]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
blk-stat: move BLK_RQ_STAT_BATCH definition to blk-stat.c
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 unsigned int nbytes, int error)
134 {
135 if (error)
136 bio->bi_error = error;
137
138 if (unlikely(rq->rq_flags & RQF_QUIET))
139 bio_set_flag(bio, BIO_QUIET);
140
141 bio_advance(bio, nbytes);
142
143 /* don't actually finish bio if it's part of flush sequence */
144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 bio_endio(bio);
146 }
147
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 (unsigned long long) rq->cmd_flags);
153
154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
155 (unsigned long long)blk_rq_pos(rq),
156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
158 rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue_async - asynchronously restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue_async() will clear the stop flag on the queue, and
196 * ensure that the request_fn for the queue is run from an async
197 * context.
198 **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205
206 /**
207 * blk_start_queue - restart a previously stopped queue
208 * @q: The &struct request_queue in question
209 *
210 * Description:
211 * blk_start_queue() will clear the stop flag on the queue, and call
212 * the request_fn for the queue if it was in a stopped state when
213 * entered. Also see blk_stop_queue(). Queue lock must be held.
214 **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 WARN_ON(!irqs_disabled());
218
219 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 __blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223
224 /**
225 * blk_stop_queue - stop a queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * The Linux block layer assumes that a block driver will consume all
230 * entries on the request queue when the request_fn strategy is called.
231 * Often this will not happen, because of hardware limitations (queue
232 * depth settings). If a device driver gets a 'queue full' response,
233 * or if it simply chooses not to queue more I/O at one point, it can
234 * call this function to prevent the request_fn from being called until
235 * the driver has signalled it's ready to go again. This happens by calling
236 * blk_start_queue() to restart queue operations. Queue lock must be held.
237 **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 cancel_delayed_work(&q->delay_work);
241 queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244
245 /**
246 * blk_sync_queue - cancel any pending callbacks on a queue
247 * @q: the queue
248 *
249 * Description:
250 * The block layer may perform asynchronous callback activity
251 * on a queue, such as calling the unplug function after a timeout.
252 * A block device may call blk_sync_queue to ensure that any
253 * such activity is cancelled, thus allowing it to release resources
254 * that the callbacks might use. The caller must already have made sure
255 * that its ->make_request_fn will not re-add plugging prior to calling
256 * this function.
257 *
258 * This function does not cancel any asynchronous activity arising
259 * out of elevator or throttling code. That would require elevator_exit()
260 * and blkcg_exit_queue() to be called with queue lock initialized.
261 *
262 */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 del_timer_sync(&q->timeout);
266
267 if (q->mq_ops) {
268 struct blk_mq_hw_ctx *hctx;
269 int i;
270
271 queue_for_each_hw_ctx(q, hctx, i) {
272 cancel_work_sync(&hctx->run_work);
273 cancel_delayed_work_sync(&hctx->delay_work);
274 }
275 } else {
276 cancel_delayed_work_sync(&q->delay_work);
277 }
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280
281 /**
282 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
283 * @q: The queue to run
284 *
285 * Description:
286 * Invoke request handling on a queue if there are any pending requests.
287 * May be used to restart request handling after a request has completed.
288 * This variant runs the queue whether or not the queue has been
289 * stopped. Must be called with the queue lock held and interrupts
290 * disabled. See also @blk_run_queue.
291 */
292 inline void __blk_run_queue_uncond(struct request_queue *q)
293 {
294 if (unlikely(blk_queue_dead(q)))
295 return;
296
297 /*
298 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
299 * the queue lock internally. As a result multiple threads may be
300 * running such a request function concurrently. Keep track of the
301 * number of active request_fn invocations such that blk_drain_queue()
302 * can wait until all these request_fn calls have finished.
303 */
304 q->request_fn_active++;
305 q->request_fn(q);
306 q->request_fn_active--;
307 }
308 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
309
310 /**
311 * __blk_run_queue - run a single device queue
312 * @q: The queue to run
313 *
314 * Description:
315 * See @blk_run_queue. This variant must be called with the queue lock
316 * held and interrupts disabled.
317 */
318 void __blk_run_queue(struct request_queue *q)
319 {
320 if (unlikely(blk_queue_stopped(q)))
321 return;
322
323 __blk_run_queue_uncond(q);
324 }
325 EXPORT_SYMBOL(__blk_run_queue);
326
327 /**
328 * blk_run_queue_async - run a single device queue in workqueue context
329 * @q: The queue to run
330 *
331 * Description:
332 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
333 * of us. The caller must hold the queue lock.
334 */
335 void blk_run_queue_async(struct request_queue *q)
336 {
337 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
338 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
339 }
340 EXPORT_SYMBOL(blk_run_queue_async);
341
342 /**
343 * blk_run_queue - run a single device queue
344 * @q: The queue to run
345 *
346 * Description:
347 * Invoke request handling on this queue, if it has pending work to do.
348 * May be used to restart queueing when a request has completed.
349 */
350 void blk_run_queue(struct request_queue *q)
351 {
352 unsigned long flags;
353
354 spin_lock_irqsave(q->queue_lock, flags);
355 __blk_run_queue(q);
356 spin_unlock_irqrestore(q->queue_lock, flags);
357 }
358 EXPORT_SYMBOL(blk_run_queue);
359
360 void blk_put_queue(struct request_queue *q)
361 {
362 kobject_put(&q->kobj);
363 }
364 EXPORT_SYMBOL(blk_put_queue);
365
366 /**
367 * __blk_drain_queue - drain requests from request_queue
368 * @q: queue to drain
369 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
370 *
371 * Drain requests from @q. If @drain_all is set, all requests are drained.
372 * If not, only ELVPRIV requests are drained. The caller is responsible
373 * for ensuring that no new requests which need to be drained are queued.
374 */
375 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
376 __releases(q->queue_lock)
377 __acquires(q->queue_lock)
378 {
379 int i;
380
381 lockdep_assert_held(q->queue_lock);
382
383 while (true) {
384 bool drain = false;
385
386 /*
387 * The caller might be trying to drain @q before its
388 * elevator is initialized.
389 */
390 if (q->elevator)
391 elv_drain_elevator(q);
392
393 blkcg_drain_queue(q);
394
395 /*
396 * This function might be called on a queue which failed
397 * driver init after queue creation or is not yet fully
398 * active yet. Some drivers (e.g. fd and loop) get unhappy
399 * in such cases. Kick queue iff dispatch queue has
400 * something on it and @q has request_fn set.
401 */
402 if (!list_empty(&q->queue_head) && q->request_fn)
403 __blk_run_queue(q);
404
405 drain |= q->nr_rqs_elvpriv;
406 drain |= q->request_fn_active;
407
408 /*
409 * Unfortunately, requests are queued at and tracked from
410 * multiple places and there's no single counter which can
411 * be drained. Check all the queues and counters.
412 */
413 if (drain_all) {
414 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
415 drain |= !list_empty(&q->queue_head);
416 for (i = 0; i < 2; i++) {
417 drain |= q->nr_rqs[i];
418 drain |= q->in_flight[i];
419 if (fq)
420 drain |= !list_empty(&fq->flush_queue[i]);
421 }
422 }
423
424 if (!drain)
425 break;
426
427 spin_unlock_irq(q->queue_lock);
428
429 msleep(10);
430
431 spin_lock_irq(q->queue_lock);
432 }
433
434 /*
435 * With queue marked dead, any woken up waiter will fail the
436 * allocation path, so the wakeup chaining is lost and we're
437 * left with hung waiters. We need to wake up those waiters.
438 */
439 if (q->request_fn) {
440 struct request_list *rl;
441
442 blk_queue_for_each_rl(rl, q)
443 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
444 wake_up_all(&rl->wait[i]);
445 }
446 }
447
448 /**
449 * blk_queue_bypass_start - enter queue bypass mode
450 * @q: queue of interest
451 *
452 * In bypass mode, only the dispatch FIFO queue of @q is used. This
453 * function makes @q enter bypass mode and drains all requests which were
454 * throttled or issued before. On return, it's guaranteed that no request
455 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
456 * inside queue or RCU read lock.
457 */
458 void blk_queue_bypass_start(struct request_queue *q)
459 {
460 spin_lock_irq(q->queue_lock);
461 q->bypass_depth++;
462 queue_flag_set(QUEUE_FLAG_BYPASS, q);
463 spin_unlock_irq(q->queue_lock);
464
465 /*
466 * Queues start drained. Skip actual draining till init is
467 * complete. This avoids lenghty delays during queue init which
468 * can happen many times during boot.
469 */
470 if (blk_queue_init_done(q)) {
471 spin_lock_irq(q->queue_lock);
472 __blk_drain_queue(q, false);
473 spin_unlock_irq(q->queue_lock);
474
475 /* ensure blk_queue_bypass() is %true inside RCU read lock */
476 synchronize_rcu();
477 }
478 }
479 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
480
481 /**
482 * blk_queue_bypass_end - leave queue bypass mode
483 * @q: queue of interest
484 *
485 * Leave bypass mode and restore the normal queueing behavior.
486 */
487 void blk_queue_bypass_end(struct request_queue *q)
488 {
489 spin_lock_irq(q->queue_lock);
490 if (!--q->bypass_depth)
491 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
492 WARN_ON_ONCE(q->bypass_depth < 0);
493 spin_unlock_irq(q->queue_lock);
494 }
495 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
496
497 void blk_set_queue_dying(struct request_queue *q)
498 {
499 spin_lock_irq(q->queue_lock);
500 queue_flag_set(QUEUE_FLAG_DYING, q);
501 spin_unlock_irq(q->queue_lock);
502
503 if (q->mq_ops)
504 blk_mq_wake_waiters(q);
505 else {
506 struct request_list *rl;
507
508 spin_lock_irq(q->queue_lock);
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 spin_unlock_irq(q->queue_lock);
516 }
517 }
518 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
519
520 /**
521 * blk_cleanup_queue - shutdown a request queue
522 * @q: request queue to shutdown
523 *
524 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
525 * put it. All future requests will be failed immediately with -ENODEV.
526 */
527 void blk_cleanup_queue(struct request_queue *q)
528 {
529 spinlock_t *lock = q->queue_lock;
530
531 /* mark @q DYING, no new request or merges will be allowed afterwards */
532 mutex_lock(&q->sysfs_lock);
533 blk_set_queue_dying(q);
534 spin_lock_irq(lock);
535
536 /*
537 * A dying queue is permanently in bypass mode till released. Note
538 * that, unlike blk_queue_bypass_start(), we aren't performing
539 * synchronize_rcu() after entering bypass mode to avoid the delay
540 * as some drivers create and destroy a lot of queues while
541 * probing. This is still safe because blk_release_queue() will be
542 * called only after the queue refcnt drops to zero and nothing,
543 * RCU or not, would be traversing the queue by then.
544 */
545 q->bypass_depth++;
546 queue_flag_set(QUEUE_FLAG_BYPASS, q);
547
548 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
549 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
550 queue_flag_set(QUEUE_FLAG_DYING, q);
551 spin_unlock_irq(lock);
552 mutex_unlock(&q->sysfs_lock);
553
554 /*
555 * Drain all requests queued before DYING marking. Set DEAD flag to
556 * prevent that q->request_fn() gets invoked after draining finished.
557 */
558 blk_freeze_queue(q);
559 spin_lock_irq(lock);
560 if (!q->mq_ops)
561 __blk_drain_queue(q, true);
562 queue_flag_set(QUEUE_FLAG_DEAD, q);
563 spin_unlock_irq(lock);
564
565 /* for synchronous bio-based driver finish in-flight integrity i/o */
566 blk_flush_integrity();
567
568 /* @q won't process any more request, flush async actions */
569 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
570 blk_sync_queue(q);
571
572 if (q->mq_ops)
573 blk_mq_free_queue(q);
574 percpu_ref_exit(&q->q_usage_counter);
575
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
581 /* @q is and will stay empty, shutdown and put */
582 blk_put_queue(q);
583 }
584 EXPORT_SYMBOL(blk_cleanup_queue);
585
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
588 {
589 struct request_queue *q = data;
590
591 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
592 }
593
594 static void free_request_simple(void *element, void *data)
595 {
596 kmem_cache_free(request_cachep, element);
597 }
598
599 static void *alloc_request_size(gfp_t gfp_mask, void *data)
600 {
601 struct request_queue *q = data;
602 struct request *rq;
603
604 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
605 q->node);
606 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
607 kfree(rq);
608 rq = NULL;
609 }
610 return rq;
611 }
612
613 static void free_request_size(void *element, void *data)
614 {
615 struct request_queue *q = data;
616
617 if (q->exit_rq_fn)
618 q->exit_rq_fn(q, element);
619 kfree(element);
620 }
621
622 int blk_init_rl(struct request_list *rl, struct request_queue *q,
623 gfp_t gfp_mask)
624 {
625 if (unlikely(rl->rq_pool))
626 return 0;
627
628 rl->q = q;
629 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
630 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
631 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
632 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
633
634 if (q->cmd_size) {
635 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
636 alloc_request_size, free_request_size,
637 q, gfp_mask, q->node);
638 } else {
639 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
640 alloc_request_simple, free_request_simple,
641 q, gfp_mask, q->node);
642 }
643 if (!rl->rq_pool)
644 return -ENOMEM;
645
646 return 0;
647 }
648
649 void blk_exit_rl(struct request_list *rl)
650 {
651 if (rl->rq_pool)
652 mempool_destroy(rl->rq_pool);
653 }
654
655 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
656 {
657 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
658 }
659 EXPORT_SYMBOL(blk_alloc_queue);
660
661 int blk_queue_enter(struct request_queue *q, bool nowait)
662 {
663 while (true) {
664 int ret;
665
666 if (percpu_ref_tryget_live(&q->q_usage_counter))
667 return 0;
668
669 if (nowait)
670 return -EBUSY;
671
672 ret = wait_event_interruptible(q->mq_freeze_wq,
673 !atomic_read(&q->mq_freeze_depth) ||
674 blk_queue_dying(q));
675 if (blk_queue_dying(q))
676 return -ENODEV;
677 if (ret)
678 return ret;
679 }
680 }
681
682 void blk_queue_exit(struct request_queue *q)
683 {
684 percpu_ref_put(&q->q_usage_counter);
685 }
686
687 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
688 {
689 struct request_queue *q =
690 container_of(ref, struct request_queue, q_usage_counter);
691
692 wake_up_all(&q->mq_freeze_wq);
693 }
694
695 static void blk_rq_timed_out_timer(unsigned long data)
696 {
697 struct request_queue *q = (struct request_queue *)data;
698
699 kblockd_schedule_work(&q->timeout_work);
700 }
701
702 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
703 {
704 struct request_queue *q;
705
706 q = kmem_cache_alloc_node(blk_requestq_cachep,
707 gfp_mask | __GFP_ZERO, node_id);
708 if (!q)
709 return NULL;
710
711 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
712 if (q->id < 0)
713 goto fail_q;
714
715 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
716 if (!q->bio_split)
717 goto fail_id;
718
719 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
720 if (!q->backing_dev_info)
721 goto fail_split;
722
723 q->backing_dev_info->ra_pages =
724 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
725 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
726 q->backing_dev_info->name = "block";
727 q->node = node_id;
728
729 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
730 laptop_mode_timer_fn, (unsigned long) q);
731 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
732 INIT_LIST_HEAD(&q->queue_head);
733 INIT_LIST_HEAD(&q->timeout_list);
734 INIT_LIST_HEAD(&q->icq_list);
735 #ifdef CONFIG_BLK_CGROUP
736 INIT_LIST_HEAD(&q->blkg_list);
737 #endif
738 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
739
740 kobject_init(&q->kobj, &blk_queue_ktype);
741
742 mutex_init(&q->sysfs_lock);
743 spin_lock_init(&q->__queue_lock);
744
745 /*
746 * By default initialize queue_lock to internal lock and driver can
747 * override it later if need be.
748 */
749 q->queue_lock = &q->__queue_lock;
750
751 /*
752 * A queue starts its life with bypass turned on to avoid
753 * unnecessary bypass on/off overhead and nasty surprises during
754 * init. The initial bypass will be finished when the queue is
755 * registered by blk_register_queue().
756 */
757 q->bypass_depth = 1;
758 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
759
760 init_waitqueue_head(&q->mq_freeze_wq);
761
762 /*
763 * Init percpu_ref in atomic mode so that it's faster to shutdown.
764 * See blk_register_queue() for details.
765 */
766 if (percpu_ref_init(&q->q_usage_counter,
767 blk_queue_usage_counter_release,
768 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
769 goto fail_bdi;
770
771 if (blkcg_init_queue(q))
772 goto fail_ref;
773
774 return q;
775
776 fail_ref:
777 percpu_ref_exit(&q->q_usage_counter);
778 fail_bdi:
779 bdi_put(q->backing_dev_info);
780 fail_split:
781 bioset_free(q->bio_split);
782 fail_id:
783 ida_simple_remove(&blk_queue_ida, q->id);
784 fail_q:
785 kmem_cache_free(blk_requestq_cachep, q);
786 return NULL;
787 }
788 EXPORT_SYMBOL(blk_alloc_queue_node);
789
790 /**
791 * blk_init_queue - prepare a request queue for use with a block device
792 * @rfn: The function to be called to process requests that have been
793 * placed on the queue.
794 * @lock: Request queue spin lock
795 *
796 * Description:
797 * If a block device wishes to use the standard request handling procedures,
798 * which sorts requests and coalesces adjacent requests, then it must
799 * call blk_init_queue(). The function @rfn will be called when there
800 * are requests on the queue that need to be processed. If the device
801 * supports plugging, then @rfn may not be called immediately when requests
802 * are available on the queue, but may be called at some time later instead.
803 * Plugged queues are generally unplugged when a buffer belonging to one
804 * of the requests on the queue is needed, or due to memory pressure.
805 *
806 * @rfn is not required, or even expected, to remove all requests off the
807 * queue, but only as many as it can handle at a time. If it does leave
808 * requests on the queue, it is responsible for arranging that the requests
809 * get dealt with eventually.
810 *
811 * The queue spin lock must be held while manipulating the requests on the
812 * request queue; this lock will be taken also from interrupt context, so irq
813 * disabling is needed for it.
814 *
815 * Function returns a pointer to the initialized request queue, or %NULL if
816 * it didn't succeed.
817 *
818 * Note:
819 * blk_init_queue() must be paired with a blk_cleanup_queue() call
820 * when the block device is deactivated (such as at module unload).
821 **/
822
823 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
824 {
825 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
826 }
827 EXPORT_SYMBOL(blk_init_queue);
828
829 struct request_queue *
830 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
831 {
832 struct request_queue *q;
833
834 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
835 if (!q)
836 return NULL;
837
838 q->request_fn = rfn;
839 if (lock)
840 q->queue_lock = lock;
841 if (blk_init_allocated_queue(q) < 0) {
842 blk_cleanup_queue(q);
843 return NULL;
844 }
845
846 return q;
847 }
848 EXPORT_SYMBOL(blk_init_queue_node);
849
850 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
851
852
853 int blk_init_allocated_queue(struct request_queue *q)
854 {
855 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
856 if (!q->fq)
857 return -ENOMEM;
858
859 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
860 goto out_free_flush_queue;
861
862 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
863 goto out_exit_flush_rq;
864
865 INIT_WORK(&q->timeout_work, blk_timeout_work);
866 q->queue_flags |= QUEUE_FLAG_DEFAULT;
867
868 /*
869 * This also sets hw/phys segments, boundary and size
870 */
871 blk_queue_make_request(q, blk_queue_bio);
872
873 q->sg_reserved_size = INT_MAX;
874
875 /* Protect q->elevator from elevator_change */
876 mutex_lock(&q->sysfs_lock);
877
878 /* init elevator */
879 if (elevator_init(q, NULL)) {
880 mutex_unlock(&q->sysfs_lock);
881 goto out_exit_flush_rq;
882 }
883
884 mutex_unlock(&q->sysfs_lock);
885 return 0;
886
887 out_exit_flush_rq:
888 if (q->exit_rq_fn)
889 q->exit_rq_fn(q, q->fq->flush_rq);
890 out_free_flush_queue:
891 blk_free_flush_queue(q->fq);
892 return -ENOMEM;
893 }
894 EXPORT_SYMBOL(blk_init_allocated_queue);
895
896 bool blk_get_queue(struct request_queue *q)
897 {
898 if (likely(!blk_queue_dying(q))) {
899 __blk_get_queue(q);
900 return true;
901 }
902
903 return false;
904 }
905 EXPORT_SYMBOL(blk_get_queue);
906
907 static inline void blk_free_request(struct request_list *rl, struct request *rq)
908 {
909 if (rq->rq_flags & RQF_ELVPRIV) {
910 elv_put_request(rl->q, rq);
911 if (rq->elv.icq)
912 put_io_context(rq->elv.icq->ioc);
913 }
914
915 mempool_free(rq, rl->rq_pool);
916 }
917
918 /*
919 * ioc_batching returns true if the ioc is a valid batching request and
920 * should be given priority access to a request.
921 */
922 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
923 {
924 if (!ioc)
925 return 0;
926
927 /*
928 * Make sure the process is able to allocate at least 1 request
929 * even if the batch times out, otherwise we could theoretically
930 * lose wakeups.
931 */
932 return ioc->nr_batch_requests == q->nr_batching ||
933 (ioc->nr_batch_requests > 0
934 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
935 }
936
937 /*
938 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
939 * will cause the process to be a "batcher" on all queues in the system. This
940 * is the behaviour we want though - once it gets a wakeup it should be given
941 * a nice run.
942 */
943 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
944 {
945 if (!ioc || ioc_batching(q, ioc))
946 return;
947
948 ioc->nr_batch_requests = q->nr_batching;
949 ioc->last_waited = jiffies;
950 }
951
952 static void __freed_request(struct request_list *rl, int sync)
953 {
954 struct request_queue *q = rl->q;
955
956 if (rl->count[sync] < queue_congestion_off_threshold(q))
957 blk_clear_congested(rl, sync);
958
959 if (rl->count[sync] + 1 <= q->nr_requests) {
960 if (waitqueue_active(&rl->wait[sync]))
961 wake_up(&rl->wait[sync]);
962
963 blk_clear_rl_full(rl, sync);
964 }
965 }
966
967 /*
968 * A request has just been released. Account for it, update the full and
969 * congestion status, wake up any waiters. Called under q->queue_lock.
970 */
971 static void freed_request(struct request_list *rl, bool sync,
972 req_flags_t rq_flags)
973 {
974 struct request_queue *q = rl->q;
975
976 q->nr_rqs[sync]--;
977 rl->count[sync]--;
978 if (rq_flags & RQF_ELVPRIV)
979 q->nr_rqs_elvpriv--;
980
981 __freed_request(rl, sync);
982
983 if (unlikely(rl->starved[sync ^ 1]))
984 __freed_request(rl, sync ^ 1);
985 }
986
987 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
988 {
989 struct request_list *rl;
990 int on_thresh, off_thresh;
991
992 spin_lock_irq(q->queue_lock);
993 q->nr_requests = nr;
994 blk_queue_congestion_threshold(q);
995 on_thresh = queue_congestion_on_threshold(q);
996 off_thresh = queue_congestion_off_threshold(q);
997
998 blk_queue_for_each_rl(rl, q) {
999 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_SYNC);
1001 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_SYNC);
1003
1004 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1005 blk_set_congested(rl, BLK_RW_ASYNC);
1006 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1007 blk_clear_congested(rl, BLK_RW_ASYNC);
1008
1009 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1010 blk_set_rl_full(rl, BLK_RW_SYNC);
1011 } else {
1012 blk_clear_rl_full(rl, BLK_RW_SYNC);
1013 wake_up(&rl->wait[BLK_RW_SYNC]);
1014 }
1015
1016 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1017 blk_set_rl_full(rl, BLK_RW_ASYNC);
1018 } else {
1019 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1020 wake_up(&rl->wait[BLK_RW_ASYNC]);
1021 }
1022 }
1023
1024 spin_unlock_irq(q->queue_lock);
1025 return 0;
1026 }
1027
1028 /**
1029 * __get_request - get a free request
1030 * @rl: request list to allocate from
1031 * @op: operation and flags
1032 * @bio: bio to allocate request for (can be %NULL)
1033 * @gfp_mask: allocation mask
1034 *
1035 * Get a free request from @q. This function may fail under memory
1036 * pressure or if @q is dead.
1037 *
1038 * Must be called with @q->queue_lock held and,
1039 * Returns ERR_PTR on failure, with @q->queue_lock held.
1040 * Returns request pointer on success, with @q->queue_lock *not held*.
1041 */
1042 static struct request *__get_request(struct request_list *rl, unsigned int op,
1043 struct bio *bio, gfp_t gfp_mask)
1044 {
1045 struct request_queue *q = rl->q;
1046 struct request *rq;
1047 struct elevator_type *et = q->elevator->type;
1048 struct io_context *ioc = rq_ioc(bio);
1049 struct io_cq *icq = NULL;
1050 const bool is_sync = op_is_sync(op);
1051 int may_queue;
1052 req_flags_t rq_flags = RQF_ALLOCED;
1053
1054 if (unlikely(blk_queue_dying(q)))
1055 return ERR_PTR(-ENODEV);
1056
1057 may_queue = elv_may_queue(q, op);
1058 if (may_queue == ELV_MQUEUE_NO)
1059 goto rq_starved;
1060
1061 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1062 if (rl->count[is_sync]+1 >= q->nr_requests) {
1063 /*
1064 * The queue will fill after this allocation, so set
1065 * it as full, and mark this process as "batching".
1066 * This process will be allowed to complete a batch of
1067 * requests, others will be blocked.
1068 */
1069 if (!blk_rl_full(rl, is_sync)) {
1070 ioc_set_batching(q, ioc);
1071 blk_set_rl_full(rl, is_sync);
1072 } else {
1073 if (may_queue != ELV_MQUEUE_MUST
1074 && !ioc_batching(q, ioc)) {
1075 /*
1076 * The queue is full and the allocating
1077 * process is not a "batcher", and not
1078 * exempted by the IO scheduler
1079 */
1080 return ERR_PTR(-ENOMEM);
1081 }
1082 }
1083 }
1084 blk_set_congested(rl, is_sync);
1085 }
1086
1087 /*
1088 * Only allow batching queuers to allocate up to 50% over the defined
1089 * limit of requests, otherwise we could have thousands of requests
1090 * allocated with any setting of ->nr_requests
1091 */
1092 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1093 return ERR_PTR(-ENOMEM);
1094
1095 q->nr_rqs[is_sync]++;
1096 rl->count[is_sync]++;
1097 rl->starved[is_sync] = 0;
1098
1099 /*
1100 * Decide whether the new request will be managed by elevator. If
1101 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1102 * prevent the current elevator from being destroyed until the new
1103 * request is freed. This guarantees icq's won't be destroyed and
1104 * makes creating new ones safe.
1105 *
1106 * Flush requests do not use the elevator so skip initialization.
1107 * This allows a request to share the flush and elevator data.
1108 *
1109 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1110 * it will be created after releasing queue_lock.
1111 */
1112 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1113 rq_flags |= RQF_ELVPRIV;
1114 q->nr_rqs_elvpriv++;
1115 if (et->icq_cache && ioc)
1116 icq = ioc_lookup_icq(ioc, q);
1117 }
1118
1119 if (blk_queue_io_stat(q))
1120 rq_flags |= RQF_IO_STAT;
1121 spin_unlock_irq(q->queue_lock);
1122
1123 /* allocate and init request */
1124 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1125 if (!rq)
1126 goto fail_alloc;
1127
1128 blk_rq_init(q, rq);
1129 blk_rq_set_rl(rq, rl);
1130 blk_rq_set_prio(rq, ioc);
1131 rq->cmd_flags = op;
1132 rq->rq_flags = rq_flags;
1133
1134 /* init elvpriv */
1135 if (rq_flags & RQF_ELVPRIV) {
1136 if (unlikely(et->icq_cache && !icq)) {
1137 if (ioc)
1138 icq = ioc_create_icq(ioc, q, gfp_mask);
1139 if (!icq)
1140 goto fail_elvpriv;
1141 }
1142
1143 rq->elv.icq = icq;
1144 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1145 goto fail_elvpriv;
1146
1147 /* @rq->elv.icq holds io_context until @rq is freed */
1148 if (icq)
1149 get_io_context(icq->ioc);
1150 }
1151 out:
1152 /*
1153 * ioc may be NULL here, and ioc_batching will be false. That's
1154 * OK, if the queue is under the request limit then requests need
1155 * not count toward the nr_batch_requests limit. There will always
1156 * be some limit enforced by BLK_BATCH_TIME.
1157 */
1158 if (ioc_batching(q, ioc))
1159 ioc->nr_batch_requests--;
1160
1161 trace_block_getrq(q, bio, op);
1162 return rq;
1163
1164 fail_elvpriv:
1165 /*
1166 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1167 * and may fail indefinitely under memory pressure and thus
1168 * shouldn't stall IO. Treat this request as !elvpriv. This will
1169 * disturb iosched and blkcg but weird is bettern than dead.
1170 */
1171 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1172 __func__, dev_name(q->backing_dev_info->dev));
1173
1174 rq->rq_flags &= ~RQF_ELVPRIV;
1175 rq->elv.icq = NULL;
1176
1177 spin_lock_irq(q->queue_lock);
1178 q->nr_rqs_elvpriv--;
1179 spin_unlock_irq(q->queue_lock);
1180 goto out;
1181
1182 fail_alloc:
1183 /*
1184 * Allocation failed presumably due to memory. Undo anything we
1185 * might have messed up.
1186 *
1187 * Allocating task should really be put onto the front of the wait
1188 * queue, but this is pretty rare.
1189 */
1190 spin_lock_irq(q->queue_lock);
1191 freed_request(rl, is_sync, rq_flags);
1192
1193 /*
1194 * in the very unlikely event that allocation failed and no
1195 * requests for this direction was pending, mark us starved so that
1196 * freeing of a request in the other direction will notice
1197 * us. another possible fix would be to split the rq mempool into
1198 * READ and WRITE
1199 */
1200 rq_starved:
1201 if (unlikely(rl->count[is_sync] == 0))
1202 rl->starved[is_sync] = 1;
1203 return ERR_PTR(-ENOMEM);
1204 }
1205
1206 /**
1207 * get_request - get a free request
1208 * @q: request_queue to allocate request from
1209 * @op: operation and flags
1210 * @bio: bio to allocate request for (can be %NULL)
1211 * @gfp_mask: allocation mask
1212 *
1213 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1214 * this function keeps retrying under memory pressure and fails iff @q is dead.
1215 *
1216 * Must be called with @q->queue_lock held and,
1217 * Returns ERR_PTR on failure, with @q->queue_lock held.
1218 * Returns request pointer on success, with @q->queue_lock *not held*.
1219 */
1220 static struct request *get_request(struct request_queue *q, unsigned int op,
1221 struct bio *bio, gfp_t gfp_mask)
1222 {
1223 const bool is_sync = op_is_sync(op);
1224 DEFINE_WAIT(wait);
1225 struct request_list *rl;
1226 struct request *rq;
1227
1228 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1229 retry:
1230 rq = __get_request(rl, op, bio, gfp_mask);
1231 if (!IS_ERR(rq))
1232 return rq;
1233
1234 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1235 blk_put_rl(rl);
1236 return rq;
1237 }
1238
1239 /* wait on @rl and retry */
1240 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1241 TASK_UNINTERRUPTIBLE);
1242
1243 trace_block_sleeprq(q, bio, op);
1244
1245 spin_unlock_irq(q->queue_lock);
1246 io_schedule();
1247
1248 /*
1249 * After sleeping, we become a "batching" process and will be able
1250 * to allocate at least one request, and up to a big batch of them
1251 * for a small period time. See ioc_batching, ioc_set_batching
1252 */
1253 ioc_set_batching(q, current->io_context);
1254
1255 spin_lock_irq(q->queue_lock);
1256 finish_wait(&rl->wait[is_sync], &wait);
1257
1258 goto retry;
1259 }
1260
1261 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1262 gfp_t gfp_mask)
1263 {
1264 struct request *rq;
1265
1266 /* create ioc upfront */
1267 create_io_context(gfp_mask, q->node);
1268
1269 spin_lock_irq(q->queue_lock);
1270 rq = get_request(q, rw, NULL, gfp_mask);
1271 if (IS_ERR(rq)) {
1272 spin_unlock_irq(q->queue_lock);
1273 return rq;
1274 }
1275
1276 /* q->queue_lock is unlocked at this point */
1277 rq->__data_len = 0;
1278 rq->__sector = (sector_t) -1;
1279 rq->bio = rq->biotail = NULL;
1280 return rq;
1281 }
1282
1283 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1284 {
1285 if (q->mq_ops)
1286 return blk_mq_alloc_request(q, rw,
1287 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1288 0 : BLK_MQ_REQ_NOWAIT);
1289 else
1290 return blk_old_get_request(q, rw, gfp_mask);
1291 }
1292 EXPORT_SYMBOL(blk_get_request);
1293
1294 /**
1295 * blk_requeue_request - put a request back on queue
1296 * @q: request queue where request should be inserted
1297 * @rq: request to be inserted
1298 *
1299 * Description:
1300 * Drivers often keep queueing requests until the hardware cannot accept
1301 * more, when that condition happens we need to put the request back
1302 * on the queue. Must be called with queue lock held.
1303 */
1304 void blk_requeue_request(struct request_queue *q, struct request *rq)
1305 {
1306 blk_delete_timer(rq);
1307 blk_clear_rq_complete(rq);
1308 trace_block_rq_requeue(q, rq);
1309 wbt_requeue(q->rq_wb, &rq->issue_stat);
1310
1311 if (rq->rq_flags & RQF_QUEUED)
1312 blk_queue_end_tag(q, rq);
1313
1314 BUG_ON(blk_queued_rq(rq));
1315
1316 elv_requeue_request(q, rq);
1317 }
1318 EXPORT_SYMBOL(blk_requeue_request);
1319
1320 static void add_acct_request(struct request_queue *q, struct request *rq,
1321 int where)
1322 {
1323 blk_account_io_start(rq, true);
1324 __elv_add_request(q, rq, where);
1325 }
1326
1327 static void part_round_stats_single(int cpu, struct hd_struct *part,
1328 unsigned long now)
1329 {
1330 int inflight;
1331
1332 if (now == part->stamp)
1333 return;
1334
1335 inflight = part_in_flight(part);
1336 if (inflight) {
1337 __part_stat_add(cpu, part, time_in_queue,
1338 inflight * (now - part->stamp));
1339 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1340 }
1341 part->stamp = now;
1342 }
1343
1344 /**
1345 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1346 * @cpu: cpu number for stats access
1347 * @part: target partition
1348 *
1349 * The average IO queue length and utilisation statistics are maintained
1350 * by observing the current state of the queue length and the amount of
1351 * time it has been in this state for.
1352 *
1353 * Normally, that accounting is done on IO completion, but that can result
1354 * in more than a second's worth of IO being accounted for within any one
1355 * second, leading to >100% utilisation. To deal with that, we call this
1356 * function to do a round-off before returning the results when reading
1357 * /proc/diskstats. This accounts immediately for all queue usage up to
1358 * the current jiffies and restarts the counters again.
1359 */
1360 void part_round_stats(int cpu, struct hd_struct *part)
1361 {
1362 unsigned long now = jiffies;
1363
1364 if (part->partno)
1365 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1366 part_round_stats_single(cpu, part, now);
1367 }
1368 EXPORT_SYMBOL_GPL(part_round_stats);
1369
1370 #ifdef CONFIG_PM
1371 static void blk_pm_put_request(struct request *rq)
1372 {
1373 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1374 pm_runtime_mark_last_busy(rq->q->dev);
1375 }
1376 #else
1377 static inline void blk_pm_put_request(struct request *rq) {}
1378 #endif
1379
1380 /*
1381 * queue lock must be held
1382 */
1383 void __blk_put_request(struct request_queue *q, struct request *req)
1384 {
1385 req_flags_t rq_flags = req->rq_flags;
1386
1387 if (unlikely(!q))
1388 return;
1389
1390 if (q->mq_ops) {
1391 blk_mq_free_request(req);
1392 return;
1393 }
1394
1395 blk_pm_put_request(req);
1396
1397 elv_completed_request(q, req);
1398
1399 /* this is a bio leak */
1400 WARN_ON(req->bio != NULL);
1401
1402 wbt_done(q->rq_wb, &req->issue_stat);
1403
1404 /*
1405 * Request may not have originated from ll_rw_blk. if not,
1406 * it didn't come out of our reserved rq pools
1407 */
1408 if (rq_flags & RQF_ALLOCED) {
1409 struct request_list *rl = blk_rq_rl(req);
1410 bool sync = op_is_sync(req->cmd_flags);
1411
1412 BUG_ON(!list_empty(&req->queuelist));
1413 BUG_ON(ELV_ON_HASH(req));
1414
1415 blk_free_request(rl, req);
1416 freed_request(rl, sync, rq_flags);
1417 blk_put_rl(rl);
1418 }
1419 }
1420 EXPORT_SYMBOL_GPL(__blk_put_request);
1421
1422 void blk_put_request(struct request *req)
1423 {
1424 struct request_queue *q = req->q;
1425
1426 if (q->mq_ops)
1427 blk_mq_free_request(req);
1428 else {
1429 unsigned long flags;
1430
1431 spin_lock_irqsave(q->queue_lock, flags);
1432 __blk_put_request(q, req);
1433 spin_unlock_irqrestore(q->queue_lock, flags);
1434 }
1435 }
1436 EXPORT_SYMBOL(blk_put_request);
1437
1438 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1439 struct bio *bio)
1440 {
1441 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1442
1443 if (!ll_back_merge_fn(q, req, bio))
1444 return false;
1445
1446 trace_block_bio_backmerge(q, req, bio);
1447
1448 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1449 blk_rq_set_mixed_merge(req);
1450
1451 req->biotail->bi_next = bio;
1452 req->biotail = bio;
1453 req->__data_len += bio->bi_iter.bi_size;
1454 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1455
1456 blk_account_io_start(req, false);
1457 return true;
1458 }
1459
1460 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1461 struct bio *bio)
1462 {
1463 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1464
1465 if (!ll_front_merge_fn(q, req, bio))
1466 return false;
1467
1468 trace_block_bio_frontmerge(q, req, bio);
1469
1470 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1471 blk_rq_set_mixed_merge(req);
1472
1473 bio->bi_next = req->bio;
1474 req->bio = bio;
1475
1476 req->__sector = bio->bi_iter.bi_sector;
1477 req->__data_len += bio->bi_iter.bi_size;
1478 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1479
1480 blk_account_io_start(req, false);
1481 return true;
1482 }
1483
1484 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1485 struct bio *bio)
1486 {
1487 unsigned short segments = blk_rq_nr_discard_segments(req);
1488
1489 if (segments >= queue_max_discard_segments(q))
1490 goto no_merge;
1491 if (blk_rq_sectors(req) + bio_sectors(bio) >
1492 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1493 goto no_merge;
1494
1495 req->biotail->bi_next = bio;
1496 req->biotail = bio;
1497 req->__data_len += bio->bi_iter.bi_size;
1498 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1499 req->nr_phys_segments = segments + 1;
1500
1501 blk_account_io_start(req, false);
1502 return true;
1503 no_merge:
1504 req_set_nomerge(q, req);
1505 return false;
1506 }
1507
1508 /**
1509 * blk_attempt_plug_merge - try to merge with %current's plugged list
1510 * @q: request_queue new bio is being queued at
1511 * @bio: new bio being queued
1512 * @request_count: out parameter for number of traversed plugged requests
1513 * @same_queue_rq: pointer to &struct request that gets filled in when
1514 * another request associated with @q is found on the plug list
1515 * (optional, may be %NULL)
1516 *
1517 * Determine whether @bio being queued on @q can be merged with a request
1518 * on %current's plugged list. Returns %true if merge was successful,
1519 * otherwise %false.
1520 *
1521 * Plugging coalesces IOs from the same issuer for the same purpose without
1522 * going through @q->queue_lock. As such it's more of an issuing mechanism
1523 * than scheduling, and the request, while may have elvpriv data, is not
1524 * added on the elevator at this point. In addition, we don't have
1525 * reliable access to the elevator outside queue lock. Only check basic
1526 * merging parameters without querying the elevator.
1527 *
1528 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1529 */
1530 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1531 unsigned int *request_count,
1532 struct request **same_queue_rq)
1533 {
1534 struct blk_plug *plug;
1535 struct request *rq;
1536 struct list_head *plug_list;
1537
1538 plug = current->plug;
1539 if (!plug)
1540 return false;
1541 *request_count = 0;
1542
1543 if (q->mq_ops)
1544 plug_list = &plug->mq_list;
1545 else
1546 plug_list = &plug->list;
1547
1548 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1549 bool merged = false;
1550
1551 if (rq->q == q) {
1552 (*request_count)++;
1553 /*
1554 * Only blk-mq multiple hardware queues case checks the
1555 * rq in the same queue, there should be only one such
1556 * rq in a queue
1557 **/
1558 if (same_queue_rq)
1559 *same_queue_rq = rq;
1560 }
1561
1562 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1563 continue;
1564
1565 switch (blk_try_merge(rq, bio)) {
1566 case ELEVATOR_BACK_MERGE:
1567 merged = bio_attempt_back_merge(q, rq, bio);
1568 break;
1569 case ELEVATOR_FRONT_MERGE:
1570 merged = bio_attempt_front_merge(q, rq, bio);
1571 break;
1572 case ELEVATOR_DISCARD_MERGE:
1573 merged = bio_attempt_discard_merge(q, rq, bio);
1574 break;
1575 default:
1576 break;
1577 }
1578
1579 if (merged)
1580 return true;
1581 }
1582
1583 return false;
1584 }
1585
1586 unsigned int blk_plug_queued_count(struct request_queue *q)
1587 {
1588 struct blk_plug *plug;
1589 struct request *rq;
1590 struct list_head *plug_list;
1591 unsigned int ret = 0;
1592
1593 plug = current->plug;
1594 if (!plug)
1595 goto out;
1596
1597 if (q->mq_ops)
1598 plug_list = &plug->mq_list;
1599 else
1600 plug_list = &plug->list;
1601
1602 list_for_each_entry(rq, plug_list, queuelist) {
1603 if (rq->q == q)
1604 ret++;
1605 }
1606 out:
1607 return ret;
1608 }
1609
1610 void init_request_from_bio(struct request *req, struct bio *bio)
1611 {
1612 if (bio->bi_opf & REQ_RAHEAD)
1613 req->cmd_flags |= REQ_FAILFAST_MASK;
1614
1615 req->errors = 0;
1616 req->__sector = bio->bi_iter.bi_sector;
1617 if (ioprio_valid(bio_prio(bio)))
1618 req->ioprio = bio_prio(bio);
1619 blk_rq_bio_prep(req->q, req, bio);
1620 }
1621
1622 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1623 {
1624 struct blk_plug *plug;
1625 int where = ELEVATOR_INSERT_SORT;
1626 struct request *req, *free;
1627 unsigned int request_count = 0;
1628 unsigned int wb_acct;
1629
1630 /*
1631 * low level driver can indicate that it wants pages above a
1632 * certain limit bounced to low memory (ie for highmem, or even
1633 * ISA dma in theory)
1634 */
1635 blk_queue_bounce(q, &bio);
1636
1637 blk_queue_split(q, &bio, q->bio_split);
1638
1639 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1640 bio->bi_error = -EIO;
1641 bio_endio(bio);
1642 return BLK_QC_T_NONE;
1643 }
1644
1645 if (op_is_flush(bio->bi_opf)) {
1646 spin_lock_irq(q->queue_lock);
1647 where = ELEVATOR_INSERT_FLUSH;
1648 goto get_rq;
1649 }
1650
1651 /*
1652 * Check if we can merge with the plugged list before grabbing
1653 * any locks.
1654 */
1655 if (!blk_queue_nomerges(q)) {
1656 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1657 return BLK_QC_T_NONE;
1658 } else
1659 request_count = blk_plug_queued_count(q);
1660
1661 spin_lock_irq(q->queue_lock);
1662
1663 switch (elv_merge(q, &req, bio)) {
1664 case ELEVATOR_BACK_MERGE:
1665 if (!bio_attempt_back_merge(q, req, bio))
1666 break;
1667 elv_bio_merged(q, req, bio);
1668 free = attempt_back_merge(q, req);
1669 if (free)
1670 __blk_put_request(q, free);
1671 else
1672 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1673 goto out_unlock;
1674 case ELEVATOR_FRONT_MERGE:
1675 if (!bio_attempt_front_merge(q, req, bio))
1676 break;
1677 elv_bio_merged(q, req, bio);
1678 free = attempt_front_merge(q, req);
1679 if (free)
1680 __blk_put_request(q, free);
1681 else
1682 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1683 goto out_unlock;
1684 default:
1685 break;
1686 }
1687
1688 get_rq:
1689 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1690
1691 /*
1692 * Grab a free request. This is might sleep but can not fail.
1693 * Returns with the queue unlocked.
1694 */
1695 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1696 if (IS_ERR(req)) {
1697 __wbt_done(q->rq_wb, wb_acct);
1698 bio->bi_error = PTR_ERR(req);
1699 bio_endio(bio);
1700 goto out_unlock;
1701 }
1702
1703 wbt_track(&req->issue_stat, wb_acct);
1704
1705 /*
1706 * After dropping the lock and possibly sleeping here, our request
1707 * may now be mergeable after it had proven unmergeable (above).
1708 * We don't worry about that case for efficiency. It won't happen
1709 * often, and the elevators are able to handle it.
1710 */
1711 init_request_from_bio(req, bio);
1712
1713 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1714 req->cpu = raw_smp_processor_id();
1715
1716 plug = current->plug;
1717 if (plug) {
1718 /*
1719 * If this is the first request added after a plug, fire
1720 * of a plug trace.
1721 *
1722 * @request_count may become stale because of schedule
1723 * out, so check plug list again.
1724 */
1725 if (!request_count || list_empty(&plug->list))
1726 trace_block_plug(q);
1727 else {
1728 struct request *last = list_entry_rq(plug->list.prev);
1729 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1730 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1731 blk_flush_plug_list(plug, false);
1732 trace_block_plug(q);
1733 }
1734 }
1735 list_add_tail(&req->queuelist, &plug->list);
1736 blk_account_io_start(req, true);
1737 } else {
1738 spin_lock_irq(q->queue_lock);
1739 add_acct_request(q, req, where);
1740 __blk_run_queue(q);
1741 out_unlock:
1742 spin_unlock_irq(q->queue_lock);
1743 }
1744
1745 return BLK_QC_T_NONE;
1746 }
1747
1748 /*
1749 * If bio->bi_dev is a partition, remap the location
1750 */
1751 static inline void blk_partition_remap(struct bio *bio)
1752 {
1753 struct block_device *bdev = bio->bi_bdev;
1754
1755 /*
1756 * Zone reset does not include bi_size so bio_sectors() is always 0.
1757 * Include a test for the reset op code and perform the remap if needed.
1758 */
1759 if (bdev != bdev->bd_contains &&
1760 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1761 struct hd_struct *p = bdev->bd_part;
1762
1763 bio->bi_iter.bi_sector += p->start_sect;
1764 bio->bi_bdev = bdev->bd_contains;
1765
1766 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1767 bdev->bd_dev,
1768 bio->bi_iter.bi_sector - p->start_sect);
1769 }
1770 }
1771
1772 static void handle_bad_sector(struct bio *bio)
1773 {
1774 char b[BDEVNAME_SIZE];
1775
1776 printk(KERN_INFO "attempt to access beyond end of device\n");
1777 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1778 bdevname(bio->bi_bdev, b),
1779 bio->bi_opf,
1780 (unsigned long long)bio_end_sector(bio),
1781 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1782 }
1783
1784 #ifdef CONFIG_FAIL_MAKE_REQUEST
1785
1786 static DECLARE_FAULT_ATTR(fail_make_request);
1787
1788 static int __init setup_fail_make_request(char *str)
1789 {
1790 return setup_fault_attr(&fail_make_request, str);
1791 }
1792 __setup("fail_make_request=", setup_fail_make_request);
1793
1794 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1795 {
1796 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1797 }
1798
1799 static int __init fail_make_request_debugfs(void)
1800 {
1801 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1802 NULL, &fail_make_request);
1803
1804 return PTR_ERR_OR_ZERO(dir);
1805 }
1806
1807 late_initcall(fail_make_request_debugfs);
1808
1809 #else /* CONFIG_FAIL_MAKE_REQUEST */
1810
1811 static inline bool should_fail_request(struct hd_struct *part,
1812 unsigned int bytes)
1813 {
1814 return false;
1815 }
1816
1817 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1818
1819 /*
1820 * Check whether this bio extends beyond the end of the device.
1821 */
1822 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1823 {
1824 sector_t maxsector;
1825
1826 if (!nr_sectors)
1827 return 0;
1828
1829 /* Test device or partition size, when known. */
1830 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1831 if (maxsector) {
1832 sector_t sector = bio->bi_iter.bi_sector;
1833
1834 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1835 /*
1836 * This may well happen - the kernel calls bread()
1837 * without checking the size of the device, e.g., when
1838 * mounting a device.
1839 */
1840 handle_bad_sector(bio);
1841 return 1;
1842 }
1843 }
1844
1845 return 0;
1846 }
1847
1848 static noinline_for_stack bool
1849 generic_make_request_checks(struct bio *bio)
1850 {
1851 struct request_queue *q;
1852 int nr_sectors = bio_sectors(bio);
1853 int err = -EIO;
1854 char b[BDEVNAME_SIZE];
1855 struct hd_struct *part;
1856
1857 might_sleep();
1858
1859 if (bio_check_eod(bio, nr_sectors))
1860 goto end_io;
1861
1862 q = bdev_get_queue(bio->bi_bdev);
1863 if (unlikely(!q)) {
1864 printk(KERN_ERR
1865 "generic_make_request: Trying to access "
1866 "nonexistent block-device %s (%Lu)\n",
1867 bdevname(bio->bi_bdev, b),
1868 (long long) bio->bi_iter.bi_sector);
1869 goto end_io;
1870 }
1871
1872 part = bio->bi_bdev->bd_part;
1873 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1874 should_fail_request(&part_to_disk(part)->part0,
1875 bio->bi_iter.bi_size))
1876 goto end_io;
1877
1878 /*
1879 * If this device has partitions, remap block n
1880 * of partition p to block n+start(p) of the disk.
1881 */
1882 blk_partition_remap(bio);
1883
1884 if (bio_check_eod(bio, nr_sectors))
1885 goto end_io;
1886
1887 /*
1888 * Filter flush bio's early so that make_request based
1889 * drivers without flush support don't have to worry
1890 * about them.
1891 */
1892 if (op_is_flush(bio->bi_opf) &&
1893 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1894 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1895 if (!nr_sectors) {
1896 err = 0;
1897 goto end_io;
1898 }
1899 }
1900
1901 switch (bio_op(bio)) {
1902 case REQ_OP_DISCARD:
1903 if (!blk_queue_discard(q))
1904 goto not_supported;
1905 break;
1906 case REQ_OP_SECURE_ERASE:
1907 if (!blk_queue_secure_erase(q))
1908 goto not_supported;
1909 break;
1910 case REQ_OP_WRITE_SAME:
1911 if (!bdev_write_same(bio->bi_bdev))
1912 goto not_supported;
1913 break;
1914 case REQ_OP_ZONE_REPORT:
1915 case REQ_OP_ZONE_RESET:
1916 if (!bdev_is_zoned(bio->bi_bdev))
1917 goto not_supported;
1918 break;
1919 case REQ_OP_WRITE_ZEROES:
1920 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1921 goto not_supported;
1922 break;
1923 default:
1924 break;
1925 }
1926
1927 /*
1928 * Various block parts want %current->io_context and lazy ioc
1929 * allocation ends up trading a lot of pain for a small amount of
1930 * memory. Just allocate it upfront. This may fail and block
1931 * layer knows how to live with it.
1932 */
1933 create_io_context(GFP_ATOMIC, q->node);
1934
1935 if (!blkcg_bio_issue_check(q, bio))
1936 return false;
1937
1938 trace_block_bio_queue(q, bio);
1939 return true;
1940
1941 not_supported:
1942 err = -EOPNOTSUPP;
1943 end_io:
1944 bio->bi_error = err;
1945 bio_endio(bio);
1946 return false;
1947 }
1948
1949 /**
1950 * generic_make_request - hand a buffer to its device driver for I/O
1951 * @bio: The bio describing the location in memory and on the device.
1952 *
1953 * generic_make_request() is used to make I/O requests of block
1954 * devices. It is passed a &struct bio, which describes the I/O that needs
1955 * to be done.
1956 *
1957 * generic_make_request() does not return any status. The
1958 * success/failure status of the request, along with notification of
1959 * completion, is delivered asynchronously through the bio->bi_end_io
1960 * function described (one day) else where.
1961 *
1962 * The caller of generic_make_request must make sure that bi_io_vec
1963 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1964 * set to describe the device address, and the
1965 * bi_end_io and optionally bi_private are set to describe how
1966 * completion notification should be signaled.
1967 *
1968 * generic_make_request and the drivers it calls may use bi_next if this
1969 * bio happens to be merged with someone else, and may resubmit the bio to
1970 * a lower device by calling into generic_make_request recursively, which
1971 * means the bio should NOT be touched after the call to ->make_request_fn.
1972 */
1973 blk_qc_t generic_make_request(struct bio *bio)
1974 {
1975 /*
1976 * bio_list_on_stack[0] contains bios submitted by the current
1977 * make_request_fn.
1978 * bio_list_on_stack[1] contains bios that were submitted before
1979 * the current make_request_fn, but that haven't been processed
1980 * yet.
1981 */
1982 struct bio_list bio_list_on_stack[2];
1983 blk_qc_t ret = BLK_QC_T_NONE;
1984
1985 if (!generic_make_request_checks(bio))
1986 goto out;
1987
1988 /*
1989 * We only want one ->make_request_fn to be active at a time, else
1990 * stack usage with stacked devices could be a problem. So use
1991 * current->bio_list to keep a list of requests submited by a
1992 * make_request_fn function. current->bio_list is also used as a
1993 * flag to say if generic_make_request is currently active in this
1994 * task or not. If it is NULL, then no make_request is active. If
1995 * it is non-NULL, then a make_request is active, and new requests
1996 * should be added at the tail
1997 */
1998 if (current->bio_list) {
1999 bio_list_add(&current->bio_list[0], bio);
2000 goto out;
2001 }
2002
2003 /* following loop may be a bit non-obvious, and so deserves some
2004 * explanation.
2005 * Before entering the loop, bio->bi_next is NULL (as all callers
2006 * ensure that) so we have a list with a single bio.
2007 * We pretend that we have just taken it off a longer list, so
2008 * we assign bio_list to a pointer to the bio_list_on_stack,
2009 * thus initialising the bio_list of new bios to be
2010 * added. ->make_request() may indeed add some more bios
2011 * through a recursive call to generic_make_request. If it
2012 * did, we find a non-NULL value in bio_list and re-enter the loop
2013 * from the top. In this case we really did just take the bio
2014 * of the top of the list (no pretending) and so remove it from
2015 * bio_list, and call into ->make_request() again.
2016 */
2017 BUG_ON(bio->bi_next);
2018 bio_list_init(&bio_list_on_stack[0]);
2019 current->bio_list = bio_list_on_stack;
2020 do {
2021 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2022
2023 if (likely(blk_queue_enter(q, false) == 0)) {
2024 struct bio_list lower, same;
2025
2026 /* Create a fresh bio_list for all subordinate requests */
2027 bio_list_on_stack[1] = bio_list_on_stack[0];
2028 bio_list_init(&bio_list_on_stack[0]);
2029 ret = q->make_request_fn(q, bio);
2030
2031 blk_queue_exit(q);
2032
2033 /* sort new bios into those for a lower level
2034 * and those for the same level
2035 */
2036 bio_list_init(&lower);
2037 bio_list_init(&same);
2038 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2039 if (q == bdev_get_queue(bio->bi_bdev))
2040 bio_list_add(&same, bio);
2041 else
2042 bio_list_add(&lower, bio);
2043 /* now assemble so we handle the lowest level first */
2044 bio_list_merge(&bio_list_on_stack[0], &lower);
2045 bio_list_merge(&bio_list_on_stack[0], &same);
2046 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2047 } else {
2048 bio_io_error(bio);
2049 }
2050 bio = bio_list_pop(&bio_list_on_stack[0]);
2051 } while (bio);
2052 current->bio_list = NULL; /* deactivate */
2053
2054 out:
2055 return ret;
2056 }
2057 EXPORT_SYMBOL(generic_make_request);
2058
2059 /**
2060 * submit_bio - submit a bio to the block device layer for I/O
2061 * @bio: The &struct bio which describes the I/O
2062 *
2063 * submit_bio() is very similar in purpose to generic_make_request(), and
2064 * uses that function to do most of the work. Both are fairly rough
2065 * interfaces; @bio must be presetup and ready for I/O.
2066 *
2067 */
2068 blk_qc_t submit_bio(struct bio *bio)
2069 {
2070 /*
2071 * If it's a regular read/write or a barrier with data attached,
2072 * go through the normal accounting stuff before submission.
2073 */
2074 if (bio_has_data(bio)) {
2075 unsigned int count;
2076
2077 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2078 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2079 else
2080 count = bio_sectors(bio);
2081
2082 if (op_is_write(bio_op(bio))) {
2083 count_vm_events(PGPGOUT, count);
2084 } else {
2085 task_io_account_read(bio->bi_iter.bi_size);
2086 count_vm_events(PGPGIN, count);
2087 }
2088
2089 if (unlikely(block_dump)) {
2090 char b[BDEVNAME_SIZE];
2091 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2092 current->comm, task_pid_nr(current),
2093 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2094 (unsigned long long)bio->bi_iter.bi_sector,
2095 bdevname(bio->bi_bdev, b),
2096 count);
2097 }
2098 }
2099
2100 return generic_make_request(bio);
2101 }
2102 EXPORT_SYMBOL(submit_bio);
2103
2104 /**
2105 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2106 * for new the queue limits
2107 * @q: the queue
2108 * @rq: the request being checked
2109 *
2110 * Description:
2111 * @rq may have been made based on weaker limitations of upper-level queues
2112 * in request stacking drivers, and it may violate the limitation of @q.
2113 * Since the block layer and the underlying device driver trust @rq
2114 * after it is inserted to @q, it should be checked against @q before
2115 * the insertion using this generic function.
2116 *
2117 * Request stacking drivers like request-based dm may change the queue
2118 * limits when retrying requests on other queues. Those requests need
2119 * to be checked against the new queue limits again during dispatch.
2120 */
2121 static int blk_cloned_rq_check_limits(struct request_queue *q,
2122 struct request *rq)
2123 {
2124 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2125 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2126 return -EIO;
2127 }
2128
2129 /*
2130 * queue's settings related to segment counting like q->bounce_pfn
2131 * may differ from that of other stacking queues.
2132 * Recalculate it to check the request correctly on this queue's
2133 * limitation.
2134 */
2135 blk_recalc_rq_segments(rq);
2136 if (rq->nr_phys_segments > queue_max_segments(q)) {
2137 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2138 return -EIO;
2139 }
2140
2141 return 0;
2142 }
2143
2144 /**
2145 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2146 * @q: the queue to submit the request
2147 * @rq: the request being queued
2148 */
2149 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2150 {
2151 unsigned long flags;
2152 int where = ELEVATOR_INSERT_BACK;
2153
2154 if (blk_cloned_rq_check_limits(q, rq))
2155 return -EIO;
2156
2157 if (rq->rq_disk &&
2158 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2159 return -EIO;
2160
2161 if (q->mq_ops) {
2162 if (blk_queue_io_stat(q))
2163 blk_account_io_start(rq, true);
2164 blk_mq_sched_insert_request(rq, false, true, false, false);
2165 return 0;
2166 }
2167
2168 spin_lock_irqsave(q->queue_lock, flags);
2169 if (unlikely(blk_queue_dying(q))) {
2170 spin_unlock_irqrestore(q->queue_lock, flags);
2171 return -ENODEV;
2172 }
2173
2174 /*
2175 * Submitting request must be dequeued before calling this function
2176 * because it will be linked to another request_queue
2177 */
2178 BUG_ON(blk_queued_rq(rq));
2179
2180 if (op_is_flush(rq->cmd_flags))
2181 where = ELEVATOR_INSERT_FLUSH;
2182
2183 add_acct_request(q, rq, where);
2184 if (where == ELEVATOR_INSERT_FLUSH)
2185 __blk_run_queue(q);
2186 spin_unlock_irqrestore(q->queue_lock, flags);
2187
2188 return 0;
2189 }
2190 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2191
2192 /**
2193 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2194 * @rq: request to examine
2195 *
2196 * Description:
2197 * A request could be merge of IOs which require different failure
2198 * handling. This function determines the number of bytes which
2199 * can be failed from the beginning of the request without
2200 * crossing into area which need to be retried further.
2201 *
2202 * Return:
2203 * The number of bytes to fail.
2204 *
2205 * Context:
2206 * queue_lock must be held.
2207 */
2208 unsigned int blk_rq_err_bytes(const struct request *rq)
2209 {
2210 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2211 unsigned int bytes = 0;
2212 struct bio *bio;
2213
2214 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2215 return blk_rq_bytes(rq);
2216
2217 /*
2218 * Currently the only 'mixing' which can happen is between
2219 * different fastfail types. We can safely fail portions
2220 * which have all the failfast bits that the first one has -
2221 * the ones which are at least as eager to fail as the first
2222 * one.
2223 */
2224 for (bio = rq->bio; bio; bio = bio->bi_next) {
2225 if ((bio->bi_opf & ff) != ff)
2226 break;
2227 bytes += bio->bi_iter.bi_size;
2228 }
2229
2230 /* this could lead to infinite loop */
2231 BUG_ON(blk_rq_bytes(rq) && !bytes);
2232 return bytes;
2233 }
2234 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2235
2236 void blk_account_io_completion(struct request *req, unsigned int bytes)
2237 {
2238 if (blk_do_io_stat(req)) {
2239 const int rw = rq_data_dir(req);
2240 struct hd_struct *part;
2241 int cpu;
2242
2243 cpu = part_stat_lock();
2244 part = req->part;
2245 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2246 part_stat_unlock();
2247 }
2248 }
2249
2250 void blk_account_io_done(struct request *req)
2251 {
2252 /*
2253 * Account IO completion. flush_rq isn't accounted as a
2254 * normal IO on queueing nor completion. Accounting the
2255 * containing request is enough.
2256 */
2257 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2258 unsigned long duration = jiffies - req->start_time;
2259 const int rw = rq_data_dir(req);
2260 struct hd_struct *part;
2261 int cpu;
2262
2263 cpu = part_stat_lock();
2264 part = req->part;
2265
2266 part_stat_inc(cpu, part, ios[rw]);
2267 part_stat_add(cpu, part, ticks[rw], duration);
2268 part_round_stats(cpu, part);
2269 part_dec_in_flight(part, rw);
2270
2271 hd_struct_put(part);
2272 part_stat_unlock();
2273 }
2274 }
2275
2276 #ifdef CONFIG_PM
2277 /*
2278 * Don't process normal requests when queue is suspended
2279 * or in the process of suspending/resuming
2280 */
2281 static struct request *blk_pm_peek_request(struct request_queue *q,
2282 struct request *rq)
2283 {
2284 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2285 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2286 return NULL;
2287 else
2288 return rq;
2289 }
2290 #else
2291 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2292 struct request *rq)
2293 {
2294 return rq;
2295 }
2296 #endif
2297
2298 void blk_account_io_start(struct request *rq, bool new_io)
2299 {
2300 struct hd_struct *part;
2301 int rw = rq_data_dir(rq);
2302 int cpu;
2303
2304 if (!blk_do_io_stat(rq))
2305 return;
2306
2307 cpu = part_stat_lock();
2308
2309 if (!new_io) {
2310 part = rq->part;
2311 part_stat_inc(cpu, part, merges[rw]);
2312 } else {
2313 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2314 if (!hd_struct_try_get(part)) {
2315 /*
2316 * The partition is already being removed,
2317 * the request will be accounted on the disk only
2318 *
2319 * We take a reference on disk->part0 although that
2320 * partition will never be deleted, so we can treat
2321 * it as any other partition.
2322 */
2323 part = &rq->rq_disk->part0;
2324 hd_struct_get(part);
2325 }
2326 part_round_stats(cpu, part);
2327 part_inc_in_flight(part, rw);
2328 rq->part = part;
2329 }
2330
2331 part_stat_unlock();
2332 }
2333
2334 /**
2335 * blk_peek_request - peek at the top of a request queue
2336 * @q: request queue to peek at
2337 *
2338 * Description:
2339 * Return the request at the top of @q. The returned request
2340 * should be started using blk_start_request() before LLD starts
2341 * processing it.
2342 *
2343 * Return:
2344 * Pointer to the request at the top of @q if available. Null
2345 * otherwise.
2346 *
2347 * Context:
2348 * queue_lock must be held.
2349 */
2350 struct request *blk_peek_request(struct request_queue *q)
2351 {
2352 struct request *rq;
2353 int ret;
2354
2355 while ((rq = __elv_next_request(q)) != NULL) {
2356
2357 rq = blk_pm_peek_request(q, rq);
2358 if (!rq)
2359 break;
2360
2361 if (!(rq->rq_flags & RQF_STARTED)) {
2362 /*
2363 * This is the first time the device driver
2364 * sees this request (possibly after
2365 * requeueing). Notify IO scheduler.
2366 */
2367 if (rq->rq_flags & RQF_SORTED)
2368 elv_activate_rq(q, rq);
2369
2370 /*
2371 * just mark as started even if we don't start
2372 * it, a request that has been delayed should
2373 * not be passed by new incoming requests
2374 */
2375 rq->rq_flags |= RQF_STARTED;
2376 trace_block_rq_issue(q, rq);
2377 }
2378
2379 if (!q->boundary_rq || q->boundary_rq == rq) {
2380 q->end_sector = rq_end_sector(rq);
2381 q->boundary_rq = NULL;
2382 }
2383
2384 if (rq->rq_flags & RQF_DONTPREP)
2385 break;
2386
2387 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2388 /*
2389 * make sure space for the drain appears we
2390 * know we can do this because max_hw_segments
2391 * has been adjusted to be one fewer than the
2392 * device can handle
2393 */
2394 rq->nr_phys_segments++;
2395 }
2396
2397 if (!q->prep_rq_fn)
2398 break;
2399
2400 ret = q->prep_rq_fn(q, rq);
2401 if (ret == BLKPREP_OK) {
2402 break;
2403 } else if (ret == BLKPREP_DEFER) {
2404 /*
2405 * the request may have been (partially) prepped.
2406 * we need to keep this request in the front to
2407 * avoid resource deadlock. RQF_STARTED will
2408 * prevent other fs requests from passing this one.
2409 */
2410 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2411 !(rq->rq_flags & RQF_DONTPREP)) {
2412 /*
2413 * remove the space for the drain we added
2414 * so that we don't add it again
2415 */
2416 --rq->nr_phys_segments;
2417 }
2418
2419 rq = NULL;
2420 break;
2421 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2422 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2423
2424 rq->rq_flags |= RQF_QUIET;
2425 /*
2426 * Mark this request as started so we don't trigger
2427 * any debug logic in the end I/O path.
2428 */
2429 blk_start_request(rq);
2430 __blk_end_request_all(rq, err);
2431 } else {
2432 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2433 break;
2434 }
2435 }
2436
2437 return rq;
2438 }
2439 EXPORT_SYMBOL(blk_peek_request);
2440
2441 void blk_dequeue_request(struct request *rq)
2442 {
2443 struct request_queue *q = rq->q;
2444
2445 BUG_ON(list_empty(&rq->queuelist));
2446 BUG_ON(ELV_ON_HASH(rq));
2447
2448 list_del_init(&rq->queuelist);
2449
2450 /*
2451 * the time frame between a request being removed from the lists
2452 * and to it is freed is accounted as io that is in progress at
2453 * the driver side.
2454 */
2455 if (blk_account_rq(rq)) {
2456 q->in_flight[rq_is_sync(rq)]++;
2457 set_io_start_time_ns(rq);
2458 }
2459 }
2460
2461 /**
2462 * blk_start_request - start request processing on the driver
2463 * @req: request to dequeue
2464 *
2465 * Description:
2466 * Dequeue @req and start timeout timer on it. This hands off the
2467 * request to the driver.
2468 *
2469 * Block internal functions which don't want to start timer should
2470 * call blk_dequeue_request().
2471 *
2472 * Context:
2473 * queue_lock must be held.
2474 */
2475 void blk_start_request(struct request *req)
2476 {
2477 blk_dequeue_request(req);
2478
2479 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2480 blk_stat_set_issue_time(&req->issue_stat);
2481 req->rq_flags |= RQF_STATS;
2482 wbt_issue(req->q->rq_wb, &req->issue_stat);
2483 }
2484
2485 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2486 blk_add_timer(req);
2487 }
2488 EXPORT_SYMBOL(blk_start_request);
2489
2490 /**
2491 * blk_fetch_request - fetch a request from a request queue
2492 * @q: request queue to fetch a request from
2493 *
2494 * Description:
2495 * Return the request at the top of @q. The request is started on
2496 * return and LLD can start processing it immediately.
2497 *
2498 * Return:
2499 * Pointer to the request at the top of @q if available. Null
2500 * otherwise.
2501 *
2502 * Context:
2503 * queue_lock must be held.
2504 */
2505 struct request *blk_fetch_request(struct request_queue *q)
2506 {
2507 struct request *rq;
2508
2509 rq = blk_peek_request(q);
2510 if (rq)
2511 blk_start_request(rq);
2512 return rq;
2513 }
2514 EXPORT_SYMBOL(blk_fetch_request);
2515
2516 /**
2517 * blk_update_request - Special helper function for request stacking drivers
2518 * @req: the request being processed
2519 * @error: %0 for success, < %0 for error
2520 * @nr_bytes: number of bytes to complete @req
2521 *
2522 * Description:
2523 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2524 * the request structure even if @req doesn't have leftover.
2525 * If @req has leftover, sets it up for the next range of segments.
2526 *
2527 * This special helper function is only for request stacking drivers
2528 * (e.g. request-based dm) so that they can handle partial completion.
2529 * Actual device drivers should use blk_end_request instead.
2530 *
2531 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2532 * %false return from this function.
2533 *
2534 * Return:
2535 * %false - this request doesn't have any more data
2536 * %true - this request has more data
2537 **/
2538 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2539 {
2540 int total_bytes;
2541
2542 trace_block_rq_complete(req->q, req, nr_bytes);
2543
2544 if (!req->bio)
2545 return false;
2546
2547 /*
2548 * For fs requests, rq is just carrier of independent bio's
2549 * and each partial completion should be handled separately.
2550 * Reset per-request error on each partial completion.
2551 *
2552 * TODO: tj: This is too subtle. It would be better to let
2553 * low level drivers do what they see fit.
2554 */
2555 if (!blk_rq_is_passthrough(req))
2556 req->errors = 0;
2557
2558 if (error && !blk_rq_is_passthrough(req) &&
2559 !(req->rq_flags & RQF_QUIET)) {
2560 char *error_type;
2561
2562 switch (error) {
2563 case -ENOLINK:
2564 error_type = "recoverable transport";
2565 break;
2566 case -EREMOTEIO:
2567 error_type = "critical target";
2568 break;
2569 case -EBADE:
2570 error_type = "critical nexus";
2571 break;
2572 case -ETIMEDOUT:
2573 error_type = "timeout";
2574 break;
2575 case -ENOSPC:
2576 error_type = "critical space allocation";
2577 break;
2578 case -ENODATA:
2579 error_type = "critical medium";
2580 break;
2581 case -EIO:
2582 default:
2583 error_type = "I/O";
2584 break;
2585 }
2586 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2587 __func__, error_type, req->rq_disk ?
2588 req->rq_disk->disk_name : "?",
2589 (unsigned long long)blk_rq_pos(req));
2590
2591 }
2592
2593 blk_account_io_completion(req, nr_bytes);
2594
2595 total_bytes = 0;
2596 while (req->bio) {
2597 struct bio *bio = req->bio;
2598 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2599
2600 if (bio_bytes == bio->bi_iter.bi_size)
2601 req->bio = bio->bi_next;
2602
2603 req_bio_endio(req, bio, bio_bytes, error);
2604
2605 total_bytes += bio_bytes;
2606 nr_bytes -= bio_bytes;
2607
2608 if (!nr_bytes)
2609 break;
2610 }
2611
2612 /*
2613 * completely done
2614 */
2615 if (!req->bio) {
2616 /*
2617 * Reset counters so that the request stacking driver
2618 * can find how many bytes remain in the request
2619 * later.
2620 */
2621 req->__data_len = 0;
2622 return false;
2623 }
2624
2625 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2626
2627 req->__data_len -= total_bytes;
2628
2629 /* update sector only for requests with clear definition of sector */
2630 if (!blk_rq_is_passthrough(req))
2631 req->__sector += total_bytes >> 9;
2632
2633 /* mixed attributes always follow the first bio */
2634 if (req->rq_flags & RQF_MIXED_MERGE) {
2635 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2636 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2637 }
2638
2639 /*
2640 * If total number of sectors is less than the first segment
2641 * size, something has gone terribly wrong.
2642 */
2643 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2644 blk_dump_rq_flags(req, "request botched");
2645 req->__data_len = blk_rq_cur_bytes(req);
2646 }
2647
2648 /* recalculate the number of segments */
2649 blk_recalc_rq_segments(req);
2650
2651 return true;
2652 }
2653 EXPORT_SYMBOL_GPL(blk_update_request);
2654
2655 static bool blk_update_bidi_request(struct request *rq, int error,
2656 unsigned int nr_bytes,
2657 unsigned int bidi_bytes)
2658 {
2659 if (blk_update_request(rq, error, nr_bytes))
2660 return true;
2661
2662 /* Bidi request must be completed as a whole */
2663 if (unlikely(blk_bidi_rq(rq)) &&
2664 blk_update_request(rq->next_rq, error, bidi_bytes))
2665 return true;
2666
2667 if (blk_queue_add_random(rq->q))
2668 add_disk_randomness(rq->rq_disk);
2669
2670 return false;
2671 }
2672
2673 /**
2674 * blk_unprep_request - unprepare a request
2675 * @req: the request
2676 *
2677 * This function makes a request ready for complete resubmission (or
2678 * completion). It happens only after all error handling is complete,
2679 * so represents the appropriate moment to deallocate any resources
2680 * that were allocated to the request in the prep_rq_fn. The queue
2681 * lock is held when calling this.
2682 */
2683 void blk_unprep_request(struct request *req)
2684 {
2685 struct request_queue *q = req->q;
2686
2687 req->rq_flags &= ~RQF_DONTPREP;
2688 if (q->unprep_rq_fn)
2689 q->unprep_rq_fn(q, req);
2690 }
2691 EXPORT_SYMBOL_GPL(blk_unprep_request);
2692
2693 /*
2694 * queue lock must be held
2695 */
2696 void blk_finish_request(struct request *req, int error)
2697 {
2698 struct request_queue *q = req->q;
2699
2700 if (req->rq_flags & RQF_STATS)
2701 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2702
2703 if (req->rq_flags & RQF_QUEUED)
2704 blk_queue_end_tag(q, req);
2705
2706 BUG_ON(blk_queued_rq(req));
2707
2708 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2709 laptop_io_completion(req->q->backing_dev_info);
2710
2711 blk_delete_timer(req);
2712
2713 if (req->rq_flags & RQF_DONTPREP)
2714 blk_unprep_request(req);
2715
2716 blk_account_io_done(req);
2717
2718 if (req->end_io) {
2719 wbt_done(req->q->rq_wb, &req->issue_stat);
2720 req->end_io(req, error);
2721 } else {
2722 if (blk_bidi_rq(req))
2723 __blk_put_request(req->next_rq->q, req->next_rq);
2724
2725 __blk_put_request(q, req);
2726 }
2727 }
2728 EXPORT_SYMBOL(blk_finish_request);
2729
2730 /**
2731 * blk_end_bidi_request - Complete a bidi request
2732 * @rq: the request to complete
2733 * @error: %0 for success, < %0 for error
2734 * @nr_bytes: number of bytes to complete @rq
2735 * @bidi_bytes: number of bytes to complete @rq->next_rq
2736 *
2737 * Description:
2738 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2739 * Drivers that supports bidi can safely call this member for any
2740 * type of request, bidi or uni. In the later case @bidi_bytes is
2741 * just ignored.
2742 *
2743 * Return:
2744 * %false - we are done with this request
2745 * %true - still buffers pending for this request
2746 **/
2747 static bool blk_end_bidi_request(struct request *rq, int error,
2748 unsigned int nr_bytes, unsigned int bidi_bytes)
2749 {
2750 struct request_queue *q = rq->q;
2751 unsigned long flags;
2752
2753 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2754 return true;
2755
2756 spin_lock_irqsave(q->queue_lock, flags);
2757 blk_finish_request(rq, error);
2758 spin_unlock_irqrestore(q->queue_lock, flags);
2759
2760 return false;
2761 }
2762
2763 /**
2764 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2765 * @rq: the request to complete
2766 * @error: %0 for success, < %0 for error
2767 * @nr_bytes: number of bytes to complete @rq
2768 * @bidi_bytes: number of bytes to complete @rq->next_rq
2769 *
2770 * Description:
2771 * Identical to blk_end_bidi_request() except that queue lock is
2772 * assumed to be locked on entry and remains so on return.
2773 *
2774 * Return:
2775 * %false - we are done with this request
2776 * %true - still buffers pending for this request
2777 **/
2778 bool __blk_end_bidi_request(struct request *rq, int error,
2779 unsigned int nr_bytes, unsigned int bidi_bytes)
2780 {
2781 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2782 return true;
2783
2784 blk_finish_request(rq, error);
2785
2786 return false;
2787 }
2788
2789 /**
2790 * blk_end_request - Helper function for drivers to complete the request.
2791 * @rq: the request being processed
2792 * @error: %0 for success, < %0 for error
2793 * @nr_bytes: number of bytes to complete
2794 *
2795 * Description:
2796 * Ends I/O on a number of bytes attached to @rq.
2797 * If @rq has leftover, sets it up for the next range of segments.
2798 *
2799 * Return:
2800 * %false - we are done with this request
2801 * %true - still buffers pending for this request
2802 **/
2803 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2804 {
2805 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2806 }
2807 EXPORT_SYMBOL(blk_end_request);
2808
2809 /**
2810 * blk_end_request_all - Helper function for drives to finish the request.
2811 * @rq: the request to finish
2812 * @error: %0 for success, < %0 for error
2813 *
2814 * Description:
2815 * Completely finish @rq.
2816 */
2817 void blk_end_request_all(struct request *rq, int error)
2818 {
2819 bool pending;
2820 unsigned int bidi_bytes = 0;
2821
2822 if (unlikely(blk_bidi_rq(rq)))
2823 bidi_bytes = blk_rq_bytes(rq->next_rq);
2824
2825 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2826 BUG_ON(pending);
2827 }
2828 EXPORT_SYMBOL(blk_end_request_all);
2829
2830 /**
2831 * blk_end_request_cur - Helper function to finish the current request chunk.
2832 * @rq: the request to finish the current chunk for
2833 * @error: %0 for success, < %0 for error
2834 *
2835 * Description:
2836 * Complete the current consecutively mapped chunk from @rq.
2837 *
2838 * Return:
2839 * %false - we are done with this request
2840 * %true - still buffers pending for this request
2841 */
2842 bool blk_end_request_cur(struct request *rq, int error)
2843 {
2844 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2845 }
2846 EXPORT_SYMBOL(blk_end_request_cur);
2847
2848 /**
2849 * blk_end_request_err - Finish a request till the next failure boundary.
2850 * @rq: the request to finish till the next failure boundary for
2851 * @error: must be negative errno
2852 *
2853 * Description:
2854 * Complete @rq till the next failure boundary.
2855 *
2856 * Return:
2857 * %false - we are done with this request
2858 * %true - still buffers pending for this request
2859 */
2860 bool blk_end_request_err(struct request *rq, int error)
2861 {
2862 WARN_ON(error >= 0);
2863 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2864 }
2865 EXPORT_SYMBOL_GPL(blk_end_request_err);
2866
2867 /**
2868 * __blk_end_request - Helper function for drivers to complete the request.
2869 * @rq: the request being processed
2870 * @error: %0 for success, < %0 for error
2871 * @nr_bytes: number of bytes to complete
2872 *
2873 * Description:
2874 * Must be called with queue lock held unlike blk_end_request().
2875 *
2876 * Return:
2877 * %false - we are done with this request
2878 * %true - still buffers pending for this request
2879 **/
2880 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2881 {
2882 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2883 }
2884 EXPORT_SYMBOL(__blk_end_request);
2885
2886 /**
2887 * __blk_end_request_all - Helper function for drives to finish the request.
2888 * @rq: the request to finish
2889 * @error: %0 for success, < %0 for error
2890 *
2891 * Description:
2892 * Completely finish @rq. Must be called with queue lock held.
2893 */
2894 void __blk_end_request_all(struct request *rq, int error)
2895 {
2896 bool pending;
2897 unsigned int bidi_bytes = 0;
2898
2899 if (unlikely(blk_bidi_rq(rq)))
2900 bidi_bytes = blk_rq_bytes(rq->next_rq);
2901
2902 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2903 BUG_ON(pending);
2904 }
2905 EXPORT_SYMBOL(__blk_end_request_all);
2906
2907 /**
2908 * __blk_end_request_cur - Helper function to finish the current request chunk.
2909 * @rq: the request to finish the current chunk for
2910 * @error: %0 for success, < %0 for error
2911 *
2912 * Description:
2913 * Complete the current consecutively mapped chunk from @rq. Must
2914 * be called with queue lock held.
2915 *
2916 * Return:
2917 * %false - we are done with this request
2918 * %true - still buffers pending for this request
2919 */
2920 bool __blk_end_request_cur(struct request *rq, int error)
2921 {
2922 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2923 }
2924 EXPORT_SYMBOL(__blk_end_request_cur);
2925
2926 /**
2927 * __blk_end_request_err - Finish a request till the next failure boundary.
2928 * @rq: the request to finish till the next failure boundary for
2929 * @error: must be negative errno
2930 *
2931 * Description:
2932 * Complete @rq till the next failure boundary. Must be called
2933 * with queue lock held.
2934 *
2935 * Return:
2936 * %false - we are done with this request
2937 * %true - still buffers pending for this request
2938 */
2939 bool __blk_end_request_err(struct request *rq, int error)
2940 {
2941 WARN_ON(error >= 0);
2942 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2943 }
2944 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2945
2946 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2947 struct bio *bio)
2948 {
2949 if (bio_has_data(bio))
2950 rq->nr_phys_segments = bio_phys_segments(q, bio);
2951
2952 rq->__data_len = bio->bi_iter.bi_size;
2953 rq->bio = rq->biotail = bio;
2954
2955 if (bio->bi_bdev)
2956 rq->rq_disk = bio->bi_bdev->bd_disk;
2957 }
2958
2959 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2960 /**
2961 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2962 * @rq: the request to be flushed
2963 *
2964 * Description:
2965 * Flush all pages in @rq.
2966 */
2967 void rq_flush_dcache_pages(struct request *rq)
2968 {
2969 struct req_iterator iter;
2970 struct bio_vec bvec;
2971
2972 rq_for_each_segment(bvec, rq, iter)
2973 flush_dcache_page(bvec.bv_page);
2974 }
2975 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2976 #endif
2977
2978 /**
2979 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2980 * @q : the queue of the device being checked
2981 *
2982 * Description:
2983 * Check if underlying low-level drivers of a device are busy.
2984 * If the drivers want to export their busy state, they must set own
2985 * exporting function using blk_queue_lld_busy() first.
2986 *
2987 * Basically, this function is used only by request stacking drivers
2988 * to stop dispatching requests to underlying devices when underlying
2989 * devices are busy. This behavior helps more I/O merging on the queue
2990 * of the request stacking driver and prevents I/O throughput regression
2991 * on burst I/O load.
2992 *
2993 * Return:
2994 * 0 - Not busy (The request stacking driver should dispatch request)
2995 * 1 - Busy (The request stacking driver should stop dispatching request)
2996 */
2997 int blk_lld_busy(struct request_queue *q)
2998 {
2999 if (q->lld_busy_fn)
3000 return q->lld_busy_fn(q);
3001
3002 return 0;
3003 }
3004 EXPORT_SYMBOL_GPL(blk_lld_busy);
3005
3006 /**
3007 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3008 * @rq: the clone request to be cleaned up
3009 *
3010 * Description:
3011 * Free all bios in @rq for a cloned request.
3012 */
3013 void blk_rq_unprep_clone(struct request *rq)
3014 {
3015 struct bio *bio;
3016
3017 while ((bio = rq->bio) != NULL) {
3018 rq->bio = bio->bi_next;
3019
3020 bio_put(bio);
3021 }
3022 }
3023 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3024
3025 /*
3026 * Copy attributes of the original request to the clone request.
3027 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3028 */
3029 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3030 {
3031 dst->cpu = src->cpu;
3032 dst->__sector = blk_rq_pos(src);
3033 dst->__data_len = blk_rq_bytes(src);
3034 dst->nr_phys_segments = src->nr_phys_segments;
3035 dst->ioprio = src->ioprio;
3036 dst->extra_len = src->extra_len;
3037 }
3038
3039 /**
3040 * blk_rq_prep_clone - Helper function to setup clone request
3041 * @rq: the request to be setup
3042 * @rq_src: original request to be cloned
3043 * @bs: bio_set that bios for clone are allocated from
3044 * @gfp_mask: memory allocation mask for bio
3045 * @bio_ctr: setup function to be called for each clone bio.
3046 * Returns %0 for success, non %0 for failure.
3047 * @data: private data to be passed to @bio_ctr
3048 *
3049 * Description:
3050 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3051 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3052 * are not copied, and copying such parts is the caller's responsibility.
3053 * Also, pages which the original bios are pointing to are not copied
3054 * and the cloned bios just point same pages.
3055 * So cloned bios must be completed before original bios, which means
3056 * the caller must complete @rq before @rq_src.
3057 */
3058 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3059 struct bio_set *bs, gfp_t gfp_mask,
3060 int (*bio_ctr)(struct bio *, struct bio *, void *),
3061 void *data)
3062 {
3063 struct bio *bio, *bio_src;
3064
3065 if (!bs)
3066 bs = fs_bio_set;
3067
3068 __rq_for_each_bio(bio_src, rq_src) {
3069 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3070 if (!bio)
3071 goto free_and_out;
3072
3073 if (bio_ctr && bio_ctr(bio, bio_src, data))
3074 goto free_and_out;
3075
3076 if (rq->bio) {
3077 rq->biotail->bi_next = bio;
3078 rq->biotail = bio;
3079 } else
3080 rq->bio = rq->biotail = bio;
3081 }
3082
3083 __blk_rq_prep_clone(rq, rq_src);
3084
3085 return 0;
3086
3087 free_and_out:
3088 if (bio)
3089 bio_put(bio);
3090 blk_rq_unprep_clone(rq);
3091
3092 return -ENOMEM;
3093 }
3094 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3095
3096 int kblockd_schedule_work(struct work_struct *work)
3097 {
3098 return queue_work(kblockd_workqueue, work);
3099 }
3100 EXPORT_SYMBOL(kblockd_schedule_work);
3101
3102 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3103 {
3104 return queue_work_on(cpu, kblockd_workqueue, work);
3105 }
3106 EXPORT_SYMBOL(kblockd_schedule_work_on);
3107
3108 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3109 unsigned long delay)
3110 {
3111 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3112 }
3113 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3114
3115 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3116 unsigned long delay)
3117 {
3118 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3119 }
3120 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3121
3122 /**
3123 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3124 * @plug: The &struct blk_plug that needs to be initialized
3125 *
3126 * Description:
3127 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3128 * pending I/O should the task end up blocking between blk_start_plug() and
3129 * blk_finish_plug(). This is important from a performance perspective, but
3130 * also ensures that we don't deadlock. For instance, if the task is blocking
3131 * for a memory allocation, memory reclaim could end up wanting to free a
3132 * page belonging to that request that is currently residing in our private
3133 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3134 * this kind of deadlock.
3135 */
3136 void blk_start_plug(struct blk_plug *plug)
3137 {
3138 struct task_struct *tsk = current;
3139
3140 /*
3141 * If this is a nested plug, don't actually assign it.
3142 */
3143 if (tsk->plug)
3144 return;
3145
3146 INIT_LIST_HEAD(&plug->list);
3147 INIT_LIST_HEAD(&plug->mq_list);
3148 INIT_LIST_HEAD(&plug->cb_list);
3149 /*
3150 * Store ordering should not be needed here, since a potential
3151 * preempt will imply a full memory barrier
3152 */
3153 tsk->plug = plug;
3154 }
3155 EXPORT_SYMBOL(blk_start_plug);
3156
3157 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3158 {
3159 struct request *rqa = container_of(a, struct request, queuelist);
3160 struct request *rqb = container_of(b, struct request, queuelist);
3161
3162 return !(rqa->q < rqb->q ||
3163 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3164 }
3165
3166 /*
3167 * If 'from_schedule' is true, then postpone the dispatch of requests
3168 * until a safe kblockd context. We due this to avoid accidental big
3169 * additional stack usage in driver dispatch, in places where the originally
3170 * plugger did not intend it.
3171 */
3172 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3173 bool from_schedule)
3174 __releases(q->queue_lock)
3175 {
3176 trace_block_unplug(q, depth, !from_schedule);
3177
3178 if (from_schedule)
3179 blk_run_queue_async(q);
3180 else
3181 __blk_run_queue(q);
3182 spin_unlock(q->queue_lock);
3183 }
3184
3185 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3186 {
3187 LIST_HEAD(callbacks);
3188
3189 while (!list_empty(&plug->cb_list)) {
3190 list_splice_init(&plug->cb_list, &callbacks);
3191
3192 while (!list_empty(&callbacks)) {
3193 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3194 struct blk_plug_cb,
3195 list);
3196 list_del(&cb->list);
3197 cb->callback(cb, from_schedule);
3198 }
3199 }
3200 }
3201
3202 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3203 int size)
3204 {
3205 struct blk_plug *plug = current->plug;
3206 struct blk_plug_cb *cb;
3207
3208 if (!plug)
3209 return NULL;
3210
3211 list_for_each_entry(cb, &plug->cb_list, list)
3212 if (cb->callback == unplug && cb->data == data)
3213 return cb;
3214
3215 /* Not currently on the callback list */
3216 BUG_ON(size < sizeof(*cb));
3217 cb = kzalloc(size, GFP_ATOMIC);
3218 if (cb) {
3219 cb->data = data;
3220 cb->callback = unplug;
3221 list_add(&cb->list, &plug->cb_list);
3222 }
3223 return cb;
3224 }
3225 EXPORT_SYMBOL(blk_check_plugged);
3226
3227 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3228 {
3229 struct request_queue *q;
3230 unsigned long flags;
3231 struct request *rq;
3232 LIST_HEAD(list);
3233 unsigned int depth;
3234
3235 flush_plug_callbacks(plug, from_schedule);
3236
3237 if (!list_empty(&plug->mq_list))
3238 blk_mq_flush_plug_list(plug, from_schedule);
3239
3240 if (list_empty(&plug->list))
3241 return;
3242
3243 list_splice_init(&plug->list, &list);
3244
3245 list_sort(NULL, &list, plug_rq_cmp);
3246
3247 q = NULL;
3248 depth = 0;
3249
3250 /*
3251 * Save and disable interrupts here, to avoid doing it for every
3252 * queue lock we have to take.
3253 */
3254 local_irq_save(flags);
3255 while (!list_empty(&list)) {
3256 rq = list_entry_rq(list.next);
3257 list_del_init(&rq->queuelist);
3258 BUG_ON(!rq->q);
3259 if (rq->q != q) {
3260 /*
3261 * This drops the queue lock
3262 */
3263 if (q)
3264 queue_unplugged(q, depth, from_schedule);
3265 q = rq->q;
3266 depth = 0;
3267 spin_lock(q->queue_lock);
3268 }
3269
3270 /*
3271 * Short-circuit if @q is dead
3272 */
3273 if (unlikely(blk_queue_dying(q))) {
3274 __blk_end_request_all(rq, -ENODEV);
3275 continue;
3276 }
3277
3278 /*
3279 * rq is already accounted, so use raw insert
3280 */
3281 if (op_is_flush(rq->cmd_flags))
3282 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3283 else
3284 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3285
3286 depth++;
3287 }
3288
3289 /*
3290 * This drops the queue lock
3291 */
3292 if (q)
3293 queue_unplugged(q, depth, from_schedule);
3294
3295 local_irq_restore(flags);
3296 }
3297
3298 void blk_finish_plug(struct blk_plug *plug)
3299 {
3300 if (plug != current->plug)
3301 return;
3302 blk_flush_plug_list(plug, false);
3303
3304 current->plug = NULL;
3305 }
3306 EXPORT_SYMBOL(blk_finish_plug);
3307
3308 #ifdef CONFIG_PM
3309 /**
3310 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3311 * @q: the queue of the device
3312 * @dev: the device the queue belongs to
3313 *
3314 * Description:
3315 * Initialize runtime-PM-related fields for @q and start auto suspend for
3316 * @dev. Drivers that want to take advantage of request-based runtime PM
3317 * should call this function after @dev has been initialized, and its
3318 * request queue @q has been allocated, and runtime PM for it can not happen
3319 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3320 * cases, driver should call this function before any I/O has taken place.
3321 *
3322 * This function takes care of setting up using auto suspend for the device,
3323 * the autosuspend delay is set to -1 to make runtime suspend impossible
3324 * until an updated value is either set by user or by driver. Drivers do
3325 * not need to touch other autosuspend settings.
3326 *
3327 * The block layer runtime PM is request based, so only works for drivers
3328 * that use request as their IO unit instead of those directly use bio's.
3329 */
3330 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3331 {
3332 q->dev = dev;
3333 q->rpm_status = RPM_ACTIVE;
3334 pm_runtime_set_autosuspend_delay(q->dev, -1);
3335 pm_runtime_use_autosuspend(q->dev);
3336 }
3337 EXPORT_SYMBOL(blk_pm_runtime_init);
3338
3339 /**
3340 * blk_pre_runtime_suspend - Pre runtime suspend check
3341 * @q: the queue of the device
3342 *
3343 * Description:
3344 * This function will check if runtime suspend is allowed for the device
3345 * by examining if there are any requests pending in the queue. If there
3346 * are requests pending, the device can not be runtime suspended; otherwise,
3347 * the queue's status will be updated to SUSPENDING and the driver can
3348 * proceed to suspend the device.
3349 *
3350 * For the not allowed case, we mark last busy for the device so that
3351 * runtime PM core will try to autosuspend it some time later.
3352 *
3353 * This function should be called near the start of the device's
3354 * runtime_suspend callback.
3355 *
3356 * Return:
3357 * 0 - OK to runtime suspend the device
3358 * -EBUSY - Device should not be runtime suspended
3359 */
3360 int blk_pre_runtime_suspend(struct request_queue *q)
3361 {
3362 int ret = 0;
3363
3364 if (!q->dev)
3365 return ret;
3366
3367 spin_lock_irq(q->queue_lock);
3368 if (q->nr_pending) {
3369 ret = -EBUSY;
3370 pm_runtime_mark_last_busy(q->dev);
3371 } else {
3372 q->rpm_status = RPM_SUSPENDING;
3373 }
3374 spin_unlock_irq(q->queue_lock);
3375 return ret;
3376 }
3377 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3378
3379 /**
3380 * blk_post_runtime_suspend - Post runtime suspend processing
3381 * @q: the queue of the device
3382 * @err: return value of the device's runtime_suspend function
3383 *
3384 * Description:
3385 * Update the queue's runtime status according to the return value of the
3386 * device's runtime suspend function and mark last busy for the device so
3387 * that PM core will try to auto suspend the device at a later time.
3388 *
3389 * This function should be called near the end of the device's
3390 * runtime_suspend callback.
3391 */
3392 void blk_post_runtime_suspend(struct request_queue *q, int err)
3393 {
3394 if (!q->dev)
3395 return;
3396
3397 spin_lock_irq(q->queue_lock);
3398 if (!err) {
3399 q->rpm_status = RPM_SUSPENDED;
3400 } else {
3401 q->rpm_status = RPM_ACTIVE;
3402 pm_runtime_mark_last_busy(q->dev);
3403 }
3404 spin_unlock_irq(q->queue_lock);
3405 }
3406 EXPORT_SYMBOL(blk_post_runtime_suspend);
3407
3408 /**
3409 * blk_pre_runtime_resume - Pre runtime resume processing
3410 * @q: the queue of the device
3411 *
3412 * Description:
3413 * Update the queue's runtime status to RESUMING in preparation for the
3414 * runtime resume of the device.
3415 *
3416 * This function should be called near the start of the device's
3417 * runtime_resume callback.
3418 */
3419 void blk_pre_runtime_resume(struct request_queue *q)
3420 {
3421 if (!q->dev)
3422 return;
3423
3424 spin_lock_irq(q->queue_lock);
3425 q->rpm_status = RPM_RESUMING;
3426 spin_unlock_irq(q->queue_lock);
3427 }
3428 EXPORT_SYMBOL(blk_pre_runtime_resume);
3429
3430 /**
3431 * blk_post_runtime_resume - Post runtime resume processing
3432 * @q: the queue of the device
3433 * @err: return value of the device's runtime_resume function
3434 *
3435 * Description:
3436 * Update the queue's runtime status according to the return value of the
3437 * device's runtime_resume function. If it is successfully resumed, process
3438 * the requests that are queued into the device's queue when it is resuming
3439 * and then mark last busy and initiate autosuspend for it.
3440 *
3441 * This function should be called near the end of the device's
3442 * runtime_resume callback.
3443 */
3444 void blk_post_runtime_resume(struct request_queue *q, int err)
3445 {
3446 if (!q->dev)
3447 return;
3448
3449 spin_lock_irq(q->queue_lock);
3450 if (!err) {
3451 q->rpm_status = RPM_ACTIVE;
3452 __blk_run_queue(q);
3453 pm_runtime_mark_last_busy(q->dev);
3454 pm_request_autosuspend(q->dev);
3455 } else {
3456 q->rpm_status = RPM_SUSPENDED;
3457 }
3458 spin_unlock_irq(q->queue_lock);
3459 }
3460 EXPORT_SYMBOL(blk_post_runtime_resume);
3461
3462 /**
3463 * blk_set_runtime_active - Force runtime status of the queue to be active
3464 * @q: the queue of the device
3465 *
3466 * If the device is left runtime suspended during system suspend the resume
3467 * hook typically resumes the device and corrects runtime status
3468 * accordingly. However, that does not affect the queue runtime PM status
3469 * which is still "suspended". This prevents processing requests from the
3470 * queue.
3471 *
3472 * This function can be used in driver's resume hook to correct queue
3473 * runtime PM status and re-enable peeking requests from the queue. It
3474 * should be called before first request is added to the queue.
3475 */
3476 void blk_set_runtime_active(struct request_queue *q)
3477 {
3478 spin_lock_irq(q->queue_lock);
3479 q->rpm_status = RPM_ACTIVE;
3480 pm_runtime_mark_last_busy(q->dev);
3481 pm_request_autosuspend(q->dev);
3482 spin_unlock_irq(q->queue_lock);
3483 }
3484 EXPORT_SYMBOL(blk_set_runtime_active);
3485 #endif
3486
3487 int __init blk_dev_init(void)
3488 {
3489 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3490 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3491 FIELD_SIZEOF(struct request, cmd_flags));
3492 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3493 FIELD_SIZEOF(struct bio, bi_opf));
3494
3495 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3496 kblockd_workqueue = alloc_workqueue("kblockd",
3497 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3498 if (!kblockd_workqueue)
3499 panic("Failed to create kblockd\n");
3500
3501 request_cachep = kmem_cache_create("blkdev_requests",
3502 sizeof(struct request), 0, SLAB_PANIC, NULL);
3503
3504 blk_requestq_cachep = kmem_cache_create("request_queue",
3505 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3506
3507 #ifdef CONFIG_DEBUG_FS
3508 blk_debugfs_root = debugfs_create_dir("block", NULL);
3509 #endif
3510
3511 return 0;
3512 }