]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: move poll code to blk-mq
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-wbt.h"
43
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49
50 DEFINE_IDA(blk_queue_ida);
51
52 /*
53 * For the allocated request tables
54 */
55 struct kmem_cache *request_cachep;
56
57 /*
58 * For queue allocation
59 */
60 struct kmem_cache *blk_requestq_cachep;
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 static void blk_clear_congested(struct request_list *rl, int sync)
68 {
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
71 #else
72 /*
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
75 */
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
78 #endif
79 }
80
81 static void blk_set_congested(struct request_list *rl, int sync)
82 {
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
85 #else
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
89 #endif
90 }
91
92 void blk_queue_congestion_threshold(struct request_queue *q)
93 {
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105 }
106
107 /**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
114 */
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 {
117 struct request_queue *q = bdev_get_queue(bdev);
118
119 return &q->backing_dev_info;
120 }
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
122
123 void blk_rq_init(struct request_queue *q, struct request *rq)
124 {
125 memset(rq, 0, sizeof(*rq));
126
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->__sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->cmd_len = BLK_MAX_CDB;
136 rq->tag = -1;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
139 rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
145 {
146 if (error)
147 bio->bi_error = error;
148
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
151
152 bio_advance(bio, nbytes);
153
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 bio_endio(bio);
157 }
158
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 int bit;
162
163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 (unsigned long long) rq->cmd_flags);
166
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
172
173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 printk(KERN_INFO " cdb: ");
175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179 }
180 EXPORT_SYMBOL(blk_dump_rq_flags);
181
182 static void blk_delay_work(struct work_struct *work)
183 {
184 struct request_queue *q;
185
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
188 __blk_run_queue(q);
189 spin_unlock_irq(q->queue_lock);
190 }
191
192 /**
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
196 *
197 * Description:
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
200 * restarted around the specified time. Queue lock must be held.
201 */
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 {
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
207 }
208 EXPORT_SYMBOL(blk_delay_queue);
209
210 /**
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
213 *
214 * Description:
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
217 * context.
218 **/
219 void blk_start_queue_async(struct request_queue *q)
220 {
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
223 }
224 EXPORT_SYMBOL(blk_start_queue_async);
225
226 /**
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
235 void blk_start_queue(struct request_queue *q)
236 {
237 WARN_ON(!irqs_disabled());
238
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 __blk_run_queue(q);
241 }
242 EXPORT_SYMBOL(blk_start_queue);
243
244 /**
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
258 void blk_stop_queue(struct request_queue *q)
259 {
260 cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 }
263 EXPORT_SYMBOL(blk_stop_queue);
264
265 /**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevator_exit()
280 * and blkcg_exit_queue() to be called with queue lock initialized.
281 *
282 */
283 void blk_sync_queue(struct request_queue *q)
284 {
285 del_timer_sync(&q->timeout);
286
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
290
291 queue_for_each_hw_ctx(q, hctx, i) {
292 cancel_work_sync(&hctx->run_work);
293 cancel_delayed_work_sync(&hctx->delay_work);
294 }
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
297 }
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300
301 /**
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
304 *
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
311 */
312 inline void __blk_run_queue_uncond(struct request_queue *q)
313 {
314 if (unlikely(blk_queue_dead(q)))
315 return;
316
317 /*
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
323 */
324 q->request_fn_active++;
325 q->request_fn(q);
326 q->request_fn_active--;
327 }
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
329
330 /**
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
333 *
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
337 */
338 void __blk_run_queue(struct request_queue *q)
339 {
340 if (unlikely(blk_queue_stopped(q)))
341 return;
342
343 __blk_run_queue_uncond(q);
344 }
345 EXPORT_SYMBOL(__blk_run_queue);
346
347 /**
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
350 *
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
354 */
355 void blk_run_queue_async(struct request_queue *q)
356 {
357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 }
360 EXPORT_SYMBOL(blk_run_queue_async);
361
362 /**
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
365 *
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
369 */
370 void blk_run_queue(struct request_queue *q)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
375 __blk_run_queue(q);
376 spin_unlock_irqrestore(q->queue_lock, flags);
377 }
378 EXPORT_SYMBOL(blk_run_queue);
379
380 void blk_put_queue(struct request_queue *q)
381 {
382 kobject_put(&q->kobj);
383 }
384 EXPORT_SYMBOL(blk_put_queue);
385
386 /**
387 * __blk_drain_queue - drain requests from request_queue
388 * @q: queue to drain
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390 *
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
394 */
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
398 {
399 int i;
400
401 lockdep_assert_held(q->queue_lock);
402
403 while (true) {
404 bool drain = false;
405
406 /*
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
409 */
410 if (q->elevator)
411 elv_drain_elevator(q);
412
413 blkcg_drain_queue(q);
414
415 /*
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
421 */
422 if (!list_empty(&q->queue_head) && q->request_fn)
423 __blk_run_queue(q);
424
425 drain |= q->nr_rqs_elvpriv;
426 drain |= q->request_fn_active;
427
428 /*
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
432 */
433 if (drain_all) {
434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
437 drain |= q->nr_rqs[i];
438 drain |= q->in_flight[i];
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
441 }
442 }
443
444 if (!drain)
445 break;
446
447 spin_unlock_irq(q->queue_lock);
448
449 msleep(10);
450
451 spin_lock_irq(q->queue_lock);
452 }
453
454 /*
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
458 */
459 if (q->request_fn) {
460 struct request_list *rl;
461
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
465 }
466 }
467
468 /**
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
471 *
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
477 */
478 void blk_queue_bypass_start(struct request_queue *q)
479 {
480 spin_lock_irq(q->queue_lock);
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
484
485 /*
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
489 */
490 if (blk_queue_init_done(q)) {
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
494
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
497 }
498 }
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500
501 /**
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
504 *
505 * Leave bypass mode and restore the normal queueing behavior.
506 */
507 void blk_queue_bypass_end(struct request_queue *q)
508 {
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
514 }
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516
517 void blk_set_queue_dying(struct request_queue *q)
518 {
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
522
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
532 }
533 }
534 }
535 }
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537
538 /**
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
541 *
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
544 */
545 void blk_cleanup_queue(struct request_queue *q)
546 {
547 spinlock_t *lock = q->queue_lock;
548
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q->sysfs_lock);
551 blk_set_queue_dying(q);
552 spin_lock_irq(lock);
553
554 /*
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
562 */
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 queue_flag_set(QUEUE_FLAG_DYING, q);
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
571
572 /*
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
575 */
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
579 __blk_drain_queue(q, true);
580 queue_flag_set(QUEUE_FLAG_DEAD, q);
581 spin_unlock_irq(lock);
582
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
585
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
589
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
592 percpu_ref_exit(&q->q_usage_counter);
593
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
598
599 bdi_unregister(&q->backing_dev_info);
600
601 /* @q is and will stay empty, shutdown and put */
602 blk_put_queue(q);
603 }
604 EXPORT_SYMBOL(blk_cleanup_queue);
605
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 {
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611 }
612
613 static void free_request_struct(void *element, void *unused)
614 {
615 kmem_cache_free(request_cachep, element);
616 }
617
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
620 {
621 if (unlikely(rl->rq_pool))
622 return 0;
623
624 rl->q = q;
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
634 if (!rl->rq_pool)
635 return -ENOMEM;
636
637 return 0;
638 }
639
640 void blk_exit_rl(struct request_list *rl)
641 {
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
644 }
645
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 {
648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 }
650 EXPORT_SYMBOL(blk_alloc_queue);
651
652 int blk_queue_enter(struct request_queue *q, bool nowait)
653 {
654 while (true) {
655 int ret;
656
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
659
660 if (nowait)
661 return -EBUSY;
662
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
670 }
671 }
672
673 void blk_queue_exit(struct request_queue *q)
674 {
675 percpu_ref_put(&q->q_usage_counter);
676 }
677
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679 {
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
682
683 wake_up_all(&q->mq_freeze_wq);
684 }
685
686 static void blk_rq_timed_out_timer(unsigned long data)
687 {
688 struct request_queue *q = (struct request_queue *)data;
689
690 kblockd_schedule_work(&q->timeout_work);
691 }
692
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
694 {
695 struct request_queue *q;
696 int err;
697
698 q = kmem_cache_alloc_node(blk_requestq_cachep,
699 gfp_mask | __GFP_ZERO, node_id);
700 if (!q)
701 return NULL;
702
703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 if (q->id < 0)
705 goto fail_q;
706
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
710
711 q->backing_dev_info.ra_pages =
712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 q->backing_dev_info.name = "block";
715 q->node = node_id;
716
717 err = bdi_init(&q->backing_dev_info);
718 if (err)
719 goto fail_split;
720
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 INIT_LIST_HEAD(&q->queue_head);
725 INIT_LIST_HEAD(&q->timeout_list);
726 INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 INIT_LIST_HEAD(&q->blkg_list);
729 #endif
730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731
732 kobject_init(&q->kobj, &blk_queue_ktype);
733
734 mutex_init(&q->sysfs_lock);
735 spin_lock_init(&q->__queue_lock);
736
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
752 init_waitqueue_head(&q->mq_freeze_wq);
753
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 goto fail_bdi;
762
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
766 return q;
767
768 fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
770 fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
772 fail_split:
773 bioset_free(q->bio_split);
774 fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776 fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
779 }
780 EXPORT_SYMBOL(blk_alloc_queue_node);
781
782 /**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
806 *
807 * Function returns a pointer to the initialized request queue, or %NULL if
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
814
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816 {
817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818 }
819 EXPORT_SYMBOL(blk_init_queue);
820
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823 {
824 struct request_queue *uninit_q, *q;
825
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 if (!q)
832 blk_cleanup_queue(uninit_q);
833
834 return q;
835 }
836 EXPORT_SYMBOL(blk_init_queue_node);
837
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
843 {
844 if (!q)
845 return NULL;
846
847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 if (!q->fq)
849 return NULL;
850
851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 goto fail;
853
854 INIT_WORK(&q->timeout_work, blk_timeout_work);
855 q->request_fn = rfn;
856 q->prep_rq_fn = NULL;
857 q->unprep_rq_fn = NULL;
858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
863
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
867 blk_queue_make_request(q, blk_queue_bio);
868
869 q->sg_reserved_size = INT_MAX;
870
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
874 /* init elevator */
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
877 goto fail;
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
882 return q;
883
884 fail:
885 blk_free_flush_queue(q->fq);
886 wbt_exit(q);
887 return NULL;
888 }
889 EXPORT_SYMBOL(blk_init_allocated_queue);
890
891 bool blk_get_queue(struct request_queue *q)
892 {
893 if (likely(!blk_queue_dying(q))) {
894 __blk_get_queue(q);
895 return true;
896 }
897
898 return false;
899 }
900 EXPORT_SYMBOL(blk_get_queue);
901
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
903 {
904 if (rq->rq_flags & RQF_ELVPRIV) {
905 elv_put_request(rl->q, rq);
906 if (rq->elv.icq)
907 put_io_context(rq->elv.icq->ioc);
908 }
909
910 mempool_free(rq, rl->rq_pool);
911 }
912
913 /*
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
916 */
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
918 {
919 if (!ioc)
920 return 0;
921
922 /*
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
926 */
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930 }
931
932 /*
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
937 */
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
939 {
940 if (!ioc || ioc_batching(q, ioc))
941 return;
942
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
945 }
946
947 static void __freed_request(struct request_list *rl, int sync)
948 {
949 struct request_queue *q = rl->q;
950
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
953
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
957
958 blk_clear_rl_full(rl, sync);
959 }
960 }
961
962 /*
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
965 */
966 static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
968 {
969 struct request_queue *q = rl->q;
970
971 q->nr_rqs[sync]--;
972 rl->count[sync]--;
973 if (rq_flags & RQF_ELVPRIV)
974 q->nr_rqs_elvpriv--;
975
976 __freed_request(rl, sync);
977
978 if (unlikely(rl->starved[sync ^ 1]))
979 __freed_request(rl, sync ^ 1);
980 }
981
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983 {
984 struct request_list *rl;
985 int on_thresh, off_thresh;
986
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
992
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
998
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
1003
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1009 }
1010
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 }
1017 }
1018
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1021 }
1022
1023 /*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1028 {
1029 if (!bio)
1030 return true;
1031
1032 /*
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1035 */
1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 return false;
1038
1039 return true;
1040 }
1041
1042 /**
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1045 *
1046 * Determine io_context to use for request allocation for @bio. May return
1047 * %NULL if %current->io_context doesn't exist.
1048 */
1049 static struct io_context *rq_ioc(struct bio *bio)
1050 {
1051 #ifdef CONFIG_BLK_CGROUP
1052 if (bio && bio->bi_ioc)
1053 return bio->bi_ioc;
1054 #endif
1055 return current->io_context;
1056 }
1057
1058 /**
1059 * __get_request - get a free request
1060 * @rl: request list to allocate from
1061 * @op: operation and flags
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q. This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
1068 * Must be called with @q->queue_lock held and,
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1071 */
1072 static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 struct bio *bio, gfp_t gfp_mask)
1074 {
1075 struct request_queue *q = rl->q;
1076 struct request *rq;
1077 struct elevator_type *et = q->elevator->type;
1078 struct io_context *ioc = rq_ioc(bio);
1079 struct io_cq *icq = NULL;
1080 const bool is_sync = op_is_sync(op);
1081 int may_queue;
1082 req_flags_t rq_flags = RQF_ALLOCED;
1083
1084 if (unlikely(blk_queue_dying(q)))
1085 return ERR_PTR(-ENODEV);
1086
1087 may_queue = elv_may_queue(q, op);
1088 if (may_queue == ELV_MQUEUE_NO)
1089 goto rq_starved;
1090
1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 /*
1094 * The queue will fill after this allocation, so set
1095 * it as full, and mark this process as "batching".
1096 * This process will be allowed to complete a batch of
1097 * requests, others will be blocked.
1098 */
1099 if (!blk_rl_full(rl, is_sync)) {
1100 ioc_set_batching(q, ioc);
1101 blk_set_rl_full(rl, is_sync);
1102 } else {
1103 if (may_queue != ELV_MQUEUE_MUST
1104 && !ioc_batching(q, ioc)) {
1105 /*
1106 * The queue is full and the allocating
1107 * process is not a "batcher", and not
1108 * exempted by the IO scheduler
1109 */
1110 return ERR_PTR(-ENOMEM);
1111 }
1112 }
1113 }
1114 blk_set_congested(rl, is_sync);
1115 }
1116
1117 /*
1118 * Only allow batching queuers to allocate up to 50% over the defined
1119 * limit of requests, otherwise we could have thousands of requests
1120 * allocated with any setting of ->nr_requests
1121 */
1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 return ERR_PTR(-ENOMEM);
1124
1125 q->nr_rqs[is_sync]++;
1126 rl->count[is_sync]++;
1127 rl->starved[is_sync] = 0;
1128
1129 /*
1130 * Decide whether the new request will be managed by elevator. If
1131 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1132 * prevent the current elevator from being destroyed until the new
1133 * request is freed. This guarantees icq's won't be destroyed and
1134 * makes creating new ones safe.
1135 *
1136 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1137 * it will be created after releasing queue_lock.
1138 */
1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 rq_flags |= RQF_ELVPRIV;
1141 q->nr_rqs_elvpriv++;
1142 if (et->icq_cache && ioc)
1143 icq = ioc_lookup_icq(ioc, q);
1144 }
1145
1146 if (blk_queue_io_stat(q))
1147 rq_flags |= RQF_IO_STAT;
1148 spin_unlock_irq(q->queue_lock);
1149
1150 /* allocate and init request */
1151 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 if (!rq)
1153 goto fail_alloc;
1154
1155 blk_rq_init(q, rq);
1156 blk_rq_set_rl(rq, rl);
1157 rq->cmd_flags = op;
1158 rq->rq_flags = rq_flags;
1159
1160 /* init elvpriv */
1161 if (rq_flags & RQF_ELVPRIV) {
1162 if (unlikely(et->icq_cache && !icq)) {
1163 if (ioc)
1164 icq = ioc_create_icq(ioc, q, gfp_mask);
1165 if (!icq)
1166 goto fail_elvpriv;
1167 }
1168
1169 rq->elv.icq = icq;
1170 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 goto fail_elvpriv;
1172
1173 /* @rq->elv.icq holds io_context until @rq is freed */
1174 if (icq)
1175 get_io_context(icq->ioc);
1176 }
1177 out:
1178 /*
1179 * ioc may be NULL here, and ioc_batching will be false. That's
1180 * OK, if the queue is under the request limit then requests need
1181 * not count toward the nr_batch_requests limit. There will always
1182 * be some limit enforced by BLK_BATCH_TIME.
1183 */
1184 if (ioc_batching(q, ioc))
1185 ioc->nr_batch_requests--;
1186
1187 trace_block_getrq(q, bio, op);
1188 return rq;
1189
1190 fail_elvpriv:
1191 /*
1192 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1193 * and may fail indefinitely under memory pressure and thus
1194 * shouldn't stall IO. Treat this request as !elvpriv. This will
1195 * disturb iosched and blkcg but weird is bettern than dead.
1196 */
1197 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 __func__, dev_name(q->backing_dev_info.dev));
1199
1200 rq->rq_flags &= ~RQF_ELVPRIV;
1201 rq->elv.icq = NULL;
1202
1203 spin_lock_irq(q->queue_lock);
1204 q->nr_rqs_elvpriv--;
1205 spin_unlock_irq(q->queue_lock);
1206 goto out;
1207
1208 fail_alloc:
1209 /*
1210 * Allocation failed presumably due to memory. Undo anything we
1211 * might have messed up.
1212 *
1213 * Allocating task should really be put onto the front of the wait
1214 * queue, but this is pretty rare.
1215 */
1216 spin_lock_irq(q->queue_lock);
1217 freed_request(rl, is_sync, rq_flags);
1218
1219 /*
1220 * in the very unlikely event that allocation failed and no
1221 * requests for this direction was pending, mark us starved so that
1222 * freeing of a request in the other direction will notice
1223 * us. another possible fix would be to split the rq mempool into
1224 * READ and WRITE
1225 */
1226 rq_starved:
1227 if (unlikely(rl->count[is_sync] == 0))
1228 rl->starved[is_sync] = 1;
1229 return ERR_PTR(-ENOMEM);
1230 }
1231
1232 /**
1233 * get_request - get a free request
1234 * @q: request_queue to allocate request from
1235 * @op: operation and flags
1236 * @bio: bio to allocate request for (can be %NULL)
1237 * @gfp_mask: allocation mask
1238 *
1239 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240 * this function keeps retrying under memory pressure and fails iff @q is dead.
1241 *
1242 * Must be called with @q->queue_lock held and,
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1245 */
1246 static struct request *get_request(struct request_queue *q, unsigned int op,
1247 struct bio *bio, gfp_t gfp_mask)
1248 {
1249 const bool is_sync = op_is_sync(op);
1250 DEFINE_WAIT(wait);
1251 struct request_list *rl;
1252 struct request *rq;
1253
1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1255 retry:
1256 rq = __get_request(rl, op, bio, gfp_mask);
1257 if (!IS_ERR(rq))
1258 return rq;
1259
1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 blk_put_rl(rl);
1262 return rq;
1263 }
1264
1265 /* wait on @rl and retry */
1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 TASK_UNINTERRUPTIBLE);
1268
1269 trace_block_sleeprq(q, bio, op);
1270
1271 spin_unlock_irq(q->queue_lock);
1272 io_schedule();
1273
1274 /*
1275 * After sleeping, we become a "batching" process and will be able
1276 * to allocate at least one request, and up to a big batch of them
1277 * for a small period time. See ioc_batching, ioc_set_batching
1278 */
1279 ioc_set_batching(q, current->io_context);
1280
1281 spin_lock_irq(q->queue_lock);
1282 finish_wait(&rl->wait[is_sync], &wait);
1283
1284 goto retry;
1285 }
1286
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 gfp_t gfp_mask)
1289 {
1290 struct request *rq;
1291
1292 BUG_ON(rw != READ && rw != WRITE);
1293
1294 /* create ioc upfront */
1295 create_io_context(gfp_mask, q->node);
1296
1297 spin_lock_irq(q->queue_lock);
1298 rq = get_request(q, rw, NULL, gfp_mask);
1299 if (IS_ERR(rq)) {
1300 spin_unlock_irq(q->queue_lock);
1301 return rq;
1302 }
1303
1304 /* q->queue_lock is unlocked at this point */
1305 rq->__data_len = 0;
1306 rq->__sector = (sector_t) -1;
1307 rq->bio = rq->biotail = NULL;
1308 return rq;
1309 }
1310
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 if (q->mq_ops)
1314 return blk_mq_alloc_request(q, rw,
1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 0 : BLK_MQ_REQ_NOWAIT);
1317 else
1318 return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321
1322 /**
1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324 * @rq: request to be initialized
1325 *
1326 */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333
1334 /**
1335 * blk_requeue_request - put a request back on queue
1336 * @q: request queue where request should be inserted
1337 * @rq: request to be inserted
1338 *
1339 * Description:
1340 * Drivers often keep queueing requests until the hardware cannot accept
1341 * more, when that condition happens we need to put the request back
1342 * on the queue. Must be called with queue lock held.
1343 */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 blk_delete_timer(rq);
1347 blk_clear_rq_complete(rq);
1348 trace_block_rq_requeue(q, rq);
1349 wbt_requeue(q->rq_wb, &rq->issue_stat);
1350
1351 if (rq->rq_flags & RQF_QUEUED)
1352 blk_queue_end_tag(q, rq);
1353
1354 BUG_ON(blk_queued_rq(rq));
1355
1356 elv_requeue_request(q, rq);
1357 }
1358 EXPORT_SYMBOL(blk_requeue_request);
1359
1360 static void add_acct_request(struct request_queue *q, struct request *rq,
1361 int where)
1362 {
1363 blk_account_io_start(rq, true);
1364 __elv_add_request(q, rq, where);
1365 }
1366
1367 static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 unsigned long now)
1369 {
1370 int inflight;
1371
1372 if (now == part->stamp)
1373 return;
1374
1375 inflight = part_in_flight(part);
1376 if (inflight) {
1377 __part_stat_add(cpu, part, time_in_queue,
1378 inflight * (now - part->stamp));
1379 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 }
1381 part->stamp = now;
1382 }
1383
1384 /**
1385 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386 * @cpu: cpu number for stats access
1387 * @part: target partition
1388 *
1389 * The average IO queue length and utilisation statistics are maintained
1390 * by observing the current state of the queue length and the amount of
1391 * time it has been in this state for.
1392 *
1393 * Normally, that accounting is done on IO completion, but that can result
1394 * in more than a second's worth of IO being accounted for within any one
1395 * second, leading to >100% utilisation. To deal with that, we call this
1396 * function to do a round-off before returning the results when reading
1397 * /proc/diskstats. This accounts immediately for all queue usage up to
1398 * the current jiffies and restarts the counters again.
1399 */
1400 void part_round_stats(int cpu, struct hd_struct *part)
1401 {
1402 unsigned long now = jiffies;
1403
1404 if (part->partno)
1405 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 part_round_stats_single(cpu, part, now);
1407 }
1408 EXPORT_SYMBOL_GPL(part_round_stats);
1409
1410 #ifdef CONFIG_PM
1411 static void blk_pm_put_request(struct request *rq)
1412 {
1413 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1414 pm_runtime_mark_last_busy(rq->q->dev);
1415 }
1416 #else
1417 static inline void blk_pm_put_request(struct request *rq) {}
1418 #endif
1419
1420 /*
1421 * queue lock must be held
1422 */
1423 void __blk_put_request(struct request_queue *q, struct request *req)
1424 {
1425 req_flags_t rq_flags = req->rq_flags;
1426
1427 if (unlikely(!q))
1428 return;
1429
1430 if (q->mq_ops) {
1431 blk_mq_free_request(req);
1432 return;
1433 }
1434
1435 blk_pm_put_request(req);
1436
1437 elv_completed_request(q, req);
1438
1439 /* this is a bio leak */
1440 WARN_ON(req->bio != NULL);
1441
1442 wbt_done(q->rq_wb, &req->issue_stat);
1443
1444 /*
1445 * Request may not have originated from ll_rw_blk. if not,
1446 * it didn't come out of our reserved rq pools
1447 */
1448 if (rq_flags & RQF_ALLOCED) {
1449 struct request_list *rl = blk_rq_rl(req);
1450 bool sync = op_is_sync(req->cmd_flags);
1451
1452 BUG_ON(!list_empty(&req->queuelist));
1453 BUG_ON(ELV_ON_HASH(req));
1454
1455 blk_free_request(rl, req);
1456 freed_request(rl, sync, rq_flags);
1457 blk_put_rl(rl);
1458 }
1459 }
1460 EXPORT_SYMBOL_GPL(__blk_put_request);
1461
1462 void blk_put_request(struct request *req)
1463 {
1464 struct request_queue *q = req->q;
1465
1466 if (q->mq_ops)
1467 blk_mq_free_request(req);
1468 else {
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(q->queue_lock, flags);
1472 __blk_put_request(q, req);
1473 spin_unlock_irqrestore(q->queue_lock, flags);
1474 }
1475 }
1476 EXPORT_SYMBOL(blk_put_request);
1477
1478 /**
1479 * blk_add_request_payload - add a payload to a request
1480 * @rq: request to update
1481 * @page: page backing the payload
1482 * @offset: offset in page
1483 * @len: length of the payload.
1484 *
1485 * This allows to later add a payload to an already submitted request by
1486 * a block driver. The driver needs to take care of freeing the payload
1487 * itself.
1488 *
1489 * Note that this is a quite horrible hack and nothing but handling of
1490 * discard requests should ever use it.
1491 */
1492 void blk_add_request_payload(struct request *rq, struct page *page,
1493 int offset, unsigned int len)
1494 {
1495 struct bio *bio = rq->bio;
1496
1497 bio->bi_io_vec->bv_page = page;
1498 bio->bi_io_vec->bv_offset = offset;
1499 bio->bi_io_vec->bv_len = len;
1500
1501 bio->bi_iter.bi_size = len;
1502 bio->bi_vcnt = 1;
1503 bio->bi_phys_segments = 1;
1504
1505 rq->__data_len = rq->resid_len = len;
1506 rq->nr_phys_segments = 1;
1507 }
1508 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1509
1510 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1511 struct bio *bio)
1512 {
1513 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1514
1515 if (!ll_back_merge_fn(q, req, bio))
1516 return false;
1517
1518 trace_block_bio_backmerge(q, req, bio);
1519
1520 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1521 blk_rq_set_mixed_merge(req);
1522
1523 req->biotail->bi_next = bio;
1524 req->biotail = bio;
1525 req->__data_len += bio->bi_iter.bi_size;
1526 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1527
1528 blk_account_io_start(req, false);
1529 return true;
1530 }
1531
1532 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1533 struct bio *bio)
1534 {
1535 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1536
1537 if (!ll_front_merge_fn(q, req, bio))
1538 return false;
1539
1540 trace_block_bio_frontmerge(q, req, bio);
1541
1542 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1543 blk_rq_set_mixed_merge(req);
1544
1545 bio->bi_next = req->bio;
1546 req->bio = bio;
1547
1548 req->__sector = bio->bi_iter.bi_sector;
1549 req->__data_len += bio->bi_iter.bi_size;
1550 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1551
1552 blk_account_io_start(req, false);
1553 return true;
1554 }
1555
1556 /**
1557 * blk_attempt_plug_merge - try to merge with %current's plugged list
1558 * @q: request_queue new bio is being queued at
1559 * @bio: new bio being queued
1560 * @request_count: out parameter for number of traversed plugged requests
1561 * @same_queue_rq: pointer to &struct request that gets filled in when
1562 * another request associated with @q is found on the plug list
1563 * (optional, may be %NULL)
1564 *
1565 * Determine whether @bio being queued on @q can be merged with a request
1566 * on %current's plugged list. Returns %true if merge was successful,
1567 * otherwise %false.
1568 *
1569 * Plugging coalesces IOs from the same issuer for the same purpose without
1570 * going through @q->queue_lock. As such it's more of an issuing mechanism
1571 * than scheduling, and the request, while may have elvpriv data, is not
1572 * added on the elevator at this point. In addition, we don't have
1573 * reliable access to the elevator outside queue lock. Only check basic
1574 * merging parameters without querying the elevator.
1575 *
1576 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1577 */
1578 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1579 unsigned int *request_count,
1580 struct request **same_queue_rq)
1581 {
1582 struct blk_plug *plug;
1583 struct request *rq;
1584 bool ret = false;
1585 struct list_head *plug_list;
1586
1587 plug = current->plug;
1588 if (!plug)
1589 goto out;
1590 *request_count = 0;
1591
1592 if (q->mq_ops)
1593 plug_list = &plug->mq_list;
1594 else
1595 plug_list = &plug->list;
1596
1597 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1598 int el_ret;
1599
1600 if (rq->q == q) {
1601 (*request_count)++;
1602 /*
1603 * Only blk-mq multiple hardware queues case checks the
1604 * rq in the same queue, there should be only one such
1605 * rq in a queue
1606 **/
1607 if (same_queue_rq)
1608 *same_queue_rq = rq;
1609 }
1610
1611 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1612 continue;
1613
1614 el_ret = blk_try_merge(rq, bio);
1615 if (el_ret == ELEVATOR_BACK_MERGE) {
1616 ret = bio_attempt_back_merge(q, rq, bio);
1617 if (ret)
1618 break;
1619 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1620 ret = bio_attempt_front_merge(q, rq, bio);
1621 if (ret)
1622 break;
1623 }
1624 }
1625 out:
1626 return ret;
1627 }
1628
1629 unsigned int blk_plug_queued_count(struct request_queue *q)
1630 {
1631 struct blk_plug *plug;
1632 struct request *rq;
1633 struct list_head *plug_list;
1634 unsigned int ret = 0;
1635
1636 plug = current->plug;
1637 if (!plug)
1638 goto out;
1639
1640 if (q->mq_ops)
1641 plug_list = &plug->mq_list;
1642 else
1643 plug_list = &plug->list;
1644
1645 list_for_each_entry(rq, plug_list, queuelist) {
1646 if (rq->q == q)
1647 ret++;
1648 }
1649 out:
1650 return ret;
1651 }
1652
1653 void init_request_from_bio(struct request *req, struct bio *bio)
1654 {
1655 req->cmd_type = REQ_TYPE_FS;
1656 if (bio->bi_opf & REQ_RAHEAD)
1657 req->cmd_flags |= REQ_FAILFAST_MASK;
1658
1659 req->errors = 0;
1660 req->__sector = bio->bi_iter.bi_sector;
1661 req->ioprio = bio_prio(bio);
1662 blk_rq_bio_prep(req->q, req, bio);
1663 }
1664
1665 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1666 {
1667 struct blk_plug *plug;
1668 int el_ret, where = ELEVATOR_INSERT_SORT;
1669 struct request *req;
1670 unsigned int request_count = 0;
1671 unsigned int wb_acct;
1672
1673 /*
1674 * low level driver can indicate that it wants pages above a
1675 * certain limit bounced to low memory (ie for highmem, or even
1676 * ISA dma in theory)
1677 */
1678 blk_queue_bounce(q, &bio);
1679
1680 blk_queue_split(q, &bio, q->bio_split);
1681
1682 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1683 bio->bi_error = -EIO;
1684 bio_endio(bio);
1685 return BLK_QC_T_NONE;
1686 }
1687
1688 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1689 spin_lock_irq(q->queue_lock);
1690 where = ELEVATOR_INSERT_FLUSH;
1691 goto get_rq;
1692 }
1693
1694 /*
1695 * Check if we can merge with the plugged list before grabbing
1696 * any locks.
1697 */
1698 if (!blk_queue_nomerges(q)) {
1699 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1700 return BLK_QC_T_NONE;
1701 } else
1702 request_count = blk_plug_queued_count(q);
1703
1704 spin_lock_irq(q->queue_lock);
1705
1706 el_ret = elv_merge(q, &req, bio);
1707 if (el_ret == ELEVATOR_BACK_MERGE) {
1708 if (bio_attempt_back_merge(q, req, bio)) {
1709 elv_bio_merged(q, req, bio);
1710 if (!attempt_back_merge(q, req))
1711 elv_merged_request(q, req, el_ret);
1712 goto out_unlock;
1713 }
1714 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1715 if (bio_attempt_front_merge(q, req, bio)) {
1716 elv_bio_merged(q, req, bio);
1717 if (!attempt_front_merge(q, req))
1718 elv_merged_request(q, req, el_ret);
1719 goto out_unlock;
1720 }
1721 }
1722
1723 get_rq:
1724 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1725
1726 /*
1727 * Grab a free request. This is might sleep but can not fail.
1728 * Returns with the queue unlocked.
1729 */
1730 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1731 if (IS_ERR(req)) {
1732 __wbt_done(q->rq_wb, wb_acct);
1733 bio->bi_error = PTR_ERR(req);
1734 bio_endio(bio);
1735 goto out_unlock;
1736 }
1737
1738 wbt_track(&req->issue_stat, wb_acct);
1739
1740 /*
1741 * After dropping the lock and possibly sleeping here, our request
1742 * may now be mergeable after it had proven unmergeable (above).
1743 * We don't worry about that case for efficiency. It won't happen
1744 * often, and the elevators are able to handle it.
1745 */
1746 init_request_from_bio(req, bio);
1747
1748 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1749 req->cpu = raw_smp_processor_id();
1750
1751 plug = current->plug;
1752 if (plug) {
1753 /*
1754 * If this is the first request added after a plug, fire
1755 * of a plug trace.
1756 */
1757 if (!request_count)
1758 trace_block_plug(q);
1759 else {
1760 struct request *last = list_entry_rq(plug->list.prev);
1761 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1762 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1763 blk_flush_plug_list(plug, false);
1764 trace_block_plug(q);
1765 }
1766 }
1767 list_add_tail(&req->queuelist, &plug->list);
1768 blk_account_io_start(req, true);
1769 } else {
1770 spin_lock_irq(q->queue_lock);
1771 add_acct_request(q, req, where);
1772 __blk_run_queue(q);
1773 out_unlock:
1774 spin_unlock_irq(q->queue_lock);
1775 }
1776
1777 return BLK_QC_T_NONE;
1778 }
1779
1780 /*
1781 * If bio->bi_dev is a partition, remap the location
1782 */
1783 static inline void blk_partition_remap(struct bio *bio)
1784 {
1785 struct block_device *bdev = bio->bi_bdev;
1786
1787 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1788 struct hd_struct *p = bdev->bd_part;
1789
1790 bio->bi_iter.bi_sector += p->start_sect;
1791 bio->bi_bdev = bdev->bd_contains;
1792
1793 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1794 bdev->bd_dev,
1795 bio->bi_iter.bi_sector - p->start_sect);
1796 }
1797 }
1798
1799 static void handle_bad_sector(struct bio *bio)
1800 {
1801 char b[BDEVNAME_SIZE];
1802
1803 printk(KERN_INFO "attempt to access beyond end of device\n");
1804 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1805 bdevname(bio->bi_bdev, b),
1806 bio->bi_opf,
1807 (unsigned long long)bio_end_sector(bio),
1808 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1809 }
1810
1811 #ifdef CONFIG_FAIL_MAKE_REQUEST
1812
1813 static DECLARE_FAULT_ATTR(fail_make_request);
1814
1815 static int __init setup_fail_make_request(char *str)
1816 {
1817 return setup_fault_attr(&fail_make_request, str);
1818 }
1819 __setup("fail_make_request=", setup_fail_make_request);
1820
1821 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1822 {
1823 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1824 }
1825
1826 static int __init fail_make_request_debugfs(void)
1827 {
1828 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1829 NULL, &fail_make_request);
1830
1831 return PTR_ERR_OR_ZERO(dir);
1832 }
1833
1834 late_initcall(fail_make_request_debugfs);
1835
1836 #else /* CONFIG_FAIL_MAKE_REQUEST */
1837
1838 static inline bool should_fail_request(struct hd_struct *part,
1839 unsigned int bytes)
1840 {
1841 return false;
1842 }
1843
1844 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1845
1846 /*
1847 * Check whether this bio extends beyond the end of the device.
1848 */
1849 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1850 {
1851 sector_t maxsector;
1852
1853 if (!nr_sectors)
1854 return 0;
1855
1856 /* Test device or partition size, when known. */
1857 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1858 if (maxsector) {
1859 sector_t sector = bio->bi_iter.bi_sector;
1860
1861 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1862 /*
1863 * This may well happen - the kernel calls bread()
1864 * without checking the size of the device, e.g., when
1865 * mounting a device.
1866 */
1867 handle_bad_sector(bio);
1868 return 1;
1869 }
1870 }
1871
1872 return 0;
1873 }
1874
1875 static noinline_for_stack bool
1876 generic_make_request_checks(struct bio *bio)
1877 {
1878 struct request_queue *q;
1879 int nr_sectors = bio_sectors(bio);
1880 int err = -EIO;
1881 char b[BDEVNAME_SIZE];
1882 struct hd_struct *part;
1883
1884 might_sleep();
1885
1886 if (bio_check_eod(bio, nr_sectors))
1887 goto end_io;
1888
1889 q = bdev_get_queue(bio->bi_bdev);
1890 if (unlikely(!q)) {
1891 printk(KERN_ERR
1892 "generic_make_request: Trying to access "
1893 "nonexistent block-device %s (%Lu)\n",
1894 bdevname(bio->bi_bdev, b),
1895 (long long) bio->bi_iter.bi_sector);
1896 goto end_io;
1897 }
1898
1899 part = bio->bi_bdev->bd_part;
1900 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1901 should_fail_request(&part_to_disk(part)->part0,
1902 bio->bi_iter.bi_size))
1903 goto end_io;
1904
1905 /*
1906 * If this device has partitions, remap block n
1907 * of partition p to block n+start(p) of the disk.
1908 */
1909 blk_partition_remap(bio);
1910
1911 if (bio_check_eod(bio, nr_sectors))
1912 goto end_io;
1913
1914 /*
1915 * Filter flush bio's early so that make_request based
1916 * drivers without flush support don't have to worry
1917 * about them.
1918 */
1919 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1920 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1921 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1922 if (!nr_sectors) {
1923 err = 0;
1924 goto end_io;
1925 }
1926 }
1927
1928 switch (bio_op(bio)) {
1929 case REQ_OP_DISCARD:
1930 if (!blk_queue_discard(q))
1931 goto not_supported;
1932 break;
1933 case REQ_OP_SECURE_ERASE:
1934 if (!blk_queue_secure_erase(q))
1935 goto not_supported;
1936 break;
1937 case REQ_OP_WRITE_SAME:
1938 if (!bdev_write_same(bio->bi_bdev))
1939 goto not_supported;
1940 case REQ_OP_ZONE_REPORT:
1941 case REQ_OP_ZONE_RESET:
1942 if (!bdev_is_zoned(bio->bi_bdev))
1943 goto not_supported;
1944 break;
1945 default:
1946 break;
1947 }
1948
1949 /*
1950 * Various block parts want %current->io_context and lazy ioc
1951 * allocation ends up trading a lot of pain for a small amount of
1952 * memory. Just allocate it upfront. This may fail and block
1953 * layer knows how to live with it.
1954 */
1955 create_io_context(GFP_ATOMIC, q->node);
1956
1957 if (!blkcg_bio_issue_check(q, bio))
1958 return false;
1959
1960 trace_block_bio_queue(q, bio);
1961 return true;
1962
1963 not_supported:
1964 err = -EOPNOTSUPP;
1965 end_io:
1966 bio->bi_error = err;
1967 bio_endio(bio);
1968 return false;
1969 }
1970
1971 /**
1972 * generic_make_request - hand a buffer to its device driver for I/O
1973 * @bio: The bio describing the location in memory and on the device.
1974 *
1975 * generic_make_request() is used to make I/O requests of block
1976 * devices. It is passed a &struct bio, which describes the I/O that needs
1977 * to be done.
1978 *
1979 * generic_make_request() does not return any status. The
1980 * success/failure status of the request, along with notification of
1981 * completion, is delivered asynchronously through the bio->bi_end_io
1982 * function described (one day) else where.
1983 *
1984 * The caller of generic_make_request must make sure that bi_io_vec
1985 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1986 * set to describe the device address, and the
1987 * bi_end_io and optionally bi_private are set to describe how
1988 * completion notification should be signaled.
1989 *
1990 * generic_make_request and the drivers it calls may use bi_next if this
1991 * bio happens to be merged with someone else, and may resubmit the bio to
1992 * a lower device by calling into generic_make_request recursively, which
1993 * means the bio should NOT be touched after the call to ->make_request_fn.
1994 */
1995 blk_qc_t generic_make_request(struct bio *bio)
1996 {
1997 struct bio_list bio_list_on_stack;
1998 blk_qc_t ret = BLK_QC_T_NONE;
1999
2000 if (!generic_make_request_checks(bio))
2001 goto out;
2002
2003 /*
2004 * We only want one ->make_request_fn to be active at a time, else
2005 * stack usage with stacked devices could be a problem. So use
2006 * current->bio_list to keep a list of requests submited by a
2007 * make_request_fn function. current->bio_list is also used as a
2008 * flag to say if generic_make_request is currently active in this
2009 * task or not. If it is NULL, then no make_request is active. If
2010 * it is non-NULL, then a make_request is active, and new requests
2011 * should be added at the tail
2012 */
2013 if (current->bio_list) {
2014 bio_list_add(current->bio_list, bio);
2015 goto out;
2016 }
2017
2018 /* following loop may be a bit non-obvious, and so deserves some
2019 * explanation.
2020 * Before entering the loop, bio->bi_next is NULL (as all callers
2021 * ensure that) so we have a list with a single bio.
2022 * We pretend that we have just taken it off a longer list, so
2023 * we assign bio_list to a pointer to the bio_list_on_stack,
2024 * thus initialising the bio_list of new bios to be
2025 * added. ->make_request() may indeed add some more bios
2026 * through a recursive call to generic_make_request. If it
2027 * did, we find a non-NULL value in bio_list and re-enter the loop
2028 * from the top. In this case we really did just take the bio
2029 * of the top of the list (no pretending) and so remove it from
2030 * bio_list, and call into ->make_request() again.
2031 */
2032 BUG_ON(bio->bi_next);
2033 bio_list_init(&bio_list_on_stack);
2034 current->bio_list = &bio_list_on_stack;
2035 do {
2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2037
2038 if (likely(blk_queue_enter(q, false) == 0)) {
2039 ret = q->make_request_fn(q, bio);
2040
2041 blk_queue_exit(q);
2042
2043 bio = bio_list_pop(current->bio_list);
2044 } else {
2045 struct bio *bio_next = bio_list_pop(current->bio_list);
2046
2047 bio_io_error(bio);
2048 bio = bio_next;
2049 }
2050 } while (bio);
2051 current->bio_list = NULL; /* deactivate */
2052
2053 out:
2054 return ret;
2055 }
2056 EXPORT_SYMBOL(generic_make_request);
2057
2058 /**
2059 * submit_bio - submit a bio to the block device layer for I/O
2060 * @bio: The &struct bio which describes the I/O
2061 *
2062 * submit_bio() is very similar in purpose to generic_make_request(), and
2063 * uses that function to do most of the work. Both are fairly rough
2064 * interfaces; @bio must be presetup and ready for I/O.
2065 *
2066 */
2067 blk_qc_t submit_bio(struct bio *bio)
2068 {
2069 /*
2070 * If it's a regular read/write or a barrier with data attached,
2071 * go through the normal accounting stuff before submission.
2072 */
2073 if (bio_has_data(bio)) {
2074 unsigned int count;
2075
2076 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2077 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2078 else
2079 count = bio_sectors(bio);
2080
2081 if (op_is_write(bio_op(bio))) {
2082 count_vm_events(PGPGOUT, count);
2083 } else {
2084 task_io_account_read(bio->bi_iter.bi_size);
2085 count_vm_events(PGPGIN, count);
2086 }
2087
2088 if (unlikely(block_dump)) {
2089 char b[BDEVNAME_SIZE];
2090 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2091 current->comm, task_pid_nr(current),
2092 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2093 (unsigned long long)bio->bi_iter.bi_sector,
2094 bdevname(bio->bi_bdev, b),
2095 count);
2096 }
2097 }
2098
2099 return generic_make_request(bio);
2100 }
2101 EXPORT_SYMBOL(submit_bio);
2102
2103 /**
2104 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2105 * for new the queue limits
2106 * @q: the queue
2107 * @rq: the request being checked
2108 *
2109 * Description:
2110 * @rq may have been made based on weaker limitations of upper-level queues
2111 * in request stacking drivers, and it may violate the limitation of @q.
2112 * Since the block layer and the underlying device driver trust @rq
2113 * after it is inserted to @q, it should be checked against @q before
2114 * the insertion using this generic function.
2115 *
2116 * Request stacking drivers like request-based dm may change the queue
2117 * limits when retrying requests on other queues. Those requests need
2118 * to be checked against the new queue limits again during dispatch.
2119 */
2120 static int blk_cloned_rq_check_limits(struct request_queue *q,
2121 struct request *rq)
2122 {
2123 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2124 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2125 return -EIO;
2126 }
2127
2128 /*
2129 * queue's settings related to segment counting like q->bounce_pfn
2130 * may differ from that of other stacking queues.
2131 * Recalculate it to check the request correctly on this queue's
2132 * limitation.
2133 */
2134 blk_recalc_rq_segments(rq);
2135 if (rq->nr_phys_segments > queue_max_segments(q)) {
2136 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2137 return -EIO;
2138 }
2139
2140 return 0;
2141 }
2142
2143 /**
2144 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2145 * @q: the queue to submit the request
2146 * @rq: the request being queued
2147 */
2148 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2149 {
2150 unsigned long flags;
2151 int where = ELEVATOR_INSERT_BACK;
2152
2153 if (blk_cloned_rq_check_limits(q, rq))
2154 return -EIO;
2155
2156 if (rq->rq_disk &&
2157 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2158 return -EIO;
2159
2160 if (q->mq_ops) {
2161 if (blk_queue_io_stat(q))
2162 blk_account_io_start(rq, true);
2163 blk_mq_insert_request(rq, false, true, false);
2164 return 0;
2165 }
2166
2167 spin_lock_irqsave(q->queue_lock, flags);
2168 if (unlikely(blk_queue_dying(q))) {
2169 spin_unlock_irqrestore(q->queue_lock, flags);
2170 return -ENODEV;
2171 }
2172
2173 /*
2174 * Submitting request must be dequeued before calling this function
2175 * because it will be linked to another request_queue
2176 */
2177 BUG_ON(blk_queued_rq(rq));
2178
2179 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2180 where = ELEVATOR_INSERT_FLUSH;
2181
2182 add_acct_request(q, rq, where);
2183 if (where == ELEVATOR_INSERT_FLUSH)
2184 __blk_run_queue(q);
2185 spin_unlock_irqrestore(q->queue_lock, flags);
2186
2187 return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2190
2191 /**
2192 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2193 * @rq: request to examine
2194 *
2195 * Description:
2196 * A request could be merge of IOs which require different failure
2197 * handling. This function determines the number of bytes which
2198 * can be failed from the beginning of the request without
2199 * crossing into area which need to be retried further.
2200 *
2201 * Return:
2202 * The number of bytes to fail.
2203 *
2204 * Context:
2205 * queue_lock must be held.
2206 */
2207 unsigned int blk_rq_err_bytes(const struct request *rq)
2208 {
2209 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2210 unsigned int bytes = 0;
2211 struct bio *bio;
2212
2213 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2214 return blk_rq_bytes(rq);
2215
2216 /*
2217 * Currently the only 'mixing' which can happen is between
2218 * different fastfail types. We can safely fail portions
2219 * which have all the failfast bits that the first one has -
2220 * the ones which are at least as eager to fail as the first
2221 * one.
2222 */
2223 for (bio = rq->bio; bio; bio = bio->bi_next) {
2224 if ((bio->bi_opf & ff) != ff)
2225 break;
2226 bytes += bio->bi_iter.bi_size;
2227 }
2228
2229 /* this could lead to infinite loop */
2230 BUG_ON(blk_rq_bytes(rq) && !bytes);
2231 return bytes;
2232 }
2233 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2234
2235 void blk_account_io_completion(struct request *req, unsigned int bytes)
2236 {
2237 if (blk_do_io_stat(req)) {
2238 const int rw = rq_data_dir(req);
2239 struct hd_struct *part;
2240 int cpu;
2241
2242 cpu = part_stat_lock();
2243 part = req->part;
2244 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2245 part_stat_unlock();
2246 }
2247 }
2248
2249 void blk_account_io_done(struct request *req)
2250 {
2251 /*
2252 * Account IO completion. flush_rq isn't accounted as a
2253 * normal IO on queueing nor completion. Accounting the
2254 * containing request is enough.
2255 */
2256 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2257 unsigned long duration = jiffies - req->start_time;
2258 const int rw = rq_data_dir(req);
2259 struct hd_struct *part;
2260 int cpu;
2261
2262 cpu = part_stat_lock();
2263 part = req->part;
2264
2265 part_stat_inc(cpu, part, ios[rw]);
2266 part_stat_add(cpu, part, ticks[rw], duration);
2267 part_round_stats(cpu, part);
2268 part_dec_in_flight(part, rw);
2269
2270 hd_struct_put(part);
2271 part_stat_unlock();
2272 }
2273 }
2274
2275 #ifdef CONFIG_PM
2276 /*
2277 * Don't process normal requests when queue is suspended
2278 * or in the process of suspending/resuming
2279 */
2280 static struct request *blk_pm_peek_request(struct request_queue *q,
2281 struct request *rq)
2282 {
2283 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2284 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2285 return NULL;
2286 else
2287 return rq;
2288 }
2289 #else
2290 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2291 struct request *rq)
2292 {
2293 return rq;
2294 }
2295 #endif
2296
2297 void blk_account_io_start(struct request *rq, bool new_io)
2298 {
2299 struct hd_struct *part;
2300 int rw = rq_data_dir(rq);
2301 int cpu;
2302
2303 if (!blk_do_io_stat(rq))
2304 return;
2305
2306 cpu = part_stat_lock();
2307
2308 if (!new_io) {
2309 part = rq->part;
2310 part_stat_inc(cpu, part, merges[rw]);
2311 } else {
2312 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2313 if (!hd_struct_try_get(part)) {
2314 /*
2315 * The partition is already being removed,
2316 * the request will be accounted on the disk only
2317 *
2318 * We take a reference on disk->part0 although that
2319 * partition will never be deleted, so we can treat
2320 * it as any other partition.
2321 */
2322 part = &rq->rq_disk->part0;
2323 hd_struct_get(part);
2324 }
2325 part_round_stats(cpu, part);
2326 part_inc_in_flight(part, rw);
2327 rq->part = part;
2328 }
2329
2330 part_stat_unlock();
2331 }
2332
2333 /**
2334 * blk_peek_request - peek at the top of a request queue
2335 * @q: request queue to peek at
2336 *
2337 * Description:
2338 * Return the request at the top of @q. The returned request
2339 * should be started using blk_start_request() before LLD starts
2340 * processing it.
2341 *
2342 * Return:
2343 * Pointer to the request at the top of @q if available. Null
2344 * otherwise.
2345 *
2346 * Context:
2347 * queue_lock must be held.
2348 */
2349 struct request *blk_peek_request(struct request_queue *q)
2350 {
2351 struct request *rq;
2352 int ret;
2353
2354 while ((rq = __elv_next_request(q)) != NULL) {
2355
2356 rq = blk_pm_peek_request(q, rq);
2357 if (!rq)
2358 break;
2359
2360 if (!(rq->rq_flags & RQF_STARTED)) {
2361 /*
2362 * This is the first time the device driver
2363 * sees this request (possibly after
2364 * requeueing). Notify IO scheduler.
2365 */
2366 if (rq->rq_flags & RQF_SORTED)
2367 elv_activate_rq(q, rq);
2368
2369 /*
2370 * just mark as started even if we don't start
2371 * it, a request that has been delayed should
2372 * not be passed by new incoming requests
2373 */
2374 rq->rq_flags |= RQF_STARTED;
2375 trace_block_rq_issue(q, rq);
2376 }
2377
2378 if (!q->boundary_rq || q->boundary_rq == rq) {
2379 q->end_sector = rq_end_sector(rq);
2380 q->boundary_rq = NULL;
2381 }
2382
2383 if (rq->rq_flags & RQF_DONTPREP)
2384 break;
2385
2386 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2387 /*
2388 * make sure space for the drain appears we
2389 * know we can do this because max_hw_segments
2390 * has been adjusted to be one fewer than the
2391 * device can handle
2392 */
2393 rq->nr_phys_segments++;
2394 }
2395
2396 if (!q->prep_rq_fn)
2397 break;
2398
2399 ret = q->prep_rq_fn(q, rq);
2400 if (ret == BLKPREP_OK) {
2401 break;
2402 } else if (ret == BLKPREP_DEFER) {
2403 /*
2404 * the request may have been (partially) prepped.
2405 * we need to keep this request in the front to
2406 * avoid resource deadlock. RQF_STARTED will
2407 * prevent other fs requests from passing this one.
2408 */
2409 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2410 !(rq->rq_flags & RQF_DONTPREP)) {
2411 /*
2412 * remove the space for the drain we added
2413 * so that we don't add it again
2414 */
2415 --rq->nr_phys_segments;
2416 }
2417
2418 rq = NULL;
2419 break;
2420 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2421 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2422
2423 rq->rq_flags |= RQF_QUIET;
2424 /*
2425 * Mark this request as started so we don't trigger
2426 * any debug logic in the end I/O path.
2427 */
2428 blk_start_request(rq);
2429 __blk_end_request_all(rq, err);
2430 } else {
2431 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2432 break;
2433 }
2434 }
2435
2436 return rq;
2437 }
2438 EXPORT_SYMBOL(blk_peek_request);
2439
2440 void blk_dequeue_request(struct request *rq)
2441 {
2442 struct request_queue *q = rq->q;
2443
2444 BUG_ON(list_empty(&rq->queuelist));
2445 BUG_ON(ELV_ON_HASH(rq));
2446
2447 list_del_init(&rq->queuelist);
2448
2449 /*
2450 * the time frame between a request being removed from the lists
2451 * and to it is freed is accounted as io that is in progress at
2452 * the driver side.
2453 */
2454 if (blk_account_rq(rq)) {
2455 q->in_flight[rq_is_sync(rq)]++;
2456 set_io_start_time_ns(rq);
2457 }
2458 }
2459
2460 /**
2461 * blk_start_request - start request processing on the driver
2462 * @req: request to dequeue
2463 *
2464 * Description:
2465 * Dequeue @req and start timeout timer on it. This hands off the
2466 * request to the driver.
2467 *
2468 * Block internal functions which don't want to start timer should
2469 * call blk_dequeue_request().
2470 *
2471 * Context:
2472 * queue_lock must be held.
2473 */
2474 void blk_start_request(struct request *req)
2475 {
2476 blk_dequeue_request(req);
2477
2478 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2479 blk_stat_set_issue_time(&req->issue_stat);
2480 req->rq_flags |= RQF_STATS;
2481 wbt_issue(req->q->rq_wb, &req->issue_stat);
2482 }
2483
2484 /*
2485 * We are now handing the request to the hardware, initialize
2486 * resid_len to full count and add the timeout handler.
2487 */
2488 req->resid_len = blk_rq_bytes(req);
2489 if (unlikely(blk_bidi_rq(req)))
2490 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2491
2492 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2493 blk_add_timer(req);
2494 }
2495 EXPORT_SYMBOL(blk_start_request);
2496
2497 /**
2498 * blk_fetch_request - fetch a request from a request queue
2499 * @q: request queue to fetch a request from
2500 *
2501 * Description:
2502 * Return the request at the top of @q. The request is started on
2503 * return and LLD can start processing it immediately.
2504 *
2505 * Return:
2506 * Pointer to the request at the top of @q if available. Null
2507 * otherwise.
2508 *
2509 * Context:
2510 * queue_lock must be held.
2511 */
2512 struct request *blk_fetch_request(struct request_queue *q)
2513 {
2514 struct request *rq;
2515
2516 rq = blk_peek_request(q);
2517 if (rq)
2518 blk_start_request(rq);
2519 return rq;
2520 }
2521 EXPORT_SYMBOL(blk_fetch_request);
2522
2523 /**
2524 * blk_update_request - Special helper function for request stacking drivers
2525 * @req: the request being processed
2526 * @error: %0 for success, < %0 for error
2527 * @nr_bytes: number of bytes to complete @req
2528 *
2529 * Description:
2530 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2531 * the request structure even if @req doesn't have leftover.
2532 * If @req has leftover, sets it up for the next range of segments.
2533 *
2534 * This special helper function is only for request stacking drivers
2535 * (e.g. request-based dm) so that they can handle partial completion.
2536 * Actual device drivers should use blk_end_request instead.
2537 *
2538 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2539 * %false return from this function.
2540 *
2541 * Return:
2542 * %false - this request doesn't have any more data
2543 * %true - this request has more data
2544 **/
2545 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2546 {
2547 int total_bytes;
2548
2549 trace_block_rq_complete(req->q, req, nr_bytes);
2550
2551 if (!req->bio)
2552 return false;
2553
2554 /*
2555 * For fs requests, rq is just carrier of independent bio's
2556 * and each partial completion should be handled separately.
2557 * Reset per-request error on each partial completion.
2558 *
2559 * TODO: tj: This is too subtle. It would be better to let
2560 * low level drivers do what they see fit.
2561 */
2562 if (req->cmd_type == REQ_TYPE_FS)
2563 req->errors = 0;
2564
2565 if (error && req->cmd_type == REQ_TYPE_FS &&
2566 !(req->rq_flags & RQF_QUIET)) {
2567 char *error_type;
2568
2569 switch (error) {
2570 case -ENOLINK:
2571 error_type = "recoverable transport";
2572 break;
2573 case -EREMOTEIO:
2574 error_type = "critical target";
2575 break;
2576 case -EBADE:
2577 error_type = "critical nexus";
2578 break;
2579 case -ETIMEDOUT:
2580 error_type = "timeout";
2581 break;
2582 case -ENOSPC:
2583 error_type = "critical space allocation";
2584 break;
2585 case -ENODATA:
2586 error_type = "critical medium";
2587 break;
2588 case -EIO:
2589 default:
2590 error_type = "I/O";
2591 break;
2592 }
2593 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2594 __func__, error_type, req->rq_disk ?
2595 req->rq_disk->disk_name : "?",
2596 (unsigned long long)blk_rq_pos(req));
2597
2598 }
2599
2600 blk_account_io_completion(req, nr_bytes);
2601
2602 total_bytes = 0;
2603 while (req->bio) {
2604 struct bio *bio = req->bio;
2605 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2606
2607 if (bio_bytes == bio->bi_iter.bi_size)
2608 req->bio = bio->bi_next;
2609
2610 req_bio_endio(req, bio, bio_bytes, error);
2611
2612 total_bytes += bio_bytes;
2613 nr_bytes -= bio_bytes;
2614
2615 if (!nr_bytes)
2616 break;
2617 }
2618
2619 /*
2620 * completely done
2621 */
2622 if (!req->bio) {
2623 /*
2624 * Reset counters so that the request stacking driver
2625 * can find how many bytes remain in the request
2626 * later.
2627 */
2628 req->__data_len = 0;
2629 return false;
2630 }
2631
2632 req->__data_len -= total_bytes;
2633
2634 /* update sector only for requests with clear definition of sector */
2635 if (req->cmd_type == REQ_TYPE_FS)
2636 req->__sector += total_bytes >> 9;
2637
2638 /* mixed attributes always follow the first bio */
2639 if (req->rq_flags & RQF_MIXED_MERGE) {
2640 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2641 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2642 }
2643
2644 /*
2645 * If total number of sectors is less than the first segment
2646 * size, something has gone terribly wrong.
2647 */
2648 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2649 blk_dump_rq_flags(req, "request botched");
2650 req->__data_len = blk_rq_cur_bytes(req);
2651 }
2652
2653 /* recalculate the number of segments */
2654 blk_recalc_rq_segments(req);
2655
2656 return true;
2657 }
2658 EXPORT_SYMBOL_GPL(blk_update_request);
2659
2660 static bool blk_update_bidi_request(struct request *rq, int error,
2661 unsigned int nr_bytes,
2662 unsigned int bidi_bytes)
2663 {
2664 if (blk_update_request(rq, error, nr_bytes))
2665 return true;
2666
2667 /* Bidi request must be completed as a whole */
2668 if (unlikely(blk_bidi_rq(rq)) &&
2669 blk_update_request(rq->next_rq, error, bidi_bytes))
2670 return true;
2671
2672 if (blk_queue_add_random(rq->q))
2673 add_disk_randomness(rq->rq_disk);
2674
2675 return false;
2676 }
2677
2678 /**
2679 * blk_unprep_request - unprepare a request
2680 * @req: the request
2681 *
2682 * This function makes a request ready for complete resubmission (or
2683 * completion). It happens only after all error handling is complete,
2684 * so represents the appropriate moment to deallocate any resources
2685 * that were allocated to the request in the prep_rq_fn. The queue
2686 * lock is held when calling this.
2687 */
2688 void blk_unprep_request(struct request *req)
2689 {
2690 struct request_queue *q = req->q;
2691
2692 req->rq_flags &= ~RQF_DONTPREP;
2693 if (q->unprep_rq_fn)
2694 q->unprep_rq_fn(q, req);
2695 }
2696 EXPORT_SYMBOL_GPL(blk_unprep_request);
2697
2698 /*
2699 * queue lock must be held
2700 */
2701 void blk_finish_request(struct request *req, int error)
2702 {
2703 struct request_queue *q = req->q;
2704
2705 if (req->rq_flags & RQF_STATS)
2706 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2707
2708 if (req->rq_flags & RQF_QUEUED)
2709 blk_queue_end_tag(q, req);
2710
2711 BUG_ON(blk_queued_rq(req));
2712
2713 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2714 laptop_io_completion(&req->q->backing_dev_info);
2715
2716 blk_delete_timer(req);
2717
2718 if (req->rq_flags & RQF_DONTPREP)
2719 blk_unprep_request(req);
2720
2721 blk_account_io_done(req);
2722
2723 if (req->end_io) {
2724 wbt_done(req->q->rq_wb, &req->issue_stat);
2725 req->end_io(req, error);
2726 } else {
2727 if (blk_bidi_rq(req))
2728 __blk_put_request(req->next_rq->q, req->next_rq);
2729
2730 __blk_put_request(q, req);
2731 }
2732 }
2733 EXPORT_SYMBOL(blk_finish_request);
2734
2735 /**
2736 * blk_end_bidi_request - Complete a bidi request
2737 * @rq: the request to complete
2738 * @error: %0 for success, < %0 for error
2739 * @nr_bytes: number of bytes to complete @rq
2740 * @bidi_bytes: number of bytes to complete @rq->next_rq
2741 *
2742 * Description:
2743 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2744 * Drivers that supports bidi can safely call this member for any
2745 * type of request, bidi or uni. In the later case @bidi_bytes is
2746 * just ignored.
2747 *
2748 * Return:
2749 * %false - we are done with this request
2750 * %true - still buffers pending for this request
2751 **/
2752 static bool blk_end_bidi_request(struct request *rq, int error,
2753 unsigned int nr_bytes, unsigned int bidi_bytes)
2754 {
2755 struct request_queue *q = rq->q;
2756 unsigned long flags;
2757
2758 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2759 return true;
2760
2761 spin_lock_irqsave(q->queue_lock, flags);
2762 blk_finish_request(rq, error);
2763 spin_unlock_irqrestore(q->queue_lock, flags);
2764
2765 return false;
2766 }
2767
2768 /**
2769 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2770 * @rq: the request to complete
2771 * @error: %0 for success, < %0 for error
2772 * @nr_bytes: number of bytes to complete @rq
2773 * @bidi_bytes: number of bytes to complete @rq->next_rq
2774 *
2775 * Description:
2776 * Identical to blk_end_bidi_request() except that queue lock is
2777 * assumed to be locked on entry and remains so on return.
2778 *
2779 * Return:
2780 * %false - we are done with this request
2781 * %true - still buffers pending for this request
2782 **/
2783 bool __blk_end_bidi_request(struct request *rq, int error,
2784 unsigned int nr_bytes, unsigned int bidi_bytes)
2785 {
2786 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2787 return true;
2788
2789 blk_finish_request(rq, error);
2790
2791 return false;
2792 }
2793
2794 /**
2795 * blk_end_request - Helper function for drivers to complete the request.
2796 * @rq: the request being processed
2797 * @error: %0 for success, < %0 for error
2798 * @nr_bytes: number of bytes to complete
2799 *
2800 * Description:
2801 * Ends I/O on a number of bytes attached to @rq.
2802 * If @rq has leftover, sets it up for the next range of segments.
2803 *
2804 * Return:
2805 * %false - we are done with this request
2806 * %true - still buffers pending for this request
2807 **/
2808 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2809 {
2810 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2811 }
2812 EXPORT_SYMBOL(blk_end_request);
2813
2814 /**
2815 * blk_end_request_all - Helper function for drives to finish the request.
2816 * @rq: the request to finish
2817 * @error: %0 for success, < %0 for error
2818 *
2819 * Description:
2820 * Completely finish @rq.
2821 */
2822 void blk_end_request_all(struct request *rq, int error)
2823 {
2824 bool pending;
2825 unsigned int bidi_bytes = 0;
2826
2827 if (unlikely(blk_bidi_rq(rq)))
2828 bidi_bytes = blk_rq_bytes(rq->next_rq);
2829
2830 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2831 BUG_ON(pending);
2832 }
2833 EXPORT_SYMBOL(blk_end_request_all);
2834
2835 /**
2836 * blk_end_request_cur - Helper function to finish the current request chunk.
2837 * @rq: the request to finish the current chunk for
2838 * @error: %0 for success, < %0 for error
2839 *
2840 * Description:
2841 * Complete the current consecutively mapped chunk from @rq.
2842 *
2843 * Return:
2844 * %false - we are done with this request
2845 * %true - still buffers pending for this request
2846 */
2847 bool blk_end_request_cur(struct request *rq, int error)
2848 {
2849 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2850 }
2851 EXPORT_SYMBOL(blk_end_request_cur);
2852
2853 /**
2854 * blk_end_request_err - Finish a request till the next failure boundary.
2855 * @rq: the request to finish till the next failure boundary for
2856 * @error: must be negative errno
2857 *
2858 * Description:
2859 * Complete @rq till the next failure boundary.
2860 *
2861 * Return:
2862 * %false - we are done with this request
2863 * %true - still buffers pending for this request
2864 */
2865 bool blk_end_request_err(struct request *rq, int error)
2866 {
2867 WARN_ON(error >= 0);
2868 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2869 }
2870 EXPORT_SYMBOL_GPL(blk_end_request_err);
2871
2872 /**
2873 * __blk_end_request - Helper function for drivers to complete the request.
2874 * @rq: the request being processed
2875 * @error: %0 for success, < %0 for error
2876 * @nr_bytes: number of bytes to complete
2877 *
2878 * Description:
2879 * Must be called with queue lock held unlike blk_end_request().
2880 *
2881 * Return:
2882 * %false - we are done with this request
2883 * %true - still buffers pending for this request
2884 **/
2885 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2886 {
2887 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2888 }
2889 EXPORT_SYMBOL(__blk_end_request);
2890
2891 /**
2892 * __blk_end_request_all - Helper function for drives to finish the request.
2893 * @rq: the request to finish
2894 * @error: %0 for success, < %0 for error
2895 *
2896 * Description:
2897 * Completely finish @rq. Must be called with queue lock held.
2898 */
2899 void __blk_end_request_all(struct request *rq, int error)
2900 {
2901 bool pending;
2902 unsigned int bidi_bytes = 0;
2903
2904 if (unlikely(blk_bidi_rq(rq)))
2905 bidi_bytes = blk_rq_bytes(rq->next_rq);
2906
2907 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2908 BUG_ON(pending);
2909 }
2910 EXPORT_SYMBOL(__blk_end_request_all);
2911
2912 /**
2913 * __blk_end_request_cur - Helper function to finish the current request chunk.
2914 * @rq: the request to finish the current chunk for
2915 * @error: %0 for success, < %0 for error
2916 *
2917 * Description:
2918 * Complete the current consecutively mapped chunk from @rq. Must
2919 * be called with queue lock held.
2920 *
2921 * Return:
2922 * %false - we are done with this request
2923 * %true - still buffers pending for this request
2924 */
2925 bool __blk_end_request_cur(struct request *rq, int error)
2926 {
2927 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2928 }
2929 EXPORT_SYMBOL(__blk_end_request_cur);
2930
2931 /**
2932 * __blk_end_request_err - Finish a request till the next failure boundary.
2933 * @rq: the request to finish till the next failure boundary for
2934 * @error: must be negative errno
2935 *
2936 * Description:
2937 * Complete @rq till the next failure boundary. Must be called
2938 * with queue lock held.
2939 *
2940 * Return:
2941 * %false - we are done with this request
2942 * %true - still buffers pending for this request
2943 */
2944 bool __blk_end_request_err(struct request *rq, int error)
2945 {
2946 WARN_ON(error >= 0);
2947 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2948 }
2949 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2950
2951 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2952 struct bio *bio)
2953 {
2954 if (bio_has_data(bio))
2955 rq->nr_phys_segments = bio_phys_segments(q, bio);
2956
2957 rq->__data_len = bio->bi_iter.bi_size;
2958 rq->bio = rq->biotail = bio;
2959
2960 if (bio->bi_bdev)
2961 rq->rq_disk = bio->bi_bdev->bd_disk;
2962 }
2963
2964 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2965 /**
2966 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2967 * @rq: the request to be flushed
2968 *
2969 * Description:
2970 * Flush all pages in @rq.
2971 */
2972 void rq_flush_dcache_pages(struct request *rq)
2973 {
2974 struct req_iterator iter;
2975 struct bio_vec bvec;
2976
2977 rq_for_each_segment(bvec, rq, iter)
2978 flush_dcache_page(bvec.bv_page);
2979 }
2980 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2981 #endif
2982
2983 /**
2984 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2985 * @q : the queue of the device being checked
2986 *
2987 * Description:
2988 * Check if underlying low-level drivers of a device are busy.
2989 * If the drivers want to export their busy state, they must set own
2990 * exporting function using blk_queue_lld_busy() first.
2991 *
2992 * Basically, this function is used only by request stacking drivers
2993 * to stop dispatching requests to underlying devices when underlying
2994 * devices are busy. This behavior helps more I/O merging on the queue
2995 * of the request stacking driver and prevents I/O throughput regression
2996 * on burst I/O load.
2997 *
2998 * Return:
2999 * 0 - Not busy (The request stacking driver should dispatch request)
3000 * 1 - Busy (The request stacking driver should stop dispatching request)
3001 */
3002 int blk_lld_busy(struct request_queue *q)
3003 {
3004 if (q->lld_busy_fn)
3005 return q->lld_busy_fn(q);
3006
3007 return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_lld_busy);
3010
3011 /**
3012 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3013 * @rq: the clone request to be cleaned up
3014 *
3015 * Description:
3016 * Free all bios in @rq for a cloned request.
3017 */
3018 void blk_rq_unprep_clone(struct request *rq)
3019 {
3020 struct bio *bio;
3021
3022 while ((bio = rq->bio) != NULL) {
3023 rq->bio = bio->bi_next;
3024
3025 bio_put(bio);
3026 }
3027 }
3028 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3029
3030 /*
3031 * Copy attributes of the original request to the clone request.
3032 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3033 */
3034 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3035 {
3036 dst->cpu = src->cpu;
3037 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3038 dst->cmd_type = src->cmd_type;
3039 dst->__sector = blk_rq_pos(src);
3040 dst->__data_len = blk_rq_bytes(src);
3041 dst->nr_phys_segments = src->nr_phys_segments;
3042 dst->ioprio = src->ioprio;
3043 dst->extra_len = src->extra_len;
3044 }
3045
3046 /**
3047 * blk_rq_prep_clone - Helper function to setup clone request
3048 * @rq: the request to be setup
3049 * @rq_src: original request to be cloned
3050 * @bs: bio_set that bios for clone are allocated from
3051 * @gfp_mask: memory allocation mask for bio
3052 * @bio_ctr: setup function to be called for each clone bio.
3053 * Returns %0 for success, non %0 for failure.
3054 * @data: private data to be passed to @bio_ctr
3055 *
3056 * Description:
3057 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3058 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3059 * are not copied, and copying such parts is the caller's responsibility.
3060 * Also, pages which the original bios are pointing to are not copied
3061 * and the cloned bios just point same pages.
3062 * So cloned bios must be completed before original bios, which means
3063 * the caller must complete @rq before @rq_src.
3064 */
3065 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3066 struct bio_set *bs, gfp_t gfp_mask,
3067 int (*bio_ctr)(struct bio *, struct bio *, void *),
3068 void *data)
3069 {
3070 struct bio *bio, *bio_src;
3071
3072 if (!bs)
3073 bs = fs_bio_set;
3074
3075 __rq_for_each_bio(bio_src, rq_src) {
3076 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3077 if (!bio)
3078 goto free_and_out;
3079
3080 if (bio_ctr && bio_ctr(bio, bio_src, data))
3081 goto free_and_out;
3082
3083 if (rq->bio) {
3084 rq->biotail->bi_next = bio;
3085 rq->biotail = bio;
3086 } else
3087 rq->bio = rq->biotail = bio;
3088 }
3089
3090 __blk_rq_prep_clone(rq, rq_src);
3091
3092 return 0;
3093
3094 free_and_out:
3095 if (bio)
3096 bio_put(bio);
3097 blk_rq_unprep_clone(rq);
3098
3099 return -ENOMEM;
3100 }
3101 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3102
3103 int kblockd_schedule_work(struct work_struct *work)
3104 {
3105 return queue_work(kblockd_workqueue, work);
3106 }
3107 EXPORT_SYMBOL(kblockd_schedule_work);
3108
3109 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3110 {
3111 return queue_work_on(cpu, kblockd_workqueue, work);
3112 }
3113 EXPORT_SYMBOL(kblockd_schedule_work_on);
3114
3115 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3116 unsigned long delay)
3117 {
3118 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3119 }
3120 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3121
3122 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3123 unsigned long delay)
3124 {
3125 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3126 }
3127 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3128
3129 /**
3130 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3131 * @plug: The &struct blk_plug that needs to be initialized
3132 *
3133 * Description:
3134 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3135 * pending I/O should the task end up blocking between blk_start_plug() and
3136 * blk_finish_plug(). This is important from a performance perspective, but
3137 * also ensures that we don't deadlock. For instance, if the task is blocking
3138 * for a memory allocation, memory reclaim could end up wanting to free a
3139 * page belonging to that request that is currently residing in our private
3140 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3141 * this kind of deadlock.
3142 */
3143 void blk_start_plug(struct blk_plug *plug)
3144 {
3145 struct task_struct *tsk = current;
3146
3147 /*
3148 * If this is a nested plug, don't actually assign it.
3149 */
3150 if (tsk->plug)
3151 return;
3152
3153 INIT_LIST_HEAD(&plug->list);
3154 INIT_LIST_HEAD(&plug->mq_list);
3155 INIT_LIST_HEAD(&plug->cb_list);
3156 /*
3157 * Store ordering should not be needed here, since a potential
3158 * preempt will imply a full memory barrier
3159 */
3160 tsk->plug = plug;
3161 }
3162 EXPORT_SYMBOL(blk_start_plug);
3163
3164 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3165 {
3166 struct request *rqa = container_of(a, struct request, queuelist);
3167 struct request *rqb = container_of(b, struct request, queuelist);
3168
3169 return !(rqa->q < rqb->q ||
3170 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3171 }
3172
3173 /*
3174 * If 'from_schedule' is true, then postpone the dispatch of requests
3175 * until a safe kblockd context. We due this to avoid accidental big
3176 * additional stack usage in driver dispatch, in places where the originally
3177 * plugger did not intend it.
3178 */
3179 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3180 bool from_schedule)
3181 __releases(q->queue_lock)
3182 {
3183 trace_block_unplug(q, depth, !from_schedule);
3184
3185 if (from_schedule)
3186 blk_run_queue_async(q);
3187 else
3188 __blk_run_queue(q);
3189 spin_unlock(q->queue_lock);
3190 }
3191
3192 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3193 {
3194 LIST_HEAD(callbacks);
3195
3196 while (!list_empty(&plug->cb_list)) {
3197 list_splice_init(&plug->cb_list, &callbacks);
3198
3199 while (!list_empty(&callbacks)) {
3200 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3201 struct blk_plug_cb,
3202 list);
3203 list_del(&cb->list);
3204 cb->callback(cb, from_schedule);
3205 }
3206 }
3207 }
3208
3209 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3210 int size)
3211 {
3212 struct blk_plug *plug = current->plug;
3213 struct blk_plug_cb *cb;
3214
3215 if (!plug)
3216 return NULL;
3217
3218 list_for_each_entry(cb, &plug->cb_list, list)
3219 if (cb->callback == unplug && cb->data == data)
3220 return cb;
3221
3222 /* Not currently on the callback list */
3223 BUG_ON(size < sizeof(*cb));
3224 cb = kzalloc(size, GFP_ATOMIC);
3225 if (cb) {
3226 cb->data = data;
3227 cb->callback = unplug;
3228 list_add(&cb->list, &plug->cb_list);
3229 }
3230 return cb;
3231 }
3232 EXPORT_SYMBOL(blk_check_plugged);
3233
3234 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3235 {
3236 struct request_queue *q;
3237 unsigned long flags;
3238 struct request *rq;
3239 LIST_HEAD(list);
3240 unsigned int depth;
3241
3242 flush_plug_callbacks(plug, from_schedule);
3243
3244 if (!list_empty(&plug->mq_list))
3245 blk_mq_flush_plug_list(plug, from_schedule);
3246
3247 if (list_empty(&plug->list))
3248 return;
3249
3250 list_splice_init(&plug->list, &list);
3251
3252 list_sort(NULL, &list, plug_rq_cmp);
3253
3254 q = NULL;
3255 depth = 0;
3256
3257 /*
3258 * Save and disable interrupts here, to avoid doing it for every
3259 * queue lock we have to take.
3260 */
3261 local_irq_save(flags);
3262 while (!list_empty(&list)) {
3263 rq = list_entry_rq(list.next);
3264 list_del_init(&rq->queuelist);
3265 BUG_ON(!rq->q);
3266 if (rq->q != q) {
3267 /*
3268 * This drops the queue lock
3269 */
3270 if (q)
3271 queue_unplugged(q, depth, from_schedule);
3272 q = rq->q;
3273 depth = 0;
3274 spin_lock(q->queue_lock);
3275 }
3276
3277 /*
3278 * Short-circuit if @q is dead
3279 */
3280 if (unlikely(blk_queue_dying(q))) {
3281 __blk_end_request_all(rq, -ENODEV);
3282 continue;
3283 }
3284
3285 /*
3286 * rq is already accounted, so use raw insert
3287 */
3288 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3289 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3290 else
3291 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3292
3293 depth++;
3294 }
3295
3296 /*
3297 * This drops the queue lock
3298 */
3299 if (q)
3300 queue_unplugged(q, depth, from_schedule);
3301
3302 local_irq_restore(flags);
3303 }
3304
3305 void blk_finish_plug(struct blk_plug *plug)
3306 {
3307 if (plug != current->plug)
3308 return;
3309 blk_flush_plug_list(plug, false);
3310
3311 current->plug = NULL;
3312 }
3313 EXPORT_SYMBOL(blk_finish_plug);
3314
3315 #ifdef CONFIG_PM
3316 /**
3317 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3318 * @q: the queue of the device
3319 * @dev: the device the queue belongs to
3320 *
3321 * Description:
3322 * Initialize runtime-PM-related fields for @q and start auto suspend for
3323 * @dev. Drivers that want to take advantage of request-based runtime PM
3324 * should call this function after @dev has been initialized, and its
3325 * request queue @q has been allocated, and runtime PM for it can not happen
3326 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3327 * cases, driver should call this function before any I/O has taken place.
3328 *
3329 * This function takes care of setting up using auto suspend for the device,
3330 * the autosuspend delay is set to -1 to make runtime suspend impossible
3331 * until an updated value is either set by user or by driver. Drivers do
3332 * not need to touch other autosuspend settings.
3333 *
3334 * The block layer runtime PM is request based, so only works for drivers
3335 * that use request as their IO unit instead of those directly use bio's.
3336 */
3337 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3338 {
3339 q->dev = dev;
3340 q->rpm_status = RPM_ACTIVE;
3341 pm_runtime_set_autosuspend_delay(q->dev, -1);
3342 pm_runtime_use_autosuspend(q->dev);
3343 }
3344 EXPORT_SYMBOL(blk_pm_runtime_init);
3345
3346 /**
3347 * blk_pre_runtime_suspend - Pre runtime suspend check
3348 * @q: the queue of the device
3349 *
3350 * Description:
3351 * This function will check if runtime suspend is allowed for the device
3352 * by examining if there are any requests pending in the queue. If there
3353 * are requests pending, the device can not be runtime suspended; otherwise,
3354 * the queue's status will be updated to SUSPENDING and the driver can
3355 * proceed to suspend the device.
3356 *
3357 * For the not allowed case, we mark last busy for the device so that
3358 * runtime PM core will try to autosuspend it some time later.
3359 *
3360 * This function should be called near the start of the device's
3361 * runtime_suspend callback.
3362 *
3363 * Return:
3364 * 0 - OK to runtime suspend the device
3365 * -EBUSY - Device should not be runtime suspended
3366 */
3367 int blk_pre_runtime_suspend(struct request_queue *q)
3368 {
3369 int ret = 0;
3370
3371 if (!q->dev)
3372 return ret;
3373
3374 spin_lock_irq(q->queue_lock);
3375 if (q->nr_pending) {
3376 ret = -EBUSY;
3377 pm_runtime_mark_last_busy(q->dev);
3378 } else {
3379 q->rpm_status = RPM_SUSPENDING;
3380 }
3381 spin_unlock_irq(q->queue_lock);
3382 return ret;
3383 }
3384 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3385
3386 /**
3387 * blk_post_runtime_suspend - Post runtime suspend processing
3388 * @q: the queue of the device
3389 * @err: return value of the device's runtime_suspend function
3390 *
3391 * Description:
3392 * Update the queue's runtime status according to the return value of the
3393 * device's runtime suspend function and mark last busy for the device so
3394 * that PM core will try to auto suspend the device at a later time.
3395 *
3396 * This function should be called near the end of the device's
3397 * runtime_suspend callback.
3398 */
3399 void blk_post_runtime_suspend(struct request_queue *q, int err)
3400 {
3401 if (!q->dev)
3402 return;
3403
3404 spin_lock_irq(q->queue_lock);
3405 if (!err) {
3406 q->rpm_status = RPM_SUSPENDED;
3407 } else {
3408 q->rpm_status = RPM_ACTIVE;
3409 pm_runtime_mark_last_busy(q->dev);
3410 }
3411 spin_unlock_irq(q->queue_lock);
3412 }
3413 EXPORT_SYMBOL(blk_post_runtime_suspend);
3414
3415 /**
3416 * blk_pre_runtime_resume - Pre runtime resume processing
3417 * @q: the queue of the device
3418 *
3419 * Description:
3420 * Update the queue's runtime status to RESUMING in preparation for the
3421 * runtime resume of the device.
3422 *
3423 * This function should be called near the start of the device's
3424 * runtime_resume callback.
3425 */
3426 void blk_pre_runtime_resume(struct request_queue *q)
3427 {
3428 if (!q->dev)
3429 return;
3430
3431 spin_lock_irq(q->queue_lock);
3432 q->rpm_status = RPM_RESUMING;
3433 spin_unlock_irq(q->queue_lock);
3434 }
3435 EXPORT_SYMBOL(blk_pre_runtime_resume);
3436
3437 /**
3438 * blk_post_runtime_resume - Post runtime resume processing
3439 * @q: the queue of the device
3440 * @err: return value of the device's runtime_resume function
3441 *
3442 * Description:
3443 * Update the queue's runtime status according to the return value of the
3444 * device's runtime_resume function. If it is successfully resumed, process
3445 * the requests that are queued into the device's queue when it is resuming
3446 * and then mark last busy and initiate autosuspend for it.
3447 *
3448 * This function should be called near the end of the device's
3449 * runtime_resume callback.
3450 */
3451 void blk_post_runtime_resume(struct request_queue *q, int err)
3452 {
3453 if (!q->dev)
3454 return;
3455
3456 spin_lock_irq(q->queue_lock);
3457 if (!err) {
3458 q->rpm_status = RPM_ACTIVE;
3459 __blk_run_queue(q);
3460 pm_runtime_mark_last_busy(q->dev);
3461 pm_request_autosuspend(q->dev);
3462 } else {
3463 q->rpm_status = RPM_SUSPENDED;
3464 }
3465 spin_unlock_irq(q->queue_lock);
3466 }
3467 EXPORT_SYMBOL(blk_post_runtime_resume);
3468
3469 /**
3470 * blk_set_runtime_active - Force runtime status of the queue to be active
3471 * @q: the queue of the device
3472 *
3473 * If the device is left runtime suspended during system suspend the resume
3474 * hook typically resumes the device and corrects runtime status
3475 * accordingly. However, that does not affect the queue runtime PM status
3476 * which is still "suspended". This prevents processing requests from the
3477 * queue.
3478 *
3479 * This function can be used in driver's resume hook to correct queue
3480 * runtime PM status and re-enable peeking requests from the queue. It
3481 * should be called before first request is added to the queue.
3482 */
3483 void blk_set_runtime_active(struct request_queue *q)
3484 {
3485 spin_lock_irq(q->queue_lock);
3486 q->rpm_status = RPM_ACTIVE;
3487 pm_runtime_mark_last_busy(q->dev);
3488 pm_request_autosuspend(q->dev);
3489 spin_unlock_irq(q->queue_lock);
3490 }
3491 EXPORT_SYMBOL(blk_set_runtime_active);
3492 #endif
3493
3494 int __init blk_dev_init(void)
3495 {
3496 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3497 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3498 FIELD_SIZEOF(struct request, cmd_flags));
3499 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3500 FIELD_SIZEOF(struct bio, bi_opf));
3501
3502 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3503 kblockd_workqueue = alloc_workqueue("kblockd",
3504 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3505 if (!kblockd_workqueue)
3506 panic("Failed to create kblockd\n");
3507
3508 request_cachep = kmem_cache_create("blkdev_requests",
3509 sizeof(struct request), 0, SLAB_PANIC, NULL);
3510
3511 blk_requestq_cachep = kmem_cache_create("request_queue",
3512 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3513
3514 return 0;
3515 }