]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Documentation: Docbook: Fix generated DocBook/kernel-api.xml
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info
87 *
88 * Will return NULL if the request queue cannot be located.
89 */
90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 {
92 struct backing_dev_info *ret = NULL;
93 struct request_queue *q = bdev_get_queue(bdev);
94
95 if (q)
96 ret = &q->backing_dev_info;
97 return ret;
98 }
99 EXPORT_SYMBOL(blk_get_backing_dev_info);
100
101 void blk_rq_init(struct request_queue *q, struct request *rq)
102 {
103 memset(rq, 0, sizeof(*rq));
104
105 INIT_LIST_HEAD(&rq->queuelist);
106 INIT_LIST_HEAD(&rq->timeout_list);
107 rq->cpu = -1;
108 rq->q = q;
109 rq->__sector = (sector_t) -1;
110 INIT_HLIST_NODE(&rq->hash);
111 RB_CLEAR_NODE(&rq->rb_node);
112 rq->cmd = rq->__cmd;
113 rq->cmd_len = BLK_MAX_CDB;
114 rq->tag = -1;
115 rq->start_time = jiffies;
116 set_start_time_ns(rq);
117 rq->part = NULL;
118 }
119 EXPORT_SYMBOL(blk_rq_init);
120
121 static void req_bio_endio(struct request *rq, struct bio *bio,
122 unsigned int nbytes, int error)
123 {
124 if (error)
125 clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 error = -EIO;
128
129 if (unlikely(rq->cmd_flags & REQ_QUIET))
130 set_bit(BIO_QUIET, &bio->bi_flags);
131
132 bio_advance(bio, nbytes);
133
134 /* don't actually finish bio if it's part of flush sequence */
135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
136 bio_endio(bio, error);
137 }
138
139 void blk_dump_rq_flags(struct request *rq, char *msg)
140 {
141 int bit;
142
143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
145 (unsigned long long) rq->cmd_flags);
146
147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq),
149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
150 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
151 rq->bio, rq->biotail, blk_rq_bytes(rq));
152
153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
154 printk(KERN_INFO " cdb: ");
155 for (bit = 0; bit < BLK_MAX_CDB; bit++)
156 printk("%02x ", rq->cmd[bit]);
157 printk("\n");
158 }
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue - restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 **/
199 void blk_start_queue(struct request_queue *q)
200 {
201 WARN_ON(!irqs_disabled());
202
203 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
204 __blk_run_queue(q);
205 }
206 EXPORT_SYMBOL(blk_start_queue);
207
208 /**
209 * blk_stop_queue - stop a queue
210 * @q: The &struct request_queue in question
211 *
212 * Description:
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 **/
222 void blk_stop_queue(struct request_queue *q)
223 {
224 cancel_delayed_work(&q->delay_work);
225 queue_flag_set(QUEUE_FLAG_STOPPED, q);
226 }
227 EXPORT_SYMBOL(blk_stop_queue);
228
229 /**
230 * blk_sync_queue - cancel any pending callbacks on a queue
231 * @q: the queue
232 *
233 * Description:
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
238 * that the callbacks might use. The caller must already have made sure
239 * that its ->make_request_fn will not re-add plugging prior to calling
240 * this function.
241 *
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevator_exit()
244 * and blkcg_exit_queue() to be called with queue lock initialized.
245 *
246 */
247 void blk_sync_queue(struct request_queue *q)
248 {
249 del_timer_sync(&q->timeout);
250
251 if (q->mq_ops) {
252 struct blk_mq_hw_ctx *hctx;
253 int i;
254
255 queue_for_each_hw_ctx(q, hctx, i) {
256 cancel_delayed_work_sync(&hctx->run_work);
257 cancel_delayed_work_sync(&hctx->delay_work);
258 }
259 } else {
260 cancel_delayed_work_sync(&q->delay_work);
261 }
262 }
263 EXPORT_SYMBOL(blk_sync_queue);
264
265 /**
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
268 *
269 * Description:
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
275 */
276 inline void __blk_run_queue_uncond(struct request_queue *q)
277 {
278 if (unlikely(blk_queue_dead(q)))
279 return;
280
281 /*
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
287 */
288 q->request_fn_active++;
289 q->request_fn(q);
290 q->request_fn_active--;
291 }
292
293 /**
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
300 */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
306 __blk_run_queue_uncond(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309
310 /**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us. The caller must hold the queue lock.
317 */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324
325 /**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
332 */
333 void blk_run_queue(struct request_queue *q)
334 {
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342
343 void blk_put_queue(struct request_queue *q)
344 {
345 kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348
349 /**
350 * __blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353 *
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
357 */
358 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 __releases(q->queue_lock)
360 __acquires(q->queue_lock)
361 {
362 int i;
363
364 lockdep_assert_held(q->queue_lock);
365
366 while (true) {
367 bool drain = false;
368
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
376 blkcg_drain_queue(q);
377
378 /*
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
384 */
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
387
388 drain |= q->nr_rqs_elvpriv;
389 drain |= q->request_fn_active;
390
391 /*
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
395 */
396 if (drain_all) {
397 drain |= !list_empty(&q->queue_head);
398 for (i = 0; i < 2; i++) {
399 drain |= q->nr_rqs[i];
400 drain |= q->in_flight[i];
401 drain |= !list_empty(&q->flush_queue[i]);
402 }
403 }
404
405 if (!drain)
406 break;
407
408 spin_unlock_irq(q->queue_lock);
409
410 msleep(10);
411
412 spin_lock_irq(q->queue_lock);
413 }
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
421 struct request_list *rl;
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 bool drain;
442
443 spin_lock_irq(q->queue_lock);
444 drain = !q->bypass_depth++;
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
447
448 if (drain) {
449 spin_lock_irq(q->queue_lock);
450 __blk_drain_queue(q, false);
451 spin_unlock_irq(q->queue_lock);
452
453 /* ensure blk_queue_bypass() is %true inside RCU read lock */
454 synchronize_rcu();
455 }
456 }
457 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
458
459 /**
460 * blk_queue_bypass_end - leave queue bypass mode
461 * @q: queue of interest
462 *
463 * Leave bypass mode and restore the normal queueing behavior.
464 */
465 void blk_queue_bypass_end(struct request_queue *q)
466 {
467 spin_lock_irq(q->queue_lock);
468 if (!--q->bypass_depth)
469 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
470 WARN_ON_ONCE(q->bypass_depth < 0);
471 spin_unlock_irq(q->queue_lock);
472 }
473 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
474
475 /**
476 * blk_cleanup_queue - shutdown a request queue
477 * @q: request queue to shutdown
478 *
479 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
480 * put it. All future requests will be failed immediately with -ENODEV.
481 */
482 void blk_cleanup_queue(struct request_queue *q)
483 {
484 spinlock_t *lock = q->queue_lock;
485
486 /* mark @q DYING, no new request or merges will be allowed afterwards */
487 mutex_lock(&q->sysfs_lock);
488 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
489 spin_lock_irq(lock);
490
491 /*
492 * A dying queue is permanently in bypass mode till released. Note
493 * that, unlike blk_queue_bypass_start(), we aren't performing
494 * synchronize_rcu() after entering bypass mode to avoid the delay
495 * as some drivers create and destroy a lot of queues while
496 * probing. This is still safe because blk_release_queue() will be
497 * called only after the queue refcnt drops to zero and nothing,
498 * RCU or not, would be traversing the queue by then.
499 */
500 q->bypass_depth++;
501 queue_flag_set(QUEUE_FLAG_BYPASS, q);
502
503 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
504 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
505 queue_flag_set(QUEUE_FLAG_DYING, q);
506 spin_unlock_irq(lock);
507 mutex_unlock(&q->sysfs_lock);
508
509 /*
510 * Drain all requests queued before DYING marking. Set DEAD flag to
511 * prevent that q->request_fn() gets invoked after draining finished.
512 */
513 if (q->mq_ops) {
514 blk_mq_drain_queue(q);
515 spin_lock_irq(lock);
516 } else {
517 spin_lock_irq(lock);
518 __blk_drain_queue(q, true);
519 }
520 queue_flag_set(QUEUE_FLAG_DEAD, q);
521 spin_unlock_irq(lock);
522
523 /* @q won't process any more request, flush async actions */
524 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
525 blk_sync_queue(q);
526
527 spin_lock_irq(lock);
528 if (q->queue_lock != &q->__queue_lock)
529 q->queue_lock = &q->__queue_lock;
530 spin_unlock_irq(lock);
531
532 /* @q is and will stay empty, shutdown and put */
533 blk_put_queue(q);
534 }
535 EXPORT_SYMBOL(blk_cleanup_queue);
536
537 int blk_init_rl(struct request_list *rl, struct request_queue *q,
538 gfp_t gfp_mask)
539 {
540 if (unlikely(rl->rq_pool))
541 return 0;
542
543 rl->q = q;
544 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
545 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
546 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
547 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
548
549 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
550 mempool_free_slab, request_cachep,
551 gfp_mask, q->node);
552 if (!rl->rq_pool)
553 return -ENOMEM;
554
555 return 0;
556 }
557
558 void blk_exit_rl(struct request_list *rl)
559 {
560 if (rl->rq_pool)
561 mempool_destroy(rl->rq_pool);
562 }
563
564 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
565 {
566 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
567 }
568 EXPORT_SYMBOL(blk_alloc_queue);
569
570 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
571 {
572 struct request_queue *q;
573 int err;
574
575 q = kmem_cache_alloc_node(blk_requestq_cachep,
576 gfp_mask | __GFP_ZERO, node_id);
577 if (!q)
578 return NULL;
579
580 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 if (q->id < 0)
582 goto fail_q;
583
584 q->backing_dev_info.ra_pages =
585 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 q->backing_dev_info.state = 0;
587 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 q->backing_dev_info.name = "block";
589 q->node = node_id;
590
591 err = bdi_init(&q->backing_dev_info);
592 if (err)
593 goto fail_id;
594
595 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 laptop_mode_timer_fn, (unsigned long) q);
597 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 INIT_LIST_HEAD(&q->queue_head);
599 INIT_LIST_HEAD(&q->timeout_list);
600 INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 INIT_LIST_HEAD(&q->flush_queue[0]);
605 INIT_LIST_HEAD(&q->flush_queue[1]);
606 INIT_LIST_HEAD(&q->flush_data_in_flight);
607 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608
609 kobject_init(&q->kobj, &blk_queue_ktype);
610
611 mutex_init(&q->sysfs_lock);
612 spin_lock_init(&q->__queue_lock);
613
614 /*
615 * By default initialize queue_lock to internal lock and driver can
616 * override it later if need be.
617 */
618 q->queue_lock = &q->__queue_lock;
619
620 /*
621 * A queue starts its life with bypass turned on to avoid
622 * unnecessary bypass on/off overhead and nasty surprises during
623 * init. The initial bypass will be finished when the queue is
624 * registered by blk_register_queue().
625 */
626 q->bypass_depth = 1;
627 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628
629 init_waitqueue_head(&q->mq_freeze_wq);
630
631 if (blkcg_init_queue(q))
632 goto fail_bdi;
633
634 return q;
635
636 fail_bdi:
637 bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 ida_simple_remove(&blk_queue_ida, q->id);
640 fail_q:
641 kmem_cache_free(blk_requestq_cachep, q);
642 return NULL;
643 }
644 EXPORT_SYMBOL(blk_alloc_queue_node);
645
646 /**
647 * blk_init_queue - prepare a request queue for use with a block device
648 * @rfn: The function to be called to process requests that have been
649 * placed on the queue.
650 * @lock: Request queue spin lock
651 *
652 * Description:
653 * If a block device wishes to use the standard request handling procedures,
654 * which sorts requests and coalesces adjacent requests, then it must
655 * call blk_init_queue(). The function @rfn will be called when there
656 * are requests on the queue that need to be processed. If the device
657 * supports plugging, then @rfn may not be called immediately when requests
658 * are available on the queue, but may be called at some time later instead.
659 * Plugged queues are generally unplugged when a buffer belonging to one
660 * of the requests on the queue is needed, or due to memory pressure.
661 *
662 * @rfn is not required, or even expected, to remove all requests off the
663 * queue, but only as many as it can handle at a time. If it does leave
664 * requests on the queue, it is responsible for arranging that the requests
665 * get dealt with eventually.
666 *
667 * The queue spin lock must be held while manipulating the requests on the
668 * request queue; this lock will be taken also from interrupt context, so irq
669 * disabling is needed for it.
670 *
671 * Function returns a pointer to the initialized request queue, or %NULL if
672 * it didn't succeed.
673 *
674 * Note:
675 * blk_init_queue() must be paired with a blk_cleanup_queue() call
676 * when the block device is deactivated (such as at module unload).
677 **/
678
679 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
680 {
681 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
682 }
683 EXPORT_SYMBOL(blk_init_queue);
684
685 struct request_queue *
686 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
687 {
688 struct request_queue *uninit_q, *q;
689
690 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
691 if (!uninit_q)
692 return NULL;
693
694 q = blk_init_allocated_queue(uninit_q, rfn, lock);
695 if (!q)
696 blk_cleanup_queue(uninit_q);
697
698 return q;
699 }
700 EXPORT_SYMBOL(blk_init_queue_node);
701
702 struct request_queue *
703 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
704 spinlock_t *lock)
705 {
706 if (!q)
707 return NULL;
708
709 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
710 if (!q->flush_rq)
711 return NULL;
712
713 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
714 goto fail;
715
716 q->request_fn = rfn;
717 q->prep_rq_fn = NULL;
718 q->unprep_rq_fn = NULL;
719 q->queue_flags |= QUEUE_FLAG_DEFAULT;
720
721 /* Override internal queue lock with supplied lock pointer */
722 if (lock)
723 q->queue_lock = lock;
724
725 /*
726 * This also sets hw/phys segments, boundary and size
727 */
728 blk_queue_make_request(q, blk_queue_bio);
729
730 q->sg_reserved_size = INT_MAX;
731
732 /* Protect q->elevator from elevator_change */
733 mutex_lock(&q->sysfs_lock);
734
735 /* init elevator */
736 if (elevator_init(q, NULL)) {
737 mutex_unlock(&q->sysfs_lock);
738 goto fail;
739 }
740
741 mutex_unlock(&q->sysfs_lock);
742
743 return q;
744
745 fail:
746 kfree(q->flush_rq);
747 return NULL;
748 }
749 EXPORT_SYMBOL(blk_init_allocated_queue);
750
751 bool blk_get_queue(struct request_queue *q)
752 {
753 if (likely(!blk_queue_dying(q))) {
754 __blk_get_queue(q);
755 return true;
756 }
757
758 return false;
759 }
760 EXPORT_SYMBOL(blk_get_queue);
761
762 static inline void blk_free_request(struct request_list *rl, struct request *rq)
763 {
764 if (rq->cmd_flags & REQ_ELVPRIV) {
765 elv_put_request(rl->q, rq);
766 if (rq->elv.icq)
767 put_io_context(rq->elv.icq->ioc);
768 }
769
770 mempool_free(rq, rl->rq_pool);
771 }
772
773 /*
774 * ioc_batching returns true if the ioc is a valid batching request and
775 * should be given priority access to a request.
776 */
777 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
778 {
779 if (!ioc)
780 return 0;
781
782 /*
783 * Make sure the process is able to allocate at least 1 request
784 * even if the batch times out, otherwise we could theoretically
785 * lose wakeups.
786 */
787 return ioc->nr_batch_requests == q->nr_batching ||
788 (ioc->nr_batch_requests > 0
789 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
790 }
791
792 /*
793 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
794 * will cause the process to be a "batcher" on all queues in the system. This
795 * is the behaviour we want though - once it gets a wakeup it should be given
796 * a nice run.
797 */
798 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
799 {
800 if (!ioc || ioc_batching(q, ioc))
801 return;
802
803 ioc->nr_batch_requests = q->nr_batching;
804 ioc->last_waited = jiffies;
805 }
806
807 static void __freed_request(struct request_list *rl, int sync)
808 {
809 struct request_queue *q = rl->q;
810
811 /*
812 * bdi isn't aware of blkcg yet. As all async IOs end up root
813 * blkcg anyway, just use root blkcg state.
814 */
815 if (rl == &q->root_rl &&
816 rl->count[sync] < queue_congestion_off_threshold(q))
817 blk_clear_queue_congested(q, sync);
818
819 if (rl->count[sync] + 1 <= q->nr_requests) {
820 if (waitqueue_active(&rl->wait[sync]))
821 wake_up(&rl->wait[sync]);
822
823 blk_clear_rl_full(rl, sync);
824 }
825 }
826
827 /*
828 * A request has just been released. Account for it, update the full and
829 * congestion status, wake up any waiters. Called under q->queue_lock.
830 */
831 static void freed_request(struct request_list *rl, unsigned int flags)
832 {
833 struct request_queue *q = rl->q;
834 int sync = rw_is_sync(flags);
835
836 q->nr_rqs[sync]--;
837 rl->count[sync]--;
838 if (flags & REQ_ELVPRIV)
839 q->nr_rqs_elvpriv--;
840
841 __freed_request(rl, sync);
842
843 if (unlikely(rl->starved[sync ^ 1]))
844 __freed_request(rl, sync ^ 1);
845 }
846
847 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
848 {
849 struct request_list *rl;
850
851 spin_lock_irq(q->queue_lock);
852 q->nr_requests = nr;
853 blk_queue_congestion_threshold(q);
854
855 /* congestion isn't cgroup aware and follows root blkcg for now */
856 rl = &q->root_rl;
857
858 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
859 blk_set_queue_congested(q, BLK_RW_SYNC);
860 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
861 blk_clear_queue_congested(q, BLK_RW_SYNC);
862
863 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
864 blk_set_queue_congested(q, BLK_RW_ASYNC);
865 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
866 blk_clear_queue_congested(q, BLK_RW_ASYNC);
867
868 blk_queue_for_each_rl(rl, q) {
869 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
870 blk_set_rl_full(rl, BLK_RW_SYNC);
871 } else {
872 blk_clear_rl_full(rl, BLK_RW_SYNC);
873 wake_up(&rl->wait[BLK_RW_SYNC]);
874 }
875
876 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
877 blk_set_rl_full(rl, BLK_RW_ASYNC);
878 } else {
879 blk_clear_rl_full(rl, BLK_RW_ASYNC);
880 wake_up(&rl->wait[BLK_RW_ASYNC]);
881 }
882 }
883
884 spin_unlock_irq(q->queue_lock);
885 return 0;
886 }
887
888 /*
889 * Determine if elevator data should be initialized when allocating the
890 * request associated with @bio.
891 */
892 static bool blk_rq_should_init_elevator(struct bio *bio)
893 {
894 if (!bio)
895 return true;
896
897 /*
898 * Flush requests do not use the elevator so skip initialization.
899 * This allows a request to share the flush and elevator data.
900 */
901 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
902 return false;
903
904 return true;
905 }
906
907 /**
908 * rq_ioc - determine io_context for request allocation
909 * @bio: request being allocated is for this bio (can be %NULL)
910 *
911 * Determine io_context to use for request allocation for @bio. May return
912 * %NULL if %current->io_context doesn't exist.
913 */
914 static struct io_context *rq_ioc(struct bio *bio)
915 {
916 #ifdef CONFIG_BLK_CGROUP
917 if (bio && bio->bi_ioc)
918 return bio->bi_ioc;
919 #endif
920 return current->io_context;
921 }
922
923 /**
924 * __get_request - get a free request
925 * @rl: request list to allocate from
926 * @rw_flags: RW and SYNC flags
927 * @bio: bio to allocate request for (can be %NULL)
928 * @gfp_mask: allocation mask
929 *
930 * Get a free request from @q. This function may fail under memory
931 * pressure or if @q is dead.
932 *
933 * Must be called with @q->queue_lock held and,
934 * Returns %NULL on failure, with @q->queue_lock held.
935 * Returns !%NULL on success, with @q->queue_lock *not held*.
936 */
937 static struct request *__get_request(struct request_list *rl, int rw_flags,
938 struct bio *bio, gfp_t gfp_mask)
939 {
940 struct request_queue *q = rl->q;
941 struct request *rq;
942 struct elevator_type *et = q->elevator->type;
943 struct io_context *ioc = rq_ioc(bio);
944 struct io_cq *icq = NULL;
945 const bool is_sync = rw_is_sync(rw_flags) != 0;
946 int may_queue;
947
948 if (unlikely(blk_queue_dying(q)))
949 return NULL;
950
951 may_queue = elv_may_queue(q, rw_flags);
952 if (may_queue == ELV_MQUEUE_NO)
953 goto rq_starved;
954
955 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
956 if (rl->count[is_sync]+1 >= q->nr_requests) {
957 /*
958 * The queue will fill after this allocation, so set
959 * it as full, and mark this process as "batching".
960 * This process will be allowed to complete a batch of
961 * requests, others will be blocked.
962 */
963 if (!blk_rl_full(rl, is_sync)) {
964 ioc_set_batching(q, ioc);
965 blk_set_rl_full(rl, is_sync);
966 } else {
967 if (may_queue != ELV_MQUEUE_MUST
968 && !ioc_batching(q, ioc)) {
969 /*
970 * The queue is full and the allocating
971 * process is not a "batcher", and not
972 * exempted by the IO scheduler
973 */
974 return NULL;
975 }
976 }
977 }
978 /*
979 * bdi isn't aware of blkcg yet. As all async IOs end up
980 * root blkcg anyway, just use root blkcg state.
981 */
982 if (rl == &q->root_rl)
983 blk_set_queue_congested(q, is_sync);
984 }
985
986 /*
987 * Only allow batching queuers to allocate up to 50% over the defined
988 * limit of requests, otherwise we could have thousands of requests
989 * allocated with any setting of ->nr_requests
990 */
991 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
992 return NULL;
993
994 q->nr_rqs[is_sync]++;
995 rl->count[is_sync]++;
996 rl->starved[is_sync] = 0;
997
998 /*
999 * Decide whether the new request will be managed by elevator. If
1000 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1001 * prevent the current elevator from being destroyed until the new
1002 * request is freed. This guarantees icq's won't be destroyed and
1003 * makes creating new ones safe.
1004 *
1005 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1006 * it will be created after releasing queue_lock.
1007 */
1008 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1009 rw_flags |= REQ_ELVPRIV;
1010 q->nr_rqs_elvpriv++;
1011 if (et->icq_cache && ioc)
1012 icq = ioc_lookup_icq(ioc, q);
1013 }
1014
1015 if (blk_queue_io_stat(q))
1016 rw_flags |= REQ_IO_STAT;
1017 spin_unlock_irq(q->queue_lock);
1018
1019 /* allocate and init request */
1020 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1021 if (!rq)
1022 goto fail_alloc;
1023
1024 blk_rq_init(q, rq);
1025 blk_rq_set_rl(rq, rl);
1026 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1027
1028 /* init elvpriv */
1029 if (rw_flags & REQ_ELVPRIV) {
1030 if (unlikely(et->icq_cache && !icq)) {
1031 if (ioc)
1032 icq = ioc_create_icq(ioc, q, gfp_mask);
1033 if (!icq)
1034 goto fail_elvpriv;
1035 }
1036
1037 rq->elv.icq = icq;
1038 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1039 goto fail_elvpriv;
1040
1041 /* @rq->elv.icq holds io_context until @rq is freed */
1042 if (icq)
1043 get_io_context(icq->ioc);
1044 }
1045 out:
1046 /*
1047 * ioc may be NULL here, and ioc_batching will be false. That's
1048 * OK, if the queue is under the request limit then requests need
1049 * not count toward the nr_batch_requests limit. There will always
1050 * be some limit enforced by BLK_BATCH_TIME.
1051 */
1052 if (ioc_batching(q, ioc))
1053 ioc->nr_batch_requests--;
1054
1055 trace_block_getrq(q, bio, rw_flags & 1);
1056 return rq;
1057
1058 fail_elvpriv:
1059 /*
1060 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1061 * and may fail indefinitely under memory pressure and thus
1062 * shouldn't stall IO. Treat this request as !elvpriv. This will
1063 * disturb iosched and blkcg but weird is bettern than dead.
1064 */
1065 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1066 dev_name(q->backing_dev_info.dev));
1067
1068 rq->cmd_flags &= ~REQ_ELVPRIV;
1069 rq->elv.icq = NULL;
1070
1071 spin_lock_irq(q->queue_lock);
1072 q->nr_rqs_elvpriv--;
1073 spin_unlock_irq(q->queue_lock);
1074 goto out;
1075
1076 fail_alloc:
1077 /*
1078 * Allocation failed presumably due to memory. Undo anything we
1079 * might have messed up.
1080 *
1081 * Allocating task should really be put onto the front of the wait
1082 * queue, but this is pretty rare.
1083 */
1084 spin_lock_irq(q->queue_lock);
1085 freed_request(rl, rw_flags);
1086
1087 /*
1088 * in the very unlikely event that allocation failed and no
1089 * requests for this direction was pending, mark us starved so that
1090 * freeing of a request in the other direction will notice
1091 * us. another possible fix would be to split the rq mempool into
1092 * READ and WRITE
1093 */
1094 rq_starved:
1095 if (unlikely(rl->count[is_sync] == 0))
1096 rl->starved[is_sync] = 1;
1097 return NULL;
1098 }
1099
1100 /**
1101 * get_request - get a free request
1102 * @q: request_queue to allocate request from
1103 * @rw_flags: RW and SYNC flags
1104 * @bio: bio to allocate request for (can be %NULL)
1105 * @gfp_mask: allocation mask
1106 *
1107 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1108 * function keeps retrying under memory pressure and fails iff @q is dead.
1109 *
1110 * Must be called with @q->queue_lock held and,
1111 * Returns %NULL on failure, with @q->queue_lock held.
1112 * Returns !%NULL on success, with @q->queue_lock *not held*.
1113 */
1114 static struct request *get_request(struct request_queue *q, int rw_flags,
1115 struct bio *bio, gfp_t gfp_mask)
1116 {
1117 const bool is_sync = rw_is_sync(rw_flags) != 0;
1118 DEFINE_WAIT(wait);
1119 struct request_list *rl;
1120 struct request *rq;
1121
1122 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1123 retry:
1124 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1125 if (rq)
1126 return rq;
1127
1128 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1129 blk_put_rl(rl);
1130 return NULL;
1131 }
1132
1133 /* wait on @rl and retry */
1134 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1135 TASK_UNINTERRUPTIBLE);
1136
1137 trace_block_sleeprq(q, bio, rw_flags & 1);
1138
1139 spin_unlock_irq(q->queue_lock);
1140 io_schedule();
1141
1142 /*
1143 * After sleeping, we become a "batching" process and will be able
1144 * to allocate at least one request, and up to a big batch of them
1145 * for a small period time. See ioc_batching, ioc_set_batching
1146 */
1147 ioc_set_batching(q, current->io_context);
1148
1149 spin_lock_irq(q->queue_lock);
1150 finish_wait(&rl->wait[is_sync], &wait);
1151
1152 goto retry;
1153 }
1154
1155 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1156 gfp_t gfp_mask)
1157 {
1158 struct request *rq;
1159
1160 BUG_ON(rw != READ && rw != WRITE);
1161
1162 /* create ioc upfront */
1163 create_io_context(gfp_mask, q->node);
1164
1165 spin_lock_irq(q->queue_lock);
1166 rq = get_request(q, rw, NULL, gfp_mask);
1167 if (!rq)
1168 spin_unlock_irq(q->queue_lock);
1169 /* q->queue_lock is unlocked at this point */
1170
1171 return rq;
1172 }
1173
1174 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1175 {
1176 if (q->mq_ops)
1177 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1178 else
1179 return blk_old_get_request(q, rw, gfp_mask);
1180 }
1181 EXPORT_SYMBOL(blk_get_request);
1182
1183 /**
1184 * blk_make_request - given a bio, allocate a corresponding struct request.
1185 * @q: target request queue
1186 * @bio: The bio describing the memory mappings that will be submitted for IO.
1187 * It may be a chained-bio properly constructed by block/bio layer.
1188 * @gfp_mask: gfp flags to be used for memory allocation
1189 *
1190 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1191 * type commands. Where the struct request needs to be farther initialized by
1192 * the caller. It is passed a &struct bio, which describes the memory info of
1193 * the I/O transfer.
1194 *
1195 * The caller of blk_make_request must make sure that bi_io_vec
1196 * are set to describe the memory buffers. That bio_data_dir() will return
1197 * the needed direction of the request. (And all bio's in the passed bio-chain
1198 * are properly set accordingly)
1199 *
1200 * If called under none-sleepable conditions, mapped bio buffers must not
1201 * need bouncing, by calling the appropriate masked or flagged allocator,
1202 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1203 * BUG.
1204 *
1205 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1206 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1207 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1208 * completion of a bio that hasn't been submitted yet, thus resulting in a
1209 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1210 * of bio_alloc(), as that avoids the mempool deadlock.
1211 * If possible a big IO should be split into smaller parts when allocation
1212 * fails. Partial allocation should not be an error, or you risk a live-lock.
1213 */
1214 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1215 gfp_t gfp_mask)
1216 {
1217 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1218
1219 if (unlikely(!rq))
1220 return ERR_PTR(-ENOMEM);
1221
1222 blk_rq_set_block_pc(rq);
1223
1224 for_each_bio(bio) {
1225 struct bio *bounce_bio = bio;
1226 int ret;
1227
1228 blk_queue_bounce(q, &bounce_bio);
1229 ret = blk_rq_append_bio(q, rq, bounce_bio);
1230 if (unlikely(ret)) {
1231 blk_put_request(rq);
1232 return ERR_PTR(ret);
1233 }
1234 }
1235
1236 return rq;
1237 }
1238 EXPORT_SYMBOL(blk_make_request);
1239
1240 /**
1241 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1242 * @rq: request to be initialized
1243 *
1244 */
1245 void blk_rq_set_block_pc(struct request *rq)
1246 {
1247 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1248 rq->__data_len = 0;
1249 rq->__sector = (sector_t) -1;
1250 rq->bio = rq->biotail = NULL;
1251 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1252 rq->cmd = rq->__cmd;
1253 }
1254 EXPORT_SYMBOL(blk_rq_set_block_pc);
1255
1256 /**
1257 * blk_requeue_request - put a request back on queue
1258 * @q: request queue where request should be inserted
1259 * @rq: request to be inserted
1260 *
1261 * Description:
1262 * Drivers often keep queueing requests until the hardware cannot accept
1263 * more, when that condition happens we need to put the request back
1264 * on the queue. Must be called with queue lock held.
1265 */
1266 void blk_requeue_request(struct request_queue *q, struct request *rq)
1267 {
1268 blk_delete_timer(rq);
1269 blk_clear_rq_complete(rq);
1270 trace_block_rq_requeue(q, rq);
1271
1272 if (blk_rq_tagged(rq))
1273 blk_queue_end_tag(q, rq);
1274
1275 BUG_ON(blk_queued_rq(rq));
1276
1277 elv_requeue_request(q, rq);
1278 }
1279 EXPORT_SYMBOL(blk_requeue_request);
1280
1281 static void add_acct_request(struct request_queue *q, struct request *rq,
1282 int where)
1283 {
1284 blk_account_io_start(rq, true);
1285 __elv_add_request(q, rq, where);
1286 }
1287
1288 static void part_round_stats_single(int cpu, struct hd_struct *part,
1289 unsigned long now)
1290 {
1291 int inflight;
1292
1293 if (now == part->stamp)
1294 return;
1295
1296 inflight = part_in_flight(part);
1297 if (inflight) {
1298 __part_stat_add(cpu, part, time_in_queue,
1299 inflight * (now - part->stamp));
1300 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1301 }
1302 part->stamp = now;
1303 }
1304
1305 /**
1306 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1307 * @cpu: cpu number for stats access
1308 * @part: target partition
1309 *
1310 * The average IO queue length and utilisation statistics are maintained
1311 * by observing the current state of the queue length and the amount of
1312 * time it has been in this state for.
1313 *
1314 * Normally, that accounting is done on IO completion, but that can result
1315 * in more than a second's worth of IO being accounted for within any one
1316 * second, leading to >100% utilisation. To deal with that, we call this
1317 * function to do a round-off before returning the results when reading
1318 * /proc/diskstats. This accounts immediately for all queue usage up to
1319 * the current jiffies and restarts the counters again.
1320 */
1321 void part_round_stats(int cpu, struct hd_struct *part)
1322 {
1323 unsigned long now = jiffies;
1324
1325 if (part->partno)
1326 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1327 part_round_stats_single(cpu, part, now);
1328 }
1329 EXPORT_SYMBOL_GPL(part_round_stats);
1330
1331 #ifdef CONFIG_PM_RUNTIME
1332 static void blk_pm_put_request(struct request *rq)
1333 {
1334 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1335 pm_runtime_mark_last_busy(rq->q->dev);
1336 }
1337 #else
1338 static inline void blk_pm_put_request(struct request *rq) {}
1339 #endif
1340
1341 /*
1342 * queue lock must be held
1343 */
1344 void __blk_put_request(struct request_queue *q, struct request *req)
1345 {
1346 if (unlikely(!q))
1347 return;
1348
1349 if (q->mq_ops) {
1350 blk_mq_free_request(req);
1351 return;
1352 }
1353
1354 blk_pm_put_request(req);
1355
1356 elv_completed_request(q, req);
1357
1358 /* this is a bio leak */
1359 WARN_ON(req->bio != NULL);
1360
1361 /*
1362 * Request may not have originated from ll_rw_blk. if not,
1363 * it didn't come out of our reserved rq pools
1364 */
1365 if (req->cmd_flags & REQ_ALLOCED) {
1366 unsigned int flags = req->cmd_flags;
1367 struct request_list *rl = blk_rq_rl(req);
1368
1369 BUG_ON(!list_empty(&req->queuelist));
1370 BUG_ON(ELV_ON_HASH(req));
1371
1372 blk_free_request(rl, req);
1373 freed_request(rl, flags);
1374 blk_put_rl(rl);
1375 }
1376 }
1377 EXPORT_SYMBOL_GPL(__blk_put_request);
1378
1379 void blk_put_request(struct request *req)
1380 {
1381 struct request_queue *q = req->q;
1382
1383 if (q->mq_ops)
1384 blk_mq_free_request(req);
1385 else {
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(q->queue_lock, flags);
1389 __blk_put_request(q, req);
1390 spin_unlock_irqrestore(q->queue_lock, flags);
1391 }
1392 }
1393 EXPORT_SYMBOL(blk_put_request);
1394
1395 /**
1396 * blk_add_request_payload - add a payload to a request
1397 * @rq: request to update
1398 * @page: page backing the payload
1399 * @len: length of the payload.
1400 *
1401 * This allows to later add a payload to an already submitted request by
1402 * a block driver. The driver needs to take care of freeing the payload
1403 * itself.
1404 *
1405 * Note that this is a quite horrible hack and nothing but handling of
1406 * discard requests should ever use it.
1407 */
1408 void blk_add_request_payload(struct request *rq, struct page *page,
1409 unsigned int len)
1410 {
1411 struct bio *bio = rq->bio;
1412
1413 bio->bi_io_vec->bv_page = page;
1414 bio->bi_io_vec->bv_offset = 0;
1415 bio->bi_io_vec->bv_len = len;
1416
1417 bio->bi_iter.bi_size = len;
1418 bio->bi_vcnt = 1;
1419 bio->bi_phys_segments = 1;
1420
1421 rq->__data_len = rq->resid_len = len;
1422 rq->nr_phys_segments = 1;
1423 }
1424 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1425
1426 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1427 struct bio *bio)
1428 {
1429 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1430
1431 if (!ll_back_merge_fn(q, req, bio))
1432 return false;
1433
1434 trace_block_bio_backmerge(q, req, bio);
1435
1436 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1437 blk_rq_set_mixed_merge(req);
1438
1439 req->biotail->bi_next = bio;
1440 req->biotail = bio;
1441 req->__data_len += bio->bi_iter.bi_size;
1442 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1443
1444 blk_account_io_start(req, false);
1445 return true;
1446 }
1447
1448 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1449 struct bio *bio)
1450 {
1451 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1452
1453 if (!ll_front_merge_fn(q, req, bio))
1454 return false;
1455
1456 trace_block_bio_frontmerge(q, req, bio);
1457
1458 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1459 blk_rq_set_mixed_merge(req);
1460
1461 bio->bi_next = req->bio;
1462 req->bio = bio;
1463
1464 req->__sector = bio->bi_iter.bi_sector;
1465 req->__data_len += bio->bi_iter.bi_size;
1466 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1467
1468 blk_account_io_start(req, false);
1469 return true;
1470 }
1471
1472 /**
1473 * blk_attempt_plug_merge - try to merge with %current's plugged list
1474 * @q: request_queue new bio is being queued at
1475 * @bio: new bio being queued
1476 * @request_count: out parameter for number of traversed plugged requests
1477 *
1478 * Determine whether @bio being queued on @q can be merged with a request
1479 * on %current's plugged list. Returns %true if merge was successful,
1480 * otherwise %false.
1481 *
1482 * Plugging coalesces IOs from the same issuer for the same purpose without
1483 * going through @q->queue_lock. As such it's more of an issuing mechanism
1484 * than scheduling, and the request, while may have elvpriv data, is not
1485 * added on the elevator at this point. In addition, we don't have
1486 * reliable access to the elevator outside queue lock. Only check basic
1487 * merging parameters without querying the elevator.
1488 *
1489 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1490 */
1491 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1492 unsigned int *request_count)
1493 {
1494 struct blk_plug *plug;
1495 struct request *rq;
1496 bool ret = false;
1497 struct list_head *plug_list;
1498
1499 plug = current->plug;
1500 if (!plug)
1501 goto out;
1502 *request_count = 0;
1503
1504 if (q->mq_ops)
1505 plug_list = &plug->mq_list;
1506 else
1507 plug_list = &plug->list;
1508
1509 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1510 int el_ret;
1511
1512 if (rq->q == q)
1513 (*request_count)++;
1514
1515 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1516 continue;
1517
1518 el_ret = blk_try_merge(rq, bio);
1519 if (el_ret == ELEVATOR_BACK_MERGE) {
1520 ret = bio_attempt_back_merge(q, rq, bio);
1521 if (ret)
1522 break;
1523 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1524 ret = bio_attempt_front_merge(q, rq, bio);
1525 if (ret)
1526 break;
1527 }
1528 }
1529 out:
1530 return ret;
1531 }
1532
1533 void init_request_from_bio(struct request *req, struct bio *bio)
1534 {
1535 req->cmd_type = REQ_TYPE_FS;
1536
1537 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1538 if (bio->bi_rw & REQ_RAHEAD)
1539 req->cmd_flags |= REQ_FAILFAST_MASK;
1540
1541 req->errors = 0;
1542 req->__sector = bio->bi_iter.bi_sector;
1543 req->ioprio = bio_prio(bio);
1544 blk_rq_bio_prep(req->q, req, bio);
1545 }
1546
1547 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1548 {
1549 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1550 struct blk_plug *plug;
1551 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1552 struct request *req;
1553 unsigned int request_count = 0;
1554
1555 /*
1556 * low level driver can indicate that it wants pages above a
1557 * certain limit bounced to low memory (ie for highmem, or even
1558 * ISA dma in theory)
1559 */
1560 blk_queue_bounce(q, &bio);
1561
1562 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1563 bio_endio(bio, -EIO);
1564 return;
1565 }
1566
1567 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1568 spin_lock_irq(q->queue_lock);
1569 where = ELEVATOR_INSERT_FLUSH;
1570 goto get_rq;
1571 }
1572
1573 /*
1574 * Check if we can merge with the plugged list before grabbing
1575 * any locks.
1576 */
1577 if (!blk_queue_nomerges(q) &&
1578 blk_attempt_plug_merge(q, bio, &request_count))
1579 return;
1580
1581 spin_lock_irq(q->queue_lock);
1582
1583 el_ret = elv_merge(q, &req, bio);
1584 if (el_ret == ELEVATOR_BACK_MERGE) {
1585 if (bio_attempt_back_merge(q, req, bio)) {
1586 elv_bio_merged(q, req, bio);
1587 if (!attempt_back_merge(q, req))
1588 elv_merged_request(q, req, el_ret);
1589 goto out_unlock;
1590 }
1591 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1592 if (bio_attempt_front_merge(q, req, bio)) {
1593 elv_bio_merged(q, req, bio);
1594 if (!attempt_front_merge(q, req))
1595 elv_merged_request(q, req, el_ret);
1596 goto out_unlock;
1597 }
1598 }
1599
1600 get_rq:
1601 /*
1602 * This sync check and mask will be re-done in init_request_from_bio(),
1603 * but we need to set it earlier to expose the sync flag to the
1604 * rq allocator and io schedulers.
1605 */
1606 rw_flags = bio_data_dir(bio);
1607 if (sync)
1608 rw_flags |= REQ_SYNC;
1609
1610 /*
1611 * Grab a free request. This is might sleep but can not fail.
1612 * Returns with the queue unlocked.
1613 */
1614 req = get_request(q, rw_flags, bio, GFP_NOIO);
1615 if (unlikely(!req)) {
1616 bio_endio(bio, -ENODEV); /* @q is dead */
1617 goto out_unlock;
1618 }
1619
1620 /*
1621 * After dropping the lock and possibly sleeping here, our request
1622 * may now be mergeable after it had proven unmergeable (above).
1623 * We don't worry about that case for efficiency. It won't happen
1624 * often, and the elevators are able to handle it.
1625 */
1626 init_request_from_bio(req, bio);
1627
1628 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1629 req->cpu = raw_smp_processor_id();
1630
1631 plug = current->plug;
1632 if (plug) {
1633 /*
1634 * If this is the first request added after a plug, fire
1635 * of a plug trace.
1636 */
1637 if (!request_count)
1638 trace_block_plug(q);
1639 else {
1640 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1641 blk_flush_plug_list(plug, false);
1642 trace_block_plug(q);
1643 }
1644 }
1645 list_add_tail(&req->queuelist, &plug->list);
1646 blk_account_io_start(req, true);
1647 } else {
1648 spin_lock_irq(q->queue_lock);
1649 add_acct_request(q, req, where);
1650 __blk_run_queue(q);
1651 out_unlock:
1652 spin_unlock_irq(q->queue_lock);
1653 }
1654 }
1655 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1656
1657 /*
1658 * If bio->bi_dev is a partition, remap the location
1659 */
1660 static inline void blk_partition_remap(struct bio *bio)
1661 {
1662 struct block_device *bdev = bio->bi_bdev;
1663
1664 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1665 struct hd_struct *p = bdev->bd_part;
1666
1667 bio->bi_iter.bi_sector += p->start_sect;
1668 bio->bi_bdev = bdev->bd_contains;
1669
1670 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1671 bdev->bd_dev,
1672 bio->bi_iter.bi_sector - p->start_sect);
1673 }
1674 }
1675
1676 static void handle_bad_sector(struct bio *bio)
1677 {
1678 char b[BDEVNAME_SIZE];
1679
1680 printk(KERN_INFO "attempt to access beyond end of device\n");
1681 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1682 bdevname(bio->bi_bdev, b),
1683 bio->bi_rw,
1684 (unsigned long long)bio_end_sector(bio),
1685 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1686
1687 set_bit(BIO_EOF, &bio->bi_flags);
1688 }
1689
1690 #ifdef CONFIG_FAIL_MAKE_REQUEST
1691
1692 static DECLARE_FAULT_ATTR(fail_make_request);
1693
1694 static int __init setup_fail_make_request(char *str)
1695 {
1696 return setup_fault_attr(&fail_make_request, str);
1697 }
1698 __setup("fail_make_request=", setup_fail_make_request);
1699
1700 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1701 {
1702 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1703 }
1704
1705 static int __init fail_make_request_debugfs(void)
1706 {
1707 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1708 NULL, &fail_make_request);
1709
1710 return PTR_ERR_OR_ZERO(dir);
1711 }
1712
1713 late_initcall(fail_make_request_debugfs);
1714
1715 #else /* CONFIG_FAIL_MAKE_REQUEST */
1716
1717 static inline bool should_fail_request(struct hd_struct *part,
1718 unsigned int bytes)
1719 {
1720 return false;
1721 }
1722
1723 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1724
1725 /*
1726 * Check whether this bio extends beyond the end of the device.
1727 */
1728 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1729 {
1730 sector_t maxsector;
1731
1732 if (!nr_sectors)
1733 return 0;
1734
1735 /* Test device or partition size, when known. */
1736 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1737 if (maxsector) {
1738 sector_t sector = bio->bi_iter.bi_sector;
1739
1740 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1741 /*
1742 * This may well happen - the kernel calls bread()
1743 * without checking the size of the device, e.g., when
1744 * mounting a device.
1745 */
1746 handle_bad_sector(bio);
1747 return 1;
1748 }
1749 }
1750
1751 return 0;
1752 }
1753
1754 static noinline_for_stack bool
1755 generic_make_request_checks(struct bio *bio)
1756 {
1757 struct request_queue *q;
1758 int nr_sectors = bio_sectors(bio);
1759 int err = -EIO;
1760 char b[BDEVNAME_SIZE];
1761 struct hd_struct *part;
1762
1763 might_sleep();
1764
1765 if (bio_check_eod(bio, nr_sectors))
1766 goto end_io;
1767
1768 q = bdev_get_queue(bio->bi_bdev);
1769 if (unlikely(!q)) {
1770 printk(KERN_ERR
1771 "generic_make_request: Trying to access "
1772 "nonexistent block-device %s (%Lu)\n",
1773 bdevname(bio->bi_bdev, b),
1774 (long long) bio->bi_iter.bi_sector);
1775 goto end_io;
1776 }
1777
1778 if (likely(bio_is_rw(bio) &&
1779 nr_sectors > queue_max_hw_sectors(q))) {
1780 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1781 bdevname(bio->bi_bdev, b),
1782 bio_sectors(bio),
1783 queue_max_hw_sectors(q));
1784 goto end_io;
1785 }
1786
1787 part = bio->bi_bdev->bd_part;
1788 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1789 should_fail_request(&part_to_disk(part)->part0,
1790 bio->bi_iter.bi_size))
1791 goto end_io;
1792
1793 /*
1794 * If this device has partitions, remap block n
1795 * of partition p to block n+start(p) of the disk.
1796 */
1797 blk_partition_remap(bio);
1798
1799 if (bio_check_eod(bio, nr_sectors))
1800 goto end_io;
1801
1802 /*
1803 * Filter flush bio's early so that make_request based
1804 * drivers without flush support don't have to worry
1805 * about them.
1806 */
1807 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1808 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1809 if (!nr_sectors) {
1810 err = 0;
1811 goto end_io;
1812 }
1813 }
1814
1815 if ((bio->bi_rw & REQ_DISCARD) &&
1816 (!blk_queue_discard(q) ||
1817 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1818 err = -EOPNOTSUPP;
1819 goto end_io;
1820 }
1821
1822 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1823 err = -EOPNOTSUPP;
1824 goto end_io;
1825 }
1826
1827 /*
1828 * Various block parts want %current->io_context and lazy ioc
1829 * allocation ends up trading a lot of pain for a small amount of
1830 * memory. Just allocate it upfront. This may fail and block
1831 * layer knows how to live with it.
1832 */
1833 create_io_context(GFP_ATOMIC, q->node);
1834
1835 if (blk_throtl_bio(q, bio))
1836 return false; /* throttled, will be resubmitted later */
1837
1838 trace_block_bio_queue(q, bio);
1839 return true;
1840
1841 end_io:
1842 bio_endio(bio, err);
1843 return false;
1844 }
1845
1846 /**
1847 * generic_make_request - hand a buffer to its device driver for I/O
1848 * @bio: The bio describing the location in memory and on the device.
1849 *
1850 * generic_make_request() is used to make I/O requests of block
1851 * devices. It is passed a &struct bio, which describes the I/O that needs
1852 * to be done.
1853 *
1854 * generic_make_request() does not return any status. The
1855 * success/failure status of the request, along with notification of
1856 * completion, is delivered asynchronously through the bio->bi_end_io
1857 * function described (one day) else where.
1858 *
1859 * The caller of generic_make_request must make sure that bi_io_vec
1860 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1861 * set to describe the device address, and the
1862 * bi_end_io and optionally bi_private are set to describe how
1863 * completion notification should be signaled.
1864 *
1865 * generic_make_request and the drivers it calls may use bi_next if this
1866 * bio happens to be merged with someone else, and may resubmit the bio to
1867 * a lower device by calling into generic_make_request recursively, which
1868 * means the bio should NOT be touched after the call to ->make_request_fn.
1869 */
1870 void generic_make_request(struct bio *bio)
1871 {
1872 struct bio_list bio_list_on_stack;
1873
1874 if (!generic_make_request_checks(bio))
1875 return;
1876
1877 /*
1878 * We only want one ->make_request_fn to be active at a time, else
1879 * stack usage with stacked devices could be a problem. So use
1880 * current->bio_list to keep a list of requests submited by a
1881 * make_request_fn function. current->bio_list is also used as a
1882 * flag to say if generic_make_request is currently active in this
1883 * task or not. If it is NULL, then no make_request is active. If
1884 * it is non-NULL, then a make_request is active, and new requests
1885 * should be added at the tail
1886 */
1887 if (current->bio_list) {
1888 bio_list_add(current->bio_list, bio);
1889 return;
1890 }
1891
1892 /* following loop may be a bit non-obvious, and so deserves some
1893 * explanation.
1894 * Before entering the loop, bio->bi_next is NULL (as all callers
1895 * ensure that) so we have a list with a single bio.
1896 * We pretend that we have just taken it off a longer list, so
1897 * we assign bio_list to a pointer to the bio_list_on_stack,
1898 * thus initialising the bio_list of new bios to be
1899 * added. ->make_request() may indeed add some more bios
1900 * through a recursive call to generic_make_request. If it
1901 * did, we find a non-NULL value in bio_list and re-enter the loop
1902 * from the top. In this case we really did just take the bio
1903 * of the top of the list (no pretending) and so remove it from
1904 * bio_list, and call into ->make_request() again.
1905 */
1906 BUG_ON(bio->bi_next);
1907 bio_list_init(&bio_list_on_stack);
1908 current->bio_list = &bio_list_on_stack;
1909 do {
1910 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1911
1912 q->make_request_fn(q, bio);
1913
1914 bio = bio_list_pop(current->bio_list);
1915 } while (bio);
1916 current->bio_list = NULL; /* deactivate */
1917 }
1918 EXPORT_SYMBOL(generic_make_request);
1919
1920 /**
1921 * submit_bio - submit a bio to the block device layer for I/O
1922 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1923 * @bio: The &struct bio which describes the I/O
1924 *
1925 * submit_bio() is very similar in purpose to generic_make_request(), and
1926 * uses that function to do most of the work. Both are fairly rough
1927 * interfaces; @bio must be presetup and ready for I/O.
1928 *
1929 */
1930 void submit_bio(int rw, struct bio *bio)
1931 {
1932 bio->bi_rw |= rw;
1933
1934 /*
1935 * If it's a regular read/write or a barrier with data attached,
1936 * go through the normal accounting stuff before submission.
1937 */
1938 if (bio_has_data(bio)) {
1939 unsigned int count;
1940
1941 if (unlikely(rw & REQ_WRITE_SAME))
1942 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1943 else
1944 count = bio_sectors(bio);
1945
1946 if (rw & WRITE) {
1947 count_vm_events(PGPGOUT, count);
1948 } else {
1949 task_io_account_read(bio->bi_iter.bi_size);
1950 count_vm_events(PGPGIN, count);
1951 }
1952
1953 if (unlikely(block_dump)) {
1954 char b[BDEVNAME_SIZE];
1955 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1956 current->comm, task_pid_nr(current),
1957 (rw & WRITE) ? "WRITE" : "READ",
1958 (unsigned long long)bio->bi_iter.bi_sector,
1959 bdevname(bio->bi_bdev, b),
1960 count);
1961 }
1962 }
1963
1964 generic_make_request(bio);
1965 }
1966 EXPORT_SYMBOL(submit_bio);
1967
1968 /**
1969 * blk_rq_check_limits - Helper function to check a request for the queue limit
1970 * @q: the queue
1971 * @rq: the request being checked
1972 *
1973 * Description:
1974 * @rq may have been made based on weaker limitations of upper-level queues
1975 * in request stacking drivers, and it may violate the limitation of @q.
1976 * Since the block layer and the underlying device driver trust @rq
1977 * after it is inserted to @q, it should be checked against @q before
1978 * the insertion using this generic function.
1979 *
1980 * This function should also be useful for request stacking drivers
1981 * in some cases below, so export this function.
1982 * Request stacking drivers like request-based dm may change the queue
1983 * limits while requests are in the queue (e.g. dm's table swapping).
1984 * Such request stacking drivers should check those requests against
1985 * the new queue limits again when they dispatch those requests,
1986 * although such checkings are also done against the old queue limits
1987 * when submitting requests.
1988 */
1989 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1990 {
1991 if (!rq_mergeable(rq))
1992 return 0;
1993
1994 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1995 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1996 return -EIO;
1997 }
1998
1999 /*
2000 * queue's settings related to segment counting like q->bounce_pfn
2001 * may differ from that of other stacking queues.
2002 * Recalculate it to check the request correctly on this queue's
2003 * limitation.
2004 */
2005 blk_recalc_rq_segments(rq);
2006 if (rq->nr_phys_segments > queue_max_segments(q)) {
2007 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2008 return -EIO;
2009 }
2010
2011 return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2014
2015 /**
2016 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2017 * @q: the queue to submit the request
2018 * @rq: the request being queued
2019 */
2020 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2021 {
2022 unsigned long flags;
2023 int where = ELEVATOR_INSERT_BACK;
2024
2025 if (blk_rq_check_limits(q, rq))
2026 return -EIO;
2027
2028 if (rq->rq_disk &&
2029 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2030 return -EIO;
2031
2032 spin_lock_irqsave(q->queue_lock, flags);
2033 if (unlikely(blk_queue_dying(q))) {
2034 spin_unlock_irqrestore(q->queue_lock, flags);
2035 return -ENODEV;
2036 }
2037
2038 /*
2039 * Submitting request must be dequeued before calling this function
2040 * because it will be linked to another request_queue
2041 */
2042 BUG_ON(blk_queued_rq(rq));
2043
2044 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2045 where = ELEVATOR_INSERT_FLUSH;
2046
2047 add_acct_request(q, rq, where);
2048 if (where == ELEVATOR_INSERT_FLUSH)
2049 __blk_run_queue(q);
2050 spin_unlock_irqrestore(q->queue_lock, flags);
2051
2052 return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2055
2056 /**
2057 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2058 * @rq: request to examine
2059 *
2060 * Description:
2061 * A request could be merge of IOs which require different failure
2062 * handling. This function determines the number of bytes which
2063 * can be failed from the beginning of the request without
2064 * crossing into area which need to be retried further.
2065 *
2066 * Return:
2067 * The number of bytes to fail.
2068 *
2069 * Context:
2070 * queue_lock must be held.
2071 */
2072 unsigned int blk_rq_err_bytes(const struct request *rq)
2073 {
2074 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2075 unsigned int bytes = 0;
2076 struct bio *bio;
2077
2078 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2079 return blk_rq_bytes(rq);
2080
2081 /*
2082 * Currently the only 'mixing' which can happen is between
2083 * different fastfail types. We can safely fail portions
2084 * which have all the failfast bits that the first one has -
2085 * the ones which are at least as eager to fail as the first
2086 * one.
2087 */
2088 for (bio = rq->bio; bio; bio = bio->bi_next) {
2089 if ((bio->bi_rw & ff) != ff)
2090 break;
2091 bytes += bio->bi_iter.bi_size;
2092 }
2093
2094 /* this could lead to infinite loop */
2095 BUG_ON(blk_rq_bytes(rq) && !bytes);
2096 return bytes;
2097 }
2098 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2099
2100 void blk_account_io_completion(struct request *req, unsigned int bytes)
2101 {
2102 if (blk_do_io_stat(req)) {
2103 const int rw = rq_data_dir(req);
2104 struct hd_struct *part;
2105 int cpu;
2106
2107 cpu = part_stat_lock();
2108 part = req->part;
2109 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2110 part_stat_unlock();
2111 }
2112 }
2113
2114 void blk_account_io_done(struct request *req)
2115 {
2116 /*
2117 * Account IO completion. flush_rq isn't accounted as a
2118 * normal IO on queueing nor completion. Accounting the
2119 * containing request is enough.
2120 */
2121 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2122 unsigned long duration = jiffies - req->start_time;
2123 const int rw = rq_data_dir(req);
2124 struct hd_struct *part;
2125 int cpu;
2126
2127 cpu = part_stat_lock();
2128 part = req->part;
2129
2130 part_stat_inc(cpu, part, ios[rw]);
2131 part_stat_add(cpu, part, ticks[rw], duration);
2132 part_round_stats(cpu, part);
2133 part_dec_in_flight(part, rw);
2134
2135 hd_struct_put(part);
2136 part_stat_unlock();
2137 }
2138 }
2139
2140 #ifdef CONFIG_PM_RUNTIME
2141 /*
2142 * Don't process normal requests when queue is suspended
2143 * or in the process of suspending/resuming
2144 */
2145 static struct request *blk_pm_peek_request(struct request_queue *q,
2146 struct request *rq)
2147 {
2148 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2149 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2150 return NULL;
2151 else
2152 return rq;
2153 }
2154 #else
2155 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2156 struct request *rq)
2157 {
2158 return rq;
2159 }
2160 #endif
2161
2162 void blk_account_io_start(struct request *rq, bool new_io)
2163 {
2164 struct hd_struct *part;
2165 int rw = rq_data_dir(rq);
2166 int cpu;
2167
2168 if (!blk_do_io_stat(rq))
2169 return;
2170
2171 cpu = part_stat_lock();
2172
2173 if (!new_io) {
2174 part = rq->part;
2175 part_stat_inc(cpu, part, merges[rw]);
2176 } else {
2177 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2178 if (!hd_struct_try_get(part)) {
2179 /*
2180 * The partition is already being removed,
2181 * the request will be accounted on the disk only
2182 *
2183 * We take a reference on disk->part0 although that
2184 * partition will never be deleted, so we can treat
2185 * it as any other partition.
2186 */
2187 part = &rq->rq_disk->part0;
2188 hd_struct_get(part);
2189 }
2190 part_round_stats(cpu, part);
2191 part_inc_in_flight(part, rw);
2192 rq->part = part;
2193 }
2194
2195 part_stat_unlock();
2196 }
2197
2198 /**
2199 * blk_peek_request - peek at the top of a request queue
2200 * @q: request queue to peek at
2201 *
2202 * Description:
2203 * Return the request at the top of @q. The returned request
2204 * should be started using blk_start_request() before LLD starts
2205 * processing it.
2206 *
2207 * Return:
2208 * Pointer to the request at the top of @q if available. Null
2209 * otherwise.
2210 *
2211 * Context:
2212 * queue_lock must be held.
2213 */
2214 struct request *blk_peek_request(struct request_queue *q)
2215 {
2216 struct request *rq;
2217 int ret;
2218
2219 while ((rq = __elv_next_request(q)) != NULL) {
2220
2221 rq = blk_pm_peek_request(q, rq);
2222 if (!rq)
2223 break;
2224
2225 if (!(rq->cmd_flags & REQ_STARTED)) {
2226 /*
2227 * This is the first time the device driver
2228 * sees this request (possibly after
2229 * requeueing). Notify IO scheduler.
2230 */
2231 if (rq->cmd_flags & REQ_SORTED)
2232 elv_activate_rq(q, rq);
2233
2234 /*
2235 * just mark as started even if we don't start
2236 * it, a request that has been delayed should
2237 * not be passed by new incoming requests
2238 */
2239 rq->cmd_flags |= REQ_STARTED;
2240 trace_block_rq_issue(q, rq);
2241 }
2242
2243 if (!q->boundary_rq || q->boundary_rq == rq) {
2244 q->end_sector = rq_end_sector(rq);
2245 q->boundary_rq = NULL;
2246 }
2247
2248 if (rq->cmd_flags & REQ_DONTPREP)
2249 break;
2250
2251 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2252 /*
2253 * make sure space for the drain appears we
2254 * know we can do this because max_hw_segments
2255 * has been adjusted to be one fewer than the
2256 * device can handle
2257 */
2258 rq->nr_phys_segments++;
2259 }
2260
2261 if (!q->prep_rq_fn)
2262 break;
2263
2264 ret = q->prep_rq_fn(q, rq);
2265 if (ret == BLKPREP_OK) {
2266 break;
2267 } else if (ret == BLKPREP_DEFER) {
2268 /*
2269 * the request may have been (partially) prepped.
2270 * we need to keep this request in the front to
2271 * avoid resource deadlock. REQ_STARTED will
2272 * prevent other fs requests from passing this one.
2273 */
2274 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2275 !(rq->cmd_flags & REQ_DONTPREP)) {
2276 /*
2277 * remove the space for the drain we added
2278 * so that we don't add it again
2279 */
2280 --rq->nr_phys_segments;
2281 }
2282
2283 rq = NULL;
2284 break;
2285 } else if (ret == BLKPREP_KILL) {
2286 rq->cmd_flags |= REQ_QUIET;
2287 /*
2288 * Mark this request as started so we don't trigger
2289 * any debug logic in the end I/O path.
2290 */
2291 blk_start_request(rq);
2292 __blk_end_request_all(rq, -EIO);
2293 } else {
2294 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2295 break;
2296 }
2297 }
2298
2299 return rq;
2300 }
2301 EXPORT_SYMBOL(blk_peek_request);
2302
2303 void blk_dequeue_request(struct request *rq)
2304 {
2305 struct request_queue *q = rq->q;
2306
2307 BUG_ON(list_empty(&rq->queuelist));
2308 BUG_ON(ELV_ON_HASH(rq));
2309
2310 list_del_init(&rq->queuelist);
2311
2312 /*
2313 * the time frame between a request being removed from the lists
2314 * and to it is freed is accounted as io that is in progress at
2315 * the driver side.
2316 */
2317 if (blk_account_rq(rq)) {
2318 q->in_flight[rq_is_sync(rq)]++;
2319 set_io_start_time_ns(rq);
2320 }
2321 }
2322
2323 /**
2324 * blk_start_request - start request processing on the driver
2325 * @req: request to dequeue
2326 *
2327 * Description:
2328 * Dequeue @req and start timeout timer on it. This hands off the
2329 * request to the driver.
2330 *
2331 * Block internal functions which don't want to start timer should
2332 * call blk_dequeue_request().
2333 *
2334 * Context:
2335 * queue_lock must be held.
2336 */
2337 void blk_start_request(struct request *req)
2338 {
2339 blk_dequeue_request(req);
2340
2341 /*
2342 * We are now handing the request to the hardware, initialize
2343 * resid_len to full count and add the timeout handler.
2344 */
2345 req->resid_len = blk_rq_bytes(req);
2346 if (unlikely(blk_bidi_rq(req)))
2347 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2348
2349 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2350 blk_add_timer(req);
2351 }
2352 EXPORT_SYMBOL(blk_start_request);
2353
2354 /**
2355 * blk_fetch_request - fetch a request from a request queue
2356 * @q: request queue to fetch a request from
2357 *
2358 * Description:
2359 * Return the request at the top of @q. The request is started on
2360 * return and LLD can start processing it immediately.
2361 *
2362 * Return:
2363 * Pointer to the request at the top of @q if available. Null
2364 * otherwise.
2365 *
2366 * Context:
2367 * queue_lock must be held.
2368 */
2369 struct request *blk_fetch_request(struct request_queue *q)
2370 {
2371 struct request *rq;
2372
2373 rq = blk_peek_request(q);
2374 if (rq)
2375 blk_start_request(rq);
2376 return rq;
2377 }
2378 EXPORT_SYMBOL(blk_fetch_request);
2379
2380 /**
2381 * blk_update_request - Special helper function for request stacking drivers
2382 * @req: the request being processed
2383 * @error: %0 for success, < %0 for error
2384 * @nr_bytes: number of bytes to complete @req
2385 *
2386 * Description:
2387 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2388 * the request structure even if @req doesn't have leftover.
2389 * If @req has leftover, sets it up for the next range of segments.
2390 *
2391 * This special helper function is only for request stacking drivers
2392 * (e.g. request-based dm) so that they can handle partial completion.
2393 * Actual device drivers should use blk_end_request instead.
2394 *
2395 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2396 * %false return from this function.
2397 *
2398 * Return:
2399 * %false - this request doesn't have any more data
2400 * %true - this request has more data
2401 **/
2402 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2403 {
2404 int total_bytes;
2405
2406 if (!req->bio)
2407 return false;
2408
2409 trace_block_rq_complete(req->q, req, nr_bytes);
2410
2411 /*
2412 * For fs requests, rq is just carrier of independent bio's
2413 * and each partial completion should be handled separately.
2414 * Reset per-request error on each partial completion.
2415 *
2416 * TODO: tj: This is too subtle. It would be better to let
2417 * low level drivers do what they see fit.
2418 */
2419 if (req->cmd_type == REQ_TYPE_FS)
2420 req->errors = 0;
2421
2422 if (error && req->cmd_type == REQ_TYPE_FS &&
2423 !(req->cmd_flags & REQ_QUIET)) {
2424 char *error_type;
2425
2426 switch (error) {
2427 case -ENOLINK:
2428 error_type = "recoverable transport";
2429 break;
2430 case -EREMOTEIO:
2431 error_type = "critical target";
2432 break;
2433 case -EBADE:
2434 error_type = "critical nexus";
2435 break;
2436 case -ETIMEDOUT:
2437 error_type = "timeout";
2438 break;
2439 case -ENOSPC:
2440 error_type = "critical space allocation";
2441 break;
2442 case -ENODATA:
2443 error_type = "critical medium";
2444 break;
2445 case -EIO:
2446 default:
2447 error_type = "I/O";
2448 break;
2449 }
2450 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2451 error_type, req->rq_disk ?
2452 req->rq_disk->disk_name : "?",
2453 (unsigned long long)blk_rq_pos(req));
2454
2455 }
2456
2457 blk_account_io_completion(req, nr_bytes);
2458
2459 total_bytes = 0;
2460 while (req->bio) {
2461 struct bio *bio = req->bio;
2462 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2463
2464 if (bio_bytes == bio->bi_iter.bi_size)
2465 req->bio = bio->bi_next;
2466
2467 req_bio_endio(req, bio, bio_bytes, error);
2468
2469 total_bytes += bio_bytes;
2470 nr_bytes -= bio_bytes;
2471
2472 if (!nr_bytes)
2473 break;
2474 }
2475
2476 /*
2477 * completely done
2478 */
2479 if (!req->bio) {
2480 /*
2481 * Reset counters so that the request stacking driver
2482 * can find how many bytes remain in the request
2483 * later.
2484 */
2485 req->__data_len = 0;
2486 return false;
2487 }
2488
2489 req->__data_len -= total_bytes;
2490
2491 /* update sector only for requests with clear definition of sector */
2492 if (req->cmd_type == REQ_TYPE_FS)
2493 req->__sector += total_bytes >> 9;
2494
2495 /* mixed attributes always follow the first bio */
2496 if (req->cmd_flags & REQ_MIXED_MERGE) {
2497 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2498 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2499 }
2500
2501 /*
2502 * If total number of sectors is less than the first segment
2503 * size, something has gone terribly wrong.
2504 */
2505 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2506 blk_dump_rq_flags(req, "request botched");
2507 req->__data_len = blk_rq_cur_bytes(req);
2508 }
2509
2510 /* recalculate the number of segments */
2511 blk_recalc_rq_segments(req);
2512
2513 return true;
2514 }
2515 EXPORT_SYMBOL_GPL(blk_update_request);
2516
2517 static bool blk_update_bidi_request(struct request *rq, int error,
2518 unsigned int nr_bytes,
2519 unsigned int bidi_bytes)
2520 {
2521 if (blk_update_request(rq, error, nr_bytes))
2522 return true;
2523
2524 /* Bidi request must be completed as a whole */
2525 if (unlikely(blk_bidi_rq(rq)) &&
2526 blk_update_request(rq->next_rq, error, bidi_bytes))
2527 return true;
2528
2529 if (blk_queue_add_random(rq->q))
2530 add_disk_randomness(rq->rq_disk);
2531
2532 return false;
2533 }
2534
2535 /**
2536 * blk_unprep_request - unprepare a request
2537 * @req: the request
2538 *
2539 * This function makes a request ready for complete resubmission (or
2540 * completion). It happens only after all error handling is complete,
2541 * so represents the appropriate moment to deallocate any resources
2542 * that were allocated to the request in the prep_rq_fn. The queue
2543 * lock is held when calling this.
2544 */
2545 void blk_unprep_request(struct request *req)
2546 {
2547 struct request_queue *q = req->q;
2548
2549 req->cmd_flags &= ~REQ_DONTPREP;
2550 if (q->unprep_rq_fn)
2551 q->unprep_rq_fn(q, req);
2552 }
2553 EXPORT_SYMBOL_GPL(blk_unprep_request);
2554
2555 /*
2556 * queue lock must be held
2557 */
2558 void blk_finish_request(struct request *req, int error)
2559 {
2560 if (blk_rq_tagged(req))
2561 blk_queue_end_tag(req->q, req);
2562
2563 BUG_ON(blk_queued_rq(req));
2564
2565 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2566 laptop_io_completion(&req->q->backing_dev_info);
2567
2568 blk_delete_timer(req);
2569
2570 if (req->cmd_flags & REQ_DONTPREP)
2571 blk_unprep_request(req);
2572
2573 blk_account_io_done(req);
2574
2575 if (req->end_io)
2576 req->end_io(req, error);
2577 else {
2578 if (blk_bidi_rq(req))
2579 __blk_put_request(req->next_rq->q, req->next_rq);
2580
2581 __blk_put_request(req->q, req);
2582 }
2583 }
2584 EXPORT_SYMBOL(blk_finish_request);
2585
2586 /**
2587 * blk_end_bidi_request - Complete a bidi request
2588 * @rq: the request to complete
2589 * @error: %0 for success, < %0 for error
2590 * @nr_bytes: number of bytes to complete @rq
2591 * @bidi_bytes: number of bytes to complete @rq->next_rq
2592 *
2593 * Description:
2594 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2595 * Drivers that supports bidi can safely call this member for any
2596 * type of request, bidi or uni. In the later case @bidi_bytes is
2597 * just ignored.
2598 *
2599 * Return:
2600 * %false - we are done with this request
2601 * %true - still buffers pending for this request
2602 **/
2603 static bool blk_end_bidi_request(struct request *rq, int error,
2604 unsigned int nr_bytes, unsigned int bidi_bytes)
2605 {
2606 struct request_queue *q = rq->q;
2607 unsigned long flags;
2608
2609 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2610 return true;
2611
2612 spin_lock_irqsave(q->queue_lock, flags);
2613 blk_finish_request(rq, error);
2614 spin_unlock_irqrestore(q->queue_lock, flags);
2615
2616 return false;
2617 }
2618
2619 /**
2620 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2621 * @rq: the request to complete
2622 * @error: %0 for success, < %0 for error
2623 * @nr_bytes: number of bytes to complete @rq
2624 * @bidi_bytes: number of bytes to complete @rq->next_rq
2625 *
2626 * Description:
2627 * Identical to blk_end_bidi_request() except that queue lock is
2628 * assumed to be locked on entry and remains so on return.
2629 *
2630 * Return:
2631 * %false - we are done with this request
2632 * %true - still buffers pending for this request
2633 **/
2634 bool __blk_end_bidi_request(struct request *rq, int error,
2635 unsigned int nr_bytes, unsigned int bidi_bytes)
2636 {
2637 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2638 return true;
2639
2640 blk_finish_request(rq, error);
2641
2642 return false;
2643 }
2644
2645 /**
2646 * blk_end_request - Helper function for drivers to complete the request.
2647 * @rq: the request being processed
2648 * @error: %0 for success, < %0 for error
2649 * @nr_bytes: number of bytes to complete
2650 *
2651 * Description:
2652 * Ends I/O on a number of bytes attached to @rq.
2653 * If @rq has leftover, sets it up for the next range of segments.
2654 *
2655 * Return:
2656 * %false - we are done with this request
2657 * %true - still buffers pending for this request
2658 **/
2659 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2660 {
2661 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2662 }
2663 EXPORT_SYMBOL(blk_end_request);
2664
2665 /**
2666 * blk_end_request_all - Helper function for drives to finish the request.
2667 * @rq: the request to finish
2668 * @error: %0 for success, < %0 for error
2669 *
2670 * Description:
2671 * Completely finish @rq.
2672 */
2673 void blk_end_request_all(struct request *rq, int error)
2674 {
2675 bool pending;
2676 unsigned int bidi_bytes = 0;
2677
2678 if (unlikely(blk_bidi_rq(rq)))
2679 bidi_bytes = blk_rq_bytes(rq->next_rq);
2680
2681 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2682 BUG_ON(pending);
2683 }
2684 EXPORT_SYMBOL(blk_end_request_all);
2685
2686 /**
2687 * blk_end_request_cur - Helper function to finish the current request chunk.
2688 * @rq: the request to finish the current chunk for
2689 * @error: %0 for success, < %0 for error
2690 *
2691 * Description:
2692 * Complete the current consecutively mapped chunk from @rq.
2693 *
2694 * Return:
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2697 */
2698 bool blk_end_request_cur(struct request *rq, int error)
2699 {
2700 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2701 }
2702 EXPORT_SYMBOL(blk_end_request_cur);
2703
2704 /**
2705 * blk_end_request_err - Finish a request till the next failure boundary.
2706 * @rq: the request to finish till the next failure boundary for
2707 * @error: must be negative errno
2708 *
2709 * Description:
2710 * Complete @rq till the next failure boundary.
2711 *
2712 * Return:
2713 * %false - we are done with this request
2714 * %true - still buffers pending for this request
2715 */
2716 bool blk_end_request_err(struct request *rq, int error)
2717 {
2718 WARN_ON(error >= 0);
2719 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2720 }
2721 EXPORT_SYMBOL_GPL(blk_end_request_err);
2722
2723 /**
2724 * __blk_end_request - Helper function for drivers to complete the request.
2725 * @rq: the request being processed
2726 * @error: %0 for success, < %0 for error
2727 * @nr_bytes: number of bytes to complete
2728 *
2729 * Description:
2730 * Must be called with queue lock held unlike blk_end_request().
2731 *
2732 * Return:
2733 * %false - we are done with this request
2734 * %true - still buffers pending for this request
2735 **/
2736 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2737 {
2738 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2739 }
2740 EXPORT_SYMBOL(__blk_end_request);
2741
2742 /**
2743 * __blk_end_request_all - Helper function for drives to finish the request.
2744 * @rq: the request to finish
2745 * @error: %0 for success, < %0 for error
2746 *
2747 * Description:
2748 * Completely finish @rq. Must be called with queue lock held.
2749 */
2750 void __blk_end_request_all(struct request *rq, int error)
2751 {
2752 bool pending;
2753 unsigned int bidi_bytes = 0;
2754
2755 if (unlikely(blk_bidi_rq(rq)))
2756 bidi_bytes = blk_rq_bytes(rq->next_rq);
2757
2758 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2759 BUG_ON(pending);
2760 }
2761 EXPORT_SYMBOL(__blk_end_request_all);
2762
2763 /**
2764 * __blk_end_request_cur - Helper function to finish the current request chunk.
2765 * @rq: the request to finish the current chunk for
2766 * @error: %0 for success, < %0 for error
2767 *
2768 * Description:
2769 * Complete the current consecutively mapped chunk from @rq. Must
2770 * be called with queue lock held.
2771 *
2772 * Return:
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2775 */
2776 bool __blk_end_request_cur(struct request *rq, int error)
2777 {
2778 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2779 }
2780 EXPORT_SYMBOL(__blk_end_request_cur);
2781
2782 /**
2783 * __blk_end_request_err - Finish a request till the next failure boundary.
2784 * @rq: the request to finish till the next failure boundary for
2785 * @error: must be negative errno
2786 *
2787 * Description:
2788 * Complete @rq till the next failure boundary. Must be called
2789 * with queue lock held.
2790 *
2791 * Return:
2792 * %false - we are done with this request
2793 * %true - still buffers pending for this request
2794 */
2795 bool __blk_end_request_err(struct request *rq, int error)
2796 {
2797 WARN_ON(error >= 0);
2798 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2799 }
2800 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2801
2802 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2803 struct bio *bio)
2804 {
2805 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2806 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2807
2808 if (bio_has_data(bio))
2809 rq->nr_phys_segments = bio_phys_segments(q, bio);
2810
2811 rq->__data_len = bio->bi_iter.bi_size;
2812 rq->bio = rq->biotail = bio;
2813
2814 if (bio->bi_bdev)
2815 rq->rq_disk = bio->bi_bdev->bd_disk;
2816 }
2817
2818 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2819 /**
2820 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2821 * @rq: the request to be flushed
2822 *
2823 * Description:
2824 * Flush all pages in @rq.
2825 */
2826 void rq_flush_dcache_pages(struct request *rq)
2827 {
2828 struct req_iterator iter;
2829 struct bio_vec bvec;
2830
2831 rq_for_each_segment(bvec, rq, iter)
2832 flush_dcache_page(bvec.bv_page);
2833 }
2834 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2835 #endif
2836
2837 /**
2838 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2839 * @q : the queue of the device being checked
2840 *
2841 * Description:
2842 * Check if underlying low-level drivers of a device are busy.
2843 * If the drivers want to export their busy state, they must set own
2844 * exporting function using blk_queue_lld_busy() first.
2845 *
2846 * Basically, this function is used only by request stacking drivers
2847 * to stop dispatching requests to underlying devices when underlying
2848 * devices are busy. This behavior helps more I/O merging on the queue
2849 * of the request stacking driver and prevents I/O throughput regression
2850 * on burst I/O load.
2851 *
2852 * Return:
2853 * 0 - Not busy (The request stacking driver should dispatch request)
2854 * 1 - Busy (The request stacking driver should stop dispatching request)
2855 */
2856 int blk_lld_busy(struct request_queue *q)
2857 {
2858 if (q->lld_busy_fn)
2859 return q->lld_busy_fn(q);
2860
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(blk_lld_busy);
2864
2865 /**
2866 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2867 * @rq: the clone request to be cleaned up
2868 *
2869 * Description:
2870 * Free all bios in @rq for a cloned request.
2871 */
2872 void blk_rq_unprep_clone(struct request *rq)
2873 {
2874 struct bio *bio;
2875
2876 while ((bio = rq->bio) != NULL) {
2877 rq->bio = bio->bi_next;
2878
2879 bio_put(bio);
2880 }
2881 }
2882 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2883
2884 /*
2885 * Copy attributes of the original request to the clone request.
2886 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2887 */
2888 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2889 {
2890 dst->cpu = src->cpu;
2891 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2892 dst->cmd_type = src->cmd_type;
2893 dst->__sector = blk_rq_pos(src);
2894 dst->__data_len = blk_rq_bytes(src);
2895 dst->nr_phys_segments = src->nr_phys_segments;
2896 dst->ioprio = src->ioprio;
2897 dst->extra_len = src->extra_len;
2898 }
2899
2900 /**
2901 * blk_rq_prep_clone - Helper function to setup clone request
2902 * @rq: the request to be setup
2903 * @rq_src: original request to be cloned
2904 * @bs: bio_set that bios for clone are allocated from
2905 * @gfp_mask: memory allocation mask for bio
2906 * @bio_ctr: setup function to be called for each clone bio.
2907 * Returns %0 for success, non %0 for failure.
2908 * @data: private data to be passed to @bio_ctr
2909 *
2910 * Description:
2911 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2912 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2913 * are not copied, and copying such parts is the caller's responsibility.
2914 * Also, pages which the original bios are pointing to are not copied
2915 * and the cloned bios just point same pages.
2916 * So cloned bios must be completed before original bios, which means
2917 * the caller must complete @rq before @rq_src.
2918 */
2919 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2920 struct bio_set *bs, gfp_t gfp_mask,
2921 int (*bio_ctr)(struct bio *, struct bio *, void *),
2922 void *data)
2923 {
2924 struct bio *bio, *bio_src;
2925
2926 if (!bs)
2927 bs = fs_bio_set;
2928
2929 blk_rq_init(NULL, rq);
2930
2931 __rq_for_each_bio(bio_src, rq_src) {
2932 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2933 if (!bio)
2934 goto free_and_out;
2935
2936 if (bio_ctr && bio_ctr(bio, bio_src, data))
2937 goto free_and_out;
2938
2939 if (rq->bio) {
2940 rq->biotail->bi_next = bio;
2941 rq->biotail = bio;
2942 } else
2943 rq->bio = rq->biotail = bio;
2944 }
2945
2946 __blk_rq_prep_clone(rq, rq_src);
2947
2948 return 0;
2949
2950 free_and_out:
2951 if (bio)
2952 bio_put(bio);
2953 blk_rq_unprep_clone(rq);
2954
2955 return -ENOMEM;
2956 }
2957 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2958
2959 int kblockd_schedule_work(struct work_struct *work)
2960 {
2961 return queue_work(kblockd_workqueue, work);
2962 }
2963 EXPORT_SYMBOL(kblockd_schedule_work);
2964
2965 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2966 unsigned long delay)
2967 {
2968 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2969 }
2970 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2971
2972 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2973 unsigned long delay)
2974 {
2975 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2976 }
2977 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2978
2979 /**
2980 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2981 * @plug: The &struct blk_plug that needs to be initialized
2982 *
2983 * Description:
2984 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2985 * pending I/O should the task end up blocking between blk_start_plug() and
2986 * blk_finish_plug(). This is important from a performance perspective, but
2987 * also ensures that we don't deadlock. For instance, if the task is blocking
2988 * for a memory allocation, memory reclaim could end up wanting to free a
2989 * page belonging to that request that is currently residing in our private
2990 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2991 * this kind of deadlock.
2992 */
2993 void blk_start_plug(struct blk_plug *plug)
2994 {
2995 struct task_struct *tsk = current;
2996
2997 INIT_LIST_HEAD(&plug->list);
2998 INIT_LIST_HEAD(&plug->mq_list);
2999 INIT_LIST_HEAD(&plug->cb_list);
3000
3001 /*
3002 * If this is a nested plug, don't actually assign it. It will be
3003 * flushed on its own.
3004 */
3005 if (!tsk->plug) {
3006 /*
3007 * Store ordering should not be needed here, since a potential
3008 * preempt will imply a full memory barrier
3009 */
3010 tsk->plug = plug;
3011 }
3012 }
3013 EXPORT_SYMBOL(blk_start_plug);
3014
3015 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3016 {
3017 struct request *rqa = container_of(a, struct request, queuelist);
3018 struct request *rqb = container_of(b, struct request, queuelist);
3019
3020 return !(rqa->q < rqb->q ||
3021 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3022 }
3023
3024 /*
3025 * If 'from_schedule' is true, then postpone the dispatch of requests
3026 * until a safe kblockd context. We due this to avoid accidental big
3027 * additional stack usage in driver dispatch, in places where the originally
3028 * plugger did not intend it.
3029 */
3030 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3031 bool from_schedule)
3032 __releases(q->queue_lock)
3033 {
3034 trace_block_unplug(q, depth, !from_schedule);
3035
3036 if (from_schedule)
3037 blk_run_queue_async(q);
3038 else
3039 __blk_run_queue(q);
3040 spin_unlock(q->queue_lock);
3041 }
3042
3043 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3044 {
3045 LIST_HEAD(callbacks);
3046
3047 while (!list_empty(&plug->cb_list)) {
3048 list_splice_init(&plug->cb_list, &callbacks);
3049
3050 while (!list_empty(&callbacks)) {
3051 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3052 struct blk_plug_cb,
3053 list);
3054 list_del(&cb->list);
3055 cb->callback(cb, from_schedule);
3056 }
3057 }
3058 }
3059
3060 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3061 int size)
3062 {
3063 struct blk_plug *plug = current->plug;
3064 struct blk_plug_cb *cb;
3065
3066 if (!plug)
3067 return NULL;
3068
3069 list_for_each_entry(cb, &plug->cb_list, list)
3070 if (cb->callback == unplug && cb->data == data)
3071 return cb;
3072
3073 /* Not currently on the callback list */
3074 BUG_ON(size < sizeof(*cb));
3075 cb = kzalloc(size, GFP_ATOMIC);
3076 if (cb) {
3077 cb->data = data;
3078 cb->callback = unplug;
3079 list_add(&cb->list, &plug->cb_list);
3080 }
3081 return cb;
3082 }
3083 EXPORT_SYMBOL(blk_check_plugged);
3084
3085 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3086 {
3087 struct request_queue *q;
3088 unsigned long flags;
3089 struct request *rq;
3090 LIST_HEAD(list);
3091 unsigned int depth;
3092
3093 flush_plug_callbacks(plug, from_schedule);
3094
3095 if (!list_empty(&plug->mq_list))
3096 blk_mq_flush_plug_list(plug, from_schedule);
3097
3098 if (list_empty(&plug->list))
3099 return;
3100
3101 list_splice_init(&plug->list, &list);
3102
3103 list_sort(NULL, &list, plug_rq_cmp);
3104
3105 q = NULL;
3106 depth = 0;
3107
3108 /*
3109 * Save and disable interrupts here, to avoid doing it for every
3110 * queue lock we have to take.
3111 */
3112 local_irq_save(flags);
3113 while (!list_empty(&list)) {
3114 rq = list_entry_rq(list.next);
3115 list_del_init(&rq->queuelist);
3116 BUG_ON(!rq->q);
3117 if (rq->q != q) {
3118 /*
3119 * This drops the queue lock
3120 */
3121 if (q)
3122 queue_unplugged(q, depth, from_schedule);
3123 q = rq->q;
3124 depth = 0;
3125 spin_lock(q->queue_lock);
3126 }
3127
3128 /*
3129 * Short-circuit if @q is dead
3130 */
3131 if (unlikely(blk_queue_dying(q))) {
3132 __blk_end_request_all(rq, -ENODEV);
3133 continue;
3134 }
3135
3136 /*
3137 * rq is already accounted, so use raw insert
3138 */
3139 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3140 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3141 else
3142 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3143
3144 depth++;
3145 }
3146
3147 /*
3148 * This drops the queue lock
3149 */
3150 if (q)
3151 queue_unplugged(q, depth, from_schedule);
3152
3153 local_irq_restore(flags);
3154 }
3155
3156 void blk_finish_plug(struct blk_plug *plug)
3157 {
3158 blk_flush_plug_list(plug, false);
3159
3160 if (plug == current->plug)
3161 current->plug = NULL;
3162 }
3163 EXPORT_SYMBOL(blk_finish_plug);
3164
3165 #ifdef CONFIG_PM_RUNTIME
3166 /**
3167 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3168 * @q: the queue of the device
3169 * @dev: the device the queue belongs to
3170 *
3171 * Description:
3172 * Initialize runtime-PM-related fields for @q and start auto suspend for
3173 * @dev. Drivers that want to take advantage of request-based runtime PM
3174 * should call this function after @dev has been initialized, and its
3175 * request queue @q has been allocated, and runtime PM for it can not happen
3176 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3177 * cases, driver should call this function before any I/O has taken place.
3178 *
3179 * This function takes care of setting up using auto suspend for the device,
3180 * the autosuspend delay is set to -1 to make runtime suspend impossible
3181 * until an updated value is either set by user or by driver. Drivers do
3182 * not need to touch other autosuspend settings.
3183 *
3184 * The block layer runtime PM is request based, so only works for drivers
3185 * that use request as their IO unit instead of those directly use bio's.
3186 */
3187 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3188 {
3189 q->dev = dev;
3190 q->rpm_status = RPM_ACTIVE;
3191 pm_runtime_set_autosuspend_delay(q->dev, -1);
3192 pm_runtime_use_autosuspend(q->dev);
3193 }
3194 EXPORT_SYMBOL(blk_pm_runtime_init);
3195
3196 /**
3197 * blk_pre_runtime_suspend - Pre runtime suspend check
3198 * @q: the queue of the device
3199 *
3200 * Description:
3201 * This function will check if runtime suspend is allowed for the device
3202 * by examining if there are any requests pending in the queue. If there
3203 * are requests pending, the device can not be runtime suspended; otherwise,
3204 * the queue's status will be updated to SUSPENDING and the driver can
3205 * proceed to suspend the device.
3206 *
3207 * For the not allowed case, we mark last busy for the device so that
3208 * runtime PM core will try to autosuspend it some time later.
3209 *
3210 * This function should be called near the start of the device's
3211 * runtime_suspend callback.
3212 *
3213 * Return:
3214 * 0 - OK to runtime suspend the device
3215 * -EBUSY - Device should not be runtime suspended
3216 */
3217 int blk_pre_runtime_suspend(struct request_queue *q)
3218 {
3219 int ret = 0;
3220
3221 spin_lock_irq(q->queue_lock);
3222 if (q->nr_pending) {
3223 ret = -EBUSY;
3224 pm_runtime_mark_last_busy(q->dev);
3225 } else {
3226 q->rpm_status = RPM_SUSPENDING;
3227 }
3228 spin_unlock_irq(q->queue_lock);
3229 return ret;
3230 }
3231 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3232
3233 /**
3234 * blk_post_runtime_suspend - Post runtime suspend processing
3235 * @q: the queue of the device
3236 * @err: return value of the device's runtime_suspend function
3237 *
3238 * Description:
3239 * Update the queue's runtime status according to the return value of the
3240 * device's runtime suspend function and mark last busy for the device so
3241 * that PM core will try to auto suspend the device at a later time.
3242 *
3243 * This function should be called near the end of the device's
3244 * runtime_suspend callback.
3245 */
3246 void blk_post_runtime_suspend(struct request_queue *q, int err)
3247 {
3248 spin_lock_irq(q->queue_lock);
3249 if (!err) {
3250 q->rpm_status = RPM_SUSPENDED;
3251 } else {
3252 q->rpm_status = RPM_ACTIVE;
3253 pm_runtime_mark_last_busy(q->dev);
3254 }
3255 spin_unlock_irq(q->queue_lock);
3256 }
3257 EXPORT_SYMBOL(blk_post_runtime_suspend);
3258
3259 /**
3260 * blk_pre_runtime_resume - Pre runtime resume processing
3261 * @q: the queue of the device
3262 *
3263 * Description:
3264 * Update the queue's runtime status to RESUMING in preparation for the
3265 * runtime resume of the device.
3266 *
3267 * This function should be called near the start of the device's
3268 * runtime_resume callback.
3269 */
3270 void blk_pre_runtime_resume(struct request_queue *q)
3271 {
3272 spin_lock_irq(q->queue_lock);
3273 q->rpm_status = RPM_RESUMING;
3274 spin_unlock_irq(q->queue_lock);
3275 }
3276 EXPORT_SYMBOL(blk_pre_runtime_resume);
3277
3278 /**
3279 * blk_post_runtime_resume - Post runtime resume processing
3280 * @q: the queue of the device
3281 * @err: return value of the device's runtime_resume function
3282 *
3283 * Description:
3284 * Update the queue's runtime status according to the return value of the
3285 * device's runtime_resume function. If it is successfully resumed, process
3286 * the requests that are queued into the device's queue when it is resuming
3287 * and then mark last busy and initiate autosuspend for it.
3288 *
3289 * This function should be called near the end of the device's
3290 * runtime_resume callback.
3291 */
3292 void blk_post_runtime_resume(struct request_queue *q, int err)
3293 {
3294 spin_lock_irq(q->queue_lock);
3295 if (!err) {
3296 q->rpm_status = RPM_ACTIVE;
3297 __blk_run_queue(q);
3298 pm_runtime_mark_last_busy(q->dev);
3299 pm_request_autosuspend(q->dev);
3300 } else {
3301 q->rpm_status = RPM_SUSPENDED;
3302 }
3303 spin_unlock_irq(q->queue_lock);
3304 }
3305 EXPORT_SYMBOL(blk_post_runtime_resume);
3306 #endif
3307
3308 int __init blk_dev_init(void)
3309 {
3310 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3311 sizeof(((struct request *)0)->cmd_flags));
3312
3313 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3314 kblockd_workqueue = alloc_workqueue("kblockd",
3315 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3316 if (!kblockd_workqueue)
3317 panic("Failed to create kblockd\n");
3318
3319 request_cachep = kmem_cache_create("blkdev_requests",
3320 sizeof(struct request), 0, SLAB_PANIC, NULL);
3321
3322 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3323 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3324
3325 return 0;
3326 }