]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
workqueue: deprecate __cancel_delayed_work()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36
37 #include "blk.h"
38 #include "blk-cgroup.h"
39
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44 DEFINE_IDA(blk_queue_ida);
45
46 /*
47 * For the allocated request tables
48 */
49 static struct kmem_cache *request_cachep;
50
51 /*
52 * For queue allocation
53 */
54 struct kmem_cache *blk_requestq_cachep;
55
56 /*
57 * Controlling structure to kblockd
58 */
59 static struct workqueue_struct *kblockd_workqueue;
60
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95 }
96
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110 }
111
112 /**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155 {
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179 }
180
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203
204 static void blk_delay_work(struct work_struct *work)
205 {
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212 }
213
214 /**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230
231 /**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248
249 /**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269
270 /**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294
295 /**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311
312 /**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 if (likely(!blk_queue_stopped(q)))
323 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326
327 /**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
334 */
335 void blk_run_queue(struct request_queue *q)
336 {
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
340 __blk_run_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344
345 void blk_put_queue(struct request_queue *q)
346 {
347 kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350
351 /**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355 *
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
359 */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 int i;
363
364 while (true) {
365 bool drain = false;
366
367 spin_lock_irq(q->queue_lock);
368
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
376 blkcg_drain_queue(q);
377
378 /*
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
384 */
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
387
388 drain |= q->nr_rqs_elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
403
404 spin_unlock_irq(q->queue_lock);
405
406 if (!drain)
407 break;
408 msleep(10);
409 }
410
411 /*
412 * With queue marked dead, any woken up waiter will fail the
413 * allocation path, so the wakeup chaining is lost and we're
414 * left with hung waiters. We need to wake up those waiters.
415 */
416 if (q->request_fn) {
417 struct request_list *rl;
418
419 spin_lock_irq(q->queue_lock);
420
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
424
425 spin_unlock_irq(q->queue_lock);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 bool drain;
442
443 spin_lock_irq(q->queue_lock);
444 drain = !q->bypass_depth++;
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
447
448 if (drain) {
449 blk_drain_queue(q, false);
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456 /**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
472 /**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
476 * Mark @q DEAD, drain all pending requests, destroy and put it. All
477 * future requests will be failed immediately with -ENODEV.
478 */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 spinlock_t *lock = q->queue_lock;
482
483 /* mark @q DEAD, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
486 spin_lock_irq(lock);
487
488 /*
489 * Dead queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DEAD, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
506 /* drain all requests queued before DEAD marking */
507 blk_drain_queue(q, true);
508
509 /* @q won't process any more request, flush async actions */
510 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
511 blk_sync_queue(q);
512
513 spin_lock_irq(lock);
514 if (q->queue_lock != &q->__queue_lock)
515 q->queue_lock = &q->__queue_lock;
516 spin_unlock_irq(lock);
517
518 /* @q is and will stay empty, shutdown and put */
519 blk_put_queue(q);
520 }
521 EXPORT_SYMBOL(blk_cleanup_queue);
522
523 int blk_init_rl(struct request_list *rl, struct request_queue *q,
524 gfp_t gfp_mask)
525 {
526 if (unlikely(rl->rq_pool))
527 return 0;
528
529 rl->q = q;
530 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
531 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
532 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
533 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
534
535 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
536 mempool_free_slab, request_cachep,
537 gfp_mask, q->node);
538 if (!rl->rq_pool)
539 return -ENOMEM;
540
541 return 0;
542 }
543
544 void blk_exit_rl(struct request_list *rl)
545 {
546 if (rl->rq_pool)
547 mempool_destroy(rl->rq_pool);
548 }
549
550 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
551 {
552 return blk_alloc_queue_node(gfp_mask, -1);
553 }
554 EXPORT_SYMBOL(blk_alloc_queue);
555
556 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
557 {
558 struct request_queue *q;
559 int err;
560
561 q = kmem_cache_alloc_node(blk_requestq_cachep,
562 gfp_mask | __GFP_ZERO, node_id);
563 if (!q)
564 return NULL;
565
566 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
567 if (q->id < 0)
568 goto fail_q;
569
570 q->backing_dev_info.ra_pages =
571 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
572 q->backing_dev_info.state = 0;
573 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
574 q->backing_dev_info.name = "block";
575 q->node = node_id;
576
577 err = bdi_init(&q->backing_dev_info);
578 if (err)
579 goto fail_id;
580
581 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
582 laptop_mode_timer_fn, (unsigned long) q);
583 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
584 INIT_LIST_HEAD(&q->queue_head);
585 INIT_LIST_HEAD(&q->timeout_list);
586 INIT_LIST_HEAD(&q->icq_list);
587 #ifdef CONFIG_BLK_CGROUP
588 INIT_LIST_HEAD(&q->blkg_list);
589 #endif
590 INIT_LIST_HEAD(&q->flush_queue[0]);
591 INIT_LIST_HEAD(&q->flush_queue[1]);
592 INIT_LIST_HEAD(&q->flush_data_in_flight);
593 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
594
595 kobject_init(&q->kobj, &blk_queue_ktype);
596
597 mutex_init(&q->sysfs_lock);
598 spin_lock_init(&q->__queue_lock);
599
600 /*
601 * By default initialize queue_lock to internal lock and driver can
602 * override it later if need be.
603 */
604 q->queue_lock = &q->__queue_lock;
605
606 /*
607 * A queue starts its life with bypass turned on to avoid
608 * unnecessary bypass on/off overhead and nasty surprises during
609 * init. The initial bypass will be finished at the end of
610 * blk_init_allocated_queue().
611 */
612 q->bypass_depth = 1;
613 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
614
615 if (blkcg_init_queue(q))
616 goto fail_id;
617
618 return q;
619
620 fail_id:
621 ida_simple_remove(&blk_queue_ida, q->id);
622 fail_q:
623 kmem_cache_free(blk_requestq_cachep, q);
624 return NULL;
625 }
626 EXPORT_SYMBOL(blk_alloc_queue_node);
627
628 /**
629 * blk_init_queue - prepare a request queue for use with a block device
630 * @rfn: The function to be called to process requests that have been
631 * placed on the queue.
632 * @lock: Request queue spin lock
633 *
634 * Description:
635 * If a block device wishes to use the standard request handling procedures,
636 * which sorts requests and coalesces adjacent requests, then it must
637 * call blk_init_queue(). The function @rfn will be called when there
638 * are requests on the queue that need to be processed. If the device
639 * supports plugging, then @rfn may not be called immediately when requests
640 * are available on the queue, but may be called at some time later instead.
641 * Plugged queues are generally unplugged when a buffer belonging to one
642 * of the requests on the queue is needed, or due to memory pressure.
643 *
644 * @rfn is not required, or even expected, to remove all requests off the
645 * queue, but only as many as it can handle at a time. If it does leave
646 * requests on the queue, it is responsible for arranging that the requests
647 * get dealt with eventually.
648 *
649 * The queue spin lock must be held while manipulating the requests on the
650 * request queue; this lock will be taken also from interrupt context, so irq
651 * disabling is needed for it.
652 *
653 * Function returns a pointer to the initialized request queue, or %NULL if
654 * it didn't succeed.
655 *
656 * Note:
657 * blk_init_queue() must be paired with a blk_cleanup_queue() call
658 * when the block device is deactivated (such as at module unload).
659 **/
660
661 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
662 {
663 return blk_init_queue_node(rfn, lock, -1);
664 }
665 EXPORT_SYMBOL(blk_init_queue);
666
667 struct request_queue *
668 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
669 {
670 struct request_queue *uninit_q, *q;
671
672 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
673 if (!uninit_q)
674 return NULL;
675
676 q = blk_init_allocated_queue(uninit_q, rfn, lock);
677 if (!q)
678 blk_cleanup_queue(uninit_q);
679
680 return q;
681 }
682 EXPORT_SYMBOL(blk_init_queue_node);
683
684 struct request_queue *
685 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
686 spinlock_t *lock)
687 {
688 if (!q)
689 return NULL;
690
691 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
692 return NULL;
693
694 q->request_fn = rfn;
695 q->prep_rq_fn = NULL;
696 q->unprep_rq_fn = NULL;
697 q->queue_flags = QUEUE_FLAG_DEFAULT;
698
699 /* Override internal queue lock with supplied lock pointer */
700 if (lock)
701 q->queue_lock = lock;
702
703 /*
704 * This also sets hw/phys segments, boundary and size
705 */
706 blk_queue_make_request(q, blk_queue_bio);
707
708 q->sg_reserved_size = INT_MAX;
709
710 /* init elevator */
711 if (elevator_init(q, NULL))
712 return NULL;
713
714 blk_queue_congestion_threshold(q);
715
716 /* all done, end the initial bypass */
717 blk_queue_bypass_end(q);
718 return q;
719 }
720 EXPORT_SYMBOL(blk_init_allocated_queue);
721
722 bool blk_get_queue(struct request_queue *q)
723 {
724 if (likely(!blk_queue_dead(q))) {
725 __blk_get_queue(q);
726 return true;
727 }
728
729 return false;
730 }
731 EXPORT_SYMBOL(blk_get_queue);
732
733 static inline void blk_free_request(struct request_list *rl, struct request *rq)
734 {
735 if (rq->cmd_flags & REQ_ELVPRIV) {
736 elv_put_request(rl->q, rq);
737 if (rq->elv.icq)
738 put_io_context(rq->elv.icq->ioc);
739 }
740
741 mempool_free(rq, rl->rq_pool);
742 }
743
744 /*
745 * ioc_batching returns true if the ioc is a valid batching request and
746 * should be given priority access to a request.
747 */
748 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
749 {
750 if (!ioc)
751 return 0;
752
753 /*
754 * Make sure the process is able to allocate at least 1 request
755 * even if the batch times out, otherwise we could theoretically
756 * lose wakeups.
757 */
758 return ioc->nr_batch_requests == q->nr_batching ||
759 (ioc->nr_batch_requests > 0
760 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
761 }
762
763 /*
764 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
765 * will cause the process to be a "batcher" on all queues in the system. This
766 * is the behaviour we want though - once it gets a wakeup it should be given
767 * a nice run.
768 */
769 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
770 {
771 if (!ioc || ioc_batching(q, ioc))
772 return;
773
774 ioc->nr_batch_requests = q->nr_batching;
775 ioc->last_waited = jiffies;
776 }
777
778 static void __freed_request(struct request_list *rl, int sync)
779 {
780 struct request_queue *q = rl->q;
781
782 /*
783 * bdi isn't aware of blkcg yet. As all async IOs end up root
784 * blkcg anyway, just use root blkcg state.
785 */
786 if (rl == &q->root_rl &&
787 rl->count[sync] < queue_congestion_off_threshold(q))
788 blk_clear_queue_congested(q, sync);
789
790 if (rl->count[sync] + 1 <= q->nr_requests) {
791 if (waitqueue_active(&rl->wait[sync]))
792 wake_up(&rl->wait[sync]);
793
794 blk_clear_rl_full(rl, sync);
795 }
796 }
797
798 /*
799 * A request has just been released. Account for it, update the full and
800 * congestion status, wake up any waiters. Called under q->queue_lock.
801 */
802 static void freed_request(struct request_list *rl, unsigned int flags)
803 {
804 struct request_queue *q = rl->q;
805 int sync = rw_is_sync(flags);
806
807 q->nr_rqs[sync]--;
808 rl->count[sync]--;
809 if (flags & REQ_ELVPRIV)
810 q->nr_rqs_elvpriv--;
811
812 __freed_request(rl, sync);
813
814 if (unlikely(rl->starved[sync ^ 1]))
815 __freed_request(rl, sync ^ 1);
816 }
817
818 /*
819 * Determine if elevator data should be initialized when allocating the
820 * request associated with @bio.
821 */
822 static bool blk_rq_should_init_elevator(struct bio *bio)
823 {
824 if (!bio)
825 return true;
826
827 /*
828 * Flush requests do not use the elevator so skip initialization.
829 * This allows a request to share the flush and elevator data.
830 */
831 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
832 return false;
833
834 return true;
835 }
836
837 /**
838 * rq_ioc - determine io_context for request allocation
839 * @bio: request being allocated is for this bio (can be %NULL)
840 *
841 * Determine io_context to use for request allocation for @bio. May return
842 * %NULL if %current->io_context doesn't exist.
843 */
844 static struct io_context *rq_ioc(struct bio *bio)
845 {
846 #ifdef CONFIG_BLK_CGROUP
847 if (bio && bio->bi_ioc)
848 return bio->bi_ioc;
849 #endif
850 return current->io_context;
851 }
852
853 /**
854 * __get_request - get a free request
855 * @rl: request list to allocate from
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
858 * @gfp_mask: allocation mask
859 *
860 * Get a free request from @q. This function may fail under memory
861 * pressure or if @q is dead.
862 *
863 * Must be callled with @q->queue_lock held and,
864 * Returns %NULL on failure, with @q->queue_lock held.
865 * Returns !%NULL on success, with @q->queue_lock *not held*.
866 */
867 static struct request *__get_request(struct request_list *rl, int rw_flags,
868 struct bio *bio, gfp_t gfp_mask)
869 {
870 struct request_queue *q = rl->q;
871 struct request *rq;
872 struct elevator_type *et = q->elevator->type;
873 struct io_context *ioc = rq_ioc(bio);
874 struct io_cq *icq = NULL;
875 const bool is_sync = rw_is_sync(rw_flags) != 0;
876 int may_queue;
877
878 if (unlikely(blk_queue_dead(q)))
879 return NULL;
880
881 may_queue = elv_may_queue(q, rw_flags);
882 if (may_queue == ELV_MQUEUE_NO)
883 goto rq_starved;
884
885 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
886 if (rl->count[is_sync]+1 >= q->nr_requests) {
887 /*
888 * The queue will fill after this allocation, so set
889 * it as full, and mark this process as "batching".
890 * This process will be allowed to complete a batch of
891 * requests, others will be blocked.
892 */
893 if (!blk_rl_full(rl, is_sync)) {
894 ioc_set_batching(q, ioc);
895 blk_set_rl_full(rl, is_sync);
896 } else {
897 if (may_queue != ELV_MQUEUE_MUST
898 && !ioc_batching(q, ioc)) {
899 /*
900 * The queue is full and the allocating
901 * process is not a "batcher", and not
902 * exempted by the IO scheduler
903 */
904 return NULL;
905 }
906 }
907 }
908 /*
909 * bdi isn't aware of blkcg yet. As all async IOs end up
910 * root blkcg anyway, just use root blkcg state.
911 */
912 if (rl == &q->root_rl)
913 blk_set_queue_congested(q, is_sync);
914 }
915
916 /*
917 * Only allow batching queuers to allocate up to 50% over the defined
918 * limit of requests, otherwise we could have thousands of requests
919 * allocated with any setting of ->nr_requests
920 */
921 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
922 return NULL;
923
924 q->nr_rqs[is_sync]++;
925 rl->count[is_sync]++;
926 rl->starved[is_sync] = 0;
927
928 /*
929 * Decide whether the new request will be managed by elevator. If
930 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
931 * prevent the current elevator from being destroyed until the new
932 * request is freed. This guarantees icq's won't be destroyed and
933 * makes creating new ones safe.
934 *
935 * Also, lookup icq while holding queue_lock. If it doesn't exist,
936 * it will be created after releasing queue_lock.
937 */
938 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
939 rw_flags |= REQ_ELVPRIV;
940 q->nr_rqs_elvpriv++;
941 if (et->icq_cache && ioc)
942 icq = ioc_lookup_icq(ioc, q);
943 }
944
945 if (blk_queue_io_stat(q))
946 rw_flags |= REQ_IO_STAT;
947 spin_unlock_irq(q->queue_lock);
948
949 /* allocate and init request */
950 rq = mempool_alloc(rl->rq_pool, gfp_mask);
951 if (!rq)
952 goto fail_alloc;
953
954 blk_rq_init(q, rq);
955 blk_rq_set_rl(rq, rl);
956 rq->cmd_flags = rw_flags | REQ_ALLOCED;
957
958 /* init elvpriv */
959 if (rw_flags & REQ_ELVPRIV) {
960 if (unlikely(et->icq_cache && !icq)) {
961 if (ioc)
962 icq = ioc_create_icq(ioc, q, gfp_mask);
963 if (!icq)
964 goto fail_elvpriv;
965 }
966
967 rq->elv.icq = icq;
968 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
969 goto fail_elvpriv;
970
971 /* @rq->elv.icq holds io_context until @rq is freed */
972 if (icq)
973 get_io_context(icq->ioc);
974 }
975 out:
976 /*
977 * ioc may be NULL here, and ioc_batching will be false. That's
978 * OK, if the queue is under the request limit then requests need
979 * not count toward the nr_batch_requests limit. There will always
980 * be some limit enforced by BLK_BATCH_TIME.
981 */
982 if (ioc_batching(q, ioc))
983 ioc->nr_batch_requests--;
984
985 trace_block_getrq(q, bio, rw_flags & 1);
986 return rq;
987
988 fail_elvpriv:
989 /*
990 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
991 * and may fail indefinitely under memory pressure and thus
992 * shouldn't stall IO. Treat this request as !elvpriv. This will
993 * disturb iosched and blkcg but weird is bettern than dead.
994 */
995 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
996 dev_name(q->backing_dev_info.dev));
997
998 rq->cmd_flags &= ~REQ_ELVPRIV;
999 rq->elv.icq = NULL;
1000
1001 spin_lock_irq(q->queue_lock);
1002 q->nr_rqs_elvpriv--;
1003 spin_unlock_irq(q->queue_lock);
1004 goto out;
1005
1006 fail_alloc:
1007 /*
1008 * Allocation failed presumably due to memory. Undo anything we
1009 * might have messed up.
1010 *
1011 * Allocating task should really be put onto the front of the wait
1012 * queue, but this is pretty rare.
1013 */
1014 spin_lock_irq(q->queue_lock);
1015 freed_request(rl, rw_flags);
1016
1017 /*
1018 * in the very unlikely event that allocation failed and no
1019 * requests for this direction was pending, mark us starved so that
1020 * freeing of a request in the other direction will notice
1021 * us. another possible fix would be to split the rq mempool into
1022 * READ and WRITE
1023 */
1024 rq_starved:
1025 if (unlikely(rl->count[is_sync] == 0))
1026 rl->starved[is_sync] = 1;
1027 return NULL;
1028 }
1029
1030 /**
1031 * get_request - get a free request
1032 * @q: request_queue to allocate request from
1033 * @rw_flags: RW and SYNC flags
1034 * @bio: bio to allocate request for (can be %NULL)
1035 * @gfp_mask: allocation mask
1036 *
1037 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1038 * function keeps retrying under memory pressure and fails iff @q is dead.
1039 *
1040 * Must be callled with @q->queue_lock held and,
1041 * Returns %NULL on failure, with @q->queue_lock held.
1042 * Returns !%NULL on success, with @q->queue_lock *not held*.
1043 */
1044 static struct request *get_request(struct request_queue *q, int rw_flags,
1045 struct bio *bio, gfp_t gfp_mask)
1046 {
1047 const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 DEFINE_WAIT(wait);
1049 struct request_list *rl;
1050 struct request *rq;
1051
1052 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1053 retry:
1054 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1055 if (rq)
1056 return rq;
1057
1058 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1059 blk_put_rl(rl);
1060 return NULL;
1061 }
1062
1063 /* wait on @rl and retry */
1064 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1065 TASK_UNINTERRUPTIBLE);
1066
1067 trace_block_sleeprq(q, bio, rw_flags & 1);
1068
1069 spin_unlock_irq(q->queue_lock);
1070 io_schedule();
1071
1072 /*
1073 * After sleeping, we become a "batching" process and will be able
1074 * to allocate at least one request, and up to a big batch of them
1075 * for a small period time. See ioc_batching, ioc_set_batching
1076 */
1077 ioc_set_batching(q, current->io_context);
1078
1079 spin_lock_irq(q->queue_lock);
1080 finish_wait(&rl->wait[is_sync], &wait);
1081
1082 goto retry;
1083 }
1084
1085 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1086 {
1087 struct request *rq;
1088
1089 BUG_ON(rw != READ && rw != WRITE);
1090
1091 /* create ioc upfront */
1092 create_io_context(gfp_mask, q->node);
1093
1094 spin_lock_irq(q->queue_lock);
1095 rq = get_request(q, rw, NULL, gfp_mask);
1096 if (!rq)
1097 spin_unlock_irq(q->queue_lock);
1098 /* q->queue_lock is unlocked at this point */
1099
1100 return rq;
1101 }
1102 EXPORT_SYMBOL(blk_get_request);
1103
1104 /**
1105 * blk_make_request - given a bio, allocate a corresponding struct request.
1106 * @q: target request queue
1107 * @bio: The bio describing the memory mappings that will be submitted for IO.
1108 * It may be a chained-bio properly constructed by block/bio layer.
1109 * @gfp_mask: gfp flags to be used for memory allocation
1110 *
1111 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1112 * type commands. Where the struct request needs to be farther initialized by
1113 * the caller. It is passed a &struct bio, which describes the memory info of
1114 * the I/O transfer.
1115 *
1116 * The caller of blk_make_request must make sure that bi_io_vec
1117 * are set to describe the memory buffers. That bio_data_dir() will return
1118 * the needed direction of the request. (And all bio's in the passed bio-chain
1119 * are properly set accordingly)
1120 *
1121 * If called under none-sleepable conditions, mapped bio buffers must not
1122 * need bouncing, by calling the appropriate masked or flagged allocator,
1123 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1124 * BUG.
1125 *
1126 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1127 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1128 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1129 * completion of a bio that hasn't been submitted yet, thus resulting in a
1130 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1131 * of bio_alloc(), as that avoids the mempool deadlock.
1132 * If possible a big IO should be split into smaller parts when allocation
1133 * fails. Partial allocation should not be an error, or you risk a live-lock.
1134 */
1135 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1136 gfp_t gfp_mask)
1137 {
1138 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1139
1140 if (unlikely(!rq))
1141 return ERR_PTR(-ENOMEM);
1142
1143 for_each_bio(bio) {
1144 struct bio *bounce_bio = bio;
1145 int ret;
1146
1147 blk_queue_bounce(q, &bounce_bio);
1148 ret = blk_rq_append_bio(q, rq, bounce_bio);
1149 if (unlikely(ret)) {
1150 blk_put_request(rq);
1151 return ERR_PTR(ret);
1152 }
1153 }
1154
1155 return rq;
1156 }
1157 EXPORT_SYMBOL(blk_make_request);
1158
1159 /**
1160 * blk_requeue_request - put a request back on queue
1161 * @q: request queue where request should be inserted
1162 * @rq: request to be inserted
1163 *
1164 * Description:
1165 * Drivers often keep queueing requests until the hardware cannot accept
1166 * more, when that condition happens we need to put the request back
1167 * on the queue. Must be called with queue lock held.
1168 */
1169 void blk_requeue_request(struct request_queue *q, struct request *rq)
1170 {
1171 blk_delete_timer(rq);
1172 blk_clear_rq_complete(rq);
1173 trace_block_rq_requeue(q, rq);
1174
1175 if (blk_rq_tagged(rq))
1176 blk_queue_end_tag(q, rq);
1177
1178 BUG_ON(blk_queued_rq(rq));
1179
1180 elv_requeue_request(q, rq);
1181 }
1182 EXPORT_SYMBOL(blk_requeue_request);
1183
1184 static void add_acct_request(struct request_queue *q, struct request *rq,
1185 int where)
1186 {
1187 drive_stat_acct(rq, 1);
1188 __elv_add_request(q, rq, where);
1189 }
1190
1191 static void part_round_stats_single(int cpu, struct hd_struct *part,
1192 unsigned long now)
1193 {
1194 if (now == part->stamp)
1195 return;
1196
1197 if (part_in_flight(part)) {
1198 __part_stat_add(cpu, part, time_in_queue,
1199 part_in_flight(part) * (now - part->stamp));
1200 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1201 }
1202 part->stamp = now;
1203 }
1204
1205 /**
1206 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1207 * @cpu: cpu number for stats access
1208 * @part: target partition
1209 *
1210 * The average IO queue length and utilisation statistics are maintained
1211 * by observing the current state of the queue length and the amount of
1212 * time it has been in this state for.
1213 *
1214 * Normally, that accounting is done on IO completion, but that can result
1215 * in more than a second's worth of IO being accounted for within any one
1216 * second, leading to >100% utilisation. To deal with that, we call this
1217 * function to do a round-off before returning the results when reading
1218 * /proc/diskstats. This accounts immediately for all queue usage up to
1219 * the current jiffies and restarts the counters again.
1220 */
1221 void part_round_stats(int cpu, struct hd_struct *part)
1222 {
1223 unsigned long now = jiffies;
1224
1225 if (part->partno)
1226 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1227 part_round_stats_single(cpu, part, now);
1228 }
1229 EXPORT_SYMBOL_GPL(part_round_stats);
1230
1231 /*
1232 * queue lock must be held
1233 */
1234 void __blk_put_request(struct request_queue *q, struct request *req)
1235 {
1236 if (unlikely(!q))
1237 return;
1238 if (unlikely(--req->ref_count))
1239 return;
1240
1241 elv_completed_request(q, req);
1242
1243 /* this is a bio leak */
1244 WARN_ON(req->bio != NULL);
1245
1246 /*
1247 * Request may not have originated from ll_rw_blk. if not,
1248 * it didn't come out of our reserved rq pools
1249 */
1250 if (req->cmd_flags & REQ_ALLOCED) {
1251 unsigned int flags = req->cmd_flags;
1252 struct request_list *rl = blk_rq_rl(req);
1253
1254 BUG_ON(!list_empty(&req->queuelist));
1255 BUG_ON(!hlist_unhashed(&req->hash));
1256
1257 blk_free_request(rl, req);
1258 freed_request(rl, flags);
1259 blk_put_rl(rl);
1260 }
1261 }
1262 EXPORT_SYMBOL_GPL(__blk_put_request);
1263
1264 void blk_put_request(struct request *req)
1265 {
1266 unsigned long flags;
1267 struct request_queue *q = req->q;
1268
1269 spin_lock_irqsave(q->queue_lock, flags);
1270 __blk_put_request(q, req);
1271 spin_unlock_irqrestore(q->queue_lock, flags);
1272 }
1273 EXPORT_SYMBOL(blk_put_request);
1274
1275 /**
1276 * blk_add_request_payload - add a payload to a request
1277 * @rq: request to update
1278 * @page: page backing the payload
1279 * @len: length of the payload.
1280 *
1281 * This allows to later add a payload to an already submitted request by
1282 * a block driver. The driver needs to take care of freeing the payload
1283 * itself.
1284 *
1285 * Note that this is a quite horrible hack and nothing but handling of
1286 * discard requests should ever use it.
1287 */
1288 void blk_add_request_payload(struct request *rq, struct page *page,
1289 unsigned int len)
1290 {
1291 struct bio *bio = rq->bio;
1292
1293 bio->bi_io_vec->bv_page = page;
1294 bio->bi_io_vec->bv_offset = 0;
1295 bio->bi_io_vec->bv_len = len;
1296
1297 bio->bi_size = len;
1298 bio->bi_vcnt = 1;
1299 bio->bi_phys_segments = 1;
1300
1301 rq->__data_len = rq->resid_len = len;
1302 rq->nr_phys_segments = 1;
1303 rq->buffer = bio_data(bio);
1304 }
1305 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1306
1307 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1308 struct bio *bio)
1309 {
1310 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1311
1312 if (!ll_back_merge_fn(q, req, bio))
1313 return false;
1314
1315 trace_block_bio_backmerge(q, bio);
1316
1317 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1318 blk_rq_set_mixed_merge(req);
1319
1320 req->biotail->bi_next = bio;
1321 req->biotail = bio;
1322 req->__data_len += bio->bi_size;
1323 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1324
1325 drive_stat_acct(req, 0);
1326 return true;
1327 }
1328
1329 static bool bio_attempt_front_merge(struct request_queue *q,
1330 struct request *req, struct bio *bio)
1331 {
1332 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1333
1334 if (!ll_front_merge_fn(q, req, bio))
1335 return false;
1336
1337 trace_block_bio_frontmerge(q, bio);
1338
1339 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 blk_rq_set_mixed_merge(req);
1341
1342 bio->bi_next = req->bio;
1343 req->bio = bio;
1344
1345 /*
1346 * may not be valid. if the low level driver said
1347 * it didn't need a bounce buffer then it better
1348 * not touch req->buffer either...
1349 */
1350 req->buffer = bio_data(bio);
1351 req->__sector = bio->bi_sector;
1352 req->__data_len += bio->bi_size;
1353 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1354
1355 drive_stat_acct(req, 0);
1356 return true;
1357 }
1358
1359 /**
1360 * attempt_plug_merge - try to merge with %current's plugged list
1361 * @q: request_queue new bio is being queued at
1362 * @bio: new bio being queued
1363 * @request_count: out parameter for number of traversed plugged requests
1364 *
1365 * Determine whether @bio being queued on @q can be merged with a request
1366 * on %current's plugged list. Returns %true if merge was successful,
1367 * otherwise %false.
1368 *
1369 * Plugging coalesces IOs from the same issuer for the same purpose without
1370 * going through @q->queue_lock. As such it's more of an issuing mechanism
1371 * than scheduling, and the request, while may have elvpriv data, is not
1372 * added on the elevator at this point. In addition, we don't have
1373 * reliable access to the elevator outside queue lock. Only check basic
1374 * merging parameters without querying the elevator.
1375 */
1376 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1377 unsigned int *request_count)
1378 {
1379 struct blk_plug *plug;
1380 struct request *rq;
1381 bool ret = false;
1382
1383 plug = current->plug;
1384 if (!plug)
1385 goto out;
1386 *request_count = 0;
1387
1388 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1389 int el_ret;
1390
1391 if (rq->q == q)
1392 (*request_count)++;
1393
1394 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1395 continue;
1396
1397 el_ret = blk_try_merge(rq, bio);
1398 if (el_ret == ELEVATOR_BACK_MERGE) {
1399 ret = bio_attempt_back_merge(q, rq, bio);
1400 if (ret)
1401 break;
1402 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1403 ret = bio_attempt_front_merge(q, rq, bio);
1404 if (ret)
1405 break;
1406 }
1407 }
1408 out:
1409 return ret;
1410 }
1411
1412 void init_request_from_bio(struct request *req, struct bio *bio)
1413 {
1414 req->cmd_type = REQ_TYPE_FS;
1415
1416 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1417 if (bio->bi_rw & REQ_RAHEAD)
1418 req->cmd_flags |= REQ_FAILFAST_MASK;
1419
1420 req->errors = 0;
1421 req->__sector = bio->bi_sector;
1422 req->ioprio = bio_prio(bio);
1423 blk_rq_bio_prep(req->q, req, bio);
1424 }
1425
1426 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1427 {
1428 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1429 struct blk_plug *plug;
1430 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1431 struct request *req;
1432 unsigned int request_count = 0;
1433
1434 /*
1435 * low level driver can indicate that it wants pages above a
1436 * certain limit bounced to low memory (ie for highmem, or even
1437 * ISA dma in theory)
1438 */
1439 blk_queue_bounce(q, &bio);
1440
1441 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1442 spin_lock_irq(q->queue_lock);
1443 where = ELEVATOR_INSERT_FLUSH;
1444 goto get_rq;
1445 }
1446
1447 /*
1448 * Check if we can merge with the plugged list before grabbing
1449 * any locks.
1450 */
1451 if (attempt_plug_merge(q, bio, &request_count))
1452 return;
1453
1454 spin_lock_irq(q->queue_lock);
1455
1456 el_ret = elv_merge(q, &req, bio);
1457 if (el_ret == ELEVATOR_BACK_MERGE) {
1458 if (bio_attempt_back_merge(q, req, bio)) {
1459 elv_bio_merged(q, req, bio);
1460 if (!attempt_back_merge(q, req))
1461 elv_merged_request(q, req, el_ret);
1462 goto out_unlock;
1463 }
1464 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1465 if (bio_attempt_front_merge(q, req, bio)) {
1466 elv_bio_merged(q, req, bio);
1467 if (!attempt_front_merge(q, req))
1468 elv_merged_request(q, req, el_ret);
1469 goto out_unlock;
1470 }
1471 }
1472
1473 get_rq:
1474 /*
1475 * This sync check and mask will be re-done in init_request_from_bio(),
1476 * but we need to set it earlier to expose the sync flag to the
1477 * rq allocator and io schedulers.
1478 */
1479 rw_flags = bio_data_dir(bio);
1480 if (sync)
1481 rw_flags |= REQ_SYNC;
1482
1483 /*
1484 * Grab a free request. This is might sleep but can not fail.
1485 * Returns with the queue unlocked.
1486 */
1487 req = get_request(q, rw_flags, bio, GFP_NOIO);
1488 if (unlikely(!req)) {
1489 bio_endio(bio, -ENODEV); /* @q is dead */
1490 goto out_unlock;
1491 }
1492
1493 /*
1494 * After dropping the lock and possibly sleeping here, our request
1495 * may now be mergeable after it had proven unmergeable (above).
1496 * We don't worry about that case for efficiency. It won't happen
1497 * often, and the elevators are able to handle it.
1498 */
1499 init_request_from_bio(req, bio);
1500
1501 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1502 req->cpu = raw_smp_processor_id();
1503
1504 plug = current->plug;
1505 if (plug) {
1506 /*
1507 * If this is the first request added after a plug, fire
1508 * of a plug trace. If others have been added before, check
1509 * if we have multiple devices in this plug. If so, make a
1510 * note to sort the list before dispatch.
1511 */
1512 if (list_empty(&plug->list))
1513 trace_block_plug(q);
1514 else {
1515 if (!plug->should_sort) {
1516 struct request *__rq;
1517
1518 __rq = list_entry_rq(plug->list.prev);
1519 if (__rq->q != q)
1520 plug->should_sort = 1;
1521 }
1522 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1523 blk_flush_plug_list(plug, false);
1524 trace_block_plug(q);
1525 }
1526 }
1527 list_add_tail(&req->queuelist, &plug->list);
1528 drive_stat_acct(req, 1);
1529 } else {
1530 spin_lock_irq(q->queue_lock);
1531 add_acct_request(q, req, where);
1532 __blk_run_queue(q);
1533 out_unlock:
1534 spin_unlock_irq(q->queue_lock);
1535 }
1536 }
1537 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1538
1539 /*
1540 * If bio->bi_dev is a partition, remap the location
1541 */
1542 static inline void blk_partition_remap(struct bio *bio)
1543 {
1544 struct block_device *bdev = bio->bi_bdev;
1545
1546 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1547 struct hd_struct *p = bdev->bd_part;
1548
1549 bio->bi_sector += p->start_sect;
1550 bio->bi_bdev = bdev->bd_contains;
1551
1552 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1553 bdev->bd_dev,
1554 bio->bi_sector - p->start_sect);
1555 }
1556 }
1557
1558 static void handle_bad_sector(struct bio *bio)
1559 {
1560 char b[BDEVNAME_SIZE];
1561
1562 printk(KERN_INFO "attempt to access beyond end of device\n");
1563 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1564 bdevname(bio->bi_bdev, b),
1565 bio->bi_rw,
1566 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1567 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1568
1569 set_bit(BIO_EOF, &bio->bi_flags);
1570 }
1571
1572 #ifdef CONFIG_FAIL_MAKE_REQUEST
1573
1574 static DECLARE_FAULT_ATTR(fail_make_request);
1575
1576 static int __init setup_fail_make_request(char *str)
1577 {
1578 return setup_fault_attr(&fail_make_request, str);
1579 }
1580 __setup("fail_make_request=", setup_fail_make_request);
1581
1582 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1583 {
1584 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1585 }
1586
1587 static int __init fail_make_request_debugfs(void)
1588 {
1589 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1590 NULL, &fail_make_request);
1591
1592 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1593 }
1594
1595 late_initcall(fail_make_request_debugfs);
1596
1597 #else /* CONFIG_FAIL_MAKE_REQUEST */
1598
1599 static inline bool should_fail_request(struct hd_struct *part,
1600 unsigned int bytes)
1601 {
1602 return false;
1603 }
1604
1605 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1606
1607 /*
1608 * Check whether this bio extends beyond the end of the device.
1609 */
1610 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1611 {
1612 sector_t maxsector;
1613
1614 if (!nr_sectors)
1615 return 0;
1616
1617 /* Test device or partition size, when known. */
1618 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1619 if (maxsector) {
1620 sector_t sector = bio->bi_sector;
1621
1622 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1623 /*
1624 * This may well happen - the kernel calls bread()
1625 * without checking the size of the device, e.g., when
1626 * mounting a device.
1627 */
1628 handle_bad_sector(bio);
1629 return 1;
1630 }
1631 }
1632
1633 return 0;
1634 }
1635
1636 static noinline_for_stack bool
1637 generic_make_request_checks(struct bio *bio)
1638 {
1639 struct request_queue *q;
1640 int nr_sectors = bio_sectors(bio);
1641 int err = -EIO;
1642 char b[BDEVNAME_SIZE];
1643 struct hd_struct *part;
1644
1645 might_sleep();
1646
1647 if (bio_check_eod(bio, nr_sectors))
1648 goto end_io;
1649
1650 q = bdev_get_queue(bio->bi_bdev);
1651 if (unlikely(!q)) {
1652 printk(KERN_ERR
1653 "generic_make_request: Trying to access "
1654 "nonexistent block-device %s (%Lu)\n",
1655 bdevname(bio->bi_bdev, b),
1656 (long long) bio->bi_sector);
1657 goto end_io;
1658 }
1659
1660 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1661 nr_sectors > queue_max_hw_sectors(q))) {
1662 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1663 bdevname(bio->bi_bdev, b),
1664 bio_sectors(bio),
1665 queue_max_hw_sectors(q));
1666 goto end_io;
1667 }
1668
1669 part = bio->bi_bdev->bd_part;
1670 if (should_fail_request(part, bio->bi_size) ||
1671 should_fail_request(&part_to_disk(part)->part0,
1672 bio->bi_size))
1673 goto end_io;
1674
1675 /*
1676 * If this device has partitions, remap block n
1677 * of partition p to block n+start(p) of the disk.
1678 */
1679 blk_partition_remap(bio);
1680
1681 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1682 goto end_io;
1683
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1686
1687 /*
1688 * Filter flush bio's early so that make_request based
1689 * drivers without flush support don't have to worry
1690 * about them.
1691 */
1692 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1693 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1694 if (!nr_sectors) {
1695 err = 0;
1696 goto end_io;
1697 }
1698 }
1699
1700 if ((bio->bi_rw & REQ_DISCARD) &&
1701 (!blk_queue_discard(q) ||
1702 ((bio->bi_rw & REQ_SECURE) &&
1703 !blk_queue_secdiscard(q)))) {
1704 err = -EOPNOTSUPP;
1705 goto end_io;
1706 }
1707
1708 /*
1709 * Various block parts want %current->io_context and lazy ioc
1710 * allocation ends up trading a lot of pain for a small amount of
1711 * memory. Just allocate it upfront. This may fail and block
1712 * layer knows how to live with it.
1713 */
1714 create_io_context(GFP_ATOMIC, q->node);
1715
1716 if (blk_throtl_bio(q, bio))
1717 return false; /* throttled, will be resubmitted later */
1718
1719 trace_block_bio_queue(q, bio);
1720 return true;
1721
1722 end_io:
1723 bio_endio(bio, err);
1724 return false;
1725 }
1726
1727 /**
1728 * generic_make_request - hand a buffer to its device driver for I/O
1729 * @bio: The bio describing the location in memory and on the device.
1730 *
1731 * generic_make_request() is used to make I/O requests of block
1732 * devices. It is passed a &struct bio, which describes the I/O that needs
1733 * to be done.
1734 *
1735 * generic_make_request() does not return any status. The
1736 * success/failure status of the request, along with notification of
1737 * completion, is delivered asynchronously through the bio->bi_end_io
1738 * function described (one day) else where.
1739 *
1740 * The caller of generic_make_request must make sure that bi_io_vec
1741 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1742 * set to describe the device address, and the
1743 * bi_end_io and optionally bi_private are set to describe how
1744 * completion notification should be signaled.
1745 *
1746 * generic_make_request and the drivers it calls may use bi_next if this
1747 * bio happens to be merged with someone else, and may resubmit the bio to
1748 * a lower device by calling into generic_make_request recursively, which
1749 * means the bio should NOT be touched after the call to ->make_request_fn.
1750 */
1751 void generic_make_request(struct bio *bio)
1752 {
1753 struct bio_list bio_list_on_stack;
1754
1755 if (!generic_make_request_checks(bio))
1756 return;
1757
1758 /*
1759 * We only want one ->make_request_fn to be active at a time, else
1760 * stack usage with stacked devices could be a problem. So use
1761 * current->bio_list to keep a list of requests submited by a
1762 * make_request_fn function. current->bio_list is also used as a
1763 * flag to say if generic_make_request is currently active in this
1764 * task or not. If it is NULL, then no make_request is active. If
1765 * it is non-NULL, then a make_request is active, and new requests
1766 * should be added at the tail
1767 */
1768 if (current->bio_list) {
1769 bio_list_add(current->bio_list, bio);
1770 return;
1771 }
1772
1773 /* following loop may be a bit non-obvious, and so deserves some
1774 * explanation.
1775 * Before entering the loop, bio->bi_next is NULL (as all callers
1776 * ensure that) so we have a list with a single bio.
1777 * We pretend that we have just taken it off a longer list, so
1778 * we assign bio_list to a pointer to the bio_list_on_stack,
1779 * thus initialising the bio_list of new bios to be
1780 * added. ->make_request() may indeed add some more bios
1781 * through a recursive call to generic_make_request. If it
1782 * did, we find a non-NULL value in bio_list and re-enter the loop
1783 * from the top. In this case we really did just take the bio
1784 * of the top of the list (no pretending) and so remove it from
1785 * bio_list, and call into ->make_request() again.
1786 */
1787 BUG_ON(bio->bi_next);
1788 bio_list_init(&bio_list_on_stack);
1789 current->bio_list = &bio_list_on_stack;
1790 do {
1791 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1792
1793 q->make_request_fn(q, bio);
1794
1795 bio = bio_list_pop(current->bio_list);
1796 } while (bio);
1797 current->bio_list = NULL; /* deactivate */
1798 }
1799 EXPORT_SYMBOL(generic_make_request);
1800
1801 /**
1802 * submit_bio - submit a bio to the block device layer for I/O
1803 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1804 * @bio: The &struct bio which describes the I/O
1805 *
1806 * submit_bio() is very similar in purpose to generic_make_request(), and
1807 * uses that function to do most of the work. Both are fairly rough
1808 * interfaces; @bio must be presetup and ready for I/O.
1809 *
1810 */
1811 void submit_bio(int rw, struct bio *bio)
1812 {
1813 int count = bio_sectors(bio);
1814
1815 bio->bi_rw |= rw;
1816
1817 /*
1818 * If it's a regular read/write or a barrier with data attached,
1819 * go through the normal accounting stuff before submission.
1820 */
1821 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1822 if (rw & WRITE) {
1823 count_vm_events(PGPGOUT, count);
1824 } else {
1825 task_io_account_read(bio->bi_size);
1826 count_vm_events(PGPGIN, count);
1827 }
1828
1829 if (unlikely(block_dump)) {
1830 char b[BDEVNAME_SIZE];
1831 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1832 current->comm, task_pid_nr(current),
1833 (rw & WRITE) ? "WRITE" : "READ",
1834 (unsigned long long)bio->bi_sector,
1835 bdevname(bio->bi_bdev, b),
1836 count);
1837 }
1838 }
1839
1840 generic_make_request(bio);
1841 }
1842 EXPORT_SYMBOL(submit_bio);
1843
1844 /**
1845 * blk_rq_check_limits - Helper function to check a request for the queue limit
1846 * @q: the queue
1847 * @rq: the request being checked
1848 *
1849 * Description:
1850 * @rq may have been made based on weaker limitations of upper-level queues
1851 * in request stacking drivers, and it may violate the limitation of @q.
1852 * Since the block layer and the underlying device driver trust @rq
1853 * after it is inserted to @q, it should be checked against @q before
1854 * the insertion using this generic function.
1855 *
1856 * This function should also be useful for request stacking drivers
1857 * in some cases below, so export this function.
1858 * Request stacking drivers like request-based dm may change the queue
1859 * limits while requests are in the queue (e.g. dm's table swapping).
1860 * Such request stacking drivers should check those requests agaist
1861 * the new queue limits again when they dispatch those requests,
1862 * although such checkings are also done against the old queue limits
1863 * when submitting requests.
1864 */
1865 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1866 {
1867 if (rq->cmd_flags & REQ_DISCARD)
1868 return 0;
1869
1870 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1871 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1872 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1873 return -EIO;
1874 }
1875
1876 /*
1877 * queue's settings related to segment counting like q->bounce_pfn
1878 * may differ from that of other stacking queues.
1879 * Recalculate it to check the request correctly on this queue's
1880 * limitation.
1881 */
1882 blk_recalc_rq_segments(rq);
1883 if (rq->nr_phys_segments > queue_max_segments(q)) {
1884 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1885 return -EIO;
1886 }
1887
1888 return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1891
1892 /**
1893 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1894 * @q: the queue to submit the request
1895 * @rq: the request being queued
1896 */
1897 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1898 {
1899 unsigned long flags;
1900 int where = ELEVATOR_INSERT_BACK;
1901
1902 if (blk_rq_check_limits(q, rq))
1903 return -EIO;
1904
1905 if (rq->rq_disk &&
1906 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1907 return -EIO;
1908
1909 spin_lock_irqsave(q->queue_lock, flags);
1910 if (unlikely(blk_queue_dead(q))) {
1911 spin_unlock_irqrestore(q->queue_lock, flags);
1912 return -ENODEV;
1913 }
1914
1915 /*
1916 * Submitting request must be dequeued before calling this function
1917 * because it will be linked to another request_queue
1918 */
1919 BUG_ON(blk_queued_rq(rq));
1920
1921 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1922 where = ELEVATOR_INSERT_FLUSH;
1923
1924 add_acct_request(q, rq, where);
1925 if (where == ELEVATOR_INSERT_FLUSH)
1926 __blk_run_queue(q);
1927 spin_unlock_irqrestore(q->queue_lock, flags);
1928
1929 return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1932
1933 /**
1934 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1935 * @rq: request to examine
1936 *
1937 * Description:
1938 * A request could be merge of IOs which require different failure
1939 * handling. This function determines the number of bytes which
1940 * can be failed from the beginning of the request without
1941 * crossing into area which need to be retried further.
1942 *
1943 * Return:
1944 * The number of bytes to fail.
1945 *
1946 * Context:
1947 * queue_lock must be held.
1948 */
1949 unsigned int blk_rq_err_bytes(const struct request *rq)
1950 {
1951 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1952 unsigned int bytes = 0;
1953 struct bio *bio;
1954
1955 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1956 return blk_rq_bytes(rq);
1957
1958 /*
1959 * Currently the only 'mixing' which can happen is between
1960 * different fastfail types. We can safely fail portions
1961 * which have all the failfast bits that the first one has -
1962 * the ones which are at least as eager to fail as the first
1963 * one.
1964 */
1965 for (bio = rq->bio; bio; bio = bio->bi_next) {
1966 if ((bio->bi_rw & ff) != ff)
1967 break;
1968 bytes += bio->bi_size;
1969 }
1970
1971 /* this could lead to infinite loop */
1972 BUG_ON(blk_rq_bytes(rq) && !bytes);
1973 return bytes;
1974 }
1975 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1976
1977 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1978 {
1979 if (blk_do_io_stat(req)) {
1980 const int rw = rq_data_dir(req);
1981 struct hd_struct *part;
1982 int cpu;
1983
1984 cpu = part_stat_lock();
1985 part = req->part;
1986 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1987 part_stat_unlock();
1988 }
1989 }
1990
1991 static void blk_account_io_done(struct request *req)
1992 {
1993 /*
1994 * Account IO completion. flush_rq isn't accounted as a
1995 * normal IO on queueing nor completion. Accounting the
1996 * containing request is enough.
1997 */
1998 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1999 unsigned long duration = jiffies - req->start_time;
2000 const int rw = rq_data_dir(req);
2001 struct hd_struct *part;
2002 int cpu;
2003
2004 cpu = part_stat_lock();
2005 part = req->part;
2006
2007 part_stat_inc(cpu, part, ios[rw]);
2008 part_stat_add(cpu, part, ticks[rw], duration);
2009 part_round_stats(cpu, part);
2010 part_dec_in_flight(part, rw);
2011
2012 hd_struct_put(part);
2013 part_stat_unlock();
2014 }
2015 }
2016
2017 /**
2018 * blk_peek_request - peek at the top of a request queue
2019 * @q: request queue to peek at
2020 *
2021 * Description:
2022 * Return the request at the top of @q. The returned request
2023 * should be started using blk_start_request() before LLD starts
2024 * processing it.
2025 *
2026 * Return:
2027 * Pointer to the request at the top of @q if available. Null
2028 * otherwise.
2029 *
2030 * Context:
2031 * queue_lock must be held.
2032 */
2033 struct request *blk_peek_request(struct request_queue *q)
2034 {
2035 struct request *rq;
2036 int ret;
2037
2038 while ((rq = __elv_next_request(q)) != NULL) {
2039 if (!(rq->cmd_flags & REQ_STARTED)) {
2040 /*
2041 * This is the first time the device driver
2042 * sees this request (possibly after
2043 * requeueing). Notify IO scheduler.
2044 */
2045 if (rq->cmd_flags & REQ_SORTED)
2046 elv_activate_rq(q, rq);
2047
2048 /*
2049 * just mark as started even if we don't start
2050 * it, a request that has been delayed should
2051 * not be passed by new incoming requests
2052 */
2053 rq->cmd_flags |= REQ_STARTED;
2054 trace_block_rq_issue(q, rq);
2055 }
2056
2057 if (!q->boundary_rq || q->boundary_rq == rq) {
2058 q->end_sector = rq_end_sector(rq);
2059 q->boundary_rq = NULL;
2060 }
2061
2062 if (rq->cmd_flags & REQ_DONTPREP)
2063 break;
2064
2065 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2066 /*
2067 * make sure space for the drain appears we
2068 * know we can do this because max_hw_segments
2069 * has been adjusted to be one fewer than the
2070 * device can handle
2071 */
2072 rq->nr_phys_segments++;
2073 }
2074
2075 if (!q->prep_rq_fn)
2076 break;
2077
2078 ret = q->prep_rq_fn(q, rq);
2079 if (ret == BLKPREP_OK) {
2080 break;
2081 } else if (ret == BLKPREP_DEFER) {
2082 /*
2083 * the request may have been (partially) prepped.
2084 * we need to keep this request in the front to
2085 * avoid resource deadlock. REQ_STARTED will
2086 * prevent other fs requests from passing this one.
2087 */
2088 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2089 !(rq->cmd_flags & REQ_DONTPREP)) {
2090 /*
2091 * remove the space for the drain we added
2092 * so that we don't add it again
2093 */
2094 --rq->nr_phys_segments;
2095 }
2096
2097 rq = NULL;
2098 break;
2099 } else if (ret == BLKPREP_KILL) {
2100 rq->cmd_flags |= REQ_QUIET;
2101 /*
2102 * Mark this request as started so we don't trigger
2103 * any debug logic in the end I/O path.
2104 */
2105 blk_start_request(rq);
2106 __blk_end_request_all(rq, -EIO);
2107 } else {
2108 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2109 break;
2110 }
2111 }
2112
2113 return rq;
2114 }
2115 EXPORT_SYMBOL(blk_peek_request);
2116
2117 void blk_dequeue_request(struct request *rq)
2118 {
2119 struct request_queue *q = rq->q;
2120
2121 BUG_ON(list_empty(&rq->queuelist));
2122 BUG_ON(ELV_ON_HASH(rq));
2123
2124 list_del_init(&rq->queuelist);
2125
2126 /*
2127 * the time frame between a request being removed from the lists
2128 * and to it is freed is accounted as io that is in progress at
2129 * the driver side.
2130 */
2131 if (blk_account_rq(rq)) {
2132 q->in_flight[rq_is_sync(rq)]++;
2133 set_io_start_time_ns(rq);
2134 }
2135 }
2136
2137 /**
2138 * blk_start_request - start request processing on the driver
2139 * @req: request to dequeue
2140 *
2141 * Description:
2142 * Dequeue @req and start timeout timer on it. This hands off the
2143 * request to the driver.
2144 *
2145 * Block internal functions which don't want to start timer should
2146 * call blk_dequeue_request().
2147 *
2148 * Context:
2149 * queue_lock must be held.
2150 */
2151 void blk_start_request(struct request *req)
2152 {
2153 blk_dequeue_request(req);
2154
2155 /*
2156 * We are now handing the request to the hardware, initialize
2157 * resid_len to full count and add the timeout handler.
2158 */
2159 req->resid_len = blk_rq_bytes(req);
2160 if (unlikely(blk_bidi_rq(req)))
2161 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2162
2163 blk_add_timer(req);
2164 }
2165 EXPORT_SYMBOL(blk_start_request);
2166
2167 /**
2168 * blk_fetch_request - fetch a request from a request queue
2169 * @q: request queue to fetch a request from
2170 *
2171 * Description:
2172 * Return the request at the top of @q. The request is started on
2173 * return and LLD can start processing it immediately.
2174 *
2175 * Return:
2176 * Pointer to the request at the top of @q if available. Null
2177 * otherwise.
2178 *
2179 * Context:
2180 * queue_lock must be held.
2181 */
2182 struct request *blk_fetch_request(struct request_queue *q)
2183 {
2184 struct request *rq;
2185
2186 rq = blk_peek_request(q);
2187 if (rq)
2188 blk_start_request(rq);
2189 return rq;
2190 }
2191 EXPORT_SYMBOL(blk_fetch_request);
2192
2193 /**
2194 * blk_update_request - Special helper function for request stacking drivers
2195 * @req: the request being processed
2196 * @error: %0 for success, < %0 for error
2197 * @nr_bytes: number of bytes to complete @req
2198 *
2199 * Description:
2200 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2201 * the request structure even if @req doesn't have leftover.
2202 * If @req has leftover, sets it up for the next range of segments.
2203 *
2204 * This special helper function is only for request stacking drivers
2205 * (e.g. request-based dm) so that they can handle partial completion.
2206 * Actual device drivers should use blk_end_request instead.
2207 *
2208 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2209 * %false return from this function.
2210 *
2211 * Return:
2212 * %false - this request doesn't have any more data
2213 * %true - this request has more data
2214 **/
2215 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2216 {
2217 int total_bytes, bio_nbytes, next_idx = 0;
2218 struct bio *bio;
2219
2220 if (!req->bio)
2221 return false;
2222
2223 trace_block_rq_complete(req->q, req);
2224
2225 /*
2226 * For fs requests, rq is just carrier of independent bio's
2227 * and each partial completion should be handled separately.
2228 * Reset per-request error on each partial completion.
2229 *
2230 * TODO: tj: This is too subtle. It would be better to let
2231 * low level drivers do what they see fit.
2232 */
2233 if (req->cmd_type == REQ_TYPE_FS)
2234 req->errors = 0;
2235
2236 if (error && req->cmd_type == REQ_TYPE_FS &&
2237 !(req->cmd_flags & REQ_QUIET)) {
2238 char *error_type;
2239
2240 switch (error) {
2241 case -ENOLINK:
2242 error_type = "recoverable transport";
2243 break;
2244 case -EREMOTEIO:
2245 error_type = "critical target";
2246 break;
2247 case -EBADE:
2248 error_type = "critical nexus";
2249 break;
2250 case -EIO:
2251 default:
2252 error_type = "I/O";
2253 break;
2254 }
2255 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2256 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2257 (unsigned long long)blk_rq_pos(req));
2258 }
2259
2260 blk_account_io_completion(req, nr_bytes);
2261
2262 total_bytes = bio_nbytes = 0;
2263 while ((bio = req->bio) != NULL) {
2264 int nbytes;
2265
2266 if (nr_bytes >= bio->bi_size) {
2267 req->bio = bio->bi_next;
2268 nbytes = bio->bi_size;
2269 req_bio_endio(req, bio, nbytes, error);
2270 next_idx = 0;
2271 bio_nbytes = 0;
2272 } else {
2273 int idx = bio->bi_idx + next_idx;
2274
2275 if (unlikely(idx >= bio->bi_vcnt)) {
2276 blk_dump_rq_flags(req, "__end_that");
2277 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2278 __func__, idx, bio->bi_vcnt);
2279 break;
2280 }
2281
2282 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2283 BIO_BUG_ON(nbytes > bio->bi_size);
2284
2285 /*
2286 * not a complete bvec done
2287 */
2288 if (unlikely(nbytes > nr_bytes)) {
2289 bio_nbytes += nr_bytes;
2290 total_bytes += nr_bytes;
2291 break;
2292 }
2293
2294 /*
2295 * advance to the next vector
2296 */
2297 next_idx++;
2298 bio_nbytes += nbytes;
2299 }
2300
2301 total_bytes += nbytes;
2302 nr_bytes -= nbytes;
2303
2304 bio = req->bio;
2305 if (bio) {
2306 /*
2307 * end more in this run, or just return 'not-done'
2308 */
2309 if (unlikely(nr_bytes <= 0))
2310 break;
2311 }
2312 }
2313
2314 /*
2315 * completely done
2316 */
2317 if (!req->bio) {
2318 /*
2319 * Reset counters so that the request stacking driver
2320 * can find how many bytes remain in the request
2321 * later.
2322 */
2323 req->__data_len = 0;
2324 return false;
2325 }
2326
2327 /*
2328 * if the request wasn't completed, update state
2329 */
2330 if (bio_nbytes) {
2331 req_bio_endio(req, bio, bio_nbytes, error);
2332 bio->bi_idx += next_idx;
2333 bio_iovec(bio)->bv_offset += nr_bytes;
2334 bio_iovec(bio)->bv_len -= nr_bytes;
2335 }
2336
2337 req->__data_len -= total_bytes;
2338 req->buffer = bio_data(req->bio);
2339
2340 /* update sector only for requests with clear definition of sector */
2341 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2342 req->__sector += total_bytes >> 9;
2343
2344 /* mixed attributes always follow the first bio */
2345 if (req->cmd_flags & REQ_MIXED_MERGE) {
2346 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2347 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2348 }
2349
2350 /*
2351 * If total number of sectors is less than the first segment
2352 * size, something has gone terribly wrong.
2353 */
2354 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2355 blk_dump_rq_flags(req, "request botched");
2356 req->__data_len = blk_rq_cur_bytes(req);
2357 }
2358
2359 /* recalculate the number of segments */
2360 blk_recalc_rq_segments(req);
2361
2362 return true;
2363 }
2364 EXPORT_SYMBOL_GPL(blk_update_request);
2365
2366 static bool blk_update_bidi_request(struct request *rq, int error,
2367 unsigned int nr_bytes,
2368 unsigned int bidi_bytes)
2369 {
2370 if (blk_update_request(rq, error, nr_bytes))
2371 return true;
2372
2373 /* Bidi request must be completed as a whole */
2374 if (unlikely(blk_bidi_rq(rq)) &&
2375 blk_update_request(rq->next_rq, error, bidi_bytes))
2376 return true;
2377
2378 if (blk_queue_add_random(rq->q))
2379 add_disk_randomness(rq->rq_disk);
2380
2381 return false;
2382 }
2383
2384 /**
2385 * blk_unprep_request - unprepare a request
2386 * @req: the request
2387 *
2388 * This function makes a request ready for complete resubmission (or
2389 * completion). It happens only after all error handling is complete,
2390 * so represents the appropriate moment to deallocate any resources
2391 * that were allocated to the request in the prep_rq_fn. The queue
2392 * lock is held when calling this.
2393 */
2394 void blk_unprep_request(struct request *req)
2395 {
2396 struct request_queue *q = req->q;
2397
2398 req->cmd_flags &= ~REQ_DONTPREP;
2399 if (q->unprep_rq_fn)
2400 q->unprep_rq_fn(q, req);
2401 }
2402 EXPORT_SYMBOL_GPL(blk_unprep_request);
2403
2404 /*
2405 * queue lock must be held
2406 */
2407 static void blk_finish_request(struct request *req, int error)
2408 {
2409 if (blk_rq_tagged(req))
2410 blk_queue_end_tag(req->q, req);
2411
2412 BUG_ON(blk_queued_rq(req));
2413
2414 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2415 laptop_io_completion(&req->q->backing_dev_info);
2416
2417 blk_delete_timer(req);
2418
2419 if (req->cmd_flags & REQ_DONTPREP)
2420 blk_unprep_request(req);
2421
2422
2423 blk_account_io_done(req);
2424
2425 if (req->end_io)
2426 req->end_io(req, error);
2427 else {
2428 if (blk_bidi_rq(req))
2429 __blk_put_request(req->next_rq->q, req->next_rq);
2430
2431 __blk_put_request(req->q, req);
2432 }
2433 }
2434
2435 /**
2436 * blk_end_bidi_request - Complete a bidi request
2437 * @rq: the request to complete
2438 * @error: %0 for success, < %0 for error
2439 * @nr_bytes: number of bytes to complete @rq
2440 * @bidi_bytes: number of bytes to complete @rq->next_rq
2441 *
2442 * Description:
2443 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2444 * Drivers that supports bidi can safely call this member for any
2445 * type of request, bidi or uni. In the later case @bidi_bytes is
2446 * just ignored.
2447 *
2448 * Return:
2449 * %false - we are done with this request
2450 * %true - still buffers pending for this request
2451 **/
2452 static bool blk_end_bidi_request(struct request *rq, int error,
2453 unsigned int nr_bytes, unsigned int bidi_bytes)
2454 {
2455 struct request_queue *q = rq->q;
2456 unsigned long flags;
2457
2458 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2459 return true;
2460
2461 spin_lock_irqsave(q->queue_lock, flags);
2462 blk_finish_request(rq, error);
2463 spin_unlock_irqrestore(q->queue_lock, flags);
2464
2465 return false;
2466 }
2467
2468 /**
2469 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2470 * @rq: the request to complete
2471 * @error: %0 for success, < %0 for error
2472 * @nr_bytes: number of bytes to complete @rq
2473 * @bidi_bytes: number of bytes to complete @rq->next_rq
2474 *
2475 * Description:
2476 * Identical to blk_end_bidi_request() except that queue lock is
2477 * assumed to be locked on entry and remains so on return.
2478 *
2479 * Return:
2480 * %false - we are done with this request
2481 * %true - still buffers pending for this request
2482 **/
2483 bool __blk_end_bidi_request(struct request *rq, int error,
2484 unsigned int nr_bytes, unsigned int bidi_bytes)
2485 {
2486 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2487 return true;
2488
2489 blk_finish_request(rq, error);
2490
2491 return false;
2492 }
2493
2494 /**
2495 * blk_end_request - Helper function for drivers to complete the request.
2496 * @rq: the request being processed
2497 * @error: %0 for success, < %0 for error
2498 * @nr_bytes: number of bytes to complete
2499 *
2500 * Description:
2501 * Ends I/O on a number of bytes attached to @rq.
2502 * If @rq has leftover, sets it up for the next range of segments.
2503 *
2504 * Return:
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
2507 **/
2508 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2509 {
2510 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2511 }
2512 EXPORT_SYMBOL(blk_end_request);
2513
2514 /**
2515 * blk_end_request_all - Helper function for drives to finish the request.
2516 * @rq: the request to finish
2517 * @error: %0 for success, < %0 for error
2518 *
2519 * Description:
2520 * Completely finish @rq.
2521 */
2522 void blk_end_request_all(struct request *rq, int error)
2523 {
2524 bool pending;
2525 unsigned int bidi_bytes = 0;
2526
2527 if (unlikely(blk_bidi_rq(rq)))
2528 bidi_bytes = blk_rq_bytes(rq->next_rq);
2529
2530 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2531 BUG_ON(pending);
2532 }
2533 EXPORT_SYMBOL(blk_end_request_all);
2534
2535 /**
2536 * blk_end_request_cur - Helper function to finish the current request chunk.
2537 * @rq: the request to finish the current chunk for
2538 * @error: %0 for success, < %0 for error
2539 *
2540 * Description:
2541 * Complete the current consecutively mapped chunk from @rq.
2542 *
2543 * Return:
2544 * %false - we are done with this request
2545 * %true - still buffers pending for this request
2546 */
2547 bool blk_end_request_cur(struct request *rq, int error)
2548 {
2549 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2550 }
2551 EXPORT_SYMBOL(blk_end_request_cur);
2552
2553 /**
2554 * blk_end_request_err - Finish a request till the next failure boundary.
2555 * @rq: the request to finish till the next failure boundary for
2556 * @error: must be negative errno
2557 *
2558 * Description:
2559 * Complete @rq till the next failure boundary.
2560 *
2561 * Return:
2562 * %false - we are done with this request
2563 * %true - still buffers pending for this request
2564 */
2565 bool blk_end_request_err(struct request *rq, int error)
2566 {
2567 WARN_ON(error >= 0);
2568 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2569 }
2570 EXPORT_SYMBOL_GPL(blk_end_request_err);
2571
2572 /**
2573 * __blk_end_request - Helper function for drivers to complete the request.
2574 * @rq: the request being processed
2575 * @error: %0 for success, < %0 for error
2576 * @nr_bytes: number of bytes to complete
2577 *
2578 * Description:
2579 * Must be called with queue lock held unlike blk_end_request().
2580 *
2581 * Return:
2582 * %false - we are done with this request
2583 * %true - still buffers pending for this request
2584 **/
2585 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2586 {
2587 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2588 }
2589 EXPORT_SYMBOL(__blk_end_request);
2590
2591 /**
2592 * __blk_end_request_all - Helper function for drives to finish the request.
2593 * @rq: the request to finish
2594 * @error: %0 for success, < %0 for error
2595 *
2596 * Description:
2597 * Completely finish @rq. Must be called with queue lock held.
2598 */
2599 void __blk_end_request_all(struct request *rq, int error)
2600 {
2601 bool pending;
2602 unsigned int bidi_bytes = 0;
2603
2604 if (unlikely(blk_bidi_rq(rq)))
2605 bidi_bytes = blk_rq_bytes(rq->next_rq);
2606
2607 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2608 BUG_ON(pending);
2609 }
2610 EXPORT_SYMBOL(__blk_end_request_all);
2611
2612 /**
2613 * __blk_end_request_cur - Helper function to finish the current request chunk.
2614 * @rq: the request to finish the current chunk for
2615 * @error: %0 for success, < %0 for error
2616 *
2617 * Description:
2618 * Complete the current consecutively mapped chunk from @rq. Must
2619 * be called with queue lock held.
2620 *
2621 * Return:
2622 * %false - we are done with this request
2623 * %true - still buffers pending for this request
2624 */
2625 bool __blk_end_request_cur(struct request *rq, int error)
2626 {
2627 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2628 }
2629 EXPORT_SYMBOL(__blk_end_request_cur);
2630
2631 /**
2632 * __blk_end_request_err - Finish a request till the next failure boundary.
2633 * @rq: the request to finish till the next failure boundary for
2634 * @error: must be negative errno
2635 *
2636 * Description:
2637 * Complete @rq till the next failure boundary. Must be called
2638 * with queue lock held.
2639 *
2640 * Return:
2641 * %false - we are done with this request
2642 * %true - still buffers pending for this request
2643 */
2644 bool __blk_end_request_err(struct request *rq, int error)
2645 {
2646 WARN_ON(error >= 0);
2647 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2648 }
2649 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2650
2651 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2652 struct bio *bio)
2653 {
2654 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2655 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2656
2657 if (bio_has_data(bio)) {
2658 rq->nr_phys_segments = bio_phys_segments(q, bio);
2659 rq->buffer = bio_data(bio);
2660 }
2661 rq->__data_len = bio->bi_size;
2662 rq->bio = rq->biotail = bio;
2663
2664 if (bio->bi_bdev)
2665 rq->rq_disk = bio->bi_bdev->bd_disk;
2666 }
2667
2668 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2669 /**
2670 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2671 * @rq: the request to be flushed
2672 *
2673 * Description:
2674 * Flush all pages in @rq.
2675 */
2676 void rq_flush_dcache_pages(struct request *rq)
2677 {
2678 struct req_iterator iter;
2679 struct bio_vec *bvec;
2680
2681 rq_for_each_segment(bvec, rq, iter)
2682 flush_dcache_page(bvec->bv_page);
2683 }
2684 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2685 #endif
2686
2687 /**
2688 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2689 * @q : the queue of the device being checked
2690 *
2691 * Description:
2692 * Check if underlying low-level drivers of a device are busy.
2693 * If the drivers want to export their busy state, they must set own
2694 * exporting function using blk_queue_lld_busy() first.
2695 *
2696 * Basically, this function is used only by request stacking drivers
2697 * to stop dispatching requests to underlying devices when underlying
2698 * devices are busy. This behavior helps more I/O merging on the queue
2699 * of the request stacking driver and prevents I/O throughput regression
2700 * on burst I/O load.
2701 *
2702 * Return:
2703 * 0 - Not busy (The request stacking driver should dispatch request)
2704 * 1 - Busy (The request stacking driver should stop dispatching request)
2705 */
2706 int blk_lld_busy(struct request_queue *q)
2707 {
2708 if (q->lld_busy_fn)
2709 return q->lld_busy_fn(q);
2710
2711 return 0;
2712 }
2713 EXPORT_SYMBOL_GPL(blk_lld_busy);
2714
2715 /**
2716 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2717 * @rq: the clone request to be cleaned up
2718 *
2719 * Description:
2720 * Free all bios in @rq for a cloned request.
2721 */
2722 void blk_rq_unprep_clone(struct request *rq)
2723 {
2724 struct bio *bio;
2725
2726 while ((bio = rq->bio) != NULL) {
2727 rq->bio = bio->bi_next;
2728
2729 bio_put(bio);
2730 }
2731 }
2732 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2733
2734 /*
2735 * Copy attributes of the original request to the clone request.
2736 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2737 */
2738 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2739 {
2740 dst->cpu = src->cpu;
2741 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2742 dst->cmd_type = src->cmd_type;
2743 dst->__sector = blk_rq_pos(src);
2744 dst->__data_len = blk_rq_bytes(src);
2745 dst->nr_phys_segments = src->nr_phys_segments;
2746 dst->ioprio = src->ioprio;
2747 dst->extra_len = src->extra_len;
2748 }
2749
2750 /**
2751 * blk_rq_prep_clone - Helper function to setup clone request
2752 * @rq: the request to be setup
2753 * @rq_src: original request to be cloned
2754 * @bs: bio_set that bios for clone are allocated from
2755 * @gfp_mask: memory allocation mask for bio
2756 * @bio_ctr: setup function to be called for each clone bio.
2757 * Returns %0 for success, non %0 for failure.
2758 * @data: private data to be passed to @bio_ctr
2759 *
2760 * Description:
2761 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2762 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2763 * are not copied, and copying such parts is the caller's responsibility.
2764 * Also, pages which the original bios are pointing to are not copied
2765 * and the cloned bios just point same pages.
2766 * So cloned bios must be completed before original bios, which means
2767 * the caller must complete @rq before @rq_src.
2768 */
2769 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2770 struct bio_set *bs, gfp_t gfp_mask,
2771 int (*bio_ctr)(struct bio *, struct bio *, void *),
2772 void *data)
2773 {
2774 struct bio *bio, *bio_src;
2775
2776 if (!bs)
2777 bs = fs_bio_set;
2778
2779 blk_rq_init(NULL, rq);
2780
2781 __rq_for_each_bio(bio_src, rq_src) {
2782 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2783 if (!bio)
2784 goto free_and_out;
2785
2786 __bio_clone(bio, bio_src);
2787
2788 if (bio_integrity(bio_src) &&
2789 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2790 goto free_and_out;
2791
2792 if (bio_ctr && bio_ctr(bio, bio_src, data))
2793 goto free_and_out;
2794
2795 if (rq->bio) {
2796 rq->biotail->bi_next = bio;
2797 rq->biotail = bio;
2798 } else
2799 rq->bio = rq->biotail = bio;
2800 }
2801
2802 __blk_rq_prep_clone(rq, rq_src);
2803
2804 return 0;
2805
2806 free_and_out:
2807 if (bio)
2808 bio_free(bio, bs);
2809 blk_rq_unprep_clone(rq);
2810
2811 return -ENOMEM;
2812 }
2813 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2814
2815 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2816 {
2817 return queue_work(kblockd_workqueue, work);
2818 }
2819 EXPORT_SYMBOL(kblockd_schedule_work);
2820
2821 int kblockd_schedule_delayed_work(struct request_queue *q,
2822 struct delayed_work *dwork, unsigned long delay)
2823 {
2824 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2825 }
2826 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2827
2828 #define PLUG_MAGIC 0x91827364
2829
2830 /**
2831 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2832 * @plug: The &struct blk_plug that needs to be initialized
2833 *
2834 * Description:
2835 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2836 * pending I/O should the task end up blocking between blk_start_plug() and
2837 * blk_finish_plug(). This is important from a performance perspective, but
2838 * also ensures that we don't deadlock. For instance, if the task is blocking
2839 * for a memory allocation, memory reclaim could end up wanting to free a
2840 * page belonging to that request that is currently residing in our private
2841 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2842 * this kind of deadlock.
2843 */
2844 void blk_start_plug(struct blk_plug *plug)
2845 {
2846 struct task_struct *tsk = current;
2847
2848 plug->magic = PLUG_MAGIC;
2849 INIT_LIST_HEAD(&plug->list);
2850 INIT_LIST_HEAD(&plug->cb_list);
2851 plug->should_sort = 0;
2852
2853 /*
2854 * If this is a nested plug, don't actually assign it. It will be
2855 * flushed on its own.
2856 */
2857 if (!tsk->plug) {
2858 /*
2859 * Store ordering should not be needed here, since a potential
2860 * preempt will imply a full memory barrier
2861 */
2862 tsk->plug = plug;
2863 }
2864 }
2865 EXPORT_SYMBOL(blk_start_plug);
2866
2867 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2868 {
2869 struct request *rqa = container_of(a, struct request, queuelist);
2870 struct request *rqb = container_of(b, struct request, queuelist);
2871
2872 return !(rqa->q <= rqb->q);
2873 }
2874
2875 /*
2876 * If 'from_schedule' is true, then postpone the dispatch of requests
2877 * until a safe kblockd context. We due this to avoid accidental big
2878 * additional stack usage in driver dispatch, in places where the originally
2879 * plugger did not intend it.
2880 */
2881 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2882 bool from_schedule)
2883 __releases(q->queue_lock)
2884 {
2885 trace_block_unplug(q, depth, !from_schedule);
2886
2887 /*
2888 * Don't mess with dead queue.
2889 */
2890 if (unlikely(blk_queue_dead(q))) {
2891 spin_unlock(q->queue_lock);
2892 return;
2893 }
2894
2895 /*
2896 * If we are punting this to kblockd, then we can safely drop
2897 * the queue_lock before waking kblockd (which needs to take
2898 * this lock).
2899 */
2900 if (from_schedule) {
2901 spin_unlock(q->queue_lock);
2902 blk_run_queue_async(q);
2903 } else {
2904 __blk_run_queue(q);
2905 spin_unlock(q->queue_lock);
2906 }
2907
2908 }
2909
2910 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2911 {
2912 LIST_HEAD(callbacks);
2913
2914 while (!list_empty(&plug->cb_list)) {
2915 list_splice_init(&plug->cb_list, &callbacks);
2916
2917 while (!list_empty(&callbacks)) {
2918 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2919 struct blk_plug_cb,
2920 list);
2921 list_del(&cb->list);
2922 cb->callback(cb, from_schedule);
2923 }
2924 }
2925 }
2926
2927 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2928 int size)
2929 {
2930 struct blk_plug *plug = current->plug;
2931 struct blk_plug_cb *cb;
2932
2933 if (!plug)
2934 return NULL;
2935
2936 list_for_each_entry(cb, &plug->cb_list, list)
2937 if (cb->callback == unplug && cb->data == data)
2938 return cb;
2939
2940 /* Not currently on the callback list */
2941 BUG_ON(size < sizeof(*cb));
2942 cb = kzalloc(size, GFP_ATOMIC);
2943 if (cb) {
2944 cb->data = data;
2945 cb->callback = unplug;
2946 list_add(&cb->list, &plug->cb_list);
2947 }
2948 return cb;
2949 }
2950 EXPORT_SYMBOL(blk_check_plugged);
2951
2952 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2953 {
2954 struct request_queue *q;
2955 unsigned long flags;
2956 struct request *rq;
2957 LIST_HEAD(list);
2958 unsigned int depth;
2959
2960 BUG_ON(plug->magic != PLUG_MAGIC);
2961
2962 flush_plug_callbacks(plug, from_schedule);
2963 if (list_empty(&plug->list))
2964 return;
2965
2966 list_splice_init(&plug->list, &list);
2967
2968 if (plug->should_sort) {
2969 list_sort(NULL, &list, plug_rq_cmp);
2970 plug->should_sort = 0;
2971 }
2972
2973 q = NULL;
2974 depth = 0;
2975
2976 /*
2977 * Save and disable interrupts here, to avoid doing it for every
2978 * queue lock we have to take.
2979 */
2980 local_irq_save(flags);
2981 while (!list_empty(&list)) {
2982 rq = list_entry_rq(list.next);
2983 list_del_init(&rq->queuelist);
2984 BUG_ON(!rq->q);
2985 if (rq->q != q) {
2986 /*
2987 * This drops the queue lock
2988 */
2989 if (q)
2990 queue_unplugged(q, depth, from_schedule);
2991 q = rq->q;
2992 depth = 0;
2993 spin_lock(q->queue_lock);
2994 }
2995
2996 /*
2997 * Short-circuit if @q is dead
2998 */
2999 if (unlikely(blk_queue_dead(q))) {
3000 __blk_end_request_all(rq, -ENODEV);
3001 continue;
3002 }
3003
3004 /*
3005 * rq is already accounted, so use raw insert
3006 */
3007 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3008 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3009 else
3010 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3011
3012 depth++;
3013 }
3014
3015 /*
3016 * This drops the queue lock
3017 */
3018 if (q)
3019 queue_unplugged(q, depth, from_schedule);
3020
3021 local_irq_restore(flags);
3022 }
3023
3024 void blk_finish_plug(struct blk_plug *plug)
3025 {
3026 blk_flush_plug_list(plug, false);
3027
3028 if (plug == current->plug)
3029 current->plug = NULL;
3030 }
3031 EXPORT_SYMBOL(blk_finish_plug);
3032
3033 int __init blk_dev_init(void)
3034 {
3035 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3036 sizeof(((struct request *)0)->cmd_flags));
3037
3038 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3039 kblockd_workqueue = alloc_workqueue("kblockd",
3040 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3041 if (!kblockd_workqueue)
3042 panic("Failed to create kblockd\n");
3043
3044 request_cachep = kmem_cache_create("blkdev_requests",
3045 sizeof(struct request), 0, SLAB_PANIC, NULL);
3046
3047 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3048 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3049
3050 return 0;
3051 }