]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: Dynamically allocate and refcount backing_dev_info
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-mq-sched.h"
43 #include "blk-wbt.h"
44
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51 DEFINE_IDA(blk_queue_ida);
52
53 /*
54 * For the allocated request tables
55 */
56 struct kmem_cache *request_cachep;
57
58 /*
59 * For queue allocation
60 */
61 struct kmem_cache *blk_requestq_cachep;
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
79 #endif
80 }
81
82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
90 #endif
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123
124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->tag = -1;
136 rq->internal_tag = -1;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
139 rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
145 {
146 if (error)
147 bio->bi_error = error;
148
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
151
152 bio_advance(bio, nbytes);
153
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 bio_endio(bio);
157 }
158
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
162 rq->rq_disk ? rq->rq_disk->disk_name : "?",
163 (unsigned long long) rq->cmd_flags);
164
165 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
166 (unsigned long long)blk_rq_pos(rq),
167 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
168 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
169 rq->bio, rq->biotail, blk_rq_bytes(rq));
170 }
171 EXPORT_SYMBOL(blk_dump_rq_flags);
172
173 static void blk_delay_work(struct work_struct *work)
174 {
175 struct request_queue *q;
176
177 q = container_of(work, struct request_queue, delay_work.work);
178 spin_lock_irq(q->queue_lock);
179 __blk_run_queue(q);
180 spin_unlock_irq(q->queue_lock);
181 }
182
183 /**
184 * blk_delay_queue - restart queueing after defined interval
185 * @q: The &struct request_queue in question
186 * @msecs: Delay in msecs
187 *
188 * Description:
189 * Sometimes queueing needs to be postponed for a little while, to allow
190 * resources to come back. This function will make sure that queueing is
191 * restarted around the specified time. Queue lock must be held.
192 */
193 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
194 {
195 if (likely(!blk_queue_dead(q)))
196 queue_delayed_work(kblockd_workqueue, &q->delay_work,
197 msecs_to_jiffies(msecs));
198 }
199 EXPORT_SYMBOL(blk_delay_queue);
200
201 /**
202 * blk_start_queue_async - asynchronously restart a previously stopped queue
203 * @q: The &struct request_queue in question
204 *
205 * Description:
206 * blk_start_queue_async() will clear the stop flag on the queue, and
207 * ensure that the request_fn for the queue is run from an async
208 * context.
209 **/
210 void blk_start_queue_async(struct request_queue *q)
211 {
212 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
213 blk_run_queue_async(q);
214 }
215 EXPORT_SYMBOL(blk_start_queue_async);
216
217 /**
218 * blk_start_queue - restart a previously stopped queue
219 * @q: The &struct request_queue in question
220 *
221 * Description:
222 * blk_start_queue() will clear the stop flag on the queue, and call
223 * the request_fn for the queue if it was in a stopped state when
224 * entered. Also see blk_stop_queue(). Queue lock must be held.
225 **/
226 void blk_start_queue(struct request_queue *q)
227 {
228 WARN_ON(!irqs_disabled());
229
230 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
231 __blk_run_queue(q);
232 }
233 EXPORT_SYMBOL(blk_start_queue);
234
235 /**
236 * blk_stop_queue - stop a queue
237 * @q: The &struct request_queue in question
238 *
239 * Description:
240 * The Linux block layer assumes that a block driver will consume all
241 * entries on the request queue when the request_fn strategy is called.
242 * Often this will not happen, because of hardware limitations (queue
243 * depth settings). If a device driver gets a 'queue full' response,
244 * or if it simply chooses not to queue more I/O at one point, it can
245 * call this function to prevent the request_fn from being called until
246 * the driver has signalled it's ready to go again. This happens by calling
247 * blk_start_queue() to restart queue operations. Queue lock must be held.
248 **/
249 void blk_stop_queue(struct request_queue *q)
250 {
251 cancel_delayed_work(&q->delay_work);
252 queue_flag_set(QUEUE_FLAG_STOPPED, q);
253 }
254 EXPORT_SYMBOL(blk_stop_queue);
255
256 /**
257 * blk_sync_queue - cancel any pending callbacks on a queue
258 * @q: the queue
259 *
260 * Description:
261 * The block layer may perform asynchronous callback activity
262 * on a queue, such as calling the unplug function after a timeout.
263 * A block device may call blk_sync_queue to ensure that any
264 * such activity is cancelled, thus allowing it to release resources
265 * that the callbacks might use. The caller must already have made sure
266 * that its ->make_request_fn will not re-add plugging prior to calling
267 * this function.
268 *
269 * This function does not cancel any asynchronous activity arising
270 * out of elevator or throttling code. That would require elevator_exit()
271 * and blkcg_exit_queue() to be called with queue lock initialized.
272 *
273 */
274 void blk_sync_queue(struct request_queue *q)
275 {
276 del_timer_sync(&q->timeout);
277
278 if (q->mq_ops) {
279 struct blk_mq_hw_ctx *hctx;
280 int i;
281
282 queue_for_each_hw_ctx(q, hctx, i) {
283 cancel_work_sync(&hctx->run_work);
284 cancel_delayed_work_sync(&hctx->delay_work);
285 }
286 } else {
287 cancel_delayed_work_sync(&q->delay_work);
288 }
289 }
290 EXPORT_SYMBOL(blk_sync_queue);
291
292 /**
293 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
294 * @q: The queue to run
295 *
296 * Description:
297 * Invoke request handling on a queue if there are any pending requests.
298 * May be used to restart request handling after a request has completed.
299 * This variant runs the queue whether or not the queue has been
300 * stopped. Must be called with the queue lock held and interrupts
301 * disabled. See also @blk_run_queue.
302 */
303 inline void __blk_run_queue_uncond(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_dead(q)))
306 return;
307
308 /*
309 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
310 * the queue lock internally. As a result multiple threads may be
311 * running such a request function concurrently. Keep track of the
312 * number of active request_fn invocations such that blk_drain_queue()
313 * can wait until all these request_fn calls have finished.
314 */
315 q->request_fn_active++;
316 q->request_fn(q);
317 q->request_fn_active--;
318 }
319 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
320
321 /**
322 * __blk_run_queue - run a single device queue
323 * @q: The queue to run
324 *
325 * Description:
326 * See @blk_run_queue. This variant must be called with the queue lock
327 * held and interrupts disabled.
328 */
329 void __blk_run_queue(struct request_queue *q)
330 {
331 if (unlikely(blk_queue_stopped(q)))
332 return;
333
334 __blk_run_queue_uncond(q);
335 }
336 EXPORT_SYMBOL(__blk_run_queue);
337
338 /**
339 * blk_run_queue_async - run a single device queue in workqueue context
340 * @q: The queue to run
341 *
342 * Description:
343 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
344 * of us. The caller must hold the queue lock.
345 */
346 void blk_run_queue_async(struct request_queue *q)
347 {
348 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
349 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
350 }
351 EXPORT_SYMBOL(blk_run_queue_async);
352
353 /**
354 * blk_run_queue - run a single device queue
355 * @q: The queue to run
356 *
357 * Description:
358 * Invoke request handling on this queue, if it has pending work to do.
359 * May be used to restart queueing when a request has completed.
360 */
361 void blk_run_queue(struct request_queue *q)
362 {
363 unsigned long flags;
364
365 spin_lock_irqsave(q->queue_lock, flags);
366 __blk_run_queue(q);
367 spin_unlock_irqrestore(q->queue_lock, flags);
368 }
369 EXPORT_SYMBOL(blk_run_queue);
370
371 void blk_put_queue(struct request_queue *q)
372 {
373 kobject_put(&q->kobj);
374 }
375 EXPORT_SYMBOL(blk_put_queue);
376
377 /**
378 * __blk_drain_queue - drain requests from request_queue
379 * @q: queue to drain
380 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
381 *
382 * Drain requests from @q. If @drain_all is set, all requests are drained.
383 * If not, only ELVPRIV requests are drained. The caller is responsible
384 * for ensuring that no new requests which need to be drained are queued.
385 */
386 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
387 __releases(q->queue_lock)
388 __acquires(q->queue_lock)
389 {
390 int i;
391
392 lockdep_assert_held(q->queue_lock);
393
394 while (true) {
395 bool drain = false;
396
397 /*
398 * The caller might be trying to drain @q before its
399 * elevator is initialized.
400 */
401 if (q->elevator)
402 elv_drain_elevator(q);
403
404 blkcg_drain_queue(q);
405
406 /*
407 * This function might be called on a queue which failed
408 * driver init after queue creation or is not yet fully
409 * active yet. Some drivers (e.g. fd and loop) get unhappy
410 * in such cases. Kick queue iff dispatch queue has
411 * something on it and @q has request_fn set.
412 */
413 if (!list_empty(&q->queue_head) && q->request_fn)
414 __blk_run_queue(q);
415
416 drain |= q->nr_rqs_elvpriv;
417 drain |= q->request_fn_active;
418
419 /*
420 * Unfortunately, requests are queued at and tracked from
421 * multiple places and there's no single counter which can
422 * be drained. Check all the queues and counters.
423 */
424 if (drain_all) {
425 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
426 drain |= !list_empty(&q->queue_head);
427 for (i = 0; i < 2; i++) {
428 drain |= q->nr_rqs[i];
429 drain |= q->in_flight[i];
430 if (fq)
431 drain |= !list_empty(&fq->flush_queue[i]);
432 }
433 }
434
435 if (!drain)
436 break;
437
438 spin_unlock_irq(q->queue_lock);
439
440 msleep(10);
441
442 spin_lock_irq(q->queue_lock);
443 }
444
445 /*
446 * With queue marked dead, any woken up waiter will fail the
447 * allocation path, so the wakeup chaining is lost and we're
448 * left with hung waiters. We need to wake up those waiters.
449 */
450 if (q->request_fn) {
451 struct request_list *rl;
452
453 blk_queue_for_each_rl(rl, q)
454 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
455 wake_up_all(&rl->wait[i]);
456 }
457 }
458
459 /**
460 * blk_queue_bypass_start - enter queue bypass mode
461 * @q: queue of interest
462 *
463 * In bypass mode, only the dispatch FIFO queue of @q is used. This
464 * function makes @q enter bypass mode and drains all requests which were
465 * throttled or issued before. On return, it's guaranteed that no request
466 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
467 * inside queue or RCU read lock.
468 */
469 void blk_queue_bypass_start(struct request_queue *q)
470 {
471 spin_lock_irq(q->queue_lock);
472 q->bypass_depth++;
473 queue_flag_set(QUEUE_FLAG_BYPASS, q);
474 spin_unlock_irq(q->queue_lock);
475
476 /*
477 * Queues start drained. Skip actual draining till init is
478 * complete. This avoids lenghty delays during queue init which
479 * can happen many times during boot.
480 */
481 if (blk_queue_init_done(q)) {
482 spin_lock_irq(q->queue_lock);
483 __blk_drain_queue(q, false);
484 spin_unlock_irq(q->queue_lock);
485
486 /* ensure blk_queue_bypass() is %true inside RCU read lock */
487 synchronize_rcu();
488 }
489 }
490 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
491
492 /**
493 * blk_queue_bypass_end - leave queue bypass mode
494 * @q: queue of interest
495 *
496 * Leave bypass mode and restore the normal queueing behavior.
497 */
498 void blk_queue_bypass_end(struct request_queue *q)
499 {
500 spin_lock_irq(q->queue_lock);
501 if (!--q->bypass_depth)
502 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
503 WARN_ON_ONCE(q->bypass_depth < 0);
504 spin_unlock_irq(q->queue_lock);
505 }
506 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
507
508 void blk_set_queue_dying(struct request_queue *q)
509 {
510 spin_lock_irq(q->queue_lock);
511 queue_flag_set(QUEUE_FLAG_DYING, q);
512 spin_unlock_irq(q->queue_lock);
513
514 if (q->mq_ops)
515 blk_mq_wake_waiters(q);
516 else {
517 struct request_list *rl;
518
519 blk_queue_for_each_rl(rl, q) {
520 if (rl->rq_pool) {
521 wake_up(&rl->wait[BLK_RW_SYNC]);
522 wake_up(&rl->wait[BLK_RW_ASYNC]);
523 }
524 }
525 }
526 }
527 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
528
529 /**
530 * blk_cleanup_queue - shutdown a request queue
531 * @q: request queue to shutdown
532 *
533 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
534 * put it. All future requests will be failed immediately with -ENODEV.
535 */
536 void blk_cleanup_queue(struct request_queue *q)
537 {
538 spinlock_t *lock = q->queue_lock;
539
540 /* mark @q DYING, no new request or merges will be allowed afterwards */
541 mutex_lock(&q->sysfs_lock);
542 blk_set_queue_dying(q);
543 spin_lock_irq(lock);
544
545 /*
546 * A dying queue is permanently in bypass mode till released. Note
547 * that, unlike blk_queue_bypass_start(), we aren't performing
548 * synchronize_rcu() after entering bypass mode to avoid the delay
549 * as some drivers create and destroy a lot of queues while
550 * probing. This is still safe because blk_release_queue() will be
551 * called only after the queue refcnt drops to zero and nothing,
552 * RCU or not, would be traversing the queue by then.
553 */
554 q->bypass_depth++;
555 queue_flag_set(QUEUE_FLAG_BYPASS, q);
556
557 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
558 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
559 queue_flag_set(QUEUE_FLAG_DYING, q);
560 spin_unlock_irq(lock);
561 mutex_unlock(&q->sysfs_lock);
562
563 /*
564 * Drain all requests queued before DYING marking. Set DEAD flag to
565 * prevent that q->request_fn() gets invoked after draining finished.
566 */
567 blk_freeze_queue(q);
568 spin_lock_irq(lock);
569 if (!q->mq_ops)
570 __blk_drain_queue(q, true);
571 queue_flag_set(QUEUE_FLAG_DEAD, q);
572 spin_unlock_irq(lock);
573
574 /* for synchronous bio-based driver finish in-flight integrity i/o */
575 blk_flush_integrity();
576
577 /* @q won't process any more request, flush async actions */
578 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
579 blk_sync_queue(q);
580
581 if (q->mq_ops)
582 blk_mq_free_queue(q);
583 percpu_ref_exit(&q->q_usage_counter);
584
585 spin_lock_irq(lock);
586 if (q->queue_lock != &q->__queue_lock)
587 q->queue_lock = &q->__queue_lock;
588 spin_unlock_irq(lock);
589
590 bdi_unregister(q->backing_dev_info);
591
592 /* @q is and will stay empty, shutdown and put */
593 blk_put_queue(q);
594 }
595 EXPORT_SYMBOL(blk_cleanup_queue);
596
597 /* Allocate memory local to the request queue */
598 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
599 {
600 struct request_queue *q = data;
601
602 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
603 }
604
605 static void free_request_simple(void *element, void *data)
606 {
607 kmem_cache_free(request_cachep, element);
608 }
609
610 static void *alloc_request_size(gfp_t gfp_mask, void *data)
611 {
612 struct request_queue *q = data;
613 struct request *rq;
614
615 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
616 q->node);
617 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
618 kfree(rq);
619 rq = NULL;
620 }
621 return rq;
622 }
623
624 static void free_request_size(void *element, void *data)
625 {
626 struct request_queue *q = data;
627
628 if (q->exit_rq_fn)
629 q->exit_rq_fn(q, element);
630 kfree(element);
631 }
632
633 int blk_init_rl(struct request_list *rl, struct request_queue *q,
634 gfp_t gfp_mask)
635 {
636 if (unlikely(rl->rq_pool))
637 return 0;
638
639 rl->q = q;
640 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
641 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
642 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
643 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
644
645 if (q->cmd_size) {
646 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
647 alloc_request_size, free_request_size,
648 q, gfp_mask, q->node);
649 } else {
650 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
651 alloc_request_simple, free_request_simple,
652 q, gfp_mask, q->node);
653 }
654 if (!rl->rq_pool)
655 return -ENOMEM;
656
657 return 0;
658 }
659
660 void blk_exit_rl(struct request_list *rl)
661 {
662 if (rl->rq_pool)
663 mempool_destroy(rl->rq_pool);
664 }
665
666 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
667 {
668 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
669 }
670 EXPORT_SYMBOL(blk_alloc_queue);
671
672 int blk_queue_enter(struct request_queue *q, bool nowait)
673 {
674 while (true) {
675 int ret;
676
677 if (percpu_ref_tryget_live(&q->q_usage_counter))
678 return 0;
679
680 if (nowait)
681 return -EBUSY;
682
683 ret = wait_event_interruptible(q->mq_freeze_wq,
684 !atomic_read(&q->mq_freeze_depth) ||
685 blk_queue_dying(q));
686 if (blk_queue_dying(q))
687 return -ENODEV;
688 if (ret)
689 return ret;
690 }
691 }
692
693 void blk_queue_exit(struct request_queue *q)
694 {
695 percpu_ref_put(&q->q_usage_counter);
696 }
697
698 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
699 {
700 struct request_queue *q =
701 container_of(ref, struct request_queue, q_usage_counter);
702
703 wake_up_all(&q->mq_freeze_wq);
704 }
705
706 static void blk_rq_timed_out_timer(unsigned long data)
707 {
708 struct request_queue *q = (struct request_queue *)data;
709
710 kblockd_schedule_work(&q->timeout_work);
711 }
712
713 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
714 {
715 struct request_queue *q;
716
717 q = kmem_cache_alloc_node(blk_requestq_cachep,
718 gfp_mask | __GFP_ZERO, node_id);
719 if (!q)
720 return NULL;
721
722 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
723 if (q->id < 0)
724 goto fail_q;
725
726 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
727 if (!q->bio_split)
728 goto fail_id;
729
730 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
731 if (!q->backing_dev_info)
732 goto fail_split;
733
734 q->backing_dev_info->ra_pages =
735 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
736 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
737 q->backing_dev_info->name = "block";
738 q->node = node_id;
739
740 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
741 laptop_mode_timer_fn, (unsigned long) q);
742 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
743 INIT_LIST_HEAD(&q->queue_head);
744 INIT_LIST_HEAD(&q->timeout_list);
745 INIT_LIST_HEAD(&q->icq_list);
746 #ifdef CONFIG_BLK_CGROUP
747 INIT_LIST_HEAD(&q->blkg_list);
748 #endif
749 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
750
751 kobject_init(&q->kobj, &blk_queue_ktype);
752
753 mutex_init(&q->sysfs_lock);
754 spin_lock_init(&q->__queue_lock);
755
756 /*
757 * By default initialize queue_lock to internal lock and driver can
758 * override it later if need be.
759 */
760 q->queue_lock = &q->__queue_lock;
761
762 /*
763 * A queue starts its life with bypass turned on to avoid
764 * unnecessary bypass on/off overhead and nasty surprises during
765 * init. The initial bypass will be finished when the queue is
766 * registered by blk_register_queue().
767 */
768 q->bypass_depth = 1;
769 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
770
771 init_waitqueue_head(&q->mq_freeze_wq);
772
773 /*
774 * Init percpu_ref in atomic mode so that it's faster to shutdown.
775 * See blk_register_queue() for details.
776 */
777 if (percpu_ref_init(&q->q_usage_counter,
778 blk_queue_usage_counter_release,
779 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
780 goto fail_bdi;
781
782 if (blkcg_init_queue(q))
783 goto fail_ref;
784
785 return q;
786
787 fail_ref:
788 percpu_ref_exit(&q->q_usage_counter);
789 fail_bdi:
790 bdi_put(q->backing_dev_info);
791 fail_split:
792 bioset_free(q->bio_split);
793 fail_id:
794 ida_simple_remove(&blk_queue_ida, q->id);
795 fail_q:
796 kmem_cache_free(blk_requestq_cachep, q);
797 return NULL;
798 }
799 EXPORT_SYMBOL(blk_alloc_queue_node);
800
801 /**
802 * blk_init_queue - prepare a request queue for use with a block device
803 * @rfn: The function to be called to process requests that have been
804 * placed on the queue.
805 * @lock: Request queue spin lock
806 *
807 * Description:
808 * If a block device wishes to use the standard request handling procedures,
809 * which sorts requests and coalesces adjacent requests, then it must
810 * call blk_init_queue(). The function @rfn will be called when there
811 * are requests on the queue that need to be processed. If the device
812 * supports plugging, then @rfn may not be called immediately when requests
813 * are available on the queue, but may be called at some time later instead.
814 * Plugged queues are generally unplugged when a buffer belonging to one
815 * of the requests on the queue is needed, or due to memory pressure.
816 *
817 * @rfn is not required, or even expected, to remove all requests off the
818 * queue, but only as many as it can handle at a time. If it does leave
819 * requests on the queue, it is responsible for arranging that the requests
820 * get dealt with eventually.
821 *
822 * The queue spin lock must be held while manipulating the requests on the
823 * request queue; this lock will be taken also from interrupt context, so irq
824 * disabling is needed for it.
825 *
826 * Function returns a pointer to the initialized request queue, or %NULL if
827 * it didn't succeed.
828 *
829 * Note:
830 * blk_init_queue() must be paired with a blk_cleanup_queue() call
831 * when the block device is deactivated (such as at module unload).
832 **/
833
834 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
835 {
836 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
837 }
838 EXPORT_SYMBOL(blk_init_queue);
839
840 struct request_queue *
841 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
842 {
843 struct request_queue *q;
844
845 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
846 if (!q)
847 return NULL;
848
849 q->request_fn = rfn;
850 if (lock)
851 q->queue_lock = lock;
852 if (blk_init_allocated_queue(q) < 0) {
853 blk_cleanup_queue(q);
854 return NULL;
855 }
856
857 return q;
858 }
859 EXPORT_SYMBOL(blk_init_queue_node);
860
861 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
862
863
864 int blk_init_allocated_queue(struct request_queue *q)
865 {
866 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
867 if (!q->fq)
868 return -ENOMEM;
869
870 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
871 goto out_free_flush_queue;
872
873 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
874 goto out_exit_flush_rq;
875
876 INIT_WORK(&q->timeout_work, blk_timeout_work);
877 q->queue_flags |= QUEUE_FLAG_DEFAULT;
878
879 /*
880 * This also sets hw/phys segments, boundary and size
881 */
882 blk_queue_make_request(q, blk_queue_bio);
883
884 q->sg_reserved_size = INT_MAX;
885
886 /* Protect q->elevator from elevator_change */
887 mutex_lock(&q->sysfs_lock);
888
889 /* init elevator */
890 if (elevator_init(q, NULL)) {
891 mutex_unlock(&q->sysfs_lock);
892 goto out_exit_flush_rq;
893 }
894
895 mutex_unlock(&q->sysfs_lock);
896 return 0;
897
898 out_exit_flush_rq:
899 if (q->exit_rq_fn)
900 q->exit_rq_fn(q, q->fq->flush_rq);
901 out_free_flush_queue:
902 blk_free_flush_queue(q->fq);
903 wbt_exit(q);
904 return -ENOMEM;
905 }
906 EXPORT_SYMBOL(blk_init_allocated_queue);
907
908 bool blk_get_queue(struct request_queue *q)
909 {
910 if (likely(!blk_queue_dying(q))) {
911 __blk_get_queue(q);
912 return true;
913 }
914
915 return false;
916 }
917 EXPORT_SYMBOL(blk_get_queue);
918
919 static inline void blk_free_request(struct request_list *rl, struct request *rq)
920 {
921 if (rq->rq_flags & RQF_ELVPRIV) {
922 elv_put_request(rl->q, rq);
923 if (rq->elv.icq)
924 put_io_context(rq->elv.icq->ioc);
925 }
926
927 mempool_free(rq, rl->rq_pool);
928 }
929
930 /*
931 * ioc_batching returns true if the ioc is a valid batching request and
932 * should be given priority access to a request.
933 */
934 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc)
937 return 0;
938
939 /*
940 * Make sure the process is able to allocate at least 1 request
941 * even if the batch times out, otherwise we could theoretically
942 * lose wakeups.
943 */
944 return ioc->nr_batch_requests == q->nr_batching ||
945 (ioc->nr_batch_requests > 0
946 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
947 }
948
949 /*
950 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
951 * will cause the process to be a "batcher" on all queues in the system. This
952 * is the behaviour we want though - once it gets a wakeup it should be given
953 * a nice run.
954 */
955 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
956 {
957 if (!ioc || ioc_batching(q, ioc))
958 return;
959
960 ioc->nr_batch_requests = q->nr_batching;
961 ioc->last_waited = jiffies;
962 }
963
964 static void __freed_request(struct request_list *rl, int sync)
965 {
966 struct request_queue *q = rl->q;
967
968 if (rl->count[sync] < queue_congestion_off_threshold(q))
969 blk_clear_congested(rl, sync);
970
971 if (rl->count[sync] + 1 <= q->nr_requests) {
972 if (waitqueue_active(&rl->wait[sync]))
973 wake_up(&rl->wait[sync]);
974
975 blk_clear_rl_full(rl, sync);
976 }
977 }
978
979 /*
980 * A request has just been released. Account for it, update the full and
981 * congestion status, wake up any waiters. Called under q->queue_lock.
982 */
983 static void freed_request(struct request_list *rl, bool sync,
984 req_flags_t rq_flags)
985 {
986 struct request_queue *q = rl->q;
987
988 q->nr_rqs[sync]--;
989 rl->count[sync]--;
990 if (rq_flags & RQF_ELVPRIV)
991 q->nr_rqs_elvpriv--;
992
993 __freed_request(rl, sync);
994
995 if (unlikely(rl->starved[sync ^ 1]))
996 __freed_request(rl, sync ^ 1);
997 }
998
999 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1000 {
1001 struct request_list *rl;
1002 int on_thresh, off_thresh;
1003
1004 spin_lock_irq(q->queue_lock);
1005 q->nr_requests = nr;
1006 blk_queue_congestion_threshold(q);
1007 on_thresh = queue_congestion_on_threshold(q);
1008 off_thresh = queue_congestion_off_threshold(q);
1009
1010 blk_queue_for_each_rl(rl, q) {
1011 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1012 blk_set_congested(rl, BLK_RW_SYNC);
1013 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1014 blk_clear_congested(rl, BLK_RW_SYNC);
1015
1016 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1017 blk_set_congested(rl, BLK_RW_ASYNC);
1018 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1019 blk_clear_congested(rl, BLK_RW_ASYNC);
1020
1021 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1022 blk_set_rl_full(rl, BLK_RW_SYNC);
1023 } else {
1024 blk_clear_rl_full(rl, BLK_RW_SYNC);
1025 wake_up(&rl->wait[BLK_RW_SYNC]);
1026 }
1027
1028 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1029 blk_set_rl_full(rl, BLK_RW_ASYNC);
1030 } else {
1031 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1032 wake_up(&rl->wait[BLK_RW_ASYNC]);
1033 }
1034 }
1035
1036 spin_unlock_irq(q->queue_lock);
1037 return 0;
1038 }
1039
1040 /**
1041 * __get_request - get a free request
1042 * @rl: request list to allocate from
1043 * @op: operation and flags
1044 * @bio: bio to allocate request for (can be %NULL)
1045 * @gfp_mask: allocation mask
1046 *
1047 * Get a free request from @q. This function may fail under memory
1048 * pressure or if @q is dead.
1049 *
1050 * Must be called with @q->queue_lock held and,
1051 * Returns ERR_PTR on failure, with @q->queue_lock held.
1052 * Returns request pointer on success, with @q->queue_lock *not held*.
1053 */
1054 static struct request *__get_request(struct request_list *rl, unsigned int op,
1055 struct bio *bio, gfp_t gfp_mask)
1056 {
1057 struct request_queue *q = rl->q;
1058 struct request *rq;
1059 struct elevator_type *et = q->elevator->type;
1060 struct io_context *ioc = rq_ioc(bio);
1061 struct io_cq *icq = NULL;
1062 const bool is_sync = op_is_sync(op);
1063 int may_queue;
1064 req_flags_t rq_flags = RQF_ALLOCED;
1065
1066 if (unlikely(blk_queue_dying(q)))
1067 return ERR_PTR(-ENODEV);
1068
1069 may_queue = elv_may_queue(q, op);
1070 if (may_queue == ELV_MQUEUE_NO)
1071 goto rq_starved;
1072
1073 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1074 if (rl->count[is_sync]+1 >= q->nr_requests) {
1075 /*
1076 * The queue will fill after this allocation, so set
1077 * it as full, and mark this process as "batching".
1078 * This process will be allowed to complete a batch of
1079 * requests, others will be blocked.
1080 */
1081 if (!blk_rl_full(rl, is_sync)) {
1082 ioc_set_batching(q, ioc);
1083 blk_set_rl_full(rl, is_sync);
1084 } else {
1085 if (may_queue != ELV_MQUEUE_MUST
1086 && !ioc_batching(q, ioc)) {
1087 /*
1088 * The queue is full and the allocating
1089 * process is not a "batcher", and not
1090 * exempted by the IO scheduler
1091 */
1092 return ERR_PTR(-ENOMEM);
1093 }
1094 }
1095 }
1096 blk_set_congested(rl, is_sync);
1097 }
1098
1099 /*
1100 * Only allow batching queuers to allocate up to 50% over the defined
1101 * limit of requests, otherwise we could have thousands of requests
1102 * allocated with any setting of ->nr_requests
1103 */
1104 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1105 return ERR_PTR(-ENOMEM);
1106
1107 q->nr_rqs[is_sync]++;
1108 rl->count[is_sync]++;
1109 rl->starved[is_sync] = 0;
1110
1111 /*
1112 * Decide whether the new request will be managed by elevator. If
1113 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1114 * prevent the current elevator from being destroyed until the new
1115 * request is freed. This guarantees icq's won't be destroyed and
1116 * makes creating new ones safe.
1117 *
1118 * Flush requests do not use the elevator so skip initialization.
1119 * This allows a request to share the flush and elevator data.
1120 *
1121 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1122 * it will be created after releasing queue_lock.
1123 */
1124 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1125 rq_flags |= RQF_ELVPRIV;
1126 q->nr_rqs_elvpriv++;
1127 if (et->icq_cache && ioc)
1128 icq = ioc_lookup_icq(ioc, q);
1129 }
1130
1131 if (blk_queue_io_stat(q))
1132 rq_flags |= RQF_IO_STAT;
1133 spin_unlock_irq(q->queue_lock);
1134
1135 /* allocate and init request */
1136 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1137 if (!rq)
1138 goto fail_alloc;
1139
1140 blk_rq_init(q, rq);
1141 blk_rq_set_rl(rq, rl);
1142 blk_rq_set_prio(rq, ioc);
1143 rq->cmd_flags = op;
1144 rq->rq_flags = rq_flags;
1145
1146 /* init elvpriv */
1147 if (rq_flags & RQF_ELVPRIV) {
1148 if (unlikely(et->icq_cache && !icq)) {
1149 if (ioc)
1150 icq = ioc_create_icq(ioc, q, gfp_mask);
1151 if (!icq)
1152 goto fail_elvpriv;
1153 }
1154
1155 rq->elv.icq = icq;
1156 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1157 goto fail_elvpriv;
1158
1159 /* @rq->elv.icq holds io_context until @rq is freed */
1160 if (icq)
1161 get_io_context(icq->ioc);
1162 }
1163 out:
1164 /*
1165 * ioc may be NULL here, and ioc_batching will be false. That's
1166 * OK, if the queue is under the request limit then requests need
1167 * not count toward the nr_batch_requests limit. There will always
1168 * be some limit enforced by BLK_BATCH_TIME.
1169 */
1170 if (ioc_batching(q, ioc))
1171 ioc->nr_batch_requests--;
1172
1173 trace_block_getrq(q, bio, op);
1174 return rq;
1175
1176 fail_elvpriv:
1177 /*
1178 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1179 * and may fail indefinitely under memory pressure and thus
1180 * shouldn't stall IO. Treat this request as !elvpriv. This will
1181 * disturb iosched and blkcg but weird is bettern than dead.
1182 */
1183 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1184 __func__, dev_name(q->backing_dev_info->dev));
1185
1186 rq->rq_flags &= ~RQF_ELVPRIV;
1187 rq->elv.icq = NULL;
1188
1189 spin_lock_irq(q->queue_lock);
1190 q->nr_rqs_elvpriv--;
1191 spin_unlock_irq(q->queue_lock);
1192 goto out;
1193
1194 fail_alloc:
1195 /*
1196 * Allocation failed presumably due to memory. Undo anything we
1197 * might have messed up.
1198 *
1199 * Allocating task should really be put onto the front of the wait
1200 * queue, but this is pretty rare.
1201 */
1202 spin_lock_irq(q->queue_lock);
1203 freed_request(rl, is_sync, rq_flags);
1204
1205 /*
1206 * in the very unlikely event that allocation failed and no
1207 * requests for this direction was pending, mark us starved so that
1208 * freeing of a request in the other direction will notice
1209 * us. another possible fix would be to split the rq mempool into
1210 * READ and WRITE
1211 */
1212 rq_starved:
1213 if (unlikely(rl->count[is_sync] == 0))
1214 rl->starved[is_sync] = 1;
1215 return ERR_PTR(-ENOMEM);
1216 }
1217
1218 /**
1219 * get_request - get a free request
1220 * @q: request_queue to allocate request from
1221 * @op: operation and flags
1222 * @bio: bio to allocate request for (can be %NULL)
1223 * @gfp_mask: allocation mask
1224 *
1225 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1226 * this function keeps retrying under memory pressure and fails iff @q is dead.
1227 *
1228 * Must be called with @q->queue_lock held and,
1229 * Returns ERR_PTR on failure, with @q->queue_lock held.
1230 * Returns request pointer on success, with @q->queue_lock *not held*.
1231 */
1232 static struct request *get_request(struct request_queue *q, unsigned int op,
1233 struct bio *bio, gfp_t gfp_mask)
1234 {
1235 const bool is_sync = op_is_sync(op);
1236 DEFINE_WAIT(wait);
1237 struct request_list *rl;
1238 struct request *rq;
1239
1240 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1241 retry:
1242 rq = __get_request(rl, op, bio, gfp_mask);
1243 if (!IS_ERR(rq))
1244 return rq;
1245
1246 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1247 blk_put_rl(rl);
1248 return rq;
1249 }
1250
1251 /* wait on @rl and retry */
1252 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1253 TASK_UNINTERRUPTIBLE);
1254
1255 trace_block_sleeprq(q, bio, op);
1256
1257 spin_unlock_irq(q->queue_lock);
1258 io_schedule();
1259
1260 /*
1261 * After sleeping, we become a "batching" process and will be able
1262 * to allocate at least one request, and up to a big batch of them
1263 * for a small period time. See ioc_batching, ioc_set_batching
1264 */
1265 ioc_set_batching(q, current->io_context);
1266
1267 spin_lock_irq(q->queue_lock);
1268 finish_wait(&rl->wait[is_sync], &wait);
1269
1270 goto retry;
1271 }
1272
1273 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1274 gfp_t gfp_mask)
1275 {
1276 struct request *rq;
1277
1278 /* create ioc upfront */
1279 create_io_context(gfp_mask, q->node);
1280
1281 spin_lock_irq(q->queue_lock);
1282 rq = get_request(q, rw, NULL, gfp_mask);
1283 if (IS_ERR(rq)) {
1284 spin_unlock_irq(q->queue_lock);
1285 return rq;
1286 }
1287
1288 /* q->queue_lock is unlocked at this point */
1289 rq->__data_len = 0;
1290 rq->__sector = (sector_t) -1;
1291 rq->bio = rq->biotail = NULL;
1292 return rq;
1293 }
1294
1295 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1296 {
1297 if (q->mq_ops)
1298 return blk_mq_alloc_request(q, rw,
1299 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1300 0 : BLK_MQ_REQ_NOWAIT);
1301 else
1302 return blk_old_get_request(q, rw, gfp_mask);
1303 }
1304 EXPORT_SYMBOL(blk_get_request);
1305
1306 /**
1307 * blk_requeue_request - put a request back on queue
1308 * @q: request queue where request should be inserted
1309 * @rq: request to be inserted
1310 *
1311 * Description:
1312 * Drivers often keep queueing requests until the hardware cannot accept
1313 * more, when that condition happens we need to put the request back
1314 * on the queue. Must be called with queue lock held.
1315 */
1316 void blk_requeue_request(struct request_queue *q, struct request *rq)
1317 {
1318 blk_delete_timer(rq);
1319 blk_clear_rq_complete(rq);
1320 trace_block_rq_requeue(q, rq);
1321 wbt_requeue(q->rq_wb, &rq->issue_stat);
1322
1323 if (rq->rq_flags & RQF_QUEUED)
1324 blk_queue_end_tag(q, rq);
1325
1326 BUG_ON(blk_queued_rq(rq));
1327
1328 elv_requeue_request(q, rq);
1329 }
1330 EXPORT_SYMBOL(blk_requeue_request);
1331
1332 static void add_acct_request(struct request_queue *q, struct request *rq,
1333 int where)
1334 {
1335 blk_account_io_start(rq, true);
1336 __elv_add_request(q, rq, where);
1337 }
1338
1339 static void part_round_stats_single(int cpu, struct hd_struct *part,
1340 unsigned long now)
1341 {
1342 int inflight;
1343
1344 if (now == part->stamp)
1345 return;
1346
1347 inflight = part_in_flight(part);
1348 if (inflight) {
1349 __part_stat_add(cpu, part, time_in_queue,
1350 inflight * (now - part->stamp));
1351 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1352 }
1353 part->stamp = now;
1354 }
1355
1356 /**
1357 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1358 * @cpu: cpu number for stats access
1359 * @part: target partition
1360 *
1361 * The average IO queue length and utilisation statistics are maintained
1362 * by observing the current state of the queue length and the amount of
1363 * time it has been in this state for.
1364 *
1365 * Normally, that accounting is done on IO completion, but that can result
1366 * in more than a second's worth of IO being accounted for within any one
1367 * second, leading to >100% utilisation. To deal with that, we call this
1368 * function to do a round-off before returning the results when reading
1369 * /proc/diskstats. This accounts immediately for all queue usage up to
1370 * the current jiffies and restarts the counters again.
1371 */
1372 void part_round_stats(int cpu, struct hd_struct *part)
1373 {
1374 unsigned long now = jiffies;
1375
1376 if (part->partno)
1377 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1378 part_round_stats_single(cpu, part, now);
1379 }
1380 EXPORT_SYMBOL_GPL(part_round_stats);
1381
1382 #ifdef CONFIG_PM
1383 static void blk_pm_put_request(struct request *rq)
1384 {
1385 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1386 pm_runtime_mark_last_busy(rq->q->dev);
1387 }
1388 #else
1389 static inline void blk_pm_put_request(struct request *rq) {}
1390 #endif
1391
1392 /*
1393 * queue lock must be held
1394 */
1395 void __blk_put_request(struct request_queue *q, struct request *req)
1396 {
1397 req_flags_t rq_flags = req->rq_flags;
1398
1399 if (unlikely(!q))
1400 return;
1401
1402 if (q->mq_ops) {
1403 blk_mq_free_request(req);
1404 return;
1405 }
1406
1407 blk_pm_put_request(req);
1408
1409 elv_completed_request(q, req);
1410
1411 /* this is a bio leak */
1412 WARN_ON(req->bio != NULL);
1413
1414 wbt_done(q->rq_wb, &req->issue_stat);
1415
1416 /*
1417 * Request may not have originated from ll_rw_blk. if not,
1418 * it didn't come out of our reserved rq pools
1419 */
1420 if (rq_flags & RQF_ALLOCED) {
1421 struct request_list *rl = blk_rq_rl(req);
1422 bool sync = op_is_sync(req->cmd_flags);
1423
1424 BUG_ON(!list_empty(&req->queuelist));
1425 BUG_ON(ELV_ON_HASH(req));
1426
1427 blk_free_request(rl, req);
1428 freed_request(rl, sync, rq_flags);
1429 blk_put_rl(rl);
1430 }
1431 }
1432 EXPORT_SYMBOL_GPL(__blk_put_request);
1433
1434 void blk_put_request(struct request *req)
1435 {
1436 struct request_queue *q = req->q;
1437
1438 if (q->mq_ops)
1439 blk_mq_free_request(req);
1440 else {
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(q->queue_lock, flags);
1444 __blk_put_request(q, req);
1445 spin_unlock_irqrestore(q->queue_lock, flags);
1446 }
1447 }
1448 EXPORT_SYMBOL(blk_put_request);
1449
1450 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1451 struct bio *bio)
1452 {
1453 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1454
1455 if (!ll_back_merge_fn(q, req, bio))
1456 return false;
1457
1458 trace_block_bio_backmerge(q, req, bio);
1459
1460 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1461 blk_rq_set_mixed_merge(req);
1462
1463 req->biotail->bi_next = bio;
1464 req->biotail = bio;
1465 req->__data_len += bio->bi_iter.bi_size;
1466 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1467
1468 blk_account_io_start(req, false);
1469 return true;
1470 }
1471
1472 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1473 struct bio *bio)
1474 {
1475 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1476
1477 if (!ll_front_merge_fn(q, req, bio))
1478 return false;
1479
1480 trace_block_bio_frontmerge(q, req, bio);
1481
1482 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1483 blk_rq_set_mixed_merge(req);
1484
1485 bio->bi_next = req->bio;
1486 req->bio = bio;
1487
1488 req->__sector = bio->bi_iter.bi_sector;
1489 req->__data_len += bio->bi_iter.bi_size;
1490 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1491
1492 blk_account_io_start(req, false);
1493 return true;
1494 }
1495
1496 /**
1497 * blk_attempt_plug_merge - try to merge with %current's plugged list
1498 * @q: request_queue new bio is being queued at
1499 * @bio: new bio being queued
1500 * @request_count: out parameter for number of traversed plugged requests
1501 * @same_queue_rq: pointer to &struct request that gets filled in when
1502 * another request associated with @q is found on the plug list
1503 * (optional, may be %NULL)
1504 *
1505 * Determine whether @bio being queued on @q can be merged with a request
1506 * on %current's plugged list. Returns %true if merge was successful,
1507 * otherwise %false.
1508 *
1509 * Plugging coalesces IOs from the same issuer for the same purpose without
1510 * going through @q->queue_lock. As such it's more of an issuing mechanism
1511 * than scheduling, and the request, while may have elvpriv data, is not
1512 * added on the elevator at this point. In addition, we don't have
1513 * reliable access to the elevator outside queue lock. Only check basic
1514 * merging parameters without querying the elevator.
1515 *
1516 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1517 */
1518 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1519 unsigned int *request_count,
1520 struct request **same_queue_rq)
1521 {
1522 struct blk_plug *plug;
1523 struct request *rq;
1524 bool ret = false;
1525 struct list_head *plug_list;
1526
1527 plug = current->plug;
1528 if (!plug)
1529 goto out;
1530 *request_count = 0;
1531
1532 if (q->mq_ops)
1533 plug_list = &plug->mq_list;
1534 else
1535 plug_list = &plug->list;
1536
1537 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1538 int el_ret;
1539
1540 if (rq->q == q) {
1541 (*request_count)++;
1542 /*
1543 * Only blk-mq multiple hardware queues case checks the
1544 * rq in the same queue, there should be only one such
1545 * rq in a queue
1546 **/
1547 if (same_queue_rq)
1548 *same_queue_rq = rq;
1549 }
1550
1551 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1552 continue;
1553
1554 el_ret = blk_try_merge(rq, bio);
1555 if (el_ret == ELEVATOR_BACK_MERGE) {
1556 ret = bio_attempt_back_merge(q, rq, bio);
1557 if (ret)
1558 break;
1559 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1560 ret = bio_attempt_front_merge(q, rq, bio);
1561 if (ret)
1562 break;
1563 }
1564 }
1565 out:
1566 return ret;
1567 }
1568
1569 unsigned int blk_plug_queued_count(struct request_queue *q)
1570 {
1571 struct blk_plug *plug;
1572 struct request *rq;
1573 struct list_head *plug_list;
1574 unsigned int ret = 0;
1575
1576 plug = current->plug;
1577 if (!plug)
1578 goto out;
1579
1580 if (q->mq_ops)
1581 plug_list = &plug->mq_list;
1582 else
1583 plug_list = &plug->list;
1584
1585 list_for_each_entry(rq, plug_list, queuelist) {
1586 if (rq->q == q)
1587 ret++;
1588 }
1589 out:
1590 return ret;
1591 }
1592
1593 void init_request_from_bio(struct request *req, struct bio *bio)
1594 {
1595 if (bio->bi_opf & REQ_RAHEAD)
1596 req->cmd_flags |= REQ_FAILFAST_MASK;
1597
1598 req->errors = 0;
1599 req->__sector = bio->bi_iter.bi_sector;
1600 if (ioprio_valid(bio_prio(bio)))
1601 req->ioprio = bio_prio(bio);
1602 blk_rq_bio_prep(req->q, req, bio);
1603 }
1604
1605 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1606 {
1607 struct blk_plug *plug;
1608 int el_ret, where = ELEVATOR_INSERT_SORT;
1609 struct request *req;
1610 unsigned int request_count = 0;
1611 unsigned int wb_acct;
1612
1613 /*
1614 * low level driver can indicate that it wants pages above a
1615 * certain limit bounced to low memory (ie for highmem, or even
1616 * ISA dma in theory)
1617 */
1618 blk_queue_bounce(q, &bio);
1619
1620 blk_queue_split(q, &bio, q->bio_split);
1621
1622 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1623 bio->bi_error = -EIO;
1624 bio_endio(bio);
1625 return BLK_QC_T_NONE;
1626 }
1627
1628 if (op_is_flush(bio->bi_opf)) {
1629 spin_lock_irq(q->queue_lock);
1630 where = ELEVATOR_INSERT_FLUSH;
1631 goto get_rq;
1632 }
1633
1634 /*
1635 * Check if we can merge with the plugged list before grabbing
1636 * any locks.
1637 */
1638 if (!blk_queue_nomerges(q)) {
1639 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1640 return BLK_QC_T_NONE;
1641 } else
1642 request_count = blk_plug_queued_count(q);
1643
1644 spin_lock_irq(q->queue_lock);
1645
1646 el_ret = elv_merge(q, &req, bio);
1647 if (el_ret == ELEVATOR_BACK_MERGE) {
1648 if (bio_attempt_back_merge(q, req, bio)) {
1649 elv_bio_merged(q, req, bio);
1650 if (!attempt_back_merge(q, req))
1651 elv_merged_request(q, req, el_ret);
1652 goto out_unlock;
1653 }
1654 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1655 if (bio_attempt_front_merge(q, req, bio)) {
1656 elv_bio_merged(q, req, bio);
1657 if (!attempt_front_merge(q, req))
1658 elv_merged_request(q, req, el_ret);
1659 goto out_unlock;
1660 }
1661 }
1662
1663 get_rq:
1664 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1665
1666 /*
1667 * Grab a free request. This is might sleep but can not fail.
1668 * Returns with the queue unlocked.
1669 */
1670 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1671 if (IS_ERR(req)) {
1672 __wbt_done(q->rq_wb, wb_acct);
1673 bio->bi_error = PTR_ERR(req);
1674 bio_endio(bio);
1675 goto out_unlock;
1676 }
1677
1678 wbt_track(&req->issue_stat, wb_acct);
1679
1680 /*
1681 * After dropping the lock and possibly sleeping here, our request
1682 * may now be mergeable after it had proven unmergeable (above).
1683 * We don't worry about that case for efficiency. It won't happen
1684 * often, and the elevators are able to handle it.
1685 */
1686 init_request_from_bio(req, bio);
1687
1688 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1689 req->cpu = raw_smp_processor_id();
1690
1691 plug = current->plug;
1692 if (plug) {
1693 /*
1694 * If this is the first request added after a plug, fire
1695 * of a plug trace.
1696 *
1697 * @request_count may become stale because of schedule
1698 * out, so check plug list again.
1699 */
1700 if (!request_count || list_empty(&plug->list))
1701 trace_block_plug(q);
1702 else {
1703 struct request *last = list_entry_rq(plug->list.prev);
1704 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1705 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1706 blk_flush_plug_list(plug, false);
1707 trace_block_plug(q);
1708 }
1709 }
1710 list_add_tail(&req->queuelist, &plug->list);
1711 blk_account_io_start(req, true);
1712 } else {
1713 spin_lock_irq(q->queue_lock);
1714 add_acct_request(q, req, where);
1715 __blk_run_queue(q);
1716 out_unlock:
1717 spin_unlock_irq(q->queue_lock);
1718 }
1719
1720 return BLK_QC_T_NONE;
1721 }
1722
1723 /*
1724 * If bio->bi_dev is a partition, remap the location
1725 */
1726 static inline void blk_partition_remap(struct bio *bio)
1727 {
1728 struct block_device *bdev = bio->bi_bdev;
1729
1730 /*
1731 * Zone reset does not include bi_size so bio_sectors() is always 0.
1732 * Include a test for the reset op code and perform the remap if needed.
1733 */
1734 if (bdev != bdev->bd_contains &&
1735 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1736 struct hd_struct *p = bdev->bd_part;
1737
1738 bio->bi_iter.bi_sector += p->start_sect;
1739 bio->bi_bdev = bdev->bd_contains;
1740
1741 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1742 bdev->bd_dev,
1743 bio->bi_iter.bi_sector - p->start_sect);
1744 }
1745 }
1746
1747 static void handle_bad_sector(struct bio *bio)
1748 {
1749 char b[BDEVNAME_SIZE];
1750
1751 printk(KERN_INFO "attempt to access beyond end of device\n");
1752 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1753 bdevname(bio->bi_bdev, b),
1754 bio->bi_opf,
1755 (unsigned long long)bio_end_sector(bio),
1756 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1757 }
1758
1759 #ifdef CONFIG_FAIL_MAKE_REQUEST
1760
1761 static DECLARE_FAULT_ATTR(fail_make_request);
1762
1763 static int __init setup_fail_make_request(char *str)
1764 {
1765 return setup_fault_attr(&fail_make_request, str);
1766 }
1767 __setup("fail_make_request=", setup_fail_make_request);
1768
1769 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1770 {
1771 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1772 }
1773
1774 static int __init fail_make_request_debugfs(void)
1775 {
1776 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1777 NULL, &fail_make_request);
1778
1779 return PTR_ERR_OR_ZERO(dir);
1780 }
1781
1782 late_initcall(fail_make_request_debugfs);
1783
1784 #else /* CONFIG_FAIL_MAKE_REQUEST */
1785
1786 static inline bool should_fail_request(struct hd_struct *part,
1787 unsigned int bytes)
1788 {
1789 return false;
1790 }
1791
1792 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1793
1794 /*
1795 * Check whether this bio extends beyond the end of the device.
1796 */
1797 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1798 {
1799 sector_t maxsector;
1800
1801 if (!nr_sectors)
1802 return 0;
1803
1804 /* Test device or partition size, when known. */
1805 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1806 if (maxsector) {
1807 sector_t sector = bio->bi_iter.bi_sector;
1808
1809 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1810 /*
1811 * This may well happen - the kernel calls bread()
1812 * without checking the size of the device, e.g., when
1813 * mounting a device.
1814 */
1815 handle_bad_sector(bio);
1816 return 1;
1817 }
1818 }
1819
1820 return 0;
1821 }
1822
1823 static noinline_for_stack bool
1824 generic_make_request_checks(struct bio *bio)
1825 {
1826 struct request_queue *q;
1827 int nr_sectors = bio_sectors(bio);
1828 int err = -EIO;
1829 char b[BDEVNAME_SIZE];
1830 struct hd_struct *part;
1831
1832 might_sleep();
1833
1834 if (bio_check_eod(bio, nr_sectors))
1835 goto end_io;
1836
1837 q = bdev_get_queue(bio->bi_bdev);
1838 if (unlikely(!q)) {
1839 printk(KERN_ERR
1840 "generic_make_request: Trying to access "
1841 "nonexistent block-device %s (%Lu)\n",
1842 bdevname(bio->bi_bdev, b),
1843 (long long) bio->bi_iter.bi_sector);
1844 goto end_io;
1845 }
1846
1847 part = bio->bi_bdev->bd_part;
1848 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1849 should_fail_request(&part_to_disk(part)->part0,
1850 bio->bi_iter.bi_size))
1851 goto end_io;
1852
1853 /*
1854 * If this device has partitions, remap block n
1855 * of partition p to block n+start(p) of the disk.
1856 */
1857 blk_partition_remap(bio);
1858
1859 if (bio_check_eod(bio, nr_sectors))
1860 goto end_io;
1861
1862 /*
1863 * Filter flush bio's early so that make_request based
1864 * drivers without flush support don't have to worry
1865 * about them.
1866 */
1867 if (op_is_flush(bio->bi_opf) &&
1868 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1869 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1870 if (!nr_sectors) {
1871 err = 0;
1872 goto end_io;
1873 }
1874 }
1875
1876 switch (bio_op(bio)) {
1877 case REQ_OP_DISCARD:
1878 if (!blk_queue_discard(q))
1879 goto not_supported;
1880 break;
1881 case REQ_OP_SECURE_ERASE:
1882 if (!blk_queue_secure_erase(q))
1883 goto not_supported;
1884 break;
1885 case REQ_OP_WRITE_SAME:
1886 if (!bdev_write_same(bio->bi_bdev))
1887 goto not_supported;
1888 break;
1889 case REQ_OP_ZONE_REPORT:
1890 case REQ_OP_ZONE_RESET:
1891 if (!bdev_is_zoned(bio->bi_bdev))
1892 goto not_supported;
1893 break;
1894 case REQ_OP_WRITE_ZEROES:
1895 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1896 goto not_supported;
1897 break;
1898 default:
1899 break;
1900 }
1901
1902 /*
1903 * Various block parts want %current->io_context and lazy ioc
1904 * allocation ends up trading a lot of pain for a small amount of
1905 * memory. Just allocate it upfront. This may fail and block
1906 * layer knows how to live with it.
1907 */
1908 create_io_context(GFP_ATOMIC, q->node);
1909
1910 if (!blkcg_bio_issue_check(q, bio))
1911 return false;
1912
1913 trace_block_bio_queue(q, bio);
1914 return true;
1915
1916 not_supported:
1917 err = -EOPNOTSUPP;
1918 end_io:
1919 bio->bi_error = err;
1920 bio_endio(bio);
1921 return false;
1922 }
1923
1924 /**
1925 * generic_make_request - hand a buffer to its device driver for I/O
1926 * @bio: The bio describing the location in memory and on the device.
1927 *
1928 * generic_make_request() is used to make I/O requests of block
1929 * devices. It is passed a &struct bio, which describes the I/O that needs
1930 * to be done.
1931 *
1932 * generic_make_request() does not return any status. The
1933 * success/failure status of the request, along with notification of
1934 * completion, is delivered asynchronously through the bio->bi_end_io
1935 * function described (one day) else where.
1936 *
1937 * The caller of generic_make_request must make sure that bi_io_vec
1938 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1939 * set to describe the device address, and the
1940 * bi_end_io and optionally bi_private are set to describe how
1941 * completion notification should be signaled.
1942 *
1943 * generic_make_request and the drivers it calls may use bi_next if this
1944 * bio happens to be merged with someone else, and may resubmit the bio to
1945 * a lower device by calling into generic_make_request recursively, which
1946 * means the bio should NOT be touched after the call to ->make_request_fn.
1947 */
1948 blk_qc_t generic_make_request(struct bio *bio)
1949 {
1950 struct bio_list bio_list_on_stack;
1951 blk_qc_t ret = BLK_QC_T_NONE;
1952
1953 if (!generic_make_request_checks(bio))
1954 goto out;
1955
1956 /*
1957 * We only want one ->make_request_fn to be active at a time, else
1958 * stack usage with stacked devices could be a problem. So use
1959 * current->bio_list to keep a list of requests submited by a
1960 * make_request_fn function. current->bio_list is also used as a
1961 * flag to say if generic_make_request is currently active in this
1962 * task or not. If it is NULL, then no make_request is active. If
1963 * it is non-NULL, then a make_request is active, and new requests
1964 * should be added at the tail
1965 */
1966 if (current->bio_list) {
1967 bio_list_add(current->bio_list, bio);
1968 goto out;
1969 }
1970
1971 /* following loop may be a bit non-obvious, and so deserves some
1972 * explanation.
1973 * Before entering the loop, bio->bi_next is NULL (as all callers
1974 * ensure that) so we have a list with a single bio.
1975 * We pretend that we have just taken it off a longer list, so
1976 * we assign bio_list to a pointer to the bio_list_on_stack,
1977 * thus initialising the bio_list of new bios to be
1978 * added. ->make_request() may indeed add some more bios
1979 * through a recursive call to generic_make_request. If it
1980 * did, we find a non-NULL value in bio_list and re-enter the loop
1981 * from the top. In this case we really did just take the bio
1982 * of the top of the list (no pretending) and so remove it from
1983 * bio_list, and call into ->make_request() again.
1984 */
1985 BUG_ON(bio->bi_next);
1986 bio_list_init(&bio_list_on_stack);
1987 current->bio_list = &bio_list_on_stack;
1988 do {
1989 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1990
1991 if (likely(blk_queue_enter(q, false) == 0)) {
1992 ret = q->make_request_fn(q, bio);
1993
1994 blk_queue_exit(q);
1995
1996 bio = bio_list_pop(current->bio_list);
1997 } else {
1998 struct bio *bio_next = bio_list_pop(current->bio_list);
1999
2000 bio_io_error(bio);
2001 bio = bio_next;
2002 }
2003 } while (bio);
2004 current->bio_list = NULL; /* deactivate */
2005
2006 out:
2007 return ret;
2008 }
2009 EXPORT_SYMBOL(generic_make_request);
2010
2011 /**
2012 * submit_bio - submit a bio to the block device layer for I/O
2013 * @bio: The &struct bio which describes the I/O
2014 *
2015 * submit_bio() is very similar in purpose to generic_make_request(), and
2016 * uses that function to do most of the work. Both are fairly rough
2017 * interfaces; @bio must be presetup and ready for I/O.
2018 *
2019 */
2020 blk_qc_t submit_bio(struct bio *bio)
2021 {
2022 /*
2023 * If it's a regular read/write or a barrier with data attached,
2024 * go through the normal accounting stuff before submission.
2025 */
2026 if (bio_has_data(bio)) {
2027 unsigned int count;
2028
2029 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2030 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2031 else
2032 count = bio_sectors(bio);
2033
2034 if (op_is_write(bio_op(bio))) {
2035 count_vm_events(PGPGOUT, count);
2036 } else {
2037 task_io_account_read(bio->bi_iter.bi_size);
2038 count_vm_events(PGPGIN, count);
2039 }
2040
2041 if (unlikely(block_dump)) {
2042 char b[BDEVNAME_SIZE];
2043 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2044 current->comm, task_pid_nr(current),
2045 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2046 (unsigned long long)bio->bi_iter.bi_sector,
2047 bdevname(bio->bi_bdev, b),
2048 count);
2049 }
2050 }
2051
2052 return generic_make_request(bio);
2053 }
2054 EXPORT_SYMBOL(submit_bio);
2055
2056 /**
2057 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2058 * for new the queue limits
2059 * @q: the queue
2060 * @rq: the request being checked
2061 *
2062 * Description:
2063 * @rq may have been made based on weaker limitations of upper-level queues
2064 * in request stacking drivers, and it may violate the limitation of @q.
2065 * Since the block layer and the underlying device driver trust @rq
2066 * after it is inserted to @q, it should be checked against @q before
2067 * the insertion using this generic function.
2068 *
2069 * Request stacking drivers like request-based dm may change the queue
2070 * limits when retrying requests on other queues. Those requests need
2071 * to be checked against the new queue limits again during dispatch.
2072 */
2073 static int blk_cloned_rq_check_limits(struct request_queue *q,
2074 struct request *rq)
2075 {
2076 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2077 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2078 return -EIO;
2079 }
2080
2081 /*
2082 * queue's settings related to segment counting like q->bounce_pfn
2083 * may differ from that of other stacking queues.
2084 * Recalculate it to check the request correctly on this queue's
2085 * limitation.
2086 */
2087 blk_recalc_rq_segments(rq);
2088 if (rq->nr_phys_segments > queue_max_segments(q)) {
2089 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2090 return -EIO;
2091 }
2092
2093 return 0;
2094 }
2095
2096 /**
2097 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2098 * @q: the queue to submit the request
2099 * @rq: the request being queued
2100 */
2101 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2102 {
2103 unsigned long flags;
2104 int where = ELEVATOR_INSERT_BACK;
2105
2106 if (blk_cloned_rq_check_limits(q, rq))
2107 return -EIO;
2108
2109 if (rq->rq_disk &&
2110 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2111 return -EIO;
2112
2113 if (q->mq_ops) {
2114 if (blk_queue_io_stat(q))
2115 blk_account_io_start(rq, true);
2116 blk_mq_sched_insert_request(rq, false, true, false, false);
2117 return 0;
2118 }
2119
2120 spin_lock_irqsave(q->queue_lock, flags);
2121 if (unlikely(blk_queue_dying(q))) {
2122 spin_unlock_irqrestore(q->queue_lock, flags);
2123 return -ENODEV;
2124 }
2125
2126 /*
2127 * Submitting request must be dequeued before calling this function
2128 * because it will be linked to another request_queue
2129 */
2130 BUG_ON(blk_queued_rq(rq));
2131
2132 if (op_is_flush(rq->cmd_flags))
2133 where = ELEVATOR_INSERT_FLUSH;
2134
2135 add_acct_request(q, rq, where);
2136 if (where == ELEVATOR_INSERT_FLUSH)
2137 __blk_run_queue(q);
2138 spin_unlock_irqrestore(q->queue_lock, flags);
2139
2140 return 0;
2141 }
2142 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2143
2144 /**
2145 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2146 * @rq: request to examine
2147 *
2148 * Description:
2149 * A request could be merge of IOs which require different failure
2150 * handling. This function determines the number of bytes which
2151 * can be failed from the beginning of the request without
2152 * crossing into area which need to be retried further.
2153 *
2154 * Return:
2155 * The number of bytes to fail.
2156 *
2157 * Context:
2158 * queue_lock must be held.
2159 */
2160 unsigned int blk_rq_err_bytes(const struct request *rq)
2161 {
2162 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2163 unsigned int bytes = 0;
2164 struct bio *bio;
2165
2166 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2167 return blk_rq_bytes(rq);
2168
2169 /*
2170 * Currently the only 'mixing' which can happen is between
2171 * different fastfail types. We can safely fail portions
2172 * which have all the failfast bits that the first one has -
2173 * the ones which are at least as eager to fail as the first
2174 * one.
2175 */
2176 for (bio = rq->bio; bio; bio = bio->bi_next) {
2177 if ((bio->bi_opf & ff) != ff)
2178 break;
2179 bytes += bio->bi_iter.bi_size;
2180 }
2181
2182 /* this could lead to infinite loop */
2183 BUG_ON(blk_rq_bytes(rq) && !bytes);
2184 return bytes;
2185 }
2186 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2187
2188 void blk_account_io_completion(struct request *req, unsigned int bytes)
2189 {
2190 if (blk_do_io_stat(req)) {
2191 const int rw = rq_data_dir(req);
2192 struct hd_struct *part;
2193 int cpu;
2194
2195 cpu = part_stat_lock();
2196 part = req->part;
2197 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2198 part_stat_unlock();
2199 }
2200 }
2201
2202 void blk_account_io_done(struct request *req)
2203 {
2204 /*
2205 * Account IO completion. flush_rq isn't accounted as a
2206 * normal IO on queueing nor completion. Accounting the
2207 * containing request is enough.
2208 */
2209 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2210 unsigned long duration = jiffies - req->start_time;
2211 const int rw = rq_data_dir(req);
2212 struct hd_struct *part;
2213 int cpu;
2214
2215 cpu = part_stat_lock();
2216 part = req->part;
2217
2218 part_stat_inc(cpu, part, ios[rw]);
2219 part_stat_add(cpu, part, ticks[rw], duration);
2220 part_round_stats(cpu, part);
2221 part_dec_in_flight(part, rw);
2222
2223 hd_struct_put(part);
2224 part_stat_unlock();
2225 }
2226 }
2227
2228 #ifdef CONFIG_PM
2229 /*
2230 * Don't process normal requests when queue is suspended
2231 * or in the process of suspending/resuming
2232 */
2233 static struct request *blk_pm_peek_request(struct request_queue *q,
2234 struct request *rq)
2235 {
2236 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2237 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2238 return NULL;
2239 else
2240 return rq;
2241 }
2242 #else
2243 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2244 struct request *rq)
2245 {
2246 return rq;
2247 }
2248 #endif
2249
2250 void blk_account_io_start(struct request *rq, bool new_io)
2251 {
2252 struct hd_struct *part;
2253 int rw = rq_data_dir(rq);
2254 int cpu;
2255
2256 if (!blk_do_io_stat(rq))
2257 return;
2258
2259 cpu = part_stat_lock();
2260
2261 if (!new_io) {
2262 part = rq->part;
2263 part_stat_inc(cpu, part, merges[rw]);
2264 } else {
2265 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2266 if (!hd_struct_try_get(part)) {
2267 /*
2268 * The partition is already being removed,
2269 * the request will be accounted on the disk only
2270 *
2271 * We take a reference on disk->part0 although that
2272 * partition will never be deleted, so we can treat
2273 * it as any other partition.
2274 */
2275 part = &rq->rq_disk->part0;
2276 hd_struct_get(part);
2277 }
2278 part_round_stats(cpu, part);
2279 part_inc_in_flight(part, rw);
2280 rq->part = part;
2281 }
2282
2283 part_stat_unlock();
2284 }
2285
2286 /**
2287 * blk_peek_request - peek at the top of a request queue
2288 * @q: request queue to peek at
2289 *
2290 * Description:
2291 * Return the request at the top of @q. The returned request
2292 * should be started using blk_start_request() before LLD starts
2293 * processing it.
2294 *
2295 * Return:
2296 * Pointer to the request at the top of @q if available. Null
2297 * otherwise.
2298 *
2299 * Context:
2300 * queue_lock must be held.
2301 */
2302 struct request *blk_peek_request(struct request_queue *q)
2303 {
2304 struct request *rq;
2305 int ret;
2306
2307 while ((rq = __elv_next_request(q)) != NULL) {
2308
2309 rq = blk_pm_peek_request(q, rq);
2310 if (!rq)
2311 break;
2312
2313 if (!(rq->rq_flags & RQF_STARTED)) {
2314 /*
2315 * This is the first time the device driver
2316 * sees this request (possibly after
2317 * requeueing). Notify IO scheduler.
2318 */
2319 if (rq->rq_flags & RQF_SORTED)
2320 elv_activate_rq(q, rq);
2321
2322 /*
2323 * just mark as started even if we don't start
2324 * it, a request that has been delayed should
2325 * not be passed by new incoming requests
2326 */
2327 rq->rq_flags |= RQF_STARTED;
2328 trace_block_rq_issue(q, rq);
2329 }
2330
2331 if (!q->boundary_rq || q->boundary_rq == rq) {
2332 q->end_sector = rq_end_sector(rq);
2333 q->boundary_rq = NULL;
2334 }
2335
2336 if (rq->rq_flags & RQF_DONTPREP)
2337 break;
2338
2339 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2340 /*
2341 * make sure space for the drain appears we
2342 * know we can do this because max_hw_segments
2343 * has been adjusted to be one fewer than the
2344 * device can handle
2345 */
2346 rq->nr_phys_segments++;
2347 }
2348
2349 if (!q->prep_rq_fn)
2350 break;
2351
2352 ret = q->prep_rq_fn(q, rq);
2353 if (ret == BLKPREP_OK) {
2354 break;
2355 } else if (ret == BLKPREP_DEFER) {
2356 /*
2357 * the request may have been (partially) prepped.
2358 * we need to keep this request in the front to
2359 * avoid resource deadlock. RQF_STARTED will
2360 * prevent other fs requests from passing this one.
2361 */
2362 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2363 !(rq->rq_flags & RQF_DONTPREP)) {
2364 /*
2365 * remove the space for the drain we added
2366 * so that we don't add it again
2367 */
2368 --rq->nr_phys_segments;
2369 }
2370
2371 rq = NULL;
2372 break;
2373 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2374 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2375
2376 rq->rq_flags |= RQF_QUIET;
2377 /*
2378 * Mark this request as started so we don't trigger
2379 * any debug logic in the end I/O path.
2380 */
2381 blk_start_request(rq);
2382 __blk_end_request_all(rq, err);
2383 } else {
2384 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2385 break;
2386 }
2387 }
2388
2389 return rq;
2390 }
2391 EXPORT_SYMBOL(blk_peek_request);
2392
2393 void blk_dequeue_request(struct request *rq)
2394 {
2395 struct request_queue *q = rq->q;
2396
2397 BUG_ON(list_empty(&rq->queuelist));
2398 BUG_ON(ELV_ON_HASH(rq));
2399
2400 list_del_init(&rq->queuelist);
2401
2402 /*
2403 * the time frame between a request being removed from the lists
2404 * and to it is freed is accounted as io that is in progress at
2405 * the driver side.
2406 */
2407 if (blk_account_rq(rq)) {
2408 q->in_flight[rq_is_sync(rq)]++;
2409 set_io_start_time_ns(rq);
2410 }
2411 }
2412
2413 /**
2414 * blk_start_request - start request processing on the driver
2415 * @req: request to dequeue
2416 *
2417 * Description:
2418 * Dequeue @req and start timeout timer on it. This hands off the
2419 * request to the driver.
2420 *
2421 * Block internal functions which don't want to start timer should
2422 * call blk_dequeue_request().
2423 *
2424 * Context:
2425 * queue_lock must be held.
2426 */
2427 void blk_start_request(struct request *req)
2428 {
2429 blk_dequeue_request(req);
2430
2431 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2432 blk_stat_set_issue_time(&req->issue_stat);
2433 req->rq_flags |= RQF_STATS;
2434 wbt_issue(req->q->rq_wb, &req->issue_stat);
2435 }
2436
2437 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2438 blk_add_timer(req);
2439 }
2440 EXPORT_SYMBOL(blk_start_request);
2441
2442 /**
2443 * blk_fetch_request - fetch a request from a request queue
2444 * @q: request queue to fetch a request from
2445 *
2446 * Description:
2447 * Return the request at the top of @q. The request is started on
2448 * return and LLD can start processing it immediately.
2449 *
2450 * Return:
2451 * Pointer to the request at the top of @q if available. Null
2452 * otherwise.
2453 *
2454 * Context:
2455 * queue_lock must be held.
2456 */
2457 struct request *blk_fetch_request(struct request_queue *q)
2458 {
2459 struct request *rq;
2460
2461 rq = blk_peek_request(q);
2462 if (rq)
2463 blk_start_request(rq);
2464 return rq;
2465 }
2466 EXPORT_SYMBOL(blk_fetch_request);
2467
2468 /**
2469 * blk_update_request - Special helper function for request stacking drivers
2470 * @req: the request being processed
2471 * @error: %0 for success, < %0 for error
2472 * @nr_bytes: number of bytes to complete @req
2473 *
2474 * Description:
2475 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2476 * the request structure even if @req doesn't have leftover.
2477 * If @req has leftover, sets it up for the next range of segments.
2478 *
2479 * This special helper function is only for request stacking drivers
2480 * (e.g. request-based dm) so that they can handle partial completion.
2481 * Actual device drivers should use blk_end_request instead.
2482 *
2483 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2484 * %false return from this function.
2485 *
2486 * Return:
2487 * %false - this request doesn't have any more data
2488 * %true - this request has more data
2489 **/
2490 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2491 {
2492 int total_bytes;
2493
2494 trace_block_rq_complete(req->q, req, nr_bytes);
2495
2496 if (!req->bio)
2497 return false;
2498
2499 /*
2500 * For fs requests, rq is just carrier of independent bio's
2501 * and each partial completion should be handled separately.
2502 * Reset per-request error on each partial completion.
2503 *
2504 * TODO: tj: This is too subtle. It would be better to let
2505 * low level drivers do what they see fit.
2506 */
2507 if (!blk_rq_is_passthrough(req))
2508 req->errors = 0;
2509
2510 if (error && !blk_rq_is_passthrough(req) &&
2511 !(req->rq_flags & RQF_QUIET)) {
2512 char *error_type;
2513
2514 switch (error) {
2515 case -ENOLINK:
2516 error_type = "recoverable transport";
2517 break;
2518 case -EREMOTEIO:
2519 error_type = "critical target";
2520 break;
2521 case -EBADE:
2522 error_type = "critical nexus";
2523 break;
2524 case -ETIMEDOUT:
2525 error_type = "timeout";
2526 break;
2527 case -ENOSPC:
2528 error_type = "critical space allocation";
2529 break;
2530 case -ENODATA:
2531 error_type = "critical medium";
2532 break;
2533 case -EIO:
2534 default:
2535 error_type = "I/O";
2536 break;
2537 }
2538 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2539 __func__, error_type, req->rq_disk ?
2540 req->rq_disk->disk_name : "?",
2541 (unsigned long long)blk_rq_pos(req));
2542
2543 }
2544
2545 blk_account_io_completion(req, nr_bytes);
2546
2547 total_bytes = 0;
2548 while (req->bio) {
2549 struct bio *bio = req->bio;
2550 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2551
2552 if (bio_bytes == bio->bi_iter.bi_size)
2553 req->bio = bio->bi_next;
2554
2555 req_bio_endio(req, bio, bio_bytes, error);
2556
2557 total_bytes += bio_bytes;
2558 nr_bytes -= bio_bytes;
2559
2560 if (!nr_bytes)
2561 break;
2562 }
2563
2564 /*
2565 * completely done
2566 */
2567 if (!req->bio) {
2568 /*
2569 * Reset counters so that the request stacking driver
2570 * can find how many bytes remain in the request
2571 * later.
2572 */
2573 req->__data_len = 0;
2574 return false;
2575 }
2576
2577 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2578
2579 req->__data_len -= total_bytes;
2580
2581 /* update sector only for requests with clear definition of sector */
2582 if (!blk_rq_is_passthrough(req))
2583 req->__sector += total_bytes >> 9;
2584
2585 /* mixed attributes always follow the first bio */
2586 if (req->rq_flags & RQF_MIXED_MERGE) {
2587 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2588 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2589 }
2590
2591 /*
2592 * If total number of sectors is less than the first segment
2593 * size, something has gone terribly wrong.
2594 */
2595 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2596 blk_dump_rq_flags(req, "request botched");
2597 req->__data_len = blk_rq_cur_bytes(req);
2598 }
2599
2600 /* recalculate the number of segments */
2601 blk_recalc_rq_segments(req);
2602
2603 return true;
2604 }
2605 EXPORT_SYMBOL_GPL(blk_update_request);
2606
2607 static bool blk_update_bidi_request(struct request *rq, int error,
2608 unsigned int nr_bytes,
2609 unsigned int bidi_bytes)
2610 {
2611 if (blk_update_request(rq, error, nr_bytes))
2612 return true;
2613
2614 /* Bidi request must be completed as a whole */
2615 if (unlikely(blk_bidi_rq(rq)) &&
2616 blk_update_request(rq->next_rq, error, bidi_bytes))
2617 return true;
2618
2619 if (blk_queue_add_random(rq->q))
2620 add_disk_randomness(rq->rq_disk);
2621
2622 return false;
2623 }
2624
2625 /**
2626 * blk_unprep_request - unprepare a request
2627 * @req: the request
2628 *
2629 * This function makes a request ready for complete resubmission (or
2630 * completion). It happens only after all error handling is complete,
2631 * so represents the appropriate moment to deallocate any resources
2632 * that were allocated to the request in the prep_rq_fn. The queue
2633 * lock is held when calling this.
2634 */
2635 void blk_unprep_request(struct request *req)
2636 {
2637 struct request_queue *q = req->q;
2638
2639 req->rq_flags &= ~RQF_DONTPREP;
2640 if (q->unprep_rq_fn)
2641 q->unprep_rq_fn(q, req);
2642 }
2643 EXPORT_SYMBOL_GPL(blk_unprep_request);
2644
2645 /*
2646 * queue lock must be held
2647 */
2648 void blk_finish_request(struct request *req, int error)
2649 {
2650 struct request_queue *q = req->q;
2651
2652 if (req->rq_flags & RQF_STATS)
2653 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2654
2655 if (req->rq_flags & RQF_QUEUED)
2656 blk_queue_end_tag(q, req);
2657
2658 BUG_ON(blk_queued_rq(req));
2659
2660 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2661 laptop_io_completion(req->q->backing_dev_info);
2662
2663 blk_delete_timer(req);
2664
2665 if (req->rq_flags & RQF_DONTPREP)
2666 blk_unprep_request(req);
2667
2668 blk_account_io_done(req);
2669
2670 if (req->end_io) {
2671 wbt_done(req->q->rq_wb, &req->issue_stat);
2672 req->end_io(req, error);
2673 } else {
2674 if (blk_bidi_rq(req))
2675 __blk_put_request(req->next_rq->q, req->next_rq);
2676
2677 __blk_put_request(q, req);
2678 }
2679 }
2680 EXPORT_SYMBOL(blk_finish_request);
2681
2682 /**
2683 * blk_end_bidi_request - Complete a bidi request
2684 * @rq: the request to complete
2685 * @error: %0 for success, < %0 for error
2686 * @nr_bytes: number of bytes to complete @rq
2687 * @bidi_bytes: number of bytes to complete @rq->next_rq
2688 *
2689 * Description:
2690 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2691 * Drivers that supports bidi can safely call this member for any
2692 * type of request, bidi or uni. In the later case @bidi_bytes is
2693 * just ignored.
2694 *
2695 * Return:
2696 * %false - we are done with this request
2697 * %true - still buffers pending for this request
2698 **/
2699 static bool blk_end_bidi_request(struct request *rq, int error,
2700 unsigned int nr_bytes, unsigned int bidi_bytes)
2701 {
2702 struct request_queue *q = rq->q;
2703 unsigned long flags;
2704
2705 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2706 return true;
2707
2708 spin_lock_irqsave(q->queue_lock, flags);
2709 blk_finish_request(rq, error);
2710 spin_unlock_irqrestore(q->queue_lock, flags);
2711
2712 return false;
2713 }
2714
2715 /**
2716 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2717 * @rq: the request to complete
2718 * @error: %0 for success, < %0 for error
2719 * @nr_bytes: number of bytes to complete @rq
2720 * @bidi_bytes: number of bytes to complete @rq->next_rq
2721 *
2722 * Description:
2723 * Identical to blk_end_bidi_request() except that queue lock is
2724 * assumed to be locked on entry and remains so on return.
2725 *
2726 * Return:
2727 * %false - we are done with this request
2728 * %true - still buffers pending for this request
2729 **/
2730 bool __blk_end_bidi_request(struct request *rq, int error,
2731 unsigned int nr_bytes, unsigned int bidi_bytes)
2732 {
2733 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2734 return true;
2735
2736 blk_finish_request(rq, error);
2737
2738 return false;
2739 }
2740
2741 /**
2742 * blk_end_request - Helper function for drivers to complete the request.
2743 * @rq: the request being processed
2744 * @error: %0 for success, < %0 for error
2745 * @nr_bytes: number of bytes to complete
2746 *
2747 * Description:
2748 * Ends I/O on a number of bytes attached to @rq.
2749 * If @rq has leftover, sets it up for the next range of segments.
2750 *
2751 * Return:
2752 * %false - we are done with this request
2753 * %true - still buffers pending for this request
2754 **/
2755 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2756 {
2757 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2758 }
2759 EXPORT_SYMBOL(blk_end_request);
2760
2761 /**
2762 * blk_end_request_all - Helper function for drives to finish the request.
2763 * @rq: the request to finish
2764 * @error: %0 for success, < %0 for error
2765 *
2766 * Description:
2767 * Completely finish @rq.
2768 */
2769 void blk_end_request_all(struct request *rq, int error)
2770 {
2771 bool pending;
2772 unsigned int bidi_bytes = 0;
2773
2774 if (unlikely(blk_bidi_rq(rq)))
2775 bidi_bytes = blk_rq_bytes(rq->next_rq);
2776
2777 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2778 BUG_ON(pending);
2779 }
2780 EXPORT_SYMBOL(blk_end_request_all);
2781
2782 /**
2783 * blk_end_request_cur - Helper function to finish the current request chunk.
2784 * @rq: the request to finish the current chunk for
2785 * @error: %0 for success, < %0 for error
2786 *
2787 * Description:
2788 * Complete the current consecutively mapped chunk from @rq.
2789 *
2790 * Return:
2791 * %false - we are done with this request
2792 * %true - still buffers pending for this request
2793 */
2794 bool blk_end_request_cur(struct request *rq, int error)
2795 {
2796 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2797 }
2798 EXPORT_SYMBOL(blk_end_request_cur);
2799
2800 /**
2801 * blk_end_request_err - Finish a request till the next failure boundary.
2802 * @rq: the request to finish till the next failure boundary for
2803 * @error: must be negative errno
2804 *
2805 * Description:
2806 * Complete @rq till the next failure boundary.
2807 *
2808 * Return:
2809 * %false - we are done with this request
2810 * %true - still buffers pending for this request
2811 */
2812 bool blk_end_request_err(struct request *rq, int error)
2813 {
2814 WARN_ON(error >= 0);
2815 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2816 }
2817 EXPORT_SYMBOL_GPL(blk_end_request_err);
2818
2819 /**
2820 * __blk_end_request - Helper function for drivers to complete the request.
2821 * @rq: the request being processed
2822 * @error: %0 for success, < %0 for error
2823 * @nr_bytes: number of bytes to complete
2824 *
2825 * Description:
2826 * Must be called with queue lock held unlike blk_end_request().
2827 *
2828 * Return:
2829 * %false - we are done with this request
2830 * %true - still buffers pending for this request
2831 **/
2832 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2833 {
2834 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2835 }
2836 EXPORT_SYMBOL(__blk_end_request);
2837
2838 /**
2839 * __blk_end_request_all - Helper function for drives to finish the request.
2840 * @rq: the request to finish
2841 * @error: %0 for success, < %0 for error
2842 *
2843 * Description:
2844 * Completely finish @rq. Must be called with queue lock held.
2845 */
2846 void __blk_end_request_all(struct request *rq, int error)
2847 {
2848 bool pending;
2849 unsigned int bidi_bytes = 0;
2850
2851 if (unlikely(blk_bidi_rq(rq)))
2852 bidi_bytes = blk_rq_bytes(rq->next_rq);
2853
2854 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2855 BUG_ON(pending);
2856 }
2857 EXPORT_SYMBOL(__blk_end_request_all);
2858
2859 /**
2860 * __blk_end_request_cur - Helper function to finish the current request chunk.
2861 * @rq: the request to finish the current chunk for
2862 * @error: %0 for success, < %0 for error
2863 *
2864 * Description:
2865 * Complete the current consecutively mapped chunk from @rq. Must
2866 * be called with queue lock held.
2867 *
2868 * Return:
2869 * %false - we are done with this request
2870 * %true - still buffers pending for this request
2871 */
2872 bool __blk_end_request_cur(struct request *rq, int error)
2873 {
2874 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2875 }
2876 EXPORT_SYMBOL(__blk_end_request_cur);
2877
2878 /**
2879 * __blk_end_request_err - Finish a request till the next failure boundary.
2880 * @rq: the request to finish till the next failure boundary for
2881 * @error: must be negative errno
2882 *
2883 * Description:
2884 * Complete @rq till the next failure boundary. Must be called
2885 * with queue lock held.
2886 *
2887 * Return:
2888 * %false - we are done with this request
2889 * %true - still buffers pending for this request
2890 */
2891 bool __blk_end_request_err(struct request *rq, int error)
2892 {
2893 WARN_ON(error >= 0);
2894 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2895 }
2896 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2897
2898 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2899 struct bio *bio)
2900 {
2901 if (bio_has_data(bio))
2902 rq->nr_phys_segments = bio_phys_segments(q, bio);
2903
2904 rq->__data_len = bio->bi_iter.bi_size;
2905 rq->bio = rq->biotail = bio;
2906
2907 if (bio->bi_bdev)
2908 rq->rq_disk = bio->bi_bdev->bd_disk;
2909 }
2910
2911 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2912 /**
2913 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2914 * @rq: the request to be flushed
2915 *
2916 * Description:
2917 * Flush all pages in @rq.
2918 */
2919 void rq_flush_dcache_pages(struct request *rq)
2920 {
2921 struct req_iterator iter;
2922 struct bio_vec bvec;
2923
2924 rq_for_each_segment(bvec, rq, iter)
2925 flush_dcache_page(bvec.bv_page);
2926 }
2927 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2928 #endif
2929
2930 /**
2931 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2932 * @q : the queue of the device being checked
2933 *
2934 * Description:
2935 * Check if underlying low-level drivers of a device are busy.
2936 * If the drivers want to export their busy state, they must set own
2937 * exporting function using blk_queue_lld_busy() first.
2938 *
2939 * Basically, this function is used only by request stacking drivers
2940 * to stop dispatching requests to underlying devices when underlying
2941 * devices are busy. This behavior helps more I/O merging on the queue
2942 * of the request stacking driver and prevents I/O throughput regression
2943 * on burst I/O load.
2944 *
2945 * Return:
2946 * 0 - Not busy (The request stacking driver should dispatch request)
2947 * 1 - Busy (The request stacking driver should stop dispatching request)
2948 */
2949 int blk_lld_busy(struct request_queue *q)
2950 {
2951 if (q->lld_busy_fn)
2952 return q->lld_busy_fn(q);
2953
2954 return 0;
2955 }
2956 EXPORT_SYMBOL_GPL(blk_lld_busy);
2957
2958 /**
2959 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2960 * @rq: the clone request to be cleaned up
2961 *
2962 * Description:
2963 * Free all bios in @rq for a cloned request.
2964 */
2965 void blk_rq_unprep_clone(struct request *rq)
2966 {
2967 struct bio *bio;
2968
2969 while ((bio = rq->bio) != NULL) {
2970 rq->bio = bio->bi_next;
2971
2972 bio_put(bio);
2973 }
2974 }
2975 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2976
2977 /*
2978 * Copy attributes of the original request to the clone request.
2979 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2980 */
2981 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2982 {
2983 dst->cpu = src->cpu;
2984 dst->__sector = blk_rq_pos(src);
2985 dst->__data_len = blk_rq_bytes(src);
2986 dst->nr_phys_segments = src->nr_phys_segments;
2987 dst->ioprio = src->ioprio;
2988 dst->extra_len = src->extra_len;
2989 }
2990
2991 /**
2992 * blk_rq_prep_clone - Helper function to setup clone request
2993 * @rq: the request to be setup
2994 * @rq_src: original request to be cloned
2995 * @bs: bio_set that bios for clone are allocated from
2996 * @gfp_mask: memory allocation mask for bio
2997 * @bio_ctr: setup function to be called for each clone bio.
2998 * Returns %0 for success, non %0 for failure.
2999 * @data: private data to be passed to @bio_ctr
3000 *
3001 * Description:
3002 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3003 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3004 * are not copied, and copying such parts is the caller's responsibility.
3005 * Also, pages which the original bios are pointing to are not copied
3006 * and the cloned bios just point same pages.
3007 * So cloned bios must be completed before original bios, which means
3008 * the caller must complete @rq before @rq_src.
3009 */
3010 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3011 struct bio_set *bs, gfp_t gfp_mask,
3012 int (*bio_ctr)(struct bio *, struct bio *, void *),
3013 void *data)
3014 {
3015 struct bio *bio, *bio_src;
3016
3017 if (!bs)
3018 bs = fs_bio_set;
3019
3020 __rq_for_each_bio(bio_src, rq_src) {
3021 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3022 if (!bio)
3023 goto free_and_out;
3024
3025 if (bio_ctr && bio_ctr(bio, bio_src, data))
3026 goto free_and_out;
3027
3028 if (rq->bio) {
3029 rq->biotail->bi_next = bio;
3030 rq->biotail = bio;
3031 } else
3032 rq->bio = rq->biotail = bio;
3033 }
3034
3035 __blk_rq_prep_clone(rq, rq_src);
3036
3037 return 0;
3038
3039 free_and_out:
3040 if (bio)
3041 bio_put(bio);
3042 blk_rq_unprep_clone(rq);
3043
3044 return -ENOMEM;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3047
3048 int kblockd_schedule_work(struct work_struct *work)
3049 {
3050 return queue_work(kblockd_workqueue, work);
3051 }
3052 EXPORT_SYMBOL(kblockd_schedule_work);
3053
3054 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3055 {
3056 return queue_work_on(cpu, kblockd_workqueue, work);
3057 }
3058 EXPORT_SYMBOL(kblockd_schedule_work_on);
3059
3060 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3061 unsigned long delay)
3062 {
3063 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3064 }
3065 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3066
3067 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3068 unsigned long delay)
3069 {
3070 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3071 }
3072 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3073
3074 /**
3075 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3076 * @plug: The &struct blk_plug that needs to be initialized
3077 *
3078 * Description:
3079 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3080 * pending I/O should the task end up blocking between blk_start_plug() and
3081 * blk_finish_plug(). This is important from a performance perspective, but
3082 * also ensures that we don't deadlock. For instance, if the task is blocking
3083 * for a memory allocation, memory reclaim could end up wanting to free a
3084 * page belonging to that request that is currently residing in our private
3085 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3086 * this kind of deadlock.
3087 */
3088 void blk_start_plug(struct blk_plug *plug)
3089 {
3090 struct task_struct *tsk = current;
3091
3092 /*
3093 * If this is a nested plug, don't actually assign it.
3094 */
3095 if (tsk->plug)
3096 return;
3097
3098 INIT_LIST_HEAD(&plug->list);
3099 INIT_LIST_HEAD(&plug->mq_list);
3100 INIT_LIST_HEAD(&plug->cb_list);
3101 /*
3102 * Store ordering should not be needed here, since a potential
3103 * preempt will imply a full memory barrier
3104 */
3105 tsk->plug = plug;
3106 }
3107 EXPORT_SYMBOL(blk_start_plug);
3108
3109 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3110 {
3111 struct request *rqa = container_of(a, struct request, queuelist);
3112 struct request *rqb = container_of(b, struct request, queuelist);
3113
3114 return !(rqa->q < rqb->q ||
3115 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3116 }
3117
3118 /*
3119 * If 'from_schedule' is true, then postpone the dispatch of requests
3120 * until a safe kblockd context. We due this to avoid accidental big
3121 * additional stack usage in driver dispatch, in places where the originally
3122 * plugger did not intend it.
3123 */
3124 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3125 bool from_schedule)
3126 __releases(q->queue_lock)
3127 {
3128 trace_block_unplug(q, depth, !from_schedule);
3129
3130 if (from_schedule)
3131 blk_run_queue_async(q);
3132 else
3133 __blk_run_queue(q);
3134 spin_unlock(q->queue_lock);
3135 }
3136
3137 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3138 {
3139 LIST_HEAD(callbacks);
3140
3141 while (!list_empty(&plug->cb_list)) {
3142 list_splice_init(&plug->cb_list, &callbacks);
3143
3144 while (!list_empty(&callbacks)) {
3145 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3146 struct blk_plug_cb,
3147 list);
3148 list_del(&cb->list);
3149 cb->callback(cb, from_schedule);
3150 }
3151 }
3152 }
3153
3154 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3155 int size)
3156 {
3157 struct blk_plug *plug = current->plug;
3158 struct blk_plug_cb *cb;
3159
3160 if (!plug)
3161 return NULL;
3162
3163 list_for_each_entry(cb, &plug->cb_list, list)
3164 if (cb->callback == unplug && cb->data == data)
3165 return cb;
3166
3167 /* Not currently on the callback list */
3168 BUG_ON(size < sizeof(*cb));
3169 cb = kzalloc(size, GFP_ATOMIC);
3170 if (cb) {
3171 cb->data = data;
3172 cb->callback = unplug;
3173 list_add(&cb->list, &plug->cb_list);
3174 }
3175 return cb;
3176 }
3177 EXPORT_SYMBOL(blk_check_plugged);
3178
3179 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3180 {
3181 struct request_queue *q;
3182 unsigned long flags;
3183 struct request *rq;
3184 LIST_HEAD(list);
3185 unsigned int depth;
3186
3187 flush_plug_callbacks(plug, from_schedule);
3188
3189 if (!list_empty(&plug->mq_list))
3190 blk_mq_flush_plug_list(plug, from_schedule);
3191
3192 if (list_empty(&plug->list))
3193 return;
3194
3195 list_splice_init(&plug->list, &list);
3196
3197 list_sort(NULL, &list, plug_rq_cmp);
3198
3199 q = NULL;
3200 depth = 0;
3201
3202 /*
3203 * Save and disable interrupts here, to avoid doing it for every
3204 * queue lock we have to take.
3205 */
3206 local_irq_save(flags);
3207 while (!list_empty(&list)) {
3208 rq = list_entry_rq(list.next);
3209 list_del_init(&rq->queuelist);
3210 BUG_ON(!rq->q);
3211 if (rq->q != q) {
3212 /*
3213 * This drops the queue lock
3214 */
3215 if (q)
3216 queue_unplugged(q, depth, from_schedule);
3217 q = rq->q;
3218 depth = 0;
3219 spin_lock(q->queue_lock);
3220 }
3221
3222 /*
3223 * Short-circuit if @q is dead
3224 */
3225 if (unlikely(blk_queue_dying(q))) {
3226 __blk_end_request_all(rq, -ENODEV);
3227 continue;
3228 }
3229
3230 /*
3231 * rq is already accounted, so use raw insert
3232 */
3233 if (op_is_flush(rq->cmd_flags))
3234 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3235 else
3236 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3237
3238 depth++;
3239 }
3240
3241 /*
3242 * This drops the queue lock
3243 */
3244 if (q)
3245 queue_unplugged(q, depth, from_schedule);
3246
3247 local_irq_restore(flags);
3248 }
3249
3250 void blk_finish_plug(struct blk_plug *plug)
3251 {
3252 if (plug != current->plug)
3253 return;
3254 blk_flush_plug_list(plug, false);
3255
3256 current->plug = NULL;
3257 }
3258 EXPORT_SYMBOL(blk_finish_plug);
3259
3260 #ifdef CONFIG_PM
3261 /**
3262 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3263 * @q: the queue of the device
3264 * @dev: the device the queue belongs to
3265 *
3266 * Description:
3267 * Initialize runtime-PM-related fields for @q and start auto suspend for
3268 * @dev. Drivers that want to take advantage of request-based runtime PM
3269 * should call this function after @dev has been initialized, and its
3270 * request queue @q has been allocated, and runtime PM for it can not happen
3271 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3272 * cases, driver should call this function before any I/O has taken place.
3273 *
3274 * This function takes care of setting up using auto suspend for the device,
3275 * the autosuspend delay is set to -1 to make runtime suspend impossible
3276 * until an updated value is either set by user or by driver. Drivers do
3277 * not need to touch other autosuspend settings.
3278 *
3279 * The block layer runtime PM is request based, so only works for drivers
3280 * that use request as their IO unit instead of those directly use bio's.
3281 */
3282 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3283 {
3284 q->dev = dev;
3285 q->rpm_status = RPM_ACTIVE;
3286 pm_runtime_set_autosuspend_delay(q->dev, -1);
3287 pm_runtime_use_autosuspend(q->dev);
3288 }
3289 EXPORT_SYMBOL(blk_pm_runtime_init);
3290
3291 /**
3292 * blk_pre_runtime_suspend - Pre runtime suspend check
3293 * @q: the queue of the device
3294 *
3295 * Description:
3296 * This function will check if runtime suspend is allowed for the device
3297 * by examining if there are any requests pending in the queue. If there
3298 * are requests pending, the device can not be runtime suspended; otherwise,
3299 * the queue's status will be updated to SUSPENDING and the driver can
3300 * proceed to suspend the device.
3301 *
3302 * For the not allowed case, we mark last busy for the device so that
3303 * runtime PM core will try to autosuspend it some time later.
3304 *
3305 * This function should be called near the start of the device's
3306 * runtime_suspend callback.
3307 *
3308 * Return:
3309 * 0 - OK to runtime suspend the device
3310 * -EBUSY - Device should not be runtime suspended
3311 */
3312 int blk_pre_runtime_suspend(struct request_queue *q)
3313 {
3314 int ret = 0;
3315
3316 if (!q->dev)
3317 return ret;
3318
3319 spin_lock_irq(q->queue_lock);
3320 if (q->nr_pending) {
3321 ret = -EBUSY;
3322 pm_runtime_mark_last_busy(q->dev);
3323 } else {
3324 q->rpm_status = RPM_SUSPENDING;
3325 }
3326 spin_unlock_irq(q->queue_lock);
3327 return ret;
3328 }
3329 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3330
3331 /**
3332 * blk_post_runtime_suspend - Post runtime suspend processing
3333 * @q: the queue of the device
3334 * @err: return value of the device's runtime_suspend function
3335 *
3336 * Description:
3337 * Update the queue's runtime status according to the return value of the
3338 * device's runtime suspend function and mark last busy for the device so
3339 * that PM core will try to auto suspend the device at a later time.
3340 *
3341 * This function should be called near the end of the device's
3342 * runtime_suspend callback.
3343 */
3344 void blk_post_runtime_suspend(struct request_queue *q, int err)
3345 {
3346 if (!q->dev)
3347 return;
3348
3349 spin_lock_irq(q->queue_lock);
3350 if (!err) {
3351 q->rpm_status = RPM_SUSPENDED;
3352 } else {
3353 q->rpm_status = RPM_ACTIVE;
3354 pm_runtime_mark_last_busy(q->dev);
3355 }
3356 spin_unlock_irq(q->queue_lock);
3357 }
3358 EXPORT_SYMBOL(blk_post_runtime_suspend);
3359
3360 /**
3361 * blk_pre_runtime_resume - Pre runtime resume processing
3362 * @q: the queue of the device
3363 *
3364 * Description:
3365 * Update the queue's runtime status to RESUMING in preparation for the
3366 * runtime resume of the device.
3367 *
3368 * This function should be called near the start of the device's
3369 * runtime_resume callback.
3370 */
3371 void blk_pre_runtime_resume(struct request_queue *q)
3372 {
3373 if (!q->dev)
3374 return;
3375
3376 spin_lock_irq(q->queue_lock);
3377 q->rpm_status = RPM_RESUMING;
3378 spin_unlock_irq(q->queue_lock);
3379 }
3380 EXPORT_SYMBOL(blk_pre_runtime_resume);
3381
3382 /**
3383 * blk_post_runtime_resume - Post runtime resume processing
3384 * @q: the queue of the device
3385 * @err: return value of the device's runtime_resume function
3386 *
3387 * Description:
3388 * Update the queue's runtime status according to the return value of the
3389 * device's runtime_resume function. If it is successfully resumed, process
3390 * the requests that are queued into the device's queue when it is resuming
3391 * and then mark last busy and initiate autosuspend for it.
3392 *
3393 * This function should be called near the end of the device's
3394 * runtime_resume callback.
3395 */
3396 void blk_post_runtime_resume(struct request_queue *q, int err)
3397 {
3398 if (!q->dev)
3399 return;
3400
3401 spin_lock_irq(q->queue_lock);
3402 if (!err) {
3403 q->rpm_status = RPM_ACTIVE;
3404 __blk_run_queue(q);
3405 pm_runtime_mark_last_busy(q->dev);
3406 pm_request_autosuspend(q->dev);
3407 } else {
3408 q->rpm_status = RPM_SUSPENDED;
3409 }
3410 spin_unlock_irq(q->queue_lock);
3411 }
3412 EXPORT_SYMBOL(blk_post_runtime_resume);
3413
3414 /**
3415 * blk_set_runtime_active - Force runtime status of the queue to be active
3416 * @q: the queue of the device
3417 *
3418 * If the device is left runtime suspended during system suspend the resume
3419 * hook typically resumes the device and corrects runtime status
3420 * accordingly. However, that does not affect the queue runtime PM status
3421 * which is still "suspended". This prevents processing requests from the
3422 * queue.
3423 *
3424 * This function can be used in driver's resume hook to correct queue
3425 * runtime PM status and re-enable peeking requests from the queue. It
3426 * should be called before first request is added to the queue.
3427 */
3428 void blk_set_runtime_active(struct request_queue *q)
3429 {
3430 spin_lock_irq(q->queue_lock);
3431 q->rpm_status = RPM_ACTIVE;
3432 pm_runtime_mark_last_busy(q->dev);
3433 pm_request_autosuspend(q->dev);
3434 spin_unlock_irq(q->queue_lock);
3435 }
3436 EXPORT_SYMBOL(blk_set_runtime_active);
3437 #endif
3438
3439 int __init blk_dev_init(void)
3440 {
3441 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3442 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3443 FIELD_SIZEOF(struct request, cmd_flags));
3444 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3445 FIELD_SIZEOF(struct bio, bi_opf));
3446
3447 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3448 kblockd_workqueue = alloc_workqueue("kblockd",
3449 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3450 if (!kblockd_workqueue)
3451 panic("Failed to create kblockd\n");
3452
3453 request_cachep = kmem_cache_create("blkdev_requests",
3454 sizeof(struct request), 0, SLAB_PANIC, NULL);
3455
3456 blk_requestq_cachep = kmem_cache_create("request_queue",
3457 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3458
3459 return 0;
3460 }