]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: implement mixed merge of different failfast requests
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/block.h>
33
34 #include "blk.h"
35
36 EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
38
39 static int __make_request(struct request_queue *q, struct bio *bio);
40
41 /*
42 * For the allocated request tables
43 */
44 static struct kmem_cache *request_cachep;
45
46 /*
47 * For queue allocation
48 */
49 struct kmem_cache *blk_requestq_cachep;
50
51 /*
52 * Controlling structure to kblockd
53 */
54 static struct workqueue_struct *kblockd_workqueue;
55
56 static void drive_stat_acct(struct request *rq, int new_io)
57 {
58 struct hd_struct *part;
59 int rw = rq_data_dir(rq);
60 int cpu;
61
62 if (!blk_do_io_stat(rq))
63 return;
64
65 cpu = part_stat_lock();
66 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
67
68 if (!new_io)
69 part_stat_inc(cpu, part, merges[rw]);
70 else {
71 part_round_stats(cpu, part);
72 part_inc_in_flight(part);
73 }
74
75 part_stat_unlock();
76 }
77
78 void blk_queue_congestion_threshold(struct request_queue *q)
79 {
80 int nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) + 1;
83 if (nr > q->nr_requests)
84 nr = q->nr_requests;
85 q->nr_congestion_on = nr;
86
87 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
88 if (nr < 1)
89 nr = 1;
90 q->nr_congestion_off = nr;
91 }
92
93 /**
94 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
95 * @bdev: device
96 *
97 * Locates the passed device's request queue and returns the address of its
98 * backing_dev_info
99 *
100 * Will return NULL if the request queue cannot be located.
101 */
102 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
103 {
104 struct backing_dev_info *ret = NULL;
105 struct request_queue *q = bdev_get_queue(bdev);
106
107 if (q)
108 ret = &q->backing_dev_info;
109 return ret;
110 }
111 EXPORT_SYMBOL(blk_get_backing_dev_info);
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->cmd = rq->__cmd;
125 rq->cmd_len = BLK_MAX_CDB;
126 rq->tag = -1;
127 rq->ref_count = 1;
128 rq->start_time = jiffies;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 struct request_queue *q = rq->q;
136
137 if (&q->bar_rq != rq) {
138 if (error)
139 clear_bit(BIO_UPTODATE, &bio->bi_flags);
140 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
141 error = -EIO;
142
143 if (unlikely(nbytes > bio->bi_size)) {
144 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
145 __func__, nbytes, bio->bi_size);
146 nbytes = bio->bi_size;
147 }
148
149 if (unlikely(rq->cmd_flags & REQ_QUIET))
150 set_bit(BIO_QUIET, &bio->bi_flags);
151
152 bio->bi_size -= nbytes;
153 bio->bi_sector += (nbytes >> 9);
154
155 if (bio_integrity(bio))
156 bio_integrity_advance(bio, nbytes);
157
158 if (bio->bi_size == 0)
159 bio_endio(bio, error);
160 } else {
161
162 /*
163 * Okay, this is the barrier request in progress, just
164 * record the error;
165 */
166 if (error && !q->orderr)
167 q->orderr = error;
168 }
169 }
170
171 void blk_dump_rq_flags(struct request *rq, char *msg)
172 {
173 int bit;
174
175 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
176 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
177 rq->cmd_flags);
178
179 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
180 (unsigned long long)blk_rq_pos(rq),
181 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
182 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
183 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
184
185 if (blk_pc_request(rq)) {
186 printk(KERN_INFO " cdb: ");
187 for (bit = 0; bit < BLK_MAX_CDB; bit++)
188 printk("%02x ", rq->cmd[bit]);
189 printk("\n");
190 }
191 }
192 EXPORT_SYMBOL(blk_dump_rq_flags);
193
194 /*
195 * "plug" the device if there are no outstanding requests: this will
196 * force the transfer to start only after we have put all the requests
197 * on the list.
198 *
199 * This is called with interrupts off and no requests on the queue and
200 * with the queue lock held.
201 */
202 void blk_plug_device(struct request_queue *q)
203 {
204 WARN_ON(!irqs_disabled());
205
206 /*
207 * don't plug a stopped queue, it must be paired with blk_start_queue()
208 * which will restart the queueing
209 */
210 if (blk_queue_stopped(q))
211 return;
212
213 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
214 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
215 trace_block_plug(q);
216 }
217 }
218 EXPORT_SYMBOL(blk_plug_device);
219
220 /**
221 * blk_plug_device_unlocked - plug a device without queue lock held
222 * @q: The &struct request_queue to plug
223 *
224 * Description:
225 * Like @blk_plug_device(), but grabs the queue lock and disables
226 * interrupts.
227 **/
228 void blk_plug_device_unlocked(struct request_queue *q)
229 {
230 unsigned long flags;
231
232 spin_lock_irqsave(q->queue_lock, flags);
233 blk_plug_device(q);
234 spin_unlock_irqrestore(q->queue_lock, flags);
235 }
236 EXPORT_SYMBOL(blk_plug_device_unlocked);
237
238 /*
239 * remove the queue from the plugged list, if present. called with
240 * queue lock held and interrupts disabled.
241 */
242 int blk_remove_plug(struct request_queue *q)
243 {
244 WARN_ON(!irqs_disabled());
245
246 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
247 return 0;
248
249 del_timer(&q->unplug_timer);
250 return 1;
251 }
252 EXPORT_SYMBOL(blk_remove_plug);
253
254 /*
255 * remove the plug and let it rip..
256 */
257 void __generic_unplug_device(struct request_queue *q)
258 {
259 if (unlikely(blk_queue_stopped(q)))
260 return;
261 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
262 return;
263
264 q->request_fn(q);
265 }
266
267 /**
268 * generic_unplug_device - fire a request queue
269 * @q: The &struct request_queue in question
270 *
271 * Description:
272 * Linux uses plugging to build bigger requests queues before letting
273 * the device have at them. If a queue is plugged, the I/O scheduler
274 * is still adding and merging requests on the queue. Once the queue
275 * gets unplugged, the request_fn defined for the queue is invoked and
276 * transfers started.
277 **/
278 void generic_unplug_device(struct request_queue *q)
279 {
280 if (blk_queue_plugged(q)) {
281 spin_lock_irq(q->queue_lock);
282 __generic_unplug_device(q);
283 spin_unlock_irq(q->queue_lock);
284 }
285 }
286 EXPORT_SYMBOL(generic_unplug_device);
287
288 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
289 struct page *page)
290 {
291 struct request_queue *q = bdi->unplug_io_data;
292
293 blk_unplug(q);
294 }
295
296 void blk_unplug_work(struct work_struct *work)
297 {
298 struct request_queue *q =
299 container_of(work, struct request_queue, unplug_work);
300
301 trace_block_unplug_io(q);
302 q->unplug_fn(q);
303 }
304
305 void blk_unplug_timeout(unsigned long data)
306 {
307 struct request_queue *q = (struct request_queue *)data;
308
309 trace_block_unplug_timer(q);
310 kblockd_schedule_work(q, &q->unplug_work);
311 }
312
313 void blk_unplug(struct request_queue *q)
314 {
315 /*
316 * devices don't necessarily have an ->unplug_fn defined
317 */
318 if (q->unplug_fn) {
319 trace_block_unplug_io(q);
320 q->unplug_fn(q);
321 }
322 }
323 EXPORT_SYMBOL(blk_unplug);
324
325 /**
326 * blk_start_queue - restart a previously stopped queue
327 * @q: The &struct request_queue in question
328 *
329 * Description:
330 * blk_start_queue() will clear the stop flag on the queue, and call
331 * the request_fn for the queue if it was in a stopped state when
332 * entered. Also see blk_stop_queue(). Queue lock must be held.
333 **/
334 void blk_start_queue(struct request_queue *q)
335 {
336 WARN_ON(!irqs_disabled());
337
338 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
339 __blk_run_queue(q);
340 }
341 EXPORT_SYMBOL(blk_start_queue);
342
343 /**
344 * blk_stop_queue - stop a queue
345 * @q: The &struct request_queue in question
346 *
347 * Description:
348 * The Linux block layer assumes that a block driver will consume all
349 * entries on the request queue when the request_fn strategy is called.
350 * Often this will not happen, because of hardware limitations (queue
351 * depth settings). If a device driver gets a 'queue full' response,
352 * or if it simply chooses not to queue more I/O at one point, it can
353 * call this function to prevent the request_fn from being called until
354 * the driver has signalled it's ready to go again. This happens by calling
355 * blk_start_queue() to restart queue operations. Queue lock must be held.
356 **/
357 void blk_stop_queue(struct request_queue *q)
358 {
359 blk_remove_plug(q);
360 queue_flag_set(QUEUE_FLAG_STOPPED, q);
361 }
362 EXPORT_SYMBOL(blk_stop_queue);
363
364 /**
365 * blk_sync_queue - cancel any pending callbacks on a queue
366 * @q: the queue
367 *
368 * Description:
369 * The block layer may perform asynchronous callback activity
370 * on a queue, such as calling the unplug function after a timeout.
371 * A block device may call blk_sync_queue to ensure that any
372 * such activity is cancelled, thus allowing it to release resources
373 * that the callbacks might use. The caller must already have made sure
374 * that its ->make_request_fn will not re-add plugging prior to calling
375 * this function.
376 *
377 */
378 void blk_sync_queue(struct request_queue *q)
379 {
380 del_timer_sync(&q->unplug_timer);
381 del_timer_sync(&q->timeout);
382 cancel_work_sync(&q->unplug_work);
383 }
384 EXPORT_SYMBOL(blk_sync_queue);
385
386 /**
387 * __blk_run_queue - run a single device queue
388 * @q: The queue to run
389 *
390 * Description:
391 * See @blk_run_queue. This variant must be called with the queue lock
392 * held and interrupts disabled.
393 *
394 */
395 void __blk_run_queue(struct request_queue *q)
396 {
397 blk_remove_plug(q);
398
399 if (unlikely(blk_queue_stopped(q)))
400 return;
401
402 if (elv_queue_empty(q))
403 return;
404
405 /*
406 * Only recurse once to avoid overrunning the stack, let the unplug
407 * handling reinvoke the handler shortly if we already got there.
408 */
409 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
410 q->request_fn(q);
411 queue_flag_clear(QUEUE_FLAG_REENTER, q);
412 } else {
413 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
414 kblockd_schedule_work(q, &q->unplug_work);
415 }
416 }
417 EXPORT_SYMBOL(__blk_run_queue);
418
419 /**
420 * blk_run_queue - run a single device queue
421 * @q: The queue to run
422 *
423 * Description:
424 * Invoke request handling on this queue, if it has pending work to do.
425 * May be used to restart queueing when a request has completed.
426 */
427 void blk_run_queue(struct request_queue *q)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436
437 void blk_put_queue(struct request_queue *q)
438 {
439 kobject_put(&q->kobj);
440 }
441
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 /*
445 * We know we have process context here, so we can be a little
446 * cautious and ensure that pending block actions on this device
447 * are done before moving on. Going into this function, we should
448 * not have processes doing IO to this device.
449 */
450 blk_sync_queue(q);
451
452 mutex_lock(&q->sysfs_lock);
453 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
454 mutex_unlock(&q->sysfs_lock);
455
456 if (q->elevator)
457 elevator_exit(q->elevator);
458
459 blk_put_queue(q);
460 }
461 EXPORT_SYMBOL(blk_cleanup_queue);
462
463 static int blk_init_free_list(struct request_queue *q)
464 {
465 struct request_list *rl = &q->rq;
466
467 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
468 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
469 rl->elvpriv = 0;
470 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
471 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
472
473 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
474 mempool_free_slab, request_cachep, q->node);
475
476 if (!rl->rq_pool)
477 return -ENOMEM;
478
479 return 0;
480 }
481
482 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
483 {
484 return blk_alloc_queue_node(gfp_mask, -1);
485 }
486 EXPORT_SYMBOL(blk_alloc_queue);
487
488 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
489 {
490 struct request_queue *q;
491 int err;
492
493 q = kmem_cache_alloc_node(blk_requestq_cachep,
494 gfp_mask | __GFP_ZERO, node_id);
495 if (!q)
496 return NULL;
497
498 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
499 q->backing_dev_info.unplug_io_data = q;
500 q->backing_dev_info.ra_pages =
501 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
502 q->backing_dev_info.state = 0;
503 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
504
505 err = bdi_init(&q->backing_dev_info);
506 if (err) {
507 kmem_cache_free(blk_requestq_cachep, q);
508 return NULL;
509 }
510
511 init_timer(&q->unplug_timer);
512 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
513 INIT_LIST_HEAD(&q->timeout_list);
514 INIT_WORK(&q->unplug_work, blk_unplug_work);
515
516 kobject_init(&q->kobj, &blk_queue_ktype);
517
518 mutex_init(&q->sysfs_lock);
519 spin_lock_init(&q->__queue_lock);
520
521 return q;
522 }
523 EXPORT_SYMBOL(blk_alloc_queue_node);
524
525 /**
526 * blk_init_queue - prepare a request queue for use with a block device
527 * @rfn: The function to be called to process requests that have been
528 * placed on the queue.
529 * @lock: Request queue spin lock
530 *
531 * Description:
532 * If a block device wishes to use the standard request handling procedures,
533 * which sorts requests and coalesces adjacent requests, then it must
534 * call blk_init_queue(). The function @rfn will be called when there
535 * are requests on the queue that need to be processed. If the device
536 * supports plugging, then @rfn may not be called immediately when requests
537 * are available on the queue, but may be called at some time later instead.
538 * Plugged queues are generally unplugged when a buffer belonging to one
539 * of the requests on the queue is needed, or due to memory pressure.
540 *
541 * @rfn is not required, or even expected, to remove all requests off the
542 * queue, but only as many as it can handle at a time. If it does leave
543 * requests on the queue, it is responsible for arranging that the requests
544 * get dealt with eventually.
545 *
546 * The queue spin lock must be held while manipulating the requests on the
547 * request queue; this lock will be taken also from interrupt context, so irq
548 * disabling is needed for it.
549 *
550 * Function returns a pointer to the initialized request queue, or %NULL if
551 * it didn't succeed.
552 *
553 * Note:
554 * blk_init_queue() must be paired with a blk_cleanup_queue() call
555 * when the block device is deactivated (such as at module unload).
556 **/
557
558 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
559 {
560 return blk_init_queue_node(rfn, lock, -1);
561 }
562 EXPORT_SYMBOL(blk_init_queue);
563
564 struct request_queue *
565 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
566 {
567 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
568
569 if (!q)
570 return NULL;
571
572 q->node = node_id;
573 if (blk_init_free_list(q)) {
574 kmem_cache_free(blk_requestq_cachep, q);
575 return NULL;
576 }
577
578 q->request_fn = rfn;
579 q->prep_rq_fn = NULL;
580 q->unplug_fn = generic_unplug_device;
581 q->queue_flags = QUEUE_FLAG_DEFAULT;
582 q->queue_lock = lock;
583
584 /*
585 * This also sets hw/phys segments, boundary and size
586 */
587 blk_queue_make_request(q, __make_request);
588
589 q->sg_reserved_size = INT_MAX;
590
591 /*
592 * all done
593 */
594 if (!elevator_init(q, NULL)) {
595 blk_queue_congestion_threshold(q);
596 return q;
597 }
598
599 blk_put_queue(q);
600 return NULL;
601 }
602 EXPORT_SYMBOL(blk_init_queue_node);
603
604 int blk_get_queue(struct request_queue *q)
605 {
606 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
607 kobject_get(&q->kobj);
608 return 0;
609 }
610
611 return 1;
612 }
613
614 static inline void blk_free_request(struct request_queue *q, struct request *rq)
615 {
616 if (rq->cmd_flags & REQ_ELVPRIV)
617 elv_put_request(q, rq);
618 mempool_free(rq, q->rq.rq_pool);
619 }
620
621 static struct request *
622 blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
623 {
624 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
625
626 if (!rq)
627 return NULL;
628
629 blk_rq_init(q, rq);
630
631 rq->cmd_flags = flags | REQ_ALLOCED;
632
633 if (priv) {
634 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
635 mempool_free(rq, q->rq.rq_pool);
636 return NULL;
637 }
638 rq->cmd_flags |= REQ_ELVPRIV;
639 }
640
641 return rq;
642 }
643
644 /*
645 * ioc_batching returns true if the ioc is a valid batching request and
646 * should be given priority access to a request.
647 */
648 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
649 {
650 if (!ioc)
651 return 0;
652
653 /*
654 * Make sure the process is able to allocate at least 1 request
655 * even if the batch times out, otherwise we could theoretically
656 * lose wakeups.
657 */
658 return ioc->nr_batch_requests == q->nr_batching ||
659 (ioc->nr_batch_requests > 0
660 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
661 }
662
663 /*
664 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
665 * will cause the process to be a "batcher" on all queues in the system. This
666 * is the behaviour we want though - once it gets a wakeup it should be given
667 * a nice run.
668 */
669 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
670 {
671 if (!ioc || ioc_batching(q, ioc))
672 return;
673
674 ioc->nr_batch_requests = q->nr_batching;
675 ioc->last_waited = jiffies;
676 }
677
678 static void __freed_request(struct request_queue *q, int sync)
679 {
680 struct request_list *rl = &q->rq;
681
682 if (rl->count[sync] < queue_congestion_off_threshold(q))
683 blk_clear_queue_congested(q, sync);
684
685 if (rl->count[sync] + 1 <= q->nr_requests) {
686 if (waitqueue_active(&rl->wait[sync]))
687 wake_up(&rl->wait[sync]);
688
689 blk_clear_queue_full(q, sync);
690 }
691 }
692
693 /*
694 * A request has just been released. Account for it, update the full and
695 * congestion status, wake up any waiters. Called under q->queue_lock.
696 */
697 static void freed_request(struct request_queue *q, int sync, int priv)
698 {
699 struct request_list *rl = &q->rq;
700
701 rl->count[sync]--;
702 if (priv)
703 rl->elvpriv--;
704
705 __freed_request(q, sync);
706
707 if (unlikely(rl->starved[sync ^ 1]))
708 __freed_request(q, sync ^ 1);
709 }
710
711 /*
712 * Get a free request, queue_lock must be held.
713 * Returns NULL on failure, with queue_lock held.
714 * Returns !NULL on success, with queue_lock *not held*.
715 */
716 static struct request *get_request(struct request_queue *q, int rw_flags,
717 struct bio *bio, gfp_t gfp_mask)
718 {
719 struct request *rq = NULL;
720 struct request_list *rl = &q->rq;
721 struct io_context *ioc = NULL;
722 const bool is_sync = rw_is_sync(rw_flags) != 0;
723 int may_queue, priv;
724
725 may_queue = elv_may_queue(q, rw_flags);
726 if (may_queue == ELV_MQUEUE_NO)
727 goto rq_starved;
728
729 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
730 if (rl->count[is_sync]+1 >= q->nr_requests) {
731 ioc = current_io_context(GFP_ATOMIC, q->node);
732 /*
733 * The queue will fill after this allocation, so set
734 * it as full, and mark this process as "batching".
735 * This process will be allowed to complete a batch of
736 * requests, others will be blocked.
737 */
738 if (!blk_queue_full(q, is_sync)) {
739 ioc_set_batching(q, ioc);
740 blk_set_queue_full(q, is_sync);
741 } else {
742 if (may_queue != ELV_MQUEUE_MUST
743 && !ioc_batching(q, ioc)) {
744 /*
745 * The queue is full and the allocating
746 * process is not a "batcher", and not
747 * exempted by the IO scheduler
748 */
749 goto out;
750 }
751 }
752 }
753 blk_set_queue_congested(q, is_sync);
754 }
755
756 /*
757 * Only allow batching queuers to allocate up to 50% over the defined
758 * limit of requests, otherwise we could have thousands of requests
759 * allocated with any setting of ->nr_requests
760 */
761 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
762 goto out;
763
764 rl->count[is_sync]++;
765 rl->starved[is_sync] = 0;
766
767 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
768 if (priv)
769 rl->elvpriv++;
770
771 if (blk_queue_io_stat(q))
772 rw_flags |= REQ_IO_STAT;
773 spin_unlock_irq(q->queue_lock);
774
775 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
776 if (unlikely(!rq)) {
777 /*
778 * Allocation failed presumably due to memory. Undo anything
779 * we might have messed up.
780 *
781 * Allocating task should really be put onto the front of the
782 * wait queue, but this is pretty rare.
783 */
784 spin_lock_irq(q->queue_lock);
785 freed_request(q, is_sync, priv);
786
787 /*
788 * in the very unlikely event that allocation failed and no
789 * requests for this direction was pending, mark us starved
790 * so that freeing of a request in the other direction will
791 * notice us. another possible fix would be to split the
792 * rq mempool into READ and WRITE
793 */
794 rq_starved:
795 if (unlikely(rl->count[is_sync] == 0))
796 rl->starved[is_sync] = 1;
797
798 goto out;
799 }
800
801 /*
802 * ioc may be NULL here, and ioc_batching will be false. That's
803 * OK, if the queue is under the request limit then requests need
804 * not count toward the nr_batch_requests limit. There will always
805 * be some limit enforced by BLK_BATCH_TIME.
806 */
807 if (ioc_batching(q, ioc))
808 ioc->nr_batch_requests--;
809
810 trace_block_getrq(q, bio, rw_flags & 1);
811 out:
812 return rq;
813 }
814
815 /*
816 * No available requests for this queue, unplug the device and wait for some
817 * requests to become available.
818 *
819 * Called with q->queue_lock held, and returns with it unlocked.
820 */
821 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
822 struct bio *bio)
823 {
824 const bool is_sync = rw_is_sync(rw_flags) != 0;
825 struct request *rq;
826
827 rq = get_request(q, rw_flags, bio, GFP_NOIO);
828 while (!rq) {
829 DEFINE_WAIT(wait);
830 struct io_context *ioc;
831 struct request_list *rl = &q->rq;
832
833 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
834 TASK_UNINTERRUPTIBLE);
835
836 trace_block_sleeprq(q, bio, rw_flags & 1);
837
838 __generic_unplug_device(q);
839 spin_unlock_irq(q->queue_lock);
840 io_schedule();
841
842 /*
843 * After sleeping, we become a "batching" process and
844 * will be able to allocate at least one request, and
845 * up to a big batch of them for a small period time.
846 * See ioc_batching, ioc_set_batching
847 */
848 ioc = current_io_context(GFP_NOIO, q->node);
849 ioc_set_batching(q, ioc);
850
851 spin_lock_irq(q->queue_lock);
852 finish_wait(&rl->wait[is_sync], &wait);
853
854 rq = get_request(q, rw_flags, bio, GFP_NOIO);
855 };
856
857 return rq;
858 }
859
860 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
861 {
862 struct request *rq;
863
864 BUG_ON(rw != READ && rw != WRITE);
865
866 spin_lock_irq(q->queue_lock);
867 if (gfp_mask & __GFP_WAIT) {
868 rq = get_request_wait(q, rw, NULL);
869 } else {
870 rq = get_request(q, rw, NULL, gfp_mask);
871 if (!rq)
872 spin_unlock_irq(q->queue_lock);
873 }
874 /* q->queue_lock is unlocked at this point */
875
876 return rq;
877 }
878 EXPORT_SYMBOL(blk_get_request);
879
880 /**
881 * blk_make_request - given a bio, allocate a corresponding struct request.
882 * @q: target request queue
883 * @bio: The bio describing the memory mappings that will be submitted for IO.
884 * It may be a chained-bio properly constructed by block/bio layer.
885 * @gfp_mask: gfp flags to be used for memory allocation
886 *
887 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
888 * type commands. Where the struct request needs to be farther initialized by
889 * the caller. It is passed a &struct bio, which describes the memory info of
890 * the I/O transfer.
891 *
892 * The caller of blk_make_request must make sure that bi_io_vec
893 * are set to describe the memory buffers. That bio_data_dir() will return
894 * the needed direction of the request. (And all bio's in the passed bio-chain
895 * are properly set accordingly)
896 *
897 * If called under none-sleepable conditions, mapped bio buffers must not
898 * need bouncing, by calling the appropriate masked or flagged allocator,
899 * suitable for the target device. Otherwise the call to blk_queue_bounce will
900 * BUG.
901 *
902 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
903 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
904 * anything but the first bio in the chain. Otherwise you risk waiting for IO
905 * completion of a bio that hasn't been submitted yet, thus resulting in a
906 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
907 * of bio_alloc(), as that avoids the mempool deadlock.
908 * If possible a big IO should be split into smaller parts when allocation
909 * fails. Partial allocation should not be an error, or you risk a live-lock.
910 */
911 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
912 gfp_t gfp_mask)
913 {
914 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
915
916 if (unlikely(!rq))
917 return ERR_PTR(-ENOMEM);
918
919 for_each_bio(bio) {
920 struct bio *bounce_bio = bio;
921 int ret;
922
923 blk_queue_bounce(q, &bounce_bio);
924 ret = blk_rq_append_bio(q, rq, bounce_bio);
925 if (unlikely(ret)) {
926 blk_put_request(rq);
927 return ERR_PTR(ret);
928 }
929 }
930
931 return rq;
932 }
933 EXPORT_SYMBOL(blk_make_request);
934
935 /**
936 * blk_requeue_request - put a request back on queue
937 * @q: request queue where request should be inserted
938 * @rq: request to be inserted
939 *
940 * Description:
941 * Drivers often keep queueing requests until the hardware cannot accept
942 * more, when that condition happens we need to put the request back
943 * on the queue. Must be called with queue lock held.
944 */
945 void blk_requeue_request(struct request_queue *q, struct request *rq)
946 {
947 blk_delete_timer(rq);
948 blk_clear_rq_complete(rq);
949 trace_block_rq_requeue(q, rq);
950
951 if (blk_rq_tagged(rq))
952 blk_queue_end_tag(q, rq);
953
954 BUG_ON(blk_queued_rq(rq));
955
956 elv_requeue_request(q, rq);
957 }
958 EXPORT_SYMBOL(blk_requeue_request);
959
960 /**
961 * blk_insert_request - insert a special request into a request queue
962 * @q: request queue where request should be inserted
963 * @rq: request to be inserted
964 * @at_head: insert request at head or tail of queue
965 * @data: private data
966 *
967 * Description:
968 * Many block devices need to execute commands asynchronously, so they don't
969 * block the whole kernel from preemption during request execution. This is
970 * accomplished normally by inserting aritficial requests tagged as
971 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
972 * be scheduled for actual execution by the request queue.
973 *
974 * We have the option of inserting the head or the tail of the queue.
975 * Typically we use the tail for new ioctls and so forth. We use the head
976 * of the queue for things like a QUEUE_FULL message from a device, or a
977 * host that is unable to accept a particular command.
978 */
979 void blk_insert_request(struct request_queue *q, struct request *rq,
980 int at_head, void *data)
981 {
982 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
983 unsigned long flags;
984
985 /*
986 * tell I/O scheduler that this isn't a regular read/write (ie it
987 * must not attempt merges on this) and that it acts as a soft
988 * barrier
989 */
990 rq->cmd_type = REQ_TYPE_SPECIAL;
991
992 rq->special = data;
993
994 spin_lock_irqsave(q->queue_lock, flags);
995
996 /*
997 * If command is tagged, release the tag
998 */
999 if (blk_rq_tagged(rq))
1000 blk_queue_end_tag(q, rq);
1001
1002 drive_stat_acct(rq, 1);
1003 __elv_add_request(q, rq, where, 0);
1004 __blk_run_queue(q);
1005 spin_unlock_irqrestore(q->queue_lock, flags);
1006 }
1007 EXPORT_SYMBOL(blk_insert_request);
1008
1009 /*
1010 * add-request adds a request to the linked list.
1011 * queue lock is held and interrupts disabled, as we muck with the
1012 * request queue list.
1013 */
1014 static inline void add_request(struct request_queue *q, struct request *req)
1015 {
1016 drive_stat_acct(req, 1);
1017
1018 /*
1019 * elevator indicated where it wants this request to be
1020 * inserted at elevator_merge time
1021 */
1022 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1023 }
1024
1025 static void part_round_stats_single(int cpu, struct hd_struct *part,
1026 unsigned long now)
1027 {
1028 if (now == part->stamp)
1029 return;
1030
1031 if (part->in_flight) {
1032 __part_stat_add(cpu, part, time_in_queue,
1033 part->in_flight * (now - part->stamp));
1034 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1035 }
1036 part->stamp = now;
1037 }
1038
1039 /**
1040 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1041 * @cpu: cpu number for stats access
1042 * @part: target partition
1043 *
1044 * The average IO queue length and utilisation statistics are maintained
1045 * by observing the current state of the queue length and the amount of
1046 * time it has been in this state for.
1047 *
1048 * Normally, that accounting is done on IO completion, but that can result
1049 * in more than a second's worth of IO being accounted for within any one
1050 * second, leading to >100% utilisation. To deal with that, we call this
1051 * function to do a round-off before returning the results when reading
1052 * /proc/diskstats. This accounts immediately for all queue usage up to
1053 * the current jiffies and restarts the counters again.
1054 */
1055 void part_round_stats(int cpu, struct hd_struct *part)
1056 {
1057 unsigned long now = jiffies;
1058
1059 if (part->partno)
1060 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1061 part_round_stats_single(cpu, part, now);
1062 }
1063 EXPORT_SYMBOL_GPL(part_round_stats);
1064
1065 /*
1066 * queue lock must be held
1067 */
1068 void __blk_put_request(struct request_queue *q, struct request *req)
1069 {
1070 if (unlikely(!q))
1071 return;
1072 if (unlikely(--req->ref_count))
1073 return;
1074
1075 elv_completed_request(q, req);
1076
1077 /* this is a bio leak */
1078 WARN_ON(req->bio != NULL);
1079
1080 /*
1081 * Request may not have originated from ll_rw_blk. if not,
1082 * it didn't come out of our reserved rq pools
1083 */
1084 if (req->cmd_flags & REQ_ALLOCED) {
1085 int is_sync = rq_is_sync(req) != 0;
1086 int priv = req->cmd_flags & REQ_ELVPRIV;
1087
1088 BUG_ON(!list_empty(&req->queuelist));
1089 BUG_ON(!hlist_unhashed(&req->hash));
1090
1091 blk_free_request(q, req);
1092 freed_request(q, is_sync, priv);
1093 }
1094 }
1095 EXPORT_SYMBOL_GPL(__blk_put_request);
1096
1097 void blk_put_request(struct request *req)
1098 {
1099 unsigned long flags;
1100 struct request_queue *q = req->q;
1101
1102 spin_lock_irqsave(q->queue_lock, flags);
1103 __blk_put_request(q, req);
1104 spin_unlock_irqrestore(q->queue_lock, flags);
1105 }
1106 EXPORT_SYMBOL(blk_put_request);
1107
1108 void init_request_from_bio(struct request *req, struct bio *bio)
1109 {
1110 req->cpu = bio->bi_comp_cpu;
1111 req->cmd_type = REQ_TYPE_FS;
1112
1113 /*
1114 * Inherit FAILFAST from bio (for read-ahead, and explicit
1115 * FAILFAST). FAILFAST flags are identical for req and bio.
1116 */
1117 if (bio_rw_ahead(bio))
1118 req->cmd_flags |= REQ_FAILFAST_MASK;
1119 else
1120 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
1121
1122 if (unlikely(bio_discard(bio))) {
1123 req->cmd_flags |= REQ_DISCARD;
1124 if (bio_barrier(bio))
1125 req->cmd_flags |= REQ_SOFTBARRIER;
1126 req->q->prepare_discard_fn(req->q, req);
1127 } else if (unlikely(bio_barrier(bio)))
1128 req->cmd_flags |= REQ_HARDBARRIER;
1129
1130 if (bio_sync(bio))
1131 req->cmd_flags |= REQ_RW_SYNC;
1132 if (bio_rw_meta(bio))
1133 req->cmd_flags |= REQ_RW_META;
1134 if (bio_noidle(bio))
1135 req->cmd_flags |= REQ_NOIDLE;
1136
1137 req->errors = 0;
1138 req->__sector = bio->bi_sector;
1139 req->ioprio = bio_prio(bio);
1140 blk_rq_bio_prep(req->q, req, bio);
1141 }
1142
1143 /*
1144 * Only disabling plugging for non-rotational devices if it does tagging
1145 * as well, otherwise we do need the proper merging
1146 */
1147 static inline bool queue_should_plug(struct request_queue *q)
1148 {
1149 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
1150 }
1151
1152 static int __make_request(struct request_queue *q, struct bio *bio)
1153 {
1154 struct request *req;
1155 int el_ret;
1156 unsigned int bytes = bio->bi_size;
1157 const unsigned short prio = bio_prio(bio);
1158 const int sync = bio_sync(bio);
1159 const int unplug = bio_unplug(bio);
1160 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1161 int rw_flags;
1162
1163 if (bio_barrier(bio) && bio_has_data(bio) &&
1164 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1165 bio_endio(bio, -EOPNOTSUPP);
1166 return 0;
1167 }
1168 /*
1169 * low level driver can indicate that it wants pages above a
1170 * certain limit bounced to low memory (ie for highmem, or even
1171 * ISA dma in theory)
1172 */
1173 blk_queue_bounce(q, &bio);
1174
1175 spin_lock_irq(q->queue_lock);
1176
1177 if (unlikely(bio_barrier(bio)) || elv_queue_empty(q))
1178 goto get_rq;
1179
1180 el_ret = elv_merge(q, &req, bio);
1181 switch (el_ret) {
1182 case ELEVATOR_BACK_MERGE:
1183 BUG_ON(!rq_mergeable(req));
1184
1185 if (!ll_back_merge_fn(q, req, bio))
1186 break;
1187
1188 trace_block_bio_backmerge(q, bio);
1189
1190 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1191 blk_rq_set_mixed_merge(req);
1192
1193 req->biotail->bi_next = bio;
1194 req->biotail = bio;
1195 req->__data_len += bytes;
1196 req->ioprio = ioprio_best(req->ioprio, prio);
1197 if (!blk_rq_cpu_valid(req))
1198 req->cpu = bio->bi_comp_cpu;
1199 drive_stat_acct(req, 0);
1200 if (!attempt_back_merge(q, req))
1201 elv_merged_request(q, req, el_ret);
1202 goto out;
1203
1204 case ELEVATOR_FRONT_MERGE:
1205 BUG_ON(!rq_mergeable(req));
1206
1207 if (!ll_front_merge_fn(q, req, bio))
1208 break;
1209
1210 trace_block_bio_frontmerge(q, bio);
1211
1212 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1213 blk_rq_set_mixed_merge(req);
1214 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1215 req->cmd_flags |= ff;
1216 }
1217
1218 bio->bi_next = req->bio;
1219 req->bio = bio;
1220
1221 /*
1222 * may not be valid. if the low level driver said
1223 * it didn't need a bounce buffer then it better
1224 * not touch req->buffer either...
1225 */
1226 req->buffer = bio_data(bio);
1227 req->__sector = bio->bi_sector;
1228 req->__data_len += bytes;
1229 req->ioprio = ioprio_best(req->ioprio, prio);
1230 if (!blk_rq_cpu_valid(req))
1231 req->cpu = bio->bi_comp_cpu;
1232 drive_stat_acct(req, 0);
1233 if (!attempt_front_merge(q, req))
1234 elv_merged_request(q, req, el_ret);
1235 goto out;
1236
1237 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1238 default:
1239 ;
1240 }
1241
1242 get_rq:
1243 /*
1244 * This sync check and mask will be re-done in init_request_from_bio(),
1245 * but we need to set it earlier to expose the sync flag to the
1246 * rq allocator and io schedulers.
1247 */
1248 rw_flags = bio_data_dir(bio);
1249 if (sync)
1250 rw_flags |= REQ_RW_SYNC;
1251
1252 /*
1253 * Grab a free request. This is might sleep but can not fail.
1254 * Returns with the queue unlocked.
1255 */
1256 req = get_request_wait(q, rw_flags, bio);
1257
1258 /*
1259 * After dropping the lock and possibly sleeping here, our request
1260 * may now be mergeable after it had proven unmergeable (above).
1261 * We don't worry about that case for efficiency. It won't happen
1262 * often, and the elevators are able to handle it.
1263 */
1264 init_request_from_bio(req, bio);
1265
1266 spin_lock_irq(q->queue_lock);
1267 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1268 bio_flagged(bio, BIO_CPU_AFFINE))
1269 req->cpu = blk_cpu_to_group(smp_processor_id());
1270 if (queue_should_plug(q) && elv_queue_empty(q))
1271 blk_plug_device(q);
1272 add_request(q, req);
1273 out:
1274 if (unplug || !queue_should_plug(q))
1275 __generic_unplug_device(q);
1276 spin_unlock_irq(q->queue_lock);
1277 return 0;
1278 }
1279
1280 /*
1281 * If bio->bi_dev is a partition, remap the location
1282 */
1283 static inline void blk_partition_remap(struct bio *bio)
1284 {
1285 struct block_device *bdev = bio->bi_bdev;
1286
1287 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1288 struct hd_struct *p = bdev->bd_part;
1289
1290 bio->bi_sector += p->start_sect;
1291 bio->bi_bdev = bdev->bd_contains;
1292
1293 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
1294 bdev->bd_dev,
1295 bio->bi_sector - p->start_sect);
1296 }
1297 }
1298
1299 static void handle_bad_sector(struct bio *bio)
1300 {
1301 char b[BDEVNAME_SIZE];
1302
1303 printk(KERN_INFO "attempt to access beyond end of device\n");
1304 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1305 bdevname(bio->bi_bdev, b),
1306 bio->bi_rw,
1307 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1308 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1309
1310 set_bit(BIO_EOF, &bio->bi_flags);
1311 }
1312
1313 #ifdef CONFIG_FAIL_MAKE_REQUEST
1314
1315 static DECLARE_FAULT_ATTR(fail_make_request);
1316
1317 static int __init setup_fail_make_request(char *str)
1318 {
1319 return setup_fault_attr(&fail_make_request, str);
1320 }
1321 __setup("fail_make_request=", setup_fail_make_request);
1322
1323 static int should_fail_request(struct bio *bio)
1324 {
1325 struct hd_struct *part = bio->bi_bdev->bd_part;
1326
1327 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1328 return should_fail(&fail_make_request, bio->bi_size);
1329
1330 return 0;
1331 }
1332
1333 static int __init fail_make_request_debugfs(void)
1334 {
1335 return init_fault_attr_dentries(&fail_make_request,
1336 "fail_make_request");
1337 }
1338
1339 late_initcall(fail_make_request_debugfs);
1340
1341 #else /* CONFIG_FAIL_MAKE_REQUEST */
1342
1343 static inline int should_fail_request(struct bio *bio)
1344 {
1345 return 0;
1346 }
1347
1348 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1349
1350 /*
1351 * Check whether this bio extends beyond the end of the device.
1352 */
1353 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1354 {
1355 sector_t maxsector;
1356
1357 if (!nr_sectors)
1358 return 0;
1359
1360 /* Test device or partition size, when known. */
1361 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1362 if (maxsector) {
1363 sector_t sector = bio->bi_sector;
1364
1365 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1366 /*
1367 * This may well happen - the kernel calls bread()
1368 * without checking the size of the device, e.g., when
1369 * mounting a device.
1370 */
1371 handle_bad_sector(bio);
1372 return 1;
1373 }
1374 }
1375
1376 return 0;
1377 }
1378
1379 /**
1380 * generic_make_request - hand a buffer to its device driver for I/O
1381 * @bio: The bio describing the location in memory and on the device.
1382 *
1383 * generic_make_request() is used to make I/O requests of block
1384 * devices. It is passed a &struct bio, which describes the I/O that needs
1385 * to be done.
1386 *
1387 * generic_make_request() does not return any status. The
1388 * success/failure status of the request, along with notification of
1389 * completion, is delivered asynchronously through the bio->bi_end_io
1390 * function described (one day) else where.
1391 *
1392 * The caller of generic_make_request must make sure that bi_io_vec
1393 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1394 * set to describe the device address, and the
1395 * bi_end_io and optionally bi_private are set to describe how
1396 * completion notification should be signaled.
1397 *
1398 * generic_make_request and the drivers it calls may use bi_next if this
1399 * bio happens to be merged with someone else, and may change bi_dev and
1400 * bi_sector for remaps as it sees fit. So the values of these fields
1401 * should NOT be depended on after the call to generic_make_request.
1402 */
1403 static inline void __generic_make_request(struct bio *bio)
1404 {
1405 struct request_queue *q;
1406 sector_t old_sector;
1407 int ret, nr_sectors = bio_sectors(bio);
1408 dev_t old_dev;
1409 int err = -EIO;
1410
1411 might_sleep();
1412
1413 if (bio_check_eod(bio, nr_sectors))
1414 goto end_io;
1415
1416 /*
1417 * Resolve the mapping until finished. (drivers are
1418 * still free to implement/resolve their own stacking
1419 * by explicitly returning 0)
1420 *
1421 * NOTE: we don't repeat the blk_size check for each new device.
1422 * Stacking drivers are expected to know what they are doing.
1423 */
1424 old_sector = -1;
1425 old_dev = 0;
1426 do {
1427 char b[BDEVNAME_SIZE];
1428
1429 q = bdev_get_queue(bio->bi_bdev);
1430 if (unlikely(!q)) {
1431 printk(KERN_ERR
1432 "generic_make_request: Trying to access "
1433 "nonexistent block-device %s (%Lu)\n",
1434 bdevname(bio->bi_bdev, b),
1435 (long long) bio->bi_sector);
1436 goto end_io;
1437 }
1438
1439 if (unlikely(nr_sectors > queue_max_hw_sectors(q))) {
1440 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1441 bdevname(bio->bi_bdev, b),
1442 bio_sectors(bio),
1443 queue_max_hw_sectors(q));
1444 goto end_io;
1445 }
1446
1447 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1448 goto end_io;
1449
1450 if (should_fail_request(bio))
1451 goto end_io;
1452
1453 /*
1454 * If this device has partitions, remap block n
1455 * of partition p to block n+start(p) of the disk.
1456 */
1457 blk_partition_remap(bio);
1458
1459 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1460 goto end_io;
1461
1462 if (old_sector != -1)
1463 trace_block_remap(q, bio, old_dev, old_sector);
1464
1465 trace_block_bio_queue(q, bio);
1466
1467 old_sector = bio->bi_sector;
1468 old_dev = bio->bi_bdev->bd_dev;
1469
1470 if (bio_check_eod(bio, nr_sectors))
1471 goto end_io;
1472
1473 if (bio_discard(bio) && !q->prepare_discard_fn) {
1474 err = -EOPNOTSUPP;
1475 goto end_io;
1476 }
1477
1478 ret = q->make_request_fn(q, bio);
1479 } while (ret);
1480
1481 return;
1482
1483 end_io:
1484 bio_endio(bio, err);
1485 }
1486
1487 /*
1488 * We only want one ->make_request_fn to be active at a time,
1489 * else stack usage with stacked devices could be a problem.
1490 * So use current->bio_{list,tail} to keep a list of requests
1491 * submited by a make_request_fn function.
1492 * current->bio_tail is also used as a flag to say if
1493 * generic_make_request is currently active in this task or not.
1494 * If it is NULL, then no make_request is active. If it is non-NULL,
1495 * then a make_request is active, and new requests should be added
1496 * at the tail
1497 */
1498 void generic_make_request(struct bio *bio)
1499 {
1500 if (current->bio_tail) {
1501 /* make_request is active */
1502 *(current->bio_tail) = bio;
1503 bio->bi_next = NULL;
1504 current->bio_tail = &bio->bi_next;
1505 return;
1506 }
1507 /* following loop may be a bit non-obvious, and so deserves some
1508 * explanation.
1509 * Before entering the loop, bio->bi_next is NULL (as all callers
1510 * ensure that) so we have a list with a single bio.
1511 * We pretend that we have just taken it off a longer list, so
1512 * we assign bio_list to the next (which is NULL) and bio_tail
1513 * to &bio_list, thus initialising the bio_list of new bios to be
1514 * added. __generic_make_request may indeed add some more bios
1515 * through a recursive call to generic_make_request. If it
1516 * did, we find a non-NULL value in bio_list and re-enter the loop
1517 * from the top. In this case we really did just take the bio
1518 * of the top of the list (no pretending) and so fixup bio_list and
1519 * bio_tail or bi_next, and call into __generic_make_request again.
1520 *
1521 * The loop was structured like this to make only one call to
1522 * __generic_make_request (which is important as it is large and
1523 * inlined) and to keep the structure simple.
1524 */
1525 BUG_ON(bio->bi_next);
1526 do {
1527 current->bio_list = bio->bi_next;
1528 if (bio->bi_next == NULL)
1529 current->bio_tail = &current->bio_list;
1530 else
1531 bio->bi_next = NULL;
1532 __generic_make_request(bio);
1533 bio = current->bio_list;
1534 } while (bio);
1535 current->bio_tail = NULL; /* deactivate */
1536 }
1537 EXPORT_SYMBOL(generic_make_request);
1538
1539 /**
1540 * submit_bio - submit a bio to the block device layer for I/O
1541 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1542 * @bio: The &struct bio which describes the I/O
1543 *
1544 * submit_bio() is very similar in purpose to generic_make_request(), and
1545 * uses that function to do most of the work. Both are fairly rough
1546 * interfaces; @bio must be presetup and ready for I/O.
1547 *
1548 */
1549 void submit_bio(int rw, struct bio *bio)
1550 {
1551 int count = bio_sectors(bio);
1552
1553 bio->bi_rw |= rw;
1554
1555 /*
1556 * If it's a regular read/write or a barrier with data attached,
1557 * go through the normal accounting stuff before submission.
1558 */
1559 if (bio_has_data(bio)) {
1560 if (rw & WRITE) {
1561 count_vm_events(PGPGOUT, count);
1562 } else {
1563 task_io_account_read(bio->bi_size);
1564 count_vm_events(PGPGIN, count);
1565 }
1566
1567 if (unlikely(block_dump)) {
1568 char b[BDEVNAME_SIZE];
1569 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1570 current->comm, task_pid_nr(current),
1571 (rw & WRITE) ? "WRITE" : "READ",
1572 (unsigned long long)bio->bi_sector,
1573 bdevname(bio->bi_bdev, b));
1574 }
1575 }
1576
1577 generic_make_request(bio);
1578 }
1579 EXPORT_SYMBOL(submit_bio);
1580
1581 /**
1582 * blk_rq_check_limits - Helper function to check a request for the queue limit
1583 * @q: the queue
1584 * @rq: the request being checked
1585 *
1586 * Description:
1587 * @rq may have been made based on weaker limitations of upper-level queues
1588 * in request stacking drivers, and it may violate the limitation of @q.
1589 * Since the block layer and the underlying device driver trust @rq
1590 * after it is inserted to @q, it should be checked against @q before
1591 * the insertion using this generic function.
1592 *
1593 * This function should also be useful for request stacking drivers
1594 * in some cases below, so export this fuction.
1595 * Request stacking drivers like request-based dm may change the queue
1596 * limits while requests are in the queue (e.g. dm's table swapping).
1597 * Such request stacking drivers should check those requests agaist
1598 * the new queue limits again when they dispatch those requests,
1599 * although such checkings are also done against the old queue limits
1600 * when submitting requests.
1601 */
1602 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1603 {
1604 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1605 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1606 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1607 return -EIO;
1608 }
1609
1610 /*
1611 * queue's settings related to segment counting like q->bounce_pfn
1612 * may differ from that of other stacking queues.
1613 * Recalculate it to check the request correctly on this queue's
1614 * limitation.
1615 */
1616 blk_recalc_rq_segments(rq);
1617 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1618 rq->nr_phys_segments > queue_max_hw_segments(q)) {
1619 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1620 return -EIO;
1621 }
1622
1623 return 0;
1624 }
1625 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1626
1627 /**
1628 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1629 * @q: the queue to submit the request
1630 * @rq: the request being queued
1631 */
1632 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1633 {
1634 unsigned long flags;
1635
1636 if (blk_rq_check_limits(q, rq))
1637 return -EIO;
1638
1639 #ifdef CONFIG_FAIL_MAKE_REQUEST
1640 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1641 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1642 return -EIO;
1643 #endif
1644
1645 spin_lock_irqsave(q->queue_lock, flags);
1646
1647 /*
1648 * Submitting request must be dequeued before calling this function
1649 * because it will be linked to another request_queue
1650 */
1651 BUG_ON(blk_queued_rq(rq));
1652
1653 drive_stat_acct(rq, 1);
1654 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1655
1656 spin_unlock_irqrestore(q->queue_lock, flags);
1657
1658 return 0;
1659 }
1660 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1661
1662 /**
1663 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1664 * @rq: request to examine
1665 *
1666 * Description:
1667 * A request could be merge of IOs which require different failure
1668 * handling. This function determines the number of bytes which
1669 * can be failed from the beginning of the request without
1670 * crossing into area which need to be retried further.
1671 *
1672 * Return:
1673 * The number of bytes to fail.
1674 *
1675 * Context:
1676 * queue_lock must be held.
1677 */
1678 unsigned int blk_rq_err_bytes(const struct request *rq)
1679 {
1680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1681 unsigned int bytes = 0;
1682 struct bio *bio;
1683
1684 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1685 return blk_rq_bytes(rq);
1686
1687 /*
1688 * Currently the only 'mixing' which can happen is between
1689 * different fastfail types. We can safely fail portions
1690 * which have all the failfast bits that the first one has -
1691 * the ones which are at least as eager to fail as the first
1692 * one.
1693 */
1694 for (bio = rq->bio; bio; bio = bio->bi_next) {
1695 if ((bio->bi_rw & ff) != ff)
1696 break;
1697 bytes += bio->bi_size;
1698 }
1699
1700 /* this could lead to infinite loop */
1701 BUG_ON(blk_rq_bytes(rq) && !bytes);
1702 return bytes;
1703 }
1704 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1705
1706 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1707 {
1708 if (blk_do_io_stat(req)) {
1709 const int rw = rq_data_dir(req);
1710 struct hd_struct *part;
1711 int cpu;
1712
1713 cpu = part_stat_lock();
1714 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1715 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1716 part_stat_unlock();
1717 }
1718 }
1719
1720 static void blk_account_io_done(struct request *req)
1721 {
1722 /*
1723 * Account IO completion. bar_rq isn't accounted as a normal
1724 * IO on queueing nor completion. Accounting the containing
1725 * request is enough.
1726 */
1727 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
1728 unsigned long duration = jiffies - req->start_time;
1729 const int rw = rq_data_dir(req);
1730 struct hd_struct *part;
1731 int cpu;
1732
1733 cpu = part_stat_lock();
1734 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
1735
1736 part_stat_inc(cpu, part, ios[rw]);
1737 part_stat_add(cpu, part, ticks[rw], duration);
1738 part_round_stats(cpu, part);
1739 part_dec_in_flight(part);
1740
1741 part_stat_unlock();
1742 }
1743 }
1744
1745 /**
1746 * blk_peek_request - peek at the top of a request queue
1747 * @q: request queue to peek at
1748 *
1749 * Description:
1750 * Return the request at the top of @q. The returned request
1751 * should be started using blk_start_request() before LLD starts
1752 * processing it.
1753 *
1754 * Return:
1755 * Pointer to the request at the top of @q if available. Null
1756 * otherwise.
1757 *
1758 * Context:
1759 * queue_lock must be held.
1760 */
1761 struct request *blk_peek_request(struct request_queue *q)
1762 {
1763 struct request *rq;
1764 int ret;
1765
1766 while ((rq = __elv_next_request(q)) != NULL) {
1767 if (!(rq->cmd_flags & REQ_STARTED)) {
1768 /*
1769 * This is the first time the device driver
1770 * sees this request (possibly after
1771 * requeueing). Notify IO scheduler.
1772 */
1773 if (blk_sorted_rq(rq))
1774 elv_activate_rq(q, rq);
1775
1776 /*
1777 * just mark as started even if we don't start
1778 * it, a request that has been delayed should
1779 * not be passed by new incoming requests
1780 */
1781 rq->cmd_flags |= REQ_STARTED;
1782 trace_block_rq_issue(q, rq);
1783 }
1784
1785 if (!q->boundary_rq || q->boundary_rq == rq) {
1786 q->end_sector = rq_end_sector(rq);
1787 q->boundary_rq = NULL;
1788 }
1789
1790 if (rq->cmd_flags & REQ_DONTPREP)
1791 break;
1792
1793 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1794 /*
1795 * make sure space for the drain appears we
1796 * know we can do this because max_hw_segments
1797 * has been adjusted to be one fewer than the
1798 * device can handle
1799 */
1800 rq->nr_phys_segments++;
1801 }
1802
1803 if (!q->prep_rq_fn)
1804 break;
1805
1806 ret = q->prep_rq_fn(q, rq);
1807 if (ret == BLKPREP_OK) {
1808 break;
1809 } else if (ret == BLKPREP_DEFER) {
1810 /*
1811 * the request may have been (partially) prepped.
1812 * we need to keep this request in the front to
1813 * avoid resource deadlock. REQ_STARTED will
1814 * prevent other fs requests from passing this one.
1815 */
1816 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1817 !(rq->cmd_flags & REQ_DONTPREP)) {
1818 /*
1819 * remove the space for the drain we added
1820 * so that we don't add it again
1821 */
1822 --rq->nr_phys_segments;
1823 }
1824
1825 rq = NULL;
1826 break;
1827 } else if (ret == BLKPREP_KILL) {
1828 rq->cmd_flags |= REQ_QUIET;
1829 /*
1830 * Mark this request as started so we don't trigger
1831 * any debug logic in the end I/O path.
1832 */
1833 blk_start_request(rq);
1834 __blk_end_request_all(rq, -EIO);
1835 } else {
1836 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1837 break;
1838 }
1839 }
1840
1841 return rq;
1842 }
1843 EXPORT_SYMBOL(blk_peek_request);
1844
1845 void blk_dequeue_request(struct request *rq)
1846 {
1847 struct request_queue *q = rq->q;
1848
1849 BUG_ON(list_empty(&rq->queuelist));
1850 BUG_ON(ELV_ON_HASH(rq));
1851
1852 list_del_init(&rq->queuelist);
1853
1854 /*
1855 * the time frame between a request being removed from the lists
1856 * and to it is freed is accounted as io that is in progress at
1857 * the driver side.
1858 */
1859 if (blk_account_rq(rq))
1860 q->in_flight[rq_is_sync(rq)]++;
1861 }
1862
1863 /**
1864 * blk_start_request - start request processing on the driver
1865 * @req: request to dequeue
1866 *
1867 * Description:
1868 * Dequeue @req and start timeout timer on it. This hands off the
1869 * request to the driver.
1870 *
1871 * Block internal functions which don't want to start timer should
1872 * call blk_dequeue_request().
1873 *
1874 * Context:
1875 * queue_lock must be held.
1876 */
1877 void blk_start_request(struct request *req)
1878 {
1879 blk_dequeue_request(req);
1880
1881 /*
1882 * We are now handing the request to the hardware, initialize
1883 * resid_len to full count and add the timeout handler.
1884 */
1885 req->resid_len = blk_rq_bytes(req);
1886 if (unlikely(blk_bidi_rq(req)))
1887 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1888
1889 blk_add_timer(req);
1890 }
1891 EXPORT_SYMBOL(blk_start_request);
1892
1893 /**
1894 * blk_fetch_request - fetch a request from a request queue
1895 * @q: request queue to fetch a request from
1896 *
1897 * Description:
1898 * Return the request at the top of @q. The request is started on
1899 * return and LLD can start processing it immediately.
1900 *
1901 * Return:
1902 * Pointer to the request at the top of @q if available. Null
1903 * otherwise.
1904 *
1905 * Context:
1906 * queue_lock must be held.
1907 */
1908 struct request *blk_fetch_request(struct request_queue *q)
1909 {
1910 struct request *rq;
1911
1912 rq = blk_peek_request(q);
1913 if (rq)
1914 blk_start_request(rq);
1915 return rq;
1916 }
1917 EXPORT_SYMBOL(blk_fetch_request);
1918
1919 /**
1920 * blk_update_request - Special helper function for request stacking drivers
1921 * @req: the request being processed
1922 * @error: %0 for success, < %0 for error
1923 * @nr_bytes: number of bytes to complete @req
1924 *
1925 * Description:
1926 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1927 * the request structure even if @req doesn't have leftover.
1928 * If @req has leftover, sets it up for the next range of segments.
1929 *
1930 * This special helper function is only for request stacking drivers
1931 * (e.g. request-based dm) so that they can handle partial completion.
1932 * Actual device drivers should use blk_end_request instead.
1933 *
1934 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1935 * %false return from this function.
1936 *
1937 * Return:
1938 * %false - this request doesn't have any more data
1939 * %true - this request has more data
1940 **/
1941 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1942 {
1943 int total_bytes, bio_nbytes, next_idx = 0;
1944 struct bio *bio;
1945
1946 if (!req->bio)
1947 return false;
1948
1949 trace_block_rq_complete(req->q, req);
1950
1951 /*
1952 * For fs requests, rq is just carrier of independent bio's
1953 * and each partial completion should be handled separately.
1954 * Reset per-request error on each partial completion.
1955 *
1956 * TODO: tj: This is too subtle. It would be better to let
1957 * low level drivers do what they see fit.
1958 */
1959 if (blk_fs_request(req))
1960 req->errors = 0;
1961
1962 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1963 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1964 req->rq_disk ? req->rq_disk->disk_name : "?",
1965 (unsigned long long)blk_rq_pos(req));
1966 }
1967
1968 blk_account_io_completion(req, nr_bytes);
1969
1970 total_bytes = bio_nbytes = 0;
1971 while ((bio = req->bio) != NULL) {
1972 int nbytes;
1973
1974 if (nr_bytes >= bio->bi_size) {
1975 req->bio = bio->bi_next;
1976 nbytes = bio->bi_size;
1977 req_bio_endio(req, bio, nbytes, error);
1978 next_idx = 0;
1979 bio_nbytes = 0;
1980 } else {
1981 int idx = bio->bi_idx + next_idx;
1982
1983 if (unlikely(idx >= bio->bi_vcnt)) {
1984 blk_dump_rq_flags(req, "__end_that");
1985 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1986 __func__, idx, bio->bi_vcnt);
1987 break;
1988 }
1989
1990 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1991 BIO_BUG_ON(nbytes > bio->bi_size);
1992
1993 /*
1994 * not a complete bvec done
1995 */
1996 if (unlikely(nbytes > nr_bytes)) {
1997 bio_nbytes += nr_bytes;
1998 total_bytes += nr_bytes;
1999 break;
2000 }
2001
2002 /*
2003 * advance to the next vector
2004 */
2005 next_idx++;
2006 bio_nbytes += nbytes;
2007 }
2008
2009 total_bytes += nbytes;
2010 nr_bytes -= nbytes;
2011
2012 bio = req->bio;
2013 if (bio) {
2014 /*
2015 * end more in this run, or just return 'not-done'
2016 */
2017 if (unlikely(nr_bytes <= 0))
2018 break;
2019 }
2020 }
2021
2022 /*
2023 * completely done
2024 */
2025 if (!req->bio) {
2026 /*
2027 * Reset counters so that the request stacking driver
2028 * can find how many bytes remain in the request
2029 * later.
2030 */
2031 req->__data_len = 0;
2032 return false;
2033 }
2034
2035 /*
2036 * if the request wasn't completed, update state
2037 */
2038 if (bio_nbytes) {
2039 req_bio_endio(req, bio, bio_nbytes, error);
2040 bio->bi_idx += next_idx;
2041 bio_iovec(bio)->bv_offset += nr_bytes;
2042 bio_iovec(bio)->bv_len -= nr_bytes;
2043 }
2044
2045 req->__data_len -= total_bytes;
2046 req->buffer = bio_data(req->bio);
2047
2048 /* update sector only for requests with clear definition of sector */
2049 if (blk_fs_request(req) || blk_discard_rq(req))
2050 req->__sector += total_bytes >> 9;
2051
2052 /* mixed attributes always follow the first bio */
2053 if (req->cmd_flags & REQ_MIXED_MERGE) {
2054 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2055 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2056 }
2057
2058 /*
2059 * If total number of sectors is less than the first segment
2060 * size, something has gone terribly wrong.
2061 */
2062 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2063 printk(KERN_ERR "blk: request botched\n");
2064 req->__data_len = blk_rq_cur_bytes(req);
2065 }
2066
2067 /* recalculate the number of segments */
2068 blk_recalc_rq_segments(req);
2069
2070 return true;
2071 }
2072 EXPORT_SYMBOL_GPL(blk_update_request);
2073
2074 static bool blk_update_bidi_request(struct request *rq, int error,
2075 unsigned int nr_bytes,
2076 unsigned int bidi_bytes)
2077 {
2078 if (blk_update_request(rq, error, nr_bytes))
2079 return true;
2080
2081 /* Bidi request must be completed as a whole */
2082 if (unlikely(blk_bidi_rq(rq)) &&
2083 blk_update_request(rq->next_rq, error, bidi_bytes))
2084 return true;
2085
2086 add_disk_randomness(rq->rq_disk);
2087
2088 return false;
2089 }
2090
2091 /*
2092 * queue lock must be held
2093 */
2094 static void blk_finish_request(struct request *req, int error)
2095 {
2096 if (blk_rq_tagged(req))
2097 blk_queue_end_tag(req->q, req);
2098
2099 BUG_ON(blk_queued_rq(req));
2100
2101 if (unlikely(laptop_mode) && blk_fs_request(req))
2102 laptop_io_completion();
2103
2104 blk_delete_timer(req);
2105
2106 blk_account_io_done(req);
2107
2108 if (req->end_io)
2109 req->end_io(req, error);
2110 else {
2111 if (blk_bidi_rq(req))
2112 __blk_put_request(req->next_rq->q, req->next_rq);
2113
2114 __blk_put_request(req->q, req);
2115 }
2116 }
2117
2118 /**
2119 * blk_end_bidi_request - Complete a bidi request
2120 * @rq: the request to complete
2121 * @error: %0 for success, < %0 for error
2122 * @nr_bytes: number of bytes to complete @rq
2123 * @bidi_bytes: number of bytes to complete @rq->next_rq
2124 *
2125 * Description:
2126 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2127 * Drivers that supports bidi can safely call this member for any
2128 * type of request, bidi or uni. In the later case @bidi_bytes is
2129 * just ignored.
2130 *
2131 * Return:
2132 * %false - we are done with this request
2133 * %true - still buffers pending for this request
2134 **/
2135 static bool blk_end_bidi_request(struct request *rq, int error,
2136 unsigned int nr_bytes, unsigned int bidi_bytes)
2137 {
2138 struct request_queue *q = rq->q;
2139 unsigned long flags;
2140
2141 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2142 return true;
2143
2144 spin_lock_irqsave(q->queue_lock, flags);
2145 blk_finish_request(rq, error);
2146 spin_unlock_irqrestore(q->queue_lock, flags);
2147
2148 return false;
2149 }
2150
2151 /**
2152 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2153 * @rq: the request to complete
2154 * @error: %0 for success, < %0 for error
2155 * @nr_bytes: number of bytes to complete @rq
2156 * @bidi_bytes: number of bytes to complete @rq->next_rq
2157 *
2158 * Description:
2159 * Identical to blk_end_bidi_request() except that queue lock is
2160 * assumed to be locked on entry and remains so on return.
2161 *
2162 * Return:
2163 * %false - we are done with this request
2164 * %true - still buffers pending for this request
2165 **/
2166 static bool __blk_end_bidi_request(struct request *rq, int error,
2167 unsigned int nr_bytes, unsigned int bidi_bytes)
2168 {
2169 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2170 return true;
2171
2172 blk_finish_request(rq, error);
2173
2174 return false;
2175 }
2176
2177 /**
2178 * blk_end_request - Helper function for drivers to complete the request.
2179 * @rq: the request being processed
2180 * @error: %0 for success, < %0 for error
2181 * @nr_bytes: number of bytes to complete
2182 *
2183 * Description:
2184 * Ends I/O on a number of bytes attached to @rq.
2185 * If @rq has leftover, sets it up for the next range of segments.
2186 *
2187 * Return:
2188 * %false - we are done with this request
2189 * %true - still buffers pending for this request
2190 **/
2191 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2192 {
2193 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2194 }
2195 EXPORT_SYMBOL(blk_end_request);
2196
2197 /**
2198 * blk_end_request_all - Helper function for drives to finish the request.
2199 * @rq: the request to finish
2200 * @error: %0 for success, < %0 for error
2201 *
2202 * Description:
2203 * Completely finish @rq.
2204 */
2205 void blk_end_request_all(struct request *rq, int error)
2206 {
2207 bool pending;
2208 unsigned int bidi_bytes = 0;
2209
2210 if (unlikely(blk_bidi_rq(rq)))
2211 bidi_bytes = blk_rq_bytes(rq->next_rq);
2212
2213 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2214 BUG_ON(pending);
2215 }
2216 EXPORT_SYMBOL(blk_end_request_all);
2217
2218 /**
2219 * blk_end_request_cur - Helper function to finish the current request chunk.
2220 * @rq: the request to finish the current chunk for
2221 * @error: %0 for success, < %0 for error
2222 *
2223 * Description:
2224 * Complete the current consecutively mapped chunk from @rq.
2225 *
2226 * Return:
2227 * %false - we are done with this request
2228 * %true - still buffers pending for this request
2229 */
2230 bool blk_end_request_cur(struct request *rq, int error)
2231 {
2232 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2233 }
2234 EXPORT_SYMBOL(blk_end_request_cur);
2235
2236 /**
2237 * blk_end_request_err - Finish a request till the next failure boundary.
2238 * @rq: the request to finish till the next failure boundary for
2239 * @error: must be negative errno
2240 *
2241 * Description:
2242 * Complete @rq till the next failure boundary.
2243 *
2244 * Return:
2245 * %false - we are done with this request
2246 * %true - still buffers pending for this request
2247 */
2248 bool blk_end_request_err(struct request *rq, int error)
2249 {
2250 WARN_ON(error >= 0);
2251 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2252 }
2253 EXPORT_SYMBOL_GPL(blk_end_request_err);
2254
2255 /**
2256 * __blk_end_request - Helper function for drivers to complete the request.
2257 * @rq: the request being processed
2258 * @error: %0 for success, < %0 for error
2259 * @nr_bytes: number of bytes to complete
2260 *
2261 * Description:
2262 * Must be called with queue lock held unlike blk_end_request().
2263 *
2264 * Return:
2265 * %false - we are done with this request
2266 * %true - still buffers pending for this request
2267 **/
2268 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2269 {
2270 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2271 }
2272 EXPORT_SYMBOL(__blk_end_request);
2273
2274 /**
2275 * __blk_end_request_all - Helper function for drives to finish the request.
2276 * @rq: the request to finish
2277 * @error: %0 for success, < %0 for error
2278 *
2279 * Description:
2280 * Completely finish @rq. Must be called with queue lock held.
2281 */
2282 void __blk_end_request_all(struct request *rq, int error)
2283 {
2284 bool pending;
2285 unsigned int bidi_bytes = 0;
2286
2287 if (unlikely(blk_bidi_rq(rq)))
2288 bidi_bytes = blk_rq_bytes(rq->next_rq);
2289
2290 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2291 BUG_ON(pending);
2292 }
2293 EXPORT_SYMBOL(__blk_end_request_all);
2294
2295 /**
2296 * __blk_end_request_cur - Helper function to finish the current request chunk.
2297 * @rq: the request to finish the current chunk for
2298 * @error: %0 for success, < %0 for error
2299 *
2300 * Description:
2301 * Complete the current consecutively mapped chunk from @rq. Must
2302 * be called with queue lock held.
2303 *
2304 * Return:
2305 * %false - we are done with this request
2306 * %true - still buffers pending for this request
2307 */
2308 bool __blk_end_request_cur(struct request *rq, int error)
2309 {
2310 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2311 }
2312 EXPORT_SYMBOL(__blk_end_request_cur);
2313
2314 /**
2315 * __blk_end_request_err - Finish a request till the next failure boundary.
2316 * @rq: the request to finish till the next failure boundary for
2317 * @error: must be negative errno
2318 *
2319 * Description:
2320 * Complete @rq till the next failure boundary. Must be called
2321 * with queue lock held.
2322 *
2323 * Return:
2324 * %false - we are done with this request
2325 * %true - still buffers pending for this request
2326 */
2327 bool __blk_end_request_err(struct request *rq, int error)
2328 {
2329 WARN_ON(error >= 0);
2330 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2331 }
2332 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2333
2334 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2335 struct bio *bio)
2336 {
2337 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2338 rq->cmd_flags |= bio->bi_rw & REQ_RW;
2339
2340 if (bio_has_data(bio)) {
2341 rq->nr_phys_segments = bio_phys_segments(q, bio);
2342 rq->buffer = bio_data(bio);
2343 }
2344 rq->__data_len = bio->bi_size;
2345 rq->bio = rq->biotail = bio;
2346
2347 if (bio->bi_bdev)
2348 rq->rq_disk = bio->bi_bdev->bd_disk;
2349 }
2350
2351 /**
2352 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2353 * @q : the queue of the device being checked
2354 *
2355 * Description:
2356 * Check if underlying low-level drivers of a device are busy.
2357 * If the drivers want to export their busy state, they must set own
2358 * exporting function using blk_queue_lld_busy() first.
2359 *
2360 * Basically, this function is used only by request stacking drivers
2361 * to stop dispatching requests to underlying devices when underlying
2362 * devices are busy. This behavior helps more I/O merging on the queue
2363 * of the request stacking driver and prevents I/O throughput regression
2364 * on burst I/O load.
2365 *
2366 * Return:
2367 * 0 - Not busy (The request stacking driver should dispatch request)
2368 * 1 - Busy (The request stacking driver should stop dispatching request)
2369 */
2370 int blk_lld_busy(struct request_queue *q)
2371 {
2372 if (q->lld_busy_fn)
2373 return q->lld_busy_fn(q);
2374
2375 return 0;
2376 }
2377 EXPORT_SYMBOL_GPL(blk_lld_busy);
2378
2379 /**
2380 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2381 * @rq: the clone request to be cleaned up
2382 *
2383 * Description:
2384 * Free all bios in @rq for a cloned request.
2385 */
2386 void blk_rq_unprep_clone(struct request *rq)
2387 {
2388 struct bio *bio;
2389
2390 while ((bio = rq->bio) != NULL) {
2391 rq->bio = bio->bi_next;
2392
2393 bio_put(bio);
2394 }
2395 }
2396 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2397
2398 /*
2399 * Copy attributes of the original request to the clone request.
2400 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2401 */
2402 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2403 {
2404 dst->cpu = src->cpu;
2405 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2406 dst->cmd_type = src->cmd_type;
2407 dst->__sector = blk_rq_pos(src);
2408 dst->__data_len = blk_rq_bytes(src);
2409 dst->nr_phys_segments = src->nr_phys_segments;
2410 dst->ioprio = src->ioprio;
2411 dst->extra_len = src->extra_len;
2412 }
2413
2414 /**
2415 * blk_rq_prep_clone - Helper function to setup clone request
2416 * @rq: the request to be setup
2417 * @rq_src: original request to be cloned
2418 * @bs: bio_set that bios for clone are allocated from
2419 * @gfp_mask: memory allocation mask for bio
2420 * @bio_ctr: setup function to be called for each clone bio.
2421 * Returns %0 for success, non %0 for failure.
2422 * @data: private data to be passed to @bio_ctr
2423 *
2424 * Description:
2425 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2426 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2427 * are not copied, and copying such parts is the caller's responsibility.
2428 * Also, pages which the original bios are pointing to are not copied
2429 * and the cloned bios just point same pages.
2430 * So cloned bios must be completed before original bios, which means
2431 * the caller must complete @rq before @rq_src.
2432 */
2433 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2434 struct bio_set *bs, gfp_t gfp_mask,
2435 int (*bio_ctr)(struct bio *, struct bio *, void *),
2436 void *data)
2437 {
2438 struct bio *bio, *bio_src;
2439
2440 if (!bs)
2441 bs = fs_bio_set;
2442
2443 blk_rq_init(NULL, rq);
2444
2445 __rq_for_each_bio(bio_src, rq_src) {
2446 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2447 if (!bio)
2448 goto free_and_out;
2449
2450 __bio_clone(bio, bio_src);
2451
2452 if (bio_integrity(bio_src) &&
2453 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2454 goto free_and_out;
2455
2456 if (bio_ctr && bio_ctr(bio, bio_src, data))
2457 goto free_and_out;
2458
2459 if (rq->bio) {
2460 rq->biotail->bi_next = bio;
2461 rq->biotail = bio;
2462 } else
2463 rq->bio = rq->biotail = bio;
2464 }
2465
2466 __blk_rq_prep_clone(rq, rq_src);
2467
2468 return 0;
2469
2470 free_and_out:
2471 if (bio)
2472 bio_free(bio, bs);
2473 blk_rq_unprep_clone(rq);
2474
2475 return -ENOMEM;
2476 }
2477 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2478
2479 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2480 {
2481 return queue_work(kblockd_workqueue, work);
2482 }
2483 EXPORT_SYMBOL(kblockd_schedule_work);
2484
2485 int __init blk_dev_init(void)
2486 {
2487 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2488 sizeof(((struct request *)0)->cmd_flags));
2489
2490 kblockd_workqueue = create_workqueue("kblockd");
2491 if (!kblockd_workqueue)
2492 panic("Failed to create kblockd\n");
2493
2494 request_cachep = kmem_cache_create("blkdev_requests",
2495 sizeof(struct request), 0, SLAB_PANIC, NULL);
2496
2497 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2498 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2499
2500 return 0;
2501 }
2502