]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
htmldocs: fix bio.c location
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47
48 DEFINE_IDA(blk_queue_ida);
49
50 /*
51 * For the allocated request tables
52 */
53 struct kmem_cache *request_cachep = NULL;
54
55 /*
56 * For queue allocation
57 */
58 struct kmem_cache *blk_requestq_cachep;
59
60 /*
61 * Controlling structure to kblockd
62 */
63 static struct workqueue_struct *kblockd_workqueue;
64
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 int nr;
68
69 nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 if (nr > q->nr_requests)
71 nr = q->nr_requests;
72 q->nr_congestion_on = nr;
73
74 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 if (nr < 1)
76 nr = 1;
77 q->nr_congestion_off = nr;
78 }
79
80 /**
81 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82 * @bdev: device
83 *
84 * Locates the passed device's request queue and returns the address of its
85 * backing_dev_info
86 *
87 * Will return NULL if the request queue cannot be located.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct backing_dev_info *ret = NULL;
92 struct request_queue *q = bdev_get_queue(bdev);
93
94 if (q)
95 ret = &q->backing_dev_info;
96 return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 memset(rq, 0, sizeof(*rq));
103
104 INIT_LIST_HEAD(&rq->queuelist);
105 INIT_LIST_HEAD(&rq->timeout_list);
106 rq->cpu = -1;
107 rq->q = q;
108 rq->__sector = (sector_t) -1;
109 INIT_HLIST_NODE(&rq->hash);
110 RB_CLEAR_NODE(&rq->rb_node);
111 rq->cmd = rq->__cmd;
112 rq->cmd_len = BLK_MAX_CDB;
113 rq->tag = -1;
114 rq->start_time = jiffies;
115 set_start_time_ns(rq);
116 rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 unsigned int nbytes, int error)
122 {
123 if (error)
124 clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 error = -EIO;
127
128 if (unlikely(rq->cmd_flags & REQ_QUIET))
129 set_bit(BIO_QUIET, &bio->bi_flags);
130
131 bio_advance(bio, nbytes);
132
133 /* don't actually finish bio if it's part of flush sequence */
134 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 bio_endio(bio, error);
136 }
137
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 int bit;
141
142 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 (unsigned long long) rq->cmd_flags);
145
146 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
147 (unsigned long long)blk_rq_pos(rq),
148 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
150 rq->bio, rq->biotail, blk_rq_bytes(rq));
151
152 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 printk(KERN_INFO " cdb: ");
154 for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 printk("%02x ", rq->cmd[bit]);
156 printk("\n");
157 }
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160
161 static void blk_delay_work(struct work_struct *work)
162 {
163 struct request_queue *q;
164
165 q = container_of(work, struct request_queue, delay_work.work);
166 spin_lock_irq(q->queue_lock);
167 __blk_run_queue(q);
168 spin_unlock_irq(q->queue_lock);
169 }
170
171 /**
172 * blk_delay_queue - restart queueing after defined interval
173 * @q: The &struct request_queue in question
174 * @msecs: Delay in msecs
175 *
176 * Description:
177 * Sometimes queueing needs to be postponed for a little while, to allow
178 * resources to come back. This function will make sure that queueing is
179 * restarted around the specified time. Queue lock must be held.
180 */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 if (likely(!blk_queue_dead(q)))
184 queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188
189 /**
190 * blk_start_queue - restart a previously stopped queue
191 * @q: The &struct request_queue in question
192 *
193 * Description:
194 * blk_start_queue() will clear the stop flag on the queue, and call
195 * the request_fn for the queue if it was in a stopped state when
196 * entered. Also see blk_stop_queue(). Queue lock must be held.
197 **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 WARN_ON(!irqs_disabled());
201
202 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 __blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206
207 /**
208 * blk_stop_queue - stop a queue
209 * @q: The &struct request_queue in question
210 *
211 * Description:
212 * The Linux block layer assumes that a block driver will consume all
213 * entries on the request queue when the request_fn strategy is called.
214 * Often this will not happen, because of hardware limitations (queue
215 * depth settings). If a device driver gets a 'queue full' response,
216 * or if it simply chooses not to queue more I/O at one point, it can
217 * call this function to prevent the request_fn from being called until
218 * the driver has signalled it's ready to go again. This happens by calling
219 * blk_start_queue() to restart queue operations. Queue lock must be held.
220 **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 cancel_delayed_work(&q->delay_work);
224 queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227
228 /**
229 * blk_sync_queue - cancel any pending callbacks on a queue
230 * @q: the queue
231 *
232 * Description:
233 * The block layer may perform asynchronous callback activity
234 * on a queue, such as calling the unplug function after a timeout.
235 * A block device may call blk_sync_queue to ensure that any
236 * such activity is cancelled, thus allowing it to release resources
237 * that the callbacks might use. The caller must already have made sure
238 * that its ->make_request_fn will not re-add plugging prior to calling
239 * this function.
240 *
241 * This function does not cancel any asynchronous activity arising
242 * out of elevator or throttling code. That would require elevaotor_exit()
243 * and blkcg_exit_queue() to be called with queue lock initialized.
244 *
245 */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 del_timer_sync(&q->timeout);
249
250 if (q->mq_ops) {
251 struct blk_mq_hw_ctx *hctx;
252 int i;
253
254 queue_for_each_hw_ctx(q, hctx, i) {
255 cancel_delayed_work_sync(&hctx->run_work);
256 cancel_delayed_work_sync(&hctx->delay_work);
257 }
258 } else {
259 cancel_delayed_work_sync(&q->delay_work);
260 }
261 }
262 EXPORT_SYMBOL(blk_sync_queue);
263
264 /**
265 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
266 * @q: The queue to run
267 *
268 * Description:
269 * Invoke request handling on a queue if there are any pending requests.
270 * May be used to restart request handling after a request has completed.
271 * This variant runs the queue whether or not the queue has been
272 * stopped. Must be called with the queue lock held and interrupts
273 * disabled. See also @blk_run_queue.
274 */
275 inline void __blk_run_queue_uncond(struct request_queue *q)
276 {
277 if (unlikely(blk_queue_dead(q)))
278 return;
279
280 /*
281 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
282 * the queue lock internally. As a result multiple threads may be
283 * running such a request function concurrently. Keep track of the
284 * number of active request_fn invocations such that blk_drain_queue()
285 * can wait until all these request_fn calls have finished.
286 */
287 q->request_fn_active++;
288 q->request_fn(q);
289 q->request_fn_active--;
290 }
291
292 /**
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
295 *
296 * Description:
297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled.
299 */
300 void __blk_run_queue(struct request_queue *q)
301 {
302 if (unlikely(blk_queue_stopped(q)))
303 return;
304
305 __blk_run_queue_uncond(q);
306 }
307 EXPORT_SYMBOL(__blk_run_queue);
308
309 /**
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
312 *
313 * Description:
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
315 * of us. The caller must hold the queue lock.
316 */
317 void blk_run_queue_async(struct request_queue *q)
318 {
319 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
320 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 EXPORT_SYMBOL(blk_run_queue_async);
323
324 /**
325 * blk_run_queue - run a single device queue
326 * @q: The queue to run
327 *
328 * Description:
329 * Invoke request handling on this queue, if it has pending work to do.
330 * May be used to restart queueing when a request has completed.
331 */
332 void blk_run_queue(struct request_queue *q)
333 {
334 unsigned long flags;
335
336 spin_lock_irqsave(q->queue_lock, flags);
337 __blk_run_queue(q);
338 spin_unlock_irqrestore(q->queue_lock, flags);
339 }
340 EXPORT_SYMBOL(blk_run_queue);
341
342 void blk_put_queue(struct request_queue *q)
343 {
344 kobject_put(&q->kobj);
345 }
346 EXPORT_SYMBOL(blk_put_queue);
347
348 /**
349 * __blk_drain_queue - drain requests from request_queue
350 * @q: queue to drain
351 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
352 *
353 * Drain requests from @q. If @drain_all is set, all requests are drained.
354 * If not, only ELVPRIV requests are drained. The caller is responsible
355 * for ensuring that no new requests which need to be drained are queued.
356 */
357 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
358 __releases(q->queue_lock)
359 __acquires(q->queue_lock)
360 {
361 int i;
362
363 lockdep_assert_held(q->queue_lock);
364
365 while (true) {
366 bool drain = false;
367
368 /*
369 * The caller might be trying to drain @q before its
370 * elevator is initialized.
371 */
372 if (q->elevator)
373 elv_drain_elevator(q);
374
375 blkcg_drain_queue(q);
376
377 /*
378 * This function might be called on a queue which failed
379 * driver init after queue creation or is not yet fully
380 * active yet. Some drivers (e.g. fd and loop) get unhappy
381 * in such cases. Kick queue iff dispatch queue has
382 * something on it and @q has request_fn set.
383 */
384 if (!list_empty(&q->queue_head) && q->request_fn)
385 __blk_run_queue(q);
386
387 drain |= q->nr_rqs_elvpriv;
388 drain |= q->request_fn_active;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
403
404 if (!drain)
405 break;
406
407 spin_unlock_irq(q->queue_lock);
408
409 msleep(10);
410
411 spin_lock_irq(q->queue_lock);
412 }
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
420 struct request_list *rl;
421
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
425 }
426 }
427
428 /**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
434 * throttled or issued before. On return, it's guaranteed that no request
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
437 */
438 void blk_queue_bypass_start(struct request_queue *q)
439 {
440 bool drain;
441
442 spin_lock_irq(q->queue_lock);
443 drain = !q->bypass_depth++;
444 queue_flag_set(QUEUE_FLAG_BYPASS, q);
445 spin_unlock_irq(q->queue_lock);
446
447 if (drain) {
448 spin_lock_irq(q->queue_lock);
449 __blk_drain_queue(q, false);
450 spin_unlock_irq(q->queue_lock);
451
452 /* ensure blk_queue_bypass() is %true inside RCU read lock */
453 synchronize_rcu();
454 }
455 }
456 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
457
458 /**
459 * blk_queue_bypass_end - leave queue bypass mode
460 * @q: queue of interest
461 *
462 * Leave bypass mode and restore the normal queueing behavior.
463 */
464 void blk_queue_bypass_end(struct request_queue *q)
465 {
466 spin_lock_irq(q->queue_lock);
467 if (!--q->bypass_depth)
468 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
469 WARN_ON_ONCE(q->bypass_depth < 0);
470 spin_unlock_irq(q->queue_lock);
471 }
472 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
473
474 /**
475 * blk_cleanup_queue - shutdown a request queue
476 * @q: request queue to shutdown
477 *
478 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
479 * put it. All future requests will be failed immediately with -ENODEV.
480 */
481 void blk_cleanup_queue(struct request_queue *q)
482 {
483 spinlock_t *lock = q->queue_lock;
484
485 /* mark @q DYING, no new request or merges will be allowed afterwards */
486 mutex_lock(&q->sysfs_lock);
487 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
488 spin_lock_irq(lock);
489
490 /*
491 * A dying queue is permanently in bypass mode till released. Note
492 * that, unlike blk_queue_bypass_start(), we aren't performing
493 * synchronize_rcu() after entering bypass mode to avoid the delay
494 * as some drivers create and destroy a lot of queues while
495 * probing. This is still safe because blk_release_queue() will be
496 * called only after the queue refcnt drops to zero and nothing,
497 * RCU or not, would be traversing the queue by then.
498 */
499 q->bypass_depth++;
500 queue_flag_set(QUEUE_FLAG_BYPASS, q);
501
502 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
503 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
504 queue_flag_set(QUEUE_FLAG_DYING, q);
505 spin_unlock_irq(lock);
506 mutex_unlock(&q->sysfs_lock);
507
508 /*
509 * Drain all requests queued before DYING marking. Set DEAD flag to
510 * prevent that q->request_fn() gets invoked after draining finished.
511 */
512 if (q->mq_ops) {
513 blk_mq_drain_queue(q);
514 spin_lock_irq(lock);
515 } else {
516 spin_lock_irq(lock);
517 __blk_drain_queue(q, true);
518 }
519 queue_flag_set(QUEUE_FLAG_DEAD, q);
520 spin_unlock_irq(lock);
521
522 /* @q won't process any more request, flush async actions */
523 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
524 blk_sync_queue(q);
525
526 spin_lock_irq(lock);
527 if (q->queue_lock != &q->__queue_lock)
528 q->queue_lock = &q->__queue_lock;
529 spin_unlock_irq(lock);
530
531 /* @q is and will stay empty, shutdown and put */
532 blk_put_queue(q);
533 }
534 EXPORT_SYMBOL(blk_cleanup_queue);
535
536 int blk_init_rl(struct request_list *rl, struct request_queue *q,
537 gfp_t gfp_mask)
538 {
539 if (unlikely(rl->rq_pool))
540 return 0;
541
542 rl->q = q;
543 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
544 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
545 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
546 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
547
548 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
549 mempool_free_slab, request_cachep,
550 gfp_mask, q->node);
551 if (!rl->rq_pool)
552 return -ENOMEM;
553
554 return 0;
555 }
556
557 void blk_exit_rl(struct request_list *rl)
558 {
559 if (rl->rq_pool)
560 mempool_destroy(rl->rq_pool);
561 }
562
563 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
564 {
565 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
566 }
567 EXPORT_SYMBOL(blk_alloc_queue);
568
569 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
570 {
571 struct request_queue *q;
572 int err;
573
574 q = kmem_cache_alloc_node(blk_requestq_cachep,
575 gfp_mask | __GFP_ZERO, node_id);
576 if (!q)
577 return NULL;
578
579 if (percpu_counter_init(&q->mq_usage_counter, 0))
580 goto fail_q;
581
582 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
583 if (q->id < 0)
584 goto fail_c;
585
586 q->backing_dev_info.ra_pages =
587 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
588 q->backing_dev_info.state = 0;
589 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
590 q->backing_dev_info.name = "block";
591 q->node = node_id;
592
593 err = bdi_init(&q->backing_dev_info);
594 if (err)
595 goto fail_id;
596
597 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
598 laptop_mode_timer_fn, (unsigned long) q);
599 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
600 INIT_LIST_HEAD(&q->queue_head);
601 INIT_LIST_HEAD(&q->timeout_list);
602 INIT_LIST_HEAD(&q->icq_list);
603 #ifdef CONFIG_BLK_CGROUP
604 INIT_LIST_HEAD(&q->blkg_list);
605 #endif
606 INIT_LIST_HEAD(&q->flush_queue[0]);
607 INIT_LIST_HEAD(&q->flush_queue[1]);
608 INIT_LIST_HEAD(&q->flush_data_in_flight);
609 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
610
611 kobject_init(&q->kobj, &blk_queue_ktype);
612
613 mutex_init(&q->sysfs_lock);
614 spin_lock_init(&q->__queue_lock);
615
616 /*
617 * By default initialize queue_lock to internal lock and driver can
618 * override it later if need be.
619 */
620 q->queue_lock = &q->__queue_lock;
621
622 /*
623 * A queue starts its life with bypass turned on to avoid
624 * unnecessary bypass on/off overhead and nasty surprises during
625 * init. The initial bypass will be finished when the queue is
626 * registered by blk_register_queue().
627 */
628 q->bypass_depth = 1;
629 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
630
631 init_waitqueue_head(&q->mq_freeze_wq);
632
633 if (blkcg_init_queue(q))
634 goto fail_bdi;
635
636 return q;
637
638 fail_bdi:
639 bdi_destroy(&q->backing_dev_info);
640 fail_id:
641 ida_simple_remove(&blk_queue_ida, q->id);
642 fail_c:
643 percpu_counter_destroy(&q->mq_usage_counter);
644 fail_q:
645 kmem_cache_free(blk_requestq_cachep, q);
646 return NULL;
647 }
648 EXPORT_SYMBOL(blk_alloc_queue_node);
649
650 /**
651 * blk_init_queue - prepare a request queue for use with a block device
652 * @rfn: The function to be called to process requests that have been
653 * placed on the queue.
654 * @lock: Request queue spin lock
655 *
656 * Description:
657 * If a block device wishes to use the standard request handling procedures,
658 * which sorts requests and coalesces adjacent requests, then it must
659 * call blk_init_queue(). The function @rfn will be called when there
660 * are requests on the queue that need to be processed. If the device
661 * supports plugging, then @rfn may not be called immediately when requests
662 * are available on the queue, but may be called at some time later instead.
663 * Plugged queues are generally unplugged when a buffer belonging to one
664 * of the requests on the queue is needed, or due to memory pressure.
665 *
666 * @rfn is not required, or even expected, to remove all requests off the
667 * queue, but only as many as it can handle at a time. If it does leave
668 * requests on the queue, it is responsible for arranging that the requests
669 * get dealt with eventually.
670 *
671 * The queue spin lock must be held while manipulating the requests on the
672 * request queue; this lock will be taken also from interrupt context, so irq
673 * disabling is needed for it.
674 *
675 * Function returns a pointer to the initialized request queue, or %NULL if
676 * it didn't succeed.
677 *
678 * Note:
679 * blk_init_queue() must be paired with a blk_cleanup_queue() call
680 * when the block device is deactivated (such as at module unload).
681 **/
682
683 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
684 {
685 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
686 }
687 EXPORT_SYMBOL(blk_init_queue);
688
689 struct request_queue *
690 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
691 {
692 struct request_queue *uninit_q, *q;
693
694 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
695 if (!uninit_q)
696 return NULL;
697
698 q = blk_init_allocated_queue(uninit_q, rfn, lock);
699 if (!q)
700 blk_cleanup_queue(uninit_q);
701
702 return q;
703 }
704 EXPORT_SYMBOL(blk_init_queue_node);
705
706 struct request_queue *
707 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
708 spinlock_t *lock)
709 {
710 if (!q)
711 return NULL;
712
713 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
714 if (!q->flush_rq)
715 return NULL;
716
717 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
718 goto fail;
719
720 q->request_fn = rfn;
721 q->prep_rq_fn = NULL;
722 q->unprep_rq_fn = NULL;
723 q->queue_flags |= QUEUE_FLAG_DEFAULT;
724
725 /* Override internal queue lock with supplied lock pointer */
726 if (lock)
727 q->queue_lock = lock;
728
729 /*
730 * This also sets hw/phys segments, boundary and size
731 */
732 blk_queue_make_request(q, blk_queue_bio);
733
734 q->sg_reserved_size = INT_MAX;
735
736 /* Protect q->elevator from elevator_change */
737 mutex_lock(&q->sysfs_lock);
738
739 /* init elevator */
740 if (elevator_init(q, NULL)) {
741 mutex_unlock(&q->sysfs_lock);
742 goto fail;
743 }
744
745 mutex_unlock(&q->sysfs_lock);
746
747 return q;
748
749 fail:
750 kfree(q->flush_rq);
751 return NULL;
752 }
753 EXPORT_SYMBOL(blk_init_allocated_queue);
754
755 bool blk_get_queue(struct request_queue *q)
756 {
757 if (likely(!blk_queue_dying(q))) {
758 __blk_get_queue(q);
759 return true;
760 }
761
762 return false;
763 }
764 EXPORT_SYMBOL(blk_get_queue);
765
766 static inline void blk_free_request(struct request_list *rl, struct request *rq)
767 {
768 if (rq->cmd_flags & REQ_ELVPRIV) {
769 elv_put_request(rl->q, rq);
770 if (rq->elv.icq)
771 put_io_context(rq->elv.icq->ioc);
772 }
773
774 mempool_free(rq, rl->rq_pool);
775 }
776
777 /*
778 * ioc_batching returns true if the ioc is a valid batching request and
779 * should be given priority access to a request.
780 */
781 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
782 {
783 if (!ioc)
784 return 0;
785
786 /*
787 * Make sure the process is able to allocate at least 1 request
788 * even if the batch times out, otherwise we could theoretically
789 * lose wakeups.
790 */
791 return ioc->nr_batch_requests == q->nr_batching ||
792 (ioc->nr_batch_requests > 0
793 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
794 }
795
796 /*
797 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
798 * will cause the process to be a "batcher" on all queues in the system. This
799 * is the behaviour we want though - once it gets a wakeup it should be given
800 * a nice run.
801 */
802 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
803 {
804 if (!ioc || ioc_batching(q, ioc))
805 return;
806
807 ioc->nr_batch_requests = q->nr_batching;
808 ioc->last_waited = jiffies;
809 }
810
811 static void __freed_request(struct request_list *rl, int sync)
812 {
813 struct request_queue *q = rl->q;
814
815 /*
816 * bdi isn't aware of blkcg yet. As all async IOs end up root
817 * blkcg anyway, just use root blkcg state.
818 */
819 if (rl == &q->root_rl &&
820 rl->count[sync] < queue_congestion_off_threshold(q))
821 blk_clear_queue_congested(q, sync);
822
823 if (rl->count[sync] + 1 <= q->nr_requests) {
824 if (waitqueue_active(&rl->wait[sync]))
825 wake_up(&rl->wait[sync]);
826
827 blk_clear_rl_full(rl, sync);
828 }
829 }
830
831 /*
832 * A request has just been released. Account for it, update the full and
833 * congestion status, wake up any waiters. Called under q->queue_lock.
834 */
835 static void freed_request(struct request_list *rl, unsigned int flags)
836 {
837 struct request_queue *q = rl->q;
838 int sync = rw_is_sync(flags);
839
840 q->nr_rqs[sync]--;
841 rl->count[sync]--;
842 if (flags & REQ_ELVPRIV)
843 q->nr_rqs_elvpriv--;
844
845 __freed_request(rl, sync);
846
847 if (unlikely(rl->starved[sync ^ 1]))
848 __freed_request(rl, sync ^ 1);
849 }
850
851 /*
852 * Determine if elevator data should be initialized when allocating the
853 * request associated with @bio.
854 */
855 static bool blk_rq_should_init_elevator(struct bio *bio)
856 {
857 if (!bio)
858 return true;
859
860 /*
861 * Flush requests do not use the elevator so skip initialization.
862 * This allows a request to share the flush and elevator data.
863 */
864 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
865 return false;
866
867 return true;
868 }
869
870 /**
871 * rq_ioc - determine io_context for request allocation
872 * @bio: request being allocated is for this bio (can be %NULL)
873 *
874 * Determine io_context to use for request allocation for @bio. May return
875 * %NULL if %current->io_context doesn't exist.
876 */
877 static struct io_context *rq_ioc(struct bio *bio)
878 {
879 #ifdef CONFIG_BLK_CGROUP
880 if (bio && bio->bi_ioc)
881 return bio->bi_ioc;
882 #endif
883 return current->io_context;
884 }
885
886 /**
887 * __get_request - get a free request
888 * @rl: request list to allocate from
889 * @rw_flags: RW and SYNC flags
890 * @bio: bio to allocate request for (can be %NULL)
891 * @gfp_mask: allocation mask
892 *
893 * Get a free request from @q. This function may fail under memory
894 * pressure or if @q is dead.
895 *
896 * Must be callled with @q->queue_lock held and,
897 * Returns %NULL on failure, with @q->queue_lock held.
898 * Returns !%NULL on success, with @q->queue_lock *not held*.
899 */
900 static struct request *__get_request(struct request_list *rl, int rw_flags,
901 struct bio *bio, gfp_t gfp_mask)
902 {
903 struct request_queue *q = rl->q;
904 struct request *rq;
905 struct elevator_type *et = q->elevator->type;
906 struct io_context *ioc = rq_ioc(bio);
907 struct io_cq *icq = NULL;
908 const bool is_sync = rw_is_sync(rw_flags) != 0;
909 int may_queue;
910
911 if (unlikely(blk_queue_dying(q)))
912 return NULL;
913
914 may_queue = elv_may_queue(q, rw_flags);
915 if (may_queue == ELV_MQUEUE_NO)
916 goto rq_starved;
917
918 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
919 if (rl->count[is_sync]+1 >= q->nr_requests) {
920 /*
921 * The queue will fill after this allocation, so set
922 * it as full, and mark this process as "batching".
923 * This process will be allowed to complete a batch of
924 * requests, others will be blocked.
925 */
926 if (!blk_rl_full(rl, is_sync)) {
927 ioc_set_batching(q, ioc);
928 blk_set_rl_full(rl, is_sync);
929 } else {
930 if (may_queue != ELV_MQUEUE_MUST
931 && !ioc_batching(q, ioc)) {
932 /*
933 * The queue is full and the allocating
934 * process is not a "batcher", and not
935 * exempted by the IO scheduler
936 */
937 return NULL;
938 }
939 }
940 }
941 /*
942 * bdi isn't aware of blkcg yet. As all async IOs end up
943 * root blkcg anyway, just use root blkcg state.
944 */
945 if (rl == &q->root_rl)
946 blk_set_queue_congested(q, is_sync);
947 }
948
949 /*
950 * Only allow batching queuers to allocate up to 50% over the defined
951 * limit of requests, otherwise we could have thousands of requests
952 * allocated with any setting of ->nr_requests
953 */
954 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
955 return NULL;
956
957 q->nr_rqs[is_sync]++;
958 rl->count[is_sync]++;
959 rl->starved[is_sync] = 0;
960
961 /*
962 * Decide whether the new request will be managed by elevator. If
963 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
964 * prevent the current elevator from being destroyed until the new
965 * request is freed. This guarantees icq's won't be destroyed and
966 * makes creating new ones safe.
967 *
968 * Also, lookup icq while holding queue_lock. If it doesn't exist,
969 * it will be created after releasing queue_lock.
970 */
971 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
972 rw_flags |= REQ_ELVPRIV;
973 q->nr_rqs_elvpriv++;
974 if (et->icq_cache && ioc)
975 icq = ioc_lookup_icq(ioc, q);
976 }
977
978 if (blk_queue_io_stat(q))
979 rw_flags |= REQ_IO_STAT;
980 spin_unlock_irq(q->queue_lock);
981
982 /* allocate and init request */
983 rq = mempool_alloc(rl->rq_pool, gfp_mask);
984 if (!rq)
985 goto fail_alloc;
986
987 blk_rq_init(q, rq);
988 blk_rq_set_rl(rq, rl);
989 rq->cmd_flags = rw_flags | REQ_ALLOCED;
990
991 /* init elvpriv */
992 if (rw_flags & REQ_ELVPRIV) {
993 if (unlikely(et->icq_cache && !icq)) {
994 if (ioc)
995 icq = ioc_create_icq(ioc, q, gfp_mask);
996 if (!icq)
997 goto fail_elvpriv;
998 }
999
1000 rq->elv.icq = icq;
1001 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1002 goto fail_elvpriv;
1003
1004 /* @rq->elv.icq holds io_context until @rq is freed */
1005 if (icq)
1006 get_io_context(icq->ioc);
1007 }
1008 out:
1009 /*
1010 * ioc may be NULL here, and ioc_batching will be false. That's
1011 * OK, if the queue is under the request limit then requests need
1012 * not count toward the nr_batch_requests limit. There will always
1013 * be some limit enforced by BLK_BATCH_TIME.
1014 */
1015 if (ioc_batching(q, ioc))
1016 ioc->nr_batch_requests--;
1017
1018 trace_block_getrq(q, bio, rw_flags & 1);
1019 return rq;
1020
1021 fail_elvpriv:
1022 /*
1023 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1024 * and may fail indefinitely under memory pressure and thus
1025 * shouldn't stall IO. Treat this request as !elvpriv. This will
1026 * disturb iosched and blkcg but weird is bettern than dead.
1027 */
1028 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1029 dev_name(q->backing_dev_info.dev));
1030
1031 rq->cmd_flags &= ~REQ_ELVPRIV;
1032 rq->elv.icq = NULL;
1033
1034 spin_lock_irq(q->queue_lock);
1035 q->nr_rqs_elvpriv--;
1036 spin_unlock_irq(q->queue_lock);
1037 goto out;
1038
1039 fail_alloc:
1040 /*
1041 * Allocation failed presumably due to memory. Undo anything we
1042 * might have messed up.
1043 *
1044 * Allocating task should really be put onto the front of the wait
1045 * queue, but this is pretty rare.
1046 */
1047 spin_lock_irq(q->queue_lock);
1048 freed_request(rl, rw_flags);
1049
1050 /*
1051 * in the very unlikely event that allocation failed and no
1052 * requests for this direction was pending, mark us starved so that
1053 * freeing of a request in the other direction will notice
1054 * us. another possible fix would be to split the rq mempool into
1055 * READ and WRITE
1056 */
1057 rq_starved:
1058 if (unlikely(rl->count[is_sync] == 0))
1059 rl->starved[is_sync] = 1;
1060 return NULL;
1061 }
1062
1063 /**
1064 * get_request - get a free request
1065 * @q: request_queue to allocate request from
1066 * @rw_flags: RW and SYNC flags
1067 * @bio: bio to allocate request for (can be %NULL)
1068 * @gfp_mask: allocation mask
1069 *
1070 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1071 * function keeps retrying under memory pressure and fails iff @q is dead.
1072 *
1073 * Must be callled with @q->queue_lock held and,
1074 * Returns %NULL on failure, with @q->queue_lock held.
1075 * Returns !%NULL on success, with @q->queue_lock *not held*.
1076 */
1077 static struct request *get_request(struct request_queue *q, int rw_flags,
1078 struct bio *bio, gfp_t gfp_mask)
1079 {
1080 const bool is_sync = rw_is_sync(rw_flags) != 0;
1081 DEFINE_WAIT(wait);
1082 struct request_list *rl;
1083 struct request *rq;
1084
1085 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1086 retry:
1087 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1088 if (rq)
1089 return rq;
1090
1091 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1092 blk_put_rl(rl);
1093 return NULL;
1094 }
1095
1096 /* wait on @rl and retry */
1097 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1098 TASK_UNINTERRUPTIBLE);
1099
1100 trace_block_sleeprq(q, bio, rw_flags & 1);
1101
1102 spin_unlock_irq(q->queue_lock);
1103 io_schedule();
1104
1105 /*
1106 * After sleeping, we become a "batching" process and will be able
1107 * to allocate at least one request, and up to a big batch of them
1108 * for a small period time. See ioc_batching, ioc_set_batching
1109 */
1110 ioc_set_batching(q, current->io_context);
1111
1112 spin_lock_irq(q->queue_lock);
1113 finish_wait(&rl->wait[is_sync], &wait);
1114
1115 goto retry;
1116 }
1117
1118 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1119 gfp_t gfp_mask)
1120 {
1121 struct request *rq;
1122
1123 BUG_ON(rw != READ && rw != WRITE);
1124
1125 /* create ioc upfront */
1126 create_io_context(gfp_mask, q->node);
1127
1128 spin_lock_irq(q->queue_lock);
1129 rq = get_request(q, rw, NULL, gfp_mask);
1130 if (!rq)
1131 spin_unlock_irq(q->queue_lock);
1132 /* q->queue_lock is unlocked at this point */
1133
1134 return rq;
1135 }
1136
1137 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1138 {
1139 if (q->mq_ops)
1140 return blk_mq_alloc_request(q, rw, gfp_mask);
1141 else
1142 return blk_old_get_request(q, rw, gfp_mask);
1143 }
1144 EXPORT_SYMBOL(blk_get_request);
1145
1146 /**
1147 * blk_make_request - given a bio, allocate a corresponding struct request.
1148 * @q: target request queue
1149 * @bio: The bio describing the memory mappings that will be submitted for IO.
1150 * It may be a chained-bio properly constructed by block/bio layer.
1151 * @gfp_mask: gfp flags to be used for memory allocation
1152 *
1153 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1154 * type commands. Where the struct request needs to be farther initialized by
1155 * the caller. It is passed a &struct bio, which describes the memory info of
1156 * the I/O transfer.
1157 *
1158 * The caller of blk_make_request must make sure that bi_io_vec
1159 * are set to describe the memory buffers. That bio_data_dir() will return
1160 * the needed direction of the request. (And all bio's in the passed bio-chain
1161 * are properly set accordingly)
1162 *
1163 * If called under none-sleepable conditions, mapped bio buffers must not
1164 * need bouncing, by calling the appropriate masked or flagged allocator,
1165 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1166 * BUG.
1167 *
1168 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1169 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1170 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1171 * completion of a bio that hasn't been submitted yet, thus resulting in a
1172 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1173 * of bio_alloc(), as that avoids the mempool deadlock.
1174 * If possible a big IO should be split into smaller parts when allocation
1175 * fails. Partial allocation should not be an error, or you risk a live-lock.
1176 */
1177 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1178 gfp_t gfp_mask)
1179 {
1180 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1181
1182 if (unlikely(!rq))
1183 return ERR_PTR(-ENOMEM);
1184
1185 for_each_bio(bio) {
1186 struct bio *bounce_bio = bio;
1187 int ret;
1188
1189 blk_queue_bounce(q, &bounce_bio);
1190 ret = blk_rq_append_bio(q, rq, bounce_bio);
1191 if (unlikely(ret)) {
1192 blk_put_request(rq);
1193 return ERR_PTR(ret);
1194 }
1195 }
1196
1197 return rq;
1198 }
1199 EXPORT_SYMBOL(blk_make_request);
1200
1201 /**
1202 * blk_requeue_request - put a request back on queue
1203 * @q: request queue where request should be inserted
1204 * @rq: request to be inserted
1205 *
1206 * Description:
1207 * Drivers often keep queueing requests until the hardware cannot accept
1208 * more, when that condition happens we need to put the request back
1209 * on the queue. Must be called with queue lock held.
1210 */
1211 void blk_requeue_request(struct request_queue *q, struct request *rq)
1212 {
1213 blk_delete_timer(rq);
1214 blk_clear_rq_complete(rq);
1215 trace_block_rq_requeue(q, rq);
1216
1217 if (blk_rq_tagged(rq))
1218 blk_queue_end_tag(q, rq);
1219
1220 BUG_ON(blk_queued_rq(rq));
1221
1222 elv_requeue_request(q, rq);
1223 }
1224 EXPORT_SYMBOL(blk_requeue_request);
1225
1226 static void add_acct_request(struct request_queue *q, struct request *rq,
1227 int where)
1228 {
1229 blk_account_io_start(rq, true);
1230 __elv_add_request(q, rq, where);
1231 }
1232
1233 static void part_round_stats_single(int cpu, struct hd_struct *part,
1234 unsigned long now)
1235 {
1236 int inflight;
1237
1238 if (now == part->stamp)
1239 return;
1240
1241 inflight = part_in_flight(part);
1242 if (inflight) {
1243 __part_stat_add(cpu, part, time_in_queue,
1244 inflight * (now - part->stamp));
1245 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1246 }
1247 part->stamp = now;
1248 }
1249
1250 /**
1251 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1252 * @cpu: cpu number for stats access
1253 * @part: target partition
1254 *
1255 * The average IO queue length and utilisation statistics are maintained
1256 * by observing the current state of the queue length and the amount of
1257 * time it has been in this state for.
1258 *
1259 * Normally, that accounting is done on IO completion, but that can result
1260 * in more than a second's worth of IO being accounted for within any one
1261 * second, leading to >100% utilisation. To deal with that, we call this
1262 * function to do a round-off before returning the results when reading
1263 * /proc/diskstats. This accounts immediately for all queue usage up to
1264 * the current jiffies and restarts the counters again.
1265 */
1266 void part_round_stats(int cpu, struct hd_struct *part)
1267 {
1268 unsigned long now = jiffies;
1269
1270 if (part->partno)
1271 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1272 part_round_stats_single(cpu, part, now);
1273 }
1274 EXPORT_SYMBOL_GPL(part_round_stats);
1275
1276 #ifdef CONFIG_PM_RUNTIME
1277 static void blk_pm_put_request(struct request *rq)
1278 {
1279 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1280 pm_runtime_mark_last_busy(rq->q->dev);
1281 }
1282 #else
1283 static inline void blk_pm_put_request(struct request *rq) {}
1284 #endif
1285
1286 /*
1287 * queue lock must be held
1288 */
1289 void __blk_put_request(struct request_queue *q, struct request *req)
1290 {
1291 if (unlikely(!q))
1292 return;
1293
1294 if (q->mq_ops) {
1295 blk_mq_free_request(req);
1296 return;
1297 }
1298
1299 blk_pm_put_request(req);
1300
1301 elv_completed_request(q, req);
1302
1303 /* this is a bio leak */
1304 WARN_ON(req->bio != NULL);
1305
1306 /*
1307 * Request may not have originated from ll_rw_blk. if not,
1308 * it didn't come out of our reserved rq pools
1309 */
1310 if (req->cmd_flags & REQ_ALLOCED) {
1311 unsigned int flags = req->cmd_flags;
1312 struct request_list *rl = blk_rq_rl(req);
1313
1314 BUG_ON(!list_empty(&req->queuelist));
1315 BUG_ON(ELV_ON_HASH(req));
1316
1317 blk_free_request(rl, req);
1318 freed_request(rl, flags);
1319 blk_put_rl(rl);
1320 }
1321 }
1322 EXPORT_SYMBOL_GPL(__blk_put_request);
1323
1324 void blk_put_request(struct request *req)
1325 {
1326 struct request_queue *q = req->q;
1327
1328 if (q->mq_ops)
1329 blk_mq_free_request(req);
1330 else {
1331 unsigned long flags;
1332
1333 spin_lock_irqsave(q->queue_lock, flags);
1334 __blk_put_request(q, req);
1335 spin_unlock_irqrestore(q->queue_lock, flags);
1336 }
1337 }
1338 EXPORT_SYMBOL(blk_put_request);
1339
1340 /**
1341 * blk_add_request_payload - add a payload to a request
1342 * @rq: request to update
1343 * @page: page backing the payload
1344 * @len: length of the payload.
1345 *
1346 * This allows to later add a payload to an already submitted request by
1347 * a block driver. The driver needs to take care of freeing the payload
1348 * itself.
1349 *
1350 * Note that this is a quite horrible hack and nothing but handling of
1351 * discard requests should ever use it.
1352 */
1353 void blk_add_request_payload(struct request *rq, struct page *page,
1354 unsigned int len)
1355 {
1356 struct bio *bio = rq->bio;
1357
1358 bio->bi_io_vec->bv_page = page;
1359 bio->bi_io_vec->bv_offset = 0;
1360 bio->bi_io_vec->bv_len = len;
1361
1362 bio->bi_iter.bi_size = len;
1363 bio->bi_vcnt = 1;
1364 bio->bi_phys_segments = 1;
1365
1366 rq->__data_len = rq->resid_len = len;
1367 rq->nr_phys_segments = 1;
1368 }
1369 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1370
1371 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1372 struct bio *bio)
1373 {
1374 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1375
1376 if (!ll_back_merge_fn(q, req, bio))
1377 return false;
1378
1379 trace_block_bio_backmerge(q, req, bio);
1380
1381 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1382 blk_rq_set_mixed_merge(req);
1383
1384 req->biotail->bi_next = bio;
1385 req->biotail = bio;
1386 req->__data_len += bio->bi_iter.bi_size;
1387 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1388
1389 blk_account_io_start(req, false);
1390 return true;
1391 }
1392
1393 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1394 struct bio *bio)
1395 {
1396 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1397
1398 if (!ll_front_merge_fn(q, req, bio))
1399 return false;
1400
1401 trace_block_bio_frontmerge(q, req, bio);
1402
1403 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1404 blk_rq_set_mixed_merge(req);
1405
1406 bio->bi_next = req->bio;
1407 req->bio = bio;
1408
1409 req->__sector = bio->bi_iter.bi_sector;
1410 req->__data_len += bio->bi_iter.bi_size;
1411 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1412
1413 blk_account_io_start(req, false);
1414 return true;
1415 }
1416
1417 /**
1418 * blk_attempt_plug_merge - try to merge with %current's plugged list
1419 * @q: request_queue new bio is being queued at
1420 * @bio: new bio being queued
1421 * @request_count: out parameter for number of traversed plugged requests
1422 *
1423 * Determine whether @bio being queued on @q can be merged with a request
1424 * on %current's plugged list. Returns %true if merge was successful,
1425 * otherwise %false.
1426 *
1427 * Plugging coalesces IOs from the same issuer for the same purpose without
1428 * going through @q->queue_lock. As such it's more of an issuing mechanism
1429 * than scheduling, and the request, while may have elvpriv data, is not
1430 * added on the elevator at this point. In addition, we don't have
1431 * reliable access to the elevator outside queue lock. Only check basic
1432 * merging parameters without querying the elevator.
1433 */
1434 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1435 unsigned int *request_count)
1436 {
1437 struct blk_plug *plug;
1438 struct request *rq;
1439 bool ret = false;
1440 struct list_head *plug_list;
1441
1442 if (blk_queue_nomerges(q))
1443 goto out;
1444
1445 plug = current->plug;
1446 if (!plug)
1447 goto out;
1448 *request_count = 0;
1449
1450 if (q->mq_ops)
1451 plug_list = &plug->mq_list;
1452 else
1453 plug_list = &plug->list;
1454
1455 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1456 int el_ret;
1457
1458 if (rq->q == q)
1459 (*request_count)++;
1460
1461 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1462 continue;
1463
1464 el_ret = blk_try_merge(rq, bio);
1465 if (el_ret == ELEVATOR_BACK_MERGE) {
1466 ret = bio_attempt_back_merge(q, rq, bio);
1467 if (ret)
1468 break;
1469 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1470 ret = bio_attempt_front_merge(q, rq, bio);
1471 if (ret)
1472 break;
1473 }
1474 }
1475 out:
1476 return ret;
1477 }
1478
1479 void init_request_from_bio(struct request *req, struct bio *bio)
1480 {
1481 req->cmd_type = REQ_TYPE_FS;
1482
1483 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1484 if (bio->bi_rw & REQ_RAHEAD)
1485 req->cmd_flags |= REQ_FAILFAST_MASK;
1486
1487 req->errors = 0;
1488 req->__sector = bio->bi_iter.bi_sector;
1489 req->ioprio = bio_prio(bio);
1490 blk_rq_bio_prep(req->q, req, bio);
1491 }
1492
1493 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1494 {
1495 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1496 struct blk_plug *plug;
1497 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1498 struct request *req;
1499 unsigned int request_count = 0;
1500
1501 /*
1502 * low level driver can indicate that it wants pages above a
1503 * certain limit bounced to low memory (ie for highmem, or even
1504 * ISA dma in theory)
1505 */
1506 blk_queue_bounce(q, &bio);
1507
1508 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1509 bio_endio(bio, -EIO);
1510 return;
1511 }
1512
1513 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1514 spin_lock_irq(q->queue_lock);
1515 where = ELEVATOR_INSERT_FLUSH;
1516 goto get_rq;
1517 }
1518
1519 /*
1520 * Check if we can merge with the plugged list before grabbing
1521 * any locks.
1522 */
1523 if (blk_attempt_plug_merge(q, bio, &request_count))
1524 return;
1525
1526 spin_lock_irq(q->queue_lock);
1527
1528 el_ret = elv_merge(q, &req, bio);
1529 if (el_ret == ELEVATOR_BACK_MERGE) {
1530 if (bio_attempt_back_merge(q, req, bio)) {
1531 elv_bio_merged(q, req, bio);
1532 if (!attempt_back_merge(q, req))
1533 elv_merged_request(q, req, el_ret);
1534 goto out_unlock;
1535 }
1536 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1537 if (bio_attempt_front_merge(q, req, bio)) {
1538 elv_bio_merged(q, req, bio);
1539 if (!attempt_front_merge(q, req))
1540 elv_merged_request(q, req, el_ret);
1541 goto out_unlock;
1542 }
1543 }
1544
1545 get_rq:
1546 /*
1547 * This sync check and mask will be re-done in init_request_from_bio(),
1548 * but we need to set it earlier to expose the sync flag to the
1549 * rq allocator and io schedulers.
1550 */
1551 rw_flags = bio_data_dir(bio);
1552 if (sync)
1553 rw_flags |= REQ_SYNC;
1554
1555 /*
1556 * Grab a free request. This is might sleep but can not fail.
1557 * Returns with the queue unlocked.
1558 */
1559 req = get_request(q, rw_flags, bio, GFP_NOIO);
1560 if (unlikely(!req)) {
1561 bio_endio(bio, -ENODEV); /* @q is dead */
1562 goto out_unlock;
1563 }
1564
1565 /*
1566 * After dropping the lock and possibly sleeping here, our request
1567 * may now be mergeable after it had proven unmergeable (above).
1568 * We don't worry about that case for efficiency. It won't happen
1569 * often, and the elevators are able to handle it.
1570 */
1571 init_request_from_bio(req, bio);
1572
1573 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1574 req->cpu = raw_smp_processor_id();
1575
1576 plug = current->plug;
1577 if (plug) {
1578 /*
1579 * If this is the first request added after a plug, fire
1580 * of a plug trace.
1581 */
1582 if (!request_count)
1583 trace_block_plug(q);
1584 else {
1585 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1586 blk_flush_plug_list(plug, false);
1587 trace_block_plug(q);
1588 }
1589 }
1590 list_add_tail(&req->queuelist, &plug->list);
1591 blk_account_io_start(req, true);
1592 } else {
1593 spin_lock_irq(q->queue_lock);
1594 add_acct_request(q, req, where);
1595 __blk_run_queue(q);
1596 out_unlock:
1597 spin_unlock_irq(q->queue_lock);
1598 }
1599 }
1600 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1601
1602 /*
1603 * If bio->bi_dev is a partition, remap the location
1604 */
1605 static inline void blk_partition_remap(struct bio *bio)
1606 {
1607 struct block_device *bdev = bio->bi_bdev;
1608
1609 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1610 struct hd_struct *p = bdev->bd_part;
1611
1612 bio->bi_iter.bi_sector += p->start_sect;
1613 bio->bi_bdev = bdev->bd_contains;
1614
1615 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1616 bdev->bd_dev,
1617 bio->bi_iter.bi_sector - p->start_sect);
1618 }
1619 }
1620
1621 static void handle_bad_sector(struct bio *bio)
1622 {
1623 char b[BDEVNAME_SIZE];
1624
1625 printk(KERN_INFO "attempt to access beyond end of device\n");
1626 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1627 bdevname(bio->bi_bdev, b),
1628 bio->bi_rw,
1629 (unsigned long long)bio_end_sector(bio),
1630 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1631
1632 set_bit(BIO_EOF, &bio->bi_flags);
1633 }
1634
1635 #ifdef CONFIG_FAIL_MAKE_REQUEST
1636
1637 static DECLARE_FAULT_ATTR(fail_make_request);
1638
1639 static int __init setup_fail_make_request(char *str)
1640 {
1641 return setup_fault_attr(&fail_make_request, str);
1642 }
1643 __setup("fail_make_request=", setup_fail_make_request);
1644
1645 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1646 {
1647 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1648 }
1649
1650 static int __init fail_make_request_debugfs(void)
1651 {
1652 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1653 NULL, &fail_make_request);
1654
1655 return PTR_ERR_OR_ZERO(dir);
1656 }
1657
1658 late_initcall(fail_make_request_debugfs);
1659
1660 #else /* CONFIG_FAIL_MAKE_REQUEST */
1661
1662 static inline bool should_fail_request(struct hd_struct *part,
1663 unsigned int bytes)
1664 {
1665 return false;
1666 }
1667
1668 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1669
1670 /*
1671 * Check whether this bio extends beyond the end of the device.
1672 */
1673 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1674 {
1675 sector_t maxsector;
1676
1677 if (!nr_sectors)
1678 return 0;
1679
1680 /* Test device or partition size, when known. */
1681 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1682 if (maxsector) {
1683 sector_t sector = bio->bi_iter.bi_sector;
1684
1685 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1686 /*
1687 * This may well happen - the kernel calls bread()
1688 * without checking the size of the device, e.g., when
1689 * mounting a device.
1690 */
1691 handle_bad_sector(bio);
1692 return 1;
1693 }
1694 }
1695
1696 return 0;
1697 }
1698
1699 static noinline_for_stack bool
1700 generic_make_request_checks(struct bio *bio)
1701 {
1702 struct request_queue *q;
1703 int nr_sectors = bio_sectors(bio);
1704 int err = -EIO;
1705 char b[BDEVNAME_SIZE];
1706 struct hd_struct *part;
1707
1708 might_sleep();
1709
1710 if (bio_check_eod(bio, nr_sectors))
1711 goto end_io;
1712
1713 q = bdev_get_queue(bio->bi_bdev);
1714 if (unlikely(!q)) {
1715 printk(KERN_ERR
1716 "generic_make_request: Trying to access "
1717 "nonexistent block-device %s (%Lu)\n",
1718 bdevname(bio->bi_bdev, b),
1719 (long long) bio->bi_iter.bi_sector);
1720 goto end_io;
1721 }
1722
1723 if (likely(bio_is_rw(bio) &&
1724 nr_sectors > queue_max_hw_sectors(q))) {
1725 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1726 bdevname(bio->bi_bdev, b),
1727 bio_sectors(bio),
1728 queue_max_hw_sectors(q));
1729 goto end_io;
1730 }
1731
1732 part = bio->bi_bdev->bd_part;
1733 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1734 should_fail_request(&part_to_disk(part)->part0,
1735 bio->bi_iter.bi_size))
1736 goto end_io;
1737
1738 /*
1739 * If this device has partitions, remap block n
1740 * of partition p to block n+start(p) of the disk.
1741 */
1742 blk_partition_remap(bio);
1743
1744 if (bio_check_eod(bio, nr_sectors))
1745 goto end_io;
1746
1747 /*
1748 * Filter flush bio's early so that make_request based
1749 * drivers without flush support don't have to worry
1750 * about them.
1751 */
1752 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1753 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1754 if (!nr_sectors) {
1755 err = 0;
1756 goto end_io;
1757 }
1758 }
1759
1760 if ((bio->bi_rw & REQ_DISCARD) &&
1761 (!blk_queue_discard(q) ||
1762 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1763 err = -EOPNOTSUPP;
1764 goto end_io;
1765 }
1766
1767 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1768 err = -EOPNOTSUPP;
1769 goto end_io;
1770 }
1771
1772 /*
1773 * Various block parts want %current->io_context and lazy ioc
1774 * allocation ends up trading a lot of pain for a small amount of
1775 * memory. Just allocate it upfront. This may fail and block
1776 * layer knows how to live with it.
1777 */
1778 create_io_context(GFP_ATOMIC, q->node);
1779
1780 if (blk_throtl_bio(q, bio))
1781 return false; /* throttled, will be resubmitted later */
1782
1783 trace_block_bio_queue(q, bio);
1784 return true;
1785
1786 end_io:
1787 bio_endio(bio, err);
1788 return false;
1789 }
1790
1791 /**
1792 * generic_make_request - hand a buffer to its device driver for I/O
1793 * @bio: The bio describing the location in memory and on the device.
1794 *
1795 * generic_make_request() is used to make I/O requests of block
1796 * devices. It is passed a &struct bio, which describes the I/O that needs
1797 * to be done.
1798 *
1799 * generic_make_request() does not return any status. The
1800 * success/failure status of the request, along with notification of
1801 * completion, is delivered asynchronously through the bio->bi_end_io
1802 * function described (one day) else where.
1803 *
1804 * The caller of generic_make_request must make sure that bi_io_vec
1805 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1806 * set to describe the device address, and the
1807 * bi_end_io and optionally bi_private are set to describe how
1808 * completion notification should be signaled.
1809 *
1810 * generic_make_request and the drivers it calls may use bi_next if this
1811 * bio happens to be merged with someone else, and may resubmit the bio to
1812 * a lower device by calling into generic_make_request recursively, which
1813 * means the bio should NOT be touched after the call to ->make_request_fn.
1814 */
1815 void generic_make_request(struct bio *bio)
1816 {
1817 struct bio_list bio_list_on_stack;
1818
1819 if (!generic_make_request_checks(bio))
1820 return;
1821
1822 /*
1823 * We only want one ->make_request_fn to be active at a time, else
1824 * stack usage with stacked devices could be a problem. So use
1825 * current->bio_list to keep a list of requests submited by a
1826 * make_request_fn function. current->bio_list is also used as a
1827 * flag to say if generic_make_request is currently active in this
1828 * task or not. If it is NULL, then no make_request is active. If
1829 * it is non-NULL, then a make_request is active, and new requests
1830 * should be added at the tail
1831 */
1832 if (current->bio_list) {
1833 bio_list_add(current->bio_list, bio);
1834 return;
1835 }
1836
1837 /* following loop may be a bit non-obvious, and so deserves some
1838 * explanation.
1839 * Before entering the loop, bio->bi_next is NULL (as all callers
1840 * ensure that) so we have a list with a single bio.
1841 * We pretend that we have just taken it off a longer list, so
1842 * we assign bio_list to a pointer to the bio_list_on_stack,
1843 * thus initialising the bio_list of new bios to be
1844 * added. ->make_request() may indeed add some more bios
1845 * through a recursive call to generic_make_request. If it
1846 * did, we find a non-NULL value in bio_list and re-enter the loop
1847 * from the top. In this case we really did just take the bio
1848 * of the top of the list (no pretending) and so remove it from
1849 * bio_list, and call into ->make_request() again.
1850 */
1851 BUG_ON(bio->bi_next);
1852 bio_list_init(&bio_list_on_stack);
1853 current->bio_list = &bio_list_on_stack;
1854 do {
1855 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1856
1857 q->make_request_fn(q, bio);
1858
1859 bio = bio_list_pop(current->bio_list);
1860 } while (bio);
1861 current->bio_list = NULL; /* deactivate */
1862 }
1863 EXPORT_SYMBOL(generic_make_request);
1864
1865 /**
1866 * submit_bio - submit a bio to the block device layer for I/O
1867 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1868 * @bio: The &struct bio which describes the I/O
1869 *
1870 * submit_bio() is very similar in purpose to generic_make_request(), and
1871 * uses that function to do most of the work. Both are fairly rough
1872 * interfaces; @bio must be presetup and ready for I/O.
1873 *
1874 */
1875 void submit_bio(int rw, struct bio *bio)
1876 {
1877 bio->bi_rw |= rw;
1878
1879 /*
1880 * If it's a regular read/write or a barrier with data attached,
1881 * go through the normal accounting stuff before submission.
1882 */
1883 if (bio_has_data(bio)) {
1884 unsigned int count;
1885
1886 if (unlikely(rw & REQ_WRITE_SAME))
1887 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1888 else
1889 count = bio_sectors(bio);
1890
1891 if (rw & WRITE) {
1892 count_vm_events(PGPGOUT, count);
1893 } else {
1894 task_io_account_read(bio->bi_iter.bi_size);
1895 count_vm_events(PGPGIN, count);
1896 }
1897
1898 if (unlikely(block_dump)) {
1899 char b[BDEVNAME_SIZE];
1900 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1901 current->comm, task_pid_nr(current),
1902 (rw & WRITE) ? "WRITE" : "READ",
1903 (unsigned long long)bio->bi_iter.bi_sector,
1904 bdevname(bio->bi_bdev, b),
1905 count);
1906 }
1907 }
1908
1909 generic_make_request(bio);
1910 }
1911 EXPORT_SYMBOL(submit_bio);
1912
1913 /**
1914 * blk_rq_check_limits - Helper function to check a request for the queue limit
1915 * @q: the queue
1916 * @rq: the request being checked
1917 *
1918 * Description:
1919 * @rq may have been made based on weaker limitations of upper-level queues
1920 * in request stacking drivers, and it may violate the limitation of @q.
1921 * Since the block layer and the underlying device driver trust @rq
1922 * after it is inserted to @q, it should be checked against @q before
1923 * the insertion using this generic function.
1924 *
1925 * This function should also be useful for request stacking drivers
1926 * in some cases below, so export this function.
1927 * Request stacking drivers like request-based dm may change the queue
1928 * limits while requests are in the queue (e.g. dm's table swapping).
1929 * Such request stacking drivers should check those requests against
1930 * the new queue limits again when they dispatch those requests,
1931 * although such checkings are also done against the old queue limits
1932 * when submitting requests.
1933 */
1934 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1935 {
1936 if (!rq_mergeable(rq))
1937 return 0;
1938
1939 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1940 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1941 return -EIO;
1942 }
1943
1944 /*
1945 * queue's settings related to segment counting like q->bounce_pfn
1946 * may differ from that of other stacking queues.
1947 * Recalculate it to check the request correctly on this queue's
1948 * limitation.
1949 */
1950 blk_recalc_rq_segments(rq);
1951 if (rq->nr_phys_segments > queue_max_segments(q)) {
1952 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1953 return -EIO;
1954 }
1955
1956 return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1959
1960 /**
1961 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1962 * @q: the queue to submit the request
1963 * @rq: the request being queued
1964 */
1965 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1966 {
1967 unsigned long flags;
1968 int where = ELEVATOR_INSERT_BACK;
1969
1970 if (blk_rq_check_limits(q, rq))
1971 return -EIO;
1972
1973 if (rq->rq_disk &&
1974 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1975 return -EIO;
1976
1977 spin_lock_irqsave(q->queue_lock, flags);
1978 if (unlikely(blk_queue_dying(q))) {
1979 spin_unlock_irqrestore(q->queue_lock, flags);
1980 return -ENODEV;
1981 }
1982
1983 /*
1984 * Submitting request must be dequeued before calling this function
1985 * because it will be linked to another request_queue
1986 */
1987 BUG_ON(blk_queued_rq(rq));
1988
1989 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1990 where = ELEVATOR_INSERT_FLUSH;
1991
1992 add_acct_request(q, rq, where);
1993 if (where == ELEVATOR_INSERT_FLUSH)
1994 __blk_run_queue(q);
1995 spin_unlock_irqrestore(q->queue_lock, flags);
1996
1997 return 0;
1998 }
1999 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2000
2001 /**
2002 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2003 * @rq: request to examine
2004 *
2005 * Description:
2006 * A request could be merge of IOs which require different failure
2007 * handling. This function determines the number of bytes which
2008 * can be failed from the beginning of the request without
2009 * crossing into area which need to be retried further.
2010 *
2011 * Return:
2012 * The number of bytes to fail.
2013 *
2014 * Context:
2015 * queue_lock must be held.
2016 */
2017 unsigned int blk_rq_err_bytes(const struct request *rq)
2018 {
2019 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2020 unsigned int bytes = 0;
2021 struct bio *bio;
2022
2023 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2024 return blk_rq_bytes(rq);
2025
2026 /*
2027 * Currently the only 'mixing' which can happen is between
2028 * different fastfail types. We can safely fail portions
2029 * which have all the failfast bits that the first one has -
2030 * the ones which are at least as eager to fail as the first
2031 * one.
2032 */
2033 for (bio = rq->bio; bio; bio = bio->bi_next) {
2034 if ((bio->bi_rw & ff) != ff)
2035 break;
2036 bytes += bio->bi_iter.bi_size;
2037 }
2038
2039 /* this could lead to infinite loop */
2040 BUG_ON(blk_rq_bytes(rq) && !bytes);
2041 return bytes;
2042 }
2043 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2044
2045 void blk_account_io_completion(struct request *req, unsigned int bytes)
2046 {
2047 if (blk_do_io_stat(req)) {
2048 const int rw = rq_data_dir(req);
2049 struct hd_struct *part;
2050 int cpu;
2051
2052 cpu = part_stat_lock();
2053 part = req->part;
2054 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2055 part_stat_unlock();
2056 }
2057 }
2058
2059 void blk_account_io_done(struct request *req)
2060 {
2061 /*
2062 * Account IO completion. flush_rq isn't accounted as a
2063 * normal IO on queueing nor completion. Accounting the
2064 * containing request is enough.
2065 */
2066 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2067 unsigned long duration = jiffies - req->start_time;
2068 const int rw = rq_data_dir(req);
2069 struct hd_struct *part;
2070 int cpu;
2071
2072 cpu = part_stat_lock();
2073 part = req->part;
2074
2075 part_stat_inc(cpu, part, ios[rw]);
2076 part_stat_add(cpu, part, ticks[rw], duration);
2077 part_round_stats(cpu, part);
2078 part_dec_in_flight(part, rw);
2079
2080 hd_struct_put(part);
2081 part_stat_unlock();
2082 }
2083 }
2084
2085 #ifdef CONFIG_PM_RUNTIME
2086 /*
2087 * Don't process normal requests when queue is suspended
2088 * or in the process of suspending/resuming
2089 */
2090 static struct request *blk_pm_peek_request(struct request_queue *q,
2091 struct request *rq)
2092 {
2093 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2094 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2095 return NULL;
2096 else
2097 return rq;
2098 }
2099 #else
2100 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2101 struct request *rq)
2102 {
2103 return rq;
2104 }
2105 #endif
2106
2107 void blk_account_io_start(struct request *rq, bool new_io)
2108 {
2109 struct hd_struct *part;
2110 int rw = rq_data_dir(rq);
2111 int cpu;
2112
2113 if (!blk_do_io_stat(rq))
2114 return;
2115
2116 cpu = part_stat_lock();
2117
2118 if (!new_io) {
2119 part = rq->part;
2120 part_stat_inc(cpu, part, merges[rw]);
2121 } else {
2122 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2123 if (!hd_struct_try_get(part)) {
2124 /*
2125 * The partition is already being removed,
2126 * the request will be accounted on the disk only
2127 *
2128 * We take a reference on disk->part0 although that
2129 * partition will never be deleted, so we can treat
2130 * it as any other partition.
2131 */
2132 part = &rq->rq_disk->part0;
2133 hd_struct_get(part);
2134 }
2135 part_round_stats(cpu, part);
2136 part_inc_in_flight(part, rw);
2137 rq->part = part;
2138 }
2139
2140 part_stat_unlock();
2141 }
2142
2143 /**
2144 * blk_peek_request - peek at the top of a request queue
2145 * @q: request queue to peek at
2146 *
2147 * Description:
2148 * Return the request at the top of @q. The returned request
2149 * should be started using blk_start_request() before LLD starts
2150 * processing it.
2151 *
2152 * Return:
2153 * Pointer to the request at the top of @q if available. Null
2154 * otherwise.
2155 *
2156 * Context:
2157 * queue_lock must be held.
2158 */
2159 struct request *blk_peek_request(struct request_queue *q)
2160 {
2161 struct request *rq;
2162 int ret;
2163
2164 while ((rq = __elv_next_request(q)) != NULL) {
2165
2166 rq = blk_pm_peek_request(q, rq);
2167 if (!rq)
2168 break;
2169
2170 if (!(rq->cmd_flags & REQ_STARTED)) {
2171 /*
2172 * This is the first time the device driver
2173 * sees this request (possibly after
2174 * requeueing). Notify IO scheduler.
2175 */
2176 if (rq->cmd_flags & REQ_SORTED)
2177 elv_activate_rq(q, rq);
2178
2179 /*
2180 * just mark as started even if we don't start
2181 * it, a request that has been delayed should
2182 * not be passed by new incoming requests
2183 */
2184 rq->cmd_flags |= REQ_STARTED;
2185 trace_block_rq_issue(q, rq);
2186 }
2187
2188 if (!q->boundary_rq || q->boundary_rq == rq) {
2189 q->end_sector = rq_end_sector(rq);
2190 q->boundary_rq = NULL;
2191 }
2192
2193 if (rq->cmd_flags & REQ_DONTPREP)
2194 break;
2195
2196 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2197 /*
2198 * make sure space for the drain appears we
2199 * know we can do this because max_hw_segments
2200 * has been adjusted to be one fewer than the
2201 * device can handle
2202 */
2203 rq->nr_phys_segments++;
2204 }
2205
2206 if (!q->prep_rq_fn)
2207 break;
2208
2209 ret = q->prep_rq_fn(q, rq);
2210 if (ret == BLKPREP_OK) {
2211 break;
2212 } else if (ret == BLKPREP_DEFER) {
2213 /*
2214 * the request may have been (partially) prepped.
2215 * we need to keep this request in the front to
2216 * avoid resource deadlock. REQ_STARTED will
2217 * prevent other fs requests from passing this one.
2218 */
2219 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2220 !(rq->cmd_flags & REQ_DONTPREP)) {
2221 /*
2222 * remove the space for the drain we added
2223 * so that we don't add it again
2224 */
2225 --rq->nr_phys_segments;
2226 }
2227
2228 rq = NULL;
2229 break;
2230 } else if (ret == BLKPREP_KILL) {
2231 rq->cmd_flags |= REQ_QUIET;
2232 /*
2233 * Mark this request as started so we don't trigger
2234 * any debug logic in the end I/O path.
2235 */
2236 blk_start_request(rq);
2237 __blk_end_request_all(rq, -EIO);
2238 } else {
2239 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2240 break;
2241 }
2242 }
2243
2244 return rq;
2245 }
2246 EXPORT_SYMBOL(blk_peek_request);
2247
2248 void blk_dequeue_request(struct request *rq)
2249 {
2250 struct request_queue *q = rq->q;
2251
2252 BUG_ON(list_empty(&rq->queuelist));
2253 BUG_ON(ELV_ON_HASH(rq));
2254
2255 list_del_init(&rq->queuelist);
2256
2257 /*
2258 * the time frame between a request being removed from the lists
2259 * and to it is freed is accounted as io that is in progress at
2260 * the driver side.
2261 */
2262 if (blk_account_rq(rq)) {
2263 q->in_flight[rq_is_sync(rq)]++;
2264 set_io_start_time_ns(rq);
2265 }
2266 }
2267
2268 /**
2269 * blk_start_request - start request processing on the driver
2270 * @req: request to dequeue
2271 *
2272 * Description:
2273 * Dequeue @req and start timeout timer on it. This hands off the
2274 * request to the driver.
2275 *
2276 * Block internal functions which don't want to start timer should
2277 * call blk_dequeue_request().
2278 *
2279 * Context:
2280 * queue_lock must be held.
2281 */
2282 void blk_start_request(struct request *req)
2283 {
2284 blk_dequeue_request(req);
2285
2286 /*
2287 * We are now handing the request to the hardware, initialize
2288 * resid_len to full count and add the timeout handler.
2289 */
2290 req->resid_len = blk_rq_bytes(req);
2291 if (unlikely(blk_bidi_rq(req)))
2292 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2293
2294 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2295 blk_add_timer(req);
2296 }
2297 EXPORT_SYMBOL(blk_start_request);
2298
2299 /**
2300 * blk_fetch_request - fetch a request from a request queue
2301 * @q: request queue to fetch a request from
2302 *
2303 * Description:
2304 * Return the request at the top of @q. The request is started on
2305 * return and LLD can start processing it immediately.
2306 *
2307 * Return:
2308 * Pointer to the request at the top of @q if available. Null
2309 * otherwise.
2310 *
2311 * Context:
2312 * queue_lock must be held.
2313 */
2314 struct request *blk_fetch_request(struct request_queue *q)
2315 {
2316 struct request *rq;
2317
2318 rq = blk_peek_request(q);
2319 if (rq)
2320 blk_start_request(rq);
2321 return rq;
2322 }
2323 EXPORT_SYMBOL(blk_fetch_request);
2324
2325 /**
2326 * blk_update_request - Special helper function for request stacking drivers
2327 * @req: the request being processed
2328 * @error: %0 for success, < %0 for error
2329 * @nr_bytes: number of bytes to complete @req
2330 *
2331 * Description:
2332 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2333 * the request structure even if @req doesn't have leftover.
2334 * If @req has leftover, sets it up for the next range of segments.
2335 *
2336 * This special helper function is only for request stacking drivers
2337 * (e.g. request-based dm) so that they can handle partial completion.
2338 * Actual device drivers should use blk_end_request instead.
2339 *
2340 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2341 * %false return from this function.
2342 *
2343 * Return:
2344 * %false - this request doesn't have any more data
2345 * %true - this request has more data
2346 **/
2347 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2348 {
2349 int total_bytes;
2350
2351 if (!req->bio)
2352 return false;
2353
2354 trace_block_rq_complete(req->q, req, nr_bytes);
2355
2356 /*
2357 * For fs requests, rq is just carrier of independent bio's
2358 * and each partial completion should be handled separately.
2359 * Reset per-request error on each partial completion.
2360 *
2361 * TODO: tj: This is too subtle. It would be better to let
2362 * low level drivers do what they see fit.
2363 */
2364 if (req->cmd_type == REQ_TYPE_FS)
2365 req->errors = 0;
2366
2367 if (error && req->cmd_type == REQ_TYPE_FS &&
2368 !(req->cmd_flags & REQ_QUIET)) {
2369 char *error_type;
2370
2371 switch (error) {
2372 case -ENOLINK:
2373 error_type = "recoverable transport";
2374 break;
2375 case -EREMOTEIO:
2376 error_type = "critical target";
2377 break;
2378 case -EBADE:
2379 error_type = "critical nexus";
2380 break;
2381 case -ETIMEDOUT:
2382 error_type = "timeout";
2383 break;
2384 case -ENOSPC:
2385 error_type = "critical space allocation";
2386 break;
2387 case -ENODATA:
2388 error_type = "critical medium";
2389 break;
2390 case -EIO:
2391 default:
2392 error_type = "I/O";
2393 break;
2394 }
2395 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2396 error_type, req->rq_disk ?
2397 req->rq_disk->disk_name : "?",
2398 (unsigned long long)blk_rq_pos(req));
2399
2400 }
2401
2402 blk_account_io_completion(req, nr_bytes);
2403
2404 total_bytes = 0;
2405 while (req->bio) {
2406 struct bio *bio = req->bio;
2407 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2408
2409 if (bio_bytes == bio->bi_iter.bi_size)
2410 req->bio = bio->bi_next;
2411
2412 req_bio_endio(req, bio, bio_bytes, error);
2413
2414 total_bytes += bio_bytes;
2415 nr_bytes -= bio_bytes;
2416
2417 if (!nr_bytes)
2418 break;
2419 }
2420
2421 /*
2422 * completely done
2423 */
2424 if (!req->bio) {
2425 /*
2426 * Reset counters so that the request stacking driver
2427 * can find how many bytes remain in the request
2428 * later.
2429 */
2430 req->__data_len = 0;
2431 return false;
2432 }
2433
2434 req->__data_len -= total_bytes;
2435
2436 /* update sector only for requests with clear definition of sector */
2437 if (req->cmd_type == REQ_TYPE_FS)
2438 req->__sector += total_bytes >> 9;
2439
2440 /* mixed attributes always follow the first bio */
2441 if (req->cmd_flags & REQ_MIXED_MERGE) {
2442 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2443 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2444 }
2445
2446 /*
2447 * If total number of sectors is less than the first segment
2448 * size, something has gone terribly wrong.
2449 */
2450 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2451 blk_dump_rq_flags(req, "request botched");
2452 req->__data_len = blk_rq_cur_bytes(req);
2453 }
2454
2455 /* recalculate the number of segments */
2456 blk_recalc_rq_segments(req);
2457
2458 return true;
2459 }
2460 EXPORT_SYMBOL_GPL(blk_update_request);
2461
2462 static bool blk_update_bidi_request(struct request *rq, int error,
2463 unsigned int nr_bytes,
2464 unsigned int bidi_bytes)
2465 {
2466 if (blk_update_request(rq, error, nr_bytes))
2467 return true;
2468
2469 /* Bidi request must be completed as a whole */
2470 if (unlikely(blk_bidi_rq(rq)) &&
2471 blk_update_request(rq->next_rq, error, bidi_bytes))
2472 return true;
2473
2474 if (blk_queue_add_random(rq->q))
2475 add_disk_randomness(rq->rq_disk);
2476
2477 return false;
2478 }
2479
2480 /**
2481 * blk_unprep_request - unprepare a request
2482 * @req: the request
2483 *
2484 * This function makes a request ready for complete resubmission (or
2485 * completion). It happens only after all error handling is complete,
2486 * so represents the appropriate moment to deallocate any resources
2487 * that were allocated to the request in the prep_rq_fn. The queue
2488 * lock is held when calling this.
2489 */
2490 void blk_unprep_request(struct request *req)
2491 {
2492 struct request_queue *q = req->q;
2493
2494 req->cmd_flags &= ~REQ_DONTPREP;
2495 if (q->unprep_rq_fn)
2496 q->unprep_rq_fn(q, req);
2497 }
2498 EXPORT_SYMBOL_GPL(blk_unprep_request);
2499
2500 /*
2501 * queue lock must be held
2502 */
2503 void blk_finish_request(struct request *req, int error)
2504 {
2505 if (blk_rq_tagged(req))
2506 blk_queue_end_tag(req->q, req);
2507
2508 BUG_ON(blk_queued_rq(req));
2509
2510 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2511 laptop_io_completion(&req->q->backing_dev_info);
2512
2513 blk_delete_timer(req);
2514
2515 if (req->cmd_flags & REQ_DONTPREP)
2516 blk_unprep_request(req);
2517
2518 blk_account_io_done(req);
2519
2520 if (req->end_io)
2521 req->end_io(req, error);
2522 else {
2523 if (blk_bidi_rq(req))
2524 __blk_put_request(req->next_rq->q, req->next_rq);
2525
2526 __blk_put_request(req->q, req);
2527 }
2528 }
2529 EXPORT_SYMBOL(blk_finish_request);
2530
2531 /**
2532 * blk_end_bidi_request - Complete a bidi request
2533 * @rq: the request to complete
2534 * @error: %0 for success, < %0 for error
2535 * @nr_bytes: number of bytes to complete @rq
2536 * @bidi_bytes: number of bytes to complete @rq->next_rq
2537 *
2538 * Description:
2539 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2540 * Drivers that supports bidi can safely call this member for any
2541 * type of request, bidi or uni. In the later case @bidi_bytes is
2542 * just ignored.
2543 *
2544 * Return:
2545 * %false - we are done with this request
2546 * %true - still buffers pending for this request
2547 **/
2548 static bool blk_end_bidi_request(struct request *rq, int error,
2549 unsigned int nr_bytes, unsigned int bidi_bytes)
2550 {
2551 struct request_queue *q = rq->q;
2552 unsigned long flags;
2553
2554 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2555 return true;
2556
2557 spin_lock_irqsave(q->queue_lock, flags);
2558 blk_finish_request(rq, error);
2559 spin_unlock_irqrestore(q->queue_lock, flags);
2560
2561 return false;
2562 }
2563
2564 /**
2565 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2566 * @rq: the request to complete
2567 * @error: %0 for success, < %0 for error
2568 * @nr_bytes: number of bytes to complete @rq
2569 * @bidi_bytes: number of bytes to complete @rq->next_rq
2570 *
2571 * Description:
2572 * Identical to blk_end_bidi_request() except that queue lock is
2573 * assumed to be locked on entry and remains so on return.
2574 *
2575 * Return:
2576 * %false - we are done with this request
2577 * %true - still buffers pending for this request
2578 **/
2579 bool __blk_end_bidi_request(struct request *rq, int error,
2580 unsigned int nr_bytes, unsigned int bidi_bytes)
2581 {
2582 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2583 return true;
2584
2585 blk_finish_request(rq, error);
2586
2587 return false;
2588 }
2589
2590 /**
2591 * blk_end_request - Helper function for drivers to complete the request.
2592 * @rq: the request being processed
2593 * @error: %0 for success, < %0 for error
2594 * @nr_bytes: number of bytes to complete
2595 *
2596 * Description:
2597 * Ends I/O on a number of bytes attached to @rq.
2598 * If @rq has leftover, sets it up for the next range of segments.
2599 *
2600 * Return:
2601 * %false - we are done with this request
2602 * %true - still buffers pending for this request
2603 **/
2604 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2605 {
2606 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2607 }
2608 EXPORT_SYMBOL(blk_end_request);
2609
2610 /**
2611 * blk_end_request_all - Helper function for drives to finish the request.
2612 * @rq: the request to finish
2613 * @error: %0 for success, < %0 for error
2614 *
2615 * Description:
2616 * Completely finish @rq.
2617 */
2618 void blk_end_request_all(struct request *rq, int error)
2619 {
2620 bool pending;
2621 unsigned int bidi_bytes = 0;
2622
2623 if (unlikely(blk_bidi_rq(rq)))
2624 bidi_bytes = blk_rq_bytes(rq->next_rq);
2625
2626 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2627 BUG_ON(pending);
2628 }
2629 EXPORT_SYMBOL(blk_end_request_all);
2630
2631 /**
2632 * blk_end_request_cur - Helper function to finish the current request chunk.
2633 * @rq: the request to finish the current chunk for
2634 * @error: %0 for success, < %0 for error
2635 *
2636 * Description:
2637 * Complete the current consecutively mapped chunk from @rq.
2638 *
2639 * Return:
2640 * %false - we are done with this request
2641 * %true - still buffers pending for this request
2642 */
2643 bool blk_end_request_cur(struct request *rq, int error)
2644 {
2645 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2646 }
2647 EXPORT_SYMBOL(blk_end_request_cur);
2648
2649 /**
2650 * blk_end_request_err - Finish a request till the next failure boundary.
2651 * @rq: the request to finish till the next failure boundary for
2652 * @error: must be negative errno
2653 *
2654 * Description:
2655 * Complete @rq till the next failure boundary.
2656 *
2657 * Return:
2658 * %false - we are done with this request
2659 * %true - still buffers pending for this request
2660 */
2661 bool blk_end_request_err(struct request *rq, int error)
2662 {
2663 WARN_ON(error >= 0);
2664 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2665 }
2666 EXPORT_SYMBOL_GPL(blk_end_request_err);
2667
2668 /**
2669 * __blk_end_request - Helper function for drivers to complete the request.
2670 * @rq: the request being processed
2671 * @error: %0 for success, < %0 for error
2672 * @nr_bytes: number of bytes to complete
2673 *
2674 * Description:
2675 * Must be called with queue lock held unlike blk_end_request().
2676 *
2677 * Return:
2678 * %false - we are done with this request
2679 * %true - still buffers pending for this request
2680 **/
2681 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2682 {
2683 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2684 }
2685 EXPORT_SYMBOL(__blk_end_request);
2686
2687 /**
2688 * __blk_end_request_all - Helper function for drives to finish the request.
2689 * @rq: the request to finish
2690 * @error: %0 for success, < %0 for error
2691 *
2692 * Description:
2693 * Completely finish @rq. Must be called with queue lock held.
2694 */
2695 void __blk_end_request_all(struct request *rq, int error)
2696 {
2697 bool pending;
2698 unsigned int bidi_bytes = 0;
2699
2700 if (unlikely(blk_bidi_rq(rq)))
2701 bidi_bytes = blk_rq_bytes(rq->next_rq);
2702
2703 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2704 BUG_ON(pending);
2705 }
2706 EXPORT_SYMBOL(__blk_end_request_all);
2707
2708 /**
2709 * __blk_end_request_cur - Helper function to finish the current request chunk.
2710 * @rq: the request to finish the current chunk for
2711 * @error: %0 for success, < %0 for error
2712 *
2713 * Description:
2714 * Complete the current consecutively mapped chunk from @rq. Must
2715 * be called with queue lock held.
2716 *
2717 * Return:
2718 * %false - we are done with this request
2719 * %true - still buffers pending for this request
2720 */
2721 bool __blk_end_request_cur(struct request *rq, int error)
2722 {
2723 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2724 }
2725 EXPORT_SYMBOL(__blk_end_request_cur);
2726
2727 /**
2728 * __blk_end_request_err - Finish a request till the next failure boundary.
2729 * @rq: the request to finish till the next failure boundary for
2730 * @error: must be negative errno
2731 *
2732 * Description:
2733 * Complete @rq till the next failure boundary. Must be called
2734 * with queue lock held.
2735 *
2736 * Return:
2737 * %false - we are done with this request
2738 * %true - still buffers pending for this request
2739 */
2740 bool __blk_end_request_err(struct request *rq, int error)
2741 {
2742 WARN_ON(error >= 0);
2743 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2744 }
2745 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2746
2747 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2748 struct bio *bio)
2749 {
2750 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2751 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2752
2753 if (bio_has_data(bio))
2754 rq->nr_phys_segments = bio_phys_segments(q, bio);
2755
2756 rq->__data_len = bio->bi_iter.bi_size;
2757 rq->bio = rq->biotail = bio;
2758
2759 if (bio->bi_bdev)
2760 rq->rq_disk = bio->bi_bdev->bd_disk;
2761 }
2762
2763 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2764 /**
2765 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2766 * @rq: the request to be flushed
2767 *
2768 * Description:
2769 * Flush all pages in @rq.
2770 */
2771 void rq_flush_dcache_pages(struct request *rq)
2772 {
2773 struct req_iterator iter;
2774 struct bio_vec bvec;
2775
2776 rq_for_each_segment(bvec, rq, iter)
2777 flush_dcache_page(bvec.bv_page);
2778 }
2779 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2780 #endif
2781
2782 /**
2783 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2784 * @q : the queue of the device being checked
2785 *
2786 * Description:
2787 * Check if underlying low-level drivers of a device are busy.
2788 * If the drivers want to export their busy state, they must set own
2789 * exporting function using blk_queue_lld_busy() first.
2790 *
2791 * Basically, this function is used only by request stacking drivers
2792 * to stop dispatching requests to underlying devices when underlying
2793 * devices are busy. This behavior helps more I/O merging on the queue
2794 * of the request stacking driver and prevents I/O throughput regression
2795 * on burst I/O load.
2796 *
2797 * Return:
2798 * 0 - Not busy (The request stacking driver should dispatch request)
2799 * 1 - Busy (The request stacking driver should stop dispatching request)
2800 */
2801 int blk_lld_busy(struct request_queue *q)
2802 {
2803 if (q->lld_busy_fn)
2804 return q->lld_busy_fn(q);
2805
2806 return 0;
2807 }
2808 EXPORT_SYMBOL_GPL(blk_lld_busy);
2809
2810 /**
2811 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2812 * @rq: the clone request to be cleaned up
2813 *
2814 * Description:
2815 * Free all bios in @rq for a cloned request.
2816 */
2817 void blk_rq_unprep_clone(struct request *rq)
2818 {
2819 struct bio *bio;
2820
2821 while ((bio = rq->bio) != NULL) {
2822 rq->bio = bio->bi_next;
2823
2824 bio_put(bio);
2825 }
2826 }
2827 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2828
2829 /*
2830 * Copy attributes of the original request to the clone request.
2831 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2832 */
2833 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2834 {
2835 dst->cpu = src->cpu;
2836 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2837 dst->cmd_type = src->cmd_type;
2838 dst->__sector = blk_rq_pos(src);
2839 dst->__data_len = blk_rq_bytes(src);
2840 dst->nr_phys_segments = src->nr_phys_segments;
2841 dst->ioprio = src->ioprio;
2842 dst->extra_len = src->extra_len;
2843 }
2844
2845 /**
2846 * blk_rq_prep_clone - Helper function to setup clone request
2847 * @rq: the request to be setup
2848 * @rq_src: original request to be cloned
2849 * @bs: bio_set that bios for clone are allocated from
2850 * @gfp_mask: memory allocation mask for bio
2851 * @bio_ctr: setup function to be called for each clone bio.
2852 * Returns %0 for success, non %0 for failure.
2853 * @data: private data to be passed to @bio_ctr
2854 *
2855 * Description:
2856 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2857 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2858 * are not copied, and copying such parts is the caller's responsibility.
2859 * Also, pages which the original bios are pointing to are not copied
2860 * and the cloned bios just point same pages.
2861 * So cloned bios must be completed before original bios, which means
2862 * the caller must complete @rq before @rq_src.
2863 */
2864 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2865 struct bio_set *bs, gfp_t gfp_mask,
2866 int (*bio_ctr)(struct bio *, struct bio *, void *),
2867 void *data)
2868 {
2869 struct bio *bio, *bio_src;
2870
2871 if (!bs)
2872 bs = fs_bio_set;
2873
2874 blk_rq_init(NULL, rq);
2875
2876 __rq_for_each_bio(bio_src, rq_src) {
2877 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2878 if (!bio)
2879 goto free_and_out;
2880
2881 if (bio_ctr && bio_ctr(bio, bio_src, data))
2882 goto free_and_out;
2883
2884 if (rq->bio) {
2885 rq->biotail->bi_next = bio;
2886 rq->biotail = bio;
2887 } else
2888 rq->bio = rq->biotail = bio;
2889 }
2890
2891 __blk_rq_prep_clone(rq, rq_src);
2892
2893 return 0;
2894
2895 free_and_out:
2896 if (bio)
2897 bio_put(bio);
2898 blk_rq_unprep_clone(rq);
2899
2900 return -ENOMEM;
2901 }
2902 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2903
2904 int kblockd_schedule_work(struct work_struct *work)
2905 {
2906 return queue_work(kblockd_workqueue, work);
2907 }
2908 EXPORT_SYMBOL(kblockd_schedule_work);
2909
2910 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2911 unsigned long delay)
2912 {
2913 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2914 }
2915 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2916
2917 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2918 unsigned long delay)
2919 {
2920 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2921 }
2922 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2923
2924 #define PLUG_MAGIC 0x91827364
2925
2926 /**
2927 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2928 * @plug: The &struct blk_plug that needs to be initialized
2929 *
2930 * Description:
2931 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2932 * pending I/O should the task end up blocking between blk_start_plug() and
2933 * blk_finish_plug(). This is important from a performance perspective, but
2934 * also ensures that we don't deadlock. For instance, if the task is blocking
2935 * for a memory allocation, memory reclaim could end up wanting to free a
2936 * page belonging to that request that is currently residing in our private
2937 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2938 * this kind of deadlock.
2939 */
2940 void blk_start_plug(struct blk_plug *plug)
2941 {
2942 struct task_struct *tsk = current;
2943
2944 plug->magic = PLUG_MAGIC;
2945 INIT_LIST_HEAD(&plug->list);
2946 INIT_LIST_HEAD(&plug->mq_list);
2947 INIT_LIST_HEAD(&plug->cb_list);
2948
2949 /*
2950 * If this is a nested plug, don't actually assign it. It will be
2951 * flushed on its own.
2952 */
2953 if (!tsk->plug) {
2954 /*
2955 * Store ordering should not be needed here, since a potential
2956 * preempt will imply a full memory barrier
2957 */
2958 tsk->plug = plug;
2959 }
2960 }
2961 EXPORT_SYMBOL(blk_start_plug);
2962
2963 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2964 {
2965 struct request *rqa = container_of(a, struct request, queuelist);
2966 struct request *rqb = container_of(b, struct request, queuelist);
2967
2968 return !(rqa->q < rqb->q ||
2969 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2970 }
2971
2972 /*
2973 * If 'from_schedule' is true, then postpone the dispatch of requests
2974 * until a safe kblockd context. We due this to avoid accidental big
2975 * additional stack usage in driver dispatch, in places where the originally
2976 * plugger did not intend it.
2977 */
2978 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2979 bool from_schedule)
2980 __releases(q->queue_lock)
2981 {
2982 trace_block_unplug(q, depth, !from_schedule);
2983
2984 if (from_schedule)
2985 blk_run_queue_async(q);
2986 else
2987 __blk_run_queue(q);
2988 spin_unlock(q->queue_lock);
2989 }
2990
2991 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2992 {
2993 LIST_HEAD(callbacks);
2994
2995 while (!list_empty(&plug->cb_list)) {
2996 list_splice_init(&plug->cb_list, &callbacks);
2997
2998 while (!list_empty(&callbacks)) {
2999 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3000 struct blk_plug_cb,
3001 list);
3002 list_del(&cb->list);
3003 cb->callback(cb, from_schedule);
3004 }
3005 }
3006 }
3007
3008 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3009 int size)
3010 {
3011 struct blk_plug *plug = current->plug;
3012 struct blk_plug_cb *cb;
3013
3014 if (!plug)
3015 return NULL;
3016
3017 list_for_each_entry(cb, &plug->cb_list, list)
3018 if (cb->callback == unplug && cb->data == data)
3019 return cb;
3020
3021 /* Not currently on the callback list */
3022 BUG_ON(size < sizeof(*cb));
3023 cb = kzalloc(size, GFP_ATOMIC);
3024 if (cb) {
3025 cb->data = data;
3026 cb->callback = unplug;
3027 list_add(&cb->list, &plug->cb_list);
3028 }
3029 return cb;
3030 }
3031 EXPORT_SYMBOL(blk_check_plugged);
3032
3033 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3034 {
3035 struct request_queue *q;
3036 unsigned long flags;
3037 struct request *rq;
3038 LIST_HEAD(list);
3039 unsigned int depth;
3040
3041 BUG_ON(plug->magic != PLUG_MAGIC);
3042
3043 flush_plug_callbacks(plug, from_schedule);
3044
3045 if (!list_empty(&plug->mq_list))
3046 blk_mq_flush_plug_list(plug, from_schedule);
3047
3048 if (list_empty(&plug->list))
3049 return;
3050
3051 list_splice_init(&plug->list, &list);
3052
3053 list_sort(NULL, &list, plug_rq_cmp);
3054
3055 q = NULL;
3056 depth = 0;
3057
3058 /*
3059 * Save and disable interrupts here, to avoid doing it for every
3060 * queue lock we have to take.
3061 */
3062 local_irq_save(flags);
3063 while (!list_empty(&list)) {
3064 rq = list_entry_rq(list.next);
3065 list_del_init(&rq->queuelist);
3066 BUG_ON(!rq->q);
3067 if (rq->q != q) {
3068 /*
3069 * This drops the queue lock
3070 */
3071 if (q)
3072 queue_unplugged(q, depth, from_schedule);
3073 q = rq->q;
3074 depth = 0;
3075 spin_lock(q->queue_lock);
3076 }
3077
3078 /*
3079 * Short-circuit if @q is dead
3080 */
3081 if (unlikely(blk_queue_dying(q))) {
3082 __blk_end_request_all(rq, -ENODEV);
3083 continue;
3084 }
3085
3086 /*
3087 * rq is already accounted, so use raw insert
3088 */
3089 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3090 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3091 else
3092 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3093
3094 depth++;
3095 }
3096
3097 /*
3098 * This drops the queue lock
3099 */
3100 if (q)
3101 queue_unplugged(q, depth, from_schedule);
3102
3103 local_irq_restore(flags);
3104 }
3105
3106 void blk_finish_plug(struct blk_plug *plug)
3107 {
3108 blk_flush_plug_list(plug, false);
3109
3110 if (plug == current->plug)
3111 current->plug = NULL;
3112 }
3113 EXPORT_SYMBOL(blk_finish_plug);
3114
3115 #ifdef CONFIG_PM_RUNTIME
3116 /**
3117 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3118 * @q: the queue of the device
3119 * @dev: the device the queue belongs to
3120 *
3121 * Description:
3122 * Initialize runtime-PM-related fields for @q and start auto suspend for
3123 * @dev. Drivers that want to take advantage of request-based runtime PM
3124 * should call this function after @dev has been initialized, and its
3125 * request queue @q has been allocated, and runtime PM for it can not happen
3126 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3127 * cases, driver should call this function before any I/O has taken place.
3128 *
3129 * This function takes care of setting up using auto suspend for the device,
3130 * the autosuspend delay is set to -1 to make runtime suspend impossible
3131 * until an updated value is either set by user or by driver. Drivers do
3132 * not need to touch other autosuspend settings.
3133 *
3134 * The block layer runtime PM is request based, so only works for drivers
3135 * that use request as their IO unit instead of those directly use bio's.
3136 */
3137 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3138 {
3139 q->dev = dev;
3140 q->rpm_status = RPM_ACTIVE;
3141 pm_runtime_set_autosuspend_delay(q->dev, -1);
3142 pm_runtime_use_autosuspend(q->dev);
3143 }
3144 EXPORT_SYMBOL(blk_pm_runtime_init);
3145
3146 /**
3147 * blk_pre_runtime_suspend - Pre runtime suspend check
3148 * @q: the queue of the device
3149 *
3150 * Description:
3151 * This function will check if runtime suspend is allowed for the device
3152 * by examining if there are any requests pending in the queue. If there
3153 * are requests pending, the device can not be runtime suspended; otherwise,
3154 * the queue's status will be updated to SUSPENDING and the driver can
3155 * proceed to suspend the device.
3156 *
3157 * For the not allowed case, we mark last busy for the device so that
3158 * runtime PM core will try to autosuspend it some time later.
3159 *
3160 * This function should be called near the start of the device's
3161 * runtime_suspend callback.
3162 *
3163 * Return:
3164 * 0 - OK to runtime suspend the device
3165 * -EBUSY - Device should not be runtime suspended
3166 */
3167 int blk_pre_runtime_suspend(struct request_queue *q)
3168 {
3169 int ret = 0;
3170
3171 spin_lock_irq(q->queue_lock);
3172 if (q->nr_pending) {
3173 ret = -EBUSY;
3174 pm_runtime_mark_last_busy(q->dev);
3175 } else {
3176 q->rpm_status = RPM_SUSPENDING;
3177 }
3178 spin_unlock_irq(q->queue_lock);
3179 return ret;
3180 }
3181 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3182
3183 /**
3184 * blk_post_runtime_suspend - Post runtime suspend processing
3185 * @q: the queue of the device
3186 * @err: return value of the device's runtime_suspend function
3187 *
3188 * Description:
3189 * Update the queue's runtime status according to the return value of the
3190 * device's runtime suspend function and mark last busy for the device so
3191 * that PM core will try to auto suspend the device at a later time.
3192 *
3193 * This function should be called near the end of the device's
3194 * runtime_suspend callback.
3195 */
3196 void blk_post_runtime_suspend(struct request_queue *q, int err)
3197 {
3198 spin_lock_irq(q->queue_lock);
3199 if (!err) {
3200 q->rpm_status = RPM_SUSPENDED;
3201 } else {
3202 q->rpm_status = RPM_ACTIVE;
3203 pm_runtime_mark_last_busy(q->dev);
3204 }
3205 spin_unlock_irq(q->queue_lock);
3206 }
3207 EXPORT_SYMBOL(blk_post_runtime_suspend);
3208
3209 /**
3210 * blk_pre_runtime_resume - Pre runtime resume processing
3211 * @q: the queue of the device
3212 *
3213 * Description:
3214 * Update the queue's runtime status to RESUMING in preparation for the
3215 * runtime resume of the device.
3216 *
3217 * This function should be called near the start of the device's
3218 * runtime_resume callback.
3219 */
3220 void blk_pre_runtime_resume(struct request_queue *q)
3221 {
3222 spin_lock_irq(q->queue_lock);
3223 q->rpm_status = RPM_RESUMING;
3224 spin_unlock_irq(q->queue_lock);
3225 }
3226 EXPORT_SYMBOL(blk_pre_runtime_resume);
3227
3228 /**
3229 * blk_post_runtime_resume - Post runtime resume processing
3230 * @q: the queue of the device
3231 * @err: return value of the device's runtime_resume function
3232 *
3233 * Description:
3234 * Update the queue's runtime status according to the return value of the
3235 * device's runtime_resume function. If it is successfully resumed, process
3236 * the requests that are queued into the device's queue when it is resuming
3237 * and then mark last busy and initiate autosuspend for it.
3238 *
3239 * This function should be called near the end of the device's
3240 * runtime_resume callback.
3241 */
3242 void blk_post_runtime_resume(struct request_queue *q, int err)
3243 {
3244 spin_lock_irq(q->queue_lock);
3245 if (!err) {
3246 q->rpm_status = RPM_ACTIVE;
3247 __blk_run_queue(q);
3248 pm_runtime_mark_last_busy(q->dev);
3249 pm_request_autosuspend(q->dev);
3250 } else {
3251 q->rpm_status = RPM_SUSPENDED;
3252 }
3253 spin_unlock_irq(q->queue_lock);
3254 }
3255 EXPORT_SYMBOL(blk_post_runtime_resume);
3256 #endif
3257
3258 int __init blk_dev_init(void)
3259 {
3260 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3261 sizeof(((struct request *)0)->cmd_flags));
3262
3263 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3264 kblockd_workqueue = alloc_workqueue("kblockd",
3265 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3266 WQ_POWER_EFFICIENT, 0);
3267 if (!kblockd_workqueue)
3268 panic("Failed to create kblockd\n");
3269
3270 request_cachep = kmem_cache_create("blkdev_requests",
3271 sizeof(struct request), 0, SLAB_PANIC, NULL);
3272
3273 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3274 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3275
3276 return 0;
3277 }