]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
b8d1aa2d1008ffa8287fdddff879b262a1eb6746
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 queue_for_each_hw_ctx(q, hctx, i)
343 cancel_delayed_work_sync(&hctx->run_work);
344 } else {
345 cancel_delayed_work_sync(&q->delay_work);
346 }
347 }
348 EXPORT_SYMBOL(blk_sync_queue);
349
350 /**
351 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
352 * @q: The queue to run
353 *
354 * Description:
355 * Invoke request handling on a queue if there are any pending requests.
356 * May be used to restart request handling after a request has completed.
357 * This variant runs the queue whether or not the queue has been
358 * stopped. Must be called with the queue lock held and interrupts
359 * disabled. See also @blk_run_queue.
360 */
361 inline void __blk_run_queue_uncond(struct request_queue *q)
362 {
363 lockdep_assert_held(q->queue_lock);
364 WARN_ON_ONCE(q->mq_ops);
365
366 if (unlikely(blk_queue_dead(q)))
367 return;
368
369 /*
370 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
371 * the queue lock internally. As a result multiple threads may be
372 * running such a request function concurrently. Keep track of the
373 * number of active request_fn invocations such that blk_drain_queue()
374 * can wait until all these request_fn calls have finished.
375 */
376 q->request_fn_active++;
377 q->request_fn(q);
378 q->request_fn_active--;
379 }
380 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
381
382 /**
383 * __blk_run_queue - run a single device queue
384 * @q: The queue to run
385 *
386 * Description:
387 * See @blk_run_queue.
388 */
389 void __blk_run_queue(struct request_queue *q)
390 {
391 lockdep_assert_held(q->queue_lock);
392 WARN_ON_ONCE(q->mq_ops);
393
394 if (unlikely(blk_queue_stopped(q)))
395 return;
396
397 __blk_run_queue_uncond(q);
398 }
399 EXPORT_SYMBOL(__blk_run_queue);
400
401 /**
402 * blk_run_queue_async - run a single device queue in workqueue context
403 * @q: The queue to run
404 *
405 * Description:
406 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
407 * of us.
408 *
409 * Note:
410 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
411 * has canceled q->delay_work, callers must hold the queue lock to avoid
412 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
413 */
414 void blk_run_queue_async(struct request_queue *q)
415 {
416 lockdep_assert_held(q->queue_lock);
417 WARN_ON_ONCE(q->mq_ops);
418
419 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
420 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
421 }
422 EXPORT_SYMBOL(blk_run_queue_async);
423
424 /**
425 * blk_run_queue - run a single device queue
426 * @q: The queue to run
427 *
428 * Description:
429 * Invoke request handling on this queue, if it has pending work to do.
430 * May be used to restart queueing when a request has completed.
431 */
432 void blk_run_queue(struct request_queue *q)
433 {
434 unsigned long flags;
435
436 WARN_ON_ONCE(q->mq_ops);
437
438 spin_lock_irqsave(q->queue_lock, flags);
439 __blk_run_queue(q);
440 spin_unlock_irqrestore(q->queue_lock, flags);
441 }
442 EXPORT_SYMBOL(blk_run_queue);
443
444 void blk_put_queue(struct request_queue *q)
445 {
446 kobject_put(&q->kobj);
447 }
448 EXPORT_SYMBOL(blk_put_queue);
449
450 /**
451 * __blk_drain_queue - drain requests from request_queue
452 * @q: queue to drain
453 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
454 *
455 * Drain requests from @q. If @drain_all is set, all requests are drained.
456 * If not, only ELVPRIV requests are drained. The caller is responsible
457 * for ensuring that no new requests which need to be drained are queued.
458 */
459 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
460 __releases(q->queue_lock)
461 __acquires(q->queue_lock)
462 {
463 int i;
464
465 lockdep_assert_held(q->queue_lock);
466 WARN_ON_ONCE(q->mq_ops);
467
468 while (true) {
469 bool drain = false;
470
471 /*
472 * The caller might be trying to drain @q before its
473 * elevator is initialized.
474 */
475 if (q->elevator)
476 elv_drain_elevator(q);
477
478 blkcg_drain_queue(q);
479
480 /*
481 * This function might be called on a queue which failed
482 * driver init after queue creation or is not yet fully
483 * active yet. Some drivers (e.g. fd and loop) get unhappy
484 * in such cases. Kick queue iff dispatch queue has
485 * something on it and @q has request_fn set.
486 */
487 if (!list_empty(&q->queue_head) && q->request_fn)
488 __blk_run_queue(q);
489
490 drain |= q->nr_rqs_elvpriv;
491 drain |= q->request_fn_active;
492
493 /*
494 * Unfortunately, requests are queued at and tracked from
495 * multiple places and there's no single counter which can
496 * be drained. Check all the queues and counters.
497 */
498 if (drain_all) {
499 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
500 drain |= !list_empty(&q->queue_head);
501 for (i = 0; i < 2; i++) {
502 drain |= q->nr_rqs[i];
503 drain |= q->in_flight[i];
504 if (fq)
505 drain |= !list_empty(&fq->flush_queue[i]);
506 }
507 }
508
509 if (!drain)
510 break;
511
512 spin_unlock_irq(q->queue_lock);
513
514 msleep(10);
515
516 spin_lock_irq(q->queue_lock);
517 }
518
519 /*
520 * With queue marked dead, any woken up waiter will fail the
521 * allocation path, so the wakeup chaining is lost and we're
522 * left with hung waiters. We need to wake up those waiters.
523 */
524 if (q->request_fn) {
525 struct request_list *rl;
526
527 blk_queue_for_each_rl(rl, q)
528 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
529 wake_up_all(&rl->wait[i]);
530 }
531 }
532
533 /**
534 * blk_queue_bypass_start - enter queue bypass mode
535 * @q: queue of interest
536 *
537 * In bypass mode, only the dispatch FIFO queue of @q is used. This
538 * function makes @q enter bypass mode and drains all requests which were
539 * throttled or issued before. On return, it's guaranteed that no request
540 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
541 * inside queue or RCU read lock.
542 */
543 void blk_queue_bypass_start(struct request_queue *q)
544 {
545 WARN_ON_ONCE(q->mq_ops);
546
547 spin_lock_irq(q->queue_lock);
548 q->bypass_depth++;
549 queue_flag_set(QUEUE_FLAG_BYPASS, q);
550 spin_unlock_irq(q->queue_lock);
551
552 /*
553 * Queues start drained. Skip actual draining till init is
554 * complete. This avoids lenghty delays during queue init which
555 * can happen many times during boot.
556 */
557 if (blk_queue_init_done(q)) {
558 spin_lock_irq(q->queue_lock);
559 __blk_drain_queue(q, false);
560 spin_unlock_irq(q->queue_lock);
561
562 /* ensure blk_queue_bypass() is %true inside RCU read lock */
563 synchronize_rcu();
564 }
565 }
566 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
567
568 /**
569 * blk_queue_bypass_end - leave queue bypass mode
570 * @q: queue of interest
571 *
572 * Leave bypass mode and restore the normal queueing behavior.
573 *
574 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
575 * this function is called for both blk-sq and blk-mq queues.
576 */
577 void blk_queue_bypass_end(struct request_queue *q)
578 {
579 spin_lock_irq(q->queue_lock);
580 if (!--q->bypass_depth)
581 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
582 WARN_ON_ONCE(q->bypass_depth < 0);
583 spin_unlock_irq(q->queue_lock);
584 }
585 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
586
587 void blk_set_queue_dying(struct request_queue *q)
588 {
589 spin_lock_irq(q->queue_lock);
590 queue_flag_set(QUEUE_FLAG_DYING, q);
591 spin_unlock_irq(q->queue_lock);
592
593 /*
594 * When queue DYING flag is set, we need to block new req
595 * entering queue, so we call blk_freeze_queue_start() to
596 * prevent I/O from crossing blk_queue_enter().
597 */
598 blk_freeze_queue_start(q);
599
600 if (q->mq_ops)
601 blk_mq_wake_waiters(q);
602 else {
603 struct request_list *rl;
604
605 spin_lock_irq(q->queue_lock);
606 blk_queue_for_each_rl(rl, q) {
607 if (rl->rq_pool) {
608 wake_up(&rl->wait[BLK_RW_SYNC]);
609 wake_up(&rl->wait[BLK_RW_ASYNC]);
610 }
611 }
612 spin_unlock_irq(q->queue_lock);
613 }
614 }
615 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
616
617 /**
618 * blk_cleanup_queue - shutdown a request queue
619 * @q: request queue to shutdown
620 *
621 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
622 * put it. All future requests will be failed immediately with -ENODEV.
623 */
624 void blk_cleanup_queue(struct request_queue *q)
625 {
626 spinlock_t *lock = q->queue_lock;
627
628 /* mark @q DYING, no new request or merges will be allowed afterwards */
629 mutex_lock(&q->sysfs_lock);
630 blk_set_queue_dying(q);
631 spin_lock_irq(lock);
632
633 /*
634 * A dying queue is permanently in bypass mode till released. Note
635 * that, unlike blk_queue_bypass_start(), we aren't performing
636 * synchronize_rcu() after entering bypass mode to avoid the delay
637 * as some drivers create and destroy a lot of queues while
638 * probing. This is still safe because blk_release_queue() will be
639 * called only after the queue refcnt drops to zero and nothing,
640 * RCU or not, would be traversing the queue by then.
641 */
642 q->bypass_depth++;
643 queue_flag_set(QUEUE_FLAG_BYPASS, q);
644
645 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
646 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
647 queue_flag_set(QUEUE_FLAG_DYING, q);
648 spin_unlock_irq(lock);
649 mutex_unlock(&q->sysfs_lock);
650
651 /*
652 * Drain all requests queued before DYING marking. Set DEAD flag to
653 * prevent that q->request_fn() gets invoked after draining finished.
654 */
655 blk_freeze_queue(q);
656 spin_lock_irq(lock);
657 if (!q->mq_ops)
658 __blk_drain_queue(q, true);
659 queue_flag_set(QUEUE_FLAG_DEAD, q);
660 spin_unlock_irq(lock);
661
662 /* for synchronous bio-based driver finish in-flight integrity i/o */
663 blk_flush_integrity();
664
665 /* @q won't process any more request, flush async actions */
666 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
667 blk_sync_queue(q);
668
669 if (q->mq_ops)
670 blk_mq_free_queue(q);
671 percpu_ref_exit(&q->q_usage_counter);
672
673 spin_lock_irq(lock);
674 if (q->queue_lock != &q->__queue_lock)
675 q->queue_lock = &q->__queue_lock;
676 spin_unlock_irq(lock);
677
678 /* @q is and will stay empty, shutdown and put */
679 blk_put_queue(q);
680 }
681 EXPORT_SYMBOL(blk_cleanup_queue);
682
683 /* Allocate memory local to the request queue */
684 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
685 {
686 struct request_queue *q = data;
687
688 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
689 }
690
691 static void free_request_simple(void *element, void *data)
692 {
693 kmem_cache_free(request_cachep, element);
694 }
695
696 static void *alloc_request_size(gfp_t gfp_mask, void *data)
697 {
698 struct request_queue *q = data;
699 struct request *rq;
700
701 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
702 q->node);
703 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
704 kfree(rq);
705 rq = NULL;
706 }
707 return rq;
708 }
709
710 static void free_request_size(void *element, void *data)
711 {
712 struct request_queue *q = data;
713
714 if (q->exit_rq_fn)
715 q->exit_rq_fn(q, element);
716 kfree(element);
717 }
718
719 int blk_init_rl(struct request_list *rl, struct request_queue *q,
720 gfp_t gfp_mask)
721 {
722 if (unlikely(rl->rq_pool) || q->mq_ops)
723 return 0;
724
725 rl->q = q;
726 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
727 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
728 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
729 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
730
731 if (q->cmd_size) {
732 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
733 alloc_request_size, free_request_size,
734 q, gfp_mask, q->node);
735 } else {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_simple, free_request_simple,
738 q, gfp_mask, q->node);
739 }
740 if (!rl->rq_pool)
741 return -ENOMEM;
742
743 if (rl != &q->root_rl)
744 WARN_ON_ONCE(!blk_get_queue(q));
745
746 return 0;
747 }
748
749 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
750 {
751 if (rl->rq_pool) {
752 mempool_destroy(rl->rq_pool);
753 if (rl != &q->root_rl)
754 blk_put_queue(q);
755 }
756 }
757
758 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
759 {
760 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
761 }
762 EXPORT_SYMBOL(blk_alloc_queue);
763
764 int blk_queue_enter(struct request_queue *q, bool nowait)
765 {
766 while (true) {
767 int ret;
768
769 if (percpu_ref_tryget_live(&q->q_usage_counter))
770 return 0;
771
772 if (nowait)
773 return -EBUSY;
774
775 /*
776 * read pair of barrier in blk_freeze_queue_start(),
777 * we need to order reading __PERCPU_REF_DEAD flag of
778 * .q_usage_counter and reading .mq_freeze_depth or
779 * queue dying flag, otherwise the following wait may
780 * never return if the two reads are reordered.
781 */
782 smp_rmb();
783
784 ret = wait_event_interruptible(q->mq_freeze_wq,
785 !atomic_read(&q->mq_freeze_depth) ||
786 blk_queue_dying(q));
787 if (blk_queue_dying(q))
788 return -ENODEV;
789 if (ret)
790 return ret;
791 }
792 }
793
794 void blk_queue_exit(struct request_queue *q)
795 {
796 percpu_ref_put(&q->q_usage_counter);
797 }
798
799 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
800 {
801 struct request_queue *q =
802 container_of(ref, struct request_queue, q_usage_counter);
803
804 wake_up_all(&q->mq_freeze_wq);
805 }
806
807 static void blk_rq_timed_out_timer(unsigned long data)
808 {
809 struct request_queue *q = (struct request_queue *)data;
810
811 kblockd_schedule_work(&q->timeout_work);
812 }
813
814 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
815 {
816 struct request_queue *q;
817
818 q = kmem_cache_alloc_node(blk_requestq_cachep,
819 gfp_mask | __GFP_ZERO, node_id);
820 if (!q)
821 return NULL;
822
823 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
824 if (q->id < 0)
825 goto fail_q;
826
827 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
828 if (!q->bio_split)
829 goto fail_id;
830
831 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
832 if (!q->backing_dev_info)
833 goto fail_split;
834
835 q->stats = blk_alloc_queue_stats();
836 if (!q->stats)
837 goto fail_stats;
838
839 q->backing_dev_info->ra_pages =
840 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
841 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
842 q->backing_dev_info->name = "block";
843 q->node = node_id;
844
845 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
846 laptop_mode_timer_fn, (unsigned long) q);
847 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
848 INIT_WORK(&q->timeout_work, NULL);
849 INIT_LIST_HEAD(&q->queue_head);
850 INIT_LIST_HEAD(&q->timeout_list);
851 INIT_LIST_HEAD(&q->icq_list);
852 #ifdef CONFIG_BLK_CGROUP
853 INIT_LIST_HEAD(&q->blkg_list);
854 #endif
855 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
856
857 kobject_init(&q->kobj, &blk_queue_ktype);
858
859 #ifdef CONFIG_BLK_DEV_IO_TRACE
860 mutex_init(&q->blk_trace_mutex);
861 #endif
862 mutex_init(&q->sysfs_lock);
863 spin_lock_init(&q->__queue_lock);
864
865 /*
866 * By default initialize queue_lock to internal lock and driver can
867 * override it later if need be.
868 */
869 q->queue_lock = &q->__queue_lock;
870
871 /*
872 * A queue starts its life with bypass turned on to avoid
873 * unnecessary bypass on/off overhead and nasty surprises during
874 * init. The initial bypass will be finished when the queue is
875 * registered by blk_register_queue().
876 */
877 q->bypass_depth = 1;
878 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
879
880 init_waitqueue_head(&q->mq_freeze_wq);
881
882 /*
883 * Init percpu_ref in atomic mode so that it's faster to shutdown.
884 * See blk_register_queue() for details.
885 */
886 if (percpu_ref_init(&q->q_usage_counter,
887 blk_queue_usage_counter_release,
888 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
889 goto fail_bdi;
890
891 if (blkcg_init_queue(q))
892 goto fail_ref;
893
894 return q;
895
896 fail_ref:
897 percpu_ref_exit(&q->q_usage_counter);
898 fail_bdi:
899 blk_free_queue_stats(q->stats);
900 fail_stats:
901 bdi_put(q->backing_dev_info);
902 fail_split:
903 bioset_free(q->bio_split);
904 fail_id:
905 ida_simple_remove(&blk_queue_ida, q->id);
906 fail_q:
907 kmem_cache_free(blk_requestq_cachep, q);
908 return NULL;
909 }
910 EXPORT_SYMBOL(blk_alloc_queue_node);
911
912 /**
913 * blk_init_queue - prepare a request queue for use with a block device
914 * @rfn: The function to be called to process requests that have been
915 * placed on the queue.
916 * @lock: Request queue spin lock
917 *
918 * Description:
919 * If a block device wishes to use the standard request handling procedures,
920 * which sorts requests and coalesces adjacent requests, then it must
921 * call blk_init_queue(). The function @rfn will be called when there
922 * are requests on the queue that need to be processed. If the device
923 * supports plugging, then @rfn may not be called immediately when requests
924 * are available on the queue, but may be called at some time later instead.
925 * Plugged queues are generally unplugged when a buffer belonging to one
926 * of the requests on the queue is needed, or due to memory pressure.
927 *
928 * @rfn is not required, or even expected, to remove all requests off the
929 * queue, but only as many as it can handle at a time. If it does leave
930 * requests on the queue, it is responsible for arranging that the requests
931 * get dealt with eventually.
932 *
933 * The queue spin lock must be held while manipulating the requests on the
934 * request queue; this lock will be taken also from interrupt context, so irq
935 * disabling is needed for it.
936 *
937 * Function returns a pointer to the initialized request queue, or %NULL if
938 * it didn't succeed.
939 *
940 * Note:
941 * blk_init_queue() must be paired with a blk_cleanup_queue() call
942 * when the block device is deactivated (such as at module unload).
943 **/
944
945 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
946 {
947 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
948 }
949 EXPORT_SYMBOL(blk_init_queue);
950
951 struct request_queue *
952 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
953 {
954 struct request_queue *q;
955
956 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
957 if (!q)
958 return NULL;
959
960 q->request_fn = rfn;
961 if (lock)
962 q->queue_lock = lock;
963 if (blk_init_allocated_queue(q) < 0) {
964 blk_cleanup_queue(q);
965 return NULL;
966 }
967
968 return q;
969 }
970 EXPORT_SYMBOL(blk_init_queue_node);
971
972 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
973
974
975 int blk_init_allocated_queue(struct request_queue *q)
976 {
977 WARN_ON_ONCE(q->mq_ops);
978
979 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
980 if (!q->fq)
981 return -ENOMEM;
982
983 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
984 goto out_free_flush_queue;
985
986 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
987 goto out_exit_flush_rq;
988
989 INIT_WORK(&q->timeout_work, blk_timeout_work);
990 q->queue_flags |= QUEUE_FLAG_DEFAULT;
991
992 /*
993 * This also sets hw/phys segments, boundary and size
994 */
995 blk_queue_make_request(q, blk_queue_bio);
996
997 q->sg_reserved_size = INT_MAX;
998
999 /* Protect q->elevator from elevator_change */
1000 mutex_lock(&q->sysfs_lock);
1001
1002 /* init elevator */
1003 if (elevator_init(q, NULL)) {
1004 mutex_unlock(&q->sysfs_lock);
1005 goto out_exit_flush_rq;
1006 }
1007
1008 mutex_unlock(&q->sysfs_lock);
1009 return 0;
1010
1011 out_exit_flush_rq:
1012 if (q->exit_rq_fn)
1013 q->exit_rq_fn(q, q->fq->flush_rq);
1014 out_free_flush_queue:
1015 blk_free_flush_queue(q->fq);
1016 return -ENOMEM;
1017 }
1018 EXPORT_SYMBOL(blk_init_allocated_queue);
1019
1020 bool blk_get_queue(struct request_queue *q)
1021 {
1022 if (likely(!blk_queue_dying(q))) {
1023 __blk_get_queue(q);
1024 return true;
1025 }
1026
1027 return false;
1028 }
1029 EXPORT_SYMBOL(blk_get_queue);
1030
1031 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1032 {
1033 if (rq->rq_flags & RQF_ELVPRIV) {
1034 elv_put_request(rl->q, rq);
1035 if (rq->elv.icq)
1036 put_io_context(rq->elv.icq->ioc);
1037 }
1038
1039 mempool_free(rq, rl->rq_pool);
1040 }
1041
1042 /*
1043 * ioc_batching returns true if the ioc is a valid batching request and
1044 * should be given priority access to a request.
1045 */
1046 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1047 {
1048 if (!ioc)
1049 return 0;
1050
1051 /*
1052 * Make sure the process is able to allocate at least 1 request
1053 * even if the batch times out, otherwise we could theoretically
1054 * lose wakeups.
1055 */
1056 return ioc->nr_batch_requests == q->nr_batching ||
1057 (ioc->nr_batch_requests > 0
1058 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1059 }
1060
1061 /*
1062 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1063 * will cause the process to be a "batcher" on all queues in the system. This
1064 * is the behaviour we want though - once it gets a wakeup it should be given
1065 * a nice run.
1066 */
1067 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1068 {
1069 if (!ioc || ioc_batching(q, ioc))
1070 return;
1071
1072 ioc->nr_batch_requests = q->nr_batching;
1073 ioc->last_waited = jiffies;
1074 }
1075
1076 static void __freed_request(struct request_list *rl, int sync)
1077 {
1078 struct request_queue *q = rl->q;
1079
1080 if (rl->count[sync] < queue_congestion_off_threshold(q))
1081 blk_clear_congested(rl, sync);
1082
1083 if (rl->count[sync] + 1 <= q->nr_requests) {
1084 if (waitqueue_active(&rl->wait[sync]))
1085 wake_up(&rl->wait[sync]);
1086
1087 blk_clear_rl_full(rl, sync);
1088 }
1089 }
1090
1091 /*
1092 * A request has just been released. Account for it, update the full and
1093 * congestion status, wake up any waiters. Called under q->queue_lock.
1094 */
1095 static void freed_request(struct request_list *rl, bool sync,
1096 req_flags_t rq_flags)
1097 {
1098 struct request_queue *q = rl->q;
1099
1100 q->nr_rqs[sync]--;
1101 rl->count[sync]--;
1102 if (rq_flags & RQF_ELVPRIV)
1103 q->nr_rqs_elvpriv--;
1104
1105 __freed_request(rl, sync);
1106
1107 if (unlikely(rl->starved[sync ^ 1]))
1108 __freed_request(rl, sync ^ 1);
1109 }
1110
1111 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1112 {
1113 struct request_list *rl;
1114 int on_thresh, off_thresh;
1115
1116 WARN_ON_ONCE(q->mq_ops);
1117
1118 spin_lock_irq(q->queue_lock);
1119 q->nr_requests = nr;
1120 blk_queue_congestion_threshold(q);
1121 on_thresh = queue_congestion_on_threshold(q);
1122 off_thresh = queue_congestion_off_threshold(q);
1123
1124 blk_queue_for_each_rl(rl, q) {
1125 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_SYNC);
1127 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_SYNC);
1129
1130 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1131 blk_set_congested(rl, BLK_RW_ASYNC);
1132 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1133 blk_clear_congested(rl, BLK_RW_ASYNC);
1134
1135 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1136 blk_set_rl_full(rl, BLK_RW_SYNC);
1137 } else {
1138 blk_clear_rl_full(rl, BLK_RW_SYNC);
1139 wake_up(&rl->wait[BLK_RW_SYNC]);
1140 }
1141
1142 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1143 blk_set_rl_full(rl, BLK_RW_ASYNC);
1144 } else {
1145 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1146 wake_up(&rl->wait[BLK_RW_ASYNC]);
1147 }
1148 }
1149
1150 spin_unlock_irq(q->queue_lock);
1151 return 0;
1152 }
1153
1154 /**
1155 * __get_request - get a free request
1156 * @rl: request list to allocate from
1157 * @op: operation and flags
1158 * @bio: bio to allocate request for (can be %NULL)
1159 * @gfp_mask: allocation mask
1160 *
1161 * Get a free request from @q. This function may fail under memory
1162 * pressure or if @q is dead.
1163 *
1164 * Must be called with @q->queue_lock held and,
1165 * Returns ERR_PTR on failure, with @q->queue_lock held.
1166 * Returns request pointer on success, with @q->queue_lock *not held*.
1167 */
1168 static struct request *__get_request(struct request_list *rl, unsigned int op,
1169 struct bio *bio, gfp_t gfp_mask)
1170 {
1171 struct request_queue *q = rl->q;
1172 struct request *rq;
1173 struct elevator_type *et = q->elevator->type;
1174 struct io_context *ioc = rq_ioc(bio);
1175 struct io_cq *icq = NULL;
1176 const bool is_sync = op_is_sync(op);
1177 int may_queue;
1178 req_flags_t rq_flags = RQF_ALLOCED;
1179
1180 lockdep_assert_held(q->queue_lock);
1181
1182 if (unlikely(blk_queue_dying(q)))
1183 return ERR_PTR(-ENODEV);
1184
1185 may_queue = elv_may_queue(q, op);
1186 if (may_queue == ELV_MQUEUE_NO)
1187 goto rq_starved;
1188
1189 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1190 if (rl->count[is_sync]+1 >= q->nr_requests) {
1191 /*
1192 * The queue will fill after this allocation, so set
1193 * it as full, and mark this process as "batching".
1194 * This process will be allowed to complete a batch of
1195 * requests, others will be blocked.
1196 */
1197 if (!blk_rl_full(rl, is_sync)) {
1198 ioc_set_batching(q, ioc);
1199 blk_set_rl_full(rl, is_sync);
1200 } else {
1201 if (may_queue != ELV_MQUEUE_MUST
1202 && !ioc_batching(q, ioc)) {
1203 /*
1204 * The queue is full and the allocating
1205 * process is not a "batcher", and not
1206 * exempted by the IO scheduler
1207 */
1208 return ERR_PTR(-ENOMEM);
1209 }
1210 }
1211 }
1212 blk_set_congested(rl, is_sync);
1213 }
1214
1215 /*
1216 * Only allow batching queuers to allocate up to 50% over the defined
1217 * limit of requests, otherwise we could have thousands of requests
1218 * allocated with any setting of ->nr_requests
1219 */
1220 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1221 return ERR_PTR(-ENOMEM);
1222
1223 q->nr_rqs[is_sync]++;
1224 rl->count[is_sync]++;
1225 rl->starved[is_sync] = 0;
1226
1227 /*
1228 * Decide whether the new request will be managed by elevator. If
1229 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1230 * prevent the current elevator from being destroyed until the new
1231 * request is freed. This guarantees icq's won't be destroyed and
1232 * makes creating new ones safe.
1233 *
1234 * Flush requests do not use the elevator so skip initialization.
1235 * This allows a request to share the flush and elevator data.
1236 *
1237 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1238 * it will be created after releasing queue_lock.
1239 */
1240 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1241 rq_flags |= RQF_ELVPRIV;
1242 q->nr_rqs_elvpriv++;
1243 if (et->icq_cache && ioc)
1244 icq = ioc_lookup_icq(ioc, q);
1245 }
1246
1247 if (blk_queue_io_stat(q))
1248 rq_flags |= RQF_IO_STAT;
1249 spin_unlock_irq(q->queue_lock);
1250
1251 /* allocate and init request */
1252 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1253 if (!rq)
1254 goto fail_alloc;
1255
1256 blk_rq_init(q, rq);
1257 blk_rq_set_rl(rq, rl);
1258 rq->cmd_flags = op;
1259 rq->rq_flags = rq_flags;
1260
1261 /* init elvpriv */
1262 if (rq_flags & RQF_ELVPRIV) {
1263 if (unlikely(et->icq_cache && !icq)) {
1264 if (ioc)
1265 icq = ioc_create_icq(ioc, q, gfp_mask);
1266 if (!icq)
1267 goto fail_elvpriv;
1268 }
1269
1270 rq->elv.icq = icq;
1271 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1272 goto fail_elvpriv;
1273
1274 /* @rq->elv.icq holds io_context until @rq is freed */
1275 if (icq)
1276 get_io_context(icq->ioc);
1277 }
1278 out:
1279 /*
1280 * ioc may be NULL here, and ioc_batching will be false. That's
1281 * OK, if the queue is under the request limit then requests need
1282 * not count toward the nr_batch_requests limit. There will always
1283 * be some limit enforced by BLK_BATCH_TIME.
1284 */
1285 if (ioc_batching(q, ioc))
1286 ioc->nr_batch_requests--;
1287
1288 trace_block_getrq(q, bio, op);
1289 return rq;
1290
1291 fail_elvpriv:
1292 /*
1293 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1294 * and may fail indefinitely under memory pressure and thus
1295 * shouldn't stall IO. Treat this request as !elvpriv. This will
1296 * disturb iosched and blkcg but weird is bettern than dead.
1297 */
1298 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1299 __func__, dev_name(q->backing_dev_info->dev));
1300
1301 rq->rq_flags &= ~RQF_ELVPRIV;
1302 rq->elv.icq = NULL;
1303
1304 spin_lock_irq(q->queue_lock);
1305 q->nr_rqs_elvpriv--;
1306 spin_unlock_irq(q->queue_lock);
1307 goto out;
1308
1309 fail_alloc:
1310 /*
1311 * Allocation failed presumably due to memory. Undo anything we
1312 * might have messed up.
1313 *
1314 * Allocating task should really be put onto the front of the wait
1315 * queue, but this is pretty rare.
1316 */
1317 spin_lock_irq(q->queue_lock);
1318 freed_request(rl, is_sync, rq_flags);
1319
1320 /*
1321 * in the very unlikely event that allocation failed and no
1322 * requests for this direction was pending, mark us starved so that
1323 * freeing of a request in the other direction will notice
1324 * us. another possible fix would be to split the rq mempool into
1325 * READ and WRITE
1326 */
1327 rq_starved:
1328 if (unlikely(rl->count[is_sync] == 0))
1329 rl->starved[is_sync] = 1;
1330 return ERR_PTR(-ENOMEM);
1331 }
1332
1333 /**
1334 * get_request - get a free request
1335 * @q: request_queue to allocate request from
1336 * @op: operation and flags
1337 * @bio: bio to allocate request for (can be %NULL)
1338 * @gfp_mask: allocation mask
1339 *
1340 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1341 * this function keeps retrying under memory pressure and fails iff @q is dead.
1342 *
1343 * Must be called with @q->queue_lock held and,
1344 * Returns ERR_PTR on failure, with @q->queue_lock held.
1345 * Returns request pointer on success, with @q->queue_lock *not held*.
1346 */
1347 static struct request *get_request(struct request_queue *q, unsigned int op,
1348 struct bio *bio, gfp_t gfp_mask)
1349 {
1350 const bool is_sync = op_is_sync(op);
1351 DEFINE_WAIT(wait);
1352 struct request_list *rl;
1353 struct request *rq;
1354
1355 lockdep_assert_held(q->queue_lock);
1356 WARN_ON_ONCE(q->mq_ops);
1357
1358 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1359 retry:
1360 rq = __get_request(rl, op, bio, gfp_mask);
1361 if (!IS_ERR(rq))
1362 return rq;
1363
1364 if (op & REQ_NOWAIT) {
1365 blk_put_rl(rl);
1366 return ERR_PTR(-EAGAIN);
1367 }
1368
1369 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1370 blk_put_rl(rl);
1371 return rq;
1372 }
1373
1374 /* wait on @rl and retry */
1375 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1376 TASK_UNINTERRUPTIBLE);
1377
1378 trace_block_sleeprq(q, bio, op);
1379
1380 spin_unlock_irq(q->queue_lock);
1381 io_schedule();
1382
1383 /*
1384 * After sleeping, we become a "batching" process and will be able
1385 * to allocate at least one request, and up to a big batch of them
1386 * for a small period time. See ioc_batching, ioc_set_batching
1387 */
1388 ioc_set_batching(q, current->io_context);
1389
1390 spin_lock_irq(q->queue_lock);
1391 finish_wait(&rl->wait[is_sync], &wait);
1392
1393 goto retry;
1394 }
1395
1396 static struct request *blk_old_get_request(struct request_queue *q,
1397 unsigned int op, gfp_t gfp_mask)
1398 {
1399 struct request *rq;
1400
1401 WARN_ON_ONCE(q->mq_ops);
1402
1403 /* create ioc upfront */
1404 create_io_context(gfp_mask, q->node);
1405
1406 spin_lock_irq(q->queue_lock);
1407 rq = get_request(q, op, NULL, gfp_mask);
1408 if (IS_ERR(rq)) {
1409 spin_unlock_irq(q->queue_lock);
1410 return rq;
1411 }
1412
1413 /* q->queue_lock is unlocked at this point */
1414 rq->__data_len = 0;
1415 rq->__sector = (sector_t) -1;
1416 rq->bio = rq->biotail = NULL;
1417 return rq;
1418 }
1419
1420 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1421 gfp_t gfp_mask)
1422 {
1423 struct request *req;
1424
1425 if (q->mq_ops) {
1426 req = blk_mq_alloc_request(q, op,
1427 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1428 0 : BLK_MQ_REQ_NOWAIT);
1429 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1430 q->mq_ops->initialize_rq_fn(req);
1431 } else {
1432 req = blk_old_get_request(q, op, gfp_mask);
1433 if (!IS_ERR(req) && q->initialize_rq_fn)
1434 q->initialize_rq_fn(req);
1435 }
1436
1437 return req;
1438 }
1439 EXPORT_SYMBOL(blk_get_request);
1440
1441 /**
1442 * blk_requeue_request - put a request back on queue
1443 * @q: request queue where request should be inserted
1444 * @rq: request to be inserted
1445 *
1446 * Description:
1447 * Drivers often keep queueing requests until the hardware cannot accept
1448 * more, when that condition happens we need to put the request back
1449 * on the queue. Must be called with queue lock held.
1450 */
1451 void blk_requeue_request(struct request_queue *q, struct request *rq)
1452 {
1453 lockdep_assert_held(q->queue_lock);
1454 WARN_ON_ONCE(q->mq_ops);
1455
1456 blk_delete_timer(rq);
1457 blk_clear_rq_complete(rq);
1458 trace_block_rq_requeue(q, rq);
1459 wbt_requeue(q->rq_wb, &rq->issue_stat);
1460
1461 if (rq->rq_flags & RQF_QUEUED)
1462 blk_queue_end_tag(q, rq);
1463
1464 BUG_ON(blk_queued_rq(rq));
1465
1466 elv_requeue_request(q, rq);
1467 }
1468 EXPORT_SYMBOL(blk_requeue_request);
1469
1470 static void add_acct_request(struct request_queue *q, struct request *rq,
1471 int where)
1472 {
1473 blk_account_io_start(rq, true);
1474 __elv_add_request(q, rq, where);
1475 }
1476
1477 static void part_round_stats_single(struct request_queue *q, int cpu,
1478 struct hd_struct *part, unsigned long now,
1479 unsigned int inflight)
1480 {
1481 if (inflight) {
1482 __part_stat_add(cpu, part, time_in_queue,
1483 inflight * (now - part->stamp));
1484 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1485 }
1486 part->stamp = now;
1487 }
1488
1489 /**
1490 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1491 * @q: target block queue
1492 * @cpu: cpu number for stats access
1493 * @part: target partition
1494 *
1495 * The average IO queue length and utilisation statistics are maintained
1496 * by observing the current state of the queue length and the amount of
1497 * time it has been in this state for.
1498 *
1499 * Normally, that accounting is done on IO completion, but that can result
1500 * in more than a second's worth of IO being accounted for within any one
1501 * second, leading to >100% utilisation. To deal with that, we call this
1502 * function to do a round-off before returning the results when reading
1503 * /proc/diskstats. This accounts immediately for all queue usage up to
1504 * the current jiffies and restarts the counters again.
1505 */
1506 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1507 {
1508 struct hd_struct *part2 = NULL;
1509 unsigned long now = jiffies;
1510 unsigned int inflight[2];
1511 int stats = 0;
1512
1513 if (part->stamp != now)
1514 stats |= 1;
1515
1516 if (part->partno) {
1517 part2 = &part_to_disk(part)->part0;
1518 if (part2->stamp != now)
1519 stats |= 2;
1520 }
1521
1522 if (!stats)
1523 return;
1524
1525 part_in_flight(q, part, inflight);
1526
1527 if (stats & 2)
1528 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1529 if (stats & 1)
1530 part_round_stats_single(q, cpu, part, now, inflight[0]);
1531 }
1532 EXPORT_SYMBOL_GPL(part_round_stats);
1533
1534 #ifdef CONFIG_PM
1535 static void blk_pm_put_request(struct request *rq)
1536 {
1537 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1538 pm_runtime_mark_last_busy(rq->q->dev);
1539 }
1540 #else
1541 static inline void blk_pm_put_request(struct request *rq) {}
1542 #endif
1543
1544 void __blk_put_request(struct request_queue *q, struct request *req)
1545 {
1546 req_flags_t rq_flags = req->rq_flags;
1547
1548 if (unlikely(!q))
1549 return;
1550
1551 if (q->mq_ops) {
1552 blk_mq_free_request(req);
1553 return;
1554 }
1555
1556 lockdep_assert_held(q->queue_lock);
1557
1558 blk_pm_put_request(req);
1559
1560 elv_completed_request(q, req);
1561
1562 /* this is a bio leak */
1563 WARN_ON(req->bio != NULL);
1564
1565 wbt_done(q->rq_wb, &req->issue_stat);
1566
1567 /*
1568 * Request may not have originated from ll_rw_blk. if not,
1569 * it didn't come out of our reserved rq pools
1570 */
1571 if (rq_flags & RQF_ALLOCED) {
1572 struct request_list *rl = blk_rq_rl(req);
1573 bool sync = op_is_sync(req->cmd_flags);
1574
1575 BUG_ON(!list_empty(&req->queuelist));
1576 BUG_ON(ELV_ON_HASH(req));
1577
1578 blk_free_request(rl, req);
1579 freed_request(rl, sync, rq_flags);
1580 blk_put_rl(rl);
1581 }
1582 }
1583 EXPORT_SYMBOL_GPL(__blk_put_request);
1584
1585 void blk_put_request(struct request *req)
1586 {
1587 struct request_queue *q = req->q;
1588
1589 if (q->mq_ops)
1590 blk_mq_free_request(req);
1591 else {
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(q->queue_lock, flags);
1595 __blk_put_request(q, req);
1596 spin_unlock_irqrestore(q->queue_lock, flags);
1597 }
1598 }
1599 EXPORT_SYMBOL(blk_put_request);
1600
1601 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1602 struct bio *bio)
1603 {
1604 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1605
1606 if (!ll_back_merge_fn(q, req, bio))
1607 return false;
1608
1609 trace_block_bio_backmerge(q, req, bio);
1610
1611 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1612 blk_rq_set_mixed_merge(req);
1613
1614 req->biotail->bi_next = bio;
1615 req->biotail = bio;
1616 req->__data_len += bio->bi_iter.bi_size;
1617 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1618
1619 blk_account_io_start(req, false);
1620 return true;
1621 }
1622
1623 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1624 struct bio *bio)
1625 {
1626 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1627
1628 if (!ll_front_merge_fn(q, req, bio))
1629 return false;
1630
1631 trace_block_bio_frontmerge(q, req, bio);
1632
1633 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1634 blk_rq_set_mixed_merge(req);
1635
1636 bio->bi_next = req->bio;
1637 req->bio = bio;
1638
1639 req->__sector = bio->bi_iter.bi_sector;
1640 req->__data_len += bio->bi_iter.bi_size;
1641 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1642
1643 blk_account_io_start(req, false);
1644 return true;
1645 }
1646
1647 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1648 struct bio *bio)
1649 {
1650 unsigned short segments = blk_rq_nr_discard_segments(req);
1651
1652 if (segments >= queue_max_discard_segments(q))
1653 goto no_merge;
1654 if (blk_rq_sectors(req) + bio_sectors(bio) >
1655 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1656 goto no_merge;
1657
1658 req->biotail->bi_next = bio;
1659 req->biotail = bio;
1660 req->__data_len += bio->bi_iter.bi_size;
1661 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1662 req->nr_phys_segments = segments + 1;
1663
1664 blk_account_io_start(req, false);
1665 return true;
1666 no_merge:
1667 req_set_nomerge(q, req);
1668 return false;
1669 }
1670
1671 /**
1672 * blk_attempt_plug_merge - try to merge with %current's plugged list
1673 * @q: request_queue new bio is being queued at
1674 * @bio: new bio being queued
1675 * @request_count: out parameter for number of traversed plugged requests
1676 * @same_queue_rq: pointer to &struct request that gets filled in when
1677 * another request associated with @q is found on the plug list
1678 * (optional, may be %NULL)
1679 *
1680 * Determine whether @bio being queued on @q can be merged with a request
1681 * on %current's plugged list. Returns %true if merge was successful,
1682 * otherwise %false.
1683 *
1684 * Plugging coalesces IOs from the same issuer for the same purpose without
1685 * going through @q->queue_lock. As such it's more of an issuing mechanism
1686 * than scheduling, and the request, while may have elvpriv data, is not
1687 * added on the elevator at this point. In addition, we don't have
1688 * reliable access to the elevator outside queue lock. Only check basic
1689 * merging parameters without querying the elevator.
1690 *
1691 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1692 */
1693 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1694 unsigned int *request_count,
1695 struct request **same_queue_rq)
1696 {
1697 struct blk_plug *plug;
1698 struct request *rq;
1699 struct list_head *plug_list;
1700
1701 plug = current->plug;
1702 if (!plug)
1703 return false;
1704 *request_count = 0;
1705
1706 if (q->mq_ops)
1707 plug_list = &plug->mq_list;
1708 else
1709 plug_list = &plug->list;
1710
1711 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1712 bool merged = false;
1713
1714 if (rq->q == q) {
1715 (*request_count)++;
1716 /*
1717 * Only blk-mq multiple hardware queues case checks the
1718 * rq in the same queue, there should be only one such
1719 * rq in a queue
1720 **/
1721 if (same_queue_rq)
1722 *same_queue_rq = rq;
1723 }
1724
1725 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1726 continue;
1727
1728 switch (blk_try_merge(rq, bio)) {
1729 case ELEVATOR_BACK_MERGE:
1730 merged = bio_attempt_back_merge(q, rq, bio);
1731 break;
1732 case ELEVATOR_FRONT_MERGE:
1733 merged = bio_attempt_front_merge(q, rq, bio);
1734 break;
1735 case ELEVATOR_DISCARD_MERGE:
1736 merged = bio_attempt_discard_merge(q, rq, bio);
1737 break;
1738 default:
1739 break;
1740 }
1741
1742 if (merged)
1743 return true;
1744 }
1745
1746 return false;
1747 }
1748
1749 unsigned int blk_plug_queued_count(struct request_queue *q)
1750 {
1751 struct blk_plug *plug;
1752 struct request *rq;
1753 struct list_head *plug_list;
1754 unsigned int ret = 0;
1755
1756 plug = current->plug;
1757 if (!plug)
1758 goto out;
1759
1760 if (q->mq_ops)
1761 plug_list = &plug->mq_list;
1762 else
1763 plug_list = &plug->list;
1764
1765 list_for_each_entry(rq, plug_list, queuelist) {
1766 if (rq->q == q)
1767 ret++;
1768 }
1769 out:
1770 return ret;
1771 }
1772
1773 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1774 {
1775 struct io_context *ioc = rq_ioc(bio);
1776
1777 if (bio->bi_opf & REQ_RAHEAD)
1778 req->cmd_flags |= REQ_FAILFAST_MASK;
1779
1780 req->__sector = bio->bi_iter.bi_sector;
1781 if (ioprio_valid(bio_prio(bio)))
1782 req->ioprio = bio_prio(bio);
1783 else if (ioc)
1784 req->ioprio = ioc->ioprio;
1785 else
1786 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1787 req->write_hint = bio->bi_write_hint;
1788 blk_rq_bio_prep(req->q, req, bio);
1789 }
1790 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1791
1792 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1793 {
1794 struct blk_plug *plug;
1795 int where = ELEVATOR_INSERT_SORT;
1796 struct request *req, *free;
1797 unsigned int request_count = 0;
1798 unsigned int wb_acct;
1799
1800 /*
1801 * low level driver can indicate that it wants pages above a
1802 * certain limit bounced to low memory (ie for highmem, or even
1803 * ISA dma in theory)
1804 */
1805 blk_queue_bounce(q, &bio);
1806
1807 blk_queue_split(q, &bio);
1808
1809 if (!bio_integrity_prep(bio))
1810 return BLK_QC_T_NONE;
1811
1812 if (op_is_flush(bio->bi_opf)) {
1813 spin_lock_irq(q->queue_lock);
1814 where = ELEVATOR_INSERT_FLUSH;
1815 goto get_rq;
1816 }
1817
1818 /*
1819 * Check if we can merge with the plugged list before grabbing
1820 * any locks.
1821 */
1822 if (!blk_queue_nomerges(q)) {
1823 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1824 return BLK_QC_T_NONE;
1825 } else
1826 request_count = blk_plug_queued_count(q);
1827
1828 spin_lock_irq(q->queue_lock);
1829
1830 switch (elv_merge(q, &req, bio)) {
1831 case ELEVATOR_BACK_MERGE:
1832 if (!bio_attempt_back_merge(q, req, bio))
1833 break;
1834 elv_bio_merged(q, req, bio);
1835 free = attempt_back_merge(q, req);
1836 if (free)
1837 __blk_put_request(q, free);
1838 else
1839 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1840 goto out_unlock;
1841 case ELEVATOR_FRONT_MERGE:
1842 if (!bio_attempt_front_merge(q, req, bio))
1843 break;
1844 elv_bio_merged(q, req, bio);
1845 free = attempt_front_merge(q, req);
1846 if (free)
1847 __blk_put_request(q, free);
1848 else
1849 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1850 goto out_unlock;
1851 default:
1852 break;
1853 }
1854
1855 get_rq:
1856 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1857
1858 /*
1859 * Grab a free request. This is might sleep but can not fail.
1860 * Returns with the queue unlocked.
1861 */
1862 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1863 if (IS_ERR(req)) {
1864 __wbt_done(q->rq_wb, wb_acct);
1865 if (PTR_ERR(req) == -ENOMEM)
1866 bio->bi_status = BLK_STS_RESOURCE;
1867 else
1868 bio->bi_status = BLK_STS_IOERR;
1869 bio_endio(bio);
1870 goto out_unlock;
1871 }
1872
1873 wbt_track(&req->issue_stat, wb_acct);
1874
1875 /*
1876 * After dropping the lock and possibly sleeping here, our request
1877 * may now be mergeable after it had proven unmergeable (above).
1878 * We don't worry about that case for efficiency. It won't happen
1879 * often, and the elevators are able to handle it.
1880 */
1881 blk_init_request_from_bio(req, bio);
1882
1883 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1884 req->cpu = raw_smp_processor_id();
1885
1886 plug = current->plug;
1887 if (plug) {
1888 /*
1889 * If this is the first request added after a plug, fire
1890 * of a plug trace.
1891 *
1892 * @request_count may become stale because of schedule
1893 * out, so check plug list again.
1894 */
1895 if (!request_count || list_empty(&plug->list))
1896 trace_block_plug(q);
1897 else {
1898 struct request *last = list_entry_rq(plug->list.prev);
1899 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1900 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1901 blk_flush_plug_list(plug, false);
1902 trace_block_plug(q);
1903 }
1904 }
1905 list_add_tail(&req->queuelist, &plug->list);
1906 blk_account_io_start(req, true);
1907 } else {
1908 spin_lock_irq(q->queue_lock);
1909 add_acct_request(q, req, where);
1910 __blk_run_queue(q);
1911 out_unlock:
1912 spin_unlock_irq(q->queue_lock);
1913 }
1914
1915 return BLK_QC_T_NONE;
1916 }
1917
1918 static void handle_bad_sector(struct bio *bio)
1919 {
1920 char b[BDEVNAME_SIZE];
1921
1922 printk(KERN_INFO "attempt to access beyond end of device\n");
1923 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1924 bio_devname(bio, b), bio->bi_opf,
1925 (unsigned long long)bio_end_sector(bio),
1926 (long long)get_capacity(bio->bi_disk));
1927 }
1928
1929 #ifdef CONFIG_FAIL_MAKE_REQUEST
1930
1931 static DECLARE_FAULT_ATTR(fail_make_request);
1932
1933 static int __init setup_fail_make_request(char *str)
1934 {
1935 return setup_fault_attr(&fail_make_request, str);
1936 }
1937 __setup("fail_make_request=", setup_fail_make_request);
1938
1939 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1940 {
1941 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1942 }
1943
1944 static int __init fail_make_request_debugfs(void)
1945 {
1946 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1947 NULL, &fail_make_request);
1948
1949 return PTR_ERR_OR_ZERO(dir);
1950 }
1951
1952 late_initcall(fail_make_request_debugfs);
1953
1954 #else /* CONFIG_FAIL_MAKE_REQUEST */
1955
1956 static inline bool should_fail_request(struct hd_struct *part,
1957 unsigned int bytes)
1958 {
1959 return false;
1960 }
1961
1962 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1963
1964 /*
1965 * Remap block n of partition p to block n+start(p) of the disk.
1966 */
1967 static inline int blk_partition_remap(struct bio *bio)
1968 {
1969 struct hd_struct *p;
1970 int ret = 0;
1971
1972 /*
1973 * Zone reset does not include bi_size so bio_sectors() is always 0.
1974 * Include a test for the reset op code and perform the remap if needed.
1975 */
1976 if (!bio->bi_partno ||
1977 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1978 return 0;
1979
1980 rcu_read_lock();
1981 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1982 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1983 bio->bi_iter.bi_sector += p->start_sect;
1984 bio->bi_partno = 0;
1985 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1986 bio->bi_iter.bi_sector - p->start_sect);
1987 } else {
1988 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1989 ret = -EIO;
1990 }
1991 rcu_read_unlock();
1992
1993 return ret;
1994 }
1995
1996 /*
1997 * Check whether this bio extends beyond the end of the device.
1998 */
1999 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2000 {
2001 sector_t maxsector;
2002
2003 if (!nr_sectors)
2004 return 0;
2005
2006 /* Test device or partition size, when known. */
2007 maxsector = get_capacity(bio->bi_disk);
2008 if (maxsector) {
2009 sector_t sector = bio->bi_iter.bi_sector;
2010
2011 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2012 /*
2013 * This may well happen - the kernel calls bread()
2014 * without checking the size of the device, e.g., when
2015 * mounting a device.
2016 */
2017 handle_bad_sector(bio);
2018 return 1;
2019 }
2020 }
2021
2022 return 0;
2023 }
2024
2025 static noinline_for_stack bool
2026 generic_make_request_checks(struct bio *bio)
2027 {
2028 struct request_queue *q;
2029 int nr_sectors = bio_sectors(bio);
2030 blk_status_t status = BLK_STS_IOERR;
2031 char b[BDEVNAME_SIZE];
2032
2033 might_sleep();
2034
2035 if (bio_check_eod(bio, nr_sectors))
2036 goto end_io;
2037
2038 q = bio->bi_disk->queue;
2039 if (unlikely(!q)) {
2040 printk(KERN_ERR
2041 "generic_make_request: Trying to access "
2042 "nonexistent block-device %s (%Lu)\n",
2043 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2044 goto end_io;
2045 }
2046
2047 /*
2048 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2049 * if queue is not a request based queue.
2050 */
2051
2052 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2053 goto not_supported;
2054
2055 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2056 goto end_io;
2057
2058 if (blk_partition_remap(bio))
2059 goto end_io;
2060
2061 if (bio_check_eod(bio, nr_sectors))
2062 goto end_io;
2063
2064 /*
2065 * Filter flush bio's early so that make_request based
2066 * drivers without flush support don't have to worry
2067 * about them.
2068 */
2069 if (op_is_flush(bio->bi_opf) &&
2070 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2071 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2072 if (!nr_sectors) {
2073 status = BLK_STS_OK;
2074 goto end_io;
2075 }
2076 }
2077
2078 switch (bio_op(bio)) {
2079 case REQ_OP_DISCARD:
2080 if (!blk_queue_discard(q))
2081 goto not_supported;
2082 break;
2083 case REQ_OP_SECURE_ERASE:
2084 if (!blk_queue_secure_erase(q))
2085 goto not_supported;
2086 break;
2087 case REQ_OP_WRITE_SAME:
2088 if (!q->limits.max_write_same_sectors)
2089 goto not_supported;
2090 break;
2091 case REQ_OP_ZONE_REPORT:
2092 case REQ_OP_ZONE_RESET:
2093 if (!blk_queue_is_zoned(q))
2094 goto not_supported;
2095 break;
2096 case REQ_OP_WRITE_ZEROES:
2097 if (!q->limits.max_write_zeroes_sectors)
2098 goto not_supported;
2099 break;
2100 default:
2101 break;
2102 }
2103
2104 /*
2105 * Various block parts want %current->io_context and lazy ioc
2106 * allocation ends up trading a lot of pain for a small amount of
2107 * memory. Just allocate it upfront. This may fail and block
2108 * layer knows how to live with it.
2109 */
2110 create_io_context(GFP_ATOMIC, q->node);
2111
2112 if (!blkcg_bio_issue_check(q, bio))
2113 return false;
2114
2115 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2116 trace_block_bio_queue(q, bio);
2117 /* Now that enqueuing has been traced, we need to trace
2118 * completion as well.
2119 */
2120 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2121 }
2122 return true;
2123
2124 not_supported:
2125 status = BLK_STS_NOTSUPP;
2126 end_io:
2127 bio->bi_status = status;
2128 bio_endio(bio);
2129 return false;
2130 }
2131
2132 /**
2133 * generic_make_request - hand a buffer to its device driver for I/O
2134 * @bio: The bio describing the location in memory and on the device.
2135 *
2136 * generic_make_request() is used to make I/O requests of block
2137 * devices. It is passed a &struct bio, which describes the I/O that needs
2138 * to be done.
2139 *
2140 * generic_make_request() does not return any status. The
2141 * success/failure status of the request, along with notification of
2142 * completion, is delivered asynchronously through the bio->bi_end_io
2143 * function described (one day) else where.
2144 *
2145 * The caller of generic_make_request must make sure that bi_io_vec
2146 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2147 * set to describe the device address, and the
2148 * bi_end_io and optionally bi_private are set to describe how
2149 * completion notification should be signaled.
2150 *
2151 * generic_make_request and the drivers it calls may use bi_next if this
2152 * bio happens to be merged with someone else, and may resubmit the bio to
2153 * a lower device by calling into generic_make_request recursively, which
2154 * means the bio should NOT be touched after the call to ->make_request_fn.
2155 */
2156 blk_qc_t generic_make_request(struct bio *bio)
2157 {
2158 /*
2159 * bio_list_on_stack[0] contains bios submitted by the current
2160 * make_request_fn.
2161 * bio_list_on_stack[1] contains bios that were submitted before
2162 * the current make_request_fn, but that haven't been processed
2163 * yet.
2164 */
2165 struct bio_list bio_list_on_stack[2];
2166 blk_qc_t ret = BLK_QC_T_NONE;
2167
2168 if (!generic_make_request_checks(bio))
2169 goto out;
2170
2171 /*
2172 * We only want one ->make_request_fn to be active at a time, else
2173 * stack usage with stacked devices could be a problem. So use
2174 * current->bio_list to keep a list of requests submited by a
2175 * make_request_fn function. current->bio_list is also used as a
2176 * flag to say if generic_make_request is currently active in this
2177 * task or not. If it is NULL, then no make_request is active. If
2178 * it is non-NULL, then a make_request is active, and new requests
2179 * should be added at the tail
2180 */
2181 if (current->bio_list) {
2182 bio_list_add(&current->bio_list[0], bio);
2183 goto out;
2184 }
2185
2186 /* following loop may be a bit non-obvious, and so deserves some
2187 * explanation.
2188 * Before entering the loop, bio->bi_next is NULL (as all callers
2189 * ensure that) so we have a list with a single bio.
2190 * We pretend that we have just taken it off a longer list, so
2191 * we assign bio_list to a pointer to the bio_list_on_stack,
2192 * thus initialising the bio_list of new bios to be
2193 * added. ->make_request() may indeed add some more bios
2194 * through a recursive call to generic_make_request. If it
2195 * did, we find a non-NULL value in bio_list and re-enter the loop
2196 * from the top. In this case we really did just take the bio
2197 * of the top of the list (no pretending) and so remove it from
2198 * bio_list, and call into ->make_request() again.
2199 */
2200 BUG_ON(bio->bi_next);
2201 bio_list_init(&bio_list_on_stack[0]);
2202 current->bio_list = bio_list_on_stack;
2203 do {
2204 struct request_queue *q = bio->bi_disk->queue;
2205
2206 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2207 struct bio_list lower, same;
2208
2209 /* Create a fresh bio_list for all subordinate requests */
2210 bio_list_on_stack[1] = bio_list_on_stack[0];
2211 bio_list_init(&bio_list_on_stack[0]);
2212 ret = q->make_request_fn(q, bio);
2213
2214 blk_queue_exit(q);
2215
2216 /* sort new bios into those for a lower level
2217 * and those for the same level
2218 */
2219 bio_list_init(&lower);
2220 bio_list_init(&same);
2221 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2222 if (q == bio->bi_disk->queue)
2223 bio_list_add(&same, bio);
2224 else
2225 bio_list_add(&lower, bio);
2226 /* now assemble so we handle the lowest level first */
2227 bio_list_merge(&bio_list_on_stack[0], &lower);
2228 bio_list_merge(&bio_list_on_stack[0], &same);
2229 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2230 } else {
2231 if (unlikely(!blk_queue_dying(q) &&
2232 (bio->bi_opf & REQ_NOWAIT)))
2233 bio_wouldblock_error(bio);
2234 else
2235 bio_io_error(bio);
2236 }
2237 bio = bio_list_pop(&bio_list_on_stack[0]);
2238 } while (bio);
2239 current->bio_list = NULL; /* deactivate */
2240
2241 out:
2242 return ret;
2243 }
2244 EXPORT_SYMBOL(generic_make_request);
2245
2246 /**
2247 * direct_make_request - hand a buffer directly to its device driver for I/O
2248 * @bio: The bio describing the location in memory and on the device.
2249 *
2250 * This function behaves like generic_make_request(), but does not protect
2251 * against recursion. Must only be used if the called driver is known
2252 * to not call generic_make_request (or direct_make_request) again from
2253 * its make_request function. (Calling direct_make_request again from
2254 * a workqueue is perfectly fine as that doesn't recurse).
2255 */
2256 blk_qc_t direct_make_request(struct bio *bio)
2257 {
2258 struct request_queue *q = bio->bi_disk->queue;
2259 bool nowait = bio->bi_opf & REQ_NOWAIT;
2260 blk_qc_t ret;
2261
2262 if (!generic_make_request_checks(bio))
2263 return BLK_QC_T_NONE;
2264
2265 if (unlikely(blk_queue_enter(q, nowait))) {
2266 if (nowait && !blk_queue_dying(q))
2267 bio->bi_status = BLK_STS_AGAIN;
2268 else
2269 bio->bi_status = BLK_STS_IOERR;
2270 bio_endio(bio);
2271 return BLK_QC_T_NONE;
2272 }
2273
2274 ret = q->make_request_fn(q, bio);
2275 blk_queue_exit(q);
2276 return ret;
2277 }
2278 EXPORT_SYMBOL_GPL(direct_make_request);
2279
2280 /**
2281 * submit_bio - submit a bio to the block device layer for I/O
2282 * @bio: The &struct bio which describes the I/O
2283 *
2284 * submit_bio() is very similar in purpose to generic_make_request(), and
2285 * uses that function to do most of the work. Both are fairly rough
2286 * interfaces; @bio must be presetup and ready for I/O.
2287 *
2288 */
2289 blk_qc_t submit_bio(struct bio *bio)
2290 {
2291 /*
2292 * If it's a regular read/write or a barrier with data attached,
2293 * go through the normal accounting stuff before submission.
2294 */
2295 if (bio_has_data(bio)) {
2296 unsigned int count;
2297
2298 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2299 count = queue_logical_block_size(bio->bi_disk->queue);
2300 else
2301 count = bio_sectors(bio);
2302
2303 if (op_is_write(bio_op(bio))) {
2304 count_vm_events(PGPGOUT, count);
2305 } else {
2306 task_io_account_read(bio->bi_iter.bi_size);
2307 count_vm_events(PGPGIN, count);
2308 }
2309
2310 if (unlikely(block_dump)) {
2311 char b[BDEVNAME_SIZE];
2312 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2313 current->comm, task_pid_nr(current),
2314 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2315 (unsigned long long)bio->bi_iter.bi_sector,
2316 bio_devname(bio, b), count);
2317 }
2318 }
2319
2320 return generic_make_request(bio);
2321 }
2322 EXPORT_SYMBOL(submit_bio);
2323
2324 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2325 {
2326 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2327 return false;
2328
2329 if (current->plug)
2330 blk_flush_plug_list(current->plug, false);
2331 return q->poll_fn(q, cookie);
2332 }
2333 EXPORT_SYMBOL_GPL(blk_poll);
2334
2335 /**
2336 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2337 * for new the queue limits
2338 * @q: the queue
2339 * @rq: the request being checked
2340 *
2341 * Description:
2342 * @rq may have been made based on weaker limitations of upper-level queues
2343 * in request stacking drivers, and it may violate the limitation of @q.
2344 * Since the block layer and the underlying device driver trust @rq
2345 * after it is inserted to @q, it should be checked against @q before
2346 * the insertion using this generic function.
2347 *
2348 * Request stacking drivers like request-based dm may change the queue
2349 * limits when retrying requests on other queues. Those requests need
2350 * to be checked against the new queue limits again during dispatch.
2351 */
2352 static int blk_cloned_rq_check_limits(struct request_queue *q,
2353 struct request *rq)
2354 {
2355 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2356 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2357 return -EIO;
2358 }
2359
2360 /*
2361 * queue's settings related to segment counting like q->bounce_pfn
2362 * may differ from that of other stacking queues.
2363 * Recalculate it to check the request correctly on this queue's
2364 * limitation.
2365 */
2366 blk_recalc_rq_segments(rq);
2367 if (rq->nr_phys_segments > queue_max_segments(q)) {
2368 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2369 return -EIO;
2370 }
2371
2372 return 0;
2373 }
2374
2375 /**
2376 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2377 * @q: the queue to submit the request
2378 * @rq: the request being queued
2379 */
2380 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2381 {
2382 unsigned long flags;
2383 int where = ELEVATOR_INSERT_BACK;
2384
2385 if (blk_cloned_rq_check_limits(q, rq))
2386 return BLK_STS_IOERR;
2387
2388 if (rq->rq_disk &&
2389 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2390 return BLK_STS_IOERR;
2391
2392 if (q->mq_ops) {
2393 if (blk_queue_io_stat(q))
2394 blk_account_io_start(rq, true);
2395 /*
2396 * Since we have a scheduler attached on the top device,
2397 * bypass a potential scheduler on the bottom device for
2398 * insert.
2399 */
2400 blk_mq_request_bypass_insert(rq, true);
2401 return BLK_STS_OK;
2402 }
2403
2404 spin_lock_irqsave(q->queue_lock, flags);
2405 if (unlikely(blk_queue_dying(q))) {
2406 spin_unlock_irqrestore(q->queue_lock, flags);
2407 return BLK_STS_IOERR;
2408 }
2409
2410 /*
2411 * Submitting request must be dequeued before calling this function
2412 * because it will be linked to another request_queue
2413 */
2414 BUG_ON(blk_queued_rq(rq));
2415
2416 if (op_is_flush(rq->cmd_flags))
2417 where = ELEVATOR_INSERT_FLUSH;
2418
2419 add_acct_request(q, rq, where);
2420 if (where == ELEVATOR_INSERT_FLUSH)
2421 __blk_run_queue(q);
2422 spin_unlock_irqrestore(q->queue_lock, flags);
2423
2424 return BLK_STS_OK;
2425 }
2426 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2427
2428 /**
2429 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2430 * @rq: request to examine
2431 *
2432 * Description:
2433 * A request could be merge of IOs which require different failure
2434 * handling. This function determines the number of bytes which
2435 * can be failed from the beginning of the request without
2436 * crossing into area which need to be retried further.
2437 *
2438 * Return:
2439 * The number of bytes to fail.
2440 */
2441 unsigned int blk_rq_err_bytes(const struct request *rq)
2442 {
2443 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2444 unsigned int bytes = 0;
2445 struct bio *bio;
2446
2447 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2448 return blk_rq_bytes(rq);
2449
2450 /*
2451 * Currently the only 'mixing' which can happen is between
2452 * different fastfail types. We can safely fail portions
2453 * which have all the failfast bits that the first one has -
2454 * the ones which are at least as eager to fail as the first
2455 * one.
2456 */
2457 for (bio = rq->bio; bio; bio = bio->bi_next) {
2458 if ((bio->bi_opf & ff) != ff)
2459 break;
2460 bytes += bio->bi_iter.bi_size;
2461 }
2462
2463 /* this could lead to infinite loop */
2464 BUG_ON(blk_rq_bytes(rq) && !bytes);
2465 return bytes;
2466 }
2467 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2468
2469 void blk_account_io_completion(struct request *req, unsigned int bytes)
2470 {
2471 if (blk_do_io_stat(req)) {
2472 const int rw = rq_data_dir(req);
2473 struct hd_struct *part;
2474 int cpu;
2475
2476 cpu = part_stat_lock();
2477 part = req->part;
2478 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2479 part_stat_unlock();
2480 }
2481 }
2482
2483 void blk_account_io_done(struct request *req)
2484 {
2485 /*
2486 * Account IO completion. flush_rq isn't accounted as a
2487 * normal IO on queueing nor completion. Accounting the
2488 * containing request is enough.
2489 */
2490 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2491 unsigned long duration = jiffies - req->start_time;
2492 const int rw = rq_data_dir(req);
2493 struct hd_struct *part;
2494 int cpu;
2495
2496 cpu = part_stat_lock();
2497 part = req->part;
2498
2499 part_stat_inc(cpu, part, ios[rw]);
2500 part_stat_add(cpu, part, ticks[rw], duration);
2501 part_round_stats(req->q, cpu, part);
2502 part_dec_in_flight(req->q, part, rw);
2503
2504 hd_struct_put(part);
2505 part_stat_unlock();
2506 }
2507 }
2508
2509 #ifdef CONFIG_PM
2510 /*
2511 * Don't process normal requests when queue is suspended
2512 * or in the process of suspending/resuming
2513 */
2514 static bool blk_pm_allow_request(struct request *rq)
2515 {
2516 switch (rq->q->rpm_status) {
2517 case RPM_RESUMING:
2518 case RPM_SUSPENDING:
2519 return rq->rq_flags & RQF_PM;
2520 case RPM_SUSPENDED:
2521 return false;
2522 }
2523
2524 return true;
2525 }
2526 #else
2527 static bool blk_pm_allow_request(struct request *rq)
2528 {
2529 return true;
2530 }
2531 #endif
2532
2533 void blk_account_io_start(struct request *rq, bool new_io)
2534 {
2535 struct hd_struct *part;
2536 int rw = rq_data_dir(rq);
2537 int cpu;
2538
2539 if (!blk_do_io_stat(rq))
2540 return;
2541
2542 cpu = part_stat_lock();
2543
2544 if (!new_io) {
2545 part = rq->part;
2546 part_stat_inc(cpu, part, merges[rw]);
2547 } else {
2548 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2549 if (!hd_struct_try_get(part)) {
2550 /*
2551 * The partition is already being removed,
2552 * the request will be accounted on the disk only
2553 *
2554 * We take a reference on disk->part0 although that
2555 * partition will never be deleted, so we can treat
2556 * it as any other partition.
2557 */
2558 part = &rq->rq_disk->part0;
2559 hd_struct_get(part);
2560 }
2561 part_round_stats(rq->q, cpu, part);
2562 part_inc_in_flight(rq->q, part, rw);
2563 rq->part = part;
2564 }
2565
2566 part_stat_unlock();
2567 }
2568
2569 static struct request *elv_next_request(struct request_queue *q)
2570 {
2571 struct request *rq;
2572 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2573
2574 WARN_ON_ONCE(q->mq_ops);
2575
2576 while (1) {
2577 list_for_each_entry(rq, &q->queue_head, queuelist) {
2578 if (blk_pm_allow_request(rq))
2579 return rq;
2580
2581 if (rq->rq_flags & RQF_SOFTBARRIER)
2582 break;
2583 }
2584
2585 /*
2586 * Flush request is running and flush request isn't queueable
2587 * in the drive, we can hold the queue till flush request is
2588 * finished. Even we don't do this, driver can't dispatch next
2589 * requests and will requeue them. And this can improve
2590 * throughput too. For example, we have request flush1, write1,
2591 * flush 2. flush1 is dispatched, then queue is hold, write1
2592 * isn't inserted to queue. After flush1 is finished, flush2
2593 * will be dispatched. Since disk cache is already clean,
2594 * flush2 will be finished very soon, so looks like flush2 is
2595 * folded to flush1.
2596 * Since the queue is hold, a flag is set to indicate the queue
2597 * should be restarted later. Please see flush_end_io() for
2598 * details.
2599 */
2600 if (fq->flush_pending_idx != fq->flush_running_idx &&
2601 !queue_flush_queueable(q)) {
2602 fq->flush_queue_delayed = 1;
2603 return NULL;
2604 }
2605 if (unlikely(blk_queue_bypass(q)) ||
2606 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2607 return NULL;
2608 }
2609 }
2610
2611 /**
2612 * blk_peek_request - peek at the top of a request queue
2613 * @q: request queue to peek at
2614 *
2615 * Description:
2616 * Return the request at the top of @q. The returned request
2617 * should be started using blk_start_request() before LLD starts
2618 * processing it.
2619 *
2620 * Return:
2621 * Pointer to the request at the top of @q if available. Null
2622 * otherwise.
2623 */
2624 struct request *blk_peek_request(struct request_queue *q)
2625 {
2626 struct request *rq;
2627 int ret;
2628
2629 lockdep_assert_held(q->queue_lock);
2630 WARN_ON_ONCE(q->mq_ops);
2631
2632 while ((rq = elv_next_request(q)) != NULL) {
2633 if (!(rq->rq_flags & RQF_STARTED)) {
2634 /*
2635 * This is the first time the device driver
2636 * sees this request (possibly after
2637 * requeueing). Notify IO scheduler.
2638 */
2639 if (rq->rq_flags & RQF_SORTED)
2640 elv_activate_rq(q, rq);
2641
2642 /*
2643 * just mark as started even if we don't start
2644 * it, a request that has been delayed should
2645 * not be passed by new incoming requests
2646 */
2647 rq->rq_flags |= RQF_STARTED;
2648 trace_block_rq_issue(q, rq);
2649 }
2650
2651 if (!q->boundary_rq || q->boundary_rq == rq) {
2652 q->end_sector = rq_end_sector(rq);
2653 q->boundary_rq = NULL;
2654 }
2655
2656 if (rq->rq_flags & RQF_DONTPREP)
2657 break;
2658
2659 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2660 /*
2661 * make sure space for the drain appears we
2662 * know we can do this because max_hw_segments
2663 * has been adjusted to be one fewer than the
2664 * device can handle
2665 */
2666 rq->nr_phys_segments++;
2667 }
2668
2669 if (!q->prep_rq_fn)
2670 break;
2671
2672 ret = q->prep_rq_fn(q, rq);
2673 if (ret == BLKPREP_OK) {
2674 break;
2675 } else if (ret == BLKPREP_DEFER) {
2676 /*
2677 * the request may have been (partially) prepped.
2678 * we need to keep this request in the front to
2679 * avoid resource deadlock. RQF_STARTED will
2680 * prevent other fs requests from passing this one.
2681 */
2682 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2683 !(rq->rq_flags & RQF_DONTPREP)) {
2684 /*
2685 * remove the space for the drain we added
2686 * so that we don't add it again
2687 */
2688 --rq->nr_phys_segments;
2689 }
2690
2691 rq = NULL;
2692 break;
2693 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2694 rq->rq_flags |= RQF_QUIET;
2695 /*
2696 * Mark this request as started so we don't trigger
2697 * any debug logic in the end I/O path.
2698 */
2699 blk_start_request(rq);
2700 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2701 BLK_STS_TARGET : BLK_STS_IOERR);
2702 } else {
2703 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2704 break;
2705 }
2706 }
2707
2708 return rq;
2709 }
2710 EXPORT_SYMBOL(blk_peek_request);
2711
2712 static void blk_dequeue_request(struct request *rq)
2713 {
2714 struct request_queue *q = rq->q;
2715
2716 BUG_ON(list_empty(&rq->queuelist));
2717 BUG_ON(ELV_ON_HASH(rq));
2718
2719 list_del_init(&rq->queuelist);
2720
2721 /*
2722 * the time frame between a request being removed from the lists
2723 * and to it is freed is accounted as io that is in progress at
2724 * the driver side.
2725 */
2726 if (blk_account_rq(rq)) {
2727 q->in_flight[rq_is_sync(rq)]++;
2728 set_io_start_time_ns(rq);
2729 }
2730 }
2731
2732 /**
2733 * blk_start_request - start request processing on the driver
2734 * @req: request to dequeue
2735 *
2736 * Description:
2737 * Dequeue @req and start timeout timer on it. This hands off the
2738 * request to the driver.
2739 */
2740 void blk_start_request(struct request *req)
2741 {
2742 lockdep_assert_held(req->q->queue_lock);
2743 WARN_ON_ONCE(req->q->mq_ops);
2744
2745 blk_dequeue_request(req);
2746
2747 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2748 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2749 req->rq_flags |= RQF_STATS;
2750 wbt_issue(req->q->rq_wb, &req->issue_stat);
2751 }
2752
2753 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2754 blk_add_timer(req);
2755 }
2756 EXPORT_SYMBOL(blk_start_request);
2757
2758 /**
2759 * blk_fetch_request - fetch a request from a request queue
2760 * @q: request queue to fetch a request from
2761 *
2762 * Description:
2763 * Return the request at the top of @q. The request is started on
2764 * return and LLD can start processing it immediately.
2765 *
2766 * Return:
2767 * Pointer to the request at the top of @q if available. Null
2768 * otherwise.
2769 */
2770 struct request *blk_fetch_request(struct request_queue *q)
2771 {
2772 struct request *rq;
2773
2774 lockdep_assert_held(q->queue_lock);
2775 WARN_ON_ONCE(q->mq_ops);
2776
2777 rq = blk_peek_request(q);
2778 if (rq)
2779 blk_start_request(rq);
2780 return rq;
2781 }
2782 EXPORT_SYMBOL(blk_fetch_request);
2783
2784 /*
2785 * Steal bios from a request and add them to a bio list.
2786 * The request must not have been partially completed before.
2787 */
2788 void blk_steal_bios(struct bio_list *list, struct request *rq)
2789 {
2790 if (rq->bio) {
2791 if (list->tail)
2792 list->tail->bi_next = rq->bio;
2793 else
2794 list->head = rq->bio;
2795 list->tail = rq->biotail;
2796
2797 rq->bio = NULL;
2798 rq->biotail = NULL;
2799 }
2800
2801 rq->__data_len = 0;
2802 }
2803 EXPORT_SYMBOL_GPL(blk_steal_bios);
2804
2805 /**
2806 * blk_update_request - Special helper function for request stacking drivers
2807 * @req: the request being processed
2808 * @error: block status code
2809 * @nr_bytes: number of bytes to complete @req
2810 *
2811 * Description:
2812 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2813 * the request structure even if @req doesn't have leftover.
2814 * If @req has leftover, sets it up for the next range of segments.
2815 *
2816 * This special helper function is only for request stacking drivers
2817 * (e.g. request-based dm) so that they can handle partial completion.
2818 * Actual device drivers should use blk_end_request instead.
2819 *
2820 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2821 * %false return from this function.
2822 *
2823 * Return:
2824 * %false - this request doesn't have any more data
2825 * %true - this request has more data
2826 **/
2827 bool blk_update_request(struct request *req, blk_status_t error,
2828 unsigned int nr_bytes)
2829 {
2830 int total_bytes;
2831
2832 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2833
2834 if (!req->bio)
2835 return false;
2836
2837 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2838 !(req->rq_flags & RQF_QUIET)))
2839 print_req_error(req, error);
2840
2841 blk_account_io_completion(req, nr_bytes);
2842
2843 total_bytes = 0;
2844 while (req->bio) {
2845 struct bio *bio = req->bio;
2846 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2847
2848 if (bio_bytes == bio->bi_iter.bi_size)
2849 req->bio = bio->bi_next;
2850
2851 /* Completion has already been traced */
2852 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2853 req_bio_endio(req, bio, bio_bytes, error);
2854
2855 total_bytes += bio_bytes;
2856 nr_bytes -= bio_bytes;
2857
2858 if (!nr_bytes)
2859 break;
2860 }
2861
2862 /*
2863 * completely done
2864 */
2865 if (!req->bio) {
2866 /*
2867 * Reset counters so that the request stacking driver
2868 * can find how many bytes remain in the request
2869 * later.
2870 */
2871 req->__data_len = 0;
2872 return false;
2873 }
2874
2875 req->__data_len -= total_bytes;
2876
2877 /* update sector only for requests with clear definition of sector */
2878 if (!blk_rq_is_passthrough(req))
2879 req->__sector += total_bytes >> 9;
2880
2881 /* mixed attributes always follow the first bio */
2882 if (req->rq_flags & RQF_MIXED_MERGE) {
2883 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2884 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2885 }
2886
2887 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2888 /*
2889 * If total number of sectors is less than the first segment
2890 * size, something has gone terribly wrong.
2891 */
2892 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2893 blk_dump_rq_flags(req, "request botched");
2894 req->__data_len = blk_rq_cur_bytes(req);
2895 }
2896
2897 /* recalculate the number of segments */
2898 blk_recalc_rq_segments(req);
2899 }
2900
2901 return true;
2902 }
2903 EXPORT_SYMBOL_GPL(blk_update_request);
2904
2905 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2906 unsigned int nr_bytes,
2907 unsigned int bidi_bytes)
2908 {
2909 if (blk_update_request(rq, error, nr_bytes))
2910 return true;
2911
2912 /* Bidi request must be completed as a whole */
2913 if (unlikely(blk_bidi_rq(rq)) &&
2914 blk_update_request(rq->next_rq, error, bidi_bytes))
2915 return true;
2916
2917 if (blk_queue_add_random(rq->q))
2918 add_disk_randomness(rq->rq_disk);
2919
2920 return false;
2921 }
2922
2923 /**
2924 * blk_unprep_request - unprepare a request
2925 * @req: the request
2926 *
2927 * This function makes a request ready for complete resubmission (or
2928 * completion). It happens only after all error handling is complete,
2929 * so represents the appropriate moment to deallocate any resources
2930 * that were allocated to the request in the prep_rq_fn. The queue
2931 * lock is held when calling this.
2932 */
2933 void blk_unprep_request(struct request *req)
2934 {
2935 struct request_queue *q = req->q;
2936
2937 req->rq_flags &= ~RQF_DONTPREP;
2938 if (q->unprep_rq_fn)
2939 q->unprep_rq_fn(q, req);
2940 }
2941 EXPORT_SYMBOL_GPL(blk_unprep_request);
2942
2943 void blk_finish_request(struct request *req, blk_status_t error)
2944 {
2945 struct request_queue *q = req->q;
2946
2947 lockdep_assert_held(req->q->queue_lock);
2948 WARN_ON_ONCE(q->mq_ops);
2949
2950 if (req->rq_flags & RQF_STATS)
2951 blk_stat_add(req);
2952
2953 if (req->rq_flags & RQF_QUEUED)
2954 blk_queue_end_tag(q, req);
2955
2956 BUG_ON(blk_queued_rq(req));
2957
2958 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2959 laptop_io_completion(req->q->backing_dev_info);
2960
2961 blk_delete_timer(req);
2962
2963 if (req->rq_flags & RQF_DONTPREP)
2964 blk_unprep_request(req);
2965
2966 blk_account_io_done(req);
2967
2968 if (req->end_io) {
2969 wbt_done(req->q->rq_wb, &req->issue_stat);
2970 req->end_io(req, error);
2971 } else {
2972 if (blk_bidi_rq(req))
2973 __blk_put_request(req->next_rq->q, req->next_rq);
2974
2975 __blk_put_request(q, req);
2976 }
2977 }
2978 EXPORT_SYMBOL(blk_finish_request);
2979
2980 /**
2981 * blk_end_bidi_request - Complete a bidi request
2982 * @rq: the request to complete
2983 * @error: block status code
2984 * @nr_bytes: number of bytes to complete @rq
2985 * @bidi_bytes: number of bytes to complete @rq->next_rq
2986 *
2987 * Description:
2988 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2989 * Drivers that supports bidi can safely call this member for any
2990 * type of request, bidi or uni. In the later case @bidi_bytes is
2991 * just ignored.
2992 *
2993 * Return:
2994 * %false - we are done with this request
2995 * %true - still buffers pending for this request
2996 **/
2997 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2998 unsigned int nr_bytes, unsigned int bidi_bytes)
2999 {
3000 struct request_queue *q = rq->q;
3001 unsigned long flags;
3002
3003 WARN_ON_ONCE(q->mq_ops);
3004
3005 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3006 return true;
3007
3008 spin_lock_irqsave(q->queue_lock, flags);
3009 blk_finish_request(rq, error);
3010 spin_unlock_irqrestore(q->queue_lock, flags);
3011
3012 return false;
3013 }
3014
3015 /**
3016 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3017 * @rq: the request to complete
3018 * @error: block status code
3019 * @nr_bytes: number of bytes to complete @rq
3020 * @bidi_bytes: number of bytes to complete @rq->next_rq
3021 *
3022 * Description:
3023 * Identical to blk_end_bidi_request() except that queue lock is
3024 * assumed to be locked on entry and remains so on return.
3025 *
3026 * Return:
3027 * %false - we are done with this request
3028 * %true - still buffers pending for this request
3029 **/
3030 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3031 unsigned int nr_bytes, unsigned int bidi_bytes)
3032 {
3033 lockdep_assert_held(rq->q->queue_lock);
3034 WARN_ON_ONCE(rq->q->mq_ops);
3035
3036 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3037 return true;
3038
3039 blk_finish_request(rq, error);
3040
3041 return false;
3042 }
3043
3044 /**
3045 * blk_end_request - Helper function for drivers to complete the request.
3046 * @rq: the request being processed
3047 * @error: block status code
3048 * @nr_bytes: number of bytes to complete
3049 *
3050 * Description:
3051 * Ends I/O on a number of bytes attached to @rq.
3052 * If @rq has leftover, sets it up for the next range of segments.
3053 *
3054 * Return:
3055 * %false - we are done with this request
3056 * %true - still buffers pending for this request
3057 **/
3058 bool blk_end_request(struct request *rq, blk_status_t error,
3059 unsigned int nr_bytes)
3060 {
3061 WARN_ON_ONCE(rq->q->mq_ops);
3062 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3063 }
3064 EXPORT_SYMBOL(blk_end_request);
3065
3066 /**
3067 * blk_end_request_all - Helper function for drives to finish the request.
3068 * @rq: the request to finish
3069 * @error: block status code
3070 *
3071 * Description:
3072 * Completely finish @rq.
3073 */
3074 void blk_end_request_all(struct request *rq, blk_status_t error)
3075 {
3076 bool pending;
3077 unsigned int bidi_bytes = 0;
3078
3079 if (unlikely(blk_bidi_rq(rq)))
3080 bidi_bytes = blk_rq_bytes(rq->next_rq);
3081
3082 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3083 BUG_ON(pending);
3084 }
3085 EXPORT_SYMBOL(blk_end_request_all);
3086
3087 /**
3088 * __blk_end_request - Helper function for drivers to complete the request.
3089 * @rq: the request being processed
3090 * @error: block status code
3091 * @nr_bytes: number of bytes to complete
3092 *
3093 * Description:
3094 * Must be called with queue lock held unlike blk_end_request().
3095 *
3096 * Return:
3097 * %false - we are done with this request
3098 * %true - still buffers pending for this request
3099 **/
3100 bool __blk_end_request(struct request *rq, blk_status_t error,
3101 unsigned int nr_bytes)
3102 {
3103 lockdep_assert_held(rq->q->queue_lock);
3104 WARN_ON_ONCE(rq->q->mq_ops);
3105
3106 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3107 }
3108 EXPORT_SYMBOL(__blk_end_request);
3109
3110 /**
3111 * __blk_end_request_all - Helper function for drives to finish the request.
3112 * @rq: the request to finish
3113 * @error: block status code
3114 *
3115 * Description:
3116 * Completely finish @rq. Must be called with queue lock held.
3117 */
3118 void __blk_end_request_all(struct request *rq, blk_status_t error)
3119 {
3120 bool pending;
3121 unsigned int bidi_bytes = 0;
3122
3123 lockdep_assert_held(rq->q->queue_lock);
3124 WARN_ON_ONCE(rq->q->mq_ops);
3125
3126 if (unlikely(blk_bidi_rq(rq)))
3127 bidi_bytes = blk_rq_bytes(rq->next_rq);
3128
3129 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3130 BUG_ON(pending);
3131 }
3132 EXPORT_SYMBOL(__blk_end_request_all);
3133
3134 /**
3135 * __blk_end_request_cur - Helper function to finish the current request chunk.
3136 * @rq: the request to finish the current chunk for
3137 * @error: block status code
3138 *
3139 * Description:
3140 * Complete the current consecutively mapped chunk from @rq. Must
3141 * be called with queue lock held.
3142 *
3143 * Return:
3144 * %false - we are done with this request
3145 * %true - still buffers pending for this request
3146 */
3147 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3148 {
3149 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3150 }
3151 EXPORT_SYMBOL(__blk_end_request_cur);
3152
3153 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3154 struct bio *bio)
3155 {
3156 if (bio_has_data(bio))
3157 rq->nr_phys_segments = bio_phys_segments(q, bio);
3158
3159 rq->__data_len = bio->bi_iter.bi_size;
3160 rq->bio = rq->biotail = bio;
3161
3162 if (bio->bi_disk)
3163 rq->rq_disk = bio->bi_disk;
3164 }
3165
3166 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3167 /**
3168 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3169 * @rq: the request to be flushed
3170 *
3171 * Description:
3172 * Flush all pages in @rq.
3173 */
3174 void rq_flush_dcache_pages(struct request *rq)
3175 {
3176 struct req_iterator iter;
3177 struct bio_vec bvec;
3178
3179 rq_for_each_segment(bvec, rq, iter)
3180 flush_dcache_page(bvec.bv_page);
3181 }
3182 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3183 #endif
3184
3185 /**
3186 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3187 * @q : the queue of the device being checked
3188 *
3189 * Description:
3190 * Check if underlying low-level drivers of a device are busy.
3191 * If the drivers want to export their busy state, they must set own
3192 * exporting function using blk_queue_lld_busy() first.
3193 *
3194 * Basically, this function is used only by request stacking drivers
3195 * to stop dispatching requests to underlying devices when underlying
3196 * devices are busy. This behavior helps more I/O merging on the queue
3197 * of the request stacking driver and prevents I/O throughput regression
3198 * on burst I/O load.
3199 *
3200 * Return:
3201 * 0 - Not busy (The request stacking driver should dispatch request)
3202 * 1 - Busy (The request stacking driver should stop dispatching request)
3203 */
3204 int blk_lld_busy(struct request_queue *q)
3205 {
3206 if (q->lld_busy_fn)
3207 return q->lld_busy_fn(q);
3208
3209 return 0;
3210 }
3211 EXPORT_SYMBOL_GPL(blk_lld_busy);
3212
3213 /**
3214 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3215 * @rq: the clone request to be cleaned up
3216 *
3217 * Description:
3218 * Free all bios in @rq for a cloned request.
3219 */
3220 void blk_rq_unprep_clone(struct request *rq)
3221 {
3222 struct bio *bio;
3223
3224 while ((bio = rq->bio) != NULL) {
3225 rq->bio = bio->bi_next;
3226
3227 bio_put(bio);
3228 }
3229 }
3230 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3231
3232 /*
3233 * Copy attributes of the original request to the clone request.
3234 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3235 */
3236 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3237 {
3238 dst->cpu = src->cpu;
3239 dst->__sector = blk_rq_pos(src);
3240 dst->__data_len = blk_rq_bytes(src);
3241 dst->nr_phys_segments = src->nr_phys_segments;
3242 dst->ioprio = src->ioprio;
3243 dst->extra_len = src->extra_len;
3244 }
3245
3246 /**
3247 * blk_rq_prep_clone - Helper function to setup clone request
3248 * @rq: the request to be setup
3249 * @rq_src: original request to be cloned
3250 * @bs: bio_set that bios for clone are allocated from
3251 * @gfp_mask: memory allocation mask for bio
3252 * @bio_ctr: setup function to be called for each clone bio.
3253 * Returns %0 for success, non %0 for failure.
3254 * @data: private data to be passed to @bio_ctr
3255 *
3256 * Description:
3257 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3258 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3259 * are not copied, and copying such parts is the caller's responsibility.
3260 * Also, pages which the original bios are pointing to are not copied
3261 * and the cloned bios just point same pages.
3262 * So cloned bios must be completed before original bios, which means
3263 * the caller must complete @rq before @rq_src.
3264 */
3265 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3266 struct bio_set *bs, gfp_t gfp_mask,
3267 int (*bio_ctr)(struct bio *, struct bio *, void *),
3268 void *data)
3269 {
3270 struct bio *bio, *bio_src;
3271
3272 if (!bs)
3273 bs = fs_bio_set;
3274
3275 __rq_for_each_bio(bio_src, rq_src) {
3276 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3277 if (!bio)
3278 goto free_and_out;
3279
3280 if (bio_ctr && bio_ctr(bio, bio_src, data))
3281 goto free_and_out;
3282
3283 if (rq->bio) {
3284 rq->biotail->bi_next = bio;
3285 rq->biotail = bio;
3286 } else
3287 rq->bio = rq->biotail = bio;
3288 }
3289
3290 __blk_rq_prep_clone(rq, rq_src);
3291
3292 return 0;
3293
3294 free_and_out:
3295 if (bio)
3296 bio_put(bio);
3297 blk_rq_unprep_clone(rq);
3298
3299 return -ENOMEM;
3300 }
3301 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3302
3303 int kblockd_schedule_work(struct work_struct *work)
3304 {
3305 return queue_work(kblockd_workqueue, work);
3306 }
3307 EXPORT_SYMBOL(kblockd_schedule_work);
3308
3309 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3310 {
3311 return queue_work_on(cpu, kblockd_workqueue, work);
3312 }
3313 EXPORT_SYMBOL(kblockd_schedule_work_on);
3314
3315 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3316 unsigned long delay)
3317 {
3318 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3319 }
3320 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3321
3322 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3323 unsigned long delay)
3324 {
3325 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3326 }
3327 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3328
3329 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3330 unsigned long delay)
3331 {
3332 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3333 }
3334 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3335
3336 /**
3337 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3338 * @plug: The &struct blk_plug that needs to be initialized
3339 *
3340 * Description:
3341 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3342 * pending I/O should the task end up blocking between blk_start_plug() and
3343 * blk_finish_plug(). This is important from a performance perspective, but
3344 * also ensures that we don't deadlock. For instance, if the task is blocking
3345 * for a memory allocation, memory reclaim could end up wanting to free a
3346 * page belonging to that request that is currently residing in our private
3347 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3348 * this kind of deadlock.
3349 */
3350 void blk_start_plug(struct blk_plug *plug)
3351 {
3352 struct task_struct *tsk = current;
3353
3354 /*
3355 * If this is a nested plug, don't actually assign it.
3356 */
3357 if (tsk->plug)
3358 return;
3359
3360 INIT_LIST_HEAD(&plug->list);
3361 INIT_LIST_HEAD(&plug->mq_list);
3362 INIT_LIST_HEAD(&plug->cb_list);
3363 /*
3364 * Store ordering should not be needed here, since a potential
3365 * preempt will imply a full memory barrier
3366 */
3367 tsk->plug = plug;
3368 }
3369 EXPORT_SYMBOL(blk_start_plug);
3370
3371 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3372 {
3373 struct request *rqa = container_of(a, struct request, queuelist);
3374 struct request *rqb = container_of(b, struct request, queuelist);
3375
3376 return !(rqa->q < rqb->q ||
3377 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3378 }
3379
3380 /*
3381 * If 'from_schedule' is true, then postpone the dispatch of requests
3382 * until a safe kblockd context. We due this to avoid accidental big
3383 * additional stack usage in driver dispatch, in places where the originally
3384 * plugger did not intend it.
3385 */
3386 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3387 bool from_schedule)
3388 __releases(q->queue_lock)
3389 {
3390 lockdep_assert_held(q->queue_lock);
3391
3392 trace_block_unplug(q, depth, !from_schedule);
3393
3394 if (from_schedule)
3395 blk_run_queue_async(q);
3396 else
3397 __blk_run_queue(q);
3398 spin_unlock(q->queue_lock);
3399 }
3400
3401 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3402 {
3403 LIST_HEAD(callbacks);
3404
3405 while (!list_empty(&plug->cb_list)) {
3406 list_splice_init(&plug->cb_list, &callbacks);
3407
3408 while (!list_empty(&callbacks)) {
3409 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3410 struct blk_plug_cb,
3411 list);
3412 list_del(&cb->list);
3413 cb->callback(cb, from_schedule);
3414 }
3415 }
3416 }
3417
3418 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3419 int size)
3420 {
3421 struct blk_plug *plug = current->plug;
3422 struct blk_plug_cb *cb;
3423
3424 if (!plug)
3425 return NULL;
3426
3427 list_for_each_entry(cb, &plug->cb_list, list)
3428 if (cb->callback == unplug && cb->data == data)
3429 return cb;
3430
3431 /* Not currently on the callback list */
3432 BUG_ON(size < sizeof(*cb));
3433 cb = kzalloc(size, GFP_ATOMIC);
3434 if (cb) {
3435 cb->data = data;
3436 cb->callback = unplug;
3437 list_add(&cb->list, &plug->cb_list);
3438 }
3439 return cb;
3440 }
3441 EXPORT_SYMBOL(blk_check_plugged);
3442
3443 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3444 {
3445 struct request_queue *q;
3446 unsigned long flags;
3447 struct request *rq;
3448 LIST_HEAD(list);
3449 unsigned int depth;
3450
3451 flush_plug_callbacks(plug, from_schedule);
3452
3453 if (!list_empty(&plug->mq_list))
3454 blk_mq_flush_plug_list(plug, from_schedule);
3455
3456 if (list_empty(&plug->list))
3457 return;
3458
3459 list_splice_init(&plug->list, &list);
3460
3461 list_sort(NULL, &list, plug_rq_cmp);
3462
3463 q = NULL;
3464 depth = 0;
3465
3466 /*
3467 * Save and disable interrupts here, to avoid doing it for every
3468 * queue lock we have to take.
3469 */
3470 local_irq_save(flags);
3471 while (!list_empty(&list)) {
3472 rq = list_entry_rq(list.next);
3473 list_del_init(&rq->queuelist);
3474 BUG_ON(!rq->q);
3475 if (rq->q != q) {
3476 /*
3477 * This drops the queue lock
3478 */
3479 if (q)
3480 queue_unplugged(q, depth, from_schedule);
3481 q = rq->q;
3482 depth = 0;
3483 spin_lock(q->queue_lock);
3484 }
3485
3486 /*
3487 * Short-circuit if @q is dead
3488 */
3489 if (unlikely(blk_queue_dying(q))) {
3490 __blk_end_request_all(rq, BLK_STS_IOERR);
3491 continue;
3492 }
3493
3494 /*
3495 * rq is already accounted, so use raw insert
3496 */
3497 if (op_is_flush(rq->cmd_flags))
3498 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3499 else
3500 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3501
3502 depth++;
3503 }
3504
3505 /*
3506 * This drops the queue lock
3507 */
3508 if (q)
3509 queue_unplugged(q, depth, from_schedule);
3510
3511 local_irq_restore(flags);
3512 }
3513
3514 void blk_finish_plug(struct blk_plug *plug)
3515 {
3516 if (plug != current->plug)
3517 return;
3518 blk_flush_plug_list(plug, false);
3519
3520 current->plug = NULL;
3521 }
3522 EXPORT_SYMBOL(blk_finish_plug);
3523
3524 #ifdef CONFIG_PM
3525 /**
3526 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3527 * @q: the queue of the device
3528 * @dev: the device the queue belongs to
3529 *
3530 * Description:
3531 * Initialize runtime-PM-related fields for @q and start auto suspend for
3532 * @dev. Drivers that want to take advantage of request-based runtime PM
3533 * should call this function after @dev has been initialized, and its
3534 * request queue @q has been allocated, and runtime PM for it can not happen
3535 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3536 * cases, driver should call this function before any I/O has taken place.
3537 *
3538 * This function takes care of setting up using auto suspend for the device,
3539 * the autosuspend delay is set to -1 to make runtime suspend impossible
3540 * until an updated value is either set by user or by driver. Drivers do
3541 * not need to touch other autosuspend settings.
3542 *
3543 * The block layer runtime PM is request based, so only works for drivers
3544 * that use request as their IO unit instead of those directly use bio's.
3545 */
3546 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3547 {
3548 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3549 if (q->mq_ops)
3550 return;
3551
3552 q->dev = dev;
3553 q->rpm_status = RPM_ACTIVE;
3554 pm_runtime_set_autosuspend_delay(q->dev, -1);
3555 pm_runtime_use_autosuspend(q->dev);
3556 }
3557 EXPORT_SYMBOL(blk_pm_runtime_init);
3558
3559 /**
3560 * blk_pre_runtime_suspend - Pre runtime suspend check
3561 * @q: the queue of the device
3562 *
3563 * Description:
3564 * This function will check if runtime suspend is allowed for the device
3565 * by examining if there are any requests pending in the queue. If there
3566 * are requests pending, the device can not be runtime suspended; otherwise,
3567 * the queue's status will be updated to SUSPENDING and the driver can
3568 * proceed to suspend the device.
3569 *
3570 * For the not allowed case, we mark last busy for the device so that
3571 * runtime PM core will try to autosuspend it some time later.
3572 *
3573 * This function should be called near the start of the device's
3574 * runtime_suspend callback.
3575 *
3576 * Return:
3577 * 0 - OK to runtime suspend the device
3578 * -EBUSY - Device should not be runtime suspended
3579 */
3580 int blk_pre_runtime_suspend(struct request_queue *q)
3581 {
3582 int ret = 0;
3583
3584 if (!q->dev)
3585 return ret;
3586
3587 spin_lock_irq(q->queue_lock);
3588 if (q->nr_pending) {
3589 ret = -EBUSY;
3590 pm_runtime_mark_last_busy(q->dev);
3591 } else {
3592 q->rpm_status = RPM_SUSPENDING;
3593 }
3594 spin_unlock_irq(q->queue_lock);
3595 return ret;
3596 }
3597 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3598
3599 /**
3600 * blk_post_runtime_suspend - Post runtime suspend processing
3601 * @q: the queue of the device
3602 * @err: return value of the device's runtime_suspend function
3603 *
3604 * Description:
3605 * Update the queue's runtime status according to the return value of the
3606 * device's runtime suspend function and mark last busy for the device so
3607 * that PM core will try to auto suspend the device at a later time.
3608 *
3609 * This function should be called near the end of the device's
3610 * runtime_suspend callback.
3611 */
3612 void blk_post_runtime_suspend(struct request_queue *q, int err)
3613 {
3614 if (!q->dev)
3615 return;
3616
3617 spin_lock_irq(q->queue_lock);
3618 if (!err) {
3619 q->rpm_status = RPM_SUSPENDED;
3620 } else {
3621 q->rpm_status = RPM_ACTIVE;
3622 pm_runtime_mark_last_busy(q->dev);
3623 }
3624 spin_unlock_irq(q->queue_lock);
3625 }
3626 EXPORT_SYMBOL(blk_post_runtime_suspend);
3627
3628 /**
3629 * blk_pre_runtime_resume - Pre runtime resume processing
3630 * @q: the queue of the device
3631 *
3632 * Description:
3633 * Update the queue's runtime status to RESUMING in preparation for the
3634 * runtime resume of the device.
3635 *
3636 * This function should be called near the start of the device's
3637 * runtime_resume callback.
3638 */
3639 void blk_pre_runtime_resume(struct request_queue *q)
3640 {
3641 if (!q->dev)
3642 return;
3643
3644 spin_lock_irq(q->queue_lock);
3645 q->rpm_status = RPM_RESUMING;
3646 spin_unlock_irq(q->queue_lock);
3647 }
3648 EXPORT_SYMBOL(blk_pre_runtime_resume);
3649
3650 /**
3651 * blk_post_runtime_resume - Post runtime resume processing
3652 * @q: the queue of the device
3653 * @err: return value of the device's runtime_resume function
3654 *
3655 * Description:
3656 * Update the queue's runtime status according to the return value of the
3657 * device's runtime_resume function. If it is successfully resumed, process
3658 * the requests that are queued into the device's queue when it is resuming
3659 * and then mark last busy and initiate autosuspend for it.
3660 *
3661 * This function should be called near the end of the device's
3662 * runtime_resume callback.
3663 */
3664 void blk_post_runtime_resume(struct request_queue *q, int err)
3665 {
3666 if (!q->dev)
3667 return;
3668
3669 spin_lock_irq(q->queue_lock);
3670 if (!err) {
3671 q->rpm_status = RPM_ACTIVE;
3672 __blk_run_queue(q);
3673 pm_runtime_mark_last_busy(q->dev);
3674 pm_request_autosuspend(q->dev);
3675 } else {
3676 q->rpm_status = RPM_SUSPENDED;
3677 }
3678 spin_unlock_irq(q->queue_lock);
3679 }
3680 EXPORT_SYMBOL(blk_post_runtime_resume);
3681
3682 /**
3683 * blk_set_runtime_active - Force runtime status of the queue to be active
3684 * @q: the queue of the device
3685 *
3686 * If the device is left runtime suspended during system suspend the resume
3687 * hook typically resumes the device and corrects runtime status
3688 * accordingly. However, that does not affect the queue runtime PM status
3689 * which is still "suspended". This prevents processing requests from the
3690 * queue.
3691 *
3692 * This function can be used in driver's resume hook to correct queue
3693 * runtime PM status and re-enable peeking requests from the queue. It
3694 * should be called before first request is added to the queue.
3695 */
3696 void blk_set_runtime_active(struct request_queue *q)
3697 {
3698 spin_lock_irq(q->queue_lock);
3699 q->rpm_status = RPM_ACTIVE;
3700 pm_runtime_mark_last_busy(q->dev);
3701 pm_request_autosuspend(q->dev);
3702 spin_unlock_irq(q->queue_lock);
3703 }
3704 EXPORT_SYMBOL(blk_set_runtime_active);
3705 #endif
3706
3707 int __init blk_dev_init(void)
3708 {
3709 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3710 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3711 FIELD_SIZEOF(struct request, cmd_flags));
3712 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3713 FIELD_SIZEOF(struct bio, bi_opf));
3714
3715 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3716 kblockd_workqueue = alloc_workqueue("kblockd",
3717 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3718 if (!kblockd_workqueue)
3719 panic("Failed to create kblockd\n");
3720
3721 request_cachep = kmem_cache_create("blkdev_requests",
3722 sizeof(struct request), 0, SLAB_PANIC, NULL);
3723
3724 blk_requestq_cachep = kmem_cache_create("request_queue",
3725 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3726
3727 #ifdef CONFIG_DEBUG_FS
3728 blk_debugfs_root = debugfs_create_dir("block", NULL);
3729 #endif
3730
3731 return 0;
3732 }