_dir(bio);
1555 if (sync)
1556 rw_flags |= REQ_SYNC;
1557
1558 /*
1559 * Grab a free request. This is might sleep but can not fail.
1560 * Returns with the queue unlocked.
1561 */
1562 req = get_request(q, rw_flags, bio, GFP_NOIO);
1563 if (unlikely(!req)) {
1564 bio_endio(bio, -ENODEV); /* @q is dead */
1565 goto out_unlock;
1566 }
1567
1568 /*
1569 * After dropping the lock and possibly sleeping here, our request
1570 * may now be mergeable after it had proven unmergeable (above).
1571 * We don't worry about that case for efficiency. It won't happen
1572 * often, and the elevators are able to handle it.
1573 */
1574 init_request_from_bio(req, bio);
1575
1576 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1577 req->cpu = raw_smp_processor_id();
1578
1579 plug = current->plug;
1580 if (plug) {
1581 /*
1582 * If this is the first request added after a plug, fire
1583 * of a plug trace.
1584 */
1585 if (!request_count)
1586 trace_block_plug(q);
1587 else {
1588 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1589 blk_flush_plug_list(plug, false);
1590 trace_block_plug(q);
1591 }
1592 }
1593 list_add_tail(&req->queuelist, &plug->list);
1594 blk_account_io_start(req, true);
1595 } else {
1596 spin_lock_irq(q->queue_lock);
1597 add_acct_request(q, req, where);
1598 __blk_run_queue(q);
1599 out_unlock:
1600 spin_unlock_irq(q->queue_lock);
1601 }
1602 }
1603 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1604
1605 /*
1606 * If bio->bi_dev is a partition, remap the location
1607 */
1608 static inline void blk_partition_remap(struct bio *bio)
1609 {
1610 struct block_device *bdev = bio->bi_bdev;
1611
1612 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1613 struct hd_struct *p = bdev->bd_part;
1614
1615 bio->bi_iter.bi_sector += p->start_sect;
1616 bio->bi_bdev = bdev->bd_contains;
1617
1618 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1619 bdev->bd_dev,
1620 bio->bi_iter.bi_sector - p->start_sect);
1621 }
1622 }
1623
1624 static void handle_bad_sector(struct bio *bio)
1625 {
1626 char b[BDEVNAME_SIZE];
1627
1628 printk(KERN_INFO "attempt to access beyond end of device\n");
1629 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1630 bdevname(bio->bi_bdev, b),
1631 bio->bi_rw,
1632 (unsigned long long)bio_end_sector(bio),
1633 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1634
1635 set_bit(BIO_EOF, &bio->bi_flags);
1636 }
1637
1638 #ifdef CONFIG_FAIL_MAKE_REQUEST
1639
1640 static DECLARE_FAULT_ATTR(fail_make_request);
1641
1642 static int __init setup_fail_make_request(char *str)
1643 {
1644 return setup_fault_attr(&fail_make_request, str);
1645 }
1646 __setup("fail_make_request=", setup_fail_make_request);
1647
1648 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1649 {
1650 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1651 }
1652
1653 static int __init fail_make_request_debugfs(void)
1654 {
1655 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1656 NULL, &fail_make_request);
1657
1658 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1659 }
1660
1661 late_initcall(fail_make_request_debugfs);
1662
1663 #else /* CONFIG_FAIL_MAKE_REQUEST */
1664
1665 static inline bool should_fail_request(struct hd_struct *part,
1666 unsigned int bytes)
1667 {
1668 return false;
1669 }
1670
1671 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1672
1673 /*
1674 * Check whether this bio extends beyond the end of the device.
1675 */
1676 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1677 {
1678 sector_t maxsector;
1679
1680 if (!nr_sectors)
1681 return 0;
1682
1683 /* Test device or partition size, when known. */
1684 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1685 if (maxsector) {
1686 sector_t sector = bio->bi_iter.bi_sector;
1687
1688 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1689 /*
1690 * This may well happen - the kernel calls bread()
1691 * without checking the size of the device, e.g., when
1692 * mounting a device.
1693 */
1694 handle_bad_sector(bio);
1695 return 1;
1696 }
1697 }
1698
1699 return 0;
1700 }
1701
1702 static noinline_for_stack bool
1703 generic_make_request_checks(struct bio *bio)
1704 {
1705 struct request_queue *q;
1706 int nr_sectors = bio_sectors(bio);
1707 int err = -EIO;
1708 char b[BDEVNAME_SIZE];
1709 struct hd_struct *part;
1710
1711 might_sleep();
1712
1713 if (bio_check_eod(bio, nr_sectors))
1714 goto end_io;
1715
1716 q = bdev_get_queue(bio->bi_bdev);
1717 if (unlikely(!q)) {
1718 printk(KERN_ERR
1719 "generic_make_request: Trying to access "
1720 "nonexistent block-device %s (%Lu)\n",
1721 bdevname(bio->bi_bdev, b),
1722 (long long) bio->bi_iter.bi_sector);
1723 goto end_io;
1724 }
1725
1726 if (likely(bio_is_rw(bio) &&
1727 nr_sectors > queue_max_hw_sectors(q))) {
1728 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1729 bdevname(bio->bi_bdev, b),
1730 bio_sectors(bio),
1731 queue_max_hw_sectors(q));
1732 goto end_io;
1733 }
1734
1735 part = bio->bi_bdev->bd_part;
1736 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1737 should_fail_request(&part_to_disk(part)->part0,
1738 bio->bi_iter.bi_size))
1739 goto end_io;
1740
1741 /*
1742 * If this device has partitions, remap block n
1743 * of partition p to block n+start(p) of the disk.
1744 */
1745 blk_partition_remap(bio);
1746
1747 if (bio_check_eod(bio, nr_sectors))
1748 goto end_io;
1749
1750 /*
1751 * Filter flush bio's early so that make_request based
1752 * drivers without flush support don't have to worry
1753 * about them.
1754 */
1755 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1756 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1757 if (!nr_sectors) {
1758 err = 0;
1759 goto end_io;
1760 }
1761 }
1762
1763 if ((bio->bi_rw & REQ_DISCARD) &&
1764 (!blk_queue_discard(q) ||
1765 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1766 err = -EOPNOTSUPP;
1767 goto end_io;
1768 }
1769
1770 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1771 err = -EOPNOTSUPP;
1772 goto end_io;
1773 }
1774
1775 /*
1776 * Various block parts want %current->io_context and lazy ioc
1777 * allocation ends up trading a lot of pain for a small amount of
1778 * memory. Just allocate it upfront. This may fail and block
1779 * layer knows how to live with it.
1780 */
1781 create_io_context(GFP_ATOMIC, q->node);
1782
1783 if (blk_throtl_bio(q, bio))
1784 return false; /* throttled, will be resubmitted later */
1785
1786 trace_block_bio_queue(q, bio);
1787 return true;
1788
1789 end_io:
1790 bio_endio(bio, err);
1791 return false;
1792 }
1793
1794 /**
1795 * generic_make_request - hand a buffer to its device driver for I/O
1796 * @bio: The bio describing the location in memory and on the device.
1797 *
1798 * generic_make_request() is used to make I/O requests of block
1799 * devices. It is passed a &struct bio, which describes the I/O that needs
1800 * to be done.
1801 *
1802 * generic_make_request() does not return any status. The
1803 * success/failure status of the request, along with notification of
1804 * completion, is delivered asynchronously through the bio->bi_end_io
1805 * function described (one day) else where.
1806 *
1807 * The caller of generic_make_request must make sure that bi_io_vec
1808 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1809 * set to describe the device address, and the
1810 * bi_end_io and optionally bi_private are set to describe how
1811 * completion notification should be signaled.
1812 *
1813 * generic_make_request and the drivers it calls may use bi_next if this
1814 * bio happens to be merged with someone else, and may resubmit the bio to
1815 * a lower device by calling into generic_make_request recursively, which
1816 * means the bio should NOT be touched after the call to ->make_request_fn.
1817 */
1818 void generic_make_request(struct bio *bio)
1819 {
1820 struct bio_list bio_list_on_stack;
1821
1822 if (!generic_make_request_checks(bio))
1823 return;
1824
1825 /*
1826 * We only want one ->make_request_fn to be active at a time, else
1827 * stack usage with stacked devices could be a problem. So use
1828 * current->bio_list to keep a list of requests submited by a
1829 * make_request_fn function. current->bio_list is also used as a
1830 * flag to say if generic_make_request is currently active in this
1831 * task or not. If it is NULL, then no make_request is active. If
1832 * it is non-NULL, then a make_request is active, and new requests
1833 * should be added at the tail
1834 */
1835 if (current->bio_list) {
1836 bio_list_add(current->bio_list, bio);
1837 return;
1838 }
1839
1840 /* following loop may be a bit non-obvious, and so deserves some
1841 * explanation.
1842 * Before entering the loop, bio->bi_next is NULL (as all callers
1843 * ensure that) so we have a list with a single bio.
1844 * We pretend that we have just taken it off a longer list, so
1845 * we assign bio_list to a pointer to the bio_list_on_stack,
1846 * thus initialising the bio_list of new bios to be
1847 * added. ->make_request() may indeed add some more bios
1848 * through a recursive call to generic_make_request. If it
1849 * did, we find a non-NULL value in bio_list and re-enter the loop
1850 * from the top. In this case we really did just take the bio
1851 * of the top of the list (no pretending) and so remove it from
1852 * bio_list, and call into ->make_request() again.
1853 */
1854 BUG_ON(bio->bi_next);
1855 bio_list_init(&bio_list_on_stack);
1856 current->bio_list = &bio_list_on_stack;
1857 do {
1858 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1859
1860 q->make_request_fn(q, bio);
1861
1862 bio = bio_list_pop(current->bio_list);
1863 } while (bio);
1864 current->bio_list = NULL; /* deactivate */
1865 }
1866 EXPORT_SYMBOL(generic_make_request);
1867
1868 /**
1869 * submit_bio - submit a bio to the block device layer for I/O
1870 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1871 * @bio: The &struct bio which describes the I/O
1872 *
1873 * submit_bio() is very similar in purpose to generic_make_request(), and
1874 * uses that function to do most of the work. Both are fairly rough
1875 * interfaces; @bio must be presetup and ready for I/O.
1876 *
1877 */
1878 void submit_bio(int rw, struct bio *bio)
1879 {
1880 bio->bi_rw |= rw;
1881
1882 /*
1883 * If it's a regular read/write or a barrier with data attached,
1884 * go through the normal accounting stuff before submission.
1885 */
1886 if (bio_has_data(bio)) {
1887 unsigned int count;
1888
1889 if (unlikely(rw & REQ_WRITE_SAME))
1890 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1891 else
1892 count = bio_sectors(bio);
1893
1894 if (rw & WRITE) {
1895 count_vm_events(PGPGOUT, count);
1896 } else {
1897 task_io_account_read(bio->bi_iter.bi_size);
1898 count_vm_events(PGPGIN, count);
1899 }
1900
1901 if (unlikely(block_dump)) {
1902 char b[BDEVNAME_SIZE];
1903 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1904 current->comm, task_pid_nr(current),
1905 (rw & WRITE) ? "WRITE" : "READ",
1906 (unsigned long long)bio->bi_iter.bi_sector,
1907 bdevname(bio->bi_bdev, b),
1908 count);
1909 }
1910 }
1911
1912 generic_make_request(bio);
1913 }
1914 EXPORT_SYMBOL(submit_bio);
1915
1916 /**
1917 * blk_rq_check_limits - Helper function to check a request for the queue limit
1918 * @q: the queue
1919 * @rq: the request being checked
1920 *
1921 * Description:
1922 * @rq may have been made based on weaker limitations of upper-level queues
1923 * in request stacking drivers, and it may violate the limitation of @q.
1924 * Since the block layer and the underlying device driver trust @rq
1925 * after it is inserted to @q, it should be checked against @q before
1926 * the insertion using this generic function.
1927 *
1928 * This function should also be useful for request stacking drivers
1929 * in some cases below, so export this function.
1930 * Request stacking drivers like request-based dm may change the queue
1931 * limits while requests are in the queue (e.g. dm's table swapping).
1932 * Such request stacking drivers should check those requests agaist
1933 * the new queue limits again when they dispatch those requests,
1934 * although such checkings are also done against the old queue limits
1935 * when submitting requests.
1936 */
1937 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1938 {
1939 if (!rq_mergeable(rq))
1940 return 0;
1941
1942 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1943 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1944 return -EIO;
1945 }
1946
1947 /*
1948 * queue's settings related to segment counting like q->bounce_pfn
1949 * may differ from that of other stacking queues.
1950 * Recalculate it to check the request correctly on this queue's
1951 * limitation.
1952 */
1953 blk_recalc_rq_segments(rq);
1954 if (rq->nr_phys_segments > queue_max_segments(q)) {
1955 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1956 return -EIO;
1957 }
1958
1959 return 0;
1960 }
1961 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1962
1963 /**
1964 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1965 * @q: the queue to submit the request
1966 * @rq: the request being queued
1967 */
1968 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1969 {
1970 unsigned long flags;
1971 int where = ELEVATOR_INSERT_BACK;
1972
1973 if (blk_rq_check_limits(q, rq))
1974 return -EIO;
1975
1976 if (rq->rq_disk &&
1977 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1978 return -EIO;
1979
1980 spin_lock_irqsave(q->queue_lock, flags);
1981 if (unlikely(blk_queue_dying(q))) {
1982 spin_unlock_irqrestore(q->queue_lock, flags);
1983 return -ENODEV;
1984 }
1985
1986 /*
1987 * Submitting request must be dequeued before calling this function
1988 * because it will be linked to another request_queue
1989 */
1990 BUG_ON(blk_queued_rq(rq));
1991
1992 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1993 where = ELEVATOR_INSERT_FLUSH;
1994
1995 add_acct_request(q, rq, where);
1996 if (where == ELEVATOR_INSERT_FLUSH)
1997 __blk_run_queue(q);
1998 spin_unlock_irqrestore(q->queue_lock, flags);
1999
2000 return 0;
2001 }
2002 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2003
2004 /**
2005 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2006 * @rq: request to examine
2007 *
2008 * Description:
2009 * A request could be merge of IOs which require different failure
2010 * handling. This function determines the number of bytes which
2011 * can be failed from the beginning of the request without
2012 * crossing into area which need to be retried further.
2013 *
2014 * Return:
2015 * The number of bytes to fail.
2016 *
2017 * Context:
2018 * queue_lock must be held.
2019 */
2020 unsigned int blk_rq_err_bytes(const struct request *rq)
2021 {
2022 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2023 unsigned int bytes = 0;
2024 struct bio *bio;
2025
2026 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2027 return blk_rq_bytes(rq);
2028
2029 /*
2030 * Currently the only 'mixing' which can happen is between
2031 * different fastfail types. We can safely fail portions
2032 * which have all the failfast bits that the first one has -
2033 * the ones which are at least as eager to fail as the first
2034 * one.
2035 */
2036 for (bio = rq->bio; bio; bio = bio->bi_next) {
2037 if ((bio->bi_rw & ff) != ff)
2038 break;
2039 bytes += bio->bi_iter.bi_size;
2040 }
2041
2042 /* this could lead to infinite loop */
2043 BUG_ON(blk_rq_bytes(rq) && !bytes);
2044 return bytes;
2045 }
2046 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2047
2048 void blk_account_io_completion(struct request *req, unsigned int bytes)
2049 {
2050 if (blk_do_io_stat(req)) {
2051 const int rw = rq_data_dir(req);
2052 struct hd_struct *part;
2053 int cpu;
2054
2055 cpu = part_stat_lock();
2056 part = req->part;
2057 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2058 part_stat_unlock();
2059 }
2060 }
2061
2062 void blk_account_io_done(struct request *req)
2063 {
2064 /*
2065 * Account IO completion. flush_rq isn't accounted as a
2066 * normal IO on queueing nor completion. Accounting the
2067 * containing request is enough.
2068 */
2069 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2070 unsigned long duration = jiffies - req->start_time;
2071 const int rw = rq_data_dir(req);
2072 struct hd_struct *part;
2073 int cpu;
2074
2075 cpu = part_stat_lock();
2076 part = req->part;
2077
2078 part_stat_inc(cpu, part, ios[rw]);
2079 part_stat_add(cpu, part, ticks[rw], duration);
2080 part_round_stats(cpu, part);
2081 part_dec_in_flight(part, rw);
2082
2083 hd_struct_put(part);
2084 part_stat_unlock();
2085 }
2086 }
2087
2088 #ifdef CONFIG_PM_RUNTIME
2089 /*
2090 * Don't process normal requests when queue is suspended
2091 * or in the process of suspending/resuming
2092 */
2093 static struct request *blk_pm_peek_request(struct request_queue *q,
2094 struct request *rq)
2095 {
2096 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2097 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2098 return NULL;
2099 else
2100 return rq;
2101 }
2102 #else
2103 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2104 struct request *rq)
2105 {
2106 return rq;
2107 }
2108 #endif
2109
2110 void blk_account_io_start(struct request *rq, bool new_io)
2111 {
2112 struct hd_struct *part;
2113 int rw = rq_data_dir(rq);
2114 int cpu;
2115
2116 if (!blk_do_io_stat(rq))
2117 return;
2118
2119 cpu = part_stat_lock();
2120
2121 if (!new_io) {
2122 part = rq->part;
2123 part_stat_inc(cpu, part, merges[rw]);
2124 } else {
2125 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2126 if (!hd_struct_try_get(part)) {
2127 /*
2128 * The partition is already being removed,
2129 * the request will be accounted on the disk only
2130 *
2131 * We take a reference on disk->part0 although that
2132 * partition will never be deleted, so we can treat
2133 * it as any other partition.
2134 */
2135 part = &rq->rq_disk->part0;
2136 hd_struct_get(part);
2137 }
2138 part_round_stats(cpu, part);
2139 part_inc_in_flight(part, rw);
2140 rq->part = part;
2141 }
2142
2143 part_stat_unlock();
2144 }
2145
2146 /**
2147 * blk_peek_request - peek at the top of a request queue
2148 * @q: request queue to peek at
2149 *
2150 * Description:
2151 * Return the request at the top of @q. The returned request
2152 * should be started using blk_start_request() before LLD starts
2153 * processing it.
2154 *
2155 * Return:
2156 * Pointer to the request at the top of @q if available. Null
2157 * otherwise.
2158 *
2159 * Context:
2160 * queue_lock must be held.
2161 */
2162 struct request *blk_peek_request(struct request_queue *q)
2163 {
2164 struct request *rq;
2165 int ret;
2166
2167 while ((rq = __elv_next_request(q)) != NULL) {
2168
2169 rq = blk_pm_peek_request(q, rq);
2170 if (!rq)
2171 break;
2172
2173 if (!(rq->cmd_flags & REQ_STARTED)) {
2174 /*
2175 * This is the first time the device driver
2176 * sees this request (possibly after
2177 * requeueing). Notify IO scheduler.
2178 */
2179 if (rq->cmd_flags & REQ_SORTED)
2180 elv_activate_rq(q, rq);
2181
2182 /*
2183 * just mark as started even if we don't start
2184 * it, a request that has been delayed should
2185 * not be passed by new incoming requests
2186 */
2187 rq->cmd_flags |= REQ_STARTED;
2188 trace_block_rq_issue(q, rq);
2189 }
2190
2191 if (!q->boundary_rq || q->boundary_rq == rq) {
2192 q->end_sector = rq_end_sector(rq);
2193 q->boundary_rq = NULL;
2194 }
2195
2196 if (rq->cmd_flags & REQ_DONTPREP)
2197 break;
2198
2199 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2200 /*
2201 * make sure space for the drain appears we
2202 * know we can do this because max_hw_segments
2203 * has been adjusted to be one fewer than the
2204 * device can handle
2205 */
2206 rq->nr_phys_segments++;
2207 }
2208
2209 if (!q->prep_rq_fn)
2210 break;
2211
2212 ret = q->prep_rq_fn(q, rq);
2213 if (ret == BLKPREP_OK) {
2214 break;
2215 } else if (ret == BLKPREP_DEFER) {
2216 /*
2217 * the request may have been (partially) prepped.
2218 * we need to keep this request in the front to
2219 * avoid resource deadlock. REQ_STARTED will
2220 * prevent other fs requests from passing this one.
2221 */
2222 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2223 !(rq->cmd_flags & REQ_DONTPREP)) {
2224 /*
2225 * remove the space for the drain we added
2226 * so that we don't add it again
2227 */
2228 --rq->nr_phys_segments;
2229 }
2230
2231 rq = NULL;
2232 break;
2233 } else if (ret == BLKPREP_KILL) {
2234 rq->cmd_flags |= REQ_QUIET;
2235 /*
2236 * Mark this request as started so we don't trigger
2237 * any debug logic in the end I/O path.
2238 */
2239 blk_start_request(rq);
2240 __blk_end_request_all(rq, -EIO);
2241 } else {
2242 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2243 break;
2244 }
2245 }
2246
2247 return rq;
2248 }
2249 EXPORT_SYMBOL(blk_peek_request);
2250
2251 void blk_dequeue_request(struct request *rq)
2252 {
2253 struct request_queue *q = rq->q;
2254
2255 BUG_ON(list_empty(&rq->queuelist));
2256 BUG_ON(ELV_ON_HASH(rq));
2257
2258 list_del_init(&rq->queuelist);
2259
2260 /*
2261 * the time frame between a request being removed from the lists
2262 * and to it is freed is accounted as io that is in progress at
2263 * the driver side.
2264 */
2265 if (blk_account_rq(rq)) {
2266 q->in_flight[rq_is_sync(rq)]++;
2267 set_io_start_time_ns(rq);
2268 }
2269 }
2270
2271 /**
2272 * blk_start_request - start request processing on the driver
2273 * @req: request to dequeue
2274 *
2275 * Description:
2276 * Dequeue @req and start timeout timer on it. This hands off the
2277 * request to the driver.
2278 *
2279 * Block internal functions which don't want to start timer should
2280 * call blk_dequeue_request().
2281 *
2282 * Context:
2283 * queue_lock must be held.
2284 */
2285 void blk_start_request(struct request *req)
2286 {
2287 blk_dequeue_request(req);
2288
2289 /*
2290 * We are now handing the request to the hardware, initialize
2291 * resid_len to full count and add the timeout handler.
2292 */
2293 req->resid_len = blk_rq_bytes(req);
2294 if (unlikely(blk_bidi_rq(req)))
2295 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2296
2297 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2298 blk_add_timer(req);
2299 }
2300 EXPORT_SYMBOL(blk_start_request);
2301
2302 /**
2303 * blk_fetch_request - fetch a request from a request queue
2304 * @q: request queue to fetch a request from
2305 *
2306 * Description:
2307 * Return the request at the top of @q. The request is started on
2308 * return and LLD can start processing it immediately.
2309 *
2310 * Return:
2311 * Pointer to the request at the top of @q if available. Null
2312 * otherwise.
2313 *
2314 * Context:
2315 * queue_lock must be held.
2316 */
2317 struct request *blk_fetch_request(struct request_queue *q)
2318 {
2319 struct request *rq;
2320
2321 rq = blk_peek_request(q);
2322 if (rq)
2323 blk_start_request(rq);
2324 return rq;
2325 }
2326 EXPORT_SYMBOL(blk_fetch_request);
2327
2328 /**
2329 * blk_update_request - Special helper function for request stacking drivers
2330 * @req: the request being processed
2331 * @error: %0 for success, < %0 for error
2332 * @nr_bytes: number of bytes to complete @req
2333 *
2334 * Description:
2335 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2336 * the request structure even if @req doesn't have leftover.
2337 * If @req has leftover, sets it up for the next range of segments.
2338 *
2339 * This special helper function is only for request stacking drivers
2340 * (e.g. request-based dm) so that they can handle partial completion.
2341 * Actual device drivers should use blk_end_request instead.
2342 *
2343 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2344 * %false return from this function.
2345 *
2346 * Return:
2347 * %false - this request doesn't have any more data
2348 * %true - this request has more data
2349 **/
2350 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2351 {
2352 int total_bytes;
2353
2354 if (!req->bio)
2355 return false;
2356
2357 trace_block_rq_complete(req->q, req, nr_bytes);
2358
2359 /*
2360 * For fs requests, rq is just carrier of independent bio's
2361 * and each partial completion should be handled separately.
2362 * Reset per-request error on each partial completion.
2363 *
2364 * TODO: tj: This is too subtle. It would be better to let
2365 * low level drivers do what they see fit.
2366 */
2367 if (req->cmd_type == REQ_TYPE_FS)
2368 req->errors = 0;
2369
2370 if (error && req->cmd_type == REQ_TYPE_FS &&
2371 !(req->cmd_flags & REQ_QUIET)) {
2372 char *error_type;
2373
2374 switch (error) {
2375 case -ENOLINK:
2376 error_type = "recoverable transport";
2377 break;
2378 case -EREMOTEIO:
2379 error_type = "critical target";
2380 break;
2381 case -EBADE:
2382 error_type = "critical nexus";
2383 break;
2384 case -ETIMEDOUT:
2385 error_type = "timeout";
2386 break;
2387 case -ENOSPC:
2388 error_type = "critical space allocation";
2389 break;
2390 case -ENODATA:
2391 error_type = "critical medium";
2392 break;
2393 case -EIO:
2394 default:
2395 error_type = "I/O";
2396 break;
2397 }
2398 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2399 error_type, req->rq_disk ?
2400 req->rq_disk->disk_name : "?",
2401 (unsigned long long)blk_rq_pos(req));
2402
2403 }
2404
2405 blk_account_io_completion(req, nr_bytes);
2406
2407 total_bytes = 0;
2408 while (req->bio) {
2409 struct bio *bio = req->bio;
2410 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2411
2412 if (bio_bytes == bio->bi_iter.bi_size)
2413 req->bio = bio->bi_next;
2414
2415 req_bio_endio(req, bio, bio_bytes, error);
2416
2417 total_bytes += bio_bytes;
2418 nr_bytes -= bio_bytes;
2419
2420 if (!nr_bytes)
2421 break;
2422 }
2423
2424 /*
2425 * completely done
2426 */
2427 if (!req->bio) {
2428 /*
2429 * Reset counters so that the request stacking driver
2430 * can find how many bytes remain in the request
2431 * later.
2432 */
2433 req->__data_len = 0;
2434 return false;
2435 }
2436
2437 req->__data_len -= total_bytes;
2438 req->buffer = bio_data(req->bio);
2439
2440 /* update sector only for requests with clear definition of sector */
2441 if (req->cmd_type == REQ_TYPE_FS)
2442 req->__sector += total_bytes >> 9;
2443
2444 /* mixed attributes always follow the first bio */
2445 if (req->cmd_flags & REQ_MIXED_MERGE) {
2446 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2447 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2448 }
2449
2450 /*
2451 * If total number of sectors is less than the first segment
2452 * size, something has gone terribly wrong.
2453 */
2454 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2455 blk_dump_rq_flags(req, "request botched");
2456 req->__data_len = blk_rq_cur_bytes(req);
2457 }
2458
2459 /* recalculate the number of segments */
2460 blk_recalc_rq_segments(req);
2461
2462 return true;
2463 }
2464 EXPORT_SYMBOL_GPL(blk_update_request);
2465
2466 static bool blk_update_bidi_request(struct request *rq, int error,
2467 unsigned int nr_bytes,
2468 unsigned int bidi_bytes)
2469 {
2470 if (blk_update_request(rq, error, nr_bytes))
2471 return true;
2472
2473 /* Bidi request must be completed as a whole */
2474 if (unlikely(blk_bidi_rq(rq)) &&
2475 blk_update_request(rq->next_rq, error, bidi_bytes))
2476 return true;
2477
2478 if (blk_queue_add_random(rq->q))
2479 add_disk_randomness(rq->rq_disk);
2480
2481 return false;
2482 }
2483
2484 /**
2485 * blk_unprep_request - unprepare a request
2486 * @req: the request
2487 *
2488 * This function makes a request ready for complete resubmission (or
2489 * completion). It happens only after all error handling is complete,
2490 * so represents the appropriate moment to deallocate any resources
2491 * that were allocated to the request in the prep_rq_fn. The queue
2492 * lock is held when calling this.
2493 */
2494 void blk_unprep_request(struct request *req)
2495 {
2496 struct request_queue *q = req->q;
2497
2498 req->cmd_flags &= ~REQ_DONTPREP;
2499 if (q->unprep_rq_fn)
2500 q->unprep_rq_fn(q, req);
2501 }
2502 EXPORT_SYMBOL_GPL(blk_unprep_request);
2503
2504 /*
2505 * queue lock must be held
2506 */
2507 static void blk_finish_request(struct request *req, int error)
2508 {
2509 if (blk_rq_tagged(req))
2510 blk_queue_end_tag(req->q, req);
2511
2512 BUG_ON(blk_queued_rq(req));
2513
2514 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2515 laptop_io_completion(&req->q->backing_dev_info);
2516
2517 blk_delete_timer(req);
2518
2519 if (req->cmd_flags & REQ_DONTPREP)
2520 blk_unprep_request(req);
2521
2522 blk_account_io_done(req);
2523
2524 if (req->end_io)
2525 req->end_io(req, error);
2526 else {
2527 if (blk_bidi_rq(req))
2528 __blk_put_request(req->next_rq->q, req->next_rq);
2529
2530 __blk_put_request(req->q, req);
2531 }
2532 }
2533
2534 /**
2535 * blk_end_bidi_request - Complete a bidi request
2536 * @rq: the request to complete
2537 * @error: %0 for success, < %0 for error
2538 * @nr_bytes: number of bytes to complete @rq
2539 * @bidi_bytes: number of bytes to complete @rq->next_rq
2540 *
2541 * Description:
2542 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2543 * Drivers that supports bidi can safely call this member for any
2544 * type of request, bidi or uni. In the later case @bidi_bytes is
2545 * just ignored.
2546 *
2547 * Return:
2548 * %false - we are done with this request
2549 * %true - still buffers pending for this request
2550 **/
2551 static bool blk_end_bidi_request(struct request *rq, int error,
2552 unsigned int nr_bytes, unsigned int bidi_bytes)
2553 {
2554 struct request_queue *q = rq->q;
2555 unsigned long flags;
2556
2557 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2558 return true;
2559
2560 spin_lock_irqsave(q->queue_lock, flags);
2561 blk_finish_request(rq, error);
2562 spin_unlock_irqrestore(q->queue_lock, flags);
2563
2564 return false;
2565 }
2566
2567 /**
2568 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2569 * @rq: the request to complete
2570 * @error: %0 for success, < %0 for error
2571 * @nr_bytes: number of bytes to complete @rq
2572 * @bidi_bytes: number of bytes to complete @rq->next_rq
2573 *
2574 * Description:
2575 * Identical to blk_end_bidi_request() except that queue lock is
2576 * assumed to be locked on entry and remains so on return.
2577 *
2578 * Return:
2579 * %false - we are done with this request
2580 * %true - still buffers pending for this request
2581 **/
2582 bool __blk_end_bidi_request(struct request *rq, int error,
2583 unsigned int nr_bytes, unsigned int bidi_bytes)
2584 {
2585 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2586 return true;
2587
2588 blk_finish_request(rq, error);
2589
2590 return false;
2591 }
2592
2593 /**
2594 * blk_end_request - Helper function for drivers to complete the request.
2595 * @rq: the request being processed
2596 * @error: %0 for success, < %0 for error
2597 * @nr_bytes: number of bytes to complete
2598 *
2599 * Description:
2600 * Ends I/O on a number of bytes attached to @rq.
2601 * If @rq has leftover, sets it up for the next range of segments.
2602 *
2603 * Return:
2604 * %false - we are done with this request
2605 * %true - still buffers pending for this request
2606 **/
2607 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2608 {
2609 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2610 }
2611 EXPORT_SYMBOL(blk_end_request);
2612
2613 /**
2614 * blk_end_request_all - Helper function for drives to finish the request.
2615 * @rq: the request to finish
2616 * @error: %0 for success, < %0 for error
2617 *
2618 * Description:
2619 * Completely finish @rq.
2620 */
2621 void blk_end_request_all(struct request *rq, int error)
2622 {
2623 bool pending;
2624 unsigned int bidi_bytes = 0;
2625
2626 if (unlikely(blk_bidi_rq(rq)))
2627 bidi_bytes = blk_rq_bytes(rq->next_rq);
2628
2629 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2630 BUG_ON(pending);
2631 }
2632 EXPORT_SYMBOL(blk_end_request_all);
2633
2634 /**
2635 * blk_end_request_cur - Helper function to finish the current request chunk.
2636 * @rq: the request to finish the current chunk for
2637 * @error: %0 for success, < %0 for error
2638 *
2639 * Description:
2640 * Complete the current consecutively mapped chunk from @rq.
2641 *
2642 * Return:
2643 * %false - we are done with this request
2644 * %true - still buffers pending for this request
2645 */
2646 bool blk_end_request_cur(struct request *rq, int error)
2647 {
2648 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2649 }
2650 EXPORT_SYMBOL(blk_end_request_cur);
2651
2652 /**
2653 * blk_end_request_err - Finish a request till the next failure boundary.
2654 * @rq: the request to finish till the next failure boundary for
2655 * @error: must be negative errno
2656 *
2657 * Description:
2658 * Complete @rq till the next failure boundary.
2659 *
2660 * Return:
2661 * %false - we are done with this request
2662 * %true - still buffers pending for this request
2663 */
2664 bool blk_end_request_err(struct request *rq, int error)
2665 {
2666 WARN_ON(error >= 0);
2667 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2668 }
2669 EXPORT_SYMBOL_GPL(blk_end_request_err);
2670
2671 /**
2672 * __blk_end_request - Helper function for drivers to complete the request.
2673 * @rq: the request being processed
2674 * @error: %0 for success, < %0 for error
2675 * @nr_bytes: number of bytes to complete
2676 *
2677 * Description:
2678 * Must be called with queue lock held unlike blk_end_request().
2679 *
2680 * Return:
2681 * %false - we are done with this request
2682 * %true - still buffers pending for this request
2683 **/
2684 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2685 {
2686 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2687 }
2688 EXPORT_SYMBOL(__blk_end_request);
2689
2690 /**
2691 * __blk_end_request_all - Helper function for drives to finish the request.
2692 * @rq: the request to finish
2693 * @error: %0 for success, < %0 for error
2694 *
2695 * Description:
2696 * Completely finish @rq. Must be called with queue lock held.
2697 */
2698 void __blk_end_request_all(struct request *rq, int error)
2699 {
2700 bool pending;
2701 unsigned int bidi_bytes = 0;
2702
2703 if (unlikely(blk_bidi_rq(rq)))
2704 bidi_bytes = blk_rq_bytes(rq->next_rq);
2705
2706 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2707 BUG_ON(pending);
2708 }
2709 EXPORT_SYMBOL(__blk_end_request_all);
2710
2711 /**
2712 * __blk_end_request_cur - Helper function to finish the current request chunk.
2713 * @rq: the request to finish the current chunk for
2714 * @error: %0 for success, < %0 for error
2715 *
2716 * Description:
2717 * Complete the current consecutively mapped chunk from @rq. Must
2718 * be called with queue lock held.
2719 *
2720 * Return:
2721 * %false - we are done with this request
2722 * %true - still buffers pending for this request
2723 */
2724 bool __blk_end_request_cur(struct request *rq, int error)
2725 {
2726 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2727 }
2728 EXPORT_SYMBOL(__blk_end_request_cur);
2729
2730 /**
2731 * __blk_end_request_err - Finish a request till the next failure boundary.
2732 * @rq: the request to finish till the next failure boundary for
2733 * @error: must be negative errno
2734 *
2735 * Description:
2736 * Complete @rq till the next failure boundary. Must be called
2737 * with queue lock held.
2738 *
2739 * Return:
2740 * %false - we are done with this request
2741 * %true - still buffers pending for this request
2742 */
2743 bool __blk_end_request_err(struct request *rq, int error)
2744 {
2745 WARN_ON(error >= 0);
2746 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2747 }
2748 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2749
2750 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2751 struct bio *bio)
2752 {
2753 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2754 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2755
2756 if (bio_has_data(bio)) {
2757 rq->nr_phys_segments = bio_phys_segments(q, bio);
2758 rq->buffer = bio_data(bio);
2759 }
2760 rq->__data_len = bio->bi_iter.bi_size;
2761 rq->bio = rq->biotail = bio;
2762
2763 if (bio->bi_bdev)
2764 rq->rq_disk = bio->bi_bdev->bd_disk;
2765 }
2766
2767 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2768 /**
2769 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2770 * @rq: the request to be flushed
2771 *
2772 * Description:
2773 * Flush all pages in @rq.
2774 */
2775 void rq_flush_dcache_pages(struct request *rq)
2776 {
2777 struct req_iterator iter;
2778 struct bio_vec bvec;
2779
2780 rq_for_each_segment(bvec, rq, iter)
2781 flush_dcache_page(bvec.bv_page);
2782 }
2783 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2784 #endif
2785
2786 /**
2787 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2788 * @q : the queue of the device being checked
2789 *
2790 * Description:
2791 * Check if underlying low-level drivers of a device are busy.
2792 * If the drivers want to export their busy state, they must set own
2793 * exporting function using blk_queue_lld_busy() first.
2794 *
2795 * Basically, this function is used only by request stacking drivers
2796 * to stop dispatching requests to underlying devices when underlying
2797 * devices are busy. This behavior helps more I/O merging on the queue
2798 * of the request stacking driver and prevents I/O throughput regression
2799 * on burst I/O load.
2800 *
2801 * Return:
2802 * 0 - Not busy (The request stacking driver should dispatch request)
2803 * 1 - Busy (The request stacking driver should stop dispatching request)
2804 */
2805 int blk_lld_busy(struct request_queue *q)
2806 {
2807 if (q->lld_busy_fn)
2808 return q->lld_busy_fn(q);
2809
2810 return 0;
2811 }
2812 EXPORT_SYMBOL_GPL(blk_lld_busy);
2813
2814 /**
2815 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2816 * @rq: the clone request to be cleaned up
2817 *
2818 * Description:
2819 * Free all bios in @rq for a cloned request.
2820 */
2821 void blk_rq_unprep_clone(struct request *rq)
2822 {
2823 struct bio *bio;
2824
2825 while ((bio = rq->bio) != NULL) {
2826 rq->bio = bio->bi_next;
2827
2828 bio_put(bio);
2829 }
2830 }
2831 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2832
2833 /*
2834 * Copy attributes of the original request to the clone request.
2835 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2836 */
2837 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2838 {
2839 dst->cpu = src->cpu;
2840 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2841 dst->cmd_type = src->cmd_type;
2842 dst->__sector = blk_rq_pos(src);
2843 dst->__data_len = blk_rq_bytes(src);
2844 dst->nr_phys_segments = src->nr_phys_segments;
2845 dst->ioprio = src->ioprio;
2846 dst->extra_len = src->extra_len;
2847 }
2848
2849 /**
2850 * blk_rq_prep_clone - Helper function to setup clone request
2851 * @rq: the request to be setup
2852 * @rq_src: original request to be cloned
2853 * @bs: bio_set that bios for clone are allocated from
2854 * @gfp_mask: memory allocation mask for bio
2855 * @bio_ctr: setup function to be called for each clone bio.
2856 * Returns %0 for success, non %0 for failure.
2857 * @data: private data to be passed to @bio_ctr
2858 *
2859 * Description:
2860 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2861 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2862 * are not copied, and copying such parts is the caller's responsibility.
2863 * Also, pages which the original bios are pointing to are not copied
2864 * and the cloned bios just point same pages.
2865 * So cloned bios must be completed before original bios, which means
2866 * the caller must complete @rq before @rq_src.
2867 */
2868 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2869 struct bio_set *bs, gfp_t gfp_mask,
2870 int (*bio_ctr)(struct bio *, struct bio *, void *),
2871 void *data)
2872 {
2873 struct bio *bio, *bio_src;
2874
2875 if (!bs)
2876 bs = fs_bio_set;
2877
2878 blk_rq_init(NULL, rq);
2879
2880 __rq_for_each_bio(bio_src, rq_src) {
2881 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2882 if (!bio)
2883 goto free_and_out;
2884
2885 if (bio_ctr && bio_ctr(bio, bio_src, data))
2886 goto free_and_out;
2887
2888 if (rq->bio) {
2889 rq->biotail->bi_next = bio;
2890 rq->biotail = bio;
2891 } else
2892 rq->bio = rq->biotail = bio;
2893 }
2894
2895 __blk_rq_prep_clone(rq, rq_src);
2896
2897 return 0;
2898
2899 free_and_out:
2900 if (bio)
2901 bio_put(bio);
2902 blk_rq_unprep_clone(rq);
2903
2904 return -ENOMEM;
2905 }
2906 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2907
2908 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2909 {
2910 return queue_work(kblockd_workqueue, work);
2911 }
2912 EXPORT_SYMBOL(kblockd_schedule_work);
2913
2914 int kblockd_schedule_delayed_work(struct request_queue *q,
2915 struct delayed_work *dwork, unsigned long delay)
2916 {
2917 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2918 }
2919 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2920
2921 #define PLUG_MAGIC 0x91827364
2922
2923 /**
2924 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2925 * @plug: The &struct blk_plug that needs to be initialized
2926 *
2927 * Description:
2928 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2929 * pending I/O should the task end up blocking between blk_start_plug() and
2930 * blk_finish_plug(). This is important from a performance perspective, but
2931 * also ensures that we don't deadlock. For instance, if the task is blocking
2932 * for a memory allocation, memory reclaim could end up wanting to free a
2933 * page belonging to that request that is currently residing in our private
2934 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2935 * this kind of deadlock.
2936 */
2937 void blk_start_plug(struct blk_plug *plug)
2938 {
2939 struct task_struct *tsk = current;
2940
2941 plug->magic = PLUG_MAGIC;
2942 INIT_LIST_HEAD(&plug->list);
2943 INIT_LIST_HEAD(&plug->mq_list);
2944 INIT_LIST_HEAD(&plug->cb_list);
2945
2946 /*
2947 * If this is a nested plug, don't actually assign it. It will be
2948 * flushed on its own.
2949 */
2950 if (!tsk->plug) {
2951 /*
2952 * Store ordering should not be needed here, since a potential
2953 * preempt will imply a full memory barrier
2954 */
2955 tsk->plug = plug;
2956 }
2957 }
2958 EXPORT_SYMBOL(blk_start_plug);
2959
2960 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2961 {
2962 struct request *rqa = container_of(a, struct request, queuelist);
2963 struct request *rqb = container_of(b, struct request, queuelist);
2964
2965 return !(rqa->q < rqb->q ||
2966 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2967 }
2968
2969 /*
2970 * If 'from_schedule' is true, then postpone the dispatch of requests
2971 * until a safe kblockd context. We due this to avoid accidental big
2972 * additional stack usage in driver dispatch, in places where the originally
2973 * plugger did not intend it.
2974 */
2975 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2976 bool from_schedule)
2977 __releases(q->queue_lock)
2978 {
2979 trace_block_unplug(q, depth, !from_schedule);
2980
2981 if (from_schedule)
2982 blk_run_queue_async(q);
2983 else
2984 __blk_run_queue(q);
2985 spin_unlock(q->queue_lock);
2986 }
2987
2988 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2989 {
2990 LIST_HEAD(callbacks);
2991
2992 while (!list_empty(&plug->cb_list)) {
2993 list_splice_init(&plug->cb_list, &callbacks);
2994
2995 while (!list_empty(&callbacks)) {
2996 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2997 struct blk_plug_cb,
2998 list);
2999 list_del(&cb->list);
3000 cb->callback(cb, from_schedule);
3001 }
3002 }
3003 }
3004
3005 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3006 int size)
3007 {
3008 struct blk_plug *plug = current->plug;
3009 struct blk_plug_cb *cb;
3010
3011 if (!plug)
3012 return NULL;
3013
3014 list_for_each_entry(cb, &plug->cb_list, list)
3015 if (cb->callback == unplug && cb->data == data)
3016 return cb;
3017
3018 /* Not currently on the callback list */
3019 BUG_ON(size < sizeof(*cb));
3020 cb = kzalloc(size, GFP_ATOMIC);
3021 if (cb) {
3022 cb->data = data;
3023 cb->callback = unplug;
3024 list_add(&cb->list, &plug->cb_list);
3025 }
3026 return cb;
3027 }
3028 EXPORT_SYMBOL(blk_check_plugged);
3029
3030 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3031 {
3032 struct request_queue *q;
3033 unsigned long flags;
3034 struct request *rq;
3035 LIST_HEAD(list);
3036 unsigned int depth;
3037
3038 BUG_ON(plug->magic != PLUG_MAGIC);
3039
3040 flush_plug_callbacks(plug, from_schedule);
3041
3042 if (!list_empty(&plug->mq_list))
3043 blk_mq_flush_plug_list(plug, from_schedule);
3044
3045 if (list_empty(&plug->list))
3046 return;
3047
3048 list_splice_init(&plug->list, &list);
3049
3050 list_sort(NULL, &list, plug_rq_cmp);
3051
3052 q = NULL;
3053 depth = 0;
3054
3055 /*
3056 * Save and disable interrupts here, to avoid doing it for every
3057 * queue lock we have to take.
3058 */
3059 local_irq_save(flags);
3060 while (!list_empty(&list)) {
3061 rq = list_entry_rq(list.next);
3062 list_del_init(&rq->queuelist);
3063 BUG_ON(!rq->q);
3064 if (rq->q != q) {
3065 /*
3066 * This drops the queue lock
3067 */
3068 if (q)
3069 queue_unplugged(q, depth, from_schedule);
3070 q = rq->q;
3071 depth = 0;
3072 spin_lock(q->queue_lock);
3073 }
3074
3075 /*
3076 * Short-circuit if @q is dead
3077 */
3078 if (unlikely(blk_queue_dying(q))) {
3079 __blk_end_request_all(rq, -ENODEV);
3080 continue;
3081 }
3082
3083 /*
3084 * rq is already accounted, so use raw insert
3085 */
3086 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3087 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3088 else
3089 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3090
3091 depth++;
3092 }
3093
3094 /*
3095 * This drops the queue lock
3096 */
3097 if (q)
3098 queue_unplugged(q, depth, from_schedule);
3099
3100 local_irq_restore(flags);
3101 }
3102
3103 void blk_finish_plug(struct blk_plug *plug)
3104 {
3105 blk_flush_plug_list(plug, false);
3106
3107 if (plug == current->plug)
3108 current->plug = NULL;
3109 }
3110 EXPORT_SYMBOL(blk_finish_plug);
3111
3112 #ifdef CONFIG_PM_RUNTIME
3113 /**
3114 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3115 * @q: the queue of the device
3116 * @dev: the device the queue belongs to
3117 *
3118 * Description:
3119 * Initialize runtime-PM-related fields for @q and start auto suspend for
3120 * @dev. Drivers that want to take advantage of request-based runtime PM
3121 * should call this function after @dev has been initialized, and its
3122 * request queue @q has been allocated, and runtime PM for it can not happen
3123 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3124 * cases, driver should call this function before any I/O has taken place.
3125 *
3126 * This function takes care of setting up using auto suspend for the device,
3127 * the autosuspend delay is set to -1 to make runtime suspend impossible
3128 * until an updated value is either set by user or by driver. Drivers do
3129 * not need to touch other autosuspend settings.
3130 *
3131 * The block layer runtime PM is request based, so only works for drivers
3132 * that use request as their IO unit instead of those directly use bio's.
3133 */
3134 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3135 {
3136 q->dev = dev;
3137 q->rpm_status = RPM_ACTIVE;
3138 pm_runtime_set_autosuspend_delay(q->dev, -1);
3139 pm_runtime_use_autosuspend(q->dev);
3140 }
3141 EXPORT_SYMBOL(blk_pm_runtime_init);
3142
3143 /**
3144 * blk_pre_runtime_suspend - Pre runtime suspend check
3145 * @q: the queue of the device
3146 *
3147 * Description:
3148 * This function will check if runtime suspend is allowed for the device
3149 * by examining if there are any requests pending in the queue. If there
3150 * are requests pending, the device can not be runtime suspended; otherwise,
3151 * the queue's status will be updated to SUSPENDING and the driver can
3152 * proceed to suspend the device.
3153 *
3154 * For the not allowed case, we mark last busy for the device so that
3155 * runtime PM core will try to autosuspend it some time later.
3156 *
3157 * This function should be called near the start of the device's
3158 * runtime_suspend callback.
3159 *
3160 * Return:
3161 * 0 - OK to runtime suspend the device
3162 * -EBUSY - Device should not be runtime suspended
3163 */
3164 int blk_pre_runtime_suspend(struct request_queue *q)
3165 {
3166 int ret = 0;
3167
3168 spin_lock_irq(q->queue_lock);
3169 if (q->nr_pending) {
3170 ret = -EBUSY;
3171 pm_runtime_mark_last_busy(q->dev);
3172 } else {
3173 q->rpm_status = RPM_SUSPENDING;
3174 }
3175 spin_unlock_irq(q->queue_lock);
3176 return ret;
3177 }
3178 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3179
3180 /**
3181 * blk_post_runtime_suspend - Post runtime suspend processing
3182 * @q: the queue of the device
3183 * @err: return value of the device's runtime_suspend function
3184 *
3185 * Description:
3186 * Update the queue's runtime status according to the return value of the
3187 * device's runtime suspend function and mark last busy for the device so
3188 * that PM core will try to auto suspend the device at a later time.
3189 *
3190 * This function should be called near the end of the device's
3191 * runtime_suspend callback.
3192 */
3193 void blk_post_runtime_suspend(struct request_queue *q, int err)
3194 {
3195 spin_lock_irq(q->queue_lock);
3196 if (!err) {
3197 q->rpm_status = RPM_SUSPENDED;
3198 } else {
3199 q->rpm_status = RPM_ACTIVE;
3200 pm_runtime_mark_last_busy(q->dev);
3201 }
3202 spin_unlock_irq(q->queue_lock);
3203 }
3204 EXPORT_SYMBOL(blk_post_runtime_suspend);
3205
3206 /**
3207 * blk_pre_runtime_resume - Pre runtime resume processing
3208 * @q: the queue of the device
3209 *
3210 * Description:
3211 * Update the queue's runtime status to RESUMING in preparation for the
3212 * runtime resume of the device.
3213 *
3214 * This function should be called near the start of the device's
3215 * runtime_resume callback.
3216 */
3217 void blk_pre_runtime_resume(struct request_queue *q)
3218 {
3219 spin_lock_irq(q->queue_lock);
3220 q->rpm_status = RPM_RESUMING;
3221 spin_unlock_irq(q->queue_lock);
3222 }
3223 EXPORT_SYMBOL(blk_pre_runtime_resume);
3224
3225 /**
3226 * blk_post_runtime_resume - Post runtime resume processing
3227 * @q: the queue of the device
3228 * @err: return value of the device's runtime_resume function
3229 *
3230 * Description:
3231 * Update the queue's runtime status according to the return value of the
3232 * device's runtime_resume function. If it is successfully resumed, process
3233 * the requests that are queued into the device's queue when it is resuming
3234 * and then mark last busy and initiate autosuspend for it.
3235 *
3236 * This function should be called near the end of the device's
3237 * runtime_resume callback.
3238 */
3239 void blk_post_runtime_resume(struct request_queue *q, int err)
3240 {
3241 spin_lock_irq(q->queue_lock);
3242 if (!err) {
3243 q->rpm_status = RPM_ACTIVE;
3244 __blk_run_queue(q);
3245 pm_runtime_mark_last_busy(q->dev);
3246 pm_request_autosuspend(q->dev);
3247 } else {
3248 q->rpm_status = RPM_SUSPENDED;
3249 }
3250 spin_unlock_irq(q->queue_lock);
3251 }
3252 EXPORT_SYMBOL(blk_post_runtime_resume);
3253 #endif
3254
3255 int __init blk_dev_init(void)
3256 {
3257 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3258 sizeof(((struct request *)0)->cmd_flags));
3259
3260 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3261 kblockd_workqueue = alloc_workqueue("kblockd",
3262 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3263 WQ_POWER_EFFICIENT, 0);
3264 if (!kblockd_workqueue)
3265 panic("Failed to create kblockd\n");
3266
3267 request_cachep = kmem_cache_create("blkdev_requests",
3268 sizeof(struct request), 0, SLAB_PANIC, NULL);
3269
3270 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3271 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3272
3273 return 0;
3274 }