]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: restore the meaning of rq->data_len to the true data length
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 static struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 int rw = rq_data_dir(rq);
58
59 if (!blk_fs_request(rq) || !rq->rq_disk)
60 return;
61
62 if (!new_io) {
63 __all_stat_inc(rq->rq_disk, merges[rw], rq->sector);
64 } else {
65 struct hd_struct *part = get_part(rq->rq_disk, rq->sector);
66 disk_round_stats(rq->rq_disk);
67 rq->rq_disk->in_flight++;
68 if (part) {
69 part_round_stats(part);
70 part->in_flight++;
71 }
72 }
73 }
74
75 void blk_queue_congestion_threshold(struct request_queue *q)
76 {
77 int nr;
78
79 nr = q->nr_requests - (q->nr_requests / 8) + 1;
80 if (nr > q->nr_requests)
81 nr = q->nr_requests;
82 q->nr_congestion_on = nr;
83
84 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
85 if (nr < 1)
86 nr = 1;
87 q->nr_congestion_off = nr;
88 }
89
90 /**
91 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
92 * @bdev: device
93 *
94 * Locates the passed device's request queue and returns the address of its
95 * backing_dev_info
96 *
97 * Will return NULL if the request queue cannot be located.
98 */
99 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
100 {
101 struct backing_dev_info *ret = NULL;
102 struct request_queue *q = bdev_get_queue(bdev);
103
104 if (q)
105 ret = &q->backing_dev_info;
106 return ret;
107 }
108 EXPORT_SYMBOL(blk_get_backing_dev_info);
109
110 /*
111 * We can't just memset() the structure, since the allocation path
112 * already stored some information in the request.
113 */
114 void rq_init(struct request_queue *q, struct request *rq)
115 {
116 INIT_LIST_HEAD(&rq->queuelist);
117 INIT_LIST_HEAD(&rq->donelist);
118 rq->q = q;
119 rq->sector = rq->hard_sector = (sector_t) -1;
120 rq->nr_sectors = rq->hard_nr_sectors = 0;
121 rq->current_nr_sectors = rq->hard_cur_sectors = 0;
122 rq->bio = rq->biotail = NULL;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->rq_disk = NULL;
126 rq->nr_phys_segments = 0;
127 rq->nr_hw_segments = 0;
128 rq->ioprio = 0;
129 rq->special = NULL;
130 rq->buffer = NULL;
131 rq->tag = -1;
132 rq->errors = 0;
133 rq->ref_count = 1;
134 rq->cmd_len = 0;
135 memset(rq->cmd, 0, sizeof(rq->cmd));
136 rq->data_len = 0;
137 rq->extra_len = 0;
138 rq->sense_len = 0;
139 rq->data = NULL;
140 rq->sense = NULL;
141 rq->end_io = NULL;
142 rq->end_io_data = NULL;
143 rq->next_rq = NULL;
144 }
145
146 static void req_bio_endio(struct request *rq, struct bio *bio,
147 unsigned int nbytes, int error)
148 {
149 struct request_queue *q = rq->q;
150
151 if (&q->bar_rq != rq) {
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
156
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __FUNCTION__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
161 }
162
163 bio->bi_size -= nbytes;
164 bio->bi_sector += (nbytes >> 9);
165 if (bio->bi_size == 0)
166 bio_endio(bio, error);
167 } else {
168
169 /*
170 * Okay, this is the barrier request in progress, just
171 * record the error;
172 */
173 if (error && !q->orderr)
174 q->orderr = error;
175 }
176 }
177
178 void blk_dump_rq_flags(struct request *rq, char *msg)
179 {
180 int bit;
181
182 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
183 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
184 rq->cmd_flags);
185
186 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
187 (unsigned long long)rq->sector,
188 rq->nr_sectors,
189 rq->current_nr_sectors);
190 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
191 rq->bio, rq->biotail,
192 rq->buffer, rq->data,
193 rq->data_len);
194
195 if (blk_pc_request(rq)) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < sizeof(rq->cmd); bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 /*
205 * "plug" the device if there are no outstanding requests: this will
206 * force the transfer to start only after we have put all the requests
207 * on the list.
208 *
209 * This is called with interrupts off and no requests on the queue and
210 * with the queue lock held.
211 */
212 void blk_plug_device(struct request_queue *q)
213 {
214 WARN_ON(!irqs_disabled());
215
216 /*
217 * don't plug a stopped queue, it must be paired with blk_start_queue()
218 * which will restart the queueing
219 */
220 if (blk_queue_stopped(q))
221 return;
222
223 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
224 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
225 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
226 }
227 }
228 EXPORT_SYMBOL(blk_plug_device);
229
230 /*
231 * remove the queue from the plugged list, if present. called with
232 * queue lock held and interrupts disabled.
233 */
234 int blk_remove_plug(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
239 return 0;
240
241 del_timer(&q->unplug_timer);
242 return 1;
243 }
244 EXPORT_SYMBOL(blk_remove_plug);
245
246 /*
247 * remove the plug and let it rip..
248 */
249 void __generic_unplug_device(struct request_queue *q)
250 {
251 if (unlikely(blk_queue_stopped(q)))
252 return;
253
254 if (!blk_remove_plug(q))
255 return;
256
257 q->request_fn(q);
258 }
259 EXPORT_SYMBOL(__generic_unplug_device);
260
261 /**
262 * generic_unplug_device - fire a request queue
263 * @q: The &struct request_queue in question
264 *
265 * Description:
266 * Linux uses plugging to build bigger requests queues before letting
267 * the device have at them. If a queue is plugged, the I/O scheduler
268 * is still adding and merging requests on the queue. Once the queue
269 * gets unplugged, the request_fn defined for the queue is invoked and
270 * transfers started.
271 **/
272 void generic_unplug_device(struct request_queue *q)
273 {
274 spin_lock_irq(q->queue_lock);
275 __generic_unplug_device(q);
276 spin_unlock_irq(q->queue_lock);
277 }
278 EXPORT_SYMBOL(generic_unplug_device);
279
280 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
281 struct page *page)
282 {
283 struct request_queue *q = bdi->unplug_io_data;
284
285 blk_unplug(q);
286 }
287
288 void blk_unplug_work(struct work_struct *work)
289 {
290 struct request_queue *q =
291 container_of(work, struct request_queue, unplug_work);
292
293 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
294 q->rq.count[READ] + q->rq.count[WRITE]);
295
296 q->unplug_fn(q);
297 }
298
299 void blk_unplug_timeout(unsigned long data)
300 {
301 struct request_queue *q = (struct request_queue *)data;
302
303 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
304 q->rq.count[READ] + q->rq.count[WRITE]);
305
306 kblockd_schedule_work(&q->unplug_work);
307 }
308
309 void blk_unplug(struct request_queue *q)
310 {
311 /*
312 * devices don't necessarily have an ->unplug_fn defined
313 */
314 if (q->unplug_fn) {
315 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
316 q->rq.count[READ] + q->rq.count[WRITE]);
317
318 q->unplug_fn(q);
319 }
320 }
321 EXPORT_SYMBOL(blk_unplug);
322
323 /**
324 * blk_start_queue - restart a previously stopped queue
325 * @q: The &struct request_queue in question
326 *
327 * Description:
328 * blk_start_queue() will clear the stop flag on the queue, and call
329 * the request_fn for the queue if it was in a stopped state when
330 * entered. Also see blk_stop_queue(). Queue lock must be held.
331 **/
332 void blk_start_queue(struct request_queue *q)
333 {
334 WARN_ON(!irqs_disabled());
335
336 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
337
338 /*
339 * one level of recursion is ok and is much faster than kicking
340 * the unplug handling
341 */
342 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
343 q->request_fn(q);
344 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
345 } else {
346 blk_plug_device(q);
347 kblockd_schedule_work(&q->unplug_work);
348 }
349 }
350 EXPORT_SYMBOL(blk_start_queue);
351
352 /**
353 * blk_stop_queue - stop a queue
354 * @q: The &struct request_queue in question
355 *
356 * Description:
357 * The Linux block layer assumes that a block driver will consume all
358 * entries on the request queue when the request_fn strategy is called.
359 * Often this will not happen, because of hardware limitations (queue
360 * depth settings). If a device driver gets a 'queue full' response,
361 * or if it simply chooses not to queue more I/O at one point, it can
362 * call this function to prevent the request_fn from being called until
363 * the driver has signalled it's ready to go again. This happens by calling
364 * blk_start_queue() to restart queue operations. Queue lock must be held.
365 **/
366 void blk_stop_queue(struct request_queue *q)
367 {
368 blk_remove_plug(q);
369 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
370 }
371 EXPORT_SYMBOL(blk_stop_queue);
372
373 /**
374 * blk_sync_queue - cancel any pending callbacks on a queue
375 * @q: the queue
376 *
377 * Description:
378 * The block layer may perform asynchronous callback activity
379 * on a queue, such as calling the unplug function after a timeout.
380 * A block device may call blk_sync_queue to ensure that any
381 * such activity is cancelled, thus allowing it to release resources
382 * that the callbacks might use. The caller must already have made sure
383 * that its ->make_request_fn will not re-add plugging prior to calling
384 * this function.
385 *
386 */
387 void blk_sync_queue(struct request_queue *q)
388 {
389 del_timer_sync(&q->unplug_timer);
390 kblockd_flush_work(&q->unplug_work);
391 }
392 EXPORT_SYMBOL(blk_sync_queue);
393
394 /**
395 * blk_run_queue - run a single device queue
396 * @q: The queue to run
397 */
398 void blk_run_queue(struct request_queue *q)
399 {
400 unsigned long flags;
401
402 spin_lock_irqsave(q->queue_lock, flags);
403 blk_remove_plug(q);
404
405 /*
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
408 */
409 if (!elv_queue_empty(q)) {
410 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
411 q->request_fn(q);
412 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
413 } else {
414 blk_plug_device(q);
415 kblockd_schedule_work(&q->unplug_work);
416 }
417 }
418
419 spin_unlock_irqrestore(q->queue_lock, flags);
420 }
421 EXPORT_SYMBOL(blk_run_queue);
422
423 void blk_put_queue(struct request_queue *q)
424 {
425 kobject_put(&q->kobj);
426 }
427 EXPORT_SYMBOL(blk_put_queue);
428
429 void blk_cleanup_queue(struct request_queue *q)
430 {
431 mutex_lock(&q->sysfs_lock);
432 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
433 mutex_unlock(&q->sysfs_lock);
434
435 if (q->elevator)
436 elevator_exit(q->elevator);
437
438 blk_put_queue(q);
439 }
440 EXPORT_SYMBOL(blk_cleanup_queue);
441
442 static int blk_init_free_list(struct request_queue *q)
443 {
444 struct request_list *rl = &q->rq;
445
446 rl->count[READ] = rl->count[WRITE] = 0;
447 rl->starved[READ] = rl->starved[WRITE] = 0;
448 rl->elvpriv = 0;
449 init_waitqueue_head(&rl->wait[READ]);
450 init_waitqueue_head(&rl->wait[WRITE]);
451
452 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
453 mempool_free_slab, request_cachep, q->node);
454
455 if (!rl->rq_pool)
456 return -ENOMEM;
457
458 return 0;
459 }
460
461 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
462 {
463 return blk_alloc_queue_node(gfp_mask, -1);
464 }
465 EXPORT_SYMBOL(blk_alloc_queue);
466
467 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
468 {
469 struct request_queue *q;
470 int err;
471
472 q = kmem_cache_alloc_node(blk_requestq_cachep,
473 gfp_mask | __GFP_ZERO, node_id);
474 if (!q)
475 return NULL;
476
477 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
478 q->backing_dev_info.unplug_io_data = q;
479 err = bdi_init(&q->backing_dev_info);
480 if (err) {
481 kmem_cache_free(blk_requestq_cachep, q);
482 return NULL;
483 }
484
485 init_timer(&q->unplug_timer);
486
487 kobject_init(&q->kobj, &blk_queue_ktype);
488
489 mutex_init(&q->sysfs_lock);
490
491 return q;
492 }
493 EXPORT_SYMBOL(blk_alloc_queue_node);
494
495 /**
496 * blk_init_queue - prepare a request queue for use with a block device
497 * @rfn: The function to be called to process requests that have been
498 * placed on the queue.
499 * @lock: Request queue spin lock
500 *
501 * Description:
502 * If a block device wishes to use the standard request handling procedures,
503 * which sorts requests and coalesces adjacent requests, then it must
504 * call blk_init_queue(). The function @rfn will be called when there
505 * are requests on the queue that need to be processed. If the device
506 * supports plugging, then @rfn may not be called immediately when requests
507 * are available on the queue, but may be called at some time later instead.
508 * Plugged queues are generally unplugged when a buffer belonging to one
509 * of the requests on the queue is needed, or due to memory pressure.
510 *
511 * @rfn is not required, or even expected, to remove all requests off the
512 * queue, but only as many as it can handle at a time. If it does leave
513 * requests on the queue, it is responsible for arranging that the requests
514 * get dealt with eventually.
515 *
516 * The queue spin lock must be held while manipulating the requests on the
517 * request queue; this lock will be taken also from interrupt context, so irq
518 * disabling is needed for it.
519 *
520 * Function returns a pointer to the initialized request queue, or NULL if
521 * it didn't succeed.
522 *
523 * Note:
524 * blk_init_queue() must be paired with a blk_cleanup_queue() call
525 * when the block device is deactivated (such as at module unload).
526 **/
527
528 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
529 {
530 return blk_init_queue_node(rfn, lock, -1);
531 }
532 EXPORT_SYMBOL(blk_init_queue);
533
534 struct request_queue *
535 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
536 {
537 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
538
539 if (!q)
540 return NULL;
541
542 q->node = node_id;
543 if (blk_init_free_list(q)) {
544 kmem_cache_free(blk_requestq_cachep, q);
545 return NULL;
546 }
547
548 /*
549 * if caller didn't supply a lock, they get per-queue locking with
550 * our embedded lock
551 */
552 if (!lock) {
553 spin_lock_init(&q->__queue_lock);
554 lock = &q->__queue_lock;
555 }
556
557 q->request_fn = rfn;
558 q->prep_rq_fn = NULL;
559 q->unplug_fn = generic_unplug_device;
560 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
561 q->queue_lock = lock;
562
563 blk_queue_segment_boundary(q, 0xffffffff);
564
565 blk_queue_make_request(q, __make_request);
566 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
567
568 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
569 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
570
571 q->sg_reserved_size = INT_MAX;
572
573 /*
574 * all done
575 */
576 if (!elevator_init(q, NULL)) {
577 blk_queue_congestion_threshold(q);
578 return q;
579 }
580
581 blk_put_queue(q);
582 return NULL;
583 }
584 EXPORT_SYMBOL(blk_init_queue_node);
585
586 int blk_get_queue(struct request_queue *q)
587 {
588 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
589 kobject_get(&q->kobj);
590 return 0;
591 }
592
593 return 1;
594 }
595 EXPORT_SYMBOL(blk_get_queue);
596
597 static inline void blk_free_request(struct request_queue *q, struct request *rq)
598 {
599 if (rq->cmd_flags & REQ_ELVPRIV)
600 elv_put_request(q, rq);
601 mempool_free(rq, q->rq.rq_pool);
602 }
603
604 static struct request *
605 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
606 {
607 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
608
609 if (!rq)
610 return NULL;
611
612 /*
613 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
614 * see bio.h and blkdev.h
615 */
616 rq->cmd_flags = rw | REQ_ALLOCED;
617
618 if (priv) {
619 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
620 mempool_free(rq, q->rq.rq_pool);
621 return NULL;
622 }
623 rq->cmd_flags |= REQ_ELVPRIV;
624 }
625
626 return rq;
627 }
628
629 /*
630 * ioc_batching returns true if the ioc is a valid batching request and
631 * should be given priority access to a request.
632 */
633 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
634 {
635 if (!ioc)
636 return 0;
637
638 /*
639 * Make sure the process is able to allocate at least 1 request
640 * even if the batch times out, otherwise we could theoretically
641 * lose wakeups.
642 */
643 return ioc->nr_batch_requests == q->nr_batching ||
644 (ioc->nr_batch_requests > 0
645 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
646 }
647
648 /*
649 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
650 * will cause the process to be a "batcher" on all queues in the system. This
651 * is the behaviour we want though - once it gets a wakeup it should be given
652 * a nice run.
653 */
654 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
655 {
656 if (!ioc || ioc_batching(q, ioc))
657 return;
658
659 ioc->nr_batch_requests = q->nr_batching;
660 ioc->last_waited = jiffies;
661 }
662
663 static void __freed_request(struct request_queue *q, int rw)
664 {
665 struct request_list *rl = &q->rq;
666
667 if (rl->count[rw] < queue_congestion_off_threshold(q))
668 blk_clear_queue_congested(q, rw);
669
670 if (rl->count[rw] + 1 <= q->nr_requests) {
671 if (waitqueue_active(&rl->wait[rw]))
672 wake_up(&rl->wait[rw]);
673
674 blk_clear_queue_full(q, rw);
675 }
676 }
677
678 /*
679 * A request has just been released. Account for it, update the full and
680 * congestion status, wake up any waiters. Called under q->queue_lock.
681 */
682 static void freed_request(struct request_queue *q, int rw, int priv)
683 {
684 struct request_list *rl = &q->rq;
685
686 rl->count[rw]--;
687 if (priv)
688 rl->elvpriv--;
689
690 __freed_request(q, rw);
691
692 if (unlikely(rl->starved[rw ^ 1]))
693 __freed_request(q, rw ^ 1);
694 }
695
696 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
697 /*
698 * Get a free request, queue_lock must be held.
699 * Returns NULL on failure, with queue_lock held.
700 * Returns !NULL on success, with queue_lock *not held*.
701 */
702 static struct request *get_request(struct request_queue *q, int rw_flags,
703 struct bio *bio, gfp_t gfp_mask)
704 {
705 struct request *rq = NULL;
706 struct request_list *rl = &q->rq;
707 struct io_context *ioc = NULL;
708 const int rw = rw_flags & 0x01;
709 int may_queue, priv;
710
711 may_queue = elv_may_queue(q, rw_flags);
712 if (may_queue == ELV_MQUEUE_NO)
713 goto rq_starved;
714
715 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
716 if (rl->count[rw]+1 >= q->nr_requests) {
717 ioc = current_io_context(GFP_ATOMIC, q->node);
718 /*
719 * The queue will fill after this allocation, so set
720 * it as full, and mark this process as "batching".
721 * This process will be allowed to complete a batch of
722 * requests, others will be blocked.
723 */
724 if (!blk_queue_full(q, rw)) {
725 ioc_set_batching(q, ioc);
726 blk_set_queue_full(q, rw);
727 } else {
728 if (may_queue != ELV_MQUEUE_MUST
729 && !ioc_batching(q, ioc)) {
730 /*
731 * The queue is full and the allocating
732 * process is not a "batcher", and not
733 * exempted by the IO scheduler
734 */
735 goto out;
736 }
737 }
738 }
739 blk_set_queue_congested(q, rw);
740 }
741
742 /*
743 * Only allow batching queuers to allocate up to 50% over the defined
744 * limit of requests, otherwise we could have thousands of requests
745 * allocated with any setting of ->nr_requests
746 */
747 if (rl->count[rw] >= (3 * q->nr_requests / 2))
748 goto out;
749
750 rl->count[rw]++;
751 rl->starved[rw] = 0;
752
753 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
754 if (priv)
755 rl->elvpriv++;
756
757 spin_unlock_irq(q->queue_lock);
758
759 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
760 if (unlikely(!rq)) {
761 /*
762 * Allocation failed presumably due to memory. Undo anything
763 * we might have messed up.
764 *
765 * Allocating task should really be put onto the front of the
766 * wait queue, but this is pretty rare.
767 */
768 spin_lock_irq(q->queue_lock);
769 freed_request(q, rw, priv);
770
771 /*
772 * in the very unlikely event that allocation failed and no
773 * requests for this direction was pending, mark us starved
774 * so that freeing of a request in the other direction will
775 * notice us. another possible fix would be to split the
776 * rq mempool into READ and WRITE
777 */
778 rq_starved:
779 if (unlikely(rl->count[rw] == 0))
780 rl->starved[rw] = 1;
781
782 goto out;
783 }
784
785 /*
786 * ioc may be NULL here, and ioc_batching will be false. That's
787 * OK, if the queue is under the request limit then requests need
788 * not count toward the nr_batch_requests limit. There will always
789 * be some limit enforced by BLK_BATCH_TIME.
790 */
791 if (ioc_batching(q, ioc))
792 ioc->nr_batch_requests--;
793
794 rq_init(q, rq);
795
796 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
797 out:
798 return rq;
799 }
800
801 /*
802 * No available requests for this queue, unplug the device and wait for some
803 * requests to become available.
804 *
805 * Called with q->queue_lock held, and returns with it unlocked.
806 */
807 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
808 struct bio *bio)
809 {
810 const int rw = rw_flags & 0x01;
811 struct request *rq;
812
813 rq = get_request(q, rw_flags, bio, GFP_NOIO);
814 while (!rq) {
815 DEFINE_WAIT(wait);
816 struct request_list *rl = &q->rq;
817
818 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
819 TASK_UNINTERRUPTIBLE);
820
821 rq = get_request(q, rw_flags, bio, GFP_NOIO);
822
823 if (!rq) {
824 struct io_context *ioc;
825
826 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
827
828 __generic_unplug_device(q);
829 spin_unlock_irq(q->queue_lock);
830 io_schedule();
831
832 /*
833 * After sleeping, we become a "batching" process and
834 * will be able to allocate at least one request, and
835 * up to a big batch of them for a small period time.
836 * See ioc_batching, ioc_set_batching
837 */
838 ioc = current_io_context(GFP_NOIO, q->node);
839 ioc_set_batching(q, ioc);
840
841 spin_lock_irq(q->queue_lock);
842 }
843 finish_wait(&rl->wait[rw], &wait);
844 }
845
846 return rq;
847 }
848
849 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
850 {
851 struct request *rq;
852
853 BUG_ON(rw != READ && rw != WRITE);
854
855 spin_lock_irq(q->queue_lock);
856 if (gfp_mask & __GFP_WAIT) {
857 rq = get_request_wait(q, rw, NULL);
858 } else {
859 rq = get_request(q, rw, NULL, gfp_mask);
860 if (!rq)
861 spin_unlock_irq(q->queue_lock);
862 }
863 /* q->queue_lock is unlocked at this point */
864
865 return rq;
866 }
867 EXPORT_SYMBOL(blk_get_request);
868
869 /**
870 * blk_start_queueing - initiate dispatch of requests to device
871 * @q: request queue to kick into gear
872 *
873 * This is basically a helper to remove the need to know whether a queue
874 * is plugged or not if someone just wants to initiate dispatch of requests
875 * for this queue.
876 *
877 * The queue lock must be held with interrupts disabled.
878 */
879 void blk_start_queueing(struct request_queue *q)
880 {
881 if (!blk_queue_plugged(q))
882 q->request_fn(q);
883 else
884 __generic_unplug_device(q);
885 }
886 EXPORT_SYMBOL(blk_start_queueing);
887
888 /**
889 * blk_requeue_request - put a request back on queue
890 * @q: request queue where request should be inserted
891 * @rq: request to be inserted
892 *
893 * Description:
894 * Drivers often keep queueing requests until the hardware cannot accept
895 * more, when that condition happens we need to put the request back
896 * on the queue. Must be called with queue lock held.
897 */
898 void blk_requeue_request(struct request_queue *q, struct request *rq)
899 {
900 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
901
902 if (blk_rq_tagged(rq))
903 blk_queue_end_tag(q, rq);
904
905 elv_requeue_request(q, rq);
906 }
907 EXPORT_SYMBOL(blk_requeue_request);
908
909 /**
910 * blk_insert_request - insert a special request in to a request queue
911 * @q: request queue where request should be inserted
912 * @rq: request to be inserted
913 * @at_head: insert request at head or tail of queue
914 * @data: private data
915 *
916 * Description:
917 * Many block devices need to execute commands asynchronously, so they don't
918 * block the whole kernel from preemption during request execution. This is
919 * accomplished normally by inserting aritficial requests tagged as
920 * REQ_SPECIAL in to the corresponding request queue, and letting them be
921 * scheduled for actual execution by the request queue.
922 *
923 * We have the option of inserting the head or the tail of the queue.
924 * Typically we use the tail for new ioctls and so forth. We use the head
925 * of the queue for things like a QUEUE_FULL message from a device, or a
926 * host that is unable to accept a particular command.
927 */
928 void blk_insert_request(struct request_queue *q, struct request *rq,
929 int at_head, void *data)
930 {
931 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
932 unsigned long flags;
933
934 /*
935 * tell I/O scheduler that this isn't a regular read/write (ie it
936 * must not attempt merges on this) and that it acts as a soft
937 * barrier
938 */
939 rq->cmd_type = REQ_TYPE_SPECIAL;
940 rq->cmd_flags |= REQ_SOFTBARRIER;
941
942 rq->special = data;
943
944 spin_lock_irqsave(q->queue_lock, flags);
945
946 /*
947 * If command is tagged, release the tag
948 */
949 if (blk_rq_tagged(rq))
950 blk_queue_end_tag(q, rq);
951
952 drive_stat_acct(rq, 1);
953 __elv_add_request(q, rq, where, 0);
954 blk_start_queueing(q);
955 spin_unlock_irqrestore(q->queue_lock, flags);
956 }
957 EXPORT_SYMBOL(blk_insert_request);
958
959 /*
960 * add-request adds a request to the linked list.
961 * queue lock is held and interrupts disabled, as we muck with the
962 * request queue list.
963 */
964 static inline void add_request(struct request_queue *q, struct request *req)
965 {
966 drive_stat_acct(req, 1);
967
968 /*
969 * elevator indicated where it wants this request to be
970 * inserted at elevator_merge time
971 */
972 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
973 }
974
975 /*
976 * disk_round_stats() - Round off the performance stats on a struct
977 * disk_stats.
978 *
979 * The average IO queue length and utilisation statistics are maintained
980 * by observing the current state of the queue length and the amount of
981 * time it has been in this state for.
982 *
983 * Normally, that accounting is done on IO completion, but that can result
984 * in more than a second's worth of IO being accounted for within any one
985 * second, leading to >100% utilisation. To deal with that, we call this
986 * function to do a round-off before returning the results when reading
987 * /proc/diskstats. This accounts immediately for all queue usage up to
988 * the current jiffies and restarts the counters again.
989 */
990 void disk_round_stats(struct gendisk *disk)
991 {
992 unsigned long now = jiffies;
993
994 if (now == disk->stamp)
995 return;
996
997 if (disk->in_flight) {
998 __disk_stat_add(disk, time_in_queue,
999 disk->in_flight * (now - disk->stamp));
1000 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1001 }
1002 disk->stamp = now;
1003 }
1004 EXPORT_SYMBOL_GPL(disk_round_stats);
1005
1006 void part_round_stats(struct hd_struct *part)
1007 {
1008 unsigned long now = jiffies;
1009
1010 if (now == part->stamp)
1011 return;
1012
1013 if (part->in_flight) {
1014 __part_stat_add(part, time_in_queue,
1015 part->in_flight * (now - part->stamp));
1016 __part_stat_add(part, io_ticks, (now - part->stamp));
1017 }
1018 part->stamp = now;
1019 }
1020
1021 /*
1022 * queue lock must be held
1023 */
1024 void __blk_put_request(struct request_queue *q, struct request *req)
1025 {
1026 if (unlikely(!q))
1027 return;
1028 if (unlikely(--req->ref_count))
1029 return;
1030
1031 elv_completed_request(q, req);
1032
1033 /*
1034 * Request may not have originated from ll_rw_blk. if not,
1035 * it didn't come out of our reserved rq pools
1036 */
1037 if (req->cmd_flags & REQ_ALLOCED) {
1038 int rw = rq_data_dir(req);
1039 int priv = req->cmd_flags & REQ_ELVPRIV;
1040
1041 BUG_ON(!list_empty(&req->queuelist));
1042 BUG_ON(!hlist_unhashed(&req->hash));
1043
1044 blk_free_request(q, req);
1045 freed_request(q, rw, priv);
1046 }
1047 }
1048 EXPORT_SYMBOL_GPL(__blk_put_request);
1049
1050 void blk_put_request(struct request *req)
1051 {
1052 unsigned long flags;
1053 struct request_queue *q = req->q;
1054
1055 /*
1056 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
1057 * following if (q) test.
1058 */
1059 if (q) {
1060 spin_lock_irqsave(q->queue_lock, flags);
1061 __blk_put_request(q, req);
1062 spin_unlock_irqrestore(q->queue_lock, flags);
1063 }
1064 }
1065 EXPORT_SYMBOL(blk_put_request);
1066
1067 void init_request_from_bio(struct request *req, struct bio *bio)
1068 {
1069 req->cmd_type = REQ_TYPE_FS;
1070
1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */
1074 if (bio_rw_ahead(bio) || bio_failfast(bio))
1075 req->cmd_flags |= REQ_FAILFAST;
1076
1077 /*
1078 * REQ_BARRIER implies no merging, but lets make it explicit
1079 */
1080 if (unlikely(bio_barrier(bio)))
1081 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1082
1083 if (bio_sync(bio))
1084 req->cmd_flags |= REQ_RW_SYNC;
1085 if (bio_rw_meta(bio))
1086 req->cmd_flags |= REQ_RW_META;
1087
1088 req->errors = 0;
1089 req->hard_sector = req->sector = bio->bi_sector;
1090 req->ioprio = bio_prio(bio);
1091 req->start_time = jiffies;
1092 blk_rq_bio_prep(req->q, req, bio);
1093 }
1094
1095 static int __make_request(struct request_queue *q, struct bio *bio)
1096 {
1097 struct request *req;
1098 int el_ret, nr_sectors, barrier, err;
1099 const unsigned short prio = bio_prio(bio);
1100 const int sync = bio_sync(bio);
1101 int rw_flags;
1102
1103 nr_sectors = bio_sectors(bio);
1104
1105 /*
1106 * low level driver can indicate that it wants pages above a
1107 * certain limit bounced to low memory (ie for highmem, or even
1108 * ISA dma in theory)
1109 */
1110 blk_queue_bounce(q, &bio);
1111
1112 barrier = bio_barrier(bio);
1113 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1114 err = -EOPNOTSUPP;
1115 goto end_io;
1116 }
1117
1118 spin_lock_irq(q->queue_lock);
1119
1120 if (unlikely(barrier) || elv_queue_empty(q))
1121 goto get_rq;
1122
1123 el_ret = elv_merge(q, &req, bio);
1124 switch (el_ret) {
1125 case ELEVATOR_BACK_MERGE:
1126 BUG_ON(!rq_mergeable(req));
1127
1128 if (!ll_back_merge_fn(q, req, bio))
1129 break;
1130
1131 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1132
1133 req->biotail->bi_next = bio;
1134 req->biotail = bio;
1135 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1136 req->ioprio = ioprio_best(req->ioprio, prio);
1137 drive_stat_acct(req, 0);
1138 if (!attempt_back_merge(q, req))
1139 elv_merged_request(q, req, el_ret);
1140 goto out;
1141
1142 case ELEVATOR_FRONT_MERGE:
1143 BUG_ON(!rq_mergeable(req));
1144
1145 if (!ll_front_merge_fn(q, req, bio))
1146 break;
1147
1148 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1149
1150 bio->bi_next = req->bio;
1151 req->bio = bio;
1152
1153 /*
1154 * may not be valid. if the low level driver said
1155 * it didn't need a bounce buffer then it better
1156 * not touch req->buffer either...
1157 */
1158 req->buffer = bio_data(bio);
1159 req->current_nr_sectors = bio_cur_sectors(bio);
1160 req->hard_cur_sectors = req->current_nr_sectors;
1161 req->sector = req->hard_sector = bio->bi_sector;
1162 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1163 req->ioprio = ioprio_best(req->ioprio, prio);
1164 drive_stat_acct(req, 0);
1165 if (!attempt_front_merge(q, req))
1166 elv_merged_request(q, req, el_ret);
1167 goto out;
1168
1169 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1170 default:
1171 ;
1172 }
1173
1174 get_rq:
1175 /*
1176 * This sync check and mask will be re-done in init_request_from_bio(),
1177 * but we need to set it earlier to expose the sync flag to the
1178 * rq allocator and io schedulers.
1179 */
1180 rw_flags = bio_data_dir(bio);
1181 if (sync)
1182 rw_flags |= REQ_RW_SYNC;
1183
1184 /*
1185 * Grab a free request. This is might sleep but can not fail.
1186 * Returns with the queue unlocked.
1187 */
1188 req = get_request_wait(q, rw_flags, bio);
1189
1190 /*
1191 * After dropping the lock and possibly sleeping here, our request
1192 * may now be mergeable after it had proven unmergeable (above).
1193 * We don't worry about that case for efficiency. It won't happen
1194 * often, and the elevators are able to handle it.
1195 */
1196 init_request_from_bio(req, bio);
1197
1198 spin_lock_irq(q->queue_lock);
1199 if (elv_queue_empty(q))
1200 blk_plug_device(q);
1201 add_request(q, req);
1202 out:
1203 if (sync)
1204 __generic_unplug_device(q);
1205
1206 spin_unlock_irq(q->queue_lock);
1207 return 0;
1208
1209 end_io:
1210 bio_endio(bio, err);
1211 return 0;
1212 }
1213
1214 /*
1215 * If bio->bi_dev is a partition, remap the location
1216 */
1217 static inline void blk_partition_remap(struct bio *bio)
1218 {
1219 struct block_device *bdev = bio->bi_bdev;
1220
1221 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1222 struct hd_struct *p = bdev->bd_part;
1223
1224 bio->bi_sector += p->start_sect;
1225 bio->bi_bdev = bdev->bd_contains;
1226
1227 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1228 bdev->bd_dev, bio->bi_sector,
1229 bio->bi_sector - p->start_sect);
1230 }
1231 }
1232
1233 static void handle_bad_sector(struct bio *bio)
1234 {
1235 char b[BDEVNAME_SIZE];
1236
1237 printk(KERN_INFO "attempt to access beyond end of device\n");
1238 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1239 bdevname(bio->bi_bdev, b),
1240 bio->bi_rw,
1241 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1242 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1243
1244 set_bit(BIO_EOF, &bio->bi_flags);
1245 }
1246
1247 #ifdef CONFIG_FAIL_MAKE_REQUEST
1248
1249 static DECLARE_FAULT_ATTR(fail_make_request);
1250
1251 static int __init setup_fail_make_request(char *str)
1252 {
1253 return setup_fault_attr(&fail_make_request, str);
1254 }
1255 __setup("fail_make_request=", setup_fail_make_request);
1256
1257 static int should_fail_request(struct bio *bio)
1258 {
1259 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1260 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1261 return should_fail(&fail_make_request, bio->bi_size);
1262
1263 return 0;
1264 }
1265
1266 static int __init fail_make_request_debugfs(void)
1267 {
1268 return init_fault_attr_dentries(&fail_make_request,
1269 "fail_make_request");
1270 }
1271
1272 late_initcall(fail_make_request_debugfs);
1273
1274 #else /* CONFIG_FAIL_MAKE_REQUEST */
1275
1276 static inline int should_fail_request(struct bio *bio)
1277 {
1278 return 0;
1279 }
1280
1281 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1282
1283 /*
1284 * Check whether this bio extends beyond the end of the device.
1285 */
1286 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1287 {
1288 sector_t maxsector;
1289
1290 if (!nr_sectors)
1291 return 0;
1292
1293 /* Test device or partition size, when known. */
1294 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1295 if (maxsector) {
1296 sector_t sector = bio->bi_sector;
1297
1298 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1299 /*
1300 * This may well happen - the kernel calls bread()
1301 * without checking the size of the device, e.g., when
1302 * mounting a device.
1303 */
1304 handle_bad_sector(bio);
1305 return 1;
1306 }
1307 }
1308
1309 return 0;
1310 }
1311
1312 /**
1313 * generic_make_request: hand a buffer to its device driver for I/O
1314 * @bio: The bio describing the location in memory and on the device.
1315 *
1316 * generic_make_request() is used to make I/O requests of block
1317 * devices. It is passed a &struct bio, which describes the I/O that needs
1318 * to be done.
1319 *
1320 * generic_make_request() does not return any status. The
1321 * success/failure status of the request, along with notification of
1322 * completion, is delivered asynchronously through the bio->bi_end_io
1323 * function described (one day) else where.
1324 *
1325 * The caller of generic_make_request must make sure that bi_io_vec
1326 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1327 * set to describe the device address, and the
1328 * bi_end_io and optionally bi_private are set to describe how
1329 * completion notification should be signaled.
1330 *
1331 * generic_make_request and the drivers it calls may use bi_next if this
1332 * bio happens to be merged with someone else, and may change bi_dev and
1333 * bi_sector for remaps as it sees fit. So the values of these fields
1334 * should NOT be depended on after the call to generic_make_request.
1335 */
1336 static inline void __generic_make_request(struct bio *bio)
1337 {
1338 struct request_queue *q;
1339 sector_t old_sector;
1340 int ret, nr_sectors = bio_sectors(bio);
1341 dev_t old_dev;
1342 int err = -EIO;
1343
1344 might_sleep();
1345
1346 if (bio_check_eod(bio, nr_sectors))
1347 goto end_io;
1348
1349 /*
1350 * Resolve the mapping until finished. (drivers are
1351 * still free to implement/resolve their own stacking
1352 * by explicitly returning 0)
1353 *
1354 * NOTE: we don't repeat the blk_size check for each new device.
1355 * Stacking drivers are expected to know what they are doing.
1356 */
1357 old_sector = -1;
1358 old_dev = 0;
1359 do {
1360 char b[BDEVNAME_SIZE];
1361
1362 q = bdev_get_queue(bio->bi_bdev);
1363 if (!q) {
1364 printk(KERN_ERR
1365 "generic_make_request: Trying to access "
1366 "nonexistent block-device %s (%Lu)\n",
1367 bdevname(bio->bi_bdev, b),
1368 (long long) bio->bi_sector);
1369 end_io:
1370 bio_endio(bio, err);
1371 break;
1372 }
1373
1374 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1375 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1376 bdevname(bio->bi_bdev, b),
1377 bio_sectors(bio),
1378 q->max_hw_sectors);
1379 goto end_io;
1380 }
1381
1382 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1383 goto end_io;
1384
1385 if (should_fail_request(bio))
1386 goto end_io;
1387
1388 /*
1389 * If this device has partitions, remap block n
1390 * of partition p to block n+start(p) of the disk.
1391 */
1392 blk_partition_remap(bio);
1393
1394 if (old_sector != -1)
1395 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1396 old_sector);
1397
1398 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1399
1400 old_sector = bio->bi_sector;
1401 old_dev = bio->bi_bdev->bd_dev;
1402
1403 if (bio_check_eod(bio, nr_sectors))
1404 goto end_io;
1405 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1406 err = -EOPNOTSUPP;
1407 goto end_io;
1408 }
1409
1410 ret = q->make_request_fn(q, bio);
1411 } while (ret);
1412 }
1413
1414 /*
1415 * We only want one ->make_request_fn to be active at a time,
1416 * else stack usage with stacked devices could be a problem.
1417 * So use current->bio_{list,tail} to keep a list of requests
1418 * submited by a make_request_fn function.
1419 * current->bio_tail is also used as a flag to say if
1420 * generic_make_request is currently active in this task or not.
1421 * If it is NULL, then no make_request is active. If it is non-NULL,
1422 * then a make_request is active, and new requests should be added
1423 * at the tail
1424 */
1425 void generic_make_request(struct bio *bio)
1426 {
1427 if (current->bio_tail) {
1428 /* make_request is active */
1429 *(current->bio_tail) = bio;
1430 bio->bi_next = NULL;
1431 current->bio_tail = &bio->bi_next;
1432 return;
1433 }
1434 /* following loop may be a bit non-obvious, and so deserves some
1435 * explanation.
1436 * Before entering the loop, bio->bi_next is NULL (as all callers
1437 * ensure that) so we have a list with a single bio.
1438 * We pretend that we have just taken it off a longer list, so
1439 * we assign bio_list to the next (which is NULL) and bio_tail
1440 * to &bio_list, thus initialising the bio_list of new bios to be
1441 * added. __generic_make_request may indeed add some more bios
1442 * through a recursive call to generic_make_request. If it
1443 * did, we find a non-NULL value in bio_list and re-enter the loop
1444 * from the top. In this case we really did just take the bio
1445 * of the top of the list (no pretending) and so fixup bio_list and
1446 * bio_tail or bi_next, and call into __generic_make_request again.
1447 *
1448 * The loop was structured like this to make only one call to
1449 * __generic_make_request (which is important as it is large and
1450 * inlined) and to keep the structure simple.
1451 */
1452 BUG_ON(bio->bi_next);
1453 do {
1454 current->bio_list = bio->bi_next;
1455 if (bio->bi_next == NULL)
1456 current->bio_tail = &current->bio_list;
1457 else
1458 bio->bi_next = NULL;
1459 __generic_make_request(bio);
1460 bio = current->bio_list;
1461 } while (bio);
1462 current->bio_tail = NULL; /* deactivate */
1463 }
1464 EXPORT_SYMBOL(generic_make_request);
1465
1466 /**
1467 * submit_bio: submit a bio to the block device layer for I/O
1468 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1469 * @bio: The &struct bio which describes the I/O
1470 *
1471 * submit_bio() is very similar in purpose to generic_make_request(), and
1472 * uses that function to do most of the work. Both are fairly rough
1473 * interfaces, @bio must be presetup and ready for I/O.
1474 *
1475 */
1476 void submit_bio(int rw, struct bio *bio)
1477 {
1478 int count = bio_sectors(bio);
1479
1480 bio->bi_rw |= rw;
1481
1482 /*
1483 * If it's a regular read/write or a barrier with data attached,
1484 * go through the normal accounting stuff before submission.
1485 */
1486 if (!bio_empty_barrier(bio)) {
1487
1488 BIO_BUG_ON(!bio->bi_size);
1489 BIO_BUG_ON(!bio->bi_io_vec);
1490
1491 if (rw & WRITE) {
1492 count_vm_events(PGPGOUT, count);
1493 } else {
1494 task_io_account_read(bio->bi_size);
1495 count_vm_events(PGPGIN, count);
1496 }
1497
1498 if (unlikely(block_dump)) {
1499 char b[BDEVNAME_SIZE];
1500 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1501 current->comm, task_pid_nr(current),
1502 (rw & WRITE) ? "WRITE" : "READ",
1503 (unsigned long long)bio->bi_sector,
1504 bdevname(bio->bi_bdev, b));
1505 }
1506 }
1507
1508 generic_make_request(bio);
1509 }
1510 EXPORT_SYMBOL(submit_bio);
1511
1512 /**
1513 * __end_that_request_first - end I/O on a request
1514 * @req: the request being processed
1515 * @error: 0 for success, < 0 for error
1516 * @nr_bytes: number of bytes to complete
1517 *
1518 * Description:
1519 * Ends I/O on a number of bytes attached to @req, and sets it up
1520 * for the next range of segments (if any) in the cluster.
1521 *
1522 * Return:
1523 * 0 - we are done with this request, call end_that_request_last()
1524 * 1 - still buffers pending for this request
1525 **/
1526 static int __end_that_request_first(struct request *req, int error,
1527 int nr_bytes)
1528 {
1529 int total_bytes, bio_nbytes, next_idx = 0;
1530 struct bio *bio;
1531
1532 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1533
1534 /*
1535 * for a REQ_BLOCK_PC request, we want to carry any eventual
1536 * sense key with us all the way through
1537 */
1538 if (!blk_pc_request(req))
1539 req->errors = 0;
1540
1541 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1542 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1543 req->rq_disk ? req->rq_disk->disk_name : "?",
1544 (unsigned long long)req->sector);
1545 }
1546
1547 if (blk_fs_request(req) && req->rq_disk) {
1548 const int rw = rq_data_dir(req);
1549
1550 all_stat_add(req->rq_disk, sectors[rw],
1551 nr_bytes >> 9, req->sector);
1552 }
1553
1554 total_bytes = bio_nbytes = 0;
1555 while ((bio = req->bio) != NULL) {
1556 int nbytes;
1557
1558 /*
1559 * For an empty barrier request, the low level driver must
1560 * store a potential error location in ->sector. We pass
1561 * that back up in ->bi_sector.
1562 */
1563 if (blk_empty_barrier(req))
1564 bio->bi_sector = req->sector;
1565
1566 if (nr_bytes >= bio->bi_size) {
1567 req->bio = bio->bi_next;
1568 nbytes = bio->bi_size;
1569 req_bio_endio(req, bio, nbytes, error);
1570 next_idx = 0;
1571 bio_nbytes = 0;
1572 } else {
1573 int idx = bio->bi_idx + next_idx;
1574
1575 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1576 blk_dump_rq_flags(req, "__end_that");
1577 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1578 __FUNCTION__, bio->bi_idx,
1579 bio->bi_vcnt);
1580 break;
1581 }
1582
1583 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1584 BIO_BUG_ON(nbytes > bio->bi_size);
1585
1586 /*
1587 * not a complete bvec done
1588 */
1589 if (unlikely(nbytes > nr_bytes)) {
1590 bio_nbytes += nr_bytes;
1591 total_bytes += nr_bytes;
1592 break;
1593 }
1594
1595 /*
1596 * advance to the next vector
1597 */
1598 next_idx++;
1599 bio_nbytes += nbytes;
1600 }
1601
1602 total_bytes += nbytes;
1603 nr_bytes -= nbytes;
1604
1605 bio = req->bio;
1606 if (bio) {
1607 /*
1608 * end more in this run, or just return 'not-done'
1609 */
1610 if (unlikely(nr_bytes <= 0))
1611 break;
1612 }
1613 }
1614
1615 /*
1616 * completely done
1617 */
1618 if (!req->bio)
1619 return 0;
1620
1621 /*
1622 * if the request wasn't completed, update state
1623 */
1624 if (bio_nbytes) {
1625 req_bio_endio(req, bio, bio_nbytes, error);
1626 bio->bi_idx += next_idx;
1627 bio_iovec(bio)->bv_offset += nr_bytes;
1628 bio_iovec(bio)->bv_len -= nr_bytes;
1629 }
1630
1631 blk_recalc_rq_sectors(req, total_bytes >> 9);
1632 blk_recalc_rq_segments(req);
1633 return 1;
1634 }
1635
1636 /*
1637 * splice the completion data to a local structure and hand off to
1638 * process_completion_queue() to complete the requests
1639 */
1640 static void blk_done_softirq(struct softirq_action *h)
1641 {
1642 struct list_head *cpu_list, local_list;
1643
1644 local_irq_disable();
1645 cpu_list = &__get_cpu_var(blk_cpu_done);
1646 list_replace_init(cpu_list, &local_list);
1647 local_irq_enable();
1648
1649 while (!list_empty(&local_list)) {
1650 struct request *rq;
1651
1652 rq = list_entry(local_list.next, struct request, donelist);
1653 list_del_init(&rq->donelist);
1654 rq->q->softirq_done_fn(rq);
1655 }
1656 }
1657
1658 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1659 unsigned long action, void *hcpu)
1660 {
1661 /*
1662 * If a CPU goes away, splice its entries to the current CPU
1663 * and trigger a run of the softirq
1664 */
1665 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1666 int cpu = (unsigned long) hcpu;
1667
1668 local_irq_disable();
1669 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1670 &__get_cpu_var(blk_cpu_done));
1671 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1672 local_irq_enable();
1673 }
1674
1675 return NOTIFY_OK;
1676 }
1677
1678
1679 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1680 .notifier_call = blk_cpu_notify,
1681 };
1682
1683 /**
1684 * blk_complete_request - end I/O on a request
1685 * @req: the request being processed
1686 *
1687 * Description:
1688 * Ends all I/O on a request. It does not handle partial completions,
1689 * unless the driver actually implements this in its completion callback
1690 * through requeueing. The actual completion happens out-of-order,
1691 * through a softirq handler. The user must have registered a completion
1692 * callback through blk_queue_softirq_done().
1693 **/
1694
1695 void blk_complete_request(struct request *req)
1696 {
1697 struct list_head *cpu_list;
1698 unsigned long flags;
1699
1700 BUG_ON(!req->q->softirq_done_fn);
1701
1702 local_irq_save(flags);
1703
1704 cpu_list = &__get_cpu_var(blk_cpu_done);
1705 list_add_tail(&req->donelist, cpu_list);
1706 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1707
1708 local_irq_restore(flags);
1709 }
1710 EXPORT_SYMBOL(blk_complete_request);
1711
1712 /*
1713 * queue lock must be held
1714 */
1715 static void end_that_request_last(struct request *req, int error)
1716 {
1717 struct gendisk *disk = req->rq_disk;
1718
1719 if (blk_rq_tagged(req))
1720 blk_queue_end_tag(req->q, req);
1721
1722 if (blk_queued_rq(req))
1723 blkdev_dequeue_request(req);
1724
1725 if (unlikely(laptop_mode) && blk_fs_request(req))
1726 laptop_io_completion();
1727
1728 /*
1729 * Account IO completion. bar_rq isn't accounted as a normal
1730 * IO on queueing nor completion. Accounting the containing
1731 * request is enough.
1732 */
1733 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1734 unsigned long duration = jiffies - req->start_time;
1735 const int rw = rq_data_dir(req);
1736 struct hd_struct *part = get_part(disk, req->sector);
1737
1738 __all_stat_inc(disk, ios[rw], req->sector);
1739 __all_stat_add(disk, ticks[rw], duration, req->sector);
1740 disk_round_stats(disk);
1741 disk->in_flight--;
1742 if (part) {
1743 part_round_stats(part);
1744 part->in_flight--;
1745 }
1746 }
1747
1748 if (req->end_io)
1749 req->end_io(req, error);
1750 else {
1751 if (blk_bidi_rq(req))
1752 __blk_put_request(req->next_rq->q, req->next_rq);
1753
1754 __blk_put_request(req->q, req);
1755 }
1756 }
1757
1758 static inline void __end_request(struct request *rq, int uptodate,
1759 unsigned int nr_bytes)
1760 {
1761 int error = 0;
1762
1763 if (uptodate <= 0)
1764 error = uptodate ? uptodate : -EIO;
1765
1766 __blk_end_request(rq, error, nr_bytes);
1767 }
1768
1769 /**
1770 * blk_rq_bytes - Returns bytes left to complete in the entire request
1771 * @rq: the request being processed
1772 **/
1773 unsigned int blk_rq_bytes(struct request *rq)
1774 {
1775 if (blk_fs_request(rq))
1776 return rq->hard_nr_sectors << 9;
1777
1778 return rq->data_len;
1779 }
1780 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1781
1782 /**
1783 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1784 * @rq: the request being processed
1785 **/
1786 unsigned int blk_rq_cur_bytes(struct request *rq)
1787 {
1788 if (blk_fs_request(rq))
1789 return rq->current_nr_sectors << 9;
1790
1791 if (rq->bio)
1792 return rq->bio->bi_size;
1793
1794 return rq->data_len;
1795 }
1796 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1797
1798 /**
1799 * end_queued_request - end all I/O on a queued request
1800 * @rq: the request being processed
1801 * @uptodate: error value or 0/1 uptodate flag
1802 *
1803 * Description:
1804 * Ends all I/O on a request, and removes it from the block layer queues.
1805 * Not suitable for normal IO completion, unless the driver still has
1806 * the request attached to the block layer.
1807 *
1808 **/
1809 void end_queued_request(struct request *rq, int uptodate)
1810 {
1811 __end_request(rq, uptodate, blk_rq_bytes(rq));
1812 }
1813 EXPORT_SYMBOL(end_queued_request);
1814
1815 /**
1816 * end_dequeued_request - end all I/O on a dequeued request
1817 * @rq: the request being processed
1818 * @uptodate: error value or 0/1 uptodate flag
1819 *
1820 * Description:
1821 * Ends all I/O on a request. The request must already have been
1822 * dequeued using blkdev_dequeue_request(), as is normally the case
1823 * for most drivers.
1824 *
1825 **/
1826 void end_dequeued_request(struct request *rq, int uptodate)
1827 {
1828 __end_request(rq, uptodate, blk_rq_bytes(rq));
1829 }
1830 EXPORT_SYMBOL(end_dequeued_request);
1831
1832
1833 /**
1834 * end_request - end I/O on the current segment of the request
1835 * @req: the request being processed
1836 * @uptodate: error value or 0/1 uptodate flag
1837 *
1838 * Description:
1839 * Ends I/O on the current segment of a request. If that is the only
1840 * remaining segment, the request is also completed and freed.
1841 *
1842 * This is a remnant of how older block drivers handled IO completions.
1843 * Modern drivers typically end IO on the full request in one go, unless
1844 * they have a residual value to account for. For that case this function
1845 * isn't really useful, unless the residual just happens to be the
1846 * full current segment. In other words, don't use this function in new
1847 * code. Either use end_request_completely(), or the
1848 * end_that_request_chunk() (along with end_that_request_last()) for
1849 * partial completions.
1850 *
1851 **/
1852 void end_request(struct request *req, int uptodate)
1853 {
1854 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1855 }
1856 EXPORT_SYMBOL(end_request);
1857
1858 /**
1859 * blk_end_io - Generic end_io function to complete a request.
1860 * @rq: the request being processed
1861 * @error: 0 for success, < 0 for error
1862 * @nr_bytes: number of bytes to complete @rq
1863 * @bidi_bytes: number of bytes to complete @rq->next_rq
1864 * @drv_callback: function called between completion of bios in the request
1865 * and completion of the request.
1866 * If the callback returns non 0, this helper returns without
1867 * completion of the request.
1868 *
1869 * Description:
1870 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1871 * If @rq has leftover, sets it up for the next range of segments.
1872 *
1873 * Return:
1874 * 0 - we are done with this request
1875 * 1 - this request is not freed yet, it still has pending buffers.
1876 **/
1877 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1878 unsigned int bidi_bytes,
1879 int (drv_callback)(struct request *))
1880 {
1881 struct request_queue *q = rq->q;
1882 unsigned long flags = 0UL;
1883
1884 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1885 if (__end_that_request_first(rq, error, nr_bytes))
1886 return 1;
1887
1888 /* Bidi request must be completed as a whole */
1889 if (blk_bidi_rq(rq) &&
1890 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1891 return 1;
1892 }
1893
1894 /* Special feature for tricky drivers */
1895 if (drv_callback && drv_callback(rq))
1896 return 1;
1897
1898 add_disk_randomness(rq->rq_disk);
1899
1900 spin_lock_irqsave(q->queue_lock, flags);
1901 end_that_request_last(rq, error);
1902 spin_unlock_irqrestore(q->queue_lock, flags);
1903
1904 return 0;
1905 }
1906
1907 /**
1908 * blk_end_request - Helper function for drivers to complete the request.
1909 * @rq: the request being processed
1910 * @error: 0 for success, < 0 for error
1911 * @nr_bytes: number of bytes to complete
1912 *
1913 * Description:
1914 * Ends I/O on a number of bytes attached to @rq.
1915 * If @rq has leftover, sets it up for the next range of segments.
1916 *
1917 * Return:
1918 * 0 - we are done with this request
1919 * 1 - still buffers pending for this request
1920 **/
1921 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1922 {
1923 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1924 }
1925 EXPORT_SYMBOL_GPL(blk_end_request);
1926
1927 /**
1928 * __blk_end_request - Helper function for drivers to complete the request.
1929 * @rq: the request being processed
1930 * @error: 0 for success, < 0 for error
1931 * @nr_bytes: number of bytes to complete
1932 *
1933 * Description:
1934 * Must be called with queue lock held unlike blk_end_request().
1935 *
1936 * Return:
1937 * 0 - we are done with this request
1938 * 1 - still buffers pending for this request
1939 **/
1940 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1941 {
1942 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1943 if (__end_that_request_first(rq, error, nr_bytes))
1944 return 1;
1945 }
1946
1947 add_disk_randomness(rq->rq_disk);
1948
1949 end_that_request_last(rq, error);
1950
1951 return 0;
1952 }
1953 EXPORT_SYMBOL_GPL(__blk_end_request);
1954
1955 /**
1956 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1957 * @rq: the bidi request being processed
1958 * @error: 0 for success, < 0 for error
1959 * @nr_bytes: number of bytes to complete @rq
1960 * @bidi_bytes: number of bytes to complete @rq->next_rq
1961 *
1962 * Description:
1963 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1964 *
1965 * Return:
1966 * 0 - we are done with this request
1967 * 1 - still buffers pending for this request
1968 **/
1969 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1970 unsigned int bidi_bytes)
1971 {
1972 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1973 }
1974 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1975
1976 /**
1977 * blk_end_request_callback - Special helper function for tricky drivers
1978 * @rq: the request being processed
1979 * @error: 0 for success, < 0 for error
1980 * @nr_bytes: number of bytes to complete
1981 * @drv_callback: function called between completion of bios in the request
1982 * and completion of the request.
1983 * If the callback returns non 0, this helper returns without
1984 * completion of the request.
1985 *
1986 * Description:
1987 * Ends I/O on a number of bytes attached to @rq.
1988 * If @rq has leftover, sets it up for the next range of segments.
1989 *
1990 * This special helper function is used only for existing tricky drivers.
1991 * (e.g. cdrom_newpc_intr() of ide-cd)
1992 * This interface will be removed when such drivers are rewritten.
1993 * Don't use this interface in other places anymore.
1994 *
1995 * Return:
1996 * 0 - we are done with this request
1997 * 1 - this request is not freed yet.
1998 * this request still has pending buffers or
1999 * the driver doesn't want to finish this request yet.
2000 **/
2001 int blk_end_request_callback(struct request *rq, int error,
2002 unsigned int nr_bytes,
2003 int (drv_callback)(struct request *))
2004 {
2005 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2006 }
2007 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2008
2009 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2010 struct bio *bio)
2011 {
2012 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2013 rq->cmd_flags |= (bio->bi_rw & 3);
2014
2015 rq->nr_phys_segments = bio_phys_segments(q, bio);
2016 rq->nr_hw_segments = bio_hw_segments(q, bio);
2017 rq->current_nr_sectors = bio_cur_sectors(bio);
2018 rq->hard_cur_sectors = rq->current_nr_sectors;
2019 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2020 rq->buffer = bio_data(bio);
2021 rq->data_len = bio->bi_size;
2022
2023 rq->bio = rq->biotail = bio;
2024
2025 if (bio->bi_bdev)
2026 rq->rq_disk = bio->bi_bdev->bd_disk;
2027 }
2028
2029 int kblockd_schedule_work(struct work_struct *work)
2030 {
2031 return queue_work(kblockd_workqueue, work);
2032 }
2033 EXPORT_SYMBOL(kblockd_schedule_work);
2034
2035 void kblockd_flush_work(struct work_struct *work)
2036 {
2037 cancel_work_sync(work);
2038 }
2039 EXPORT_SYMBOL(kblockd_flush_work);
2040
2041 int __init blk_dev_init(void)
2042 {
2043 int i;
2044
2045 kblockd_workqueue = create_workqueue("kblockd");
2046 if (!kblockd_workqueue)
2047 panic("Failed to create kblockd\n");
2048
2049 request_cachep = kmem_cache_create("blkdev_requests",
2050 sizeof(struct request), 0, SLAB_PANIC, NULL);
2051
2052 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2053 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2054
2055 for_each_possible_cpu(i)
2056 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2057
2058 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
2059 register_hotcpu_notifier(&blk_cpu_notifier);
2060
2061 return 0;
2062 }
2063