]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i)
272 cancel_delayed_work_sync(&hctx->run_work);
273 } else {
274 cancel_delayed_work_sync(&q->delay_work);
275 }
276 }
277 EXPORT_SYMBOL(blk_sync_queue);
278
279 /**
280 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
281 * @q: The queue to run
282 *
283 * Description:
284 * Invoke request handling on a queue if there are any pending requests.
285 * May be used to restart request handling after a request has completed.
286 * This variant runs the queue whether or not the queue has been
287 * stopped. Must be called with the queue lock held and interrupts
288 * disabled. See also @blk_run_queue.
289 */
290 inline void __blk_run_queue_uncond(struct request_queue *q)
291 {
292 if (unlikely(blk_queue_dead(q)))
293 return;
294
295 /*
296 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
297 * the queue lock internally. As a result multiple threads may be
298 * running such a request function concurrently. Keep track of the
299 * number of active request_fn invocations such that blk_drain_queue()
300 * can wait until all these request_fn calls have finished.
301 */
302 q->request_fn_active++;
303 q->request_fn(q);
304 q->request_fn_active--;
305 }
306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
307
308 /**
309 * __blk_run_queue - run a single device queue
310 * @q: The queue to run
311 *
312 * Description:
313 * See @blk_run_queue. This variant must be called with the queue lock
314 * held and interrupts disabled.
315 */
316 void __blk_run_queue(struct request_queue *q)
317 {
318 if (unlikely(blk_queue_stopped(q)))
319 return;
320
321 __blk_run_queue_uncond(q);
322 }
323 EXPORT_SYMBOL(__blk_run_queue);
324
325 /**
326 * blk_run_queue_async - run a single device queue in workqueue context
327 * @q: The queue to run
328 *
329 * Description:
330 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
331 * of us. The caller must hold the queue lock.
332 */
333 void blk_run_queue_async(struct request_queue *q)
334 {
335 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
336 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
337 }
338 EXPORT_SYMBOL(blk_run_queue_async);
339
340 /**
341 * blk_run_queue - run a single device queue
342 * @q: The queue to run
343 *
344 * Description:
345 * Invoke request handling on this queue, if it has pending work to do.
346 * May be used to restart queueing when a request has completed.
347 */
348 void blk_run_queue(struct request_queue *q)
349 {
350 unsigned long flags;
351
352 spin_lock_irqsave(q->queue_lock, flags);
353 __blk_run_queue(q);
354 spin_unlock_irqrestore(q->queue_lock, flags);
355 }
356 EXPORT_SYMBOL(blk_run_queue);
357
358 void blk_put_queue(struct request_queue *q)
359 {
360 kobject_put(&q->kobj);
361 }
362 EXPORT_SYMBOL(blk_put_queue);
363
364 /**
365 * __blk_drain_queue - drain requests from request_queue
366 * @q: queue to drain
367 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
368 *
369 * Drain requests from @q. If @drain_all is set, all requests are drained.
370 * If not, only ELVPRIV requests are drained. The caller is responsible
371 * for ensuring that no new requests which need to be drained are queued.
372 */
373 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
374 __releases(q->queue_lock)
375 __acquires(q->queue_lock)
376 {
377 int i;
378
379 lockdep_assert_held(q->queue_lock);
380
381 while (true) {
382 bool drain = false;
383
384 /*
385 * The caller might be trying to drain @q before its
386 * elevator is initialized.
387 */
388 if (q->elevator)
389 elv_drain_elevator(q);
390
391 blkcg_drain_queue(q);
392
393 /*
394 * This function might be called on a queue which failed
395 * driver init after queue creation or is not yet fully
396 * active yet. Some drivers (e.g. fd and loop) get unhappy
397 * in such cases. Kick queue iff dispatch queue has
398 * something on it and @q has request_fn set.
399 */
400 if (!list_empty(&q->queue_head) && q->request_fn)
401 __blk_run_queue(q);
402
403 drain |= q->nr_rqs_elvpriv;
404 drain |= q->request_fn_active;
405
406 /*
407 * Unfortunately, requests are queued at and tracked from
408 * multiple places and there's no single counter which can
409 * be drained. Check all the queues and counters.
410 */
411 if (drain_all) {
412 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
413 drain |= !list_empty(&q->queue_head);
414 for (i = 0; i < 2; i++) {
415 drain |= q->nr_rqs[i];
416 drain |= q->in_flight[i];
417 if (fq)
418 drain |= !list_empty(&fq->flush_queue[i]);
419 }
420 }
421
422 if (!drain)
423 break;
424
425 spin_unlock_irq(q->queue_lock);
426
427 msleep(10);
428
429 spin_lock_irq(q->queue_lock);
430 }
431
432 /*
433 * With queue marked dead, any woken up waiter will fail the
434 * allocation path, so the wakeup chaining is lost and we're
435 * left with hung waiters. We need to wake up those waiters.
436 */
437 if (q->request_fn) {
438 struct request_list *rl;
439
440 blk_queue_for_each_rl(rl, q)
441 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
442 wake_up_all(&rl->wait[i]);
443 }
444 }
445
446 /**
447 * blk_queue_bypass_start - enter queue bypass mode
448 * @q: queue of interest
449 *
450 * In bypass mode, only the dispatch FIFO queue of @q is used. This
451 * function makes @q enter bypass mode and drains all requests which were
452 * throttled or issued before. On return, it's guaranteed that no request
453 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
454 * inside queue or RCU read lock.
455 */
456 void blk_queue_bypass_start(struct request_queue *q)
457 {
458 spin_lock_irq(q->queue_lock);
459 q->bypass_depth++;
460 queue_flag_set(QUEUE_FLAG_BYPASS, q);
461 spin_unlock_irq(q->queue_lock);
462
463 /*
464 * Queues start drained. Skip actual draining till init is
465 * complete. This avoids lenghty delays during queue init which
466 * can happen many times during boot.
467 */
468 if (blk_queue_init_done(q)) {
469 spin_lock_irq(q->queue_lock);
470 __blk_drain_queue(q, false);
471 spin_unlock_irq(q->queue_lock);
472
473 /* ensure blk_queue_bypass() is %true inside RCU read lock */
474 synchronize_rcu();
475 }
476 }
477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478
479 /**
480 * blk_queue_bypass_end - leave queue bypass mode
481 * @q: queue of interest
482 *
483 * Leave bypass mode and restore the normal queueing behavior.
484 */
485 void blk_queue_bypass_end(struct request_queue *q)
486 {
487 spin_lock_irq(q->queue_lock);
488 if (!--q->bypass_depth)
489 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 WARN_ON_ONCE(q->bypass_depth < 0);
491 spin_unlock_irq(q->queue_lock);
492 }
493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494
495 void blk_set_queue_dying(struct request_queue *q)
496 {
497 spin_lock_irq(q->queue_lock);
498 queue_flag_set(QUEUE_FLAG_DYING, q);
499 spin_unlock_irq(q->queue_lock);
500
501 /*
502 * When queue DYING flag is set, we need to block new req
503 * entering queue, so we call blk_freeze_queue_start() to
504 * prevent I/O from crossing blk_queue_enter().
505 */
506 blk_freeze_queue_start(q);
507
508 if (q->mq_ops)
509 blk_mq_wake_waiters(q);
510 else {
511 struct request_list *rl;
512
513 spin_lock_irq(q->queue_lock);
514 blk_queue_for_each_rl(rl, q) {
515 if (rl->rq_pool) {
516 wake_up(&rl->wait[BLK_RW_SYNC]);
517 wake_up(&rl->wait[BLK_RW_ASYNC]);
518 }
519 }
520 spin_unlock_irq(q->queue_lock);
521 }
522 }
523 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
524
525 /**
526 * blk_cleanup_queue - shutdown a request queue
527 * @q: request queue to shutdown
528 *
529 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
530 * put it. All future requests will be failed immediately with -ENODEV.
531 */
532 void blk_cleanup_queue(struct request_queue *q)
533 {
534 spinlock_t *lock = q->queue_lock;
535
536 /* mark @q DYING, no new request or merges will be allowed afterwards */
537 mutex_lock(&q->sysfs_lock);
538 blk_set_queue_dying(q);
539 spin_lock_irq(lock);
540
541 /*
542 * A dying queue is permanently in bypass mode till released. Note
543 * that, unlike blk_queue_bypass_start(), we aren't performing
544 * synchronize_rcu() after entering bypass mode to avoid the delay
545 * as some drivers create and destroy a lot of queues while
546 * probing. This is still safe because blk_release_queue() will be
547 * called only after the queue refcnt drops to zero and nothing,
548 * RCU or not, would be traversing the queue by then.
549 */
550 q->bypass_depth++;
551 queue_flag_set(QUEUE_FLAG_BYPASS, q);
552
553 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
554 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
555 queue_flag_set(QUEUE_FLAG_DYING, q);
556 spin_unlock_irq(lock);
557 mutex_unlock(&q->sysfs_lock);
558
559 /*
560 * Drain all requests queued before DYING marking. Set DEAD flag to
561 * prevent that q->request_fn() gets invoked after draining finished.
562 */
563 blk_freeze_queue(q);
564 spin_lock_irq(lock);
565 if (!q->mq_ops)
566 __blk_drain_queue(q, true);
567 queue_flag_set(QUEUE_FLAG_DEAD, q);
568 spin_unlock_irq(lock);
569
570 /* for synchronous bio-based driver finish in-flight integrity i/o */
571 blk_flush_integrity();
572
573 /* @q won't process any more request, flush async actions */
574 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
575 blk_sync_queue(q);
576
577 if (q->mq_ops)
578 blk_mq_free_queue(q);
579 percpu_ref_exit(&q->q_usage_counter);
580
581 spin_lock_irq(lock);
582 if (q->queue_lock != &q->__queue_lock)
583 q->queue_lock = &q->__queue_lock;
584 spin_unlock_irq(lock);
585
586 /* @q is and will stay empty, shutdown and put */
587 blk_put_queue(q);
588 }
589 EXPORT_SYMBOL(blk_cleanup_queue);
590
591 /* Allocate memory local to the request queue */
592 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
593 {
594 struct request_queue *q = data;
595
596 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
597 }
598
599 static void free_request_simple(void *element, void *data)
600 {
601 kmem_cache_free(request_cachep, element);
602 }
603
604 static void *alloc_request_size(gfp_t gfp_mask, void *data)
605 {
606 struct request_queue *q = data;
607 struct request *rq;
608
609 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
610 q->node);
611 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
612 kfree(rq);
613 rq = NULL;
614 }
615 return rq;
616 }
617
618 static void free_request_size(void *element, void *data)
619 {
620 struct request_queue *q = data;
621
622 if (q->exit_rq_fn)
623 q->exit_rq_fn(q, element);
624 kfree(element);
625 }
626
627 int blk_init_rl(struct request_list *rl, struct request_queue *q,
628 gfp_t gfp_mask)
629 {
630 if (unlikely(rl->rq_pool))
631 return 0;
632
633 rl->q = q;
634 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
635 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
636 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
637 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
638
639 if (q->cmd_size) {
640 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
641 alloc_request_size, free_request_size,
642 q, gfp_mask, q->node);
643 } else {
644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
645 alloc_request_simple, free_request_simple,
646 q, gfp_mask, q->node);
647 }
648 if (!rl->rq_pool)
649 return -ENOMEM;
650
651 if (rl != &q->root_rl)
652 WARN_ON_ONCE(!blk_get_queue(q));
653
654 return 0;
655 }
656
657 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
658 {
659 if (rl->rq_pool) {
660 mempool_destroy(rl->rq_pool);
661 if (rl != &q->root_rl)
662 blk_put_queue(q);
663 }
664 }
665
666 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
667 {
668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_alloc_queue);
671
672 int blk_queue_enter(struct request_queue *q, bool nowait)
673 {
674 while (true) {
675 int ret;
676
677 if (percpu_ref_tryget_live(&q->q_usage_counter))
678 return 0;
679
680 if (nowait)
681 return -EBUSY;
682
683 /*
684 * read pair of barrier in blk_freeze_queue_start(),
685 * we need to order reading __PERCPU_REF_DEAD flag of
686 * .q_usage_counter and reading .mq_freeze_depth or
687 * queue dying flag, otherwise the following wait may
688 * never return if the two reads are reordered.
689 */
690 smp_rmb();
691
692 ret = wait_event_interruptible(q->mq_freeze_wq,
693 !atomic_read(&q->mq_freeze_depth) ||
694 blk_queue_dying(q));
695 if (blk_queue_dying(q))
696 return -ENODEV;
697 if (ret)
698 return ret;
699 }
700 }
701
702 void blk_queue_exit(struct request_queue *q)
703 {
704 percpu_ref_put(&q->q_usage_counter);
705 }
706
707 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
708 {
709 struct request_queue *q =
710 container_of(ref, struct request_queue, q_usage_counter);
711
712 wake_up_all(&q->mq_freeze_wq);
713 }
714
715 static void blk_rq_timed_out_timer(unsigned long data)
716 {
717 struct request_queue *q = (struct request_queue *)data;
718
719 kblockd_schedule_work(&q->timeout_work);
720 }
721
722 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
723 {
724 struct request_queue *q;
725
726 q = kmem_cache_alloc_node(blk_requestq_cachep,
727 gfp_mask | __GFP_ZERO, node_id);
728 if (!q)
729 return NULL;
730
731 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
732 if (q->id < 0)
733 goto fail_q;
734
735 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
736 if (!q->bio_split)
737 goto fail_id;
738
739 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
740 if (!q->backing_dev_info)
741 goto fail_split;
742
743 q->stats = blk_alloc_queue_stats();
744 if (!q->stats)
745 goto fail_stats;
746
747 q->backing_dev_info->ra_pages =
748 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
749 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
750 q->backing_dev_info->name = "block";
751 q->node = node_id;
752
753 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
754 laptop_mode_timer_fn, (unsigned long) q);
755 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
756 INIT_LIST_HEAD(&q->queue_head);
757 INIT_LIST_HEAD(&q->timeout_list);
758 INIT_LIST_HEAD(&q->icq_list);
759 #ifdef CONFIG_BLK_CGROUP
760 INIT_LIST_HEAD(&q->blkg_list);
761 #endif
762 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
763
764 kobject_init(&q->kobj, &blk_queue_ktype);
765
766 mutex_init(&q->sysfs_lock);
767 spin_lock_init(&q->__queue_lock);
768
769 /*
770 * By default initialize queue_lock to internal lock and driver can
771 * override it later if need be.
772 */
773 q->queue_lock = &q->__queue_lock;
774
775 /*
776 * A queue starts its life with bypass turned on to avoid
777 * unnecessary bypass on/off overhead and nasty surprises during
778 * init. The initial bypass will be finished when the queue is
779 * registered by blk_register_queue().
780 */
781 q->bypass_depth = 1;
782 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
783
784 init_waitqueue_head(&q->mq_freeze_wq);
785
786 /*
787 * Init percpu_ref in atomic mode so that it's faster to shutdown.
788 * See blk_register_queue() for details.
789 */
790 if (percpu_ref_init(&q->q_usage_counter,
791 blk_queue_usage_counter_release,
792 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
793 goto fail_bdi;
794
795 if (blkcg_init_queue(q))
796 goto fail_ref;
797
798 return q;
799
800 fail_ref:
801 percpu_ref_exit(&q->q_usage_counter);
802 fail_bdi:
803 blk_free_queue_stats(q->stats);
804 fail_stats:
805 bdi_put(q->backing_dev_info);
806 fail_split:
807 bioset_free(q->bio_split);
808 fail_id:
809 ida_simple_remove(&blk_queue_ida, q->id);
810 fail_q:
811 kmem_cache_free(blk_requestq_cachep, q);
812 return NULL;
813 }
814 EXPORT_SYMBOL(blk_alloc_queue_node);
815
816 /**
817 * blk_init_queue - prepare a request queue for use with a block device
818 * @rfn: The function to be called to process requests that have been
819 * placed on the queue.
820 * @lock: Request queue spin lock
821 *
822 * Description:
823 * If a block device wishes to use the standard request handling procedures,
824 * which sorts requests and coalesces adjacent requests, then it must
825 * call blk_init_queue(). The function @rfn will be called when there
826 * are requests on the queue that need to be processed. If the device
827 * supports plugging, then @rfn may not be called immediately when requests
828 * are available on the queue, but may be called at some time later instead.
829 * Plugged queues are generally unplugged when a buffer belonging to one
830 * of the requests on the queue is needed, or due to memory pressure.
831 *
832 * @rfn is not required, or even expected, to remove all requests off the
833 * queue, but only as many as it can handle at a time. If it does leave
834 * requests on the queue, it is responsible for arranging that the requests
835 * get dealt with eventually.
836 *
837 * The queue spin lock must be held while manipulating the requests on the
838 * request queue; this lock will be taken also from interrupt context, so irq
839 * disabling is needed for it.
840 *
841 * Function returns a pointer to the initialized request queue, or %NULL if
842 * it didn't succeed.
843 *
844 * Note:
845 * blk_init_queue() must be paired with a blk_cleanup_queue() call
846 * when the block device is deactivated (such as at module unload).
847 **/
848
849 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
850 {
851 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
852 }
853 EXPORT_SYMBOL(blk_init_queue);
854
855 struct request_queue *
856 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
857 {
858 struct request_queue *q;
859
860 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
861 if (!q)
862 return NULL;
863
864 q->request_fn = rfn;
865 if (lock)
866 q->queue_lock = lock;
867 if (blk_init_allocated_queue(q) < 0) {
868 blk_cleanup_queue(q);
869 return NULL;
870 }
871
872 return q;
873 }
874 EXPORT_SYMBOL(blk_init_queue_node);
875
876 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
877
878
879 int blk_init_allocated_queue(struct request_queue *q)
880 {
881 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
882 if (!q->fq)
883 return -ENOMEM;
884
885 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
886 goto out_free_flush_queue;
887
888 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
889 goto out_exit_flush_rq;
890
891 INIT_WORK(&q->timeout_work, blk_timeout_work);
892 q->queue_flags |= QUEUE_FLAG_DEFAULT;
893
894 /*
895 * This also sets hw/phys segments, boundary and size
896 */
897 blk_queue_make_request(q, blk_queue_bio);
898
899 q->sg_reserved_size = INT_MAX;
900
901 /* Protect q->elevator from elevator_change */
902 mutex_lock(&q->sysfs_lock);
903
904 /* init elevator */
905 if (elevator_init(q, NULL)) {
906 mutex_unlock(&q->sysfs_lock);
907 goto out_exit_flush_rq;
908 }
909
910 mutex_unlock(&q->sysfs_lock);
911 return 0;
912
913 out_exit_flush_rq:
914 if (q->exit_rq_fn)
915 q->exit_rq_fn(q, q->fq->flush_rq);
916 out_free_flush_queue:
917 blk_free_flush_queue(q->fq);
918 return -ENOMEM;
919 }
920 EXPORT_SYMBOL(blk_init_allocated_queue);
921
922 bool blk_get_queue(struct request_queue *q)
923 {
924 if (likely(!blk_queue_dying(q))) {
925 __blk_get_queue(q);
926 return true;
927 }
928
929 return false;
930 }
931 EXPORT_SYMBOL(blk_get_queue);
932
933 static inline void blk_free_request(struct request_list *rl, struct request *rq)
934 {
935 if (rq->rq_flags & RQF_ELVPRIV) {
936 elv_put_request(rl->q, rq);
937 if (rq->elv.icq)
938 put_io_context(rq->elv.icq->ioc);
939 }
940
941 mempool_free(rq, rl->rq_pool);
942 }
943
944 /*
945 * ioc_batching returns true if the ioc is a valid batching request and
946 * should be given priority access to a request.
947 */
948 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
949 {
950 if (!ioc)
951 return 0;
952
953 /*
954 * Make sure the process is able to allocate at least 1 request
955 * even if the batch times out, otherwise we could theoretically
956 * lose wakeups.
957 */
958 return ioc->nr_batch_requests == q->nr_batching ||
959 (ioc->nr_batch_requests > 0
960 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
961 }
962
963 /*
964 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
965 * will cause the process to be a "batcher" on all queues in the system. This
966 * is the behaviour we want though - once it gets a wakeup it should be given
967 * a nice run.
968 */
969 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
970 {
971 if (!ioc || ioc_batching(q, ioc))
972 return;
973
974 ioc->nr_batch_requests = q->nr_batching;
975 ioc->last_waited = jiffies;
976 }
977
978 static void __freed_request(struct request_list *rl, int sync)
979 {
980 struct request_queue *q = rl->q;
981
982 if (rl->count[sync] < queue_congestion_off_threshold(q))
983 blk_clear_congested(rl, sync);
984
985 if (rl->count[sync] + 1 <= q->nr_requests) {
986 if (waitqueue_active(&rl->wait[sync]))
987 wake_up(&rl->wait[sync]);
988
989 blk_clear_rl_full(rl, sync);
990 }
991 }
992
993 /*
994 * A request has just been released. Account for it, update the full and
995 * congestion status, wake up any waiters. Called under q->queue_lock.
996 */
997 static void freed_request(struct request_list *rl, bool sync,
998 req_flags_t rq_flags)
999 {
1000 struct request_queue *q = rl->q;
1001
1002 q->nr_rqs[sync]--;
1003 rl->count[sync]--;
1004 if (rq_flags & RQF_ELVPRIV)
1005 q->nr_rqs_elvpriv--;
1006
1007 __freed_request(rl, sync);
1008
1009 if (unlikely(rl->starved[sync ^ 1]))
1010 __freed_request(rl, sync ^ 1);
1011 }
1012
1013 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1014 {
1015 struct request_list *rl;
1016 int on_thresh, off_thresh;
1017
1018 spin_lock_irq(q->queue_lock);
1019 q->nr_requests = nr;
1020 blk_queue_congestion_threshold(q);
1021 on_thresh = queue_congestion_on_threshold(q);
1022 off_thresh = queue_congestion_off_threshold(q);
1023
1024 blk_queue_for_each_rl(rl, q) {
1025 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1026 blk_set_congested(rl, BLK_RW_SYNC);
1027 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1028 blk_clear_congested(rl, BLK_RW_SYNC);
1029
1030 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1031 blk_set_congested(rl, BLK_RW_ASYNC);
1032 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1033 blk_clear_congested(rl, BLK_RW_ASYNC);
1034
1035 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1036 blk_set_rl_full(rl, BLK_RW_SYNC);
1037 } else {
1038 blk_clear_rl_full(rl, BLK_RW_SYNC);
1039 wake_up(&rl->wait[BLK_RW_SYNC]);
1040 }
1041
1042 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1043 blk_set_rl_full(rl, BLK_RW_ASYNC);
1044 } else {
1045 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1046 wake_up(&rl->wait[BLK_RW_ASYNC]);
1047 }
1048 }
1049
1050 spin_unlock_irq(q->queue_lock);
1051 return 0;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @op: operation and flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q. This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068 static struct request *__get_request(struct request_list *rl, unsigned int op,
1069 struct bio *bio, gfp_t gfp_mask)
1070 {
1071 struct request_queue *q = rl->q;
1072 struct request *rq;
1073 struct elevator_type *et = q->elevator->type;
1074 struct io_context *ioc = rq_ioc(bio);
1075 struct io_cq *icq = NULL;
1076 const bool is_sync = op_is_sync(op);
1077 int may_queue;
1078 req_flags_t rq_flags = RQF_ALLOCED;
1079
1080 if (unlikely(blk_queue_dying(q)))
1081 return ERR_PTR(-ENODEV);
1082
1083 may_queue = elv_may_queue(q, op);
1084 if (may_queue == ELV_MQUEUE_NO)
1085 goto rq_starved;
1086
1087 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1088 if (rl->count[is_sync]+1 >= q->nr_requests) {
1089 /*
1090 * The queue will fill after this allocation, so set
1091 * it as full, and mark this process as "batching".
1092 * This process will be allowed to complete a batch of
1093 * requests, others will be blocked.
1094 */
1095 if (!blk_rl_full(rl, is_sync)) {
1096 ioc_set_batching(q, ioc);
1097 blk_set_rl_full(rl, is_sync);
1098 } else {
1099 if (may_queue != ELV_MQUEUE_MUST
1100 && !ioc_batching(q, ioc)) {
1101 /*
1102 * The queue is full and the allocating
1103 * process is not a "batcher", and not
1104 * exempted by the IO scheduler
1105 */
1106 return ERR_PTR(-ENOMEM);
1107 }
1108 }
1109 }
1110 blk_set_congested(rl, is_sync);
1111 }
1112
1113 /*
1114 * Only allow batching queuers to allocate up to 50% over the defined
1115 * limit of requests, otherwise we could have thousands of requests
1116 * allocated with any setting of ->nr_requests
1117 */
1118 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1119 return ERR_PTR(-ENOMEM);
1120
1121 q->nr_rqs[is_sync]++;
1122 rl->count[is_sync]++;
1123 rl->starved[is_sync] = 0;
1124
1125 /*
1126 * Decide whether the new request will be managed by elevator. If
1127 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1128 * prevent the current elevator from being destroyed until the new
1129 * request is freed. This guarantees icq's won't be destroyed and
1130 * makes creating new ones safe.
1131 *
1132 * Flush requests do not use the elevator so skip initialization.
1133 * This allows a request to share the flush and elevator data.
1134 *
1135 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1136 * it will be created after releasing queue_lock.
1137 */
1138 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1139 rq_flags |= RQF_ELVPRIV;
1140 q->nr_rqs_elvpriv++;
1141 if (et->icq_cache && ioc)
1142 icq = ioc_lookup_icq(ioc, q);
1143 }
1144
1145 if (blk_queue_io_stat(q))
1146 rq_flags |= RQF_IO_STAT;
1147 spin_unlock_irq(q->queue_lock);
1148
1149 /* allocate and init request */
1150 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1151 if (!rq)
1152 goto fail_alloc;
1153
1154 blk_rq_init(q, rq);
1155 blk_rq_set_rl(rq, rl);
1156 rq->cmd_flags = op;
1157 rq->rq_flags = rq_flags;
1158
1159 /* init elvpriv */
1160 if (rq_flags & RQF_ELVPRIV) {
1161 if (unlikely(et->icq_cache && !icq)) {
1162 if (ioc)
1163 icq = ioc_create_icq(ioc, q, gfp_mask);
1164 if (!icq)
1165 goto fail_elvpriv;
1166 }
1167
1168 rq->elv.icq = icq;
1169 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1170 goto fail_elvpriv;
1171
1172 /* @rq->elv.icq holds io_context until @rq is freed */
1173 if (icq)
1174 get_io_context(icq->ioc);
1175 }
1176 out:
1177 /*
1178 * ioc may be NULL here, and ioc_batching will be false. That's
1179 * OK, if the queue is under the request limit then requests need
1180 * not count toward the nr_batch_requests limit. There will always
1181 * be some limit enforced by BLK_BATCH_TIME.
1182 */
1183 if (ioc_batching(q, ioc))
1184 ioc->nr_batch_requests--;
1185
1186 trace_block_getrq(q, bio, op);
1187 return rq;
1188
1189 fail_elvpriv:
1190 /*
1191 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1192 * and may fail indefinitely under memory pressure and thus
1193 * shouldn't stall IO. Treat this request as !elvpriv. This will
1194 * disturb iosched and blkcg but weird is bettern than dead.
1195 */
1196 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1197 __func__, dev_name(q->backing_dev_info->dev));
1198
1199 rq->rq_flags &= ~RQF_ELVPRIV;
1200 rq->elv.icq = NULL;
1201
1202 spin_lock_irq(q->queue_lock);
1203 q->nr_rqs_elvpriv--;
1204 spin_unlock_irq(q->queue_lock);
1205 goto out;
1206
1207 fail_alloc:
1208 /*
1209 * Allocation failed presumably due to memory. Undo anything we
1210 * might have messed up.
1211 *
1212 * Allocating task should really be put onto the front of the wait
1213 * queue, but this is pretty rare.
1214 */
1215 spin_lock_irq(q->queue_lock);
1216 freed_request(rl, is_sync, rq_flags);
1217
1218 /*
1219 * in the very unlikely event that allocation failed and no
1220 * requests for this direction was pending, mark us starved so that
1221 * freeing of a request in the other direction will notice
1222 * us. another possible fix would be to split the rq mempool into
1223 * READ and WRITE
1224 */
1225 rq_starved:
1226 if (unlikely(rl->count[is_sync] == 0))
1227 rl->starved[is_sync] = 1;
1228 return ERR_PTR(-ENOMEM);
1229 }
1230
1231 /**
1232 * get_request - get a free request
1233 * @q: request_queue to allocate request from
1234 * @op: operation and flags
1235 * @bio: bio to allocate request for (can be %NULL)
1236 * @gfp_mask: allocation mask
1237 *
1238 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1239 * this function keeps retrying under memory pressure and fails iff @q is dead.
1240 *
1241 * Must be called with @q->queue_lock held and,
1242 * Returns ERR_PTR on failure, with @q->queue_lock held.
1243 * Returns request pointer on success, with @q->queue_lock *not held*.
1244 */
1245 static struct request *get_request(struct request_queue *q, unsigned int op,
1246 struct bio *bio, gfp_t gfp_mask)
1247 {
1248 const bool is_sync = op_is_sync(op);
1249 DEFINE_WAIT(wait);
1250 struct request_list *rl;
1251 struct request *rq;
1252
1253 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1254 retry:
1255 rq = __get_request(rl, op, bio, gfp_mask);
1256 if (!IS_ERR(rq))
1257 return rq;
1258
1259 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1260 blk_put_rl(rl);
1261 return rq;
1262 }
1263
1264 /* wait on @rl and retry */
1265 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1266 TASK_UNINTERRUPTIBLE);
1267
1268 trace_block_sleeprq(q, bio, op);
1269
1270 spin_unlock_irq(q->queue_lock);
1271 io_schedule();
1272
1273 /*
1274 * After sleeping, we become a "batching" process and will be able
1275 * to allocate at least one request, and up to a big batch of them
1276 * for a small period time. See ioc_batching, ioc_set_batching
1277 */
1278 ioc_set_batching(q, current->io_context);
1279
1280 spin_lock_irq(q->queue_lock);
1281 finish_wait(&rl->wait[is_sync], &wait);
1282
1283 goto retry;
1284 }
1285
1286 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1287 gfp_t gfp_mask)
1288 {
1289 struct request *rq;
1290
1291 /* create ioc upfront */
1292 create_io_context(gfp_mask, q->node);
1293
1294 spin_lock_irq(q->queue_lock);
1295 rq = get_request(q, rw, NULL, gfp_mask);
1296 if (IS_ERR(rq)) {
1297 spin_unlock_irq(q->queue_lock);
1298 return rq;
1299 }
1300
1301 /* q->queue_lock is unlocked at this point */
1302 rq->__data_len = 0;
1303 rq->__sector = (sector_t) -1;
1304 rq->bio = rq->biotail = NULL;
1305 return rq;
1306 }
1307
1308 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1309 {
1310 if (q->mq_ops)
1311 return blk_mq_alloc_request(q, rw,
1312 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1313 0 : BLK_MQ_REQ_NOWAIT);
1314 else
1315 return blk_old_get_request(q, rw, gfp_mask);
1316 }
1317 EXPORT_SYMBOL(blk_get_request);
1318
1319 /**
1320 * blk_requeue_request - put a request back on queue
1321 * @q: request queue where request should be inserted
1322 * @rq: request to be inserted
1323 *
1324 * Description:
1325 * Drivers often keep queueing requests until the hardware cannot accept
1326 * more, when that condition happens we need to put the request back
1327 * on the queue. Must be called with queue lock held.
1328 */
1329 void blk_requeue_request(struct request_queue *q, struct request *rq)
1330 {
1331 blk_delete_timer(rq);
1332 blk_clear_rq_complete(rq);
1333 trace_block_rq_requeue(q, rq);
1334 wbt_requeue(q->rq_wb, &rq->issue_stat);
1335
1336 if (rq->rq_flags & RQF_QUEUED)
1337 blk_queue_end_tag(q, rq);
1338
1339 BUG_ON(blk_queued_rq(rq));
1340
1341 elv_requeue_request(q, rq);
1342 }
1343 EXPORT_SYMBOL(blk_requeue_request);
1344
1345 static void add_acct_request(struct request_queue *q, struct request *rq,
1346 int where)
1347 {
1348 blk_account_io_start(rq, true);
1349 __elv_add_request(q, rq, where);
1350 }
1351
1352 static void part_round_stats_single(int cpu, struct hd_struct *part,
1353 unsigned long now)
1354 {
1355 int inflight;
1356
1357 if (now == part->stamp)
1358 return;
1359
1360 inflight = part_in_flight(part);
1361 if (inflight) {
1362 __part_stat_add(cpu, part, time_in_queue,
1363 inflight * (now - part->stamp));
1364 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1365 }
1366 part->stamp = now;
1367 }
1368
1369 /**
1370 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1371 * @cpu: cpu number for stats access
1372 * @part: target partition
1373 *
1374 * The average IO queue length and utilisation statistics are maintained
1375 * by observing the current state of the queue length and the amount of
1376 * time it has been in this state for.
1377 *
1378 * Normally, that accounting is done on IO completion, but that can result
1379 * in more than a second's worth of IO being accounted for within any one
1380 * second, leading to >100% utilisation. To deal with that, we call this
1381 * function to do a round-off before returning the results when reading
1382 * /proc/diskstats. This accounts immediately for all queue usage up to
1383 * the current jiffies and restarts the counters again.
1384 */
1385 void part_round_stats(int cpu, struct hd_struct *part)
1386 {
1387 unsigned long now = jiffies;
1388
1389 if (part->partno)
1390 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1391 part_round_stats_single(cpu, part, now);
1392 }
1393 EXPORT_SYMBOL_GPL(part_round_stats);
1394
1395 #ifdef CONFIG_PM
1396 static void blk_pm_put_request(struct request *rq)
1397 {
1398 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1399 pm_runtime_mark_last_busy(rq->q->dev);
1400 }
1401 #else
1402 static inline void blk_pm_put_request(struct request *rq) {}
1403 #endif
1404
1405 /*
1406 * queue lock must be held
1407 */
1408 void __blk_put_request(struct request_queue *q, struct request *req)
1409 {
1410 req_flags_t rq_flags = req->rq_flags;
1411
1412 if (unlikely(!q))
1413 return;
1414
1415 if (q->mq_ops) {
1416 blk_mq_free_request(req);
1417 return;
1418 }
1419
1420 blk_pm_put_request(req);
1421
1422 elv_completed_request(q, req);
1423
1424 /* this is a bio leak */
1425 WARN_ON(req->bio != NULL);
1426
1427 wbt_done(q->rq_wb, &req->issue_stat);
1428
1429 /*
1430 * Request may not have originated from ll_rw_blk. if not,
1431 * it didn't come out of our reserved rq pools
1432 */
1433 if (rq_flags & RQF_ALLOCED) {
1434 struct request_list *rl = blk_rq_rl(req);
1435 bool sync = op_is_sync(req->cmd_flags);
1436
1437 BUG_ON(!list_empty(&req->queuelist));
1438 BUG_ON(ELV_ON_HASH(req));
1439
1440 blk_free_request(rl, req);
1441 freed_request(rl, sync, rq_flags);
1442 blk_put_rl(rl);
1443 }
1444 }
1445 EXPORT_SYMBOL_GPL(__blk_put_request);
1446
1447 void blk_put_request(struct request *req)
1448 {
1449 struct request_queue *q = req->q;
1450
1451 if (q->mq_ops)
1452 blk_mq_free_request(req);
1453 else {
1454 unsigned long flags;
1455
1456 spin_lock_irqsave(q->queue_lock, flags);
1457 __blk_put_request(q, req);
1458 spin_unlock_irqrestore(q->queue_lock, flags);
1459 }
1460 }
1461 EXPORT_SYMBOL(blk_put_request);
1462
1463 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1464 struct bio *bio)
1465 {
1466 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1467
1468 if (!ll_back_merge_fn(q, req, bio))
1469 return false;
1470
1471 trace_block_bio_backmerge(q, req, bio);
1472
1473 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1474 blk_rq_set_mixed_merge(req);
1475
1476 req->biotail->bi_next = bio;
1477 req->biotail = bio;
1478 req->__data_len += bio->bi_iter.bi_size;
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480
1481 blk_account_io_start(req, false);
1482 return true;
1483 }
1484
1485 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1486 struct bio *bio)
1487 {
1488 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1489
1490 if (!ll_front_merge_fn(q, req, bio))
1491 return false;
1492
1493 trace_block_bio_frontmerge(q, req, bio);
1494
1495 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1496 blk_rq_set_mixed_merge(req);
1497
1498 bio->bi_next = req->bio;
1499 req->bio = bio;
1500
1501 req->__sector = bio->bi_iter.bi_sector;
1502 req->__data_len += bio->bi_iter.bi_size;
1503 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1504
1505 blk_account_io_start(req, false);
1506 return true;
1507 }
1508
1509 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1510 struct bio *bio)
1511 {
1512 unsigned short segments = blk_rq_nr_discard_segments(req);
1513
1514 if (segments >= queue_max_discard_segments(q))
1515 goto no_merge;
1516 if (blk_rq_sectors(req) + bio_sectors(bio) >
1517 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1518 goto no_merge;
1519
1520 req->biotail->bi_next = bio;
1521 req->biotail = bio;
1522 req->__data_len += bio->bi_iter.bi_size;
1523 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1524 req->nr_phys_segments = segments + 1;
1525
1526 blk_account_io_start(req, false);
1527 return true;
1528 no_merge:
1529 req_set_nomerge(q, req);
1530 return false;
1531 }
1532
1533 /**
1534 * blk_attempt_plug_merge - try to merge with %current's plugged list
1535 * @q: request_queue new bio is being queued at
1536 * @bio: new bio being queued
1537 * @request_count: out parameter for number of traversed plugged requests
1538 * @same_queue_rq: pointer to &struct request that gets filled in when
1539 * another request associated with @q is found on the plug list
1540 * (optional, may be %NULL)
1541 *
1542 * Determine whether @bio being queued on @q can be merged with a request
1543 * on %current's plugged list. Returns %true if merge was successful,
1544 * otherwise %false.
1545 *
1546 * Plugging coalesces IOs from the same issuer for the same purpose without
1547 * going through @q->queue_lock. As such it's more of an issuing mechanism
1548 * than scheduling, and the request, while may have elvpriv data, is not
1549 * added on the elevator at this point. In addition, we don't have
1550 * reliable access to the elevator outside queue lock. Only check basic
1551 * merging parameters without querying the elevator.
1552 *
1553 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1554 */
1555 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1556 unsigned int *request_count,
1557 struct request **same_queue_rq)
1558 {
1559 struct blk_plug *plug;
1560 struct request *rq;
1561 struct list_head *plug_list;
1562
1563 plug = current->plug;
1564 if (!plug)
1565 return false;
1566 *request_count = 0;
1567
1568 if (q->mq_ops)
1569 plug_list = &plug->mq_list;
1570 else
1571 plug_list = &plug->list;
1572
1573 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1574 bool merged = false;
1575
1576 if (rq->q == q) {
1577 (*request_count)++;
1578 /*
1579 * Only blk-mq multiple hardware queues case checks the
1580 * rq in the same queue, there should be only one such
1581 * rq in a queue
1582 **/
1583 if (same_queue_rq)
1584 *same_queue_rq = rq;
1585 }
1586
1587 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1588 continue;
1589
1590 switch (blk_try_merge(rq, bio)) {
1591 case ELEVATOR_BACK_MERGE:
1592 merged = bio_attempt_back_merge(q, rq, bio);
1593 break;
1594 case ELEVATOR_FRONT_MERGE:
1595 merged = bio_attempt_front_merge(q, rq, bio);
1596 break;
1597 case ELEVATOR_DISCARD_MERGE:
1598 merged = bio_attempt_discard_merge(q, rq, bio);
1599 break;
1600 default:
1601 break;
1602 }
1603
1604 if (merged)
1605 return true;
1606 }
1607
1608 return false;
1609 }
1610
1611 unsigned int blk_plug_queued_count(struct request_queue *q)
1612 {
1613 struct blk_plug *plug;
1614 struct request *rq;
1615 struct list_head *plug_list;
1616 unsigned int ret = 0;
1617
1618 plug = current->plug;
1619 if (!plug)
1620 goto out;
1621
1622 if (q->mq_ops)
1623 plug_list = &plug->mq_list;
1624 else
1625 plug_list = &plug->list;
1626
1627 list_for_each_entry(rq, plug_list, queuelist) {
1628 if (rq->q == q)
1629 ret++;
1630 }
1631 out:
1632 return ret;
1633 }
1634
1635 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1636 {
1637 struct io_context *ioc = rq_ioc(bio);
1638
1639 if (bio->bi_opf & REQ_RAHEAD)
1640 req->cmd_flags |= REQ_FAILFAST_MASK;
1641
1642 req->__sector = bio->bi_iter.bi_sector;
1643 if (ioprio_valid(bio_prio(bio)))
1644 req->ioprio = bio_prio(bio);
1645 else if (ioc)
1646 req->ioprio = ioc->ioprio;
1647 else
1648 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1649 blk_rq_bio_prep(req->q, req, bio);
1650 }
1651 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1652
1653 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1654 {
1655 struct blk_plug *plug;
1656 int where = ELEVATOR_INSERT_SORT;
1657 struct request *req, *free;
1658 unsigned int request_count = 0;
1659 unsigned int wb_acct;
1660
1661 /*
1662 * low level driver can indicate that it wants pages above a
1663 * certain limit bounced to low memory (ie for highmem, or even
1664 * ISA dma in theory)
1665 */
1666 blk_queue_bounce(q, &bio);
1667
1668 blk_queue_split(q, &bio, q->bio_split);
1669
1670 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1671 bio->bi_error = -EIO;
1672 bio_endio(bio);
1673 return BLK_QC_T_NONE;
1674 }
1675
1676 if (op_is_flush(bio->bi_opf)) {
1677 spin_lock_irq(q->queue_lock);
1678 where = ELEVATOR_INSERT_FLUSH;
1679 goto get_rq;
1680 }
1681
1682 /*
1683 * Check if we can merge with the plugged list before grabbing
1684 * any locks.
1685 */
1686 if (!blk_queue_nomerges(q)) {
1687 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1688 return BLK_QC_T_NONE;
1689 } else
1690 request_count = blk_plug_queued_count(q);
1691
1692 spin_lock_irq(q->queue_lock);
1693
1694 switch (elv_merge(q, &req, bio)) {
1695 case ELEVATOR_BACK_MERGE:
1696 if (!bio_attempt_back_merge(q, req, bio))
1697 break;
1698 elv_bio_merged(q, req, bio);
1699 free = attempt_back_merge(q, req);
1700 if (free)
1701 __blk_put_request(q, free);
1702 else
1703 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1704 goto out_unlock;
1705 case ELEVATOR_FRONT_MERGE:
1706 if (!bio_attempt_front_merge(q, req, bio))
1707 break;
1708 elv_bio_merged(q, req, bio);
1709 free = attempt_front_merge(q, req);
1710 if (free)
1711 __blk_put_request(q, free);
1712 else
1713 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1714 goto out_unlock;
1715 default:
1716 break;
1717 }
1718
1719 get_rq:
1720 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1721
1722 /*
1723 * Grab a free request. This is might sleep but can not fail.
1724 * Returns with the queue unlocked.
1725 */
1726 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1727 if (IS_ERR(req)) {
1728 __wbt_done(q->rq_wb, wb_acct);
1729 bio->bi_error = PTR_ERR(req);
1730 bio_endio(bio);
1731 goto out_unlock;
1732 }
1733
1734 wbt_track(&req->issue_stat, wb_acct);
1735
1736 /*
1737 * After dropping the lock and possibly sleeping here, our request
1738 * may now be mergeable after it had proven unmergeable (above).
1739 * We don't worry about that case for efficiency. It won't happen
1740 * often, and the elevators are able to handle it.
1741 */
1742 blk_init_request_from_bio(req, bio);
1743
1744 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1745 req->cpu = raw_smp_processor_id();
1746
1747 plug = current->plug;
1748 if (plug) {
1749 /*
1750 * If this is the first request added after a plug, fire
1751 * of a plug trace.
1752 *
1753 * @request_count may become stale because of schedule
1754 * out, so check plug list again.
1755 */
1756 if (!request_count || list_empty(&plug->list))
1757 trace_block_plug(q);
1758 else {
1759 struct request *last = list_entry_rq(plug->list.prev);
1760 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1761 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1762 blk_flush_plug_list(plug, false);
1763 trace_block_plug(q);
1764 }
1765 }
1766 list_add_tail(&req->queuelist, &plug->list);
1767 blk_account_io_start(req, true);
1768 } else {
1769 spin_lock_irq(q->queue_lock);
1770 add_acct_request(q, req, where);
1771 __blk_run_queue(q);
1772 out_unlock:
1773 spin_unlock_irq(q->queue_lock);
1774 }
1775
1776 return BLK_QC_T_NONE;
1777 }
1778
1779 /*
1780 * If bio->bi_dev is a partition, remap the location
1781 */
1782 static inline void blk_partition_remap(struct bio *bio)
1783 {
1784 struct block_device *bdev = bio->bi_bdev;
1785
1786 /*
1787 * Zone reset does not include bi_size so bio_sectors() is always 0.
1788 * Include a test for the reset op code and perform the remap if needed.
1789 */
1790 if (bdev != bdev->bd_contains &&
1791 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1792 struct hd_struct *p = bdev->bd_part;
1793
1794 bio->bi_iter.bi_sector += p->start_sect;
1795 bio->bi_bdev = bdev->bd_contains;
1796
1797 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1798 bdev->bd_dev,
1799 bio->bi_iter.bi_sector - p->start_sect);
1800 }
1801 }
1802
1803 static void handle_bad_sector(struct bio *bio)
1804 {
1805 char b[BDEVNAME_SIZE];
1806
1807 printk(KERN_INFO "attempt to access beyond end of device\n");
1808 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1809 bdevname(bio->bi_bdev, b),
1810 bio->bi_opf,
1811 (unsigned long long)bio_end_sector(bio),
1812 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1813 }
1814
1815 #ifdef CONFIG_FAIL_MAKE_REQUEST
1816
1817 static DECLARE_FAULT_ATTR(fail_make_request);
1818
1819 static int __init setup_fail_make_request(char *str)
1820 {
1821 return setup_fault_attr(&fail_make_request, str);
1822 }
1823 __setup("fail_make_request=", setup_fail_make_request);
1824
1825 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1826 {
1827 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1828 }
1829
1830 static int __init fail_make_request_debugfs(void)
1831 {
1832 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1833 NULL, &fail_make_request);
1834
1835 return PTR_ERR_OR_ZERO(dir);
1836 }
1837
1838 late_initcall(fail_make_request_debugfs);
1839
1840 #else /* CONFIG_FAIL_MAKE_REQUEST */
1841
1842 static inline bool should_fail_request(struct hd_struct *part,
1843 unsigned int bytes)
1844 {
1845 return false;
1846 }
1847
1848 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1849
1850 /*
1851 * Check whether this bio extends beyond the end of the device.
1852 */
1853 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1854 {
1855 sector_t maxsector;
1856
1857 if (!nr_sectors)
1858 return 0;
1859
1860 /* Test device or partition size, when known. */
1861 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1862 if (maxsector) {
1863 sector_t sector = bio->bi_iter.bi_sector;
1864
1865 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1866 /*
1867 * This may well happen - the kernel calls bread()
1868 * without checking the size of the device, e.g., when
1869 * mounting a device.
1870 */
1871 handle_bad_sector(bio);
1872 return 1;
1873 }
1874 }
1875
1876 return 0;
1877 }
1878
1879 static noinline_for_stack bool
1880 generic_make_request_checks(struct bio *bio)
1881 {
1882 struct request_queue *q;
1883 int nr_sectors = bio_sectors(bio);
1884 int err = -EIO;
1885 char b[BDEVNAME_SIZE];
1886 struct hd_struct *part;
1887
1888 might_sleep();
1889
1890 if (bio_check_eod(bio, nr_sectors))
1891 goto end_io;
1892
1893 q = bdev_get_queue(bio->bi_bdev);
1894 if (unlikely(!q)) {
1895 printk(KERN_ERR
1896 "generic_make_request: Trying to access "
1897 "nonexistent block-device %s (%Lu)\n",
1898 bdevname(bio->bi_bdev, b),
1899 (long long) bio->bi_iter.bi_sector);
1900 goto end_io;
1901 }
1902
1903 part = bio->bi_bdev->bd_part;
1904 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1905 should_fail_request(&part_to_disk(part)->part0,
1906 bio->bi_iter.bi_size))
1907 goto end_io;
1908
1909 /*
1910 * If this device has partitions, remap block n
1911 * of partition p to block n+start(p) of the disk.
1912 */
1913 blk_partition_remap(bio);
1914
1915 if (bio_check_eod(bio, nr_sectors))
1916 goto end_io;
1917
1918 /*
1919 * Filter flush bio's early so that make_request based
1920 * drivers without flush support don't have to worry
1921 * about them.
1922 */
1923 if (op_is_flush(bio->bi_opf) &&
1924 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1925 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1926 if (!nr_sectors) {
1927 err = 0;
1928 goto end_io;
1929 }
1930 }
1931
1932 switch (bio_op(bio)) {
1933 case REQ_OP_DISCARD:
1934 if (!blk_queue_discard(q))
1935 goto not_supported;
1936 break;
1937 case REQ_OP_SECURE_ERASE:
1938 if (!blk_queue_secure_erase(q))
1939 goto not_supported;
1940 break;
1941 case REQ_OP_WRITE_SAME:
1942 if (!bdev_write_same(bio->bi_bdev))
1943 goto not_supported;
1944 break;
1945 case REQ_OP_ZONE_REPORT:
1946 case REQ_OP_ZONE_RESET:
1947 if (!bdev_is_zoned(bio->bi_bdev))
1948 goto not_supported;
1949 break;
1950 case REQ_OP_WRITE_ZEROES:
1951 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1952 goto not_supported;
1953 break;
1954 default:
1955 break;
1956 }
1957
1958 /*
1959 * Various block parts want %current->io_context and lazy ioc
1960 * allocation ends up trading a lot of pain for a small amount of
1961 * memory. Just allocate it upfront. This may fail and block
1962 * layer knows how to live with it.
1963 */
1964 create_io_context(GFP_ATOMIC, q->node);
1965
1966 if (!blkcg_bio_issue_check(q, bio))
1967 return false;
1968
1969 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1970 trace_block_bio_queue(q, bio);
1971 /* Now that enqueuing has been traced, we need to trace
1972 * completion as well.
1973 */
1974 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1975 }
1976 return true;
1977
1978 not_supported:
1979 err = -EOPNOTSUPP;
1980 end_io:
1981 bio->bi_error = err;
1982 bio_endio(bio);
1983 return false;
1984 }
1985
1986 /**
1987 * generic_make_request - hand a buffer to its device driver for I/O
1988 * @bio: The bio describing the location in memory and on the device.
1989 *
1990 * generic_make_request() is used to make I/O requests of block
1991 * devices. It is passed a &struct bio, which describes the I/O that needs
1992 * to be done.
1993 *
1994 * generic_make_request() does not return any status. The
1995 * success/failure status of the request, along with notification of
1996 * completion, is delivered asynchronously through the bio->bi_end_io
1997 * function described (one day) else where.
1998 *
1999 * The caller of generic_make_request must make sure that bi_io_vec
2000 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2001 * set to describe the device address, and the
2002 * bi_end_io and optionally bi_private are set to describe how
2003 * completion notification should be signaled.
2004 *
2005 * generic_make_request and the drivers it calls may use bi_next if this
2006 * bio happens to be merged with someone else, and may resubmit the bio to
2007 * a lower device by calling into generic_make_request recursively, which
2008 * means the bio should NOT be touched after the call to ->make_request_fn.
2009 */
2010 blk_qc_t generic_make_request(struct bio *bio)
2011 {
2012 /*
2013 * bio_list_on_stack[0] contains bios submitted by the current
2014 * make_request_fn.
2015 * bio_list_on_stack[1] contains bios that were submitted before
2016 * the current make_request_fn, but that haven't been processed
2017 * yet.
2018 */
2019 struct bio_list bio_list_on_stack[2];
2020 blk_qc_t ret = BLK_QC_T_NONE;
2021
2022 if (!generic_make_request_checks(bio))
2023 goto out;
2024
2025 /*
2026 * We only want one ->make_request_fn to be active at a time, else
2027 * stack usage with stacked devices could be a problem. So use
2028 * current->bio_list to keep a list of requests submited by a
2029 * make_request_fn function. current->bio_list is also used as a
2030 * flag to say if generic_make_request is currently active in this
2031 * task or not. If it is NULL, then no make_request is active. If
2032 * it is non-NULL, then a make_request is active, and new requests
2033 * should be added at the tail
2034 */
2035 if (current->bio_list) {
2036 bio_list_add(&current->bio_list[0], bio);
2037 goto out;
2038 }
2039
2040 /* following loop may be a bit non-obvious, and so deserves some
2041 * explanation.
2042 * Before entering the loop, bio->bi_next is NULL (as all callers
2043 * ensure that) so we have a list with a single bio.
2044 * We pretend that we have just taken it off a longer list, so
2045 * we assign bio_list to a pointer to the bio_list_on_stack,
2046 * thus initialising the bio_list of new bios to be
2047 * added. ->make_request() may indeed add some more bios
2048 * through a recursive call to generic_make_request. If it
2049 * did, we find a non-NULL value in bio_list and re-enter the loop
2050 * from the top. In this case we really did just take the bio
2051 * of the top of the list (no pretending) and so remove it from
2052 * bio_list, and call into ->make_request() again.
2053 */
2054 BUG_ON(bio->bi_next);
2055 bio_list_init(&bio_list_on_stack[0]);
2056 current->bio_list = bio_list_on_stack;
2057 do {
2058 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2059
2060 if (likely(blk_queue_enter(q, false) == 0)) {
2061 struct bio_list lower, same;
2062
2063 /* Create a fresh bio_list for all subordinate requests */
2064 bio_list_on_stack[1] = bio_list_on_stack[0];
2065 bio_list_init(&bio_list_on_stack[0]);
2066 ret = q->make_request_fn(q, bio);
2067
2068 blk_queue_exit(q);
2069
2070 /* sort new bios into those for a lower level
2071 * and those for the same level
2072 */
2073 bio_list_init(&lower);
2074 bio_list_init(&same);
2075 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2076 if (q == bdev_get_queue(bio->bi_bdev))
2077 bio_list_add(&same, bio);
2078 else
2079 bio_list_add(&lower, bio);
2080 /* now assemble so we handle the lowest level first */
2081 bio_list_merge(&bio_list_on_stack[0], &lower);
2082 bio_list_merge(&bio_list_on_stack[0], &same);
2083 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2084 } else {
2085 bio_io_error(bio);
2086 }
2087 bio = bio_list_pop(&bio_list_on_stack[0]);
2088 } while (bio);
2089 current->bio_list = NULL; /* deactivate */
2090
2091 out:
2092 return ret;
2093 }
2094 EXPORT_SYMBOL(generic_make_request);
2095
2096 /**
2097 * submit_bio - submit a bio to the block device layer for I/O
2098 * @bio: The &struct bio which describes the I/O
2099 *
2100 * submit_bio() is very similar in purpose to generic_make_request(), and
2101 * uses that function to do most of the work. Both are fairly rough
2102 * interfaces; @bio must be presetup and ready for I/O.
2103 *
2104 */
2105 blk_qc_t submit_bio(struct bio *bio)
2106 {
2107 /*
2108 * If it's a regular read/write or a barrier with data attached,
2109 * go through the normal accounting stuff before submission.
2110 */
2111 if (bio_has_data(bio)) {
2112 unsigned int count;
2113
2114 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2115 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2116 else
2117 count = bio_sectors(bio);
2118
2119 if (op_is_write(bio_op(bio))) {
2120 count_vm_events(PGPGOUT, count);
2121 } else {
2122 task_io_account_read(bio->bi_iter.bi_size);
2123 count_vm_events(PGPGIN, count);
2124 }
2125
2126 if (unlikely(block_dump)) {
2127 char b[BDEVNAME_SIZE];
2128 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2129 current->comm, task_pid_nr(current),
2130 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2131 (unsigned long long)bio->bi_iter.bi_sector,
2132 bdevname(bio->bi_bdev, b),
2133 count);
2134 }
2135 }
2136
2137 return generic_make_request(bio);
2138 }
2139 EXPORT_SYMBOL(submit_bio);
2140
2141 /**
2142 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2143 * for new the queue limits
2144 * @q: the queue
2145 * @rq: the request being checked
2146 *
2147 * Description:
2148 * @rq may have been made based on weaker limitations of upper-level queues
2149 * in request stacking drivers, and it may violate the limitation of @q.
2150 * Since the block layer and the underlying device driver trust @rq
2151 * after it is inserted to @q, it should be checked against @q before
2152 * the insertion using this generic function.
2153 *
2154 * Request stacking drivers like request-based dm may change the queue
2155 * limits when retrying requests on other queues. Those requests need
2156 * to be checked against the new queue limits again during dispatch.
2157 */
2158 static int blk_cloned_rq_check_limits(struct request_queue *q,
2159 struct request *rq)
2160 {
2161 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2162 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2163 return -EIO;
2164 }
2165
2166 /*
2167 * queue's settings related to segment counting like q->bounce_pfn
2168 * may differ from that of other stacking queues.
2169 * Recalculate it to check the request correctly on this queue's
2170 * limitation.
2171 */
2172 blk_recalc_rq_segments(rq);
2173 if (rq->nr_phys_segments > queue_max_segments(q)) {
2174 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2175 return -EIO;
2176 }
2177
2178 return 0;
2179 }
2180
2181 /**
2182 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2183 * @q: the queue to submit the request
2184 * @rq: the request being queued
2185 */
2186 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2187 {
2188 unsigned long flags;
2189 int where = ELEVATOR_INSERT_BACK;
2190
2191 if (blk_cloned_rq_check_limits(q, rq))
2192 return -EIO;
2193
2194 if (rq->rq_disk &&
2195 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2196 return -EIO;
2197
2198 if (q->mq_ops) {
2199 if (blk_queue_io_stat(q))
2200 blk_account_io_start(rq, true);
2201 blk_mq_sched_insert_request(rq, false, true, false, false);
2202 return 0;
2203 }
2204
2205 spin_lock_irqsave(q->queue_lock, flags);
2206 if (unlikely(blk_queue_dying(q))) {
2207 spin_unlock_irqrestore(q->queue_lock, flags);
2208 return -ENODEV;
2209 }
2210
2211 /*
2212 * Submitting request must be dequeued before calling this function
2213 * because it will be linked to another request_queue
2214 */
2215 BUG_ON(blk_queued_rq(rq));
2216
2217 if (op_is_flush(rq->cmd_flags))
2218 where = ELEVATOR_INSERT_FLUSH;
2219
2220 add_acct_request(q, rq, where);
2221 if (where == ELEVATOR_INSERT_FLUSH)
2222 __blk_run_queue(q);
2223 spin_unlock_irqrestore(q->queue_lock, flags);
2224
2225 return 0;
2226 }
2227 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2228
2229 /**
2230 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2231 * @rq: request to examine
2232 *
2233 * Description:
2234 * A request could be merge of IOs which require different failure
2235 * handling. This function determines the number of bytes which
2236 * can be failed from the beginning of the request without
2237 * crossing into area which need to be retried further.
2238 *
2239 * Return:
2240 * The number of bytes to fail.
2241 *
2242 * Context:
2243 * queue_lock must be held.
2244 */
2245 unsigned int blk_rq_err_bytes(const struct request *rq)
2246 {
2247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2248 unsigned int bytes = 0;
2249 struct bio *bio;
2250
2251 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2252 return blk_rq_bytes(rq);
2253
2254 /*
2255 * Currently the only 'mixing' which can happen is between
2256 * different fastfail types. We can safely fail portions
2257 * which have all the failfast bits that the first one has -
2258 * the ones which are at least as eager to fail as the first
2259 * one.
2260 */
2261 for (bio = rq->bio; bio; bio = bio->bi_next) {
2262 if ((bio->bi_opf & ff) != ff)
2263 break;
2264 bytes += bio->bi_iter.bi_size;
2265 }
2266
2267 /* this could lead to infinite loop */
2268 BUG_ON(blk_rq_bytes(rq) && !bytes);
2269 return bytes;
2270 }
2271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2272
2273 void blk_account_io_completion(struct request *req, unsigned int bytes)
2274 {
2275 if (blk_do_io_stat(req)) {
2276 const int rw = rq_data_dir(req);
2277 struct hd_struct *part;
2278 int cpu;
2279
2280 cpu = part_stat_lock();
2281 part = req->part;
2282 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2283 part_stat_unlock();
2284 }
2285 }
2286
2287 void blk_account_io_done(struct request *req)
2288 {
2289 /*
2290 * Account IO completion. flush_rq isn't accounted as a
2291 * normal IO on queueing nor completion. Accounting the
2292 * containing request is enough.
2293 */
2294 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2295 unsigned long duration = jiffies - req->start_time;
2296 const int rw = rq_data_dir(req);
2297 struct hd_struct *part;
2298 int cpu;
2299
2300 cpu = part_stat_lock();
2301 part = req->part;
2302
2303 part_stat_inc(cpu, part, ios[rw]);
2304 part_stat_add(cpu, part, ticks[rw], duration);
2305 part_round_stats(cpu, part);
2306 part_dec_in_flight(part, rw);
2307
2308 hd_struct_put(part);
2309 part_stat_unlock();
2310 }
2311 }
2312
2313 #ifdef CONFIG_PM
2314 /*
2315 * Don't process normal requests when queue is suspended
2316 * or in the process of suspending/resuming
2317 */
2318 static struct request *blk_pm_peek_request(struct request_queue *q,
2319 struct request *rq)
2320 {
2321 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2322 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2323 return NULL;
2324 else
2325 return rq;
2326 }
2327 #else
2328 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2329 struct request *rq)
2330 {
2331 return rq;
2332 }
2333 #endif
2334
2335 void blk_account_io_start(struct request *rq, bool new_io)
2336 {
2337 struct hd_struct *part;
2338 int rw = rq_data_dir(rq);
2339 int cpu;
2340
2341 if (!blk_do_io_stat(rq))
2342 return;
2343
2344 cpu = part_stat_lock();
2345
2346 if (!new_io) {
2347 part = rq->part;
2348 part_stat_inc(cpu, part, merges[rw]);
2349 } else {
2350 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2351 if (!hd_struct_try_get(part)) {
2352 /*
2353 * The partition is already being removed,
2354 * the request will be accounted on the disk only
2355 *
2356 * We take a reference on disk->part0 although that
2357 * partition will never be deleted, so we can treat
2358 * it as any other partition.
2359 */
2360 part = &rq->rq_disk->part0;
2361 hd_struct_get(part);
2362 }
2363 part_round_stats(cpu, part);
2364 part_inc_in_flight(part, rw);
2365 rq->part = part;
2366 }
2367
2368 part_stat_unlock();
2369 }
2370
2371 /**
2372 * blk_peek_request - peek at the top of a request queue
2373 * @q: request queue to peek at
2374 *
2375 * Description:
2376 * Return the request at the top of @q. The returned request
2377 * should be started using blk_start_request() before LLD starts
2378 * processing it.
2379 *
2380 * Return:
2381 * Pointer to the request at the top of @q if available. Null
2382 * otherwise.
2383 *
2384 * Context:
2385 * queue_lock must be held.
2386 */
2387 struct request *blk_peek_request(struct request_queue *q)
2388 {
2389 struct request *rq;
2390 int ret;
2391
2392 while ((rq = __elv_next_request(q)) != NULL) {
2393
2394 rq = blk_pm_peek_request(q, rq);
2395 if (!rq)
2396 break;
2397
2398 if (!(rq->rq_flags & RQF_STARTED)) {
2399 /*
2400 * This is the first time the device driver
2401 * sees this request (possibly after
2402 * requeueing). Notify IO scheduler.
2403 */
2404 if (rq->rq_flags & RQF_SORTED)
2405 elv_activate_rq(q, rq);
2406
2407 /*
2408 * just mark as started even if we don't start
2409 * it, a request that has been delayed should
2410 * not be passed by new incoming requests
2411 */
2412 rq->rq_flags |= RQF_STARTED;
2413 trace_block_rq_issue(q, rq);
2414 }
2415
2416 if (!q->boundary_rq || q->boundary_rq == rq) {
2417 q->end_sector = rq_end_sector(rq);
2418 q->boundary_rq = NULL;
2419 }
2420
2421 if (rq->rq_flags & RQF_DONTPREP)
2422 break;
2423
2424 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2425 /*
2426 * make sure space for the drain appears we
2427 * know we can do this because max_hw_segments
2428 * has been adjusted to be one fewer than the
2429 * device can handle
2430 */
2431 rq->nr_phys_segments++;
2432 }
2433
2434 if (!q->prep_rq_fn)
2435 break;
2436
2437 ret = q->prep_rq_fn(q, rq);
2438 if (ret == BLKPREP_OK) {
2439 break;
2440 } else if (ret == BLKPREP_DEFER) {
2441 /*
2442 * the request may have been (partially) prepped.
2443 * we need to keep this request in the front to
2444 * avoid resource deadlock. RQF_STARTED will
2445 * prevent other fs requests from passing this one.
2446 */
2447 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2448 !(rq->rq_flags & RQF_DONTPREP)) {
2449 /*
2450 * remove the space for the drain we added
2451 * so that we don't add it again
2452 */
2453 --rq->nr_phys_segments;
2454 }
2455
2456 rq = NULL;
2457 break;
2458 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2459 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2460
2461 rq->rq_flags |= RQF_QUIET;
2462 /*
2463 * Mark this request as started so we don't trigger
2464 * any debug logic in the end I/O path.
2465 */
2466 blk_start_request(rq);
2467 __blk_end_request_all(rq, err);
2468 } else {
2469 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2470 break;
2471 }
2472 }
2473
2474 return rq;
2475 }
2476 EXPORT_SYMBOL(blk_peek_request);
2477
2478 void blk_dequeue_request(struct request *rq)
2479 {
2480 struct request_queue *q = rq->q;
2481
2482 BUG_ON(list_empty(&rq->queuelist));
2483 BUG_ON(ELV_ON_HASH(rq));
2484
2485 list_del_init(&rq->queuelist);
2486
2487 /*
2488 * the time frame between a request being removed from the lists
2489 * and to it is freed is accounted as io that is in progress at
2490 * the driver side.
2491 */
2492 if (blk_account_rq(rq)) {
2493 q->in_flight[rq_is_sync(rq)]++;
2494 set_io_start_time_ns(rq);
2495 }
2496 }
2497
2498 /**
2499 * blk_start_request - start request processing on the driver
2500 * @req: request to dequeue
2501 *
2502 * Description:
2503 * Dequeue @req and start timeout timer on it. This hands off the
2504 * request to the driver.
2505 *
2506 * Block internal functions which don't want to start timer should
2507 * call blk_dequeue_request().
2508 *
2509 * Context:
2510 * queue_lock must be held.
2511 */
2512 void blk_start_request(struct request *req)
2513 {
2514 blk_dequeue_request(req);
2515
2516 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2517 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2518 req->rq_flags |= RQF_STATS;
2519 wbt_issue(req->q->rq_wb, &req->issue_stat);
2520 }
2521
2522 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2523 blk_add_timer(req);
2524 }
2525 EXPORT_SYMBOL(blk_start_request);
2526
2527 /**
2528 * blk_fetch_request - fetch a request from a request queue
2529 * @q: request queue to fetch a request from
2530 *
2531 * Description:
2532 * Return the request at the top of @q. The request is started on
2533 * return and LLD can start processing it immediately.
2534 *
2535 * Return:
2536 * Pointer to the request at the top of @q if available. Null
2537 * otherwise.
2538 *
2539 * Context:
2540 * queue_lock must be held.
2541 */
2542 struct request *blk_fetch_request(struct request_queue *q)
2543 {
2544 struct request *rq;
2545
2546 rq = blk_peek_request(q);
2547 if (rq)
2548 blk_start_request(rq);
2549 return rq;
2550 }
2551 EXPORT_SYMBOL(blk_fetch_request);
2552
2553 /**
2554 * blk_update_request - Special helper function for request stacking drivers
2555 * @req: the request being processed
2556 * @error: %0 for success, < %0 for error
2557 * @nr_bytes: number of bytes to complete @req
2558 *
2559 * Description:
2560 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2561 * the request structure even if @req doesn't have leftover.
2562 * If @req has leftover, sets it up for the next range of segments.
2563 *
2564 * This special helper function is only for request stacking drivers
2565 * (e.g. request-based dm) so that they can handle partial completion.
2566 * Actual device drivers should use blk_end_request instead.
2567 *
2568 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2569 * %false return from this function.
2570 *
2571 * Return:
2572 * %false - this request doesn't have any more data
2573 * %true - this request has more data
2574 **/
2575 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2576 {
2577 int total_bytes;
2578
2579 trace_block_rq_complete(req, error, nr_bytes);
2580
2581 if (!req->bio)
2582 return false;
2583
2584 if (error && !blk_rq_is_passthrough(req) &&
2585 !(req->rq_flags & RQF_QUIET)) {
2586 char *error_type;
2587
2588 switch (error) {
2589 case -ENOLINK:
2590 error_type = "recoverable transport";
2591 break;
2592 case -EREMOTEIO:
2593 error_type = "critical target";
2594 break;
2595 case -EBADE:
2596 error_type = "critical nexus";
2597 break;
2598 case -ETIMEDOUT:
2599 error_type = "timeout";
2600 break;
2601 case -ENOSPC:
2602 error_type = "critical space allocation";
2603 break;
2604 case -ENODATA:
2605 error_type = "critical medium";
2606 break;
2607 case -EIO:
2608 default:
2609 error_type = "I/O";
2610 break;
2611 }
2612 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2613 __func__, error_type, req->rq_disk ?
2614 req->rq_disk->disk_name : "?",
2615 (unsigned long long)blk_rq_pos(req));
2616
2617 }
2618
2619 blk_account_io_completion(req, nr_bytes);
2620
2621 total_bytes = 0;
2622 while (req->bio) {
2623 struct bio *bio = req->bio;
2624 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2625
2626 if (bio_bytes == bio->bi_iter.bi_size)
2627 req->bio = bio->bi_next;
2628
2629 /* Completion has already been traced */
2630 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2631 req_bio_endio(req, bio, bio_bytes, error);
2632
2633 total_bytes += bio_bytes;
2634 nr_bytes -= bio_bytes;
2635
2636 if (!nr_bytes)
2637 break;
2638 }
2639
2640 /*
2641 * completely done
2642 */
2643 if (!req->bio) {
2644 /*
2645 * Reset counters so that the request stacking driver
2646 * can find how many bytes remain in the request
2647 * later.
2648 */
2649 req->__data_len = 0;
2650 return false;
2651 }
2652
2653 req->__data_len -= total_bytes;
2654
2655 /* update sector only for requests with clear definition of sector */
2656 if (!blk_rq_is_passthrough(req))
2657 req->__sector += total_bytes >> 9;
2658
2659 /* mixed attributes always follow the first bio */
2660 if (req->rq_flags & RQF_MIXED_MERGE) {
2661 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2663 }
2664
2665 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2666 /*
2667 * If total number of sectors is less than the first segment
2668 * size, something has gone terribly wrong.
2669 */
2670 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2671 blk_dump_rq_flags(req, "request botched");
2672 req->__data_len = blk_rq_cur_bytes(req);
2673 }
2674
2675 /* recalculate the number of segments */
2676 blk_recalc_rq_segments(req);
2677 }
2678
2679 return true;
2680 }
2681 EXPORT_SYMBOL_GPL(blk_update_request);
2682
2683 static bool blk_update_bidi_request(struct request *rq, int error,
2684 unsigned int nr_bytes,
2685 unsigned int bidi_bytes)
2686 {
2687 if (blk_update_request(rq, error, nr_bytes))
2688 return true;
2689
2690 /* Bidi request must be completed as a whole */
2691 if (unlikely(blk_bidi_rq(rq)) &&
2692 blk_update_request(rq->next_rq, error, bidi_bytes))
2693 return true;
2694
2695 if (blk_queue_add_random(rq->q))
2696 add_disk_randomness(rq->rq_disk);
2697
2698 return false;
2699 }
2700
2701 /**
2702 * blk_unprep_request - unprepare a request
2703 * @req: the request
2704 *
2705 * This function makes a request ready for complete resubmission (or
2706 * completion). It happens only after all error handling is complete,
2707 * so represents the appropriate moment to deallocate any resources
2708 * that were allocated to the request in the prep_rq_fn. The queue
2709 * lock is held when calling this.
2710 */
2711 void blk_unprep_request(struct request *req)
2712 {
2713 struct request_queue *q = req->q;
2714
2715 req->rq_flags &= ~RQF_DONTPREP;
2716 if (q->unprep_rq_fn)
2717 q->unprep_rq_fn(q, req);
2718 }
2719 EXPORT_SYMBOL_GPL(blk_unprep_request);
2720
2721 /*
2722 * queue lock must be held
2723 */
2724 void blk_finish_request(struct request *req, int error)
2725 {
2726 struct request_queue *q = req->q;
2727
2728 if (req->rq_flags & RQF_STATS)
2729 blk_stat_add(req);
2730
2731 if (req->rq_flags & RQF_QUEUED)
2732 blk_queue_end_tag(q, req);
2733
2734 BUG_ON(blk_queued_rq(req));
2735
2736 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2737 laptop_io_completion(req->q->backing_dev_info);
2738
2739 blk_delete_timer(req);
2740
2741 if (req->rq_flags & RQF_DONTPREP)
2742 blk_unprep_request(req);
2743
2744 blk_account_io_done(req);
2745
2746 if (req->end_io) {
2747 wbt_done(req->q->rq_wb, &req->issue_stat);
2748 req->end_io(req, error);
2749 } else {
2750 if (blk_bidi_rq(req))
2751 __blk_put_request(req->next_rq->q, req->next_rq);
2752
2753 __blk_put_request(q, req);
2754 }
2755 }
2756 EXPORT_SYMBOL(blk_finish_request);
2757
2758 /**
2759 * blk_end_bidi_request - Complete a bidi request
2760 * @rq: the request to complete
2761 * @error: %0 for success, < %0 for error
2762 * @nr_bytes: number of bytes to complete @rq
2763 * @bidi_bytes: number of bytes to complete @rq->next_rq
2764 *
2765 * Description:
2766 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2767 * Drivers that supports bidi can safely call this member for any
2768 * type of request, bidi or uni. In the later case @bidi_bytes is
2769 * just ignored.
2770 *
2771 * Return:
2772 * %false - we are done with this request
2773 * %true - still buffers pending for this request
2774 **/
2775 static bool blk_end_bidi_request(struct request *rq, int error,
2776 unsigned int nr_bytes, unsigned int bidi_bytes)
2777 {
2778 struct request_queue *q = rq->q;
2779 unsigned long flags;
2780
2781 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2782 return true;
2783
2784 spin_lock_irqsave(q->queue_lock, flags);
2785 blk_finish_request(rq, error);
2786 spin_unlock_irqrestore(q->queue_lock, flags);
2787
2788 return false;
2789 }
2790
2791 /**
2792 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2793 * @rq: the request to complete
2794 * @error: %0 for success, < %0 for error
2795 * @nr_bytes: number of bytes to complete @rq
2796 * @bidi_bytes: number of bytes to complete @rq->next_rq
2797 *
2798 * Description:
2799 * Identical to blk_end_bidi_request() except that queue lock is
2800 * assumed to be locked on entry and remains so on return.
2801 *
2802 * Return:
2803 * %false - we are done with this request
2804 * %true - still buffers pending for this request
2805 **/
2806 static bool __blk_end_bidi_request(struct request *rq, int error,
2807 unsigned int nr_bytes, unsigned int bidi_bytes)
2808 {
2809 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2810 return true;
2811
2812 blk_finish_request(rq, error);
2813
2814 return false;
2815 }
2816
2817 /**
2818 * blk_end_request - Helper function for drivers to complete the request.
2819 * @rq: the request being processed
2820 * @error: %0 for success, < %0 for error
2821 * @nr_bytes: number of bytes to complete
2822 *
2823 * Description:
2824 * Ends I/O on a number of bytes attached to @rq.
2825 * If @rq has leftover, sets it up for the next range of segments.
2826 *
2827 * Return:
2828 * %false - we are done with this request
2829 * %true - still buffers pending for this request
2830 **/
2831 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2832 {
2833 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2834 }
2835 EXPORT_SYMBOL(blk_end_request);
2836
2837 /**
2838 * blk_end_request_all - Helper function for drives to finish the request.
2839 * @rq: the request to finish
2840 * @error: %0 for success, < %0 for error
2841 *
2842 * Description:
2843 * Completely finish @rq.
2844 */
2845 void blk_end_request_all(struct request *rq, int error)
2846 {
2847 bool pending;
2848 unsigned int bidi_bytes = 0;
2849
2850 if (unlikely(blk_bidi_rq(rq)))
2851 bidi_bytes = blk_rq_bytes(rq->next_rq);
2852
2853 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2854 BUG_ON(pending);
2855 }
2856 EXPORT_SYMBOL(blk_end_request_all);
2857
2858 /**
2859 * __blk_end_request - Helper function for drivers to complete the request.
2860 * @rq: the request being processed
2861 * @error: %0 for success, < %0 for error
2862 * @nr_bytes: number of bytes to complete
2863 *
2864 * Description:
2865 * Must be called with queue lock held unlike blk_end_request().
2866 *
2867 * Return:
2868 * %false - we are done with this request
2869 * %true - still buffers pending for this request
2870 **/
2871 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2872 {
2873 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2874 }
2875 EXPORT_SYMBOL(__blk_end_request);
2876
2877 /**
2878 * __blk_end_request_all - Helper function for drives to finish the request.
2879 * @rq: the request to finish
2880 * @error: %0 for success, < %0 for error
2881 *
2882 * Description:
2883 * Completely finish @rq. Must be called with queue lock held.
2884 */
2885 void __blk_end_request_all(struct request *rq, int error)
2886 {
2887 bool pending;
2888 unsigned int bidi_bytes = 0;
2889
2890 if (unlikely(blk_bidi_rq(rq)))
2891 bidi_bytes = blk_rq_bytes(rq->next_rq);
2892
2893 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2894 BUG_ON(pending);
2895 }
2896 EXPORT_SYMBOL(__blk_end_request_all);
2897
2898 /**
2899 * __blk_end_request_cur - Helper function to finish the current request chunk.
2900 * @rq: the request to finish the current chunk for
2901 * @error: %0 for success, < %0 for error
2902 *
2903 * Description:
2904 * Complete the current consecutively mapped chunk from @rq. Must
2905 * be called with queue lock held.
2906 *
2907 * Return:
2908 * %false - we are done with this request
2909 * %true - still buffers pending for this request
2910 */
2911 bool __blk_end_request_cur(struct request *rq, int error)
2912 {
2913 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2914 }
2915 EXPORT_SYMBOL(__blk_end_request_cur);
2916
2917 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2918 struct bio *bio)
2919 {
2920 if (bio_has_data(bio))
2921 rq->nr_phys_segments = bio_phys_segments(q, bio);
2922
2923 rq->__data_len = bio->bi_iter.bi_size;
2924 rq->bio = rq->biotail = bio;
2925
2926 if (bio->bi_bdev)
2927 rq->rq_disk = bio->bi_bdev->bd_disk;
2928 }
2929
2930 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2931 /**
2932 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2933 * @rq: the request to be flushed
2934 *
2935 * Description:
2936 * Flush all pages in @rq.
2937 */
2938 void rq_flush_dcache_pages(struct request *rq)
2939 {
2940 struct req_iterator iter;
2941 struct bio_vec bvec;
2942
2943 rq_for_each_segment(bvec, rq, iter)
2944 flush_dcache_page(bvec.bv_page);
2945 }
2946 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2947 #endif
2948
2949 /**
2950 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2951 * @q : the queue of the device being checked
2952 *
2953 * Description:
2954 * Check if underlying low-level drivers of a device are busy.
2955 * If the drivers want to export their busy state, they must set own
2956 * exporting function using blk_queue_lld_busy() first.
2957 *
2958 * Basically, this function is used only by request stacking drivers
2959 * to stop dispatching requests to underlying devices when underlying
2960 * devices are busy. This behavior helps more I/O merging on the queue
2961 * of the request stacking driver and prevents I/O throughput regression
2962 * on burst I/O load.
2963 *
2964 * Return:
2965 * 0 - Not busy (The request stacking driver should dispatch request)
2966 * 1 - Busy (The request stacking driver should stop dispatching request)
2967 */
2968 int blk_lld_busy(struct request_queue *q)
2969 {
2970 if (q->lld_busy_fn)
2971 return q->lld_busy_fn(q);
2972
2973 return 0;
2974 }
2975 EXPORT_SYMBOL_GPL(blk_lld_busy);
2976
2977 /**
2978 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2979 * @rq: the clone request to be cleaned up
2980 *
2981 * Description:
2982 * Free all bios in @rq for a cloned request.
2983 */
2984 void blk_rq_unprep_clone(struct request *rq)
2985 {
2986 struct bio *bio;
2987
2988 while ((bio = rq->bio) != NULL) {
2989 rq->bio = bio->bi_next;
2990
2991 bio_put(bio);
2992 }
2993 }
2994 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2995
2996 /*
2997 * Copy attributes of the original request to the clone request.
2998 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2999 */
3000 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3001 {
3002 dst->cpu = src->cpu;
3003 dst->__sector = blk_rq_pos(src);
3004 dst->__data_len = blk_rq_bytes(src);
3005 dst->nr_phys_segments = src->nr_phys_segments;
3006 dst->ioprio = src->ioprio;
3007 dst->extra_len = src->extra_len;
3008 }
3009
3010 /**
3011 * blk_rq_prep_clone - Helper function to setup clone request
3012 * @rq: the request to be setup
3013 * @rq_src: original request to be cloned
3014 * @bs: bio_set that bios for clone are allocated from
3015 * @gfp_mask: memory allocation mask for bio
3016 * @bio_ctr: setup function to be called for each clone bio.
3017 * Returns %0 for success, non %0 for failure.
3018 * @data: private data to be passed to @bio_ctr
3019 *
3020 * Description:
3021 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3022 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3023 * are not copied, and copying such parts is the caller's responsibility.
3024 * Also, pages which the original bios are pointing to are not copied
3025 * and the cloned bios just point same pages.
3026 * So cloned bios must be completed before original bios, which means
3027 * the caller must complete @rq before @rq_src.
3028 */
3029 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3030 struct bio_set *bs, gfp_t gfp_mask,
3031 int (*bio_ctr)(struct bio *, struct bio *, void *),
3032 void *data)
3033 {
3034 struct bio *bio, *bio_src;
3035
3036 if (!bs)
3037 bs = fs_bio_set;
3038
3039 __rq_for_each_bio(bio_src, rq_src) {
3040 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3041 if (!bio)
3042 goto free_and_out;
3043
3044 if (bio_ctr && bio_ctr(bio, bio_src, data))
3045 goto free_and_out;
3046
3047 if (rq->bio) {
3048 rq->biotail->bi_next = bio;
3049 rq->biotail = bio;
3050 } else
3051 rq->bio = rq->biotail = bio;
3052 }
3053
3054 __blk_rq_prep_clone(rq, rq_src);
3055
3056 return 0;
3057
3058 free_and_out:
3059 if (bio)
3060 bio_put(bio);
3061 blk_rq_unprep_clone(rq);
3062
3063 return -ENOMEM;
3064 }
3065 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3066
3067 int kblockd_schedule_work(struct work_struct *work)
3068 {
3069 return queue_work(kblockd_workqueue, work);
3070 }
3071 EXPORT_SYMBOL(kblockd_schedule_work);
3072
3073 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3074 {
3075 return queue_work_on(cpu, kblockd_workqueue, work);
3076 }
3077 EXPORT_SYMBOL(kblockd_schedule_work_on);
3078
3079 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3080 unsigned long delay)
3081 {
3082 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3083 }
3084 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3085
3086 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3087 unsigned long delay)
3088 {
3089 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3090 }
3091 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3092
3093 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3094 unsigned long delay)
3095 {
3096 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3097 }
3098 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3099
3100 /**
3101 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3102 * @plug: The &struct blk_plug that needs to be initialized
3103 *
3104 * Description:
3105 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3106 * pending I/O should the task end up blocking between blk_start_plug() and
3107 * blk_finish_plug(). This is important from a performance perspective, but
3108 * also ensures that we don't deadlock. For instance, if the task is blocking
3109 * for a memory allocation, memory reclaim could end up wanting to free a
3110 * page belonging to that request that is currently residing in our private
3111 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3112 * this kind of deadlock.
3113 */
3114 void blk_start_plug(struct blk_plug *plug)
3115 {
3116 struct task_struct *tsk = current;
3117
3118 /*
3119 * If this is a nested plug, don't actually assign it.
3120 */
3121 if (tsk->plug)
3122 return;
3123
3124 INIT_LIST_HEAD(&plug->list);
3125 INIT_LIST_HEAD(&plug->mq_list);
3126 INIT_LIST_HEAD(&plug->cb_list);
3127 /*
3128 * Store ordering should not be needed here, since a potential
3129 * preempt will imply a full memory barrier
3130 */
3131 tsk->plug = plug;
3132 }
3133 EXPORT_SYMBOL(blk_start_plug);
3134
3135 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3136 {
3137 struct request *rqa = container_of(a, struct request, queuelist);
3138 struct request *rqb = container_of(b, struct request, queuelist);
3139
3140 return !(rqa->q < rqb->q ||
3141 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3142 }
3143
3144 /*
3145 * If 'from_schedule' is true, then postpone the dispatch of requests
3146 * until a safe kblockd context. We due this to avoid accidental big
3147 * additional stack usage in driver dispatch, in places where the originally
3148 * plugger did not intend it.
3149 */
3150 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3151 bool from_schedule)
3152 __releases(q->queue_lock)
3153 {
3154 trace_block_unplug(q, depth, !from_schedule);
3155
3156 if (from_schedule)
3157 blk_run_queue_async(q);
3158 else
3159 __blk_run_queue(q);
3160 spin_unlock(q->queue_lock);
3161 }
3162
3163 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3164 {
3165 LIST_HEAD(callbacks);
3166
3167 while (!list_empty(&plug->cb_list)) {
3168 list_splice_init(&plug->cb_list, &callbacks);
3169
3170 while (!list_empty(&callbacks)) {
3171 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3172 struct blk_plug_cb,
3173 list);
3174 list_del(&cb->list);
3175 cb->callback(cb, from_schedule);
3176 }
3177 }
3178 }
3179
3180 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3181 int size)
3182 {
3183 struct blk_plug *plug = current->plug;
3184 struct blk_plug_cb *cb;
3185
3186 if (!plug)
3187 return NULL;
3188
3189 list_for_each_entry(cb, &plug->cb_list, list)
3190 if (cb->callback == unplug && cb->data == data)
3191 return cb;
3192
3193 /* Not currently on the callback list */
3194 BUG_ON(size < sizeof(*cb));
3195 cb = kzalloc(size, GFP_ATOMIC);
3196 if (cb) {
3197 cb->data = data;
3198 cb->callback = unplug;
3199 list_add(&cb->list, &plug->cb_list);
3200 }
3201 return cb;
3202 }
3203 EXPORT_SYMBOL(blk_check_plugged);
3204
3205 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3206 {
3207 struct request_queue *q;
3208 unsigned long flags;
3209 struct request *rq;
3210 LIST_HEAD(list);
3211 unsigned int depth;
3212
3213 flush_plug_callbacks(plug, from_schedule);
3214
3215 if (!list_empty(&plug->mq_list))
3216 blk_mq_flush_plug_list(plug, from_schedule);
3217
3218 if (list_empty(&plug->list))
3219 return;
3220
3221 list_splice_init(&plug->list, &list);
3222
3223 list_sort(NULL, &list, plug_rq_cmp);
3224
3225 q = NULL;
3226 depth = 0;
3227
3228 /*
3229 * Save and disable interrupts here, to avoid doing it for every
3230 * queue lock we have to take.
3231 */
3232 local_irq_save(flags);
3233 while (!list_empty(&list)) {
3234 rq = list_entry_rq(list.next);
3235 list_del_init(&rq->queuelist);
3236 BUG_ON(!rq->q);
3237 if (rq->q != q) {
3238 /*
3239 * This drops the queue lock
3240 */
3241 if (q)
3242 queue_unplugged(q, depth, from_schedule);
3243 q = rq->q;
3244 depth = 0;
3245 spin_lock(q->queue_lock);
3246 }
3247
3248 /*
3249 * Short-circuit if @q is dead
3250 */
3251 if (unlikely(blk_queue_dying(q))) {
3252 __blk_end_request_all(rq, -ENODEV);
3253 continue;
3254 }
3255
3256 /*
3257 * rq is already accounted, so use raw insert
3258 */
3259 if (op_is_flush(rq->cmd_flags))
3260 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3261 else
3262 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3263
3264 depth++;
3265 }
3266
3267 /*
3268 * This drops the queue lock
3269 */
3270 if (q)
3271 queue_unplugged(q, depth, from_schedule);
3272
3273 local_irq_restore(flags);
3274 }
3275
3276 void blk_finish_plug(struct blk_plug *plug)
3277 {
3278 if (plug != current->plug)
3279 return;
3280 blk_flush_plug_list(plug, false);
3281
3282 current->plug = NULL;
3283 }
3284 EXPORT_SYMBOL(blk_finish_plug);
3285
3286 #ifdef CONFIG_PM
3287 /**
3288 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3289 * @q: the queue of the device
3290 * @dev: the device the queue belongs to
3291 *
3292 * Description:
3293 * Initialize runtime-PM-related fields for @q and start auto suspend for
3294 * @dev. Drivers that want to take advantage of request-based runtime PM
3295 * should call this function after @dev has been initialized, and its
3296 * request queue @q has been allocated, and runtime PM for it can not happen
3297 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3298 * cases, driver should call this function before any I/O has taken place.
3299 *
3300 * This function takes care of setting up using auto suspend for the device,
3301 * the autosuspend delay is set to -1 to make runtime suspend impossible
3302 * until an updated value is either set by user or by driver. Drivers do
3303 * not need to touch other autosuspend settings.
3304 *
3305 * The block layer runtime PM is request based, so only works for drivers
3306 * that use request as their IO unit instead of those directly use bio's.
3307 */
3308 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3309 {
3310 q->dev = dev;
3311 q->rpm_status = RPM_ACTIVE;
3312 pm_runtime_set_autosuspend_delay(q->dev, -1);
3313 pm_runtime_use_autosuspend(q->dev);
3314 }
3315 EXPORT_SYMBOL(blk_pm_runtime_init);
3316
3317 /**
3318 * blk_pre_runtime_suspend - Pre runtime suspend check
3319 * @q: the queue of the device
3320 *
3321 * Description:
3322 * This function will check if runtime suspend is allowed for the device
3323 * by examining if there are any requests pending in the queue. If there
3324 * are requests pending, the device can not be runtime suspended; otherwise,
3325 * the queue's status will be updated to SUSPENDING and the driver can
3326 * proceed to suspend the device.
3327 *
3328 * For the not allowed case, we mark last busy for the device so that
3329 * runtime PM core will try to autosuspend it some time later.
3330 *
3331 * This function should be called near the start of the device's
3332 * runtime_suspend callback.
3333 *
3334 * Return:
3335 * 0 - OK to runtime suspend the device
3336 * -EBUSY - Device should not be runtime suspended
3337 */
3338 int blk_pre_runtime_suspend(struct request_queue *q)
3339 {
3340 int ret = 0;
3341
3342 if (!q->dev)
3343 return ret;
3344
3345 spin_lock_irq(q->queue_lock);
3346 if (q->nr_pending) {
3347 ret = -EBUSY;
3348 pm_runtime_mark_last_busy(q->dev);
3349 } else {
3350 q->rpm_status = RPM_SUSPENDING;
3351 }
3352 spin_unlock_irq(q->queue_lock);
3353 return ret;
3354 }
3355 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3356
3357 /**
3358 * blk_post_runtime_suspend - Post runtime suspend processing
3359 * @q: the queue of the device
3360 * @err: return value of the device's runtime_suspend function
3361 *
3362 * Description:
3363 * Update the queue's runtime status according to the return value of the
3364 * device's runtime suspend function and mark last busy for the device so
3365 * that PM core will try to auto suspend the device at a later time.
3366 *
3367 * This function should be called near the end of the device's
3368 * runtime_suspend callback.
3369 */
3370 void blk_post_runtime_suspend(struct request_queue *q, int err)
3371 {
3372 if (!q->dev)
3373 return;
3374
3375 spin_lock_irq(q->queue_lock);
3376 if (!err) {
3377 q->rpm_status = RPM_SUSPENDED;
3378 } else {
3379 q->rpm_status = RPM_ACTIVE;
3380 pm_runtime_mark_last_busy(q->dev);
3381 }
3382 spin_unlock_irq(q->queue_lock);
3383 }
3384 EXPORT_SYMBOL(blk_post_runtime_suspend);
3385
3386 /**
3387 * blk_pre_runtime_resume - Pre runtime resume processing
3388 * @q: the queue of the device
3389 *
3390 * Description:
3391 * Update the queue's runtime status to RESUMING in preparation for the
3392 * runtime resume of the device.
3393 *
3394 * This function should be called near the start of the device's
3395 * runtime_resume callback.
3396 */
3397 void blk_pre_runtime_resume(struct request_queue *q)
3398 {
3399 if (!q->dev)
3400 return;
3401
3402 spin_lock_irq(q->queue_lock);
3403 q->rpm_status = RPM_RESUMING;
3404 spin_unlock_irq(q->queue_lock);
3405 }
3406 EXPORT_SYMBOL(blk_pre_runtime_resume);
3407
3408 /**
3409 * blk_post_runtime_resume - Post runtime resume processing
3410 * @q: the queue of the device
3411 * @err: return value of the device's runtime_resume function
3412 *
3413 * Description:
3414 * Update the queue's runtime status according to the return value of the
3415 * device's runtime_resume function. If it is successfully resumed, process
3416 * the requests that are queued into the device's queue when it is resuming
3417 * and then mark last busy and initiate autosuspend for it.
3418 *
3419 * This function should be called near the end of the device's
3420 * runtime_resume callback.
3421 */
3422 void blk_post_runtime_resume(struct request_queue *q, int err)
3423 {
3424 if (!q->dev)
3425 return;
3426
3427 spin_lock_irq(q->queue_lock);
3428 if (!err) {
3429 q->rpm_status = RPM_ACTIVE;
3430 __blk_run_queue(q);
3431 pm_runtime_mark_last_busy(q->dev);
3432 pm_request_autosuspend(q->dev);
3433 } else {
3434 q->rpm_status = RPM_SUSPENDED;
3435 }
3436 spin_unlock_irq(q->queue_lock);
3437 }
3438 EXPORT_SYMBOL(blk_post_runtime_resume);
3439
3440 /**
3441 * blk_set_runtime_active - Force runtime status of the queue to be active
3442 * @q: the queue of the device
3443 *
3444 * If the device is left runtime suspended during system suspend the resume
3445 * hook typically resumes the device and corrects runtime status
3446 * accordingly. However, that does not affect the queue runtime PM status
3447 * which is still "suspended". This prevents processing requests from the
3448 * queue.
3449 *
3450 * This function can be used in driver's resume hook to correct queue
3451 * runtime PM status and re-enable peeking requests from the queue. It
3452 * should be called before first request is added to the queue.
3453 */
3454 void blk_set_runtime_active(struct request_queue *q)
3455 {
3456 spin_lock_irq(q->queue_lock);
3457 q->rpm_status = RPM_ACTIVE;
3458 pm_runtime_mark_last_busy(q->dev);
3459 pm_request_autosuspend(q->dev);
3460 spin_unlock_irq(q->queue_lock);
3461 }
3462 EXPORT_SYMBOL(blk_set_runtime_active);
3463 #endif
3464
3465 int __init blk_dev_init(void)
3466 {
3467 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 FIELD_SIZEOF(struct request, cmd_flags));
3470 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3471 FIELD_SIZEOF(struct bio, bi_opf));
3472
3473 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3474 kblockd_workqueue = alloc_workqueue("kblockd",
3475 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3476 if (!kblockd_workqueue)
3477 panic("Failed to create kblockd\n");
3478
3479 request_cachep = kmem_cache_create("blkdev_requests",
3480 sizeof(struct request), 0, SLAB_PANIC, NULL);
3481
3482 blk_requestq_cachep = kmem_cache_create("request_queue",
3483 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3484
3485 #ifdef CONFIG_DEBUG_FS
3486 blk_debugfs_root = debugfs_create_dir("block", NULL);
3487 #endif
3488
3489 return 0;
3490 }