]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
e8e5865a53e2cccac58eec29ca6b1007ad643fa9
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688 }
689
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 struct request_queue *q;
693 int err;
694
695 q = kmem_cache_alloc_node(blk_requestq_cachep,
696 gfp_mask | __GFP_ZERO, node_id);
697 if (!q)
698 return NULL;
699
700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 if (q->id < 0)
702 goto fail_q;
703
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 q->backing_dev_info.name = "block";
712 q->node = node_id;
713
714 err = bdi_init(&q->backing_dev_info);
715 if (err)
716 goto fail_split;
717
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 INIT_LIST_HEAD(&q->queue_head);
722 INIT_LIST_HEAD(&q->timeout_list);
723 INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728
729 kobject_init(&q->kobj, &blk_queue_ktype);
730
731 mutex_init(&q->sysfs_lock);
732 spin_lock_init(&q->__queue_lock);
733
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
749 init_waitqueue_head(&q->mq_freeze_wq);
750
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 goto fail_bdi;
759
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
763 return q;
764
765 fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 bioset_free(q->bio_split);
771 fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778
779 /**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
803 *
804 * Function returns a pointer to the initialized request queue, or %NULL if
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
811
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 struct request_queue *uninit_q, *q;
822
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 if (!q)
829 blk_cleanup_queue(uninit_q);
830
831 return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
840 {
841 if (!q)
842 return NULL;
843
844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 if (!q->fq)
846 return NULL;
847
848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 goto fail;
850
851 INIT_WORK(&q->timeout_work, blk_timeout_work);
852 q->request_fn = rfn;
853 q->prep_rq_fn = NULL;
854 q->unprep_rq_fn = NULL;
855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
860
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
864 blk_queue_make_request(q, blk_queue_bio);
865
866 q->sg_reserved_size = INT_MAX;
867
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
871 /* init elevator */
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
874 goto fail;
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
879 return q;
880
881 fail:
882 blk_free_flush_queue(q->fq);
883 return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886
887 bool blk_get_queue(struct request_queue *q)
888 {
889 if (likely(!blk_queue_dying(q))) {
890 __blk_get_queue(q);
891 return true;
892 }
893
894 return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 if (rq->cmd_flags & REQ_ELVPRIV) {
901 elv_put_request(rl->q, rq);
902 if (rq->elv.icq)
903 put_io_context(rq->elv.icq->ioc);
904 }
905
906 mempool_free(rq, rl->rq_pool);
907 }
908
909 /*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927
928 /*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941 }
942
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 struct request_queue *q = rl->q;
946
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
949
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
953
954 blk_clear_rl_full(rl, sync);
955 }
956 }
957
958 /*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
962 static void freed_request(struct request_list *rl, unsigned int flags)
963 {
964 struct request_queue *q = rl->q;
965 int sync = rw_is_sync(flags);
966
967 q->nr_rqs[sync]--;
968 rl->count[sync]--;
969 if (flags & REQ_ELVPRIV)
970 q->nr_rqs_elvpriv--;
971
972 __freed_request(rl, sync);
973
974 if (unlikely(rl->starved[sync ^ 1]))
975 __freed_request(rl, sync ^ 1);
976 }
977
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 struct request_list *rl;
981 int on_thresh, off_thresh;
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
988
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
994
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
999
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017 }
1018
1019 /*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050 #endif
1051 return current->io_context;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @rw_flags: RW and SYNC flags
1058 * @bio: bio to allocate request for (can be %NULL)
1059 * @gfp_mask: allocation mask
1060 *
1061 * Get a free request from @q. This function may fail under memory
1062 * pressure or if @q is dead.
1063 *
1064 * Must be called with @q->queue_lock held and,
1065 * Returns ERR_PTR on failure, with @q->queue_lock held.
1066 * Returns request pointer on success, with @q->queue_lock *not held*.
1067 */
1068 static struct request *__get_request(struct request_list *rl, int rw_flags,
1069 struct bio *bio, gfp_t gfp_mask)
1070 {
1071 struct request_queue *q = rl->q;
1072 struct request *rq;
1073 struct elevator_type *et = q->elevator->type;
1074 struct io_context *ioc = rq_ioc(bio);
1075 struct io_cq *icq = NULL;
1076 const bool is_sync = rw_is_sync(rw_flags) != 0;
1077 int may_queue;
1078
1079 if (unlikely(blk_queue_dying(q)))
1080 return ERR_PTR(-ENODEV);
1081
1082 may_queue = elv_may_queue(q, rw_flags);
1083 if (may_queue == ELV_MQUEUE_NO)
1084 goto rq_starved;
1085
1086 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1087 if (rl->count[is_sync]+1 >= q->nr_requests) {
1088 /*
1089 * The queue will fill after this allocation, so set
1090 * it as full, and mark this process as "batching".
1091 * This process will be allowed to complete a batch of
1092 * requests, others will be blocked.
1093 */
1094 if (!blk_rl_full(rl, is_sync)) {
1095 ioc_set_batching(q, ioc);
1096 blk_set_rl_full(rl, is_sync);
1097 } else {
1098 if (may_queue != ELV_MQUEUE_MUST
1099 && !ioc_batching(q, ioc)) {
1100 /*
1101 * The queue is full and the allocating
1102 * process is not a "batcher", and not
1103 * exempted by the IO scheduler
1104 */
1105 return ERR_PTR(-ENOMEM);
1106 }
1107 }
1108 }
1109 blk_set_congested(rl, is_sync);
1110 }
1111
1112 /*
1113 * Only allow batching queuers to allocate up to 50% over the defined
1114 * limit of requests, otherwise we could have thousands of requests
1115 * allocated with any setting of ->nr_requests
1116 */
1117 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1118 return ERR_PTR(-ENOMEM);
1119
1120 q->nr_rqs[is_sync]++;
1121 rl->count[is_sync]++;
1122 rl->starved[is_sync] = 0;
1123
1124 /*
1125 * Decide whether the new request will be managed by elevator. If
1126 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1127 * prevent the current elevator from being destroyed until the new
1128 * request is freed. This guarantees icq's won't be destroyed and
1129 * makes creating new ones safe.
1130 *
1131 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1132 * it will be created after releasing queue_lock.
1133 */
1134 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1135 rw_flags |= REQ_ELVPRIV;
1136 q->nr_rqs_elvpriv++;
1137 if (et->icq_cache && ioc)
1138 icq = ioc_lookup_icq(ioc, q);
1139 }
1140
1141 if (blk_queue_io_stat(q))
1142 rw_flags |= REQ_IO_STAT;
1143 spin_unlock_irq(q->queue_lock);
1144
1145 /* allocate and init request */
1146 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1147 if (!rq)
1148 goto fail_alloc;
1149
1150 blk_rq_init(q, rq);
1151 blk_rq_set_rl(rq, rl);
1152 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1153
1154 /* init elvpriv */
1155 if (rw_flags & REQ_ELVPRIV) {
1156 if (unlikely(et->icq_cache && !icq)) {
1157 if (ioc)
1158 icq = ioc_create_icq(ioc, q, gfp_mask);
1159 if (!icq)
1160 goto fail_elvpriv;
1161 }
1162
1163 rq->elv.icq = icq;
1164 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1165 goto fail_elvpriv;
1166
1167 /* @rq->elv.icq holds io_context until @rq is freed */
1168 if (icq)
1169 get_io_context(icq->ioc);
1170 }
1171 out:
1172 /*
1173 * ioc may be NULL here, and ioc_batching will be false. That's
1174 * OK, if the queue is under the request limit then requests need
1175 * not count toward the nr_batch_requests limit. There will always
1176 * be some limit enforced by BLK_BATCH_TIME.
1177 */
1178 if (ioc_batching(q, ioc))
1179 ioc->nr_batch_requests--;
1180
1181 trace_block_getrq(q, bio, rw_flags & 1);
1182 return rq;
1183
1184 fail_elvpriv:
1185 /*
1186 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1187 * and may fail indefinitely under memory pressure and thus
1188 * shouldn't stall IO. Treat this request as !elvpriv. This will
1189 * disturb iosched and blkcg but weird is bettern than dead.
1190 */
1191 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1192 __func__, dev_name(q->backing_dev_info.dev));
1193
1194 rq->cmd_flags &= ~REQ_ELVPRIV;
1195 rq->elv.icq = NULL;
1196
1197 spin_lock_irq(q->queue_lock);
1198 q->nr_rqs_elvpriv--;
1199 spin_unlock_irq(q->queue_lock);
1200 goto out;
1201
1202 fail_alloc:
1203 /*
1204 * Allocation failed presumably due to memory. Undo anything we
1205 * might have messed up.
1206 *
1207 * Allocating task should really be put onto the front of the wait
1208 * queue, but this is pretty rare.
1209 */
1210 spin_lock_irq(q->queue_lock);
1211 freed_request(rl, rw_flags);
1212
1213 /*
1214 * in the very unlikely event that allocation failed and no
1215 * requests for this direction was pending, mark us starved so that
1216 * freeing of a request in the other direction will notice
1217 * us. another possible fix would be to split the rq mempool into
1218 * READ and WRITE
1219 */
1220 rq_starved:
1221 if (unlikely(rl->count[is_sync] == 0))
1222 rl->starved[is_sync] = 1;
1223 return ERR_PTR(-ENOMEM);
1224 }
1225
1226 /**
1227 * get_request - get a free request
1228 * @q: request_queue to allocate request from
1229 * @rw_flags: RW and SYNC flags
1230 * @bio: bio to allocate request for (can be %NULL)
1231 * @gfp_mask: allocation mask
1232 *
1233 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1234 * this function keeps retrying under memory pressure and fails iff @q is dead.
1235 *
1236 * Must be called with @q->queue_lock held and,
1237 * Returns ERR_PTR on failure, with @q->queue_lock held.
1238 * Returns request pointer on success, with @q->queue_lock *not held*.
1239 */
1240 static struct request *get_request(struct request_queue *q, int rw_flags,
1241 struct bio *bio, gfp_t gfp_mask)
1242 {
1243 const bool is_sync = rw_is_sync(rw_flags) != 0;
1244 DEFINE_WAIT(wait);
1245 struct request_list *rl;
1246 struct request *rq;
1247
1248 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1249 retry:
1250 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1251 if (!IS_ERR(rq))
1252 return rq;
1253
1254 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1255 blk_put_rl(rl);
1256 return rq;
1257 }
1258
1259 /* wait on @rl and retry */
1260 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1261 TASK_UNINTERRUPTIBLE);
1262
1263 trace_block_sleeprq(q, bio, rw_flags & 1);
1264
1265 spin_unlock_irq(q->queue_lock);
1266 io_schedule();
1267
1268 /*
1269 * After sleeping, we become a "batching" process and will be able
1270 * to allocate at least one request, and up to a big batch of them
1271 * for a small period time. See ioc_batching, ioc_set_batching
1272 */
1273 ioc_set_batching(q, current->io_context);
1274
1275 spin_lock_irq(q->queue_lock);
1276 finish_wait(&rl->wait[is_sync], &wait);
1277
1278 goto retry;
1279 }
1280
1281 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1282 gfp_t gfp_mask)
1283 {
1284 struct request *rq;
1285
1286 BUG_ON(rw != READ && rw != WRITE);
1287
1288 /* create ioc upfront */
1289 create_io_context(gfp_mask, q->node);
1290
1291 spin_lock_irq(q->queue_lock);
1292 rq = get_request(q, rw, NULL, gfp_mask);
1293 if (IS_ERR(rq))
1294 spin_unlock_irq(q->queue_lock);
1295 /* q->queue_lock is unlocked at this point */
1296
1297 return rq;
1298 }
1299
1300 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1301 {
1302 if (q->mq_ops)
1303 return blk_mq_alloc_request(q, rw,
1304 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1305 0 : BLK_MQ_REQ_NOWAIT);
1306 else
1307 return blk_old_get_request(q, rw, gfp_mask);
1308 }
1309 EXPORT_SYMBOL(blk_get_request);
1310
1311 /**
1312 * blk_make_request - given a bio, allocate a corresponding struct request.
1313 * @q: target request queue
1314 * @bio: The bio describing the memory mappings that will be submitted for IO.
1315 * It may be a chained-bio properly constructed by block/bio layer.
1316 * @gfp_mask: gfp flags to be used for memory allocation
1317 *
1318 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1319 * type commands. Where the struct request needs to be farther initialized by
1320 * the caller. It is passed a &struct bio, which describes the memory info of
1321 * the I/O transfer.
1322 *
1323 * The caller of blk_make_request must make sure that bi_io_vec
1324 * are set to describe the memory buffers. That bio_data_dir() will return
1325 * the needed direction of the request. (And all bio's in the passed bio-chain
1326 * are properly set accordingly)
1327 *
1328 * If called under none-sleepable conditions, mapped bio buffers must not
1329 * need bouncing, by calling the appropriate masked or flagged allocator,
1330 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1331 * BUG.
1332 *
1333 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1334 * given to how you allocate bios. In particular, you cannot use
1335 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1336 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1337 * thus resulting in a deadlock. Alternatively bios should be allocated using
1338 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1339 * If possible a big IO should be split into smaller parts when allocation
1340 * fails. Partial allocation should not be an error, or you risk a live-lock.
1341 */
1342 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1343 gfp_t gfp_mask)
1344 {
1345 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1346
1347 if (IS_ERR(rq))
1348 return rq;
1349
1350 blk_rq_set_block_pc(rq);
1351
1352 for_each_bio(bio) {
1353 struct bio *bounce_bio = bio;
1354 int ret;
1355
1356 blk_queue_bounce(q, &bounce_bio);
1357 ret = blk_rq_append_bio(q, rq, bounce_bio);
1358 if (unlikely(ret)) {
1359 blk_put_request(rq);
1360 return ERR_PTR(ret);
1361 }
1362 }
1363
1364 return rq;
1365 }
1366 EXPORT_SYMBOL(blk_make_request);
1367
1368 /**
1369 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1370 * @rq: request to be initialized
1371 *
1372 */
1373 void blk_rq_set_block_pc(struct request *rq)
1374 {
1375 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1376 rq->__data_len = 0;
1377 rq->__sector = (sector_t) -1;
1378 rq->bio = rq->biotail = NULL;
1379 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1380 }
1381 EXPORT_SYMBOL(blk_rq_set_block_pc);
1382
1383 /**
1384 * blk_requeue_request - put a request back on queue
1385 * @q: request queue where request should be inserted
1386 * @rq: request to be inserted
1387 *
1388 * Description:
1389 * Drivers often keep queueing requests until the hardware cannot accept
1390 * more, when that condition happens we need to put the request back
1391 * on the queue. Must be called with queue lock held.
1392 */
1393 void blk_requeue_request(struct request_queue *q, struct request *rq)
1394 {
1395 blk_delete_timer(rq);
1396 blk_clear_rq_complete(rq);
1397 trace_block_rq_requeue(q, rq);
1398
1399 if (rq->cmd_flags & REQ_QUEUED)
1400 blk_queue_end_tag(q, rq);
1401
1402 BUG_ON(blk_queued_rq(rq));
1403
1404 elv_requeue_request(q, rq);
1405 }
1406 EXPORT_SYMBOL(blk_requeue_request);
1407
1408 static void add_acct_request(struct request_queue *q, struct request *rq,
1409 int where)
1410 {
1411 blk_account_io_start(rq, true);
1412 __elv_add_request(q, rq, where);
1413 }
1414
1415 static void part_round_stats_single(int cpu, struct hd_struct *part,
1416 unsigned long now)
1417 {
1418 int inflight;
1419
1420 if (now == part->stamp)
1421 return;
1422
1423 inflight = part_in_flight(part);
1424 if (inflight) {
1425 __part_stat_add(cpu, part, time_in_queue,
1426 inflight * (now - part->stamp));
1427 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1428 }
1429 part->stamp = now;
1430 }
1431
1432 /**
1433 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1434 * @cpu: cpu number for stats access
1435 * @part: target partition
1436 *
1437 * The average IO queue length and utilisation statistics are maintained
1438 * by observing the current state of the queue length and the amount of
1439 * time it has been in this state for.
1440 *
1441 * Normally, that accounting is done on IO completion, but that can result
1442 * in more than a second's worth of IO being accounted for within any one
1443 * second, leading to >100% utilisation. To deal with that, we call this
1444 * function to do a round-off before returning the results when reading
1445 * /proc/diskstats. This accounts immediately for all queue usage up to
1446 * the current jiffies and restarts the counters again.
1447 */
1448 void part_round_stats(int cpu, struct hd_struct *part)
1449 {
1450 unsigned long now = jiffies;
1451
1452 if (part->partno)
1453 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1454 part_round_stats_single(cpu, part, now);
1455 }
1456 EXPORT_SYMBOL_GPL(part_round_stats);
1457
1458 #ifdef CONFIG_PM
1459 static void blk_pm_put_request(struct request *rq)
1460 {
1461 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1462 pm_runtime_mark_last_busy(rq->q->dev);
1463 }
1464 #else
1465 static inline void blk_pm_put_request(struct request *rq) {}
1466 #endif
1467
1468 /*
1469 * queue lock must be held
1470 */
1471 void __blk_put_request(struct request_queue *q, struct request *req)
1472 {
1473 if (unlikely(!q))
1474 return;
1475
1476 if (q->mq_ops) {
1477 blk_mq_free_request(req);
1478 return;
1479 }
1480
1481 blk_pm_put_request(req);
1482
1483 elv_completed_request(q, req);
1484
1485 /* this is a bio leak */
1486 WARN_ON(req->bio != NULL);
1487
1488 /*
1489 * Request may not have originated from ll_rw_blk. if not,
1490 * it didn't come out of our reserved rq pools
1491 */
1492 if (req->cmd_flags & REQ_ALLOCED) {
1493 unsigned int flags = req->cmd_flags;
1494 struct request_list *rl = blk_rq_rl(req);
1495
1496 BUG_ON(!list_empty(&req->queuelist));
1497 BUG_ON(ELV_ON_HASH(req));
1498
1499 blk_free_request(rl, req);
1500 freed_request(rl, flags);
1501 blk_put_rl(rl);
1502 }
1503 }
1504 EXPORT_SYMBOL_GPL(__blk_put_request);
1505
1506 void blk_put_request(struct request *req)
1507 {
1508 struct request_queue *q = req->q;
1509
1510 if (q->mq_ops)
1511 blk_mq_free_request(req);
1512 else {
1513 unsigned long flags;
1514
1515 spin_lock_irqsave(q->queue_lock, flags);
1516 __blk_put_request(q, req);
1517 spin_unlock_irqrestore(q->queue_lock, flags);
1518 }
1519 }
1520 EXPORT_SYMBOL(blk_put_request);
1521
1522 /**
1523 * blk_add_request_payload - add a payload to a request
1524 * @rq: request to update
1525 * @page: page backing the payload
1526 * @offset: offset in page
1527 * @len: length of the payload.
1528 *
1529 * This allows to later add a payload to an already submitted request by
1530 * a block driver. The driver needs to take care of freeing the payload
1531 * itself.
1532 *
1533 * Note that this is a quite horrible hack and nothing but handling of
1534 * discard requests should ever use it.
1535 */
1536 void blk_add_request_payload(struct request *rq, struct page *page,
1537 int offset, unsigned int len)
1538 {
1539 struct bio *bio = rq->bio;
1540
1541 bio->bi_io_vec->bv_page = page;
1542 bio->bi_io_vec->bv_offset = offset;
1543 bio->bi_io_vec->bv_len = len;
1544
1545 bio->bi_iter.bi_size = len;
1546 bio->bi_vcnt = 1;
1547 bio->bi_phys_segments = 1;
1548
1549 rq->__data_len = rq->resid_len = len;
1550 rq->nr_phys_segments = 1;
1551 }
1552 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1553
1554 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1555 struct bio *bio)
1556 {
1557 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1558
1559 if (!ll_back_merge_fn(q, req, bio))
1560 return false;
1561
1562 trace_block_bio_backmerge(q, req, bio);
1563
1564 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1565 blk_rq_set_mixed_merge(req);
1566
1567 req->biotail->bi_next = bio;
1568 req->biotail = bio;
1569 req->__data_len += bio->bi_iter.bi_size;
1570 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1571
1572 blk_account_io_start(req, false);
1573 return true;
1574 }
1575
1576 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1577 struct bio *bio)
1578 {
1579 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1580
1581 if (!ll_front_merge_fn(q, req, bio))
1582 return false;
1583
1584 trace_block_bio_frontmerge(q, req, bio);
1585
1586 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1587 blk_rq_set_mixed_merge(req);
1588
1589 bio->bi_next = req->bio;
1590 req->bio = bio;
1591
1592 req->__sector = bio->bi_iter.bi_sector;
1593 req->__data_len += bio->bi_iter.bi_size;
1594 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1595
1596 blk_account_io_start(req, false);
1597 return true;
1598 }
1599
1600 /**
1601 * blk_attempt_plug_merge - try to merge with %current's plugged list
1602 * @q: request_queue new bio is being queued at
1603 * @bio: new bio being queued
1604 * @request_count: out parameter for number of traversed plugged requests
1605 * @same_queue_rq: pointer to &struct request that gets filled in when
1606 * another request associated with @q is found on the plug list
1607 * (optional, may be %NULL)
1608 *
1609 * Determine whether @bio being queued on @q can be merged with a request
1610 * on %current's plugged list. Returns %true if merge was successful,
1611 * otherwise %false.
1612 *
1613 * Plugging coalesces IOs from the same issuer for the same purpose without
1614 * going through @q->queue_lock. As such it's more of an issuing mechanism
1615 * than scheduling, and the request, while may have elvpriv data, is not
1616 * added on the elevator at this point. In addition, we don't have
1617 * reliable access to the elevator outside queue lock. Only check basic
1618 * merging parameters without querying the elevator.
1619 *
1620 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1621 */
1622 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1623 unsigned int *request_count,
1624 struct request **same_queue_rq)
1625 {
1626 struct blk_plug *plug;
1627 struct request *rq;
1628 bool ret = false;
1629 struct list_head *plug_list;
1630
1631 plug = current->plug;
1632 if (!plug)
1633 goto out;
1634 *request_count = 0;
1635
1636 if (q->mq_ops)
1637 plug_list = &plug->mq_list;
1638 else
1639 plug_list = &plug->list;
1640
1641 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1642 int el_ret;
1643
1644 if (rq->q == q) {
1645 (*request_count)++;
1646 /*
1647 * Only blk-mq multiple hardware queues case checks the
1648 * rq in the same queue, there should be only one such
1649 * rq in a queue
1650 **/
1651 if (same_queue_rq)
1652 *same_queue_rq = rq;
1653 }
1654
1655 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1656 continue;
1657
1658 el_ret = blk_try_merge(rq, bio);
1659 if (el_ret == ELEVATOR_BACK_MERGE) {
1660 ret = bio_attempt_back_merge(q, rq, bio);
1661 if (ret)
1662 break;
1663 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1664 ret = bio_attempt_front_merge(q, rq, bio);
1665 if (ret)
1666 break;
1667 }
1668 }
1669 out:
1670 return ret;
1671 }
1672
1673 unsigned int blk_plug_queued_count(struct request_queue *q)
1674 {
1675 struct blk_plug *plug;
1676 struct request *rq;
1677 struct list_head *plug_list;
1678 unsigned int ret = 0;
1679
1680 plug = current->plug;
1681 if (!plug)
1682 goto out;
1683
1684 if (q->mq_ops)
1685 plug_list = &plug->mq_list;
1686 else
1687 plug_list = &plug->list;
1688
1689 list_for_each_entry(rq, plug_list, queuelist) {
1690 if (rq->q == q)
1691 ret++;
1692 }
1693 out:
1694 return ret;
1695 }
1696
1697 void init_request_from_bio(struct request *req, struct bio *bio)
1698 {
1699 req->cmd_type = REQ_TYPE_FS;
1700
1701 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1702 if (bio->bi_rw & REQ_RAHEAD)
1703 req->cmd_flags |= REQ_FAILFAST_MASK;
1704
1705 req->errors = 0;
1706 req->__sector = bio->bi_iter.bi_sector;
1707 req->ioprio = bio_prio(bio);
1708 blk_rq_bio_prep(req->q, req, bio);
1709 }
1710
1711 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1712 {
1713 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1714 struct blk_plug *plug;
1715 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1716 struct request *req;
1717 unsigned int request_count = 0;
1718
1719 /*
1720 * low level driver can indicate that it wants pages above a
1721 * certain limit bounced to low memory (ie for highmem, or even
1722 * ISA dma in theory)
1723 */
1724 blk_queue_bounce(q, &bio);
1725
1726 blk_queue_split(q, &bio, q->bio_split);
1727
1728 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1729 bio->bi_error = -EIO;
1730 bio_endio(bio);
1731 return BLK_QC_T_NONE;
1732 }
1733
1734 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1735 spin_lock_irq(q->queue_lock);
1736 where = ELEVATOR_INSERT_FLUSH;
1737 goto get_rq;
1738 }
1739
1740 /*
1741 * Check if we can merge with the plugged list before grabbing
1742 * any locks.
1743 */
1744 if (!blk_queue_nomerges(q)) {
1745 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1746 return BLK_QC_T_NONE;
1747 } else
1748 request_count = blk_plug_queued_count(q);
1749
1750 spin_lock_irq(q->queue_lock);
1751
1752 el_ret = elv_merge(q, &req, bio);
1753 if (el_ret == ELEVATOR_BACK_MERGE) {
1754 if (bio_attempt_back_merge(q, req, bio)) {
1755 elv_bio_merged(q, req, bio);
1756 if (!attempt_back_merge(q, req))
1757 elv_merged_request(q, req, el_ret);
1758 goto out_unlock;
1759 }
1760 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1761 if (bio_attempt_front_merge(q, req, bio)) {
1762 elv_bio_merged(q, req, bio);
1763 if (!attempt_front_merge(q, req))
1764 elv_merged_request(q, req, el_ret);
1765 goto out_unlock;
1766 }
1767 }
1768
1769 get_rq:
1770 /*
1771 * This sync check and mask will be re-done in init_request_from_bio(),
1772 * but we need to set it earlier to expose the sync flag to the
1773 * rq allocator and io schedulers.
1774 */
1775 rw_flags = bio_data_dir(bio);
1776 if (sync)
1777 rw_flags |= REQ_SYNC;
1778
1779 /*
1780 * Grab a free request. This is might sleep but can not fail.
1781 * Returns with the queue unlocked.
1782 */
1783 req = get_request(q, rw_flags, bio, GFP_NOIO);
1784 if (IS_ERR(req)) {
1785 bio->bi_error = PTR_ERR(req);
1786 bio_endio(bio);
1787 goto out_unlock;
1788 }
1789
1790 /*
1791 * After dropping the lock and possibly sleeping here, our request
1792 * may now be mergeable after it had proven unmergeable (above).
1793 * We don't worry about that case for efficiency. It won't happen
1794 * often, and the elevators are able to handle it.
1795 */
1796 init_request_from_bio(req, bio);
1797
1798 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1799 req->cpu = raw_smp_processor_id();
1800
1801 plug = current->plug;
1802 if (plug) {
1803 /*
1804 * If this is the first request added after a plug, fire
1805 * of a plug trace.
1806 */
1807 if (!request_count)
1808 trace_block_plug(q);
1809 else {
1810 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1811 blk_flush_plug_list(plug, false);
1812 trace_block_plug(q);
1813 }
1814 }
1815 list_add_tail(&req->queuelist, &plug->list);
1816 blk_account_io_start(req, true);
1817 } else {
1818 spin_lock_irq(q->queue_lock);
1819 add_acct_request(q, req, where);
1820 __blk_run_queue(q);
1821 out_unlock:
1822 spin_unlock_irq(q->queue_lock);
1823 }
1824
1825 return BLK_QC_T_NONE;
1826 }
1827
1828 /*
1829 * If bio->bi_dev is a partition, remap the location
1830 */
1831 static inline void blk_partition_remap(struct bio *bio)
1832 {
1833 struct block_device *bdev = bio->bi_bdev;
1834
1835 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1836 struct hd_struct *p = bdev->bd_part;
1837
1838 bio->bi_iter.bi_sector += p->start_sect;
1839 bio->bi_bdev = bdev->bd_contains;
1840
1841 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1842 bdev->bd_dev,
1843 bio->bi_iter.bi_sector - p->start_sect);
1844 }
1845 }
1846
1847 static void handle_bad_sector(struct bio *bio)
1848 {
1849 char b[BDEVNAME_SIZE];
1850
1851 printk(KERN_INFO "attempt to access beyond end of device\n");
1852 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1853 bdevname(bio->bi_bdev, b),
1854 bio->bi_rw,
1855 (unsigned long long)bio_end_sector(bio),
1856 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1857 }
1858
1859 #ifdef CONFIG_FAIL_MAKE_REQUEST
1860
1861 static DECLARE_FAULT_ATTR(fail_make_request);
1862
1863 static int __init setup_fail_make_request(char *str)
1864 {
1865 return setup_fault_attr(&fail_make_request, str);
1866 }
1867 __setup("fail_make_request=", setup_fail_make_request);
1868
1869 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1870 {
1871 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1872 }
1873
1874 static int __init fail_make_request_debugfs(void)
1875 {
1876 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1877 NULL, &fail_make_request);
1878
1879 return PTR_ERR_OR_ZERO(dir);
1880 }
1881
1882 late_initcall(fail_make_request_debugfs);
1883
1884 #else /* CONFIG_FAIL_MAKE_REQUEST */
1885
1886 static inline bool should_fail_request(struct hd_struct *part,
1887 unsigned int bytes)
1888 {
1889 return false;
1890 }
1891
1892 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1893
1894 /*
1895 * Check whether this bio extends beyond the end of the device.
1896 */
1897 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1898 {
1899 sector_t maxsector;
1900
1901 if (!nr_sectors)
1902 return 0;
1903
1904 /* Test device or partition size, when known. */
1905 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1906 if (maxsector) {
1907 sector_t sector = bio->bi_iter.bi_sector;
1908
1909 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1910 /*
1911 * This may well happen - the kernel calls bread()
1912 * without checking the size of the device, e.g., when
1913 * mounting a device.
1914 */
1915 handle_bad_sector(bio);
1916 return 1;
1917 }
1918 }
1919
1920 return 0;
1921 }
1922
1923 static noinline_for_stack bool
1924 generic_make_request_checks(struct bio *bio)
1925 {
1926 struct request_queue *q;
1927 int nr_sectors = bio_sectors(bio);
1928 int err = -EIO;
1929 char b[BDEVNAME_SIZE];
1930 struct hd_struct *part;
1931
1932 might_sleep();
1933
1934 if (bio_check_eod(bio, nr_sectors))
1935 goto end_io;
1936
1937 q = bdev_get_queue(bio->bi_bdev);
1938 if (unlikely(!q)) {
1939 printk(KERN_ERR
1940 "generic_make_request: Trying to access "
1941 "nonexistent block-device %s (%Lu)\n",
1942 bdevname(bio->bi_bdev, b),
1943 (long long) bio->bi_iter.bi_sector);
1944 goto end_io;
1945 }
1946
1947 part = bio->bi_bdev->bd_part;
1948 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1949 should_fail_request(&part_to_disk(part)->part0,
1950 bio->bi_iter.bi_size))
1951 goto end_io;
1952
1953 /*
1954 * If this device has partitions, remap block n
1955 * of partition p to block n+start(p) of the disk.
1956 */
1957 blk_partition_remap(bio);
1958
1959 if (bio_check_eod(bio, nr_sectors))
1960 goto end_io;
1961
1962 /*
1963 * Filter flush bio's early so that make_request based
1964 * drivers without flush support don't have to worry
1965 * about them.
1966 */
1967 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) &&
1968 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1969 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1970 if (!nr_sectors) {
1971 err = 0;
1972 goto end_io;
1973 }
1974 }
1975
1976 if ((bio->bi_rw & REQ_DISCARD) &&
1977 (!blk_queue_discard(q) ||
1978 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1979 err = -EOPNOTSUPP;
1980 goto end_io;
1981 }
1982
1983 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1984 err = -EOPNOTSUPP;
1985 goto end_io;
1986 }
1987
1988 /*
1989 * Various block parts want %current->io_context and lazy ioc
1990 * allocation ends up trading a lot of pain for a small amount of
1991 * memory. Just allocate it upfront. This may fail and block
1992 * layer knows how to live with it.
1993 */
1994 create_io_context(GFP_ATOMIC, q->node);
1995
1996 if (!blkcg_bio_issue_check(q, bio))
1997 return false;
1998
1999 trace_block_bio_queue(q, bio);
2000 return true;
2001
2002 end_io:
2003 bio->bi_error = err;
2004 bio_endio(bio);
2005 return false;
2006 }
2007
2008 /**
2009 * generic_make_request - hand a buffer to its device driver for I/O
2010 * @bio: The bio describing the location in memory and on the device.
2011 *
2012 * generic_make_request() is used to make I/O requests of block
2013 * devices. It is passed a &struct bio, which describes the I/O that needs
2014 * to be done.
2015 *
2016 * generic_make_request() does not return any status. The
2017 * success/failure status of the request, along with notification of
2018 * completion, is delivered asynchronously through the bio->bi_end_io
2019 * function described (one day) else where.
2020 *
2021 * The caller of generic_make_request must make sure that bi_io_vec
2022 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2023 * set to describe the device address, and the
2024 * bi_end_io and optionally bi_private are set to describe how
2025 * completion notification should be signaled.
2026 *
2027 * generic_make_request and the drivers it calls may use bi_next if this
2028 * bio happens to be merged with someone else, and may resubmit the bio to
2029 * a lower device by calling into generic_make_request recursively, which
2030 * means the bio should NOT be touched after the call to ->make_request_fn.
2031 */
2032 blk_qc_t generic_make_request(struct bio *bio)
2033 {
2034 struct bio_list bio_list_on_stack;
2035 blk_qc_t ret = BLK_QC_T_NONE;
2036
2037 if (!generic_make_request_checks(bio))
2038 goto out;
2039
2040 /*
2041 * We only want one ->make_request_fn to be active at a time, else
2042 * stack usage with stacked devices could be a problem. So use
2043 * current->bio_list to keep a list of requests submited by a
2044 * make_request_fn function. current->bio_list is also used as a
2045 * flag to say if generic_make_request is currently active in this
2046 * task or not. If it is NULL, then no make_request is active. If
2047 * it is non-NULL, then a make_request is active, and new requests
2048 * should be added at the tail
2049 */
2050 if (current->bio_list) {
2051 bio_list_add(current->bio_list, bio);
2052 goto out;
2053 }
2054
2055 /* following loop may be a bit non-obvious, and so deserves some
2056 * explanation.
2057 * Before entering the loop, bio->bi_next is NULL (as all callers
2058 * ensure that) so we have a list with a single bio.
2059 * We pretend that we have just taken it off a longer list, so
2060 * we assign bio_list to a pointer to the bio_list_on_stack,
2061 * thus initialising the bio_list of new bios to be
2062 * added. ->make_request() may indeed add some more bios
2063 * through a recursive call to generic_make_request. If it
2064 * did, we find a non-NULL value in bio_list and re-enter the loop
2065 * from the top. In this case we really did just take the bio
2066 * of the top of the list (no pretending) and so remove it from
2067 * bio_list, and call into ->make_request() again.
2068 */
2069 BUG_ON(bio->bi_next);
2070 bio_list_init(&bio_list_on_stack);
2071 current->bio_list = &bio_list_on_stack;
2072 do {
2073 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2074
2075 if (likely(blk_queue_enter(q, false) == 0)) {
2076 ret = q->make_request_fn(q, bio);
2077
2078 blk_queue_exit(q);
2079
2080 bio = bio_list_pop(current->bio_list);
2081 } else {
2082 struct bio *bio_next = bio_list_pop(current->bio_list);
2083
2084 bio_io_error(bio);
2085 bio = bio_next;
2086 }
2087 } while (bio);
2088 current->bio_list = NULL; /* deactivate */
2089
2090 out:
2091 return ret;
2092 }
2093 EXPORT_SYMBOL(generic_make_request);
2094
2095 /**
2096 * submit_bio - submit a bio to the block device layer for I/O
2097 * @bio: The &struct bio which describes the I/O
2098 *
2099 * submit_bio() is very similar in purpose to generic_make_request(), and
2100 * uses that function to do most of the work. Both are fairly rough
2101 * interfaces; @bio must be presetup and ready for I/O.
2102 *
2103 */
2104 blk_qc_t submit_bio(struct bio *bio)
2105 {
2106 /*
2107 * If it's a regular read/write or a barrier with data attached,
2108 * go through the normal accounting stuff before submission.
2109 */
2110 if (bio_has_data(bio)) {
2111 unsigned int count;
2112
2113 if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
2114 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2115 else
2116 count = bio_sectors(bio);
2117
2118 if (op_is_write(bio_op(bio))) {
2119 count_vm_events(PGPGOUT, count);
2120 } else {
2121 task_io_account_read(bio->bi_iter.bi_size);
2122 count_vm_events(PGPGIN, count);
2123 }
2124
2125 if (unlikely(block_dump)) {
2126 char b[BDEVNAME_SIZE];
2127 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2128 current->comm, task_pid_nr(current),
2129 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2130 (unsigned long long)bio->bi_iter.bi_sector,
2131 bdevname(bio->bi_bdev, b),
2132 count);
2133 }
2134 }
2135
2136 return generic_make_request(bio);
2137 }
2138 EXPORT_SYMBOL(submit_bio);
2139
2140 /**
2141 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2142 * for new the queue limits
2143 * @q: the queue
2144 * @rq: the request being checked
2145 *
2146 * Description:
2147 * @rq may have been made based on weaker limitations of upper-level queues
2148 * in request stacking drivers, and it may violate the limitation of @q.
2149 * Since the block layer and the underlying device driver trust @rq
2150 * after it is inserted to @q, it should be checked against @q before
2151 * the insertion using this generic function.
2152 *
2153 * Request stacking drivers like request-based dm may change the queue
2154 * limits when retrying requests on other queues. Those requests need
2155 * to be checked against the new queue limits again during dispatch.
2156 */
2157 static int blk_cloned_rq_check_limits(struct request_queue *q,
2158 struct request *rq)
2159 {
2160 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2161 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2162 return -EIO;
2163 }
2164
2165 /*
2166 * queue's settings related to segment counting like q->bounce_pfn
2167 * may differ from that of other stacking queues.
2168 * Recalculate it to check the request correctly on this queue's
2169 * limitation.
2170 */
2171 blk_recalc_rq_segments(rq);
2172 if (rq->nr_phys_segments > queue_max_segments(q)) {
2173 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2174 return -EIO;
2175 }
2176
2177 return 0;
2178 }
2179
2180 /**
2181 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2182 * @q: the queue to submit the request
2183 * @rq: the request being queued
2184 */
2185 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2186 {
2187 unsigned long flags;
2188 int where = ELEVATOR_INSERT_BACK;
2189
2190 if (blk_cloned_rq_check_limits(q, rq))
2191 return -EIO;
2192
2193 if (rq->rq_disk &&
2194 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2195 return -EIO;
2196
2197 if (q->mq_ops) {
2198 if (blk_queue_io_stat(q))
2199 blk_account_io_start(rq, true);
2200 blk_mq_insert_request(rq, false, true, false);
2201 return 0;
2202 }
2203
2204 spin_lock_irqsave(q->queue_lock, flags);
2205 if (unlikely(blk_queue_dying(q))) {
2206 spin_unlock_irqrestore(q->queue_lock, flags);
2207 return -ENODEV;
2208 }
2209
2210 /*
2211 * Submitting request must be dequeued before calling this function
2212 * because it will be linked to another request_queue
2213 */
2214 BUG_ON(blk_queued_rq(rq));
2215
2216 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2217 where = ELEVATOR_INSERT_FLUSH;
2218
2219 add_acct_request(q, rq, where);
2220 if (where == ELEVATOR_INSERT_FLUSH)
2221 __blk_run_queue(q);
2222 spin_unlock_irqrestore(q->queue_lock, flags);
2223
2224 return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2227
2228 /**
2229 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2230 * @rq: request to examine
2231 *
2232 * Description:
2233 * A request could be merge of IOs which require different failure
2234 * handling. This function determines the number of bytes which
2235 * can be failed from the beginning of the request without
2236 * crossing into area which need to be retried further.
2237 *
2238 * Return:
2239 * The number of bytes to fail.
2240 *
2241 * Context:
2242 * queue_lock must be held.
2243 */
2244 unsigned int blk_rq_err_bytes(const struct request *rq)
2245 {
2246 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2247 unsigned int bytes = 0;
2248 struct bio *bio;
2249
2250 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2251 return blk_rq_bytes(rq);
2252
2253 /*
2254 * Currently the only 'mixing' which can happen is between
2255 * different fastfail types. We can safely fail portions
2256 * which have all the failfast bits that the first one has -
2257 * the ones which are at least as eager to fail as the first
2258 * one.
2259 */
2260 for (bio = rq->bio; bio; bio = bio->bi_next) {
2261 if ((bio->bi_rw & ff) != ff)
2262 break;
2263 bytes += bio->bi_iter.bi_size;
2264 }
2265
2266 /* this could lead to infinite loop */
2267 BUG_ON(blk_rq_bytes(rq) && !bytes);
2268 return bytes;
2269 }
2270 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2271
2272 void blk_account_io_completion(struct request *req, unsigned int bytes)
2273 {
2274 if (blk_do_io_stat(req)) {
2275 const int rw = rq_data_dir(req);
2276 struct hd_struct *part;
2277 int cpu;
2278
2279 cpu = part_stat_lock();
2280 part = req->part;
2281 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2282 part_stat_unlock();
2283 }
2284 }
2285
2286 void blk_account_io_done(struct request *req)
2287 {
2288 /*
2289 * Account IO completion. flush_rq isn't accounted as a
2290 * normal IO on queueing nor completion. Accounting the
2291 * containing request is enough.
2292 */
2293 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2294 unsigned long duration = jiffies - req->start_time;
2295 const int rw = rq_data_dir(req);
2296 struct hd_struct *part;
2297 int cpu;
2298
2299 cpu = part_stat_lock();
2300 part = req->part;
2301
2302 part_stat_inc(cpu, part, ios[rw]);
2303 part_stat_add(cpu, part, ticks[rw], duration);
2304 part_round_stats(cpu, part);
2305 part_dec_in_flight(part, rw);
2306
2307 hd_struct_put(part);
2308 part_stat_unlock();
2309 }
2310 }
2311
2312 #ifdef CONFIG_PM
2313 /*
2314 * Don't process normal requests when queue is suspended
2315 * or in the process of suspending/resuming
2316 */
2317 static struct request *blk_pm_peek_request(struct request_queue *q,
2318 struct request *rq)
2319 {
2320 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2321 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2322 return NULL;
2323 else
2324 return rq;
2325 }
2326 #else
2327 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2328 struct request *rq)
2329 {
2330 return rq;
2331 }
2332 #endif
2333
2334 void blk_account_io_start(struct request *rq, bool new_io)
2335 {
2336 struct hd_struct *part;
2337 int rw = rq_data_dir(rq);
2338 int cpu;
2339
2340 if (!blk_do_io_stat(rq))
2341 return;
2342
2343 cpu = part_stat_lock();
2344
2345 if (!new_io) {
2346 part = rq->part;
2347 part_stat_inc(cpu, part, merges[rw]);
2348 } else {
2349 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2350 if (!hd_struct_try_get(part)) {
2351 /*
2352 * The partition is already being removed,
2353 * the request will be accounted on the disk only
2354 *
2355 * We take a reference on disk->part0 although that
2356 * partition will never be deleted, so we can treat
2357 * it as any other partition.
2358 */
2359 part = &rq->rq_disk->part0;
2360 hd_struct_get(part);
2361 }
2362 part_round_stats(cpu, part);
2363 part_inc_in_flight(part, rw);
2364 rq->part = part;
2365 }
2366
2367 part_stat_unlock();
2368 }
2369
2370 /**
2371 * blk_peek_request - peek at the top of a request queue
2372 * @q: request queue to peek at
2373 *
2374 * Description:
2375 * Return the request at the top of @q. The returned request
2376 * should be started using blk_start_request() before LLD starts
2377 * processing it.
2378 *
2379 * Return:
2380 * Pointer to the request at the top of @q if available. Null
2381 * otherwise.
2382 *
2383 * Context:
2384 * queue_lock must be held.
2385 */
2386 struct request *blk_peek_request(struct request_queue *q)
2387 {
2388 struct request *rq;
2389 int ret;
2390
2391 while ((rq = __elv_next_request(q)) != NULL) {
2392
2393 rq = blk_pm_peek_request(q, rq);
2394 if (!rq)
2395 break;
2396
2397 if (!(rq->cmd_flags & REQ_STARTED)) {
2398 /*
2399 * This is the first time the device driver
2400 * sees this request (possibly after
2401 * requeueing). Notify IO scheduler.
2402 */
2403 if (rq->cmd_flags & REQ_SORTED)
2404 elv_activate_rq(q, rq);
2405
2406 /*
2407 * just mark as started even if we don't start
2408 * it, a request that has been delayed should
2409 * not be passed by new incoming requests
2410 */
2411 rq->cmd_flags |= REQ_STARTED;
2412 trace_block_rq_issue(q, rq);
2413 }
2414
2415 if (!q->boundary_rq || q->boundary_rq == rq) {
2416 q->end_sector = rq_end_sector(rq);
2417 q->boundary_rq = NULL;
2418 }
2419
2420 if (rq->cmd_flags & REQ_DONTPREP)
2421 break;
2422
2423 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2424 /*
2425 * make sure space for the drain appears we
2426 * know we can do this because max_hw_segments
2427 * has been adjusted to be one fewer than the
2428 * device can handle
2429 */
2430 rq->nr_phys_segments++;
2431 }
2432
2433 if (!q->prep_rq_fn)
2434 break;
2435
2436 ret = q->prep_rq_fn(q, rq);
2437 if (ret == BLKPREP_OK) {
2438 break;
2439 } else if (ret == BLKPREP_DEFER) {
2440 /*
2441 * the request may have been (partially) prepped.
2442 * we need to keep this request in the front to
2443 * avoid resource deadlock. REQ_STARTED will
2444 * prevent other fs requests from passing this one.
2445 */
2446 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2447 !(rq->cmd_flags & REQ_DONTPREP)) {
2448 /*
2449 * remove the space for the drain we added
2450 * so that we don't add it again
2451 */
2452 --rq->nr_phys_segments;
2453 }
2454
2455 rq = NULL;
2456 break;
2457 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2458 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2459
2460 rq->cmd_flags |= REQ_QUIET;
2461 /*
2462 * Mark this request as started so we don't trigger
2463 * any debug logic in the end I/O path.
2464 */
2465 blk_start_request(rq);
2466 __blk_end_request_all(rq, err);
2467 } else {
2468 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2469 break;
2470 }
2471 }
2472
2473 return rq;
2474 }
2475 EXPORT_SYMBOL(blk_peek_request);
2476
2477 void blk_dequeue_request(struct request *rq)
2478 {
2479 struct request_queue *q = rq->q;
2480
2481 BUG_ON(list_empty(&rq->queuelist));
2482 BUG_ON(ELV_ON_HASH(rq));
2483
2484 list_del_init(&rq->queuelist);
2485
2486 /*
2487 * the time frame between a request being removed from the lists
2488 * and to it is freed is accounted as io that is in progress at
2489 * the driver side.
2490 */
2491 if (blk_account_rq(rq)) {
2492 q->in_flight[rq_is_sync(rq)]++;
2493 set_io_start_time_ns(rq);
2494 }
2495 }
2496
2497 /**
2498 * blk_start_request - start request processing on the driver
2499 * @req: request to dequeue
2500 *
2501 * Description:
2502 * Dequeue @req and start timeout timer on it. This hands off the
2503 * request to the driver.
2504 *
2505 * Block internal functions which don't want to start timer should
2506 * call blk_dequeue_request().
2507 *
2508 * Context:
2509 * queue_lock must be held.
2510 */
2511 void blk_start_request(struct request *req)
2512 {
2513 blk_dequeue_request(req);
2514
2515 /*
2516 * We are now handing the request to the hardware, initialize
2517 * resid_len to full count and add the timeout handler.
2518 */
2519 req->resid_len = blk_rq_bytes(req);
2520 if (unlikely(blk_bidi_rq(req)))
2521 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2522
2523 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2524 blk_add_timer(req);
2525 }
2526 EXPORT_SYMBOL(blk_start_request);
2527
2528 /**
2529 * blk_fetch_request - fetch a request from a request queue
2530 * @q: request queue to fetch a request from
2531 *
2532 * Description:
2533 * Return the request at the top of @q. The request is started on
2534 * return and LLD can start processing it immediately.
2535 *
2536 * Return:
2537 * Pointer to the request at the top of @q if available. Null
2538 * otherwise.
2539 *
2540 * Context:
2541 * queue_lock must be held.
2542 */
2543 struct request *blk_fetch_request(struct request_queue *q)
2544 {
2545 struct request *rq;
2546
2547 rq = blk_peek_request(q);
2548 if (rq)
2549 blk_start_request(rq);
2550 return rq;
2551 }
2552 EXPORT_SYMBOL(blk_fetch_request);
2553
2554 /**
2555 * blk_update_request - Special helper function for request stacking drivers
2556 * @req: the request being processed
2557 * @error: %0 for success, < %0 for error
2558 * @nr_bytes: number of bytes to complete @req
2559 *
2560 * Description:
2561 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2562 * the request structure even if @req doesn't have leftover.
2563 * If @req has leftover, sets it up for the next range of segments.
2564 *
2565 * This special helper function is only for request stacking drivers
2566 * (e.g. request-based dm) so that they can handle partial completion.
2567 * Actual device drivers should use blk_end_request instead.
2568 *
2569 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2570 * %false return from this function.
2571 *
2572 * Return:
2573 * %false - this request doesn't have any more data
2574 * %true - this request has more data
2575 **/
2576 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2577 {
2578 int total_bytes;
2579
2580 trace_block_rq_complete(req->q, req, nr_bytes);
2581
2582 if (!req->bio)
2583 return false;
2584
2585 /*
2586 * For fs requests, rq is just carrier of independent bio's
2587 * and each partial completion should be handled separately.
2588 * Reset per-request error on each partial completion.
2589 *
2590 * TODO: tj: This is too subtle. It would be better to let
2591 * low level drivers do what they see fit.
2592 */
2593 if (req->cmd_type == REQ_TYPE_FS)
2594 req->errors = 0;
2595
2596 if (error && req->cmd_type == REQ_TYPE_FS &&
2597 !(req->cmd_flags & REQ_QUIET)) {
2598 char *error_type;
2599
2600 switch (error) {
2601 case -ENOLINK:
2602 error_type = "recoverable transport";
2603 break;
2604 case -EREMOTEIO:
2605 error_type = "critical target";
2606 break;
2607 case -EBADE:
2608 error_type = "critical nexus";
2609 break;
2610 case -ETIMEDOUT:
2611 error_type = "timeout";
2612 break;
2613 case -ENOSPC:
2614 error_type = "critical space allocation";
2615 break;
2616 case -ENODATA:
2617 error_type = "critical medium";
2618 break;
2619 case -EIO:
2620 default:
2621 error_type = "I/O";
2622 break;
2623 }
2624 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2625 __func__, error_type, req->rq_disk ?
2626 req->rq_disk->disk_name : "?",
2627 (unsigned long long)blk_rq_pos(req));
2628
2629 }
2630
2631 blk_account_io_completion(req, nr_bytes);
2632
2633 total_bytes = 0;
2634 while (req->bio) {
2635 struct bio *bio = req->bio;
2636 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2637
2638 if (bio_bytes == bio->bi_iter.bi_size)
2639 req->bio = bio->bi_next;
2640
2641 req_bio_endio(req, bio, bio_bytes, error);
2642
2643 total_bytes += bio_bytes;
2644 nr_bytes -= bio_bytes;
2645
2646 if (!nr_bytes)
2647 break;
2648 }
2649
2650 /*
2651 * completely done
2652 */
2653 if (!req->bio) {
2654 /*
2655 * Reset counters so that the request stacking driver
2656 * can find how many bytes remain in the request
2657 * later.
2658 */
2659 req->__data_len = 0;
2660 return false;
2661 }
2662
2663 req->__data_len -= total_bytes;
2664
2665 /* update sector only for requests with clear definition of sector */
2666 if (req->cmd_type == REQ_TYPE_FS)
2667 req->__sector += total_bytes >> 9;
2668
2669 /* mixed attributes always follow the first bio */
2670 if (req->cmd_flags & REQ_MIXED_MERGE) {
2671 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2672 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2673 }
2674
2675 /*
2676 * If total number of sectors is less than the first segment
2677 * size, something has gone terribly wrong.
2678 */
2679 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2680 blk_dump_rq_flags(req, "request botched");
2681 req->__data_len = blk_rq_cur_bytes(req);
2682 }
2683
2684 /* recalculate the number of segments */
2685 blk_recalc_rq_segments(req);
2686
2687 return true;
2688 }
2689 EXPORT_SYMBOL_GPL(blk_update_request);
2690
2691 static bool blk_update_bidi_request(struct request *rq, int error,
2692 unsigned int nr_bytes,
2693 unsigned int bidi_bytes)
2694 {
2695 if (blk_update_request(rq, error, nr_bytes))
2696 return true;
2697
2698 /* Bidi request must be completed as a whole */
2699 if (unlikely(blk_bidi_rq(rq)) &&
2700 blk_update_request(rq->next_rq, error, bidi_bytes))
2701 return true;
2702
2703 if (blk_queue_add_random(rq->q))
2704 add_disk_randomness(rq->rq_disk);
2705
2706 return false;
2707 }
2708
2709 /**
2710 * blk_unprep_request - unprepare a request
2711 * @req: the request
2712 *
2713 * This function makes a request ready for complete resubmission (or
2714 * completion). It happens only after all error handling is complete,
2715 * so represents the appropriate moment to deallocate any resources
2716 * that were allocated to the request in the prep_rq_fn. The queue
2717 * lock is held when calling this.
2718 */
2719 void blk_unprep_request(struct request *req)
2720 {
2721 struct request_queue *q = req->q;
2722
2723 req->cmd_flags &= ~REQ_DONTPREP;
2724 if (q->unprep_rq_fn)
2725 q->unprep_rq_fn(q, req);
2726 }
2727 EXPORT_SYMBOL_GPL(blk_unprep_request);
2728
2729 /*
2730 * queue lock must be held
2731 */
2732 void blk_finish_request(struct request *req, int error)
2733 {
2734 if (req->cmd_flags & REQ_QUEUED)
2735 blk_queue_end_tag(req->q, req);
2736
2737 BUG_ON(blk_queued_rq(req));
2738
2739 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2740 laptop_io_completion(&req->q->backing_dev_info);
2741
2742 blk_delete_timer(req);
2743
2744 if (req->cmd_flags & REQ_DONTPREP)
2745 blk_unprep_request(req);
2746
2747 blk_account_io_done(req);
2748
2749 if (req->end_io)
2750 req->end_io(req, error);
2751 else {
2752 if (blk_bidi_rq(req))
2753 __blk_put_request(req->next_rq->q, req->next_rq);
2754
2755 __blk_put_request(req->q, req);
2756 }
2757 }
2758 EXPORT_SYMBOL(blk_finish_request);
2759
2760 /**
2761 * blk_end_bidi_request - Complete a bidi request
2762 * @rq: the request to complete
2763 * @error: %0 for success, < %0 for error
2764 * @nr_bytes: number of bytes to complete @rq
2765 * @bidi_bytes: number of bytes to complete @rq->next_rq
2766 *
2767 * Description:
2768 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2769 * Drivers that supports bidi can safely call this member for any
2770 * type of request, bidi or uni. In the later case @bidi_bytes is
2771 * just ignored.
2772 *
2773 * Return:
2774 * %false - we are done with this request
2775 * %true - still buffers pending for this request
2776 **/
2777 static bool blk_end_bidi_request(struct request *rq, int error,
2778 unsigned int nr_bytes, unsigned int bidi_bytes)
2779 {
2780 struct request_queue *q = rq->q;
2781 unsigned long flags;
2782
2783 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2784 return true;
2785
2786 spin_lock_irqsave(q->queue_lock, flags);
2787 blk_finish_request(rq, error);
2788 spin_unlock_irqrestore(q->queue_lock, flags);
2789
2790 return false;
2791 }
2792
2793 /**
2794 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2795 * @rq: the request to complete
2796 * @error: %0 for success, < %0 for error
2797 * @nr_bytes: number of bytes to complete @rq
2798 * @bidi_bytes: number of bytes to complete @rq->next_rq
2799 *
2800 * Description:
2801 * Identical to blk_end_bidi_request() except that queue lock is
2802 * assumed to be locked on entry and remains so on return.
2803 *
2804 * Return:
2805 * %false - we are done with this request
2806 * %true - still buffers pending for this request
2807 **/
2808 bool __blk_end_bidi_request(struct request *rq, int error,
2809 unsigned int nr_bytes, unsigned int bidi_bytes)
2810 {
2811 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2812 return true;
2813
2814 blk_finish_request(rq, error);
2815
2816 return false;
2817 }
2818
2819 /**
2820 * blk_end_request - Helper function for drivers to complete the request.
2821 * @rq: the request being processed
2822 * @error: %0 for success, < %0 for error
2823 * @nr_bytes: number of bytes to complete
2824 *
2825 * Description:
2826 * Ends I/O on a number of bytes attached to @rq.
2827 * If @rq has leftover, sets it up for the next range of segments.
2828 *
2829 * Return:
2830 * %false - we are done with this request
2831 * %true - still buffers pending for this request
2832 **/
2833 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2834 {
2835 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2836 }
2837 EXPORT_SYMBOL(blk_end_request);
2838
2839 /**
2840 * blk_end_request_all - Helper function for drives to finish the request.
2841 * @rq: the request to finish
2842 * @error: %0 for success, < %0 for error
2843 *
2844 * Description:
2845 * Completely finish @rq.
2846 */
2847 void blk_end_request_all(struct request *rq, int error)
2848 {
2849 bool pending;
2850 unsigned int bidi_bytes = 0;
2851
2852 if (unlikely(blk_bidi_rq(rq)))
2853 bidi_bytes = blk_rq_bytes(rq->next_rq);
2854
2855 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2856 BUG_ON(pending);
2857 }
2858 EXPORT_SYMBOL(blk_end_request_all);
2859
2860 /**
2861 * blk_end_request_cur - Helper function to finish the current request chunk.
2862 * @rq: the request to finish the current chunk for
2863 * @error: %0 for success, < %0 for error
2864 *
2865 * Description:
2866 * Complete the current consecutively mapped chunk from @rq.
2867 *
2868 * Return:
2869 * %false - we are done with this request
2870 * %true - still buffers pending for this request
2871 */
2872 bool blk_end_request_cur(struct request *rq, int error)
2873 {
2874 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2875 }
2876 EXPORT_SYMBOL(blk_end_request_cur);
2877
2878 /**
2879 * blk_end_request_err - Finish a request till the next failure boundary.
2880 * @rq: the request to finish till the next failure boundary for
2881 * @error: must be negative errno
2882 *
2883 * Description:
2884 * Complete @rq till the next failure boundary.
2885 *
2886 * Return:
2887 * %false - we are done with this request
2888 * %true - still buffers pending for this request
2889 */
2890 bool blk_end_request_err(struct request *rq, int error)
2891 {
2892 WARN_ON(error >= 0);
2893 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2894 }
2895 EXPORT_SYMBOL_GPL(blk_end_request_err);
2896
2897 /**
2898 * __blk_end_request - Helper function for drivers to complete the request.
2899 * @rq: the request being processed
2900 * @error: %0 for success, < %0 for error
2901 * @nr_bytes: number of bytes to complete
2902 *
2903 * Description:
2904 * Must be called with queue lock held unlike blk_end_request().
2905 *
2906 * Return:
2907 * %false - we are done with this request
2908 * %true - still buffers pending for this request
2909 **/
2910 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2911 {
2912 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2913 }
2914 EXPORT_SYMBOL(__blk_end_request);
2915
2916 /**
2917 * __blk_end_request_all - Helper function for drives to finish the request.
2918 * @rq: the request to finish
2919 * @error: %0 for success, < %0 for error
2920 *
2921 * Description:
2922 * Completely finish @rq. Must be called with queue lock held.
2923 */
2924 void __blk_end_request_all(struct request *rq, int error)
2925 {
2926 bool pending;
2927 unsigned int bidi_bytes = 0;
2928
2929 if (unlikely(blk_bidi_rq(rq)))
2930 bidi_bytes = blk_rq_bytes(rq->next_rq);
2931
2932 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2933 BUG_ON(pending);
2934 }
2935 EXPORT_SYMBOL(__blk_end_request_all);
2936
2937 /**
2938 * __blk_end_request_cur - Helper function to finish the current request chunk.
2939 * @rq: the request to finish the current chunk for
2940 * @error: %0 for success, < %0 for error
2941 *
2942 * Description:
2943 * Complete the current consecutively mapped chunk from @rq. Must
2944 * be called with queue lock held.
2945 *
2946 * Return:
2947 * %false - we are done with this request
2948 * %true - still buffers pending for this request
2949 */
2950 bool __blk_end_request_cur(struct request *rq, int error)
2951 {
2952 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2953 }
2954 EXPORT_SYMBOL(__blk_end_request_cur);
2955
2956 /**
2957 * __blk_end_request_err - Finish a request till the next failure boundary.
2958 * @rq: the request to finish till the next failure boundary for
2959 * @error: must be negative errno
2960 *
2961 * Description:
2962 * Complete @rq till the next failure boundary. Must be called
2963 * with queue lock held.
2964 *
2965 * Return:
2966 * %false - we are done with this request
2967 * %true - still buffers pending for this request
2968 */
2969 bool __blk_end_request_err(struct request *rq, int error)
2970 {
2971 WARN_ON(error >= 0);
2972 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2973 }
2974 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2975
2976 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2977 struct bio *bio)
2978 {
2979 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2980 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2981
2982 if (bio_has_data(bio))
2983 rq->nr_phys_segments = bio_phys_segments(q, bio);
2984
2985 rq->__data_len = bio->bi_iter.bi_size;
2986 rq->bio = rq->biotail = bio;
2987
2988 if (bio->bi_bdev)
2989 rq->rq_disk = bio->bi_bdev->bd_disk;
2990 }
2991
2992 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2993 /**
2994 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2995 * @rq: the request to be flushed
2996 *
2997 * Description:
2998 * Flush all pages in @rq.
2999 */
3000 void rq_flush_dcache_pages(struct request *rq)
3001 {
3002 struct req_iterator iter;
3003 struct bio_vec bvec;
3004
3005 rq_for_each_segment(bvec, rq, iter)
3006 flush_dcache_page(bvec.bv_page);
3007 }
3008 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3009 #endif
3010
3011 /**
3012 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3013 * @q : the queue of the device being checked
3014 *
3015 * Description:
3016 * Check if underlying low-level drivers of a device are busy.
3017 * If the drivers want to export their busy state, they must set own
3018 * exporting function using blk_queue_lld_busy() first.
3019 *
3020 * Basically, this function is used only by request stacking drivers
3021 * to stop dispatching requests to underlying devices when underlying
3022 * devices are busy. This behavior helps more I/O merging on the queue
3023 * of the request stacking driver and prevents I/O throughput regression
3024 * on burst I/O load.
3025 *
3026 * Return:
3027 * 0 - Not busy (The request stacking driver should dispatch request)
3028 * 1 - Busy (The request stacking driver should stop dispatching request)
3029 */
3030 int blk_lld_busy(struct request_queue *q)
3031 {
3032 if (q->lld_busy_fn)
3033 return q->lld_busy_fn(q);
3034
3035 return 0;
3036 }
3037 EXPORT_SYMBOL_GPL(blk_lld_busy);
3038
3039 /**
3040 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3041 * @rq: the clone request to be cleaned up
3042 *
3043 * Description:
3044 * Free all bios in @rq for a cloned request.
3045 */
3046 void blk_rq_unprep_clone(struct request *rq)
3047 {
3048 struct bio *bio;
3049
3050 while ((bio = rq->bio) != NULL) {
3051 rq->bio = bio->bi_next;
3052
3053 bio_put(bio);
3054 }
3055 }
3056 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3057
3058 /*
3059 * Copy attributes of the original request to the clone request.
3060 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3061 */
3062 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3063 {
3064 dst->cpu = src->cpu;
3065 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3066 dst->cmd_type = src->cmd_type;
3067 dst->__sector = blk_rq_pos(src);
3068 dst->__data_len = blk_rq_bytes(src);
3069 dst->nr_phys_segments = src->nr_phys_segments;
3070 dst->ioprio = src->ioprio;
3071 dst->extra_len = src->extra_len;
3072 }
3073
3074 /**
3075 * blk_rq_prep_clone - Helper function to setup clone request
3076 * @rq: the request to be setup
3077 * @rq_src: original request to be cloned
3078 * @bs: bio_set that bios for clone are allocated from
3079 * @gfp_mask: memory allocation mask for bio
3080 * @bio_ctr: setup function to be called for each clone bio.
3081 * Returns %0 for success, non %0 for failure.
3082 * @data: private data to be passed to @bio_ctr
3083 *
3084 * Description:
3085 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3086 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3087 * are not copied, and copying such parts is the caller's responsibility.
3088 * Also, pages which the original bios are pointing to are not copied
3089 * and the cloned bios just point same pages.
3090 * So cloned bios must be completed before original bios, which means
3091 * the caller must complete @rq before @rq_src.
3092 */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094 struct bio_set *bs, gfp_t gfp_mask,
3095 int (*bio_ctr)(struct bio *, struct bio *, void *),
3096 void *data)
3097 {
3098 struct bio *bio, *bio_src;
3099
3100 if (!bs)
3101 bs = fs_bio_set;
3102
3103 __rq_for_each_bio(bio_src, rq_src) {
3104 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3105 if (!bio)
3106 goto free_and_out;
3107
3108 if (bio_ctr && bio_ctr(bio, bio_src, data))
3109 goto free_and_out;
3110
3111 if (rq->bio) {
3112 rq->biotail->bi_next = bio;
3113 rq->biotail = bio;
3114 } else
3115 rq->bio = rq->biotail = bio;
3116 }
3117
3118 __blk_rq_prep_clone(rq, rq_src);
3119
3120 return 0;
3121
3122 free_and_out:
3123 if (bio)
3124 bio_put(bio);
3125 blk_rq_unprep_clone(rq);
3126
3127 return -ENOMEM;
3128 }
3129 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3130
3131 int kblockd_schedule_work(struct work_struct *work)
3132 {
3133 return queue_work(kblockd_workqueue, work);
3134 }
3135 EXPORT_SYMBOL(kblockd_schedule_work);
3136
3137 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3138 unsigned long delay)
3139 {
3140 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3141 }
3142 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3143
3144 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3145 unsigned long delay)
3146 {
3147 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3148 }
3149 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3150
3151 /**
3152 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3153 * @plug: The &struct blk_plug that needs to be initialized
3154 *
3155 * Description:
3156 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3157 * pending I/O should the task end up blocking between blk_start_plug() and
3158 * blk_finish_plug(). This is important from a performance perspective, but
3159 * also ensures that we don't deadlock. For instance, if the task is blocking
3160 * for a memory allocation, memory reclaim could end up wanting to free a
3161 * page belonging to that request that is currently residing in our private
3162 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3163 * this kind of deadlock.
3164 */
3165 void blk_start_plug(struct blk_plug *plug)
3166 {
3167 struct task_struct *tsk = current;
3168
3169 /*
3170 * If this is a nested plug, don't actually assign it.
3171 */
3172 if (tsk->plug)
3173 return;
3174
3175 INIT_LIST_HEAD(&plug->list);
3176 INIT_LIST_HEAD(&plug->mq_list);
3177 INIT_LIST_HEAD(&plug->cb_list);
3178 /*
3179 * Store ordering should not be needed here, since a potential
3180 * preempt will imply a full memory barrier
3181 */
3182 tsk->plug = plug;
3183 }
3184 EXPORT_SYMBOL(blk_start_plug);
3185
3186 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3187 {
3188 struct request *rqa = container_of(a, struct request, queuelist);
3189 struct request *rqb = container_of(b, struct request, queuelist);
3190
3191 return !(rqa->q < rqb->q ||
3192 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3193 }
3194
3195 /*
3196 * If 'from_schedule' is true, then postpone the dispatch of requests
3197 * until a safe kblockd context. We due this to avoid accidental big
3198 * additional stack usage in driver dispatch, in places where the originally
3199 * plugger did not intend it.
3200 */
3201 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3202 bool from_schedule)
3203 __releases(q->queue_lock)
3204 {
3205 trace_block_unplug(q, depth, !from_schedule);
3206
3207 if (from_schedule)
3208 blk_run_queue_async(q);
3209 else
3210 __blk_run_queue(q);
3211 spin_unlock(q->queue_lock);
3212 }
3213
3214 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3215 {
3216 LIST_HEAD(callbacks);
3217
3218 while (!list_empty(&plug->cb_list)) {
3219 list_splice_init(&plug->cb_list, &callbacks);
3220
3221 while (!list_empty(&callbacks)) {
3222 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3223 struct blk_plug_cb,
3224 list);
3225 list_del(&cb->list);
3226 cb->callback(cb, from_schedule);
3227 }
3228 }
3229 }
3230
3231 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3232 int size)
3233 {
3234 struct blk_plug *plug = current->plug;
3235 struct blk_plug_cb *cb;
3236
3237 if (!plug)
3238 return NULL;
3239
3240 list_for_each_entry(cb, &plug->cb_list, list)
3241 if (cb->callback == unplug && cb->data == data)
3242 return cb;
3243
3244 /* Not currently on the callback list */
3245 BUG_ON(size < sizeof(*cb));
3246 cb = kzalloc(size, GFP_ATOMIC);
3247 if (cb) {
3248 cb->data = data;
3249 cb->callback = unplug;
3250 list_add(&cb->list, &plug->cb_list);
3251 }
3252 return cb;
3253 }
3254 EXPORT_SYMBOL(blk_check_plugged);
3255
3256 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3257 {
3258 struct request_queue *q;
3259 unsigned long flags;
3260 struct request *rq;
3261 LIST_HEAD(list);
3262 unsigned int depth;
3263
3264 flush_plug_callbacks(plug, from_schedule);
3265
3266 if (!list_empty(&plug->mq_list))
3267 blk_mq_flush_plug_list(plug, from_schedule);
3268
3269 if (list_empty(&plug->list))
3270 return;
3271
3272 list_splice_init(&plug->list, &list);
3273
3274 list_sort(NULL, &list, plug_rq_cmp);
3275
3276 q = NULL;
3277 depth = 0;
3278
3279 /*
3280 * Save and disable interrupts here, to avoid doing it for every
3281 * queue lock we have to take.
3282 */
3283 local_irq_save(flags);
3284 while (!list_empty(&list)) {
3285 rq = list_entry_rq(list.next);
3286 list_del_init(&rq->queuelist);
3287 BUG_ON(!rq->q);
3288 if (rq->q != q) {
3289 /*
3290 * This drops the queue lock
3291 */
3292 if (q)
3293 queue_unplugged(q, depth, from_schedule);
3294 q = rq->q;
3295 depth = 0;
3296 spin_lock(q->queue_lock);
3297 }
3298
3299 /*
3300 * Short-circuit if @q is dead
3301 */
3302 if (unlikely(blk_queue_dying(q))) {
3303 __blk_end_request_all(rq, -ENODEV);
3304 continue;
3305 }
3306
3307 /*
3308 * rq is already accounted, so use raw insert
3309 */
3310 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3311 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3312 else
3313 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3314
3315 depth++;
3316 }
3317
3318 /*
3319 * This drops the queue lock
3320 */
3321 if (q)
3322 queue_unplugged(q, depth, from_schedule);
3323
3324 local_irq_restore(flags);
3325 }
3326
3327 void blk_finish_plug(struct blk_plug *plug)
3328 {
3329 if (plug != current->plug)
3330 return;
3331 blk_flush_plug_list(plug, false);
3332
3333 current->plug = NULL;
3334 }
3335 EXPORT_SYMBOL(blk_finish_plug);
3336
3337 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3338 {
3339 struct blk_plug *plug;
3340 long state;
3341
3342 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3343 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3344 return false;
3345
3346 plug = current->plug;
3347 if (plug)
3348 blk_flush_plug_list(plug, false);
3349
3350 state = current->state;
3351 while (!need_resched()) {
3352 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3353 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3354 int ret;
3355
3356 hctx->poll_invoked++;
3357
3358 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3359 if (ret > 0) {
3360 hctx->poll_success++;
3361 set_current_state(TASK_RUNNING);
3362 return true;
3363 }
3364
3365 if (signal_pending_state(state, current))
3366 set_current_state(TASK_RUNNING);
3367
3368 if (current->state == TASK_RUNNING)
3369 return true;
3370 if (ret < 0)
3371 break;
3372 cpu_relax();
3373 }
3374
3375 return false;
3376 }
3377
3378 #ifdef CONFIG_PM
3379 /**
3380 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3381 * @q: the queue of the device
3382 * @dev: the device the queue belongs to
3383 *
3384 * Description:
3385 * Initialize runtime-PM-related fields for @q and start auto suspend for
3386 * @dev. Drivers that want to take advantage of request-based runtime PM
3387 * should call this function after @dev has been initialized, and its
3388 * request queue @q has been allocated, and runtime PM for it can not happen
3389 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3390 * cases, driver should call this function before any I/O has taken place.
3391 *
3392 * This function takes care of setting up using auto suspend for the device,
3393 * the autosuspend delay is set to -1 to make runtime suspend impossible
3394 * until an updated value is either set by user or by driver. Drivers do
3395 * not need to touch other autosuspend settings.
3396 *
3397 * The block layer runtime PM is request based, so only works for drivers
3398 * that use request as their IO unit instead of those directly use bio's.
3399 */
3400 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3401 {
3402 q->dev = dev;
3403 q->rpm_status = RPM_ACTIVE;
3404 pm_runtime_set_autosuspend_delay(q->dev, -1);
3405 pm_runtime_use_autosuspend(q->dev);
3406 }
3407 EXPORT_SYMBOL(blk_pm_runtime_init);
3408
3409 /**
3410 * blk_pre_runtime_suspend - Pre runtime suspend check
3411 * @q: the queue of the device
3412 *
3413 * Description:
3414 * This function will check if runtime suspend is allowed for the device
3415 * by examining if there are any requests pending in the queue. If there
3416 * are requests pending, the device can not be runtime suspended; otherwise,
3417 * the queue's status will be updated to SUSPENDING and the driver can
3418 * proceed to suspend the device.
3419 *
3420 * For the not allowed case, we mark last busy for the device so that
3421 * runtime PM core will try to autosuspend it some time later.
3422 *
3423 * This function should be called near the start of the device's
3424 * runtime_suspend callback.
3425 *
3426 * Return:
3427 * 0 - OK to runtime suspend the device
3428 * -EBUSY - Device should not be runtime suspended
3429 */
3430 int blk_pre_runtime_suspend(struct request_queue *q)
3431 {
3432 int ret = 0;
3433
3434 if (!q->dev)
3435 return ret;
3436
3437 spin_lock_irq(q->queue_lock);
3438 if (q->nr_pending) {
3439 ret = -EBUSY;
3440 pm_runtime_mark_last_busy(q->dev);
3441 } else {
3442 q->rpm_status = RPM_SUSPENDING;
3443 }
3444 spin_unlock_irq(q->queue_lock);
3445 return ret;
3446 }
3447 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3448
3449 /**
3450 * blk_post_runtime_suspend - Post runtime suspend processing
3451 * @q: the queue of the device
3452 * @err: return value of the device's runtime_suspend function
3453 *
3454 * Description:
3455 * Update the queue's runtime status according to the return value of the
3456 * device's runtime suspend function and mark last busy for the device so
3457 * that PM core will try to auto suspend the device at a later time.
3458 *
3459 * This function should be called near the end of the device's
3460 * runtime_suspend callback.
3461 */
3462 void blk_post_runtime_suspend(struct request_queue *q, int err)
3463 {
3464 if (!q->dev)
3465 return;
3466
3467 spin_lock_irq(q->queue_lock);
3468 if (!err) {
3469 q->rpm_status = RPM_SUSPENDED;
3470 } else {
3471 q->rpm_status = RPM_ACTIVE;
3472 pm_runtime_mark_last_busy(q->dev);
3473 }
3474 spin_unlock_irq(q->queue_lock);
3475 }
3476 EXPORT_SYMBOL(blk_post_runtime_suspend);
3477
3478 /**
3479 * blk_pre_runtime_resume - Pre runtime resume processing
3480 * @q: the queue of the device
3481 *
3482 * Description:
3483 * Update the queue's runtime status to RESUMING in preparation for the
3484 * runtime resume of the device.
3485 *
3486 * This function should be called near the start of the device's
3487 * runtime_resume callback.
3488 */
3489 void blk_pre_runtime_resume(struct request_queue *q)
3490 {
3491 if (!q->dev)
3492 return;
3493
3494 spin_lock_irq(q->queue_lock);
3495 q->rpm_status = RPM_RESUMING;
3496 spin_unlock_irq(q->queue_lock);
3497 }
3498 EXPORT_SYMBOL(blk_pre_runtime_resume);
3499
3500 /**
3501 * blk_post_runtime_resume - Post runtime resume processing
3502 * @q: the queue of the device
3503 * @err: return value of the device's runtime_resume function
3504 *
3505 * Description:
3506 * Update the queue's runtime status according to the return value of the
3507 * device's runtime_resume function. If it is successfully resumed, process
3508 * the requests that are queued into the device's queue when it is resuming
3509 * and then mark last busy and initiate autosuspend for it.
3510 *
3511 * This function should be called near the end of the device's
3512 * runtime_resume callback.
3513 */
3514 void blk_post_runtime_resume(struct request_queue *q, int err)
3515 {
3516 if (!q->dev)
3517 return;
3518
3519 spin_lock_irq(q->queue_lock);
3520 if (!err) {
3521 q->rpm_status = RPM_ACTIVE;
3522 __blk_run_queue(q);
3523 pm_runtime_mark_last_busy(q->dev);
3524 pm_request_autosuspend(q->dev);
3525 } else {
3526 q->rpm_status = RPM_SUSPENDED;
3527 }
3528 spin_unlock_irq(q->queue_lock);
3529 }
3530 EXPORT_SYMBOL(blk_post_runtime_resume);
3531
3532 /**
3533 * blk_set_runtime_active - Force runtime status of the queue to be active
3534 * @q: the queue of the device
3535 *
3536 * If the device is left runtime suspended during system suspend the resume
3537 * hook typically resumes the device and corrects runtime status
3538 * accordingly. However, that does not affect the queue runtime PM status
3539 * which is still "suspended". This prevents processing requests from the
3540 * queue.
3541 *
3542 * This function can be used in driver's resume hook to correct queue
3543 * runtime PM status and re-enable peeking requests from the queue. It
3544 * should be called before first request is added to the queue.
3545 */
3546 void blk_set_runtime_active(struct request_queue *q)
3547 {
3548 spin_lock_irq(q->queue_lock);
3549 q->rpm_status = RPM_ACTIVE;
3550 pm_runtime_mark_last_busy(q->dev);
3551 pm_request_autosuspend(q->dev);
3552 spin_unlock_irq(q->queue_lock);
3553 }
3554 EXPORT_SYMBOL(blk_set_runtime_active);
3555 #endif
3556
3557 int __init blk_dev_init(void)
3558 {
3559 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3560 FIELD_SIZEOF(struct request, cmd_flags));
3561
3562 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3563 kblockd_workqueue = alloc_workqueue("kblockd",
3564 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3565 if (!kblockd_workqueue)
3566 panic("Failed to create kblockd\n");
3567
3568 request_cachep = kmem_cache_create("blkdev_requests",
3569 sizeof(struct request), 0, SLAB_PANIC, NULL);
3570
3571 blk_requestq_cachep = kmem_cache_create("request_queue",
3572 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3573
3574 return 0;
3575 }