]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 spin_unlock_irqrestore(q->queue_lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
380
381 /**
382 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
383 * @q: The queue to run
384 *
385 * Description:
386 * Invoke request handling on a queue if there are any pending requests.
387 * May be used to restart request handling after a request has completed.
388 * This variant runs the queue whether or not the queue has been
389 * stopped. Must be called with the queue lock held and interrupts
390 * disabled. See also @blk_run_queue.
391 */
392 inline void __blk_run_queue_uncond(struct request_queue *q)
393 {
394 lockdep_assert_held(q->queue_lock);
395 WARN_ON_ONCE(q->mq_ops);
396
397 if (unlikely(blk_queue_dead(q)))
398 return;
399
400 /*
401 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
402 * the queue lock internally. As a result multiple threads may be
403 * running such a request function concurrently. Keep track of the
404 * number of active request_fn invocations such that blk_drain_queue()
405 * can wait until all these request_fn calls have finished.
406 */
407 q->request_fn_active++;
408 q->request_fn(q);
409 q->request_fn_active--;
410 }
411 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
412
413 /**
414 * __blk_run_queue - run a single device queue
415 * @q: The queue to run
416 *
417 * Description:
418 * See @blk_run_queue.
419 */
420 void __blk_run_queue(struct request_queue *q)
421 {
422 lockdep_assert_held(q->queue_lock);
423 WARN_ON_ONCE(q->mq_ops);
424
425 if (unlikely(blk_queue_stopped(q)))
426 return;
427
428 __blk_run_queue_uncond(q);
429 }
430 EXPORT_SYMBOL(__blk_run_queue);
431
432 /**
433 * blk_run_queue_async - run a single device queue in workqueue context
434 * @q: The queue to run
435 *
436 * Description:
437 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
438 * of us.
439 *
440 * Note:
441 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
442 * has canceled q->delay_work, callers must hold the queue lock to avoid
443 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
444 */
445 void blk_run_queue_async(struct request_queue *q)
446 {
447 lockdep_assert_held(q->queue_lock);
448 WARN_ON_ONCE(q->mq_ops);
449
450 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
451 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
452 }
453 EXPORT_SYMBOL(blk_run_queue_async);
454
455 /**
456 * blk_run_queue - run a single device queue
457 * @q: The queue to run
458 *
459 * Description:
460 * Invoke request handling on this queue, if it has pending work to do.
461 * May be used to restart queueing when a request has completed.
462 */
463 void blk_run_queue(struct request_queue *q)
464 {
465 unsigned long flags;
466
467 WARN_ON_ONCE(q->mq_ops);
468
469 spin_lock_irqsave(q->queue_lock, flags);
470 __blk_run_queue(q);
471 spin_unlock_irqrestore(q->queue_lock, flags);
472 }
473 EXPORT_SYMBOL(blk_run_queue);
474
475 void blk_put_queue(struct request_queue *q)
476 {
477 kobject_put(&q->kobj);
478 }
479 EXPORT_SYMBOL(blk_put_queue);
480
481 /**
482 * __blk_drain_queue - drain requests from request_queue
483 * @q: queue to drain
484 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
485 *
486 * Drain requests from @q. If @drain_all is set, all requests are drained.
487 * If not, only ELVPRIV requests are drained. The caller is responsible
488 * for ensuring that no new requests which need to be drained are queued.
489 */
490 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
491 __releases(q->queue_lock)
492 __acquires(q->queue_lock)
493 {
494 int i;
495
496 lockdep_assert_held(q->queue_lock);
497 WARN_ON_ONCE(q->mq_ops);
498
499 while (true) {
500 bool drain = false;
501
502 /*
503 * The caller might be trying to drain @q before its
504 * elevator is initialized.
505 */
506 if (q->elevator)
507 elv_drain_elevator(q);
508
509 blkcg_drain_queue(q);
510
511 /*
512 * This function might be called on a queue which failed
513 * driver init after queue creation or is not yet fully
514 * active yet. Some drivers (e.g. fd and loop) get unhappy
515 * in such cases. Kick queue iff dispatch queue has
516 * something on it and @q has request_fn set.
517 */
518 if (!list_empty(&q->queue_head) && q->request_fn)
519 __blk_run_queue(q);
520
521 drain |= q->nr_rqs_elvpriv;
522 drain |= q->request_fn_active;
523
524 /*
525 * Unfortunately, requests are queued at and tracked from
526 * multiple places and there's no single counter which can
527 * be drained. Check all the queues and counters.
528 */
529 if (drain_all) {
530 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
531 drain |= !list_empty(&q->queue_head);
532 for (i = 0; i < 2; i++) {
533 drain |= q->nr_rqs[i];
534 drain |= q->in_flight[i];
535 if (fq)
536 drain |= !list_empty(&fq->flush_queue[i]);
537 }
538 }
539
540 if (!drain)
541 break;
542
543 spin_unlock_irq(q->queue_lock);
544
545 msleep(10);
546
547 spin_lock_irq(q->queue_lock);
548 }
549
550 /*
551 * With queue marked dead, any woken up waiter will fail the
552 * allocation path, so the wakeup chaining is lost and we're
553 * left with hung waiters. We need to wake up those waiters.
554 */
555 if (q->request_fn) {
556 struct request_list *rl;
557
558 blk_queue_for_each_rl(rl, q)
559 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
560 wake_up_all(&rl->wait[i]);
561 }
562 }
563
564 /**
565 * blk_queue_bypass_start - enter queue bypass mode
566 * @q: queue of interest
567 *
568 * In bypass mode, only the dispatch FIFO queue of @q is used. This
569 * function makes @q enter bypass mode and drains all requests which were
570 * throttled or issued before. On return, it's guaranteed that no request
571 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
572 * inside queue or RCU read lock.
573 */
574 void blk_queue_bypass_start(struct request_queue *q)
575 {
576 WARN_ON_ONCE(q->mq_ops);
577
578 spin_lock_irq(q->queue_lock);
579 q->bypass_depth++;
580 queue_flag_set(QUEUE_FLAG_BYPASS, q);
581 spin_unlock_irq(q->queue_lock);
582
583 /*
584 * Queues start drained. Skip actual draining till init is
585 * complete. This avoids lenghty delays during queue init which
586 * can happen many times during boot.
587 */
588 if (blk_queue_init_done(q)) {
589 spin_lock_irq(q->queue_lock);
590 __blk_drain_queue(q, false);
591 spin_unlock_irq(q->queue_lock);
592
593 /* ensure blk_queue_bypass() is %true inside RCU read lock */
594 synchronize_rcu();
595 }
596 }
597 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
598
599 /**
600 * blk_queue_bypass_end - leave queue bypass mode
601 * @q: queue of interest
602 *
603 * Leave bypass mode and restore the normal queueing behavior.
604 *
605 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
606 * this function is called for both blk-sq and blk-mq queues.
607 */
608 void blk_queue_bypass_end(struct request_queue *q)
609 {
610 spin_lock_irq(q->queue_lock);
611 if (!--q->bypass_depth)
612 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
613 WARN_ON_ONCE(q->bypass_depth < 0);
614 spin_unlock_irq(q->queue_lock);
615 }
616 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
617
618 void blk_set_queue_dying(struct request_queue *q)
619 {
620 spin_lock_irq(q->queue_lock);
621 queue_flag_set(QUEUE_FLAG_DYING, q);
622 spin_unlock_irq(q->queue_lock);
623
624 /*
625 * When queue DYING flag is set, we need to block new req
626 * entering queue, so we call blk_freeze_queue_start() to
627 * prevent I/O from crossing blk_queue_enter().
628 */
629 blk_freeze_queue_start(q);
630
631 if (q->mq_ops)
632 blk_mq_wake_waiters(q);
633 else {
634 struct request_list *rl;
635
636 spin_lock_irq(q->queue_lock);
637 blk_queue_for_each_rl(rl, q) {
638 if (rl->rq_pool) {
639 wake_up(&rl->wait[BLK_RW_SYNC]);
640 wake_up(&rl->wait[BLK_RW_ASYNC]);
641 }
642 }
643 spin_unlock_irq(q->queue_lock);
644 }
645
646 /* Make blk_queue_enter() reexamine the DYING flag. */
647 wake_up_all(&q->mq_freeze_wq);
648 }
649 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
650
651 /**
652 * blk_cleanup_queue - shutdown a request queue
653 * @q: request queue to shutdown
654 *
655 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
656 * put it. All future requests will be failed immediately with -ENODEV.
657 */
658 void blk_cleanup_queue(struct request_queue *q)
659 {
660 spinlock_t *lock = q->queue_lock;
661
662 /* mark @q DYING, no new request or merges will be allowed afterwards */
663 mutex_lock(&q->sysfs_lock);
664 blk_set_queue_dying(q);
665 spin_lock_irq(lock);
666
667 /*
668 * A dying queue is permanently in bypass mode till released. Note
669 * that, unlike blk_queue_bypass_start(), we aren't performing
670 * synchronize_rcu() after entering bypass mode to avoid the delay
671 * as some drivers create and destroy a lot of queues while
672 * probing. This is still safe because blk_release_queue() will be
673 * called only after the queue refcnt drops to zero and nothing,
674 * RCU or not, would be traversing the queue by then.
675 */
676 q->bypass_depth++;
677 queue_flag_set(QUEUE_FLAG_BYPASS, q);
678
679 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
680 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
681 queue_flag_set(QUEUE_FLAG_DYING, q);
682 spin_unlock_irq(lock);
683 mutex_unlock(&q->sysfs_lock);
684
685 /*
686 * Drain all requests queued before DYING marking. Set DEAD flag to
687 * prevent that q->request_fn() gets invoked after draining finished.
688 */
689 blk_freeze_queue(q);
690 spin_lock_irq(lock);
691 if (!q->mq_ops)
692 __blk_drain_queue(q, true);
693 queue_flag_set(QUEUE_FLAG_DEAD, q);
694 spin_unlock_irq(lock);
695
696 /* for synchronous bio-based driver finish in-flight integrity i/o */
697 blk_flush_integrity();
698
699 /* @q won't process any more request, flush async actions */
700 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
701 blk_sync_queue(q);
702
703 if (q->mq_ops)
704 blk_mq_free_queue(q);
705 percpu_ref_exit(&q->q_usage_counter);
706
707 spin_lock_irq(lock);
708 if (q->queue_lock != &q->__queue_lock)
709 q->queue_lock = &q->__queue_lock;
710 spin_unlock_irq(lock);
711
712 /* @q is and will stay empty, shutdown and put */
713 blk_put_queue(q);
714 }
715 EXPORT_SYMBOL(blk_cleanup_queue);
716
717 /* Allocate memory local to the request queue */
718 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
719 {
720 struct request_queue *q = data;
721
722 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
723 }
724
725 static void free_request_simple(void *element, void *data)
726 {
727 kmem_cache_free(request_cachep, element);
728 }
729
730 static void *alloc_request_size(gfp_t gfp_mask, void *data)
731 {
732 struct request_queue *q = data;
733 struct request *rq;
734
735 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
736 q->node);
737 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
738 kfree(rq);
739 rq = NULL;
740 }
741 return rq;
742 }
743
744 static void free_request_size(void *element, void *data)
745 {
746 struct request_queue *q = data;
747
748 if (q->exit_rq_fn)
749 q->exit_rq_fn(q, element);
750 kfree(element);
751 }
752
753 int blk_init_rl(struct request_list *rl, struct request_queue *q,
754 gfp_t gfp_mask)
755 {
756 if (unlikely(rl->rq_pool) || q->mq_ops)
757 return 0;
758
759 rl->q = q;
760 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
761 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
762 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
763 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
764
765 if (q->cmd_size) {
766 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
767 alloc_request_size, free_request_size,
768 q, gfp_mask, q->node);
769 } else {
770 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
771 alloc_request_simple, free_request_simple,
772 q, gfp_mask, q->node);
773 }
774 if (!rl->rq_pool)
775 return -ENOMEM;
776
777 if (rl != &q->root_rl)
778 WARN_ON_ONCE(!blk_get_queue(q));
779
780 return 0;
781 }
782
783 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
784 {
785 if (rl->rq_pool) {
786 mempool_destroy(rl->rq_pool);
787 if (rl != &q->root_rl)
788 blk_put_queue(q);
789 }
790 }
791
792 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
793 {
794 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
795 }
796 EXPORT_SYMBOL(blk_alloc_queue);
797
798 int blk_queue_enter(struct request_queue *q, bool nowait)
799 {
800 while (true) {
801 int ret;
802
803 if (percpu_ref_tryget_live(&q->q_usage_counter))
804 return 0;
805
806 if (nowait)
807 return -EBUSY;
808
809 /*
810 * read pair of barrier in blk_freeze_queue_start(),
811 * we need to order reading __PERCPU_REF_DEAD flag of
812 * .q_usage_counter and reading .mq_freeze_depth or
813 * queue dying flag, otherwise the following wait may
814 * never return if the two reads are reordered.
815 */
816 smp_rmb();
817
818 ret = wait_event_interruptible(q->mq_freeze_wq,
819 !atomic_read(&q->mq_freeze_depth) ||
820 blk_queue_dying(q));
821 if (blk_queue_dying(q))
822 return -ENODEV;
823 if (ret)
824 return ret;
825 }
826 }
827
828 void blk_queue_exit(struct request_queue *q)
829 {
830 percpu_ref_put(&q->q_usage_counter);
831 }
832
833 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
834 {
835 struct request_queue *q =
836 container_of(ref, struct request_queue, q_usage_counter);
837
838 wake_up_all(&q->mq_freeze_wq);
839 }
840
841 static void blk_rq_timed_out_timer(unsigned long data)
842 {
843 struct request_queue *q = (struct request_queue *)data;
844
845 kblockd_schedule_work(&q->timeout_work);
846 }
847
848 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
849 {
850 struct request_queue *q;
851
852 q = kmem_cache_alloc_node(blk_requestq_cachep,
853 gfp_mask | __GFP_ZERO, node_id);
854 if (!q)
855 return NULL;
856
857 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
858 if (q->id < 0)
859 goto fail_q;
860
861 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
862 if (!q->bio_split)
863 goto fail_id;
864
865 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
866 if (!q->backing_dev_info)
867 goto fail_split;
868
869 q->stats = blk_alloc_queue_stats();
870 if (!q->stats)
871 goto fail_stats;
872
873 q->backing_dev_info->ra_pages =
874 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
875 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
876 q->backing_dev_info->name = "block";
877 q->node = node_id;
878
879 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
880 laptop_mode_timer_fn, (unsigned long) q);
881 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
882 INIT_WORK(&q->timeout_work, NULL);
883 INIT_LIST_HEAD(&q->queue_head);
884 INIT_LIST_HEAD(&q->timeout_list);
885 INIT_LIST_HEAD(&q->icq_list);
886 #ifdef CONFIG_BLK_CGROUP
887 INIT_LIST_HEAD(&q->blkg_list);
888 #endif
889 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
890
891 kobject_init(&q->kobj, &blk_queue_ktype);
892
893 #ifdef CONFIG_BLK_DEV_IO_TRACE
894 mutex_init(&q->blk_trace_mutex);
895 #endif
896 mutex_init(&q->sysfs_lock);
897 spin_lock_init(&q->__queue_lock);
898
899 /*
900 * By default initialize queue_lock to internal lock and driver can
901 * override it later if need be.
902 */
903 q->queue_lock = &q->__queue_lock;
904
905 /*
906 * A queue starts its life with bypass turned on to avoid
907 * unnecessary bypass on/off overhead and nasty surprises during
908 * init. The initial bypass will be finished when the queue is
909 * registered by blk_register_queue().
910 */
911 q->bypass_depth = 1;
912 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
913
914 init_waitqueue_head(&q->mq_freeze_wq);
915
916 /*
917 * Init percpu_ref in atomic mode so that it's faster to shutdown.
918 * See blk_register_queue() for details.
919 */
920 if (percpu_ref_init(&q->q_usage_counter,
921 blk_queue_usage_counter_release,
922 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
923 goto fail_bdi;
924
925 if (blkcg_init_queue(q))
926 goto fail_ref;
927
928 return q;
929
930 fail_ref:
931 percpu_ref_exit(&q->q_usage_counter);
932 fail_bdi:
933 blk_free_queue_stats(q->stats);
934 fail_stats:
935 bdi_put(q->backing_dev_info);
936 fail_split:
937 bioset_free(q->bio_split);
938 fail_id:
939 ida_simple_remove(&blk_queue_ida, q->id);
940 fail_q:
941 kmem_cache_free(blk_requestq_cachep, q);
942 return NULL;
943 }
944 EXPORT_SYMBOL(blk_alloc_queue_node);
945
946 /**
947 * blk_init_queue - prepare a request queue for use with a block device
948 * @rfn: The function to be called to process requests that have been
949 * placed on the queue.
950 * @lock: Request queue spin lock
951 *
952 * Description:
953 * If a block device wishes to use the standard request handling procedures,
954 * which sorts requests and coalesces adjacent requests, then it must
955 * call blk_init_queue(). The function @rfn will be called when there
956 * are requests on the queue that need to be processed. If the device
957 * supports plugging, then @rfn may not be called immediately when requests
958 * are available on the queue, but may be called at some time later instead.
959 * Plugged queues are generally unplugged when a buffer belonging to one
960 * of the requests on the queue is needed, or due to memory pressure.
961 *
962 * @rfn is not required, or even expected, to remove all requests off the
963 * queue, but only as many as it can handle at a time. If it does leave
964 * requests on the queue, it is responsible for arranging that the requests
965 * get dealt with eventually.
966 *
967 * The queue spin lock must be held while manipulating the requests on the
968 * request queue; this lock will be taken also from interrupt context, so irq
969 * disabling is needed for it.
970 *
971 * Function returns a pointer to the initialized request queue, or %NULL if
972 * it didn't succeed.
973 *
974 * Note:
975 * blk_init_queue() must be paired with a blk_cleanup_queue() call
976 * when the block device is deactivated (such as at module unload).
977 **/
978
979 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
980 {
981 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
982 }
983 EXPORT_SYMBOL(blk_init_queue);
984
985 struct request_queue *
986 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
987 {
988 struct request_queue *q;
989
990 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
991 if (!q)
992 return NULL;
993
994 q->request_fn = rfn;
995 if (lock)
996 q->queue_lock = lock;
997 if (blk_init_allocated_queue(q) < 0) {
998 blk_cleanup_queue(q);
999 return NULL;
1000 }
1001
1002 return q;
1003 }
1004 EXPORT_SYMBOL(blk_init_queue_node);
1005
1006 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1007
1008
1009 int blk_init_allocated_queue(struct request_queue *q)
1010 {
1011 WARN_ON_ONCE(q->mq_ops);
1012
1013 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1014 if (!q->fq)
1015 return -ENOMEM;
1016
1017 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1018 goto out_free_flush_queue;
1019
1020 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1021 goto out_exit_flush_rq;
1022
1023 INIT_WORK(&q->timeout_work, blk_timeout_work);
1024 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1025
1026 /*
1027 * This also sets hw/phys segments, boundary and size
1028 */
1029 blk_queue_make_request(q, blk_queue_bio);
1030
1031 q->sg_reserved_size = INT_MAX;
1032
1033 /* Protect q->elevator from elevator_change */
1034 mutex_lock(&q->sysfs_lock);
1035
1036 /* init elevator */
1037 if (elevator_init(q, NULL)) {
1038 mutex_unlock(&q->sysfs_lock);
1039 goto out_exit_flush_rq;
1040 }
1041
1042 mutex_unlock(&q->sysfs_lock);
1043 return 0;
1044
1045 out_exit_flush_rq:
1046 if (q->exit_rq_fn)
1047 q->exit_rq_fn(q, q->fq->flush_rq);
1048 out_free_flush_queue:
1049 blk_free_flush_queue(q->fq);
1050 return -ENOMEM;
1051 }
1052 EXPORT_SYMBOL(blk_init_allocated_queue);
1053
1054 bool blk_get_queue(struct request_queue *q)
1055 {
1056 if (likely(!blk_queue_dying(q))) {
1057 __blk_get_queue(q);
1058 return true;
1059 }
1060
1061 return false;
1062 }
1063 EXPORT_SYMBOL(blk_get_queue);
1064
1065 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1066 {
1067 if (rq->rq_flags & RQF_ELVPRIV) {
1068 elv_put_request(rl->q, rq);
1069 if (rq->elv.icq)
1070 put_io_context(rq->elv.icq->ioc);
1071 }
1072
1073 mempool_free(rq, rl->rq_pool);
1074 }
1075
1076 /*
1077 * ioc_batching returns true if the ioc is a valid batching request and
1078 * should be given priority access to a request.
1079 */
1080 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1081 {
1082 if (!ioc)
1083 return 0;
1084
1085 /*
1086 * Make sure the process is able to allocate at least 1 request
1087 * even if the batch times out, otherwise we could theoretically
1088 * lose wakeups.
1089 */
1090 return ioc->nr_batch_requests == q->nr_batching ||
1091 (ioc->nr_batch_requests > 0
1092 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1093 }
1094
1095 /*
1096 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1097 * will cause the process to be a "batcher" on all queues in the system. This
1098 * is the behaviour we want though - once it gets a wakeup it should be given
1099 * a nice run.
1100 */
1101 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1102 {
1103 if (!ioc || ioc_batching(q, ioc))
1104 return;
1105
1106 ioc->nr_batch_requests = q->nr_batching;
1107 ioc->last_waited = jiffies;
1108 }
1109
1110 static void __freed_request(struct request_list *rl, int sync)
1111 {
1112 struct request_queue *q = rl->q;
1113
1114 if (rl->count[sync] < queue_congestion_off_threshold(q))
1115 blk_clear_congested(rl, sync);
1116
1117 if (rl->count[sync] + 1 <= q->nr_requests) {
1118 if (waitqueue_active(&rl->wait[sync]))
1119 wake_up(&rl->wait[sync]);
1120
1121 blk_clear_rl_full(rl, sync);
1122 }
1123 }
1124
1125 /*
1126 * A request has just been released. Account for it, update the full and
1127 * congestion status, wake up any waiters. Called under q->queue_lock.
1128 */
1129 static void freed_request(struct request_list *rl, bool sync,
1130 req_flags_t rq_flags)
1131 {
1132 struct request_queue *q = rl->q;
1133
1134 q->nr_rqs[sync]--;
1135 rl->count[sync]--;
1136 if (rq_flags & RQF_ELVPRIV)
1137 q->nr_rqs_elvpriv--;
1138
1139 __freed_request(rl, sync);
1140
1141 if (unlikely(rl->starved[sync ^ 1]))
1142 __freed_request(rl, sync ^ 1);
1143 }
1144
1145 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1146 {
1147 struct request_list *rl;
1148 int on_thresh, off_thresh;
1149
1150 WARN_ON_ONCE(q->mq_ops);
1151
1152 spin_lock_irq(q->queue_lock);
1153 q->nr_requests = nr;
1154 blk_queue_congestion_threshold(q);
1155 on_thresh = queue_congestion_on_threshold(q);
1156 off_thresh = queue_congestion_off_threshold(q);
1157
1158 blk_queue_for_each_rl(rl, q) {
1159 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1160 blk_set_congested(rl, BLK_RW_SYNC);
1161 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1162 blk_clear_congested(rl, BLK_RW_SYNC);
1163
1164 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1165 blk_set_congested(rl, BLK_RW_ASYNC);
1166 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1167 blk_clear_congested(rl, BLK_RW_ASYNC);
1168
1169 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1170 blk_set_rl_full(rl, BLK_RW_SYNC);
1171 } else {
1172 blk_clear_rl_full(rl, BLK_RW_SYNC);
1173 wake_up(&rl->wait[BLK_RW_SYNC]);
1174 }
1175
1176 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1177 blk_set_rl_full(rl, BLK_RW_ASYNC);
1178 } else {
1179 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1180 wake_up(&rl->wait[BLK_RW_ASYNC]);
1181 }
1182 }
1183
1184 spin_unlock_irq(q->queue_lock);
1185 return 0;
1186 }
1187
1188 /**
1189 * __get_request - get a free request
1190 * @rl: request list to allocate from
1191 * @op: operation and flags
1192 * @bio: bio to allocate request for (can be %NULL)
1193 * @flags: BLQ_MQ_REQ_* flags
1194 *
1195 * Get a free request from @q. This function may fail under memory
1196 * pressure or if @q is dead.
1197 *
1198 * Must be called with @q->queue_lock held and,
1199 * Returns ERR_PTR on failure, with @q->queue_lock held.
1200 * Returns request pointer on success, with @q->queue_lock *not held*.
1201 */
1202 static struct request *__get_request(struct request_list *rl, unsigned int op,
1203 struct bio *bio, unsigned int flags)
1204 {
1205 struct request_queue *q = rl->q;
1206 struct request *rq;
1207 struct elevator_type *et = q->elevator->type;
1208 struct io_context *ioc = rq_ioc(bio);
1209 struct io_cq *icq = NULL;
1210 const bool is_sync = op_is_sync(op);
1211 int may_queue;
1212 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1213 __GFP_DIRECT_RECLAIM;
1214 req_flags_t rq_flags = RQF_ALLOCED;
1215
1216 lockdep_assert_held(q->queue_lock);
1217
1218 if (unlikely(blk_queue_dying(q)))
1219 return ERR_PTR(-ENODEV);
1220
1221 may_queue = elv_may_queue(q, op);
1222 if (may_queue == ELV_MQUEUE_NO)
1223 goto rq_starved;
1224
1225 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1226 if (rl->count[is_sync]+1 >= q->nr_requests) {
1227 /*
1228 * The queue will fill after this allocation, so set
1229 * it as full, and mark this process as "batching".
1230 * This process will be allowed to complete a batch of
1231 * requests, others will be blocked.
1232 */
1233 if (!blk_rl_full(rl, is_sync)) {
1234 ioc_set_batching(q, ioc);
1235 blk_set_rl_full(rl, is_sync);
1236 } else {
1237 if (may_queue != ELV_MQUEUE_MUST
1238 && !ioc_batching(q, ioc)) {
1239 /*
1240 * The queue is full and the allocating
1241 * process is not a "batcher", and not
1242 * exempted by the IO scheduler
1243 */
1244 return ERR_PTR(-ENOMEM);
1245 }
1246 }
1247 }
1248 blk_set_congested(rl, is_sync);
1249 }
1250
1251 /*
1252 * Only allow batching queuers to allocate up to 50% over the defined
1253 * limit of requests, otherwise we could have thousands of requests
1254 * allocated with any setting of ->nr_requests
1255 */
1256 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1257 return ERR_PTR(-ENOMEM);
1258
1259 q->nr_rqs[is_sync]++;
1260 rl->count[is_sync]++;
1261 rl->starved[is_sync] = 0;
1262
1263 /*
1264 * Decide whether the new request will be managed by elevator. If
1265 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1266 * prevent the current elevator from being destroyed until the new
1267 * request is freed. This guarantees icq's won't be destroyed and
1268 * makes creating new ones safe.
1269 *
1270 * Flush requests do not use the elevator so skip initialization.
1271 * This allows a request to share the flush and elevator data.
1272 *
1273 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1274 * it will be created after releasing queue_lock.
1275 */
1276 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1277 rq_flags |= RQF_ELVPRIV;
1278 q->nr_rqs_elvpriv++;
1279 if (et->icq_cache && ioc)
1280 icq = ioc_lookup_icq(ioc, q);
1281 }
1282
1283 if (blk_queue_io_stat(q))
1284 rq_flags |= RQF_IO_STAT;
1285 spin_unlock_irq(q->queue_lock);
1286
1287 /* allocate and init request */
1288 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1289 if (!rq)
1290 goto fail_alloc;
1291
1292 blk_rq_init(q, rq);
1293 blk_rq_set_rl(rq, rl);
1294 rq->cmd_flags = op;
1295 rq->rq_flags = rq_flags;
1296 if (flags & BLK_MQ_REQ_PREEMPT)
1297 rq->rq_flags |= RQF_PREEMPT;
1298
1299 /* init elvpriv */
1300 if (rq_flags & RQF_ELVPRIV) {
1301 if (unlikely(et->icq_cache && !icq)) {
1302 if (ioc)
1303 icq = ioc_create_icq(ioc, q, gfp_mask);
1304 if (!icq)
1305 goto fail_elvpriv;
1306 }
1307
1308 rq->elv.icq = icq;
1309 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1310 goto fail_elvpriv;
1311
1312 /* @rq->elv.icq holds io_context until @rq is freed */
1313 if (icq)
1314 get_io_context(icq->ioc);
1315 }
1316 out:
1317 /*
1318 * ioc may be NULL here, and ioc_batching will be false. That's
1319 * OK, if the queue is under the request limit then requests need
1320 * not count toward the nr_batch_requests limit. There will always
1321 * be some limit enforced by BLK_BATCH_TIME.
1322 */
1323 if (ioc_batching(q, ioc))
1324 ioc->nr_batch_requests--;
1325
1326 trace_block_getrq(q, bio, op);
1327 return rq;
1328
1329 fail_elvpriv:
1330 /*
1331 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1332 * and may fail indefinitely under memory pressure and thus
1333 * shouldn't stall IO. Treat this request as !elvpriv. This will
1334 * disturb iosched and blkcg but weird is bettern than dead.
1335 */
1336 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1337 __func__, dev_name(q->backing_dev_info->dev));
1338
1339 rq->rq_flags &= ~RQF_ELVPRIV;
1340 rq->elv.icq = NULL;
1341
1342 spin_lock_irq(q->queue_lock);
1343 q->nr_rqs_elvpriv--;
1344 spin_unlock_irq(q->queue_lock);
1345 goto out;
1346
1347 fail_alloc:
1348 /*
1349 * Allocation failed presumably due to memory. Undo anything we
1350 * might have messed up.
1351 *
1352 * Allocating task should really be put onto the front of the wait
1353 * queue, but this is pretty rare.
1354 */
1355 spin_lock_irq(q->queue_lock);
1356 freed_request(rl, is_sync, rq_flags);
1357
1358 /*
1359 * in the very unlikely event that allocation failed and no
1360 * requests for this direction was pending, mark us starved so that
1361 * freeing of a request in the other direction will notice
1362 * us. another possible fix would be to split the rq mempool into
1363 * READ and WRITE
1364 */
1365 rq_starved:
1366 if (unlikely(rl->count[is_sync] == 0))
1367 rl->starved[is_sync] = 1;
1368 return ERR_PTR(-ENOMEM);
1369 }
1370
1371 /**
1372 * get_request - get a free request
1373 * @q: request_queue to allocate request from
1374 * @op: operation and flags
1375 * @bio: bio to allocate request for (can be %NULL)
1376 * @flags: BLK_MQ_REQ_* flags.
1377 *
1378 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1379 * this function keeps retrying under memory pressure and fails iff @q is dead.
1380 *
1381 * Must be called with @q->queue_lock held and,
1382 * Returns ERR_PTR on failure, with @q->queue_lock held.
1383 * Returns request pointer on success, with @q->queue_lock *not held*.
1384 */
1385 static struct request *get_request(struct request_queue *q, unsigned int op,
1386 struct bio *bio, unsigned int flags)
1387 {
1388 const bool is_sync = op_is_sync(op);
1389 DEFINE_WAIT(wait);
1390 struct request_list *rl;
1391 struct request *rq;
1392
1393 lockdep_assert_held(q->queue_lock);
1394 WARN_ON_ONCE(q->mq_ops);
1395
1396 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1397 retry:
1398 rq = __get_request(rl, op, bio, flags);
1399 if (!IS_ERR(rq))
1400 return rq;
1401
1402 if (op & REQ_NOWAIT) {
1403 blk_put_rl(rl);
1404 return ERR_PTR(-EAGAIN);
1405 }
1406
1407 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1408 blk_put_rl(rl);
1409 return rq;
1410 }
1411
1412 /* wait on @rl and retry */
1413 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1414 TASK_UNINTERRUPTIBLE);
1415
1416 trace_block_sleeprq(q, bio, op);
1417
1418 spin_unlock_irq(q->queue_lock);
1419 io_schedule();
1420
1421 /*
1422 * After sleeping, we become a "batching" process and will be able
1423 * to allocate at least one request, and up to a big batch of them
1424 * for a small period time. See ioc_batching, ioc_set_batching
1425 */
1426 ioc_set_batching(q, current->io_context);
1427
1428 spin_lock_irq(q->queue_lock);
1429 finish_wait(&rl->wait[is_sync], &wait);
1430
1431 goto retry;
1432 }
1433
1434 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1435 static struct request *blk_old_get_request(struct request_queue *q,
1436 unsigned int op, unsigned int flags)
1437 {
1438 struct request *rq;
1439 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1440 __GFP_DIRECT_RECLAIM;
1441 int ret = 0;
1442
1443 WARN_ON_ONCE(q->mq_ops);
1444
1445 /* create ioc upfront */
1446 create_io_context(gfp_mask, q->node);
1447
1448 ret = blk_queue_enter(q, !(gfp_mask & __GFP_DIRECT_RECLAIM) ||
1449 (op & REQ_NOWAIT));
1450 if (ret)
1451 return ERR_PTR(ret);
1452 spin_lock_irq(q->queue_lock);
1453 rq = get_request(q, op, NULL, flags);
1454 if (IS_ERR(rq)) {
1455 spin_unlock_irq(q->queue_lock);
1456 blk_queue_exit(q);
1457 return rq;
1458 }
1459
1460 /* q->queue_lock is unlocked at this point */
1461 rq->__data_len = 0;
1462 rq->__sector = (sector_t) -1;
1463 rq->bio = rq->biotail = NULL;
1464 return rq;
1465 }
1466
1467 /**
1468 * blk_get_request_flags - allocate a request
1469 * @q: request queue to allocate a request for
1470 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1471 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1472 */
1473 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1474 unsigned int flags)
1475 {
1476 struct request *req;
1477
1478 WARN_ON_ONCE(op & REQ_NOWAIT);
1479 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1480
1481 if (q->mq_ops) {
1482 req = blk_mq_alloc_request(q, op, flags);
1483 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1484 q->mq_ops->initialize_rq_fn(req);
1485 } else {
1486 req = blk_old_get_request(q, op, flags);
1487 if (!IS_ERR(req) && q->initialize_rq_fn)
1488 q->initialize_rq_fn(req);
1489 }
1490
1491 return req;
1492 }
1493 EXPORT_SYMBOL(blk_get_request_flags);
1494
1495 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1496 gfp_t gfp_mask)
1497 {
1498 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1499 0 : BLK_MQ_REQ_NOWAIT);
1500 }
1501 EXPORT_SYMBOL(blk_get_request);
1502
1503 /**
1504 * blk_requeue_request - put a request back on queue
1505 * @q: request queue where request should be inserted
1506 * @rq: request to be inserted
1507 *
1508 * Description:
1509 * Drivers often keep queueing requests until the hardware cannot accept
1510 * more, when that condition happens we need to put the request back
1511 * on the queue. Must be called with queue lock held.
1512 */
1513 void blk_requeue_request(struct request_queue *q, struct request *rq)
1514 {
1515 lockdep_assert_held(q->queue_lock);
1516 WARN_ON_ONCE(q->mq_ops);
1517
1518 blk_delete_timer(rq);
1519 blk_clear_rq_complete(rq);
1520 trace_block_rq_requeue(q, rq);
1521 wbt_requeue(q->rq_wb, &rq->issue_stat);
1522
1523 if (rq->rq_flags & RQF_QUEUED)
1524 blk_queue_end_tag(q, rq);
1525
1526 BUG_ON(blk_queued_rq(rq));
1527
1528 elv_requeue_request(q, rq);
1529 }
1530 EXPORT_SYMBOL(blk_requeue_request);
1531
1532 static void add_acct_request(struct request_queue *q, struct request *rq,
1533 int where)
1534 {
1535 blk_account_io_start(rq, true);
1536 __elv_add_request(q, rq, where);
1537 }
1538
1539 static void part_round_stats_single(struct request_queue *q, int cpu,
1540 struct hd_struct *part, unsigned long now,
1541 unsigned int inflight)
1542 {
1543 if (inflight) {
1544 __part_stat_add(cpu, part, time_in_queue,
1545 inflight * (now - part->stamp));
1546 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1547 }
1548 part->stamp = now;
1549 }
1550
1551 /**
1552 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1553 * @q: target block queue
1554 * @cpu: cpu number for stats access
1555 * @part: target partition
1556 *
1557 * The average IO queue length and utilisation statistics are maintained
1558 * by observing the current state of the queue length and the amount of
1559 * time it has been in this state for.
1560 *
1561 * Normally, that accounting is done on IO completion, but that can result
1562 * in more than a second's worth of IO being accounted for within any one
1563 * second, leading to >100% utilisation. To deal with that, we call this
1564 * function to do a round-off before returning the results when reading
1565 * /proc/diskstats. This accounts immediately for all queue usage up to
1566 * the current jiffies and restarts the counters again.
1567 */
1568 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1569 {
1570 struct hd_struct *part2 = NULL;
1571 unsigned long now = jiffies;
1572 unsigned int inflight[2];
1573 int stats = 0;
1574
1575 if (part->stamp != now)
1576 stats |= 1;
1577
1578 if (part->partno) {
1579 part2 = &part_to_disk(part)->part0;
1580 if (part2->stamp != now)
1581 stats |= 2;
1582 }
1583
1584 if (!stats)
1585 return;
1586
1587 part_in_flight(q, part, inflight);
1588
1589 if (stats & 2)
1590 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1591 if (stats & 1)
1592 part_round_stats_single(q, cpu, part, now, inflight[0]);
1593 }
1594 EXPORT_SYMBOL_GPL(part_round_stats);
1595
1596 #ifdef CONFIG_PM
1597 static void blk_pm_put_request(struct request *rq)
1598 {
1599 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1600 pm_runtime_mark_last_busy(rq->q->dev);
1601 }
1602 #else
1603 static inline void blk_pm_put_request(struct request *rq) {}
1604 #endif
1605
1606 void __blk_put_request(struct request_queue *q, struct request *req)
1607 {
1608 req_flags_t rq_flags = req->rq_flags;
1609
1610 if (unlikely(!q))
1611 return;
1612
1613 if (q->mq_ops) {
1614 blk_mq_free_request(req);
1615 return;
1616 }
1617
1618 lockdep_assert_held(q->queue_lock);
1619
1620 blk_pm_put_request(req);
1621
1622 elv_completed_request(q, req);
1623
1624 /* this is a bio leak */
1625 WARN_ON(req->bio != NULL);
1626
1627 wbt_done(q->rq_wb, &req->issue_stat);
1628
1629 /*
1630 * Request may not have originated from ll_rw_blk. if not,
1631 * it didn't come out of our reserved rq pools
1632 */
1633 if (rq_flags & RQF_ALLOCED) {
1634 struct request_list *rl = blk_rq_rl(req);
1635 bool sync = op_is_sync(req->cmd_flags);
1636
1637 BUG_ON(!list_empty(&req->queuelist));
1638 BUG_ON(ELV_ON_HASH(req));
1639
1640 blk_free_request(rl, req);
1641 freed_request(rl, sync, rq_flags);
1642 blk_put_rl(rl);
1643 blk_queue_exit(q);
1644 }
1645 }
1646 EXPORT_SYMBOL_GPL(__blk_put_request);
1647
1648 void blk_put_request(struct request *req)
1649 {
1650 struct request_queue *q = req->q;
1651
1652 if (q->mq_ops)
1653 blk_mq_free_request(req);
1654 else {
1655 unsigned long flags;
1656
1657 spin_lock_irqsave(q->queue_lock, flags);
1658 __blk_put_request(q, req);
1659 spin_unlock_irqrestore(q->queue_lock, flags);
1660 }
1661 }
1662 EXPORT_SYMBOL(blk_put_request);
1663
1664 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1665 struct bio *bio)
1666 {
1667 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1668
1669 if (!ll_back_merge_fn(q, req, bio))
1670 return false;
1671
1672 trace_block_bio_backmerge(q, req, bio);
1673
1674 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1675 blk_rq_set_mixed_merge(req);
1676
1677 req->biotail->bi_next = bio;
1678 req->biotail = bio;
1679 req->__data_len += bio->bi_iter.bi_size;
1680 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1681
1682 blk_account_io_start(req, false);
1683 return true;
1684 }
1685
1686 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1687 struct bio *bio)
1688 {
1689 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1690
1691 if (!ll_front_merge_fn(q, req, bio))
1692 return false;
1693
1694 trace_block_bio_frontmerge(q, req, bio);
1695
1696 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1697 blk_rq_set_mixed_merge(req);
1698
1699 bio->bi_next = req->bio;
1700 req->bio = bio;
1701
1702 req->__sector = bio->bi_iter.bi_sector;
1703 req->__data_len += bio->bi_iter.bi_size;
1704 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1705
1706 blk_account_io_start(req, false);
1707 return true;
1708 }
1709
1710 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1711 struct bio *bio)
1712 {
1713 unsigned short segments = blk_rq_nr_discard_segments(req);
1714
1715 if (segments >= queue_max_discard_segments(q))
1716 goto no_merge;
1717 if (blk_rq_sectors(req) + bio_sectors(bio) >
1718 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1719 goto no_merge;
1720
1721 req->biotail->bi_next = bio;
1722 req->biotail = bio;
1723 req->__data_len += bio->bi_iter.bi_size;
1724 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1725 req->nr_phys_segments = segments + 1;
1726
1727 blk_account_io_start(req, false);
1728 return true;
1729 no_merge:
1730 req_set_nomerge(q, req);
1731 return false;
1732 }
1733
1734 /**
1735 * blk_attempt_plug_merge - try to merge with %current's plugged list
1736 * @q: request_queue new bio is being queued at
1737 * @bio: new bio being queued
1738 * @request_count: out parameter for number of traversed plugged requests
1739 * @same_queue_rq: pointer to &struct request that gets filled in when
1740 * another request associated with @q is found on the plug list
1741 * (optional, may be %NULL)
1742 *
1743 * Determine whether @bio being queued on @q can be merged with a request
1744 * on %current's plugged list. Returns %true if merge was successful,
1745 * otherwise %false.
1746 *
1747 * Plugging coalesces IOs from the same issuer for the same purpose without
1748 * going through @q->queue_lock. As such it's more of an issuing mechanism
1749 * than scheduling, and the request, while may have elvpriv data, is not
1750 * added on the elevator at this point. In addition, we don't have
1751 * reliable access to the elevator outside queue lock. Only check basic
1752 * merging parameters without querying the elevator.
1753 *
1754 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1755 */
1756 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1757 unsigned int *request_count,
1758 struct request **same_queue_rq)
1759 {
1760 struct blk_plug *plug;
1761 struct request *rq;
1762 struct list_head *plug_list;
1763
1764 plug = current->plug;
1765 if (!plug)
1766 return false;
1767 *request_count = 0;
1768
1769 if (q->mq_ops)
1770 plug_list = &plug->mq_list;
1771 else
1772 plug_list = &plug->list;
1773
1774 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1775 bool merged = false;
1776
1777 if (rq->q == q) {
1778 (*request_count)++;
1779 /*
1780 * Only blk-mq multiple hardware queues case checks the
1781 * rq in the same queue, there should be only one such
1782 * rq in a queue
1783 **/
1784 if (same_queue_rq)
1785 *same_queue_rq = rq;
1786 }
1787
1788 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1789 continue;
1790
1791 switch (blk_try_merge(rq, bio)) {
1792 case ELEVATOR_BACK_MERGE:
1793 merged = bio_attempt_back_merge(q, rq, bio);
1794 break;
1795 case ELEVATOR_FRONT_MERGE:
1796 merged = bio_attempt_front_merge(q, rq, bio);
1797 break;
1798 case ELEVATOR_DISCARD_MERGE:
1799 merged = bio_attempt_discard_merge(q, rq, bio);
1800 break;
1801 default:
1802 break;
1803 }
1804
1805 if (merged)
1806 return true;
1807 }
1808
1809 return false;
1810 }
1811
1812 unsigned int blk_plug_queued_count(struct request_queue *q)
1813 {
1814 struct blk_plug *plug;
1815 struct request *rq;
1816 struct list_head *plug_list;
1817 unsigned int ret = 0;
1818
1819 plug = current->plug;
1820 if (!plug)
1821 goto out;
1822
1823 if (q->mq_ops)
1824 plug_list = &plug->mq_list;
1825 else
1826 plug_list = &plug->list;
1827
1828 list_for_each_entry(rq, plug_list, queuelist) {
1829 if (rq->q == q)
1830 ret++;
1831 }
1832 out:
1833 return ret;
1834 }
1835
1836 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1837 {
1838 struct io_context *ioc = rq_ioc(bio);
1839
1840 if (bio->bi_opf & REQ_RAHEAD)
1841 req->cmd_flags |= REQ_FAILFAST_MASK;
1842
1843 req->__sector = bio->bi_iter.bi_sector;
1844 if (ioprio_valid(bio_prio(bio)))
1845 req->ioprio = bio_prio(bio);
1846 else if (ioc)
1847 req->ioprio = ioc->ioprio;
1848 else
1849 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1850 req->write_hint = bio->bi_write_hint;
1851 blk_rq_bio_prep(req->q, req, bio);
1852 }
1853 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1854
1855 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1856 {
1857 struct blk_plug *plug;
1858 int where = ELEVATOR_INSERT_SORT;
1859 struct request *req, *free;
1860 unsigned int request_count = 0;
1861 unsigned int wb_acct;
1862
1863 /*
1864 * low level driver can indicate that it wants pages above a
1865 * certain limit bounced to low memory (ie for highmem, or even
1866 * ISA dma in theory)
1867 */
1868 blk_queue_bounce(q, &bio);
1869
1870 blk_queue_split(q, &bio);
1871
1872 if (!bio_integrity_prep(bio))
1873 return BLK_QC_T_NONE;
1874
1875 if (op_is_flush(bio->bi_opf)) {
1876 spin_lock_irq(q->queue_lock);
1877 where = ELEVATOR_INSERT_FLUSH;
1878 goto get_rq;
1879 }
1880
1881 /*
1882 * Check if we can merge with the plugged list before grabbing
1883 * any locks.
1884 */
1885 if (!blk_queue_nomerges(q)) {
1886 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1887 return BLK_QC_T_NONE;
1888 } else
1889 request_count = blk_plug_queued_count(q);
1890
1891 spin_lock_irq(q->queue_lock);
1892
1893 switch (elv_merge(q, &req, bio)) {
1894 case ELEVATOR_BACK_MERGE:
1895 if (!bio_attempt_back_merge(q, req, bio))
1896 break;
1897 elv_bio_merged(q, req, bio);
1898 free = attempt_back_merge(q, req);
1899 if (free)
1900 __blk_put_request(q, free);
1901 else
1902 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1903 goto out_unlock;
1904 case ELEVATOR_FRONT_MERGE:
1905 if (!bio_attempt_front_merge(q, req, bio))
1906 break;
1907 elv_bio_merged(q, req, bio);
1908 free = attempt_front_merge(q, req);
1909 if (free)
1910 __blk_put_request(q, free);
1911 else
1912 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1913 goto out_unlock;
1914 default:
1915 break;
1916 }
1917
1918 get_rq:
1919 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1920
1921 /*
1922 * Grab a free request. This is might sleep but can not fail.
1923 * Returns with the queue unlocked.
1924 */
1925 blk_queue_enter_live(q);
1926 req = get_request(q, bio->bi_opf, bio, 0);
1927 if (IS_ERR(req)) {
1928 blk_queue_exit(q);
1929 __wbt_done(q->rq_wb, wb_acct);
1930 if (PTR_ERR(req) == -ENOMEM)
1931 bio->bi_status = BLK_STS_RESOURCE;
1932 else
1933 bio->bi_status = BLK_STS_IOERR;
1934 bio_endio(bio);
1935 goto out_unlock;
1936 }
1937
1938 wbt_track(&req->issue_stat, wb_acct);
1939
1940 /*
1941 * After dropping the lock and possibly sleeping here, our request
1942 * may now be mergeable after it had proven unmergeable (above).
1943 * We don't worry about that case for efficiency. It won't happen
1944 * often, and the elevators are able to handle it.
1945 */
1946 blk_init_request_from_bio(req, bio);
1947
1948 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1949 req->cpu = raw_smp_processor_id();
1950
1951 plug = current->plug;
1952 if (plug) {
1953 /*
1954 * If this is the first request added after a plug, fire
1955 * of a plug trace.
1956 *
1957 * @request_count may become stale because of schedule
1958 * out, so check plug list again.
1959 */
1960 if (!request_count || list_empty(&plug->list))
1961 trace_block_plug(q);
1962 else {
1963 struct request *last = list_entry_rq(plug->list.prev);
1964 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1965 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1966 blk_flush_plug_list(plug, false);
1967 trace_block_plug(q);
1968 }
1969 }
1970 list_add_tail(&req->queuelist, &plug->list);
1971 blk_account_io_start(req, true);
1972 } else {
1973 spin_lock_irq(q->queue_lock);
1974 add_acct_request(q, req, where);
1975 __blk_run_queue(q);
1976 out_unlock:
1977 spin_unlock_irq(q->queue_lock);
1978 }
1979
1980 return BLK_QC_T_NONE;
1981 }
1982
1983 static void handle_bad_sector(struct bio *bio)
1984 {
1985 char b[BDEVNAME_SIZE];
1986
1987 printk(KERN_INFO "attempt to access beyond end of device\n");
1988 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1989 bio_devname(bio, b), bio->bi_opf,
1990 (unsigned long long)bio_end_sector(bio),
1991 (long long)get_capacity(bio->bi_disk));
1992 }
1993
1994 #ifdef CONFIG_FAIL_MAKE_REQUEST
1995
1996 static DECLARE_FAULT_ATTR(fail_make_request);
1997
1998 static int __init setup_fail_make_request(char *str)
1999 {
2000 return setup_fault_attr(&fail_make_request, str);
2001 }
2002 __setup("fail_make_request=", setup_fail_make_request);
2003
2004 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2005 {
2006 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2007 }
2008
2009 static int __init fail_make_request_debugfs(void)
2010 {
2011 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2012 NULL, &fail_make_request);
2013
2014 return PTR_ERR_OR_ZERO(dir);
2015 }
2016
2017 late_initcall(fail_make_request_debugfs);
2018
2019 #else /* CONFIG_FAIL_MAKE_REQUEST */
2020
2021 static inline bool should_fail_request(struct hd_struct *part,
2022 unsigned int bytes)
2023 {
2024 return false;
2025 }
2026
2027 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2028
2029 /*
2030 * Remap block n of partition p to block n+start(p) of the disk.
2031 */
2032 static inline int blk_partition_remap(struct bio *bio)
2033 {
2034 struct hd_struct *p;
2035 int ret = 0;
2036
2037 /*
2038 * Zone reset does not include bi_size so bio_sectors() is always 0.
2039 * Include a test for the reset op code and perform the remap if needed.
2040 */
2041 if (!bio->bi_partno ||
2042 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2043 return 0;
2044
2045 rcu_read_lock();
2046 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2047 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2048 bio->bi_iter.bi_sector += p->start_sect;
2049 bio->bi_partno = 0;
2050 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2051 bio->bi_iter.bi_sector - p->start_sect);
2052 } else {
2053 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2054 ret = -EIO;
2055 }
2056 rcu_read_unlock();
2057
2058 return ret;
2059 }
2060
2061 /*
2062 * Check whether this bio extends beyond the end of the device.
2063 */
2064 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2065 {
2066 sector_t maxsector;
2067
2068 if (!nr_sectors)
2069 return 0;
2070
2071 /* Test device or partition size, when known. */
2072 maxsector = get_capacity(bio->bi_disk);
2073 if (maxsector) {
2074 sector_t sector = bio->bi_iter.bi_sector;
2075
2076 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2077 /*
2078 * This may well happen - the kernel calls bread()
2079 * without checking the size of the device, e.g., when
2080 * mounting a device.
2081 */
2082 handle_bad_sector(bio);
2083 return 1;
2084 }
2085 }
2086
2087 return 0;
2088 }
2089
2090 static noinline_for_stack bool
2091 generic_make_request_checks(struct bio *bio)
2092 {
2093 struct request_queue *q;
2094 int nr_sectors = bio_sectors(bio);
2095 blk_status_t status = BLK_STS_IOERR;
2096 char b[BDEVNAME_SIZE];
2097
2098 might_sleep();
2099
2100 if (bio_check_eod(bio, nr_sectors))
2101 goto end_io;
2102
2103 q = bio->bi_disk->queue;
2104 if (unlikely(!q)) {
2105 printk(KERN_ERR
2106 "generic_make_request: Trying to access "
2107 "nonexistent block-device %s (%Lu)\n",
2108 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2109 goto end_io;
2110 }
2111
2112 /*
2113 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2114 * if queue is not a request based queue.
2115 */
2116
2117 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2118 goto not_supported;
2119
2120 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2121 goto end_io;
2122
2123 if (blk_partition_remap(bio))
2124 goto end_io;
2125
2126 if (bio_check_eod(bio, nr_sectors))
2127 goto end_io;
2128
2129 /*
2130 * Filter flush bio's early so that make_request based
2131 * drivers without flush support don't have to worry
2132 * about them.
2133 */
2134 if (op_is_flush(bio->bi_opf) &&
2135 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2136 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2137 if (!nr_sectors) {
2138 status = BLK_STS_OK;
2139 goto end_io;
2140 }
2141 }
2142
2143 switch (bio_op(bio)) {
2144 case REQ_OP_DISCARD:
2145 if (!blk_queue_discard(q))
2146 goto not_supported;
2147 break;
2148 case REQ_OP_SECURE_ERASE:
2149 if (!blk_queue_secure_erase(q))
2150 goto not_supported;
2151 break;
2152 case REQ_OP_WRITE_SAME:
2153 if (!q->limits.max_write_same_sectors)
2154 goto not_supported;
2155 break;
2156 case REQ_OP_ZONE_REPORT:
2157 case REQ_OP_ZONE_RESET:
2158 if (!blk_queue_is_zoned(q))
2159 goto not_supported;
2160 break;
2161 case REQ_OP_WRITE_ZEROES:
2162 if (!q->limits.max_write_zeroes_sectors)
2163 goto not_supported;
2164 break;
2165 default:
2166 break;
2167 }
2168
2169 /*
2170 * Various block parts want %current->io_context and lazy ioc
2171 * allocation ends up trading a lot of pain for a small amount of
2172 * memory. Just allocate it upfront. This may fail and block
2173 * layer knows how to live with it.
2174 */
2175 create_io_context(GFP_ATOMIC, q->node);
2176
2177 if (!blkcg_bio_issue_check(q, bio))
2178 return false;
2179
2180 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2181 trace_block_bio_queue(q, bio);
2182 /* Now that enqueuing has been traced, we need to trace
2183 * completion as well.
2184 */
2185 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2186 }
2187 return true;
2188
2189 not_supported:
2190 status = BLK_STS_NOTSUPP;
2191 end_io:
2192 bio->bi_status = status;
2193 bio_endio(bio);
2194 return false;
2195 }
2196
2197 /**
2198 * generic_make_request - hand a buffer to its device driver for I/O
2199 * @bio: The bio describing the location in memory and on the device.
2200 *
2201 * generic_make_request() is used to make I/O requests of block
2202 * devices. It is passed a &struct bio, which describes the I/O that needs
2203 * to be done.
2204 *
2205 * generic_make_request() does not return any status. The
2206 * success/failure status of the request, along with notification of
2207 * completion, is delivered asynchronously through the bio->bi_end_io
2208 * function described (one day) else where.
2209 *
2210 * The caller of generic_make_request must make sure that bi_io_vec
2211 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2212 * set to describe the device address, and the
2213 * bi_end_io and optionally bi_private are set to describe how
2214 * completion notification should be signaled.
2215 *
2216 * generic_make_request and the drivers it calls may use bi_next if this
2217 * bio happens to be merged with someone else, and may resubmit the bio to
2218 * a lower device by calling into generic_make_request recursively, which
2219 * means the bio should NOT be touched after the call to ->make_request_fn.
2220 */
2221 blk_qc_t generic_make_request(struct bio *bio)
2222 {
2223 /*
2224 * bio_list_on_stack[0] contains bios submitted by the current
2225 * make_request_fn.
2226 * bio_list_on_stack[1] contains bios that were submitted before
2227 * the current make_request_fn, but that haven't been processed
2228 * yet.
2229 */
2230 struct bio_list bio_list_on_stack[2];
2231 blk_qc_t ret = BLK_QC_T_NONE;
2232
2233 if (!generic_make_request_checks(bio))
2234 goto out;
2235
2236 /*
2237 * We only want one ->make_request_fn to be active at a time, else
2238 * stack usage with stacked devices could be a problem. So use
2239 * current->bio_list to keep a list of requests submited by a
2240 * make_request_fn function. current->bio_list is also used as a
2241 * flag to say if generic_make_request is currently active in this
2242 * task or not. If it is NULL, then no make_request is active. If
2243 * it is non-NULL, then a make_request is active, and new requests
2244 * should be added at the tail
2245 */
2246 if (current->bio_list) {
2247 bio_list_add(&current->bio_list[0], bio);
2248 goto out;
2249 }
2250
2251 /* following loop may be a bit non-obvious, and so deserves some
2252 * explanation.
2253 * Before entering the loop, bio->bi_next is NULL (as all callers
2254 * ensure that) so we have a list with a single bio.
2255 * We pretend that we have just taken it off a longer list, so
2256 * we assign bio_list to a pointer to the bio_list_on_stack,
2257 * thus initialising the bio_list of new bios to be
2258 * added. ->make_request() may indeed add some more bios
2259 * through a recursive call to generic_make_request. If it
2260 * did, we find a non-NULL value in bio_list and re-enter the loop
2261 * from the top. In this case we really did just take the bio
2262 * of the top of the list (no pretending) and so remove it from
2263 * bio_list, and call into ->make_request() again.
2264 */
2265 BUG_ON(bio->bi_next);
2266 bio_list_init(&bio_list_on_stack[0]);
2267 current->bio_list = bio_list_on_stack;
2268 do {
2269 struct request_queue *q = bio->bi_disk->queue;
2270
2271 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2272 struct bio_list lower, same;
2273
2274 /* Create a fresh bio_list for all subordinate requests */
2275 bio_list_on_stack[1] = bio_list_on_stack[0];
2276 bio_list_init(&bio_list_on_stack[0]);
2277 ret = q->make_request_fn(q, bio);
2278
2279 blk_queue_exit(q);
2280
2281 /* sort new bios into those for a lower level
2282 * and those for the same level
2283 */
2284 bio_list_init(&lower);
2285 bio_list_init(&same);
2286 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2287 if (q == bio->bi_disk->queue)
2288 bio_list_add(&same, bio);
2289 else
2290 bio_list_add(&lower, bio);
2291 /* now assemble so we handle the lowest level first */
2292 bio_list_merge(&bio_list_on_stack[0], &lower);
2293 bio_list_merge(&bio_list_on_stack[0], &same);
2294 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2295 } else {
2296 if (unlikely(!blk_queue_dying(q) &&
2297 (bio->bi_opf & REQ_NOWAIT)))
2298 bio_wouldblock_error(bio);
2299 else
2300 bio_io_error(bio);
2301 }
2302 bio = bio_list_pop(&bio_list_on_stack[0]);
2303 } while (bio);
2304 current->bio_list = NULL; /* deactivate */
2305
2306 out:
2307 return ret;
2308 }
2309 EXPORT_SYMBOL(generic_make_request);
2310
2311 /**
2312 * direct_make_request - hand a buffer directly to its device driver for I/O
2313 * @bio: The bio describing the location in memory and on the device.
2314 *
2315 * This function behaves like generic_make_request(), but does not protect
2316 * against recursion. Must only be used if the called driver is known
2317 * to not call generic_make_request (or direct_make_request) again from
2318 * its make_request function. (Calling direct_make_request again from
2319 * a workqueue is perfectly fine as that doesn't recurse).
2320 */
2321 blk_qc_t direct_make_request(struct bio *bio)
2322 {
2323 struct request_queue *q = bio->bi_disk->queue;
2324 bool nowait = bio->bi_opf & REQ_NOWAIT;
2325 blk_qc_t ret;
2326
2327 if (!generic_make_request_checks(bio))
2328 return BLK_QC_T_NONE;
2329
2330 if (unlikely(blk_queue_enter(q, nowait))) {
2331 if (nowait && !blk_queue_dying(q))
2332 bio->bi_status = BLK_STS_AGAIN;
2333 else
2334 bio->bi_status = BLK_STS_IOERR;
2335 bio_endio(bio);
2336 return BLK_QC_T_NONE;
2337 }
2338
2339 ret = q->make_request_fn(q, bio);
2340 blk_queue_exit(q);
2341 return ret;
2342 }
2343 EXPORT_SYMBOL_GPL(direct_make_request);
2344
2345 /**
2346 * submit_bio - submit a bio to the block device layer for I/O
2347 * @bio: The &struct bio which describes the I/O
2348 *
2349 * submit_bio() is very similar in purpose to generic_make_request(), and
2350 * uses that function to do most of the work. Both are fairly rough
2351 * interfaces; @bio must be presetup and ready for I/O.
2352 *
2353 */
2354 blk_qc_t submit_bio(struct bio *bio)
2355 {
2356 /*
2357 * If it's a regular read/write or a barrier with data attached,
2358 * go through the normal accounting stuff before submission.
2359 */
2360 if (bio_has_data(bio)) {
2361 unsigned int count;
2362
2363 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2364 count = queue_logical_block_size(bio->bi_disk->queue);
2365 else
2366 count = bio_sectors(bio);
2367
2368 if (op_is_write(bio_op(bio))) {
2369 count_vm_events(PGPGOUT, count);
2370 } else {
2371 task_io_account_read(bio->bi_iter.bi_size);
2372 count_vm_events(PGPGIN, count);
2373 }
2374
2375 if (unlikely(block_dump)) {
2376 char b[BDEVNAME_SIZE];
2377 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2378 current->comm, task_pid_nr(current),
2379 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2380 (unsigned long long)bio->bi_iter.bi_sector,
2381 bio_devname(bio, b), count);
2382 }
2383 }
2384
2385 return generic_make_request(bio);
2386 }
2387 EXPORT_SYMBOL(submit_bio);
2388
2389 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2390 {
2391 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2392 return false;
2393
2394 if (current->plug)
2395 blk_flush_plug_list(current->plug, false);
2396 return q->poll_fn(q, cookie);
2397 }
2398 EXPORT_SYMBOL_GPL(blk_poll);
2399
2400 /**
2401 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2402 * for new the queue limits
2403 * @q: the queue
2404 * @rq: the request being checked
2405 *
2406 * Description:
2407 * @rq may have been made based on weaker limitations of upper-level queues
2408 * in request stacking drivers, and it may violate the limitation of @q.
2409 * Since the block layer and the underlying device driver trust @rq
2410 * after it is inserted to @q, it should be checked against @q before
2411 * the insertion using this generic function.
2412 *
2413 * Request stacking drivers like request-based dm may change the queue
2414 * limits when retrying requests on other queues. Those requests need
2415 * to be checked against the new queue limits again during dispatch.
2416 */
2417 static int blk_cloned_rq_check_limits(struct request_queue *q,
2418 struct request *rq)
2419 {
2420 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2421 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2422 return -EIO;
2423 }
2424
2425 /*
2426 * queue's settings related to segment counting like q->bounce_pfn
2427 * may differ from that of other stacking queues.
2428 * Recalculate it to check the request correctly on this queue's
2429 * limitation.
2430 */
2431 blk_recalc_rq_segments(rq);
2432 if (rq->nr_phys_segments > queue_max_segments(q)) {
2433 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2434 return -EIO;
2435 }
2436
2437 return 0;
2438 }
2439
2440 /**
2441 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2442 * @q: the queue to submit the request
2443 * @rq: the request being queued
2444 */
2445 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2446 {
2447 unsigned long flags;
2448 int where = ELEVATOR_INSERT_BACK;
2449
2450 if (blk_cloned_rq_check_limits(q, rq))
2451 return BLK_STS_IOERR;
2452
2453 if (rq->rq_disk &&
2454 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2455 return BLK_STS_IOERR;
2456
2457 if (q->mq_ops) {
2458 if (blk_queue_io_stat(q))
2459 blk_account_io_start(rq, true);
2460 /*
2461 * Since we have a scheduler attached on the top device,
2462 * bypass a potential scheduler on the bottom device for
2463 * insert.
2464 */
2465 blk_mq_request_bypass_insert(rq, true);
2466 return BLK_STS_OK;
2467 }
2468
2469 spin_lock_irqsave(q->queue_lock, flags);
2470 if (unlikely(blk_queue_dying(q))) {
2471 spin_unlock_irqrestore(q->queue_lock, flags);
2472 return BLK_STS_IOERR;
2473 }
2474
2475 /*
2476 * Submitting request must be dequeued before calling this function
2477 * because it will be linked to another request_queue
2478 */
2479 BUG_ON(blk_queued_rq(rq));
2480
2481 if (op_is_flush(rq->cmd_flags))
2482 where = ELEVATOR_INSERT_FLUSH;
2483
2484 add_acct_request(q, rq, where);
2485 if (where == ELEVATOR_INSERT_FLUSH)
2486 __blk_run_queue(q);
2487 spin_unlock_irqrestore(q->queue_lock, flags);
2488
2489 return BLK_STS_OK;
2490 }
2491 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2492
2493 /**
2494 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2495 * @rq: request to examine
2496 *
2497 * Description:
2498 * A request could be merge of IOs which require different failure
2499 * handling. This function determines the number of bytes which
2500 * can be failed from the beginning of the request without
2501 * crossing into area which need to be retried further.
2502 *
2503 * Return:
2504 * The number of bytes to fail.
2505 */
2506 unsigned int blk_rq_err_bytes(const struct request *rq)
2507 {
2508 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2509 unsigned int bytes = 0;
2510 struct bio *bio;
2511
2512 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2513 return blk_rq_bytes(rq);
2514
2515 /*
2516 * Currently the only 'mixing' which can happen is between
2517 * different fastfail types. We can safely fail portions
2518 * which have all the failfast bits that the first one has -
2519 * the ones which are at least as eager to fail as the first
2520 * one.
2521 */
2522 for (bio = rq->bio; bio; bio = bio->bi_next) {
2523 if ((bio->bi_opf & ff) != ff)
2524 break;
2525 bytes += bio->bi_iter.bi_size;
2526 }
2527
2528 /* this could lead to infinite loop */
2529 BUG_ON(blk_rq_bytes(rq) && !bytes);
2530 return bytes;
2531 }
2532 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2533
2534 void blk_account_io_completion(struct request *req, unsigned int bytes)
2535 {
2536 if (blk_do_io_stat(req)) {
2537 const int rw = rq_data_dir(req);
2538 struct hd_struct *part;
2539 int cpu;
2540
2541 cpu = part_stat_lock();
2542 part = req->part;
2543 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2544 part_stat_unlock();
2545 }
2546 }
2547
2548 void blk_account_io_done(struct request *req)
2549 {
2550 /*
2551 * Account IO completion. flush_rq isn't accounted as a
2552 * normal IO on queueing nor completion. Accounting the
2553 * containing request is enough.
2554 */
2555 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2556 unsigned long duration = jiffies - req->start_time;
2557 const int rw = rq_data_dir(req);
2558 struct hd_struct *part;
2559 int cpu;
2560
2561 cpu = part_stat_lock();
2562 part = req->part;
2563
2564 part_stat_inc(cpu, part, ios[rw]);
2565 part_stat_add(cpu, part, ticks[rw], duration);
2566 part_round_stats(req->q, cpu, part);
2567 part_dec_in_flight(req->q, part, rw);
2568
2569 hd_struct_put(part);
2570 part_stat_unlock();
2571 }
2572 }
2573
2574 #ifdef CONFIG_PM
2575 /*
2576 * Don't process normal requests when queue is suspended
2577 * or in the process of suspending/resuming
2578 */
2579 static bool blk_pm_allow_request(struct request *rq)
2580 {
2581 switch (rq->q->rpm_status) {
2582 case RPM_RESUMING:
2583 case RPM_SUSPENDING:
2584 return rq->rq_flags & RQF_PM;
2585 case RPM_SUSPENDED:
2586 return false;
2587 }
2588
2589 return true;
2590 }
2591 #else
2592 static bool blk_pm_allow_request(struct request *rq)
2593 {
2594 return true;
2595 }
2596 #endif
2597
2598 void blk_account_io_start(struct request *rq, bool new_io)
2599 {
2600 struct hd_struct *part;
2601 int rw = rq_data_dir(rq);
2602 int cpu;
2603
2604 if (!blk_do_io_stat(rq))
2605 return;
2606
2607 cpu = part_stat_lock();
2608
2609 if (!new_io) {
2610 part = rq->part;
2611 part_stat_inc(cpu, part, merges[rw]);
2612 } else {
2613 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2614 if (!hd_struct_try_get(part)) {
2615 /*
2616 * The partition is already being removed,
2617 * the request will be accounted on the disk only
2618 *
2619 * We take a reference on disk->part0 although that
2620 * partition will never be deleted, so we can treat
2621 * it as any other partition.
2622 */
2623 part = &rq->rq_disk->part0;
2624 hd_struct_get(part);
2625 }
2626 part_round_stats(rq->q, cpu, part);
2627 part_inc_in_flight(rq->q, part, rw);
2628 rq->part = part;
2629 }
2630
2631 part_stat_unlock();
2632 }
2633
2634 static struct request *elv_next_request(struct request_queue *q)
2635 {
2636 struct request *rq;
2637 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2638
2639 WARN_ON_ONCE(q->mq_ops);
2640
2641 while (1) {
2642 list_for_each_entry(rq, &q->queue_head, queuelist) {
2643 if (blk_pm_allow_request(rq))
2644 return rq;
2645
2646 if (rq->rq_flags & RQF_SOFTBARRIER)
2647 break;
2648 }
2649
2650 /*
2651 * Flush request is running and flush request isn't queueable
2652 * in the drive, we can hold the queue till flush request is
2653 * finished. Even we don't do this, driver can't dispatch next
2654 * requests and will requeue them. And this can improve
2655 * throughput too. For example, we have request flush1, write1,
2656 * flush 2. flush1 is dispatched, then queue is hold, write1
2657 * isn't inserted to queue. After flush1 is finished, flush2
2658 * will be dispatched. Since disk cache is already clean,
2659 * flush2 will be finished very soon, so looks like flush2 is
2660 * folded to flush1.
2661 * Since the queue is hold, a flag is set to indicate the queue
2662 * should be restarted later. Please see flush_end_io() for
2663 * details.
2664 */
2665 if (fq->flush_pending_idx != fq->flush_running_idx &&
2666 !queue_flush_queueable(q)) {
2667 fq->flush_queue_delayed = 1;
2668 return NULL;
2669 }
2670 if (unlikely(blk_queue_bypass(q)) ||
2671 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2672 return NULL;
2673 }
2674 }
2675
2676 /**
2677 * blk_peek_request - peek at the top of a request queue
2678 * @q: request queue to peek at
2679 *
2680 * Description:
2681 * Return the request at the top of @q. The returned request
2682 * should be started using blk_start_request() before LLD starts
2683 * processing it.
2684 *
2685 * Return:
2686 * Pointer to the request at the top of @q if available. Null
2687 * otherwise.
2688 */
2689 struct request *blk_peek_request(struct request_queue *q)
2690 {
2691 struct request *rq;
2692 int ret;
2693
2694 lockdep_assert_held(q->queue_lock);
2695 WARN_ON_ONCE(q->mq_ops);
2696
2697 while ((rq = elv_next_request(q)) != NULL) {
2698 if (!(rq->rq_flags & RQF_STARTED)) {
2699 /*
2700 * This is the first time the device driver
2701 * sees this request (possibly after
2702 * requeueing). Notify IO scheduler.
2703 */
2704 if (rq->rq_flags & RQF_SORTED)
2705 elv_activate_rq(q, rq);
2706
2707 /*
2708 * just mark as started even if we don't start
2709 * it, a request that has been delayed should
2710 * not be passed by new incoming requests
2711 */
2712 rq->rq_flags |= RQF_STARTED;
2713 trace_block_rq_issue(q, rq);
2714 }
2715
2716 if (!q->boundary_rq || q->boundary_rq == rq) {
2717 q->end_sector = rq_end_sector(rq);
2718 q->boundary_rq = NULL;
2719 }
2720
2721 if (rq->rq_flags & RQF_DONTPREP)
2722 break;
2723
2724 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2725 /*
2726 * make sure space for the drain appears we
2727 * know we can do this because max_hw_segments
2728 * has been adjusted to be one fewer than the
2729 * device can handle
2730 */
2731 rq->nr_phys_segments++;
2732 }
2733
2734 if (!q->prep_rq_fn)
2735 break;
2736
2737 ret = q->prep_rq_fn(q, rq);
2738 if (ret == BLKPREP_OK) {
2739 break;
2740 } else if (ret == BLKPREP_DEFER) {
2741 /*
2742 * the request may have been (partially) prepped.
2743 * we need to keep this request in the front to
2744 * avoid resource deadlock. RQF_STARTED will
2745 * prevent other fs requests from passing this one.
2746 */
2747 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2748 !(rq->rq_flags & RQF_DONTPREP)) {
2749 /*
2750 * remove the space for the drain we added
2751 * so that we don't add it again
2752 */
2753 --rq->nr_phys_segments;
2754 }
2755
2756 rq = NULL;
2757 break;
2758 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2759 rq->rq_flags |= RQF_QUIET;
2760 /*
2761 * Mark this request as started so we don't trigger
2762 * any debug logic in the end I/O path.
2763 */
2764 blk_start_request(rq);
2765 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2766 BLK_STS_TARGET : BLK_STS_IOERR);
2767 } else {
2768 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2769 break;
2770 }
2771 }
2772
2773 return rq;
2774 }
2775 EXPORT_SYMBOL(blk_peek_request);
2776
2777 static void blk_dequeue_request(struct request *rq)
2778 {
2779 struct request_queue *q = rq->q;
2780
2781 BUG_ON(list_empty(&rq->queuelist));
2782 BUG_ON(ELV_ON_HASH(rq));
2783
2784 list_del_init(&rq->queuelist);
2785
2786 /*
2787 * the time frame between a request being removed from the lists
2788 * and to it is freed is accounted as io that is in progress at
2789 * the driver side.
2790 */
2791 if (blk_account_rq(rq)) {
2792 q->in_flight[rq_is_sync(rq)]++;
2793 set_io_start_time_ns(rq);
2794 }
2795 }
2796
2797 /**
2798 * blk_start_request - start request processing on the driver
2799 * @req: request to dequeue
2800 *
2801 * Description:
2802 * Dequeue @req and start timeout timer on it. This hands off the
2803 * request to the driver.
2804 */
2805 void blk_start_request(struct request *req)
2806 {
2807 lockdep_assert_held(req->q->queue_lock);
2808 WARN_ON_ONCE(req->q->mq_ops);
2809
2810 blk_dequeue_request(req);
2811
2812 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2813 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2814 req->rq_flags |= RQF_STATS;
2815 wbt_issue(req->q->rq_wb, &req->issue_stat);
2816 }
2817
2818 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2819 blk_add_timer(req);
2820 }
2821 EXPORT_SYMBOL(blk_start_request);
2822
2823 /**
2824 * blk_fetch_request - fetch a request from a request queue
2825 * @q: request queue to fetch a request from
2826 *
2827 * Description:
2828 * Return the request at the top of @q. The request is started on
2829 * return and LLD can start processing it immediately.
2830 *
2831 * Return:
2832 * Pointer to the request at the top of @q if available. Null
2833 * otherwise.
2834 */
2835 struct request *blk_fetch_request(struct request_queue *q)
2836 {
2837 struct request *rq;
2838
2839 lockdep_assert_held(q->queue_lock);
2840 WARN_ON_ONCE(q->mq_ops);
2841
2842 rq = blk_peek_request(q);
2843 if (rq)
2844 blk_start_request(rq);
2845 return rq;
2846 }
2847 EXPORT_SYMBOL(blk_fetch_request);
2848
2849 /*
2850 * Steal bios from a request and add them to a bio list.
2851 * The request must not have been partially completed before.
2852 */
2853 void blk_steal_bios(struct bio_list *list, struct request *rq)
2854 {
2855 if (rq->bio) {
2856 if (list->tail)
2857 list->tail->bi_next = rq->bio;
2858 else
2859 list->head = rq->bio;
2860 list->tail = rq->biotail;
2861
2862 rq->bio = NULL;
2863 rq->biotail = NULL;
2864 }
2865
2866 rq->__data_len = 0;
2867 }
2868 EXPORT_SYMBOL_GPL(blk_steal_bios);
2869
2870 /**
2871 * blk_update_request - Special helper function for request stacking drivers
2872 * @req: the request being processed
2873 * @error: block status code
2874 * @nr_bytes: number of bytes to complete @req
2875 *
2876 * Description:
2877 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2878 * the request structure even if @req doesn't have leftover.
2879 * If @req has leftover, sets it up for the next range of segments.
2880 *
2881 * This special helper function is only for request stacking drivers
2882 * (e.g. request-based dm) so that they can handle partial completion.
2883 * Actual device drivers should use blk_end_request instead.
2884 *
2885 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2886 * %false return from this function.
2887 *
2888 * Return:
2889 * %false - this request doesn't have any more data
2890 * %true - this request has more data
2891 **/
2892 bool blk_update_request(struct request *req, blk_status_t error,
2893 unsigned int nr_bytes)
2894 {
2895 int total_bytes;
2896
2897 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2898
2899 if (!req->bio)
2900 return false;
2901
2902 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2903 !(req->rq_flags & RQF_QUIET)))
2904 print_req_error(req, error);
2905
2906 blk_account_io_completion(req, nr_bytes);
2907
2908 total_bytes = 0;
2909 while (req->bio) {
2910 struct bio *bio = req->bio;
2911 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2912
2913 if (bio_bytes == bio->bi_iter.bi_size)
2914 req->bio = bio->bi_next;
2915
2916 /* Completion has already been traced */
2917 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2918 req_bio_endio(req, bio, bio_bytes, error);
2919
2920 total_bytes += bio_bytes;
2921 nr_bytes -= bio_bytes;
2922
2923 if (!nr_bytes)
2924 break;
2925 }
2926
2927 /*
2928 * completely done
2929 */
2930 if (!req->bio) {
2931 /*
2932 * Reset counters so that the request stacking driver
2933 * can find how many bytes remain in the request
2934 * later.
2935 */
2936 req->__data_len = 0;
2937 return false;
2938 }
2939
2940 req->__data_len -= total_bytes;
2941
2942 /* update sector only for requests with clear definition of sector */
2943 if (!blk_rq_is_passthrough(req))
2944 req->__sector += total_bytes >> 9;
2945
2946 /* mixed attributes always follow the first bio */
2947 if (req->rq_flags & RQF_MIXED_MERGE) {
2948 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2949 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2950 }
2951
2952 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2953 /*
2954 * If total number of sectors is less than the first segment
2955 * size, something has gone terribly wrong.
2956 */
2957 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2958 blk_dump_rq_flags(req, "request botched");
2959 req->__data_len = blk_rq_cur_bytes(req);
2960 }
2961
2962 /* recalculate the number of segments */
2963 blk_recalc_rq_segments(req);
2964 }
2965
2966 return true;
2967 }
2968 EXPORT_SYMBOL_GPL(blk_update_request);
2969
2970 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2971 unsigned int nr_bytes,
2972 unsigned int bidi_bytes)
2973 {
2974 if (blk_update_request(rq, error, nr_bytes))
2975 return true;
2976
2977 /* Bidi request must be completed as a whole */
2978 if (unlikely(blk_bidi_rq(rq)) &&
2979 blk_update_request(rq->next_rq, error, bidi_bytes))
2980 return true;
2981
2982 if (blk_queue_add_random(rq->q))
2983 add_disk_randomness(rq->rq_disk);
2984
2985 return false;
2986 }
2987
2988 /**
2989 * blk_unprep_request - unprepare a request
2990 * @req: the request
2991 *
2992 * This function makes a request ready for complete resubmission (or
2993 * completion). It happens only after all error handling is complete,
2994 * so represents the appropriate moment to deallocate any resources
2995 * that were allocated to the request in the prep_rq_fn. The queue
2996 * lock is held when calling this.
2997 */
2998 void blk_unprep_request(struct request *req)
2999 {
3000 struct request_queue *q = req->q;
3001
3002 req->rq_flags &= ~RQF_DONTPREP;
3003 if (q->unprep_rq_fn)
3004 q->unprep_rq_fn(q, req);
3005 }
3006 EXPORT_SYMBOL_GPL(blk_unprep_request);
3007
3008 void blk_finish_request(struct request *req, blk_status_t error)
3009 {
3010 struct request_queue *q = req->q;
3011
3012 lockdep_assert_held(req->q->queue_lock);
3013 WARN_ON_ONCE(q->mq_ops);
3014
3015 if (req->rq_flags & RQF_STATS)
3016 blk_stat_add(req);
3017
3018 if (req->rq_flags & RQF_QUEUED)
3019 blk_queue_end_tag(q, req);
3020
3021 BUG_ON(blk_queued_rq(req));
3022
3023 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3024 laptop_io_completion(req->q->backing_dev_info);
3025
3026 blk_delete_timer(req);
3027
3028 if (req->rq_flags & RQF_DONTPREP)
3029 blk_unprep_request(req);
3030
3031 blk_account_io_done(req);
3032
3033 if (req->end_io) {
3034 wbt_done(req->q->rq_wb, &req->issue_stat);
3035 req->end_io(req, error);
3036 } else {
3037 if (blk_bidi_rq(req))
3038 __blk_put_request(req->next_rq->q, req->next_rq);
3039
3040 __blk_put_request(q, req);
3041 }
3042 }
3043 EXPORT_SYMBOL(blk_finish_request);
3044
3045 /**
3046 * blk_end_bidi_request - Complete a bidi request
3047 * @rq: the request to complete
3048 * @error: block status code
3049 * @nr_bytes: number of bytes to complete @rq
3050 * @bidi_bytes: number of bytes to complete @rq->next_rq
3051 *
3052 * Description:
3053 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3054 * Drivers that supports bidi can safely call this member for any
3055 * type of request, bidi or uni. In the later case @bidi_bytes is
3056 * just ignored.
3057 *
3058 * Return:
3059 * %false - we are done with this request
3060 * %true - still buffers pending for this request
3061 **/
3062 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3063 unsigned int nr_bytes, unsigned int bidi_bytes)
3064 {
3065 struct request_queue *q = rq->q;
3066 unsigned long flags;
3067
3068 WARN_ON_ONCE(q->mq_ops);
3069
3070 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3071 return true;
3072
3073 spin_lock_irqsave(q->queue_lock, flags);
3074 blk_finish_request(rq, error);
3075 spin_unlock_irqrestore(q->queue_lock, flags);
3076
3077 return false;
3078 }
3079
3080 /**
3081 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3082 * @rq: the request to complete
3083 * @error: block status code
3084 * @nr_bytes: number of bytes to complete @rq
3085 * @bidi_bytes: number of bytes to complete @rq->next_rq
3086 *
3087 * Description:
3088 * Identical to blk_end_bidi_request() except that queue lock is
3089 * assumed to be locked on entry and remains so on return.
3090 *
3091 * Return:
3092 * %false - we are done with this request
3093 * %true - still buffers pending for this request
3094 **/
3095 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3096 unsigned int nr_bytes, unsigned int bidi_bytes)
3097 {
3098 lockdep_assert_held(rq->q->queue_lock);
3099 WARN_ON_ONCE(rq->q->mq_ops);
3100
3101 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3102 return true;
3103
3104 blk_finish_request(rq, error);
3105
3106 return false;
3107 }
3108
3109 /**
3110 * blk_end_request - Helper function for drivers to complete the request.
3111 * @rq: the request being processed
3112 * @error: block status code
3113 * @nr_bytes: number of bytes to complete
3114 *
3115 * Description:
3116 * Ends I/O on a number of bytes attached to @rq.
3117 * If @rq has leftover, sets it up for the next range of segments.
3118 *
3119 * Return:
3120 * %false - we are done with this request
3121 * %true - still buffers pending for this request
3122 **/
3123 bool blk_end_request(struct request *rq, blk_status_t error,
3124 unsigned int nr_bytes)
3125 {
3126 WARN_ON_ONCE(rq->q->mq_ops);
3127 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3128 }
3129 EXPORT_SYMBOL(blk_end_request);
3130
3131 /**
3132 * blk_end_request_all - Helper function for drives to finish the request.
3133 * @rq: the request to finish
3134 * @error: block status code
3135 *
3136 * Description:
3137 * Completely finish @rq.
3138 */
3139 void blk_end_request_all(struct request *rq, blk_status_t error)
3140 {
3141 bool pending;
3142 unsigned int bidi_bytes = 0;
3143
3144 if (unlikely(blk_bidi_rq(rq)))
3145 bidi_bytes = blk_rq_bytes(rq->next_rq);
3146
3147 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3148 BUG_ON(pending);
3149 }
3150 EXPORT_SYMBOL(blk_end_request_all);
3151
3152 /**
3153 * __blk_end_request - Helper function for drivers to complete the request.
3154 * @rq: the request being processed
3155 * @error: block status code
3156 * @nr_bytes: number of bytes to complete
3157 *
3158 * Description:
3159 * Must be called with queue lock held unlike blk_end_request().
3160 *
3161 * Return:
3162 * %false - we are done with this request
3163 * %true - still buffers pending for this request
3164 **/
3165 bool __blk_end_request(struct request *rq, blk_status_t error,
3166 unsigned int nr_bytes)
3167 {
3168 lockdep_assert_held(rq->q->queue_lock);
3169 WARN_ON_ONCE(rq->q->mq_ops);
3170
3171 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3172 }
3173 EXPORT_SYMBOL(__blk_end_request);
3174
3175 /**
3176 * __blk_end_request_all - Helper function for drives to finish the request.
3177 * @rq: the request to finish
3178 * @error: block status code
3179 *
3180 * Description:
3181 * Completely finish @rq. Must be called with queue lock held.
3182 */
3183 void __blk_end_request_all(struct request *rq, blk_status_t error)
3184 {
3185 bool pending;
3186 unsigned int bidi_bytes = 0;
3187
3188 lockdep_assert_held(rq->q->queue_lock);
3189 WARN_ON_ONCE(rq->q->mq_ops);
3190
3191 if (unlikely(blk_bidi_rq(rq)))
3192 bidi_bytes = blk_rq_bytes(rq->next_rq);
3193
3194 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3195 BUG_ON(pending);
3196 }
3197 EXPORT_SYMBOL(__blk_end_request_all);
3198
3199 /**
3200 * __blk_end_request_cur - Helper function to finish the current request chunk.
3201 * @rq: the request to finish the current chunk for
3202 * @error: block status code
3203 *
3204 * Description:
3205 * Complete the current consecutively mapped chunk from @rq. Must
3206 * be called with queue lock held.
3207 *
3208 * Return:
3209 * %false - we are done with this request
3210 * %true - still buffers pending for this request
3211 */
3212 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3213 {
3214 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3215 }
3216 EXPORT_SYMBOL(__blk_end_request_cur);
3217
3218 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3219 struct bio *bio)
3220 {
3221 if (bio_has_data(bio))
3222 rq->nr_phys_segments = bio_phys_segments(q, bio);
3223
3224 rq->__data_len = bio->bi_iter.bi_size;
3225 rq->bio = rq->biotail = bio;
3226
3227 if (bio->bi_disk)
3228 rq->rq_disk = bio->bi_disk;
3229 }
3230
3231 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3232 /**
3233 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3234 * @rq: the request to be flushed
3235 *
3236 * Description:
3237 * Flush all pages in @rq.
3238 */
3239 void rq_flush_dcache_pages(struct request *rq)
3240 {
3241 struct req_iterator iter;
3242 struct bio_vec bvec;
3243
3244 rq_for_each_segment(bvec, rq, iter)
3245 flush_dcache_page(bvec.bv_page);
3246 }
3247 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3248 #endif
3249
3250 /**
3251 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3252 * @q : the queue of the device being checked
3253 *
3254 * Description:
3255 * Check if underlying low-level drivers of a device are busy.
3256 * If the drivers want to export their busy state, they must set own
3257 * exporting function using blk_queue_lld_busy() first.
3258 *
3259 * Basically, this function is used only by request stacking drivers
3260 * to stop dispatching requests to underlying devices when underlying
3261 * devices are busy. This behavior helps more I/O merging on the queue
3262 * of the request stacking driver and prevents I/O throughput regression
3263 * on burst I/O load.
3264 *
3265 * Return:
3266 * 0 - Not busy (The request stacking driver should dispatch request)
3267 * 1 - Busy (The request stacking driver should stop dispatching request)
3268 */
3269 int blk_lld_busy(struct request_queue *q)
3270 {
3271 if (q->lld_busy_fn)
3272 return q->lld_busy_fn(q);
3273
3274 return 0;
3275 }
3276 EXPORT_SYMBOL_GPL(blk_lld_busy);
3277
3278 /**
3279 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3280 * @rq: the clone request to be cleaned up
3281 *
3282 * Description:
3283 * Free all bios in @rq for a cloned request.
3284 */
3285 void blk_rq_unprep_clone(struct request *rq)
3286 {
3287 struct bio *bio;
3288
3289 while ((bio = rq->bio) != NULL) {
3290 rq->bio = bio->bi_next;
3291
3292 bio_put(bio);
3293 }
3294 }
3295 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3296
3297 /*
3298 * Copy attributes of the original request to the clone request.
3299 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3300 */
3301 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3302 {
3303 dst->cpu = src->cpu;
3304 dst->__sector = blk_rq_pos(src);
3305 dst->__data_len = blk_rq_bytes(src);
3306 dst->nr_phys_segments = src->nr_phys_segments;
3307 dst->ioprio = src->ioprio;
3308 dst->extra_len = src->extra_len;
3309 }
3310
3311 /**
3312 * blk_rq_prep_clone - Helper function to setup clone request
3313 * @rq: the request to be setup
3314 * @rq_src: original request to be cloned
3315 * @bs: bio_set that bios for clone are allocated from
3316 * @gfp_mask: memory allocation mask for bio
3317 * @bio_ctr: setup function to be called for each clone bio.
3318 * Returns %0 for success, non %0 for failure.
3319 * @data: private data to be passed to @bio_ctr
3320 *
3321 * Description:
3322 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3323 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3324 * are not copied, and copying such parts is the caller's responsibility.
3325 * Also, pages which the original bios are pointing to are not copied
3326 * and the cloned bios just point same pages.
3327 * So cloned bios must be completed before original bios, which means
3328 * the caller must complete @rq before @rq_src.
3329 */
3330 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3331 struct bio_set *bs, gfp_t gfp_mask,
3332 int (*bio_ctr)(struct bio *, struct bio *, void *),
3333 void *data)
3334 {
3335 struct bio *bio, *bio_src;
3336
3337 if (!bs)
3338 bs = fs_bio_set;
3339
3340 __rq_for_each_bio(bio_src, rq_src) {
3341 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3342 if (!bio)
3343 goto free_and_out;
3344
3345 if (bio_ctr && bio_ctr(bio, bio_src, data))
3346 goto free_and_out;
3347
3348 if (rq->bio) {
3349 rq->biotail->bi_next = bio;
3350 rq->biotail = bio;
3351 } else
3352 rq->bio = rq->biotail = bio;
3353 }
3354
3355 __blk_rq_prep_clone(rq, rq_src);
3356
3357 return 0;
3358
3359 free_and_out:
3360 if (bio)
3361 bio_put(bio);
3362 blk_rq_unprep_clone(rq);
3363
3364 return -ENOMEM;
3365 }
3366 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3367
3368 int kblockd_schedule_work(struct work_struct *work)
3369 {
3370 return queue_work(kblockd_workqueue, work);
3371 }
3372 EXPORT_SYMBOL(kblockd_schedule_work);
3373
3374 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3375 {
3376 return queue_work_on(cpu, kblockd_workqueue, work);
3377 }
3378 EXPORT_SYMBOL(kblockd_schedule_work_on);
3379
3380 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3381 unsigned long delay)
3382 {
3383 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3384 }
3385 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3386
3387 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3388 unsigned long delay)
3389 {
3390 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3391 }
3392 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3393
3394 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3395 unsigned long delay)
3396 {
3397 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3398 }
3399 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3400
3401 /**
3402 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3403 * @plug: The &struct blk_plug that needs to be initialized
3404 *
3405 * Description:
3406 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3407 * pending I/O should the task end up blocking between blk_start_plug() and
3408 * blk_finish_plug(). This is important from a performance perspective, but
3409 * also ensures that we don't deadlock. For instance, if the task is blocking
3410 * for a memory allocation, memory reclaim could end up wanting to free a
3411 * page belonging to that request that is currently residing in our private
3412 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3413 * this kind of deadlock.
3414 */
3415 void blk_start_plug(struct blk_plug *plug)
3416 {
3417 struct task_struct *tsk = current;
3418
3419 /*
3420 * If this is a nested plug, don't actually assign it.
3421 */
3422 if (tsk->plug)
3423 return;
3424
3425 INIT_LIST_HEAD(&plug->list);
3426 INIT_LIST_HEAD(&plug->mq_list);
3427 INIT_LIST_HEAD(&plug->cb_list);
3428 /*
3429 * Store ordering should not be needed here, since a potential
3430 * preempt will imply a full memory barrier
3431 */
3432 tsk->plug = plug;
3433 }
3434 EXPORT_SYMBOL(blk_start_plug);
3435
3436 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3437 {
3438 struct request *rqa = container_of(a, struct request, queuelist);
3439 struct request *rqb = container_of(b, struct request, queuelist);
3440
3441 return !(rqa->q < rqb->q ||
3442 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3443 }
3444
3445 /*
3446 * If 'from_schedule' is true, then postpone the dispatch of requests
3447 * until a safe kblockd context. We due this to avoid accidental big
3448 * additional stack usage in driver dispatch, in places where the originally
3449 * plugger did not intend it.
3450 */
3451 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3452 bool from_schedule)
3453 __releases(q->queue_lock)
3454 {
3455 lockdep_assert_held(q->queue_lock);
3456
3457 trace_block_unplug(q, depth, !from_schedule);
3458
3459 if (from_schedule)
3460 blk_run_queue_async(q);
3461 else
3462 __blk_run_queue(q);
3463 spin_unlock(q->queue_lock);
3464 }
3465
3466 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3467 {
3468 LIST_HEAD(callbacks);
3469
3470 while (!list_empty(&plug->cb_list)) {
3471 list_splice_init(&plug->cb_list, &callbacks);
3472
3473 while (!list_empty(&callbacks)) {
3474 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3475 struct blk_plug_cb,
3476 list);
3477 list_del(&cb->list);
3478 cb->callback(cb, from_schedule);
3479 }
3480 }
3481 }
3482
3483 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3484 int size)
3485 {
3486 struct blk_plug *plug = current->plug;
3487 struct blk_plug_cb *cb;
3488
3489 if (!plug)
3490 return NULL;
3491
3492 list_for_each_entry(cb, &plug->cb_list, list)
3493 if (cb->callback == unplug && cb->data == data)
3494 return cb;
3495
3496 /* Not currently on the callback list */
3497 BUG_ON(size < sizeof(*cb));
3498 cb = kzalloc(size, GFP_ATOMIC);
3499 if (cb) {
3500 cb->data = data;
3501 cb->callback = unplug;
3502 list_add(&cb->list, &plug->cb_list);
3503 }
3504 return cb;
3505 }
3506 EXPORT_SYMBOL(blk_check_plugged);
3507
3508 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3509 {
3510 struct request_queue *q;
3511 unsigned long flags;
3512 struct request *rq;
3513 LIST_HEAD(list);
3514 unsigned int depth;
3515
3516 flush_plug_callbacks(plug, from_schedule);
3517
3518 if (!list_empty(&plug->mq_list))
3519 blk_mq_flush_plug_list(plug, from_schedule);
3520
3521 if (list_empty(&plug->list))
3522 return;
3523
3524 list_splice_init(&plug->list, &list);
3525
3526 list_sort(NULL, &list, plug_rq_cmp);
3527
3528 q = NULL;
3529 depth = 0;
3530
3531 /*
3532 * Save and disable interrupts here, to avoid doing it for every
3533 * queue lock we have to take.
3534 */
3535 local_irq_save(flags);
3536 while (!list_empty(&list)) {
3537 rq = list_entry_rq(list.next);
3538 list_del_init(&rq->queuelist);
3539 BUG_ON(!rq->q);
3540 if (rq->q != q) {
3541 /*
3542 * This drops the queue lock
3543 */
3544 if (q)
3545 queue_unplugged(q, depth, from_schedule);
3546 q = rq->q;
3547 depth = 0;
3548 spin_lock(q->queue_lock);
3549 }
3550
3551 /*
3552 * Short-circuit if @q is dead
3553 */
3554 if (unlikely(blk_queue_dying(q))) {
3555 __blk_end_request_all(rq, BLK_STS_IOERR);
3556 continue;
3557 }
3558
3559 /*
3560 * rq is already accounted, so use raw insert
3561 */
3562 if (op_is_flush(rq->cmd_flags))
3563 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3564 else
3565 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3566
3567 depth++;
3568 }
3569
3570 /*
3571 * This drops the queue lock
3572 */
3573 if (q)
3574 queue_unplugged(q, depth, from_schedule);
3575
3576 local_irq_restore(flags);
3577 }
3578
3579 void blk_finish_plug(struct blk_plug *plug)
3580 {
3581 if (plug != current->plug)
3582 return;
3583 blk_flush_plug_list(plug, false);
3584
3585 current->plug = NULL;
3586 }
3587 EXPORT_SYMBOL(blk_finish_plug);
3588
3589 #ifdef CONFIG_PM
3590 /**
3591 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3592 * @q: the queue of the device
3593 * @dev: the device the queue belongs to
3594 *
3595 * Description:
3596 * Initialize runtime-PM-related fields for @q and start auto suspend for
3597 * @dev. Drivers that want to take advantage of request-based runtime PM
3598 * should call this function after @dev has been initialized, and its
3599 * request queue @q has been allocated, and runtime PM for it can not happen
3600 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3601 * cases, driver should call this function before any I/O has taken place.
3602 *
3603 * This function takes care of setting up using auto suspend for the device,
3604 * the autosuspend delay is set to -1 to make runtime suspend impossible
3605 * until an updated value is either set by user or by driver. Drivers do
3606 * not need to touch other autosuspend settings.
3607 *
3608 * The block layer runtime PM is request based, so only works for drivers
3609 * that use request as their IO unit instead of those directly use bio's.
3610 */
3611 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3612 {
3613 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3614 if (q->mq_ops)
3615 return;
3616
3617 q->dev = dev;
3618 q->rpm_status = RPM_ACTIVE;
3619 pm_runtime_set_autosuspend_delay(q->dev, -1);
3620 pm_runtime_use_autosuspend(q->dev);
3621 }
3622 EXPORT_SYMBOL(blk_pm_runtime_init);
3623
3624 /**
3625 * blk_pre_runtime_suspend - Pre runtime suspend check
3626 * @q: the queue of the device
3627 *
3628 * Description:
3629 * This function will check if runtime suspend is allowed for the device
3630 * by examining if there are any requests pending in the queue. If there
3631 * are requests pending, the device can not be runtime suspended; otherwise,
3632 * the queue's status will be updated to SUSPENDING and the driver can
3633 * proceed to suspend the device.
3634 *
3635 * For the not allowed case, we mark last busy for the device so that
3636 * runtime PM core will try to autosuspend it some time later.
3637 *
3638 * This function should be called near the start of the device's
3639 * runtime_suspend callback.
3640 *
3641 * Return:
3642 * 0 - OK to runtime suspend the device
3643 * -EBUSY - Device should not be runtime suspended
3644 */
3645 int blk_pre_runtime_suspend(struct request_queue *q)
3646 {
3647 int ret = 0;
3648
3649 if (!q->dev)
3650 return ret;
3651
3652 spin_lock_irq(q->queue_lock);
3653 if (q->nr_pending) {
3654 ret = -EBUSY;
3655 pm_runtime_mark_last_busy(q->dev);
3656 } else {
3657 q->rpm_status = RPM_SUSPENDING;
3658 }
3659 spin_unlock_irq(q->queue_lock);
3660 return ret;
3661 }
3662 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3663
3664 /**
3665 * blk_post_runtime_suspend - Post runtime suspend processing
3666 * @q: the queue of the device
3667 * @err: return value of the device's runtime_suspend function
3668 *
3669 * Description:
3670 * Update the queue's runtime status according to the return value of the
3671 * device's runtime suspend function and mark last busy for the device so
3672 * that PM core will try to auto suspend the device at a later time.
3673 *
3674 * This function should be called near the end of the device's
3675 * runtime_suspend callback.
3676 */
3677 void blk_post_runtime_suspend(struct request_queue *q, int err)
3678 {
3679 if (!q->dev)
3680 return;
3681
3682 spin_lock_irq(q->queue_lock);
3683 if (!err) {
3684 q->rpm_status = RPM_SUSPENDED;
3685 } else {
3686 q->rpm_status = RPM_ACTIVE;
3687 pm_runtime_mark_last_busy(q->dev);
3688 }
3689 spin_unlock_irq(q->queue_lock);
3690 }
3691 EXPORT_SYMBOL(blk_post_runtime_suspend);
3692
3693 /**
3694 * blk_pre_runtime_resume - Pre runtime resume processing
3695 * @q: the queue of the device
3696 *
3697 * Description:
3698 * Update the queue's runtime status to RESUMING in preparation for the
3699 * runtime resume of the device.
3700 *
3701 * This function should be called near the start of the device's
3702 * runtime_resume callback.
3703 */
3704 void blk_pre_runtime_resume(struct request_queue *q)
3705 {
3706 if (!q->dev)
3707 return;
3708
3709 spin_lock_irq(q->queue_lock);
3710 q->rpm_status = RPM_RESUMING;
3711 spin_unlock_irq(q->queue_lock);
3712 }
3713 EXPORT_SYMBOL(blk_pre_runtime_resume);
3714
3715 /**
3716 * blk_post_runtime_resume - Post runtime resume processing
3717 * @q: the queue of the device
3718 * @err: return value of the device's runtime_resume function
3719 *
3720 * Description:
3721 * Update the queue's runtime status according to the return value of the
3722 * device's runtime_resume function. If it is successfully resumed, process
3723 * the requests that are queued into the device's queue when it is resuming
3724 * and then mark last busy and initiate autosuspend for it.
3725 *
3726 * This function should be called near the end of the device's
3727 * runtime_resume callback.
3728 */
3729 void blk_post_runtime_resume(struct request_queue *q, int err)
3730 {
3731 if (!q->dev)
3732 return;
3733
3734 spin_lock_irq(q->queue_lock);
3735 if (!err) {
3736 q->rpm_status = RPM_ACTIVE;
3737 __blk_run_queue(q);
3738 pm_runtime_mark_last_busy(q->dev);
3739 pm_request_autosuspend(q->dev);
3740 } else {
3741 q->rpm_status = RPM_SUSPENDED;
3742 }
3743 spin_unlock_irq(q->queue_lock);
3744 }
3745 EXPORT_SYMBOL(blk_post_runtime_resume);
3746
3747 /**
3748 * blk_set_runtime_active - Force runtime status of the queue to be active
3749 * @q: the queue of the device
3750 *
3751 * If the device is left runtime suspended during system suspend the resume
3752 * hook typically resumes the device and corrects runtime status
3753 * accordingly. However, that does not affect the queue runtime PM status
3754 * which is still "suspended". This prevents processing requests from the
3755 * queue.
3756 *
3757 * This function can be used in driver's resume hook to correct queue
3758 * runtime PM status and re-enable peeking requests from the queue. It
3759 * should be called before first request is added to the queue.
3760 */
3761 void blk_set_runtime_active(struct request_queue *q)
3762 {
3763 spin_lock_irq(q->queue_lock);
3764 q->rpm_status = RPM_ACTIVE;
3765 pm_runtime_mark_last_busy(q->dev);
3766 pm_request_autosuspend(q->dev);
3767 spin_unlock_irq(q->queue_lock);
3768 }
3769 EXPORT_SYMBOL(blk_set_runtime_active);
3770 #endif
3771
3772 int __init blk_dev_init(void)
3773 {
3774 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3775 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3776 FIELD_SIZEOF(struct request, cmd_flags));
3777 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3778 FIELD_SIZEOF(struct bio, bi_opf));
3779
3780 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3781 kblockd_workqueue = alloc_workqueue("kblockd",
3782 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3783 if (!kblockd_workqueue)
3784 panic("Failed to create kblockd\n");
3785
3786 request_cachep = kmem_cache_create("blkdev_requests",
3787 sizeof(struct request), 0, SLAB_PANIC, NULL);
3788
3789 blk_requestq_cachep = kmem_cache_create("request_queue",
3790 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3791
3792 #ifdef CONFIG_DEBUG_FS
3793 blk_debugfs_root = debugfs_create_dir("block", NULL);
3794 #endif
3795
3796 return 0;
3797 }