]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i)
272 cancel_delayed_work_sync(&hctx->run_work);
273 } else {
274 cancel_delayed_work_sync(&q->delay_work);
275 }
276 }
277 EXPORT_SYMBOL(blk_sync_queue);
278
279 /**
280 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
281 * @q: The queue to run
282 *
283 * Description:
284 * Invoke request handling on a queue if there are any pending requests.
285 * May be used to restart request handling after a request has completed.
286 * This variant runs the queue whether or not the queue has been
287 * stopped. Must be called with the queue lock held and interrupts
288 * disabled. See also @blk_run_queue.
289 */
290 inline void __blk_run_queue_uncond(struct request_queue *q)
291 {
292 if (unlikely(blk_queue_dead(q)))
293 return;
294
295 /*
296 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
297 * the queue lock internally. As a result multiple threads may be
298 * running such a request function concurrently. Keep track of the
299 * number of active request_fn invocations such that blk_drain_queue()
300 * can wait until all these request_fn calls have finished.
301 */
302 q->request_fn_active++;
303 q->request_fn(q);
304 q->request_fn_active--;
305 }
306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
307
308 /**
309 * __blk_run_queue - run a single device queue
310 * @q: The queue to run
311 *
312 * Description:
313 * See @blk_run_queue. This variant must be called with the queue lock
314 * held and interrupts disabled.
315 */
316 void __blk_run_queue(struct request_queue *q)
317 {
318 if (unlikely(blk_queue_stopped(q)))
319 return;
320
321 __blk_run_queue_uncond(q);
322 }
323 EXPORT_SYMBOL(__blk_run_queue);
324
325 /**
326 * blk_run_queue_async - run a single device queue in workqueue context
327 * @q: The queue to run
328 *
329 * Description:
330 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
331 * of us. The caller must hold the queue lock.
332 */
333 void blk_run_queue_async(struct request_queue *q)
334 {
335 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
336 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
337 }
338 EXPORT_SYMBOL(blk_run_queue_async);
339
340 /**
341 * blk_run_queue - run a single device queue
342 * @q: The queue to run
343 *
344 * Description:
345 * Invoke request handling on this queue, if it has pending work to do.
346 * May be used to restart queueing when a request has completed.
347 */
348 void blk_run_queue(struct request_queue *q)
349 {
350 unsigned long flags;
351
352 spin_lock_irqsave(q->queue_lock, flags);
353 __blk_run_queue(q);
354 spin_unlock_irqrestore(q->queue_lock, flags);
355 }
356 EXPORT_SYMBOL(blk_run_queue);
357
358 void blk_put_queue(struct request_queue *q)
359 {
360 kobject_put(&q->kobj);
361 }
362 EXPORT_SYMBOL(blk_put_queue);
363
364 /**
365 * __blk_drain_queue - drain requests from request_queue
366 * @q: queue to drain
367 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
368 *
369 * Drain requests from @q. If @drain_all is set, all requests are drained.
370 * If not, only ELVPRIV requests are drained. The caller is responsible
371 * for ensuring that no new requests which need to be drained are queued.
372 */
373 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
374 __releases(q->queue_lock)
375 __acquires(q->queue_lock)
376 {
377 int i;
378
379 lockdep_assert_held(q->queue_lock);
380
381 while (true) {
382 bool drain = false;
383
384 /*
385 * The caller might be trying to drain @q before its
386 * elevator is initialized.
387 */
388 if (q->elevator)
389 elv_drain_elevator(q);
390
391 blkcg_drain_queue(q);
392
393 /*
394 * This function might be called on a queue which failed
395 * driver init after queue creation or is not yet fully
396 * active yet. Some drivers (e.g. fd and loop) get unhappy
397 * in such cases. Kick queue iff dispatch queue has
398 * something on it and @q has request_fn set.
399 */
400 if (!list_empty(&q->queue_head) && q->request_fn)
401 __blk_run_queue(q);
402
403 drain |= q->nr_rqs_elvpriv;
404 drain |= q->request_fn_active;
405
406 /*
407 * Unfortunately, requests are queued at and tracked from
408 * multiple places and there's no single counter which can
409 * be drained. Check all the queues and counters.
410 */
411 if (drain_all) {
412 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
413 drain |= !list_empty(&q->queue_head);
414 for (i = 0; i < 2; i++) {
415 drain |= q->nr_rqs[i];
416 drain |= q->in_flight[i];
417 if (fq)
418 drain |= !list_empty(&fq->flush_queue[i]);
419 }
420 }
421
422 if (!drain)
423 break;
424
425 spin_unlock_irq(q->queue_lock);
426
427 msleep(10);
428
429 spin_lock_irq(q->queue_lock);
430 }
431
432 /*
433 * With queue marked dead, any woken up waiter will fail the
434 * allocation path, so the wakeup chaining is lost and we're
435 * left with hung waiters. We need to wake up those waiters.
436 */
437 if (q->request_fn) {
438 struct request_list *rl;
439
440 blk_queue_for_each_rl(rl, q)
441 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
442 wake_up_all(&rl->wait[i]);
443 }
444 }
445
446 /**
447 * blk_queue_bypass_start - enter queue bypass mode
448 * @q: queue of interest
449 *
450 * In bypass mode, only the dispatch FIFO queue of @q is used. This
451 * function makes @q enter bypass mode and drains all requests which were
452 * throttled or issued before. On return, it's guaranteed that no request
453 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
454 * inside queue or RCU read lock.
455 */
456 void blk_queue_bypass_start(struct request_queue *q)
457 {
458 spin_lock_irq(q->queue_lock);
459 q->bypass_depth++;
460 queue_flag_set(QUEUE_FLAG_BYPASS, q);
461 spin_unlock_irq(q->queue_lock);
462
463 /*
464 * Queues start drained. Skip actual draining till init is
465 * complete. This avoids lenghty delays during queue init which
466 * can happen many times during boot.
467 */
468 if (blk_queue_init_done(q)) {
469 spin_lock_irq(q->queue_lock);
470 __blk_drain_queue(q, false);
471 spin_unlock_irq(q->queue_lock);
472
473 /* ensure blk_queue_bypass() is %true inside RCU read lock */
474 synchronize_rcu();
475 }
476 }
477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478
479 /**
480 * blk_queue_bypass_end - leave queue bypass mode
481 * @q: queue of interest
482 *
483 * Leave bypass mode and restore the normal queueing behavior.
484 */
485 void blk_queue_bypass_end(struct request_queue *q)
486 {
487 spin_lock_irq(q->queue_lock);
488 if (!--q->bypass_depth)
489 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 WARN_ON_ONCE(q->bypass_depth < 0);
491 spin_unlock_irq(q->queue_lock);
492 }
493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494
495 void blk_set_queue_dying(struct request_queue *q)
496 {
497 spin_lock_irq(q->queue_lock);
498 queue_flag_set(QUEUE_FLAG_DYING, q);
499 spin_unlock_irq(q->queue_lock);
500
501 /*
502 * When queue DYING flag is set, we need to block new req
503 * entering queue, so we call blk_freeze_queue_start() to
504 * prevent I/O from crossing blk_queue_enter().
505 */
506 blk_freeze_queue_start(q);
507
508 if (q->mq_ops)
509 blk_mq_wake_waiters(q);
510 else {
511 struct request_list *rl;
512
513 spin_lock_irq(q->queue_lock);
514 blk_queue_for_each_rl(rl, q) {
515 if (rl->rq_pool) {
516 wake_up(&rl->wait[BLK_RW_SYNC]);
517 wake_up(&rl->wait[BLK_RW_ASYNC]);
518 }
519 }
520 spin_unlock_irq(q->queue_lock);
521 }
522 }
523 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
524
525 /**
526 * blk_cleanup_queue - shutdown a request queue
527 * @q: request queue to shutdown
528 *
529 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
530 * put it. All future requests will be failed immediately with -ENODEV.
531 */
532 void blk_cleanup_queue(struct request_queue *q)
533 {
534 spinlock_t *lock = q->queue_lock;
535
536 /* mark @q DYING, no new request or merges will be allowed afterwards */
537 mutex_lock(&q->sysfs_lock);
538 blk_set_queue_dying(q);
539 spin_lock_irq(lock);
540
541 /*
542 * A dying queue is permanently in bypass mode till released. Note
543 * that, unlike blk_queue_bypass_start(), we aren't performing
544 * synchronize_rcu() after entering bypass mode to avoid the delay
545 * as some drivers create and destroy a lot of queues while
546 * probing. This is still safe because blk_release_queue() will be
547 * called only after the queue refcnt drops to zero and nothing,
548 * RCU or not, would be traversing the queue by then.
549 */
550 q->bypass_depth++;
551 queue_flag_set(QUEUE_FLAG_BYPASS, q);
552
553 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
554 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
555 queue_flag_set(QUEUE_FLAG_DYING, q);
556 spin_unlock_irq(lock);
557 mutex_unlock(&q->sysfs_lock);
558
559 /*
560 * Drain all requests queued before DYING marking. Set DEAD flag to
561 * prevent that q->request_fn() gets invoked after draining finished.
562 */
563 blk_freeze_queue(q);
564 spin_lock_irq(lock);
565 if (!q->mq_ops)
566 __blk_drain_queue(q, true);
567 queue_flag_set(QUEUE_FLAG_DEAD, q);
568 spin_unlock_irq(lock);
569
570 /* for synchronous bio-based driver finish in-flight integrity i/o */
571 blk_flush_integrity();
572
573 /* @q won't process any more request, flush async actions */
574 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
575 blk_sync_queue(q);
576
577 if (q->mq_ops)
578 blk_mq_free_queue(q);
579 percpu_ref_exit(&q->q_usage_counter);
580
581 spin_lock_irq(lock);
582 if (q->queue_lock != &q->__queue_lock)
583 q->queue_lock = &q->__queue_lock;
584 spin_unlock_irq(lock);
585
586 /* @q is and will stay empty, shutdown and put */
587 blk_put_queue(q);
588 }
589 EXPORT_SYMBOL(blk_cleanup_queue);
590
591 /* Allocate memory local to the request queue */
592 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
593 {
594 struct request_queue *q = data;
595
596 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
597 }
598
599 static void free_request_simple(void *element, void *data)
600 {
601 kmem_cache_free(request_cachep, element);
602 }
603
604 static void *alloc_request_size(gfp_t gfp_mask, void *data)
605 {
606 struct request_queue *q = data;
607 struct request *rq;
608
609 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
610 q->node);
611 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
612 kfree(rq);
613 rq = NULL;
614 }
615 return rq;
616 }
617
618 static void free_request_size(void *element, void *data)
619 {
620 struct request_queue *q = data;
621
622 if (q->exit_rq_fn)
623 q->exit_rq_fn(q, element);
624 kfree(element);
625 }
626
627 int blk_init_rl(struct request_list *rl, struct request_queue *q,
628 gfp_t gfp_mask)
629 {
630 if (unlikely(rl->rq_pool))
631 return 0;
632
633 rl->q = q;
634 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
635 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
636 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
637 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
638
639 if (q->cmd_size) {
640 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
641 alloc_request_size, free_request_size,
642 q, gfp_mask, q->node);
643 } else {
644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
645 alloc_request_simple, free_request_simple,
646 q, gfp_mask, q->node);
647 }
648 if (!rl->rq_pool)
649 return -ENOMEM;
650
651 return 0;
652 }
653
654 void blk_exit_rl(struct request_list *rl)
655 {
656 if (rl->rq_pool)
657 mempool_destroy(rl->rq_pool);
658 }
659
660 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
661 {
662 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
663 }
664 EXPORT_SYMBOL(blk_alloc_queue);
665
666 int blk_queue_enter(struct request_queue *q, bool nowait)
667 {
668 while (true) {
669 int ret;
670
671 if (percpu_ref_tryget_live(&q->q_usage_counter))
672 return 0;
673
674 if (nowait)
675 return -EBUSY;
676
677 /*
678 * read pair of barrier in blk_freeze_queue_start(),
679 * we need to order reading __PERCPU_REF_DEAD flag of
680 * .q_usage_counter and reading .mq_freeze_depth or
681 * queue dying flag, otherwise the following wait may
682 * never return if the two reads are reordered.
683 */
684 smp_rmb();
685
686 ret = wait_event_interruptible(q->mq_freeze_wq,
687 !atomic_read(&q->mq_freeze_depth) ||
688 blk_queue_dying(q));
689 if (blk_queue_dying(q))
690 return -ENODEV;
691 if (ret)
692 return ret;
693 }
694 }
695
696 void blk_queue_exit(struct request_queue *q)
697 {
698 percpu_ref_put(&q->q_usage_counter);
699 }
700
701 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
702 {
703 struct request_queue *q =
704 container_of(ref, struct request_queue, q_usage_counter);
705
706 wake_up_all(&q->mq_freeze_wq);
707 }
708
709 static void blk_rq_timed_out_timer(unsigned long data)
710 {
711 struct request_queue *q = (struct request_queue *)data;
712
713 kblockd_schedule_work(&q->timeout_work);
714 }
715
716 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
717 {
718 struct request_queue *q;
719
720 q = kmem_cache_alloc_node(blk_requestq_cachep,
721 gfp_mask | __GFP_ZERO, node_id);
722 if (!q)
723 return NULL;
724
725 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
726 if (q->id < 0)
727 goto fail_q;
728
729 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
730 if (!q->bio_split)
731 goto fail_id;
732
733 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
734 if (!q->backing_dev_info)
735 goto fail_split;
736
737 q->stats = blk_alloc_queue_stats();
738 if (!q->stats)
739 goto fail_stats;
740
741 q->backing_dev_info->ra_pages =
742 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
743 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
744 q->backing_dev_info->name = "block";
745 q->node = node_id;
746
747 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
748 laptop_mode_timer_fn, (unsigned long) q);
749 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
750 INIT_LIST_HEAD(&q->queue_head);
751 INIT_LIST_HEAD(&q->timeout_list);
752 INIT_LIST_HEAD(&q->icq_list);
753 #ifdef CONFIG_BLK_CGROUP
754 INIT_LIST_HEAD(&q->blkg_list);
755 #endif
756 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
757
758 kobject_init(&q->kobj, &blk_queue_ktype);
759
760 mutex_init(&q->sysfs_lock);
761 spin_lock_init(&q->__queue_lock);
762
763 /*
764 * By default initialize queue_lock to internal lock and driver can
765 * override it later if need be.
766 */
767 q->queue_lock = &q->__queue_lock;
768
769 /*
770 * A queue starts its life with bypass turned on to avoid
771 * unnecessary bypass on/off overhead and nasty surprises during
772 * init. The initial bypass will be finished when the queue is
773 * registered by blk_register_queue().
774 */
775 q->bypass_depth = 1;
776 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
777
778 init_waitqueue_head(&q->mq_freeze_wq);
779
780 /*
781 * Init percpu_ref in atomic mode so that it's faster to shutdown.
782 * See blk_register_queue() for details.
783 */
784 if (percpu_ref_init(&q->q_usage_counter,
785 blk_queue_usage_counter_release,
786 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
787 goto fail_bdi;
788
789 if (blkcg_init_queue(q))
790 goto fail_ref;
791
792 return q;
793
794 fail_ref:
795 percpu_ref_exit(&q->q_usage_counter);
796 fail_bdi:
797 blk_free_queue_stats(q->stats);
798 fail_stats:
799 bdi_put(q->backing_dev_info);
800 fail_split:
801 bioset_free(q->bio_split);
802 fail_id:
803 ida_simple_remove(&blk_queue_ida, q->id);
804 fail_q:
805 kmem_cache_free(blk_requestq_cachep, q);
806 return NULL;
807 }
808 EXPORT_SYMBOL(blk_alloc_queue_node);
809
810 /**
811 * blk_init_queue - prepare a request queue for use with a block device
812 * @rfn: The function to be called to process requests that have been
813 * placed on the queue.
814 * @lock: Request queue spin lock
815 *
816 * Description:
817 * If a block device wishes to use the standard request handling procedures,
818 * which sorts requests and coalesces adjacent requests, then it must
819 * call blk_init_queue(). The function @rfn will be called when there
820 * are requests on the queue that need to be processed. If the device
821 * supports plugging, then @rfn may not be called immediately when requests
822 * are available on the queue, but may be called at some time later instead.
823 * Plugged queues are generally unplugged when a buffer belonging to one
824 * of the requests on the queue is needed, or due to memory pressure.
825 *
826 * @rfn is not required, or even expected, to remove all requests off the
827 * queue, but only as many as it can handle at a time. If it does leave
828 * requests on the queue, it is responsible for arranging that the requests
829 * get dealt with eventually.
830 *
831 * The queue spin lock must be held while manipulating the requests on the
832 * request queue; this lock will be taken also from interrupt context, so irq
833 * disabling is needed for it.
834 *
835 * Function returns a pointer to the initialized request queue, or %NULL if
836 * it didn't succeed.
837 *
838 * Note:
839 * blk_init_queue() must be paired with a blk_cleanup_queue() call
840 * when the block device is deactivated (such as at module unload).
841 **/
842
843 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
844 {
845 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
846 }
847 EXPORT_SYMBOL(blk_init_queue);
848
849 struct request_queue *
850 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
851 {
852 struct request_queue *q;
853
854 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
855 if (!q)
856 return NULL;
857
858 q->request_fn = rfn;
859 if (lock)
860 q->queue_lock = lock;
861 if (blk_init_allocated_queue(q) < 0) {
862 blk_cleanup_queue(q);
863 return NULL;
864 }
865
866 return q;
867 }
868 EXPORT_SYMBOL(blk_init_queue_node);
869
870 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
871
872
873 int blk_init_allocated_queue(struct request_queue *q)
874 {
875 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
876 if (!q->fq)
877 return -ENOMEM;
878
879 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
880 goto out_free_flush_queue;
881
882 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
883 goto out_exit_flush_rq;
884
885 INIT_WORK(&q->timeout_work, blk_timeout_work);
886 q->queue_flags |= QUEUE_FLAG_DEFAULT;
887
888 /*
889 * This also sets hw/phys segments, boundary and size
890 */
891 blk_queue_make_request(q, blk_queue_bio);
892
893 q->sg_reserved_size = INT_MAX;
894
895 /* Protect q->elevator from elevator_change */
896 mutex_lock(&q->sysfs_lock);
897
898 /* init elevator */
899 if (elevator_init(q, NULL)) {
900 mutex_unlock(&q->sysfs_lock);
901 goto out_exit_flush_rq;
902 }
903
904 mutex_unlock(&q->sysfs_lock);
905 return 0;
906
907 out_exit_flush_rq:
908 if (q->exit_rq_fn)
909 q->exit_rq_fn(q, q->fq->flush_rq);
910 out_free_flush_queue:
911 blk_free_flush_queue(q->fq);
912 return -ENOMEM;
913 }
914 EXPORT_SYMBOL(blk_init_allocated_queue);
915
916 bool blk_get_queue(struct request_queue *q)
917 {
918 if (likely(!blk_queue_dying(q))) {
919 __blk_get_queue(q);
920 return true;
921 }
922
923 return false;
924 }
925 EXPORT_SYMBOL(blk_get_queue);
926
927 static inline void blk_free_request(struct request_list *rl, struct request *rq)
928 {
929 if (rq->rq_flags & RQF_ELVPRIV) {
930 elv_put_request(rl->q, rq);
931 if (rq->elv.icq)
932 put_io_context(rq->elv.icq->ioc);
933 }
934
935 mempool_free(rq, rl->rq_pool);
936 }
937
938 /*
939 * ioc_batching returns true if the ioc is a valid batching request and
940 * should be given priority access to a request.
941 */
942 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
943 {
944 if (!ioc)
945 return 0;
946
947 /*
948 * Make sure the process is able to allocate at least 1 request
949 * even if the batch times out, otherwise we could theoretically
950 * lose wakeups.
951 */
952 return ioc->nr_batch_requests == q->nr_batching ||
953 (ioc->nr_batch_requests > 0
954 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
955 }
956
957 /*
958 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
959 * will cause the process to be a "batcher" on all queues in the system. This
960 * is the behaviour we want though - once it gets a wakeup it should be given
961 * a nice run.
962 */
963 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
964 {
965 if (!ioc || ioc_batching(q, ioc))
966 return;
967
968 ioc->nr_batch_requests = q->nr_batching;
969 ioc->last_waited = jiffies;
970 }
971
972 static void __freed_request(struct request_list *rl, int sync)
973 {
974 struct request_queue *q = rl->q;
975
976 if (rl->count[sync] < queue_congestion_off_threshold(q))
977 blk_clear_congested(rl, sync);
978
979 if (rl->count[sync] + 1 <= q->nr_requests) {
980 if (waitqueue_active(&rl->wait[sync]))
981 wake_up(&rl->wait[sync]);
982
983 blk_clear_rl_full(rl, sync);
984 }
985 }
986
987 /*
988 * A request has just been released. Account for it, update the full and
989 * congestion status, wake up any waiters. Called under q->queue_lock.
990 */
991 static void freed_request(struct request_list *rl, bool sync,
992 req_flags_t rq_flags)
993 {
994 struct request_queue *q = rl->q;
995
996 q->nr_rqs[sync]--;
997 rl->count[sync]--;
998 if (rq_flags & RQF_ELVPRIV)
999 q->nr_rqs_elvpriv--;
1000
1001 __freed_request(rl, sync);
1002
1003 if (unlikely(rl->starved[sync ^ 1]))
1004 __freed_request(rl, sync ^ 1);
1005 }
1006
1007 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1008 {
1009 struct request_list *rl;
1010 int on_thresh, off_thresh;
1011
1012 spin_lock_irq(q->queue_lock);
1013 q->nr_requests = nr;
1014 blk_queue_congestion_threshold(q);
1015 on_thresh = queue_congestion_on_threshold(q);
1016 off_thresh = queue_congestion_off_threshold(q);
1017
1018 blk_queue_for_each_rl(rl, q) {
1019 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1020 blk_set_congested(rl, BLK_RW_SYNC);
1021 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1022 blk_clear_congested(rl, BLK_RW_SYNC);
1023
1024 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1025 blk_set_congested(rl, BLK_RW_ASYNC);
1026 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1027 blk_clear_congested(rl, BLK_RW_ASYNC);
1028
1029 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1030 blk_set_rl_full(rl, BLK_RW_SYNC);
1031 } else {
1032 blk_clear_rl_full(rl, BLK_RW_SYNC);
1033 wake_up(&rl->wait[BLK_RW_SYNC]);
1034 }
1035
1036 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1037 blk_set_rl_full(rl, BLK_RW_ASYNC);
1038 } else {
1039 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1040 wake_up(&rl->wait[BLK_RW_ASYNC]);
1041 }
1042 }
1043
1044 spin_unlock_irq(q->queue_lock);
1045 return 0;
1046 }
1047
1048 /**
1049 * __get_request - get a free request
1050 * @rl: request list to allocate from
1051 * @op: operation and flags
1052 * @bio: bio to allocate request for (can be %NULL)
1053 * @gfp_mask: allocation mask
1054 *
1055 * Get a free request from @q. This function may fail under memory
1056 * pressure or if @q is dead.
1057 *
1058 * Must be called with @q->queue_lock held and,
1059 * Returns ERR_PTR on failure, with @q->queue_lock held.
1060 * Returns request pointer on success, with @q->queue_lock *not held*.
1061 */
1062 static struct request *__get_request(struct request_list *rl, unsigned int op,
1063 struct bio *bio, gfp_t gfp_mask)
1064 {
1065 struct request_queue *q = rl->q;
1066 struct request *rq;
1067 struct elevator_type *et = q->elevator->type;
1068 struct io_context *ioc = rq_ioc(bio);
1069 struct io_cq *icq = NULL;
1070 const bool is_sync = op_is_sync(op);
1071 int may_queue;
1072 req_flags_t rq_flags = RQF_ALLOCED;
1073
1074 if (unlikely(blk_queue_dying(q)))
1075 return ERR_PTR(-ENODEV);
1076
1077 may_queue = elv_may_queue(q, op);
1078 if (may_queue == ELV_MQUEUE_NO)
1079 goto rq_starved;
1080
1081 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1082 if (rl->count[is_sync]+1 >= q->nr_requests) {
1083 /*
1084 * The queue will fill after this allocation, so set
1085 * it as full, and mark this process as "batching".
1086 * This process will be allowed to complete a batch of
1087 * requests, others will be blocked.
1088 */
1089 if (!blk_rl_full(rl, is_sync)) {
1090 ioc_set_batching(q, ioc);
1091 blk_set_rl_full(rl, is_sync);
1092 } else {
1093 if (may_queue != ELV_MQUEUE_MUST
1094 && !ioc_batching(q, ioc)) {
1095 /*
1096 * The queue is full and the allocating
1097 * process is not a "batcher", and not
1098 * exempted by the IO scheduler
1099 */
1100 return ERR_PTR(-ENOMEM);
1101 }
1102 }
1103 }
1104 blk_set_congested(rl, is_sync);
1105 }
1106
1107 /*
1108 * Only allow batching queuers to allocate up to 50% over the defined
1109 * limit of requests, otherwise we could have thousands of requests
1110 * allocated with any setting of ->nr_requests
1111 */
1112 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1113 return ERR_PTR(-ENOMEM);
1114
1115 q->nr_rqs[is_sync]++;
1116 rl->count[is_sync]++;
1117 rl->starved[is_sync] = 0;
1118
1119 /*
1120 * Decide whether the new request will be managed by elevator. If
1121 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1122 * prevent the current elevator from being destroyed until the new
1123 * request is freed. This guarantees icq's won't be destroyed and
1124 * makes creating new ones safe.
1125 *
1126 * Flush requests do not use the elevator so skip initialization.
1127 * This allows a request to share the flush and elevator data.
1128 *
1129 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1130 * it will be created after releasing queue_lock.
1131 */
1132 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1133 rq_flags |= RQF_ELVPRIV;
1134 q->nr_rqs_elvpriv++;
1135 if (et->icq_cache && ioc)
1136 icq = ioc_lookup_icq(ioc, q);
1137 }
1138
1139 if (blk_queue_io_stat(q))
1140 rq_flags |= RQF_IO_STAT;
1141 spin_unlock_irq(q->queue_lock);
1142
1143 /* allocate and init request */
1144 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1145 if (!rq)
1146 goto fail_alloc;
1147
1148 blk_rq_init(q, rq);
1149 blk_rq_set_rl(rq, rl);
1150 rq->cmd_flags = op;
1151 rq->rq_flags = rq_flags;
1152
1153 /* init elvpriv */
1154 if (rq_flags & RQF_ELVPRIV) {
1155 if (unlikely(et->icq_cache && !icq)) {
1156 if (ioc)
1157 icq = ioc_create_icq(ioc, q, gfp_mask);
1158 if (!icq)
1159 goto fail_elvpriv;
1160 }
1161
1162 rq->elv.icq = icq;
1163 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1164 goto fail_elvpriv;
1165
1166 /* @rq->elv.icq holds io_context until @rq is freed */
1167 if (icq)
1168 get_io_context(icq->ioc);
1169 }
1170 out:
1171 /*
1172 * ioc may be NULL here, and ioc_batching will be false. That's
1173 * OK, if the queue is under the request limit then requests need
1174 * not count toward the nr_batch_requests limit. There will always
1175 * be some limit enforced by BLK_BATCH_TIME.
1176 */
1177 if (ioc_batching(q, ioc))
1178 ioc->nr_batch_requests--;
1179
1180 trace_block_getrq(q, bio, op);
1181 return rq;
1182
1183 fail_elvpriv:
1184 /*
1185 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1186 * and may fail indefinitely under memory pressure and thus
1187 * shouldn't stall IO. Treat this request as !elvpriv. This will
1188 * disturb iosched and blkcg but weird is bettern than dead.
1189 */
1190 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1191 __func__, dev_name(q->backing_dev_info->dev));
1192
1193 rq->rq_flags &= ~RQF_ELVPRIV;
1194 rq->elv.icq = NULL;
1195
1196 spin_lock_irq(q->queue_lock);
1197 q->nr_rqs_elvpriv--;
1198 spin_unlock_irq(q->queue_lock);
1199 goto out;
1200
1201 fail_alloc:
1202 /*
1203 * Allocation failed presumably due to memory. Undo anything we
1204 * might have messed up.
1205 *
1206 * Allocating task should really be put onto the front of the wait
1207 * queue, but this is pretty rare.
1208 */
1209 spin_lock_irq(q->queue_lock);
1210 freed_request(rl, is_sync, rq_flags);
1211
1212 /*
1213 * in the very unlikely event that allocation failed and no
1214 * requests for this direction was pending, mark us starved so that
1215 * freeing of a request in the other direction will notice
1216 * us. another possible fix would be to split the rq mempool into
1217 * READ and WRITE
1218 */
1219 rq_starved:
1220 if (unlikely(rl->count[is_sync] == 0))
1221 rl->starved[is_sync] = 1;
1222 return ERR_PTR(-ENOMEM);
1223 }
1224
1225 /**
1226 * get_request - get a free request
1227 * @q: request_queue to allocate request from
1228 * @op: operation and flags
1229 * @bio: bio to allocate request for (can be %NULL)
1230 * @gfp_mask: allocation mask
1231 *
1232 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1233 * this function keeps retrying under memory pressure and fails iff @q is dead.
1234 *
1235 * Must be called with @q->queue_lock held and,
1236 * Returns ERR_PTR on failure, with @q->queue_lock held.
1237 * Returns request pointer on success, with @q->queue_lock *not held*.
1238 */
1239 static struct request *get_request(struct request_queue *q, unsigned int op,
1240 struct bio *bio, gfp_t gfp_mask)
1241 {
1242 const bool is_sync = op_is_sync(op);
1243 DEFINE_WAIT(wait);
1244 struct request_list *rl;
1245 struct request *rq;
1246
1247 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1248 retry:
1249 rq = __get_request(rl, op, bio, gfp_mask);
1250 if (!IS_ERR(rq))
1251 return rq;
1252
1253 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1254 blk_put_rl(rl);
1255 return rq;
1256 }
1257
1258 /* wait on @rl and retry */
1259 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1260 TASK_UNINTERRUPTIBLE);
1261
1262 trace_block_sleeprq(q, bio, op);
1263
1264 spin_unlock_irq(q->queue_lock);
1265 io_schedule();
1266
1267 /*
1268 * After sleeping, we become a "batching" process and will be able
1269 * to allocate at least one request, and up to a big batch of them
1270 * for a small period time. See ioc_batching, ioc_set_batching
1271 */
1272 ioc_set_batching(q, current->io_context);
1273
1274 spin_lock_irq(q->queue_lock);
1275 finish_wait(&rl->wait[is_sync], &wait);
1276
1277 goto retry;
1278 }
1279
1280 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1281 gfp_t gfp_mask)
1282 {
1283 struct request *rq;
1284
1285 /* create ioc upfront */
1286 create_io_context(gfp_mask, q->node);
1287
1288 spin_lock_irq(q->queue_lock);
1289 rq = get_request(q, rw, NULL, gfp_mask);
1290 if (IS_ERR(rq)) {
1291 spin_unlock_irq(q->queue_lock);
1292 return rq;
1293 }
1294
1295 /* q->queue_lock is unlocked at this point */
1296 rq->__data_len = 0;
1297 rq->__sector = (sector_t) -1;
1298 rq->bio = rq->biotail = NULL;
1299 return rq;
1300 }
1301
1302 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1303 {
1304 if (q->mq_ops)
1305 return blk_mq_alloc_request(q, rw,
1306 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1307 0 : BLK_MQ_REQ_NOWAIT);
1308 else
1309 return blk_old_get_request(q, rw, gfp_mask);
1310 }
1311 EXPORT_SYMBOL(blk_get_request);
1312
1313 /**
1314 * blk_requeue_request - put a request back on queue
1315 * @q: request queue where request should be inserted
1316 * @rq: request to be inserted
1317 *
1318 * Description:
1319 * Drivers often keep queueing requests until the hardware cannot accept
1320 * more, when that condition happens we need to put the request back
1321 * on the queue. Must be called with queue lock held.
1322 */
1323 void blk_requeue_request(struct request_queue *q, struct request *rq)
1324 {
1325 blk_delete_timer(rq);
1326 blk_clear_rq_complete(rq);
1327 trace_block_rq_requeue(q, rq);
1328 wbt_requeue(q->rq_wb, &rq->issue_stat);
1329
1330 if (rq->rq_flags & RQF_QUEUED)
1331 blk_queue_end_tag(q, rq);
1332
1333 BUG_ON(blk_queued_rq(rq));
1334
1335 elv_requeue_request(q, rq);
1336 }
1337 EXPORT_SYMBOL(blk_requeue_request);
1338
1339 static void add_acct_request(struct request_queue *q, struct request *rq,
1340 int where)
1341 {
1342 blk_account_io_start(rq, true);
1343 __elv_add_request(q, rq, where);
1344 }
1345
1346 static void part_round_stats_single(int cpu, struct hd_struct *part,
1347 unsigned long now)
1348 {
1349 int inflight;
1350
1351 if (now == part->stamp)
1352 return;
1353
1354 inflight = part_in_flight(part);
1355 if (inflight) {
1356 __part_stat_add(cpu, part, time_in_queue,
1357 inflight * (now - part->stamp));
1358 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1359 }
1360 part->stamp = now;
1361 }
1362
1363 /**
1364 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1365 * @cpu: cpu number for stats access
1366 * @part: target partition
1367 *
1368 * The average IO queue length and utilisation statistics are maintained
1369 * by observing the current state of the queue length and the amount of
1370 * time it has been in this state for.
1371 *
1372 * Normally, that accounting is done on IO completion, but that can result
1373 * in more than a second's worth of IO being accounted for within any one
1374 * second, leading to >100% utilisation. To deal with that, we call this
1375 * function to do a round-off before returning the results when reading
1376 * /proc/diskstats. This accounts immediately for all queue usage up to
1377 * the current jiffies and restarts the counters again.
1378 */
1379 void part_round_stats(int cpu, struct hd_struct *part)
1380 {
1381 unsigned long now = jiffies;
1382
1383 if (part->partno)
1384 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1385 part_round_stats_single(cpu, part, now);
1386 }
1387 EXPORT_SYMBOL_GPL(part_round_stats);
1388
1389 #ifdef CONFIG_PM
1390 static void blk_pm_put_request(struct request *rq)
1391 {
1392 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1393 pm_runtime_mark_last_busy(rq->q->dev);
1394 }
1395 #else
1396 static inline void blk_pm_put_request(struct request *rq) {}
1397 #endif
1398
1399 /*
1400 * queue lock must be held
1401 */
1402 void __blk_put_request(struct request_queue *q, struct request *req)
1403 {
1404 req_flags_t rq_flags = req->rq_flags;
1405
1406 if (unlikely(!q))
1407 return;
1408
1409 if (q->mq_ops) {
1410 blk_mq_free_request(req);
1411 return;
1412 }
1413
1414 blk_pm_put_request(req);
1415
1416 elv_completed_request(q, req);
1417
1418 /* this is a bio leak */
1419 WARN_ON(req->bio != NULL);
1420
1421 wbt_done(q->rq_wb, &req->issue_stat);
1422
1423 /*
1424 * Request may not have originated from ll_rw_blk. if not,
1425 * it didn't come out of our reserved rq pools
1426 */
1427 if (rq_flags & RQF_ALLOCED) {
1428 struct request_list *rl = blk_rq_rl(req);
1429 bool sync = op_is_sync(req->cmd_flags);
1430
1431 BUG_ON(!list_empty(&req->queuelist));
1432 BUG_ON(ELV_ON_HASH(req));
1433
1434 blk_free_request(rl, req);
1435 freed_request(rl, sync, rq_flags);
1436 blk_put_rl(rl);
1437 }
1438 }
1439 EXPORT_SYMBOL_GPL(__blk_put_request);
1440
1441 void blk_put_request(struct request *req)
1442 {
1443 struct request_queue *q = req->q;
1444
1445 if (q->mq_ops)
1446 blk_mq_free_request(req);
1447 else {
1448 unsigned long flags;
1449
1450 spin_lock_irqsave(q->queue_lock, flags);
1451 __blk_put_request(q, req);
1452 spin_unlock_irqrestore(q->queue_lock, flags);
1453 }
1454 }
1455 EXPORT_SYMBOL(blk_put_request);
1456
1457 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1458 struct bio *bio)
1459 {
1460 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1461
1462 if (!ll_back_merge_fn(q, req, bio))
1463 return false;
1464
1465 trace_block_bio_backmerge(q, req, bio);
1466
1467 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1468 blk_rq_set_mixed_merge(req);
1469
1470 req->biotail->bi_next = bio;
1471 req->biotail = bio;
1472 req->__data_len += bio->bi_iter.bi_size;
1473 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1474
1475 blk_account_io_start(req, false);
1476 return true;
1477 }
1478
1479 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1480 struct bio *bio)
1481 {
1482 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1483
1484 if (!ll_front_merge_fn(q, req, bio))
1485 return false;
1486
1487 trace_block_bio_frontmerge(q, req, bio);
1488
1489 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1490 blk_rq_set_mixed_merge(req);
1491
1492 bio->bi_next = req->bio;
1493 req->bio = bio;
1494
1495 req->__sector = bio->bi_iter.bi_sector;
1496 req->__data_len += bio->bi_iter.bi_size;
1497 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1498
1499 blk_account_io_start(req, false);
1500 return true;
1501 }
1502
1503 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1504 struct bio *bio)
1505 {
1506 unsigned short segments = blk_rq_nr_discard_segments(req);
1507
1508 if (segments >= queue_max_discard_segments(q))
1509 goto no_merge;
1510 if (blk_rq_sectors(req) + bio_sectors(bio) >
1511 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1512 goto no_merge;
1513
1514 req->biotail->bi_next = bio;
1515 req->biotail = bio;
1516 req->__data_len += bio->bi_iter.bi_size;
1517 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1518 req->nr_phys_segments = segments + 1;
1519
1520 blk_account_io_start(req, false);
1521 return true;
1522 no_merge:
1523 req_set_nomerge(q, req);
1524 return false;
1525 }
1526
1527 /**
1528 * blk_attempt_plug_merge - try to merge with %current's plugged list
1529 * @q: request_queue new bio is being queued at
1530 * @bio: new bio being queued
1531 * @request_count: out parameter for number of traversed plugged requests
1532 * @same_queue_rq: pointer to &struct request that gets filled in when
1533 * another request associated with @q is found on the plug list
1534 * (optional, may be %NULL)
1535 *
1536 * Determine whether @bio being queued on @q can be merged with a request
1537 * on %current's plugged list. Returns %true if merge was successful,
1538 * otherwise %false.
1539 *
1540 * Plugging coalesces IOs from the same issuer for the same purpose without
1541 * going through @q->queue_lock. As such it's more of an issuing mechanism
1542 * than scheduling, and the request, while may have elvpriv data, is not
1543 * added on the elevator at this point. In addition, we don't have
1544 * reliable access to the elevator outside queue lock. Only check basic
1545 * merging parameters without querying the elevator.
1546 *
1547 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1548 */
1549 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1550 unsigned int *request_count,
1551 struct request **same_queue_rq)
1552 {
1553 struct blk_plug *plug;
1554 struct request *rq;
1555 struct list_head *plug_list;
1556
1557 plug = current->plug;
1558 if (!plug)
1559 return false;
1560 *request_count = 0;
1561
1562 if (q->mq_ops)
1563 plug_list = &plug->mq_list;
1564 else
1565 plug_list = &plug->list;
1566
1567 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1568 bool merged = false;
1569
1570 if (rq->q == q) {
1571 (*request_count)++;
1572 /*
1573 * Only blk-mq multiple hardware queues case checks the
1574 * rq in the same queue, there should be only one such
1575 * rq in a queue
1576 **/
1577 if (same_queue_rq)
1578 *same_queue_rq = rq;
1579 }
1580
1581 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1582 continue;
1583
1584 switch (blk_try_merge(rq, bio)) {
1585 case ELEVATOR_BACK_MERGE:
1586 merged = bio_attempt_back_merge(q, rq, bio);
1587 break;
1588 case ELEVATOR_FRONT_MERGE:
1589 merged = bio_attempt_front_merge(q, rq, bio);
1590 break;
1591 case ELEVATOR_DISCARD_MERGE:
1592 merged = bio_attempt_discard_merge(q, rq, bio);
1593 break;
1594 default:
1595 break;
1596 }
1597
1598 if (merged)
1599 return true;
1600 }
1601
1602 return false;
1603 }
1604
1605 unsigned int blk_plug_queued_count(struct request_queue *q)
1606 {
1607 struct blk_plug *plug;
1608 struct request *rq;
1609 struct list_head *plug_list;
1610 unsigned int ret = 0;
1611
1612 plug = current->plug;
1613 if (!plug)
1614 goto out;
1615
1616 if (q->mq_ops)
1617 plug_list = &plug->mq_list;
1618 else
1619 plug_list = &plug->list;
1620
1621 list_for_each_entry(rq, plug_list, queuelist) {
1622 if (rq->q == q)
1623 ret++;
1624 }
1625 out:
1626 return ret;
1627 }
1628
1629 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1630 {
1631 struct io_context *ioc = rq_ioc(bio);
1632
1633 if (bio->bi_opf & REQ_RAHEAD)
1634 req->cmd_flags |= REQ_FAILFAST_MASK;
1635
1636 req->__sector = bio->bi_iter.bi_sector;
1637 if (ioprio_valid(bio_prio(bio)))
1638 req->ioprio = bio_prio(bio);
1639 else if (ioc)
1640 req->ioprio = ioc->ioprio;
1641 else
1642 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1643 blk_rq_bio_prep(req->q, req, bio);
1644 }
1645 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1646
1647 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1648 {
1649 struct blk_plug *plug;
1650 int where = ELEVATOR_INSERT_SORT;
1651 struct request *req, *free;
1652 unsigned int request_count = 0;
1653 unsigned int wb_acct;
1654
1655 /*
1656 * low level driver can indicate that it wants pages above a
1657 * certain limit bounced to low memory (ie for highmem, or even
1658 * ISA dma in theory)
1659 */
1660 blk_queue_bounce(q, &bio);
1661
1662 blk_queue_split(q, &bio, q->bio_split);
1663
1664 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1665 bio->bi_error = -EIO;
1666 bio_endio(bio);
1667 return BLK_QC_T_NONE;
1668 }
1669
1670 if (op_is_flush(bio->bi_opf)) {
1671 spin_lock_irq(q->queue_lock);
1672 where = ELEVATOR_INSERT_FLUSH;
1673 goto get_rq;
1674 }
1675
1676 /*
1677 * Check if we can merge with the plugged list before grabbing
1678 * any locks.
1679 */
1680 if (!blk_queue_nomerges(q)) {
1681 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1682 return BLK_QC_T_NONE;
1683 } else
1684 request_count = blk_plug_queued_count(q);
1685
1686 spin_lock_irq(q->queue_lock);
1687
1688 switch (elv_merge(q, &req, bio)) {
1689 case ELEVATOR_BACK_MERGE:
1690 if (!bio_attempt_back_merge(q, req, bio))
1691 break;
1692 elv_bio_merged(q, req, bio);
1693 free = attempt_back_merge(q, req);
1694 if (free)
1695 __blk_put_request(q, free);
1696 else
1697 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1698 goto out_unlock;
1699 case ELEVATOR_FRONT_MERGE:
1700 if (!bio_attempt_front_merge(q, req, bio))
1701 break;
1702 elv_bio_merged(q, req, bio);
1703 free = attempt_front_merge(q, req);
1704 if (free)
1705 __blk_put_request(q, free);
1706 else
1707 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1708 goto out_unlock;
1709 default:
1710 break;
1711 }
1712
1713 get_rq:
1714 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1715
1716 /*
1717 * Grab a free request. This is might sleep but can not fail.
1718 * Returns with the queue unlocked.
1719 */
1720 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1721 if (IS_ERR(req)) {
1722 __wbt_done(q->rq_wb, wb_acct);
1723 bio->bi_error = PTR_ERR(req);
1724 bio_endio(bio);
1725 goto out_unlock;
1726 }
1727
1728 wbt_track(&req->issue_stat, wb_acct);
1729
1730 /*
1731 * After dropping the lock and possibly sleeping here, our request
1732 * may now be mergeable after it had proven unmergeable (above).
1733 * We don't worry about that case for efficiency. It won't happen
1734 * often, and the elevators are able to handle it.
1735 */
1736 blk_init_request_from_bio(req, bio);
1737
1738 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1739 req->cpu = raw_smp_processor_id();
1740
1741 plug = current->plug;
1742 if (plug) {
1743 /*
1744 * If this is the first request added after a plug, fire
1745 * of a plug trace.
1746 *
1747 * @request_count may become stale because of schedule
1748 * out, so check plug list again.
1749 */
1750 if (!request_count || list_empty(&plug->list))
1751 trace_block_plug(q);
1752 else {
1753 struct request *last = list_entry_rq(plug->list.prev);
1754 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1755 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1756 blk_flush_plug_list(plug, false);
1757 trace_block_plug(q);
1758 }
1759 }
1760 list_add_tail(&req->queuelist, &plug->list);
1761 blk_account_io_start(req, true);
1762 } else {
1763 spin_lock_irq(q->queue_lock);
1764 add_acct_request(q, req, where);
1765 __blk_run_queue(q);
1766 out_unlock:
1767 spin_unlock_irq(q->queue_lock);
1768 }
1769
1770 return BLK_QC_T_NONE;
1771 }
1772
1773 /*
1774 * If bio->bi_dev is a partition, remap the location
1775 */
1776 static inline void blk_partition_remap(struct bio *bio)
1777 {
1778 struct block_device *bdev = bio->bi_bdev;
1779
1780 /*
1781 * Zone reset does not include bi_size so bio_sectors() is always 0.
1782 * Include a test for the reset op code and perform the remap if needed.
1783 */
1784 if (bdev != bdev->bd_contains &&
1785 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1786 struct hd_struct *p = bdev->bd_part;
1787
1788 bio->bi_iter.bi_sector += p->start_sect;
1789 bio->bi_bdev = bdev->bd_contains;
1790
1791 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1792 bdev->bd_dev,
1793 bio->bi_iter.bi_sector - p->start_sect);
1794 }
1795 }
1796
1797 static void handle_bad_sector(struct bio *bio)
1798 {
1799 char b[BDEVNAME_SIZE];
1800
1801 printk(KERN_INFO "attempt to access beyond end of device\n");
1802 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1803 bdevname(bio->bi_bdev, b),
1804 bio->bi_opf,
1805 (unsigned long long)bio_end_sector(bio),
1806 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1807 }
1808
1809 #ifdef CONFIG_FAIL_MAKE_REQUEST
1810
1811 static DECLARE_FAULT_ATTR(fail_make_request);
1812
1813 static int __init setup_fail_make_request(char *str)
1814 {
1815 return setup_fault_attr(&fail_make_request, str);
1816 }
1817 __setup("fail_make_request=", setup_fail_make_request);
1818
1819 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1820 {
1821 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1822 }
1823
1824 static int __init fail_make_request_debugfs(void)
1825 {
1826 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1827 NULL, &fail_make_request);
1828
1829 return PTR_ERR_OR_ZERO(dir);
1830 }
1831
1832 late_initcall(fail_make_request_debugfs);
1833
1834 #else /* CONFIG_FAIL_MAKE_REQUEST */
1835
1836 static inline bool should_fail_request(struct hd_struct *part,
1837 unsigned int bytes)
1838 {
1839 return false;
1840 }
1841
1842 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1843
1844 /*
1845 * Check whether this bio extends beyond the end of the device.
1846 */
1847 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1848 {
1849 sector_t maxsector;
1850
1851 if (!nr_sectors)
1852 return 0;
1853
1854 /* Test device or partition size, when known. */
1855 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1856 if (maxsector) {
1857 sector_t sector = bio->bi_iter.bi_sector;
1858
1859 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1860 /*
1861 * This may well happen - the kernel calls bread()
1862 * without checking the size of the device, e.g., when
1863 * mounting a device.
1864 */
1865 handle_bad_sector(bio);
1866 return 1;
1867 }
1868 }
1869
1870 return 0;
1871 }
1872
1873 static noinline_for_stack bool
1874 generic_make_request_checks(struct bio *bio)
1875 {
1876 struct request_queue *q;
1877 int nr_sectors = bio_sectors(bio);
1878 int err = -EIO;
1879 char b[BDEVNAME_SIZE];
1880 struct hd_struct *part;
1881
1882 might_sleep();
1883
1884 if (bio_check_eod(bio, nr_sectors))
1885 goto end_io;
1886
1887 q = bdev_get_queue(bio->bi_bdev);
1888 if (unlikely(!q)) {
1889 printk(KERN_ERR
1890 "generic_make_request: Trying to access "
1891 "nonexistent block-device %s (%Lu)\n",
1892 bdevname(bio->bi_bdev, b),
1893 (long long) bio->bi_iter.bi_sector);
1894 goto end_io;
1895 }
1896
1897 part = bio->bi_bdev->bd_part;
1898 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1899 should_fail_request(&part_to_disk(part)->part0,
1900 bio->bi_iter.bi_size))
1901 goto end_io;
1902
1903 /*
1904 * If this device has partitions, remap block n
1905 * of partition p to block n+start(p) of the disk.
1906 */
1907 blk_partition_remap(bio);
1908
1909 if (bio_check_eod(bio, nr_sectors))
1910 goto end_io;
1911
1912 /*
1913 * Filter flush bio's early so that make_request based
1914 * drivers without flush support don't have to worry
1915 * about them.
1916 */
1917 if (op_is_flush(bio->bi_opf) &&
1918 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1919 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1920 if (!nr_sectors) {
1921 err = 0;
1922 goto end_io;
1923 }
1924 }
1925
1926 switch (bio_op(bio)) {
1927 case REQ_OP_DISCARD:
1928 if (!blk_queue_discard(q))
1929 goto not_supported;
1930 break;
1931 case REQ_OP_SECURE_ERASE:
1932 if (!blk_queue_secure_erase(q))
1933 goto not_supported;
1934 break;
1935 case REQ_OP_WRITE_SAME:
1936 if (!bdev_write_same(bio->bi_bdev))
1937 goto not_supported;
1938 break;
1939 case REQ_OP_ZONE_REPORT:
1940 case REQ_OP_ZONE_RESET:
1941 if (!bdev_is_zoned(bio->bi_bdev))
1942 goto not_supported;
1943 break;
1944 case REQ_OP_WRITE_ZEROES:
1945 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1946 goto not_supported;
1947 break;
1948 default:
1949 break;
1950 }
1951
1952 /*
1953 * Various block parts want %current->io_context and lazy ioc
1954 * allocation ends up trading a lot of pain for a small amount of
1955 * memory. Just allocate it upfront. This may fail and block
1956 * layer knows how to live with it.
1957 */
1958 create_io_context(GFP_ATOMIC, q->node);
1959
1960 if (!blkcg_bio_issue_check(q, bio))
1961 return false;
1962
1963 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1964 trace_block_bio_queue(q, bio);
1965 /* Now that enqueuing has been traced, we need to trace
1966 * completion as well.
1967 */
1968 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1969 }
1970 return true;
1971
1972 not_supported:
1973 err = -EOPNOTSUPP;
1974 end_io:
1975 bio->bi_error = err;
1976 bio_endio(bio);
1977 return false;
1978 }
1979
1980 /**
1981 * generic_make_request - hand a buffer to its device driver for I/O
1982 * @bio: The bio describing the location in memory and on the device.
1983 *
1984 * generic_make_request() is used to make I/O requests of block
1985 * devices. It is passed a &struct bio, which describes the I/O that needs
1986 * to be done.
1987 *
1988 * generic_make_request() does not return any status. The
1989 * success/failure status of the request, along with notification of
1990 * completion, is delivered asynchronously through the bio->bi_end_io
1991 * function described (one day) else where.
1992 *
1993 * The caller of generic_make_request must make sure that bi_io_vec
1994 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1995 * set to describe the device address, and the
1996 * bi_end_io and optionally bi_private are set to describe how
1997 * completion notification should be signaled.
1998 *
1999 * generic_make_request and the drivers it calls may use bi_next if this
2000 * bio happens to be merged with someone else, and may resubmit the bio to
2001 * a lower device by calling into generic_make_request recursively, which
2002 * means the bio should NOT be touched after the call to ->make_request_fn.
2003 */
2004 blk_qc_t generic_make_request(struct bio *bio)
2005 {
2006 /*
2007 * bio_list_on_stack[0] contains bios submitted by the current
2008 * make_request_fn.
2009 * bio_list_on_stack[1] contains bios that were submitted before
2010 * the current make_request_fn, but that haven't been processed
2011 * yet.
2012 */
2013 struct bio_list bio_list_on_stack[2];
2014 blk_qc_t ret = BLK_QC_T_NONE;
2015
2016 if (!generic_make_request_checks(bio))
2017 goto out;
2018
2019 /*
2020 * We only want one ->make_request_fn to be active at a time, else
2021 * stack usage with stacked devices could be a problem. So use
2022 * current->bio_list to keep a list of requests submited by a
2023 * make_request_fn function. current->bio_list is also used as a
2024 * flag to say if generic_make_request is currently active in this
2025 * task or not. If it is NULL, then no make_request is active. If
2026 * it is non-NULL, then a make_request is active, and new requests
2027 * should be added at the tail
2028 */
2029 if (current->bio_list) {
2030 bio_list_add(&current->bio_list[0], bio);
2031 goto out;
2032 }
2033
2034 /* following loop may be a bit non-obvious, and so deserves some
2035 * explanation.
2036 * Before entering the loop, bio->bi_next is NULL (as all callers
2037 * ensure that) so we have a list with a single bio.
2038 * We pretend that we have just taken it off a longer list, so
2039 * we assign bio_list to a pointer to the bio_list_on_stack,
2040 * thus initialising the bio_list of new bios to be
2041 * added. ->make_request() may indeed add some more bios
2042 * through a recursive call to generic_make_request. If it
2043 * did, we find a non-NULL value in bio_list and re-enter the loop
2044 * from the top. In this case we really did just take the bio
2045 * of the top of the list (no pretending) and so remove it from
2046 * bio_list, and call into ->make_request() again.
2047 */
2048 BUG_ON(bio->bi_next);
2049 bio_list_init(&bio_list_on_stack[0]);
2050 current->bio_list = bio_list_on_stack;
2051 do {
2052 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2053
2054 if (likely(blk_queue_enter(q, false) == 0)) {
2055 struct bio_list lower, same;
2056
2057 /* Create a fresh bio_list for all subordinate requests */
2058 bio_list_on_stack[1] = bio_list_on_stack[0];
2059 bio_list_init(&bio_list_on_stack[0]);
2060 ret = q->make_request_fn(q, bio);
2061
2062 blk_queue_exit(q);
2063
2064 /* sort new bios into those for a lower level
2065 * and those for the same level
2066 */
2067 bio_list_init(&lower);
2068 bio_list_init(&same);
2069 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2070 if (q == bdev_get_queue(bio->bi_bdev))
2071 bio_list_add(&same, bio);
2072 else
2073 bio_list_add(&lower, bio);
2074 /* now assemble so we handle the lowest level first */
2075 bio_list_merge(&bio_list_on_stack[0], &lower);
2076 bio_list_merge(&bio_list_on_stack[0], &same);
2077 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2078 } else {
2079 bio_io_error(bio);
2080 }
2081 bio = bio_list_pop(&bio_list_on_stack[0]);
2082 } while (bio);
2083 current->bio_list = NULL; /* deactivate */
2084
2085 out:
2086 return ret;
2087 }
2088 EXPORT_SYMBOL(generic_make_request);
2089
2090 /**
2091 * submit_bio - submit a bio to the block device layer for I/O
2092 * @bio: The &struct bio which describes the I/O
2093 *
2094 * submit_bio() is very similar in purpose to generic_make_request(), and
2095 * uses that function to do most of the work. Both are fairly rough
2096 * interfaces; @bio must be presetup and ready for I/O.
2097 *
2098 */
2099 blk_qc_t submit_bio(struct bio *bio)
2100 {
2101 /*
2102 * If it's a regular read/write or a barrier with data attached,
2103 * go through the normal accounting stuff before submission.
2104 */
2105 if (bio_has_data(bio)) {
2106 unsigned int count;
2107
2108 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2109 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2110 else
2111 count = bio_sectors(bio);
2112
2113 if (op_is_write(bio_op(bio))) {
2114 count_vm_events(PGPGOUT, count);
2115 } else {
2116 task_io_account_read(bio->bi_iter.bi_size);
2117 count_vm_events(PGPGIN, count);
2118 }
2119
2120 if (unlikely(block_dump)) {
2121 char b[BDEVNAME_SIZE];
2122 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2123 current->comm, task_pid_nr(current),
2124 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2125 (unsigned long long)bio->bi_iter.bi_sector,
2126 bdevname(bio->bi_bdev, b),
2127 count);
2128 }
2129 }
2130
2131 return generic_make_request(bio);
2132 }
2133 EXPORT_SYMBOL(submit_bio);
2134
2135 /**
2136 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2137 * for new the queue limits
2138 * @q: the queue
2139 * @rq: the request being checked
2140 *
2141 * Description:
2142 * @rq may have been made based on weaker limitations of upper-level queues
2143 * in request stacking drivers, and it may violate the limitation of @q.
2144 * Since the block layer and the underlying device driver trust @rq
2145 * after it is inserted to @q, it should be checked against @q before
2146 * the insertion using this generic function.
2147 *
2148 * Request stacking drivers like request-based dm may change the queue
2149 * limits when retrying requests on other queues. Those requests need
2150 * to be checked against the new queue limits again during dispatch.
2151 */
2152 static int blk_cloned_rq_check_limits(struct request_queue *q,
2153 struct request *rq)
2154 {
2155 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2156 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2157 return -EIO;
2158 }
2159
2160 /*
2161 * queue's settings related to segment counting like q->bounce_pfn
2162 * may differ from that of other stacking queues.
2163 * Recalculate it to check the request correctly on this queue's
2164 * limitation.
2165 */
2166 blk_recalc_rq_segments(rq);
2167 if (rq->nr_phys_segments > queue_max_segments(q)) {
2168 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2169 return -EIO;
2170 }
2171
2172 return 0;
2173 }
2174
2175 /**
2176 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2177 * @q: the queue to submit the request
2178 * @rq: the request being queued
2179 */
2180 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2181 {
2182 unsigned long flags;
2183 int where = ELEVATOR_INSERT_BACK;
2184
2185 if (blk_cloned_rq_check_limits(q, rq))
2186 return -EIO;
2187
2188 if (rq->rq_disk &&
2189 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2190 return -EIO;
2191
2192 if (q->mq_ops) {
2193 if (blk_queue_io_stat(q))
2194 blk_account_io_start(rq, true);
2195 blk_mq_sched_insert_request(rq, false, true, false, false);
2196 return 0;
2197 }
2198
2199 spin_lock_irqsave(q->queue_lock, flags);
2200 if (unlikely(blk_queue_dying(q))) {
2201 spin_unlock_irqrestore(q->queue_lock, flags);
2202 return -ENODEV;
2203 }
2204
2205 /*
2206 * Submitting request must be dequeued before calling this function
2207 * because it will be linked to another request_queue
2208 */
2209 BUG_ON(blk_queued_rq(rq));
2210
2211 if (op_is_flush(rq->cmd_flags))
2212 where = ELEVATOR_INSERT_FLUSH;
2213
2214 add_acct_request(q, rq, where);
2215 if (where == ELEVATOR_INSERT_FLUSH)
2216 __blk_run_queue(q);
2217 spin_unlock_irqrestore(q->queue_lock, flags);
2218
2219 return 0;
2220 }
2221 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2222
2223 /**
2224 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2225 * @rq: request to examine
2226 *
2227 * Description:
2228 * A request could be merge of IOs which require different failure
2229 * handling. This function determines the number of bytes which
2230 * can be failed from the beginning of the request without
2231 * crossing into area which need to be retried further.
2232 *
2233 * Return:
2234 * The number of bytes to fail.
2235 *
2236 * Context:
2237 * queue_lock must be held.
2238 */
2239 unsigned int blk_rq_err_bytes(const struct request *rq)
2240 {
2241 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2242 unsigned int bytes = 0;
2243 struct bio *bio;
2244
2245 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2246 return blk_rq_bytes(rq);
2247
2248 /*
2249 * Currently the only 'mixing' which can happen is between
2250 * different fastfail types. We can safely fail portions
2251 * which have all the failfast bits that the first one has -
2252 * the ones which are at least as eager to fail as the first
2253 * one.
2254 */
2255 for (bio = rq->bio; bio; bio = bio->bi_next) {
2256 if ((bio->bi_opf & ff) != ff)
2257 break;
2258 bytes += bio->bi_iter.bi_size;
2259 }
2260
2261 /* this could lead to infinite loop */
2262 BUG_ON(blk_rq_bytes(rq) && !bytes);
2263 return bytes;
2264 }
2265 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2266
2267 void blk_account_io_completion(struct request *req, unsigned int bytes)
2268 {
2269 if (blk_do_io_stat(req)) {
2270 const int rw = rq_data_dir(req);
2271 struct hd_struct *part;
2272 int cpu;
2273
2274 cpu = part_stat_lock();
2275 part = req->part;
2276 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2277 part_stat_unlock();
2278 }
2279 }
2280
2281 void blk_account_io_done(struct request *req)
2282 {
2283 /*
2284 * Account IO completion. flush_rq isn't accounted as a
2285 * normal IO on queueing nor completion. Accounting the
2286 * containing request is enough.
2287 */
2288 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2289 unsigned long duration = jiffies - req->start_time;
2290 const int rw = rq_data_dir(req);
2291 struct hd_struct *part;
2292 int cpu;
2293
2294 cpu = part_stat_lock();
2295 part = req->part;
2296
2297 part_stat_inc(cpu, part, ios[rw]);
2298 part_stat_add(cpu, part, ticks[rw], duration);
2299 part_round_stats(cpu, part);
2300 part_dec_in_flight(part, rw);
2301
2302 hd_struct_put(part);
2303 part_stat_unlock();
2304 }
2305 }
2306
2307 #ifdef CONFIG_PM
2308 /*
2309 * Don't process normal requests when queue is suspended
2310 * or in the process of suspending/resuming
2311 */
2312 static struct request *blk_pm_peek_request(struct request_queue *q,
2313 struct request *rq)
2314 {
2315 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2316 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2317 return NULL;
2318 else
2319 return rq;
2320 }
2321 #else
2322 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2323 struct request *rq)
2324 {
2325 return rq;
2326 }
2327 #endif
2328
2329 void blk_account_io_start(struct request *rq, bool new_io)
2330 {
2331 struct hd_struct *part;
2332 int rw = rq_data_dir(rq);
2333 int cpu;
2334
2335 if (!blk_do_io_stat(rq))
2336 return;
2337
2338 cpu = part_stat_lock();
2339
2340 if (!new_io) {
2341 part = rq->part;
2342 part_stat_inc(cpu, part, merges[rw]);
2343 } else {
2344 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2345 if (!hd_struct_try_get(part)) {
2346 /*
2347 * The partition is already being removed,
2348 * the request will be accounted on the disk only
2349 *
2350 * We take a reference on disk->part0 although that
2351 * partition will never be deleted, so we can treat
2352 * it as any other partition.
2353 */
2354 part = &rq->rq_disk->part0;
2355 hd_struct_get(part);
2356 }
2357 part_round_stats(cpu, part);
2358 part_inc_in_flight(part, rw);
2359 rq->part = part;
2360 }
2361
2362 part_stat_unlock();
2363 }
2364
2365 /**
2366 * blk_peek_request - peek at the top of a request queue
2367 * @q: request queue to peek at
2368 *
2369 * Description:
2370 * Return the request at the top of @q. The returned request
2371 * should be started using blk_start_request() before LLD starts
2372 * processing it.
2373 *
2374 * Return:
2375 * Pointer to the request at the top of @q if available. Null
2376 * otherwise.
2377 *
2378 * Context:
2379 * queue_lock must be held.
2380 */
2381 struct request *blk_peek_request(struct request_queue *q)
2382 {
2383 struct request *rq;
2384 int ret;
2385
2386 while ((rq = __elv_next_request(q)) != NULL) {
2387
2388 rq = blk_pm_peek_request(q, rq);
2389 if (!rq)
2390 break;
2391
2392 if (!(rq->rq_flags & RQF_STARTED)) {
2393 /*
2394 * This is the first time the device driver
2395 * sees this request (possibly after
2396 * requeueing). Notify IO scheduler.
2397 */
2398 if (rq->rq_flags & RQF_SORTED)
2399 elv_activate_rq(q, rq);
2400
2401 /*
2402 * just mark as started even if we don't start
2403 * it, a request that has been delayed should
2404 * not be passed by new incoming requests
2405 */
2406 rq->rq_flags |= RQF_STARTED;
2407 trace_block_rq_issue(q, rq);
2408 }
2409
2410 if (!q->boundary_rq || q->boundary_rq == rq) {
2411 q->end_sector = rq_end_sector(rq);
2412 q->boundary_rq = NULL;
2413 }
2414
2415 if (rq->rq_flags & RQF_DONTPREP)
2416 break;
2417
2418 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2419 /*
2420 * make sure space for the drain appears we
2421 * know we can do this because max_hw_segments
2422 * has been adjusted to be one fewer than the
2423 * device can handle
2424 */
2425 rq->nr_phys_segments++;
2426 }
2427
2428 if (!q->prep_rq_fn)
2429 break;
2430
2431 ret = q->prep_rq_fn(q, rq);
2432 if (ret == BLKPREP_OK) {
2433 break;
2434 } else if (ret == BLKPREP_DEFER) {
2435 /*
2436 * the request may have been (partially) prepped.
2437 * we need to keep this request in the front to
2438 * avoid resource deadlock. RQF_STARTED will
2439 * prevent other fs requests from passing this one.
2440 */
2441 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2442 !(rq->rq_flags & RQF_DONTPREP)) {
2443 /*
2444 * remove the space for the drain we added
2445 * so that we don't add it again
2446 */
2447 --rq->nr_phys_segments;
2448 }
2449
2450 rq = NULL;
2451 break;
2452 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2453 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2454
2455 rq->rq_flags |= RQF_QUIET;
2456 /*
2457 * Mark this request as started so we don't trigger
2458 * any debug logic in the end I/O path.
2459 */
2460 blk_start_request(rq);
2461 __blk_end_request_all(rq, err);
2462 } else {
2463 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2464 break;
2465 }
2466 }
2467
2468 return rq;
2469 }
2470 EXPORT_SYMBOL(blk_peek_request);
2471
2472 void blk_dequeue_request(struct request *rq)
2473 {
2474 struct request_queue *q = rq->q;
2475
2476 BUG_ON(list_empty(&rq->queuelist));
2477 BUG_ON(ELV_ON_HASH(rq));
2478
2479 list_del_init(&rq->queuelist);
2480
2481 /*
2482 * the time frame between a request being removed from the lists
2483 * and to it is freed is accounted as io that is in progress at
2484 * the driver side.
2485 */
2486 if (blk_account_rq(rq)) {
2487 q->in_flight[rq_is_sync(rq)]++;
2488 set_io_start_time_ns(rq);
2489 }
2490 }
2491
2492 /**
2493 * blk_start_request - start request processing on the driver
2494 * @req: request to dequeue
2495 *
2496 * Description:
2497 * Dequeue @req and start timeout timer on it. This hands off the
2498 * request to the driver.
2499 *
2500 * Block internal functions which don't want to start timer should
2501 * call blk_dequeue_request().
2502 *
2503 * Context:
2504 * queue_lock must be held.
2505 */
2506 void blk_start_request(struct request *req)
2507 {
2508 blk_dequeue_request(req);
2509
2510 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2511 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2512 req->rq_flags |= RQF_STATS;
2513 wbt_issue(req->q->rq_wb, &req->issue_stat);
2514 }
2515
2516 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2517 blk_add_timer(req);
2518 }
2519 EXPORT_SYMBOL(blk_start_request);
2520
2521 /**
2522 * blk_fetch_request - fetch a request from a request queue
2523 * @q: request queue to fetch a request from
2524 *
2525 * Description:
2526 * Return the request at the top of @q. The request is started on
2527 * return and LLD can start processing it immediately.
2528 *
2529 * Return:
2530 * Pointer to the request at the top of @q if available. Null
2531 * otherwise.
2532 *
2533 * Context:
2534 * queue_lock must be held.
2535 */
2536 struct request *blk_fetch_request(struct request_queue *q)
2537 {
2538 struct request *rq;
2539
2540 rq = blk_peek_request(q);
2541 if (rq)
2542 blk_start_request(rq);
2543 return rq;
2544 }
2545 EXPORT_SYMBOL(blk_fetch_request);
2546
2547 /**
2548 * blk_update_request - Special helper function for request stacking drivers
2549 * @req: the request being processed
2550 * @error: %0 for success, < %0 for error
2551 * @nr_bytes: number of bytes to complete @req
2552 *
2553 * Description:
2554 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2555 * the request structure even if @req doesn't have leftover.
2556 * If @req has leftover, sets it up for the next range of segments.
2557 *
2558 * This special helper function is only for request stacking drivers
2559 * (e.g. request-based dm) so that they can handle partial completion.
2560 * Actual device drivers should use blk_end_request instead.
2561 *
2562 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2563 * %false return from this function.
2564 *
2565 * Return:
2566 * %false - this request doesn't have any more data
2567 * %true - this request has more data
2568 **/
2569 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2570 {
2571 int total_bytes;
2572
2573 trace_block_rq_complete(req, error, nr_bytes);
2574
2575 if (!req->bio)
2576 return false;
2577
2578 if (error && !blk_rq_is_passthrough(req) &&
2579 !(req->rq_flags & RQF_QUIET)) {
2580 char *error_type;
2581
2582 switch (error) {
2583 case -ENOLINK:
2584 error_type = "recoverable transport";
2585 break;
2586 case -EREMOTEIO:
2587 error_type = "critical target";
2588 break;
2589 case -EBADE:
2590 error_type = "critical nexus";
2591 break;
2592 case -ETIMEDOUT:
2593 error_type = "timeout";
2594 break;
2595 case -ENOSPC:
2596 error_type = "critical space allocation";
2597 break;
2598 case -ENODATA:
2599 error_type = "critical medium";
2600 break;
2601 case -EIO:
2602 default:
2603 error_type = "I/O";
2604 break;
2605 }
2606 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2607 __func__, error_type, req->rq_disk ?
2608 req->rq_disk->disk_name : "?",
2609 (unsigned long long)blk_rq_pos(req));
2610
2611 }
2612
2613 blk_account_io_completion(req, nr_bytes);
2614
2615 total_bytes = 0;
2616 while (req->bio) {
2617 struct bio *bio = req->bio;
2618 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2619
2620 if (bio_bytes == bio->bi_iter.bi_size)
2621 req->bio = bio->bi_next;
2622
2623 /* Completion has already been traced */
2624 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2625 req_bio_endio(req, bio, bio_bytes, error);
2626
2627 total_bytes += bio_bytes;
2628 nr_bytes -= bio_bytes;
2629
2630 if (!nr_bytes)
2631 break;
2632 }
2633
2634 /*
2635 * completely done
2636 */
2637 if (!req->bio) {
2638 /*
2639 * Reset counters so that the request stacking driver
2640 * can find how many bytes remain in the request
2641 * later.
2642 */
2643 req->__data_len = 0;
2644 return false;
2645 }
2646
2647 req->__data_len -= total_bytes;
2648
2649 /* update sector only for requests with clear definition of sector */
2650 if (!blk_rq_is_passthrough(req))
2651 req->__sector += total_bytes >> 9;
2652
2653 /* mixed attributes always follow the first bio */
2654 if (req->rq_flags & RQF_MIXED_MERGE) {
2655 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2656 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2657 }
2658
2659 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2660 /*
2661 * If total number of sectors is less than the first segment
2662 * size, something has gone terribly wrong.
2663 */
2664 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2665 blk_dump_rq_flags(req, "request botched");
2666 req->__data_len = blk_rq_cur_bytes(req);
2667 }
2668
2669 /* recalculate the number of segments */
2670 blk_recalc_rq_segments(req);
2671 }
2672
2673 return true;
2674 }
2675 EXPORT_SYMBOL_GPL(blk_update_request);
2676
2677 static bool blk_update_bidi_request(struct request *rq, int error,
2678 unsigned int nr_bytes,
2679 unsigned int bidi_bytes)
2680 {
2681 if (blk_update_request(rq, error, nr_bytes))
2682 return true;
2683
2684 /* Bidi request must be completed as a whole */
2685 if (unlikely(blk_bidi_rq(rq)) &&
2686 blk_update_request(rq->next_rq, error, bidi_bytes))
2687 return true;
2688
2689 if (blk_queue_add_random(rq->q))
2690 add_disk_randomness(rq->rq_disk);
2691
2692 return false;
2693 }
2694
2695 /**
2696 * blk_unprep_request - unprepare a request
2697 * @req: the request
2698 *
2699 * This function makes a request ready for complete resubmission (or
2700 * completion). It happens only after all error handling is complete,
2701 * so represents the appropriate moment to deallocate any resources
2702 * that were allocated to the request in the prep_rq_fn. The queue
2703 * lock is held when calling this.
2704 */
2705 void blk_unprep_request(struct request *req)
2706 {
2707 struct request_queue *q = req->q;
2708
2709 req->rq_flags &= ~RQF_DONTPREP;
2710 if (q->unprep_rq_fn)
2711 q->unprep_rq_fn(q, req);
2712 }
2713 EXPORT_SYMBOL_GPL(blk_unprep_request);
2714
2715 /*
2716 * queue lock must be held
2717 */
2718 void blk_finish_request(struct request *req, int error)
2719 {
2720 struct request_queue *q = req->q;
2721
2722 if (req->rq_flags & RQF_STATS)
2723 blk_stat_add(req);
2724
2725 if (req->rq_flags & RQF_QUEUED)
2726 blk_queue_end_tag(q, req);
2727
2728 BUG_ON(blk_queued_rq(req));
2729
2730 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2731 laptop_io_completion(req->q->backing_dev_info);
2732
2733 blk_delete_timer(req);
2734
2735 if (req->rq_flags & RQF_DONTPREP)
2736 blk_unprep_request(req);
2737
2738 blk_account_io_done(req);
2739
2740 if (req->end_io) {
2741 wbt_done(req->q->rq_wb, &req->issue_stat);
2742 req->end_io(req, error);
2743 } else {
2744 if (blk_bidi_rq(req))
2745 __blk_put_request(req->next_rq->q, req->next_rq);
2746
2747 __blk_put_request(q, req);
2748 }
2749 }
2750 EXPORT_SYMBOL(blk_finish_request);
2751
2752 /**
2753 * blk_end_bidi_request - Complete a bidi request
2754 * @rq: the request to complete
2755 * @error: %0 for success, < %0 for error
2756 * @nr_bytes: number of bytes to complete @rq
2757 * @bidi_bytes: number of bytes to complete @rq->next_rq
2758 *
2759 * Description:
2760 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2761 * Drivers that supports bidi can safely call this member for any
2762 * type of request, bidi or uni. In the later case @bidi_bytes is
2763 * just ignored.
2764 *
2765 * Return:
2766 * %false - we are done with this request
2767 * %true - still buffers pending for this request
2768 **/
2769 static bool blk_end_bidi_request(struct request *rq, int error,
2770 unsigned int nr_bytes, unsigned int bidi_bytes)
2771 {
2772 struct request_queue *q = rq->q;
2773 unsigned long flags;
2774
2775 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2776 return true;
2777
2778 spin_lock_irqsave(q->queue_lock, flags);
2779 blk_finish_request(rq, error);
2780 spin_unlock_irqrestore(q->queue_lock, flags);
2781
2782 return false;
2783 }
2784
2785 /**
2786 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2787 * @rq: the request to complete
2788 * @error: %0 for success, < %0 for error
2789 * @nr_bytes: number of bytes to complete @rq
2790 * @bidi_bytes: number of bytes to complete @rq->next_rq
2791 *
2792 * Description:
2793 * Identical to blk_end_bidi_request() except that queue lock is
2794 * assumed to be locked on entry and remains so on return.
2795 *
2796 * Return:
2797 * %false - we are done with this request
2798 * %true - still buffers pending for this request
2799 **/
2800 static bool __blk_end_bidi_request(struct request *rq, int error,
2801 unsigned int nr_bytes, unsigned int bidi_bytes)
2802 {
2803 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2804 return true;
2805
2806 blk_finish_request(rq, error);
2807
2808 return false;
2809 }
2810
2811 /**
2812 * blk_end_request - Helper function for drivers to complete the request.
2813 * @rq: the request being processed
2814 * @error: %0 for success, < %0 for error
2815 * @nr_bytes: number of bytes to complete
2816 *
2817 * Description:
2818 * Ends I/O on a number of bytes attached to @rq.
2819 * If @rq has leftover, sets it up for the next range of segments.
2820 *
2821 * Return:
2822 * %false - we are done with this request
2823 * %true - still buffers pending for this request
2824 **/
2825 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2826 {
2827 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2828 }
2829 EXPORT_SYMBOL(blk_end_request);
2830
2831 /**
2832 * blk_end_request_all - Helper function for drives to finish the request.
2833 * @rq: the request to finish
2834 * @error: %0 for success, < %0 for error
2835 *
2836 * Description:
2837 * Completely finish @rq.
2838 */
2839 void blk_end_request_all(struct request *rq, int error)
2840 {
2841 bool pending;
2842 unsigned int bidi_bytes = 0;
2843
2844 if (unlikely(blk_bidi_rq(rq)))
2845 bidi_bytes = blk_rq_bytes(rq->next_rq);
2846
2847 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2848 BUG_ON(pending);
2849 }
2850 EXPORT_SYMBOL(blk_end_request_all);
2851
2852 /**
2853 * __blk_end_request - Helper function for drivers to complete the request.
2854 * @rq: the request being processed
2855 * @error: %0 for success, < %0 for error
2856 * @nr_bytes: number of bytes to complete
2857 *
2858 * Description:
2859 * Must be called with queue lock held unlike blk_end_request().
2860 *
2861 * Return:
2862 * %false - we are done with this request
2863 * %true - still buffers pending for this request
2864 **/
2865 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2866 {
2867 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2868 }
2869 EXPORT_SYMBOL(__blk_end_request);
2870
2871 /**
2872 * __blk_end_request_all - Helper function for drives to finish the request.
2873 * @rq: the request to finish
2874 * @error: %0 for success, < %0 for error
2875 *
2876 * Description:
2877 * Completely finish @rq. Must be called with queue lock held.
2878 */
2879 void __blk_end_request_all(struct request *rq, int error)
2880 {
2881 bool pending;
2882 unsigned int bidi_bytes = 0;
2883
2884 if (unlikely(blk_bidi_rq(rq)))
2885 bidi_bytes = blk_rq_bytes(rq->next_rq);
2886
2887 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2888 BUG_ON(pending);
2889 }
2890 EXPORT_SYMBOL(__blk_end_request_all);
2891
2892 /**
2893 * __blk_end_request_cur - Helper function to finish the current request chunk.
2894 * @rq: the request to finish the current chunk for
2895 * @error: %0 for success, < %0 for error
2896 *
2897 * Description:
2898 * Complete the current consecutively mapped chunk from @rq. Must
2899 * be called with queue lock held.
2900 *
2901 * Return:
2902 * %false - we are done with this request
2903 * %true - still buffers pending for this request
2904 */
2905 bool __blk_end_request_cur(struct request *rq, int error)
2906 {
2907 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2908 }
2909 EXPORT_SYMBOL(__blk_end_request_cur);
2910
2911 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2912 struct bio *bio)
2913 {
2914 if (bio_has_data(bio))
2915 rq->nr_phys_segments = bio_phys_segments(q, bio);
2916
2917 rq->__data_len = bio->bi_iter.bi_size;
2918 rq->bio = rq->biotail = bio;
2919
2920 if (bio->bi_bdev)
2921 rq->rq_disk = bio->bi_bdev->bd_disk;
2922 }
2923
2924 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2925 /**
2926 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2927 * @rq: the request to be flushed
2928 *
2929 * Description:
2930 * Flush all pages in @rq.
2931 */
2932 void rq_flush_dcache_pages(struct request *rq)
2933 {
2934 struct req_iterator iter;
2935 struct bio_vec bvec;
2936
2937 rq_for_each_segment(bvec, rq, iter)
2938 flush_dcache_page(bvec.bv_page);
2939 }
2940 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2941 #endif
2942
2943 /**
2944 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2945 * @q : the queue of the device being checked
2946 *
2947 * Description:
2948 * Check if underlying low-level drivers of a device are busy.
2949 * If the drivers want to export their busy state, they must set own
2950 * exporting function using blk_queue_lld_busy() first.
2951 *
2952 * Basically, this function is used only by request stacking drivers
2953 * to stop dispatching requests to underlying devices when underlying
2954 * devices are busy. This behavior helps more I/O merging on the queue
2955 * of the request stacking driver and prevents I/O throughput regression
2956 * on burst I/O load.
2957 *
2958 * Return:
2959 * 0 - Not busy (The request stacking driver should dispatch request)
2960 * 1 - Busy (The request stacking driver should stop dispatching request)
2961 */
2962 int blk_lld_busy(struct request_queue *q)
2963 {
2964 if (q->lld_busy_fn)
2965 return q->lld_busy_fn(q);
2966
2967 return 0;
2968 }
2969 EXPORT_SYMBOL_GPL(blk_lld_busy);
2970
2971 /**
2972 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2973 * @rq: the clone request to be cleaned up
2974 *
2975 * Description:
2976 * Free all bios in @rq for a cloned request.
2977 */
2978 void blk_rq_unprep_clone(struct request *rq)
2979 {
2980 struct bio *bio;
2981
2982 while ((bio = rq->bio) != NULL) {
2983 rq->bio = bio->bi_next;
2984
2985 bio_put(bio);
2986 }
2987 }
2988 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2989
2990 /*
2991 * Copy attributes of the original request to the clone request.
2992 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2993 */
2994 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2995 {
2996 dst->cpu = src->cpu;
2997 dst->__sector = blk_rq_pos(src);
2998 dst->__data_len = blk_rq_bytes(src);
2999 dst->nr_phys_segments = src->nr_phys_segments;
3000 dst->ioprio = src->ioprio;
3001 dst->extra_len = src->extra_len;
3002 }
3003
3004 /**
3005 * blk_rq_prep_clone - Helper function to setup clone request
3006 * @rq: the request to be setup
3007 * @rq_src: original request to be cloned
3008 * @bs: bio_set that bios for clone are allocated from
3009 * @gfp_mask: memory allocation mask for bio
3010 * @bio_ctr: setup function to be called for each clone bio.
3011 * Returns %0 for success, non %0 for failure.
3012 * @data: private data to be passed to @bio_ctr
3013 *
3014 * Description:
3015 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3016 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3017 * are not copied, and copying such parts is the caller's responsibility.
3018 * Also, pages which the original bios are pointing to are not copied
3019 * and the cloned bios just point same pages.
3020 * So cloned bios must be completed before original bios, which means
3021 * the caller must complete @rq before @rq_src.
3022 */
3023 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3024 struct bio_set *bs, gfp_t gfp_mask,
3025 int (*bio_ctr)(struct bio *, struct bio *, void *),
3026 void *data)
3027 {
3028 struct bio *bio, *bio_src;
3029
3030 if (!bs)
3031 bs = fs_bio_set;
3032
3033 __rq_for_each_bio(bio_src, rq_src) {
3034 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3035 if (!bio)
3036 goto free_and_out;
3037
3038 if (bio_ctr && bio_ctr(bio, bio_src, data))
3039 goto free_and_out;
3040
3041 if (rq->bio) {
3042 rq->biotail->bi_next = bio;
3043 rq->biotail = bio;
3044 } else
3045 rq->bio = rq->biotail = bio;
3046 }
3047
3048 __blk_rq_prep_clone(rq, rq_src);
3049
3050 return 0;
3051
3052 free_and_out:
3053 if (bio)
3054 bio_put(bio);
3055 blk_rq_unprep_clone(rq);
3056
3057 return -ENOMEM;
3058 }
3059 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3060
3061 int kblockd_schedule_work(struct work_struct *work)
3062 {
3063 return queue_work(kblockd_workqueue, work);
3064 }
3065 EXPORT_SYMBOL(kblockd_schedule_work);
3066
3067 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3068 {
3069 return queue_work_on(cpu, kblockd_workqueue, work);
3070 }
3071 EXPORT_SYMBOL(kblockd_schedule_work_on);
3072
3073 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3074 unsigned long delay)
3075 {
3076 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3077 }
3078 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3079
3080 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3081 unsigned long delay)
3082 {
3083 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3084 }
3085 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3086
3087 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3088 unsigned long delay)
3089 {
3090 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3091 }
3092 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3093
3094 /**
3095 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3096 * @plug: The &struct blk_plug that needs to be initialized
3097 *
3098 * Description:
3099 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3100 * pending I/O should the task end up blocking between blk_start_plug() and
3101 * blk_finish_plug(). This is important from a performance perspective, but
3102 * also ensures that we don't deadlock. For instance, if the task is blocking
3103 * for a memory allocation, memory reclaim could end up wanting to free a
3104 * page belonging to that request that is currently residing in our private
3105 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3106 * this kind of deadlock.
3107 */
3108 void blk_start_plug(struct blk_plug *plug)
3109 {
3110 struct task_struct *tsk = current;
3111
3112 /*
3113 * If this is a nested plug, don't actually assign it.
3114 */
3115 if (tsk->plug)
3116 return;
3117
3118 INIT_LIST_HEAD(&plug->list);
3119 INIT_LIST_HEAD(&plug->mq_list);
3120 INIT_LIST_HEAD(&plug->cb_list);
3121 /*
3122 * Store ordering should not be needed here, since a potential
3123 * preempt will imply a full memory barrier
3124 */
3125 tsk->plug = plug;
3126 }
3127 EXPORT_SYMBOL(blk_start_plug);
3128
3129 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3130 {
3131 struct request *rqa = container_of(a, struct request, queuelist);
3132 struct request *rqb = container_of(b, struct request, queuelist);
3133
3134 return !(rqa->q < rqb->q ||
3135 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3136 }
3137
3138 /*
3139 * If 'from_schedule' is true, then postpone the dispatch of requests
3140 * until a safe kblockd context. We due this to avoid accidental big
3141 * additional stack usage in driver dispatch, in places where the originally
3142 * plugger did not intend it.
3143 */
3144 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3145 bool from_schedule)
3146 __releases(q->queue_lock)
3147 {
3148 trace_block_unplug(q, depth, !from_schedule);
3149
3150 if (from_schedule)
3151 blk_run_queue_async(q);
3152 else
3153 __blk_run_queue(q);
3154 spin_unlock(q->queue_lock);
3155 }
3156
3157 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3158 {
3159 LIST_HEAD(callbacks);
3160
3161 while (!list_empty(&plug->cb_list)) {
3162 list_splice_init(&plug->cb_list, &callbacks);
3163
3164 while (!list_empty(&callbacks)) {
3165 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3166 struct blk_plug_cb,
3167 list);
3168 list_del(&cb->list);
3169 cb->callback(cb, from_schedule);
3170 }
3171 }
3172 }
3173
3174 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3175 int size)
3176 {
3177 struct blk_plug *plug = current->plug;
3178 struct blk_plug_cb *cb;
3179
3180 if (!plug)
3181 return NULL;
3182
3183 list_for_each_entry(cb, &plug->cb_list, list)
3184 if (cb->callback == unplug && cb->data == data)
3185 return cb;
3186
3187 /* Not currently on the callback list */
3188 BUG_ON(size < sizeof(*cb));
3189 cb = kzalloc(size, GFP_ATOMIC);
3190 if (cb) {
3191 cb->data = data;
3192 cb->callback = unplug;
3193 list_add(&cb->list, &plug->cb_list);
3194 }
3195 return cb;
3196 }
3197 EXPORT_SYMBOL(blk_check_plugged);
3198
3199 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3200 {
3201 struct request_queue *q;
3202 unsigned long flags;
3203 struct request *rq;
3204 LIST_HEAD(list);
3205 unsigned int depth;
3206
3207 flush_plug_callbacks(plug, from_schedule);
3208
3209 if (!list_empty(&plug->mq_list))
3210 blk_mq_flush_plug_list(plug, from_schedule);
3211
3212 if (list_empty(&plug->list))
3213 return;
3214
3215 list_splice_init(&plug->list, &list);
3216
3217 list_sort(NULL, &list, plug_rq_cmp);
3218
3219 q = NULL;
3220 depth = 0;
3221
3222 /*
3223 * Save and disable interrupts here, to avoid doing it for every
3224 * queue lock we have to take.
3225 */
3226 local_irq_save(flags);
3227 while (!list_empty(&list)) {
3228 rq = list_entry_rq(list.next);
3229 list_del_init(&rq->queuelist);
3230 BUG_ON(!rq->q);
3231 if (rq->q != q) {
3232 /*
3233 * This drops the queue lock
3234 */
3235 if (q)
3236 queue_unplugged(q, depth, from_schedule);
3237 q = rq->q;
3238 depth = 0;
3239 spin_lock(q->queue_lock);
3240 }
3241
3242 /*
3243 * Short-circuit if @q is dead
3244 */
3245 if (unlikely(blk_queue_dying(q))) {
3246 __blk_end_request_all(rq, -ENODEV);
3247 continue;
3248 }
3249
3250 /*
3251 * rq is already accounted, so use raw insert
3252 */
3253 if (op_is_flush(rq->cmd_flags))
3254 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3255 else
3256 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3257
3258 depth++;
3259 }
3260
3261 /*
3262 * This drops the queue lock
3263 */
3264 if (q)
3265 queue_unplugged(q, depth, from_schedule);
3266
3267 local_irq_restore(flags);
3268 }
3269
3270 void blk_finish_plug(struct blk_plug *plug)
3271 {
3272 if (plug != current->plug)
3273 return;
3274 blk_flush_plug_list(plug, false);
3275
3276 current->plug = NULL;
3277 }
3278 EXPORT_SYMBOL(blk_finish_plug);
3279
3280 #ifdef CONFIG_PM
3281 /**
3282 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3283 * @q: the queue of the device
3284 * @dev: the device the queue belongs to
3285 *
3286 * Description:
3287 * Initialize runtime-PM-related fields for @q and start auto suspend for
3288 * @dev. Drivers that want to take advantage of request-based runtime PM
3289 * should call this function after @dev has been initialized, and its
3290 * request queue @q has been allocated, and runtime PM for it can not happen
3291 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3292 * cases, driver should call this function before any I/O has taken place.
3293 *
3294 * This function takes care of setting up using auto suspend for the device,
3295 * the autosuspend delay is set to -1 to make runtime suspend impossible
3296 * until an updated value is either set by user or by driver. Drivers do
3297 * not need to touch other autosuspend settings.
3298 *
3299 * The block layer runtime PM is request based, so only works for drivers
3300 * that use request as their IO unit instead of those directly use bio's.
3301 */
3302 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3303 {
3304 q->dev = dev;
3305 q->rpm_status = RPM_ACTIVE;
3306 pm_runtime_set_autosuspend_delay(q->dev, -1);
3307 pm_runtime_use_autosuspend(q->dev);
3308 }
3309 EXPORT_SYMBOL(blk_pm_runtime_init);
3310
3311 /**
3312 * blk_pre_runtime_suspend - Pre runtime suspend check
3313 * @q: the queue of the device
3314 *
3315 * Description:
3316 * This function will check if runtime suspend is allowed for the device
3317 * by examining if there are any requests pending in the queue. If there
3318 * are requests pending, the device can not be runtime suspended; otherwise,
3319 * the queue's status will be updated to SUSPENDING and the driver can
3320 * proceed to suspend the device.
3321 *
3322 * For the not allowed case, we mark last busy for the device so that
3323 * runtime PM core will try to autosuspend it some time later.
3324 *
3325 * This function should be called near the start of the device's
3326 * runtime_suspend callback.
3327 *
3328 * Return:
3329 * 0 - OK to runtime suspend the device
3330 * -EBUSY - Device should not be runtime suspended
3331 */
3332 int blk_pre_runtime_suspend(struct request_queue *q)
3333 {
3334 int ret = 0;
3335
3336 if (!q->dev)
3337 return ret;
3338
3339 spin_lock_irq(q->queue_lock);
3340 if (q->nr_pending) {
3341 ret = -EBUSY;
3342 pm_runtime_mark_last_busy(q->dev);
3343 } else {
3344 q->rpm_status = RPM_SUSPENDING;
3345 }
3346 spin_unlock_irq(q->queue_lock);
3347 return ret;
3348 }
3349 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3350
3351 /**
3352 * blk_post_runtime_suspend - Post runtime suspend processing
3353 * @q: the queue of the device
3354 * @err: return value of the device's runtime_suspend function
3355 *
3356 * Description:
3357 * Update the queue's runtime status according to the return value of the
3358 * device's runtime suspend function and mark last busy for the device so
3359 * that PM core will try to auto suspend the device at a later time.
3360 *
3361 * This function should be called near the end of the device's
3362 * runtime_suspend callback.
3363 */
3364 void blk_post_runtime_suspend(struct request_queue *q, int err)
3365 {
3366 if (!q->dev)
3367 return;
3368
3369 spin_lock_irq(q->queue_lock);
3370 if (!err) {
3371 q->rpm_status = RPM_SUSPENDED;
3372 } else {
3373 q->rpm_status = RPM_ACTIVE;
3374 pm_runtime_mark_last_busy(q->dev);
3375 }
3376 spin_unlock_irq(q->queue_lock);
3377 }
3378 EXPORT_SYMBOL(blk_post_runtime_suspend);
3379
3380 /**
3381 * blk_pre_runtime_resume - Pre runtime resume processing
3382 * @q: the queue of the device
3383 *
3384 * Description:
3385 * Update the queue's runtime status to RESUMING in preparation for the
3386 * runtime resume of the device.
3387 *
3388 * This function should be called near the start of the device's
3389 * runtime_resume callback.
3390 */
3391 void blk_pre_runtime_resume(struct request_queue *q)
3392 {
3393 if (!q->dev)
3394 return;
3395
3396 spin_lock_irq(q->queue_lock);
3397 q->rpm_status = RPM_RESUMING;
3398 spin_unlock_irq(q->queue_lock);
3399 }
3400 EXPORT_SYMBOL(blk_pre_runtime_resume);
3401
3402 /**
3403 * blk_post_runtime_resume - Post runtime resume processing
3404 * @q: the queue of the device
3405 * @err: return value of the device's runtime_resume function
3406 *
3407 * Description:
3408 * Update the queue's runtime status according to the return value of the
3409 * device's runtime_resume function. If it is successfully resumed, process
3410 * the requests that are queued into the device's queue when it is resuming
3411 * and then mark last busy and initiate autosuspend for it.
3412 *
3413 * This function should be called near the end of the device's
3414 * runtime_resume callback.
3415 */
3416 void blk_post_runtime_resume(struct request_queue *q, int err)
3417 {
3418 if (!q->dev)
3419 return;
3420
3421 spin_lock_irq(q->queue_lock);
3422 if (!err) {
3423 q->rpm_status = RPM_ACTIVE;
3424 __blk_run_queue(q);
3425 pm_runtime_mark_last_busy(q->dev);
3426 pm_request_autosuspend(q->dev);
3427 } else {
3428 q->rpm_status = RPM_SUSPENDED;
3429 }
3430 spin_unlock_irq(q->queue_lock);
3431 }
3432 EXPORT_SYMBOL(blk_post_runtime_resume);
3433
3434 /**
3435 * blk_set_runtime_active - Force runtime status of the queue to be active
3436 * @q: the queue of the device
3437 *
3438 * If the device is left runtime suspended during system suspend the resume
3439 * hook typically resumes the device and corrects runtime status
3440 * accordingly. However, that does not affect the queue runtime PM status
3441 * which is still "suspended". This prevents processing requests from the
3442 * queue.
3443 *
3444 * This function can be used in driver's resume hook to correct queue
3445 * runtime PM status and re-enable peeking requests from the queue. It
3446 * should be called before first request is added to the queue.
3447 */
3448 void blk_set_runtime_active(struct request_queue *q)
3449 {
3450 spin_lock_irq(q->queue_lock);
3451 q->rpm_status = RPM_ACTIVE;
3452 pm_runtime_mark_last_busy(q->dev);
3453 pm_request_autosuspend(q->dev);
3454 spin_unlock_irq(q->queue_lock);
3455 }
3456 EXPORT_SYMBOL(blk_set_runtime_active);
3457 #endif
3458
3459 int __init blk_dev_init(void)
3460 {
3461 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3462 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3463 FIELD_SIZEOF(struct request, cmd_flags));
3464 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3465 FIELD_SIZEOF(struct bio, bi_opf));
3466
3467 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3468 kblockd_workqueue = alloc_workqueue("kblockd",
3469 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3470 if (!kblockd_workqueue)
3471 panic("Failed to create kblockd\n");
3472
3473 request_cachep = kmem_cache_create("blkdev_requests",
3474 sizeof(struct request), 0, SLAB_PANIC, NULL);
3475
3476 blk_requestq_cachep = kmem_cache_create("request_queue",
3477 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3478
3479 #ifdef CONFIG_DEBUG_FS
3480 blk_debugfs_root = debugfs_create_dir("block", NULL);
3481 #endif
3482
3483 return 0;
3484 }