]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-core.c
block: fix plug list flushing for nomerge queues
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue - restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue() will clear the stop flag on the queue, and call
215 * the request_fn for the queue if it was in a stopped state when
216 * entered. Also see blk_stop_queue(). Queue lock must be held.
217 **/
218 void blk_start_queue(struct request_queue *q)
219 {
220 WARN_ON(!irqs_disabled());
221
222 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
223 __blk_run_queue(q);
224 }
225 EXPORT_SYMBOL(blk_start_queue);
226
227 /**
228 * blk_stop_queue - stop a queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * The Linux block layer assumes that a block driver will consume all
233 * entries on the request queue when the request_fn strategy is called.
234 * Often this will not happen, because of hardware limitations (queue
235 * depth settings). If a device driver gets a 'queue full' response,
236 * or if it simply chooses not to queue more I/O at one point, it can
237 * call this function to prevent the request_fn from being called until
238 * the driver has signalled it's ready to go again. This happens by calling
239 * blk_start_queue() to restart queue operations. Queue lock must be held.
240 **/
241 void blk_stop_queue(struct request_queue *q)
242 {
243 cancel_delayed_work(&q->delay_work);
244 queue_flag_set(QUEUE_FLAG_STOPPED, q);
245 }
246 EXPORT_SYMBOL(blk_stop_queue);
247
248 /**
249 * blk_sync_queue - cancel any pending callbacks on a queue
250 * @q: the queue
251 *
252 * Description:
253 * The block layer may perform asynchronous callback activity
254 * on a queue, such as calling the unplug function after a timeout.
255 * A block device may call blk_sync_queue to ensure that any
256 * such activity is cancelled, thus allowing it to release resources
257 * that the callbacks might use. The caller must already have made sure
258 * that its ->make_request_fn will not re-add plugging prior to calling
259 * this function.
260 *
261 * This function does not cancel any asynchronous activity arising
262 * out of elevator or throttling code. That would require elevator_exit()
263 * and blkcg_exit_queue() to be called with queue lock initialized.
264 *
265 */
266 void blk_sync_queue(struct request_queue *q)
267 {
268 del_timer_sync(&q->timeout);
269
270 if (q->mq_ops) {
271 struct blk_mq_hw_ctx *hctx;
272 int i;
273
274 queue_for_each_hw_ctx(q, hctx, i) {
275 cancel_delayed_work_sync(&hctx->run_work);
276 cancel_delayed_work_sync(&hctx->delay_work);
277 }
278 } else {
279 cancel_delayed_work_sync(&q->delay_work);
280 }
281 }
282 EXPORT_SYMBOL(blk_sync_queue);
283
284 /**
285 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
286 * @q: The queue to run
287 *
288 * Description:
289 * Invoke request handling on a queue if there are any pending requests.
290 * May be used to restart request handling after a request has completed.
291 * This variant runs the queue whether or not the queue has been
292 * stopped. Must be called with the queue lock held and interrupts
293 * disabled. See also @blk_run_queue.
294 */
295 inline void __blk_run_queue_uncond(struct request_queue *q)
296 {
297 if (unlikely(blk_queue_dead(q)))
298 return;
299
300 /*
301 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
302 * the queue lock internally. As a result multiple threads may be
303 * running such a request function concurrently. Keep track of the
304 * number of active request_fn invocations such that blk_drain_queue()
305 * can wait until all these request_fn calls have finished.
306 */
307 q->request_fn_active++;
308 q->request_fn(q);
309 q->request_fn_active--;
310 }
311 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
312
313 /**
314 * __blk_run_queue - run a single device queue
315 * @q: The queue to run
316 *
317 * Description:
318 * See @blk_run_queue. This variant must be called with the queue lock
319 * held and interrupts disabled.
320 */
321 void __blk_run_queue(struct request_queue *q)
322 {
323 if (unlikely(blk_queue_stopped(q)))
324 return;
325
326 __blk_run_queue_uncond(q);
327 }
328 EXPORT_SYMBOL(__blk_run_queue);
329
330 /**
331 * blk_run_queue_async - run a single device queue in workqueue context
332 * @q: The queue to run
333 *
334 * Description:
335 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
336 * of us. The caller must hold the queue lock.
337 */
338 void blk_run_queue_async(struct request_queue *q)
339 {
340 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
341 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
342 }
343 EXPORT_SYMBOL(blk_run_queue_async);
344
345 /**
346 * blk_run_queue - run a single device queue
347 * @q: The queue to run
348 *
349 * Description:
350 * Invoke request handling on this queue, if it has pending work to do.
351 * May be used to restart queueing when a request has completed.
352 */
353 void blk_run_queue(struct request_queue *q)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(q->queue_lock, flags);
358 __blk_run_queue(q);
359 spin_unlock_irqrestore(q->queue_lock, flags);
360 }
361 EXPORT_SYMBOL(blk_run_queue);
362
363 void blk_put_queue(struct request_queue *q)
364 {
365 kobject_put(&q->kobj);
366 }
367 EXPORT_SYMBOL(blk_put_queue);
368
369 /**
370 * __blk_drain_queue - drain requests from request_queue
371 * @q: queue to drain
372 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
373 *
374 * Drain requests from @q. If @drain_all is set, all requests are drained.
375 * If not, only ELVPRIV requests are drained. The caller is responsible
376 * for ensuring that no new requests which need to be drained are queued.
377 */
378 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
379 __releases(q->queue_lock)
380 __acquires(q->queue_lock)
381 {
382 int i;
383
384 lockdep_assert_held(q->queue_lock);
385
386 while (true) {
387 bool drain = false;
388
389 /*
390 * The caller might be trying to drain @q before its
391 * elevator is initialized.
392 */
393 if (q->elevator)
394 elv_drain_elevator(q);
395
396 blkcg_drain_queue(q);
397
398 /*
399 * This function might be called on a queue which failed
400 * driver init after queue creation or is not yet fully
401 * active yet. Some drivers (e.g. fd and loop) get unhappy
402 * in such cases. Kick queue iff dispatch queue has
403 * something on it and @q has request_fn set.
404 */
405 if (!list_empty(&q->queue_head) && q->request_fn)
406 __blk_run_queue(q);
407
408 drain |= q->nr_rqs_elvpriv;
409 drain |= q->request_fn_active;
410
411 /*
412 * Unfortunately, requests are queued at and tracked from
413 * multiple places and there's no single counter which can
414 * be drained. Check all the queues and counters.
415 */
416 if (drain_all) {
417 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
418 drain |= !list_empty(&q->queue_head);
419 for (i = 0; i < 2; i++) {
420 drain |= q->nr_rqs[i];
421 drain |= q->in_flight[i];
422 if (fq)
423 drain |= !list_empty(&fq->flush_queue[i]);
424 }
425 }
426
427 if (!drain)
428 break;
429
430 spin_unlock_irq(q->queue_lock);
431
432 msleep(10);
433
434 spin_lock_irq(q->queue_lock);
435 }
436
437 /*
438 * With queue marked dead, any woken up waiter will fail the
439 * allocation path, so the wakeup chaining is lost and we're
440 * left with hung waiters. We need to wake up those waiters.
441 */
442 if (q->request_fn) {
443 struct request_list *rl;
444
445 blk_queue_for_each_rl(rl, q)
446 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
447 wake_up_all(&rl->wait[i]);
448 }
449 }
450
451 /**
452 * blk_queue_bypass_start - enter queue bypass mode
453 * @q: queue of interest
454 *
455 * In bypass mode, only the dispatch FIFO queue of @q is used. This
456 * function makes @q enter bypass mode and drains all requests which were
457 * throttled or issued before. On return, it's guaranteed that no request
458 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
459 * inside queue or RCU read lock.
460 */
461 void blk_queue_bypass_start(struct request_queue *q)
462 {
463 spin_lock_irq(q->queue_lock);
464 q->bypass_depth++;
465 queue_flag_set(QUEUE_FLAG_BYPASS, q);
466 spin_unlock_irq(q->queue_lock);
467
468 /*
469 * Queues start drained. Skip actual draining till init is
470 * complete. This avoids lenghty delays during queue init which
471 * can happen many times during boot.
472 */
473 if (blk_queue_init_done(q)) {
474 spin_lock_irq(q->queue_lock);
475 __blk_drain_queue(q, false);
476 spin_unlock_irq(q->queue_lock);
477
478 /* ensure blk_queue_bypass() is %true inside RCU read lock */
479 synchronize_rcu();
480 }
481 }
482 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
483
484 /**
485 * blk_queue_bypass_end - leave queue bypass mode
486 * @q: queue of interest
487 *
488 * Leave bypass mode and restore the normal queueing behavior.
489 */
490 void blk_queue_bypass_end(struct request_queue *q)
491 {
492 spin_lock_irq(q->queue_lock);
493 if (!--q->bypass_depth)
494 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
495 WARN_ON_ONCE(q->bypass_depth < 0);
496 spin_unlock_irq(q->queue_lock);
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
499
500 void blk_set_queue_dying(struct request_queue *q)
501 {
502 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
503
504 if (q->mq_ops)
505 blk_mq_wake_waiters(q);
506 else {
507 struct request_list *rl;
508
509 blk_queue_for_each_rl(rl, q) {
510 if (rl->rq_pool) {
511 wake_up(&rl->wait[BLK_RW_SYNC]);
512 wake_up(&rl->wait[BLK_RW_ASYNC]);
513 }
514 }
515 }
516 }
517 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
518
519 /**
520 * blk_cleanup_queue - shutdown a request queue
521 * @q: request queue to shutdown
522 *
523 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
524 * put it. All future requests will be failed immediately with -ENODEV.
525 */
526 void blk_cleanup_queue(struct request_queue *q)
527 {
528 spinlock_t *lock = q->queue_lock;
529
530 /* mark @q DYING, no new request or merges will be allowed afterwards */
531 mutex_lock(&q->sysfs_lock);
532 blk_set_queue_dying(q);
533 spin_lock_irq(lock);
534
535 /*
536 * A dying queue is permanently in bypass mode till released. Note
537 * that, unlike blk_queue_bypass_start(), we aren't performing
538 * synchronize_rcu() after entering bypass mode to avoid the delay
539 * as some drivers create and destroy a lot of queues while
540 * probing. This is still safe because blk_release_queue() will be
541 * called only after the queue refcnt drops to zero and nothing,
542 * RCU or not, would be traversing the queue by then.
543 */
544 q->bypass_depth++;
545 queue_flag_set(QUEUE_FLAG_BYPASS, q);
546
547 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
548 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
549 queue_flag_set(QUEUE_FLAG_DYING, q);
550 spin_unlock_irq(lock);
551 mutex_unlock(&q->sysfs_lock);
552
553 /*
554 * Drain all requests queued before DYING marking. Set DEAD flag to
555 * prevent that q->request_fn() gets invoked after draining finished.
556 */
557 if (q->mq_ops) {
558 blk_mq_freeze_queue(q);
559 spin_lock_irq(lock);
560 } else {
561 spin_lock_irq(lock);
562 __blk_drain_queue(q, true);
563 }
564 queue_flag_set(QUEUE_FLAG_DEAD, q);
565 spin_unlock_irq(lock);
566
567 /* @q won't process any more request, flush async actions */
568 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
569 blk_sync_queue(q);
570
571 if (q->mq_ops)
572 blk_mq_free_queue(q);
573
574 spin_lock_irq(lock);
575 if (q->queue_lock != &q->__queue_lock)
576 q->queue_lock = &q->__queue_lock;
577 spin_unlock_irq(lock);
578
579 bdi_destroy(&q->backing_dev_info);
580
581 /* @q is and will stay empty, shutdown and put */
582 blk_put_queue(q);
583 }
584 EXPORT_SYMBOL(blk_cleanup_queue);
585
586 /* Allocate memory local to the request queue */
587 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
588 {
589 int nid = (int)(long)data;
590 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
591 }
592
593 static void free_request_struct(void *element, void *unused)
594 {
595 kmem_cache_free(request_cachep, element);
596 }
597
598 int blk_init_rl(struct request_list *rl, struct request_queue *q,
599 gfp_t gfp_mask)
600 {
601 if (unlikely(rl->rq_pool))
602 return 0;
603
604 rl->q = q;
605 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
606 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
607 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
608 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
609
610 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
611 free_request_struct,
612 (void *)(long)q->node, gfp_mask,
613 q->node);
614 if (!rl->rq_pool)
615 return -ENOMEM;
616
617 return 0;
618 }
619
620 void blk_exit_rl(struct request_list *rl)
621 {
622 if (rl->rq_pool)
623 mempool_destroy(rl->rq_pool);
624 }
625
626 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
627 {
628 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
629 }
630 EXPORT_SYMBOL(blk_alloc_queue);
631
632 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
633 {
634 struct request_queue *q;
635 int err;
636
637 q = kmem_cache_alloc_node(blk_requestq_cachep,
638 gfp_mask | __GFP_ZERO, node_id);
639 if (!q)
640 return NULL;
641
642 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
643 if (q->id < 0)
644 goto fail_q;
645
646 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
647 if (!q->bio_split)
648 goto fail_id;
649
650 q->backing_dev_info.ra_pages =
651 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
652 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
653 q->backing_dev_info.name = "block";
654 q->node = node_id;
655
656 err = bdi_init(&q->backing_dev_info);
657 if (err)
658 goto fail_split;
659
660 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
661 laptop_mode_timer_fn, (unsigned long) q);
662 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
663 INIT_LIST_HEAD(&q->queue_head);
664 INIT_LIST_HEAD(&q->timeout_list);
665 INIT_LIST_HEAD(&q->icq_list);
666 #ifdef CONFIG_BLK_CGROUP
667 INIT_LIST_HEAD(&q->blkg_list);
668 #endif
669 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
670
671 kobject_init(&q->kobj, &blk_queue_ktype);
672
673 mutex_init(&q->sysfs_lock);
674 spin_lock_init(&q->__queue_lock);
675
676 /*
677 * By default initialize queue_lock to internal lock and driver can
678 * override it later if need be.
679 */
680 q->queue_lock = &q->__queue_lock;
681
682 /*
683 * A queue starts its life with bypass turned on to avoid
684 * unnecessary bypass on/off overhead and nasty surprises during
685 * init. The initial bypass will be finished when the queue is
686 * registered by blk_register_queue().
687 */
688 q->bypass_depth = 1;
689 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
690
691 init_waitqueue_head(&q->mq_freeze_wq);
692
693 if (blkcg_init_queue(q))
694 goto fail_bdi;
695
696 return q;
697
698 fail_bdi:
699 bdi_destroy(&q->backing_dev_info);
700 fail_split:
701 bioset_free(q->bio_split);
702 fail_id:
703 ida_simple_remove(&blk_queue_ida, q->id);
704 fail_q:
705 kmem_cache_free(blk_requestq_cachep, q);
706 return NULL;
707 }
708 EXPORT_SYMBOL(blk_alloc_queue_node);
709
710 /**
711 * blk_init_queue - prepare a request queue for use with a block device
712 * @rfn: The function to be called to process requests that have been
713 * placed on the queue.
714 * @lock: Request queue spin lock
715 *
716 * Description:
717 * If a block device wishes to use the standard request handling procedures,
718 * which sorts requests and coalesces adjacent requests, then it must
719 * call blk_init_queue(). The function @rfn will be called when there
720 * are requests on the queue that need to be processed. If the device
721 * supports plugging, then @rfn may not be called immediately when requests
722 * are available on the queue, but may be called at some time later instead.
723 * Plugged queues are generally unplugged when a buffer belonging to one
724 * of the requests on the queue is needed, or due to memory pressure.
725 *
726 * @rfn is not required, or even expected, to remove all requests off the
727 * queue, but only as many as it can handle at a time. If it does leave
728 * requests on the queue, it is responsible for arranging that the requests
729 * get dealt with eventually.
730 *
731 * The queue spin lock must be held while manipulating the requests on the
732 * request queue; this lock will be taken also from interrupt context, so irq
733 * disabling is needed for it.
734 *
735 * Function returns a pointer to the initialized request queue, or %NULL if
736 * it didn't succeed.
737 *
738 * Note:
739 * blk_init_queue() must be paired with a blk_cleanup_queue() call
740 * when the block device is deactivated (such as at module unload).
741 **/
742
743 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
744 {
745 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
746 }
747 EXPORT_SYMBOL(blk_init_queue);
748
749 struct request_queue *
750 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
751 {
752 struct request_queue *uninit_q, *q;
753
754 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
755 if (!uninit_q)
756 return NULL;
757
758 q = blk_init_allocated_queue(uninit_q, rfn, lock);
759 if (!q)
760 blk_cleanup_queue(uninit_q);
761
762 return q;
763 }
764 EXPORT_SYMBOL(blk_init_queue_node);
765
766 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
767
768 struct request_queue *
769 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
770 spinlock_t *lock)
771 {
772 if (!q)
773 return NULL;
774
775 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
776 if (!q->fq)
777 return NULL;
778
779 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
780 goto fail;
781
782 q->request_fn = rfn;
783 q->prep_rq_fn = NULL;
784 q->unprep_rq_fn = NULL;
785 q->queue_flags |= QUEUE_FLAG_DEFAULT;
786
787 /* Override internal queue lock with supplied lock pointer */
788 if (lock)
789 q->queue_lock = lock;
790
791 /*
792 * This also sets hw/phys segments, boundary and size
793 */
794 blk_queue_make_request(q, blk_queue_bio);
795
796 q->sg_reserved_size = INT_MAX;
797
798 /* Protect q->elevator from elevator_change */
799 mutex_lock(&q->sysfs_lock);
800
801 /* init elevator */
802 if (elevator_init(q, NULL)) {
803 mutex_unlock(&q->sysfs_lock);
804 goto fail;
805 }
806
807 mutex_unlock(&q->sysfs_lock);
808
809 return q;
810
811 fail:
812 blk_free_flush_queue(q->fq);
813 return NULL;
814 }
815 EXPORT_SYMBOL(blk_init_allocated_queue);
816
817 bool blk_get_queue(struct request_queue *q)
818 {
819 if (likely(!blk_queue_dying(q))) {
820 __blk_get_queue(q);
821 return true;
822 }
823
824 return false;
825 }
826 EXPORT_SYMBOL(blk_get_queue);
827
828 static inline void blk_free_request(struct request_list *rl, struct request *rq)
829 {
830 if (rq->cmd_flags & REQ_ELVPRIV) {
831 elv_put_request(rl->q, rq);
832 if (rq->elv.icq)
833 put_io_context(rq->elv.icq->ioc);
834 }
835
836 mempool_free(rq, rl->rq_pool);
837 }
838
839 /*
840 * ioc_batching returns true if the ioc is a valid batching request and
841 * should be given priority access to a request.
842 */
843 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
844 {
845 if (!ioc)
846 return 0;
847
848 /*
849 * Make sure the process is able to allocate at least 1 request
850 * even if the batch times out, otherwise we could theoretically
851 * lose wakeups.
852 */
853 return ioc->nr_batch_requests == q->nr_batching ||
854 (ioc->nr_batch_requests > 0
855 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
856 }
857
858 /*
859 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
860 * will cause the process to be a "batcher" on all queues in the system. This
861 * is the behaviour we want though - once it gets a wakeup it should be given
862 * a nice run.
863 */
864 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
865 {
866 if (!ioc || ioc_batching(q, ioc))
867 return;
868
869 ioc->nr_batch_requests = q->nr_batching;
870 ioc->last_waited = jiffies;
871 }
872
873 static void __freed_request(struct request_list *rl, int sync)
874 {
875 struct request_queue *q = rl->q;
876
877 if (rl->count[sync] < queue_congestion_off_threshold(q))
878 blk_clear_congested(rl, sync);
879
880 if (rl->count[sync] + 1 <= q->nr_requests) {
881 if (waitqueue_active(&rl->wait[sync]))
882 wake_up(&rl->wait[sync]);
883
884 blk_clear_rl_full(rl, sync);
885 }
886 }
887
888 /*
889 * A request has just been released. Account for it, update the full and
890 * congestion status, wake up any waiters. Called under q->queue_lock.
891 */
892 static void freed_request(struct request_list *rl, unsigned int flags)
893 {
894 struct request_queue *q = rl->q;
895 int sync = rw_is_sync(flags);
896
897 q->nr_rqs[sync]--;
898 rl->count[sync]--;
899 if (flags & REQ_ELVPRIV)
900 q->nr_rqs_elvpriv--;
901
902 __freed_request(rl, sync);
903
904 if (unlikely(rl->starved[sync ^ 1]))
905 __freed_request(rl, sync ^ 1);
906 }
907
908 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
909 {
910 struct request_list *rl;
911 int on_thresh, off_thresh;
912
913 spin_lock_irq(q->queue_lock);
914 q->nr_requests = nr;
915 blk_queue_congestion_threshold(q);
916 on_thresh = queue_congestion_on_threshold(q);
917 off_thresh = queue_congestion_off_threshold(q);
918
919 blk_queue_for_each_rl(rl, q) {
920 if (rl->count[BLK_RW_SYNC] >= on_thresh)
921 blk_set_congested(rl, BLK_RW_SYNC);
922 else if (rl->count[BLK_RW_SYNC] < off_thresh)
923 blk_clear_congested(rl, BLK_RW_SYNC);
924
925 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
926 blk_set_congested(rl, BLK_RW_ASYNC);
927 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
928 blk_clear_congested(rl, BLK_RW_ASYNC);
929
930 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
931 blk_set_rl_full(rl, BLK_RW_SYNC);
932 } else {
933 blk_clear_rl_full(rl, BLK_RW_SYNC);
934 wake_up(&rl->wait[BLK_RW_SYNC]);
935 }
936
937 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
938 blk_set_rl_full(rl, BLK_RW_ASYNC);
939 } else {
940 blk_clear_rl_full(rl, BLK_RW_ASYNC);
941 wake_up(&rl->wait[BLK_RW_ASYNC]);
942 }
943 }
944
945 spin_unlock_irq(q->queue_lock);
946 return 0;
947 }
948
949 /*
950 * Determine if elevator data should be initialized when allocating the
951 * request associated with @bio.
952 */
953 static bool blk_rq_should_init_elevator(struct bio *bio)
954 {
955 if (!bio)
956 return true;
957
958 /*
959 * Flush requests do not use the elevator so skip initialization.
960 * This allows a request to share the flush and elevator data.
961 */
962 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
963 return false;
964
965 return true;
966 }
967
968 /**
969 * rq_ioc - determine io_context for request allocation
970 * @bio: request being allocated is for this bio (can be %NULL)
971 *
972 * Determine io_context to use for request allocation for @bio. May return
973 * %NULL if %current->io_context doesn't exist.
974 */
975 static struct io_context *rq_ioc(struct bio *bio)
976 {
977 #ifdef CONFIG_BLK_CGROUP
978 if (bio && bio->bi_ioc)
979 return bio->bi_ioc;
980 #endif
981 return current->io_context;
982 }
983
984 /**
985 * __get_request - get a free request
986 * @rl: request list to allocate from
987 * @rw_flags: RW and SYNC flags
988 * @bio: bio to allocate request for (can be %NULL)
989 * @gfp_mask: allocation mask
990 *
991 * Get a free request from @q. This function may fail under memory
992 * pressure or if @q is dead.
993 *
994 * Must be called with @q->queue_lock held and,
995 * Returns ERR_PTR on failure, with @q->queue_lock held.
996 * Returns request pointer on success, with @q->queue_lock *not held*.
997 */
998 static struct request *__get_request(struct request_list *rl, int rw_flags,
999 struct bio *bio, gfp_t gfp_mask)
1000 {
1001 struct request_queue *q = rl->q;
1002 struct request *rq;
1003 struct elevator_type *et = q->elevator->type;
1004 struct io_context *ioc = rq_ioc(bio);
1005 struct io_cq *icq = NULL;
1006 const bool is_sync = rw_is_sync(rw_flags) != 0;
1007 int may_queue;
1008
1009 if (unlikely(blk_queue_dying(q)))
1010 return ERR_PTR(-ENODEV);
1011
1012 may_queue = elv_may_queue(q, rw_flags);
1013 if (may_queue == ELV_MQUEUE_NO)
1014 goto rq_starved;
1015
1016 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1017 if (rl->count[is_sync]+1 >= q->nr_requests) {
1018 /*
1019 * The queue will fill after this allocation, so set
1020 * it as full, and mark this process as "batching".
1021 * This process will be allowed to complete a batch of
1022 * requests, others will be blocked.
1023 */
1024 if (!blk_rl_full(rl, is_sync)) {
1025 ioc_set_batching(q, ioc);
1026 blk_set_rl_full(rl, is_sync);
1027 } else {
1028 if (may_queue != ELV_MQUEUE_MUST
1029 && !ioc_batching(q, ioc)) {
1030 /*
1031 * The queue is full and the allocating
1032 * process is not a "batcher", and not
1033 * exempted by the IO scheduler
1034 */
1035 return ERR_PTR(-ENOMEM);
1036 }
1037 }
1038 }
1039 blk_set_congested(rl, is_sync);
1040 }
1041
1042 /*
1043 * Only allow batching queuers to allocate up to 50% over the defined
1044 * limit of requests, otherwise we could have thousands of requests
1045 * allocated with any setting of ->nr_requests
1046 */
1047 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1048 return ERR_PTR(-ENOMEM);
1049
1050 q->nr_rqs[is_sync]++;
1051 rl->count[is_sync]++;
1052 rl->starved[is_sync] = 0;
1053
1054 /*
1055 * Decide whether the new request will be managed by elevator. If
1056 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1057 * prevent the current elevator from being destroyed until the new
1058 * request is freed. This guarantees icq's won't be destroyed and
1059 * makes creating new ones safe.
1060 *
1061 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1062 * it will be created after releasing queue_lock.
1063 */
1064 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1065 rw_flags |= REQ_ELVPRIV;
1066 q->nr_rqs_elvpriv++;
1067 if (et->icq_cache && ioc)
1068 icq = ioc_lookup_icq(ioc, q);
1069 }
1070
1071 if (blk_queue_io_stat(q))
1072 rw_flags |= REQ_IO_STAT;
1073 spin_unlock_irq(q->queue_lock);
1074
1075 /* allocate and init request */
1076 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1077 if (!rq)
1078 goto fail_alloc;
1079
1080 blk_rq_init(q, rq);
1081 blk_rq_set_rl(rq, rl);
1082 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1083
1084 /* init elvpriv */
1085 if (rw_flags & REQ_ELVPRIV) {
1086 if (unlikely(et->icq_cache && !icq)) {
1087 if (ioc)
1088 icq = ioc_create_icq(ioc, q, gfp_mask);
1089 if (!icq)
1090 goto fail_elvpriv;
1091 }
1092
1093 rq->elv.icq = icq;
1094 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1095 goto fail_elvpriv;
1096
1097 /* @rq->elv.icq holds io_context until @rq is freed */
1098 if (icq)
1099 get_io_context(icq->ioc);
1100 }
1101 out:
1102 /*
1103 * ioc may be NULL here, and ioc_batching will be false. That's
1104 * OK, if the queue is under the request limit then requests need
1105 * not count toward the nr_batch_requests limit. There will always
1106 * be some limit enforced by BLK_BATCH_TIME.
1107 */
1108 if (ioc_batching(q, ioc))
1109 ioc->nr_batch_requests--;
1110
1111 trace_block_getrq(q, bio, rw_flags & 1);
1112 return rq;
1113
1114 fail_elvpriv:
1115 /*
1116 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1117 * and may fail indefinitely under memory pressure and thus
1118 * shouldn't stall IO. Treat this request as !elvpriv. This will
1119 * disturb iosched and blkcg but weird is bettern than dead.
1120 */
1121 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1122 __func__, dev_name(q->backing_dev_info.dev));
1123
1124 rq->cmd_flags &= ~REQ_ELVPRIV;
1125 rq->elv.icq = NULL;
1126
1127 spin_lock_irq(q->queue_lock);
1128 q->nr_rqs_elvpriv--;
1129 spin_unlock_irq(q->queue_lock);
1130 goto out;
1131
1132 fail_alloc:
1133 /*
1134 * Allocation failed presumably due to memory. Undo anything we
1135 * might have messed up.
1136 *
1137 * Allocating task should really be put onto the front of the wait
1138 * queue, but this is pretty rare.
1139 */
1140 spin_lock_irq(q->queue_lock);
1141 freed_request(rl, rw_flags);
1142
1143 /*
1144 * in the very unlikely event that allocation failed and no
1145 * requests for this direction was pending, mark us starved so that
1146 * freeing of a request in the other direction will notice
1147 * us. another possible fix would be to split the rq mempool into
1148 * READ and WRITE
1149 */
1150 rq_starved:
1151 if (unlikely(rl->count[is_sync] == 0))
1152 rl->starved[is_sync] = 1;
1153 return ERR_PTR(-ENOMEM);
1154 }
1155
1156 /**
1157 * get_request - get a free request
1158 * @q: request_queue to allocate request from
1159 * @rw_flags: RW and SYNC flags
1160 * @bio: bio to allocate request for (can be %NULL)
1161 * @gfp_mask: allocation mask
1162 *
1163 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1164 * function keeps retrying under memory pressure and fails iff @q is dead.
1165 *
1166 * Must be called with @q->queue_lock held and,
1167 * Returns ERR_PTR on failure, with @q->queue_lock held.
1168 * Returns request pointer on success, with @q->queue_lock *not held*.
1169 */
1170 static struct request *get_request(struct request_queue *q, int rw_flags,
1171 struct bio *bio, gfp_t gfp_mask)
1172 {
1173 const bool is_sync = rw_is_sync(rw_flags) != 0;
1174 DEFINE_WAIT(wait);
1175 struct request_list *rl;
1176 struct request *rq;
1177
1178 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1179 retry:
1180 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1181 if (!IS_ERR(rq))
1182 return rq;
1183
1184 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1185 blk_put_rl(rl);
1186 return rq;
1187 }
1188
1189 /* wait on @rl and retry */
1190 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1191 TASK_UNINTERRUPTIBLE);
1192
1193 trace_block_sleeprq(q, bio, rw_flags & 1);
1194
1195 spin_unlock_irq(q->queue_lock);
1196 io_schedule();
1197
1198 /*
1199 * After sleeping, we become a "batching" process and will be able
1200 * to allocate at least one request, and up to a big batch of them
1201 * for a small period time. See ioc_batching, ioc_set_batching
1202 */
1203 ioc_set_batching(q, current->io_context);
1204
1205 spin_lock_irq(q->queue_lock);
1206 finish_wait(&rl->wait[is_sync], &wait);
1207
1208 goto retry;
1209 }
1210
1211 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1212 gfp_t gfp_mask)
1213 {
1214 struct request *rq;
1215
1216 BUG_ON(rw != READ && rw != WRITE);
1217
1218 /* create ioc upfront */
1219 create_io_context(gfp_mask, q->node);
1220
1221 spin_lock_irq(q->queue_lock);
1222 rq = get_request(q, rw, NULL, gfp_mask);
1223 if (IS_ERR(rq))
1224 spin_unlock_irq(q->queue_lock);
1225 /* q->queue_lock is unlocked at this point */
1226
1227 return rq;
1228 }
1229
1230 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1231 {
1232 if (q->mq_ops)
1233 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1234 else
1235 return blk_old_get_request(q, rw, gfp_mask);
1236 }
1237 EXPORT_SYMBOL(blk_get_request);
1238
1239 /**
1240 * blk_make_request - given a bio, allocate a corresponding struct request.
1241 * @q: target request queue
1242 * @bio: The bio describing the memory mappings that will be submitted for IO.
1243 * It may be a chained-bio properly constructed by block/bio layer.
1244 * @gfp_mask: gfp flags to be used for memory allocation
1245 *
1246 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1247 * type commands. Where the struct request needs to be farther initialized by
1248 * the caller. It is passed a &struct bio, which describes the memory info of
1249 * the I/O transfer.
1250 *
1251 * The caller of blk_make_request must make sure that bi_io_vec
1252 * are set to describe the memory buffers. That bio_data_dir() will return
1253 * the needed direction of the request. (And all bio's in the passed bio-chain
1254 * are properly set accordingly)
1255 *
1256 * If called under none-sleepable conditions, mapped bio buffers must not
1257 * need bouncing, by calling the appropriate masked or flagged allocator,
1258 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1259 * BUG.
1260 *
1261 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1262 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1263 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1264 * completion of a bio that hasn't been submitted yet, thus resulting in a
1265 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1266 * of bio_alloc(), as that avoids the mempool deadlock.
1267 * If possible a big IO should be split into smaller parts when allocation
1268 * fails. Partial allocation should not be an error, or you risk a live-lock.
1269 */
1270 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1271 gfp_t gfp_mask)
1272 {
1273 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1274
1275 if (IS_ERR(rq))
1276 return rq;
1277
1278 blk_rq_set_block_pc(rq);
1279
1280 for_each_bio(bio) {
1281 struct bio *bounce_bio = bio;
1282 int ret;
1283
1284 blk_queue_bounce(q, &bounce_bio);
1285 ret = blk_rq_append_bio(q, rq, bounce_bio);
1286 if (unlikely(ret)) {
1287 blk_put_request(rq);
1288 return ERR_PTR(ret);
1289 }
1290 }
1291
1292 return rq;
1293 }
1294 EXPORT_SYMBOL(blk_make_request);
1295
1296 /**
1297 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1298 * @rq: request to be initialized
1299 *
1300 */
1301 void blk_rq_set_block_pc(struct request *rq)
1302 {
1303 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1304 rq->__data_len = 0;
1305 rq->__sector = (sector_t) -1;
1306 rq->bio = rq->biotail = NULL;
1307 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1308 }
1309 EXPORT_SYMBOL(blk_rq_set_block_pc);
1310
1311 /**
1312 * blk_requeue_request - put a request back on queue
1313 * @q: request queue where request should be inserted
1314 * @rq: request to be inserted
1315 *
1316 * Description:
1317 * Drivers often keep queueing requests until the hardware cannot accept
1318 * more, when that condition happens we need to put the request back
1319 * on the queue. Must be called with queue lock held.
1320 */
1321 void blk_requeue_request(struct request_queue *q, struct request *rq)
1322 {
1323 blk_delete_timer(rq);
1324 blk_clear_rq_complete(rq);
1325 trace_block_rq_requeue(q, rq);
1326
1327 if (rq->cmd_flags & REQ_QUEUED)
1328 blk_queue_end_tag(q, rq);
1329
1330 BUG_ON(blk_queued_rq(rq));
1331
1332 elv_requeue_request(q, rq);
1333 }
1334 EXPORT_SYMBOL(blk_requeue_request);
1335
1336 static void add_acct_request(struct request_queue *q, struct request *rq,
1337 int where)
1338 {
1339 blk_account_io_start(rq, true);
1340 __elv_add_request(q, rq, where);
1341 }
1342
1343 static void part_round_stats_single(int cpu, struct hd_struct *part,
1344 unsigned long now)
1345 {
1346 int inflight;
1347
1348 if (now == part->stamp)
1349 return;
1350
1351 inflight = part_in_flight(part);
1352 if (inflight) {
1353 __part_stat_add(cpu, part, time_in_queue,
1354 inflight * (now - part->stamp));
1355 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1356 }
1357 part->stamp = now;
1358 }
1359
1360 /**
1361 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1362 * @cpu: cpu number for stats access
1363 * @part: target partition
1364 *
1365 * The average IO queue length and utilisation statistics are maintained
1366 * by observing the current state of the queue length and the amount of
1367 * time it has been in this state for.
1368 *
1369 * Normally, that accounting is done on IO completion, but that can result
1370 * in more than a second's worth of IO being accounted for within any one
1371 * second, leading to >100% utilisation. To deal with that, we call this
1372 * function to do a round-off before returning the results when reading
1373 * /proc/diskstats. This accounts immediately for all queue usage up to
1374 * the current jiffies and restarts the counters again.
1375 */
1376 void part_round_stats(int cpu, struct hd_struct *part)
1377 {
1378 unsigned long now = jiffies;
1379
1380 if (part->partno)
1381 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1382 part_round_stats_single(cpu, part, now);
1383 }
1384 EXPORT_SYMBOL_GPL(part_round_stats);
1385
1386 #ifdef CONFIG_PM
1387 static void blk_pm_put_request(struct request *rq)
1388 {
1389 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1390 pm_runtime_mark_last_busy(rq->q->dev);
1391 }
1392 #else
1393 static inline void blk_pm_put_request(struct request *rq) {}
1394 #endif
1395
1396 /*
1397 * queue lock must be held
1398 */
1399 void __blk_put_request(struct request_queue *q, struct request *req)
1400 {
1401 if (unlikely(!q))
1402 return;
1403
1404 if (q->mq_ops) {
1405 blk_mq_free_request(req);
1406 return;
1407 }
1408
1409 blk_pm_put_request(req);
1410
1411 elv_completed_request(q, req);
1412
1413 /* this is a bio leak */
1414 WARN_ON(req->bio != NULL);
1415
1416 /*
1417 * Request may not have originated from ll_rw_blk. if not,
1418 * it didn't come out of our reserved rq pools
1419 */
1420 if (req->cmd_flags & REQ_ALLOCED) {
1421 unsigned int flags = req->cmd_flags;
1422 struct request_list *rl = blk_rq_rl(req);
1423
1424 BUG_ON(!list_empty(&req->queuelist));
1425 BUG_ON(ELV_ON_HASH(req));
1426
1427 blk_free_request(rl, req);
1428 freed_request(rl, flags);
1429 blk_put_rl(rl);
1430 }
1431 }
1432 EXPORT_SYMBOL_GPL(__blk_put_request);
1433
1434 void blk_put_request(struct request *req)
1435 {
1436 struct request_queue *q = req->q;
1437
1438 if (q->mq_ops)
1439 blk_mq_free_request(req);
1440 else {
1441 unsigned long flags;
1442
1443 spin_lock_irqsave(q->queue_lock, flags);
1444 __blk_put_request(q, req);
1445 spin_unlock_irqrestore(q->queue_lock, flags);
1446 }
1447 }
1448 EXPORT_SYMBOL(blk_put_request);
1449
1450 /**
1451 * blk_add_request_payload - add a payload to a request
1452 * @rq: request to update
1453 * @page: page backing the payload
1454 * @len: length of the payload.
1455 *
1456 * This allows to later add a payload to an already submitted request by
1457 * a block driver. The driver needs to take care of freeing the payload
1458 * itself.
1459 *
1460 * Note that this is a quite horrible hack and nothing but handling of
1461 * discard requests should ever use it.
1462 */
1463 void blk_add_request_payload(struct request *rq, struct page *page,
1464 unsigned int len)
1465 {
1466 struct bio *bio = rq->bio;
1467
1468 bio->bi_io_vec->bv_page = page;
1469 bio->bi_io_vec->bv_offset = 0;
1470 bio->bi_io_vec->bv_len = len;
1471
1472 bio->bi_iter.bi_size = len;
1473 bio->bi_vcnt = 1;
1474 bio->bi_phys_segments = 1;
1475
1476 rq->__data_len = rq->resid_len = len;
1477 rq->nr_phys_segments = 1;
1478 }
1479 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1480
1481 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
1483 {
1484 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1485
1486 if (!ll_back_merge_fn(q, req, bio))
1487 return false;
1488
1489 trace_block_bio_backmerge(q, req, bio);
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
1494 req->biotail->bi_next = bio;
1495 req->biotail = bio;
1496 req->__data_len += bio->bi_iter.bi_size;
1497 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1498
1499 blk_account_io_start(req, false);
1500 return true;
1501 }
1502
1503 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1504 struct bio *bio)
1505 {
1506 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1507
1508 if (!ll_front_merge_fn(q, req, bio))
1509 return false;
1510
1511 trace_block_bio_frontmerge(q, req, bio);
1512
1513 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1514 blk_rq_set_mixed_merge(req);
1515
1516 bio->bi_next = req->bio;
1517 req->bio = bio;
1518
1519 req->__sector = bio->bi_iter.bi_sector;
1520 req->__data_len += bio->bi_iter.bi_size;
1521 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1522
1523 blk_account_io_start(req, false);
1524 return true;
1525 }
1526
1527 /**
1528 * blk_attempt_plug_merge - try to merge with %current's plugged list
1529 * @q: request_queue new bio is being queued at
1530 * @bio: new bio being queued
1531 * @request_count: out parameter for number of traversed plugged requests
1532 *
1533 * Determine whether @bio being queued on @q can be merged with a request
1534 * on %current's plugged list. Returns %true if merge was successful,
1535 * otherwise %false.
1536 *
1537 * Plugging coalesces IOs from the same issuer for the same purpose without
1538 * going through @q->queue_lock. As such it's more of an issuing mechanism
1539 * than scheduling, and the request, while may have elvpriv data, is not
1540 * added on the elevator at this point. In addition, we don't have
1541 * reliable access to the elevator outside queue lock. Only check basic
1542 * merging parameters without querying the elevator.
1543 *
1544 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1545 */
1546 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1547 unsigned int *request_count,
1548 struct request **same_queue_rq)
1549 {
1550 struct blk_plug *plug;
1551 struct request *rq;
1552 bool ret = false;
1553 struct list_head *plug_list;
1554
1555 plug = current->plug;
1556 if (!plug)
1557 goto out;
1558 *request_count = 0;
1559
1560 if (q->mq_ops)
1561 plug_list = &plug->mq_list;
1562 else
1563 plug_list = &plug->list;
1564
1565 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1566 int el_ret;
1567
1568 if (rq->q == q) {
1569 (*request_count)++;
1570 /*
1571 * Only blk-mq multiple hardware queues case checks the
1572 * rq in the same queue, there should be only one such
1573 * rq in a queue
1574 **/
1575 if (same_queue_rq)
1576 *same_queue_rq = rq;
1577 }
1578
1579 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1580 continue;
1581
1582 el_ret = blk_try_merge(rq, bio);
1583 if (el_ret == ELEVATOR_BACK_MERGE) {
1584 ret = bio_attempt_back_merge(q, rq, bio);
1585 if (ret)
1586 break;
1587 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1588 ret = bio_attempt_front_merge(q, rq, bio);
1589 if (ret)
1590 break;
1591 }
1592 }
1593 out:
1594 return ret;
1595 }
1596
1597 unsigned int blk_plug_queued_count(struct request_queue *q)
1598 {
1599 struct blk_plug *plug;
1600 struct request *rq;
1601 struct list_head *plug_list;
1602 unsigned int ret = 0;
1603
1604 plug = current->plug;
1605 if (!plug)
1606 goto out;
1607
1608 if (q->mq_ops)
1609 plug_list = &plug->mq_list;
1610 else
1611 plug_list = &plug->list;
1612
1613 list_for_each_entry(rq, plug_list, queuelist) {
1614 if (rq->q == q)
1615 ret++;
1616 }
1617 out:
1618 return ret;
1619 }
1620
1621 void init_request_from_bio(struct request *req, struct bio *bio)
1622 {
1623 req->cmd_type = REQ_TYPE_FS;
1624
1625 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1626 if (bio->bi_rw & REQ_RAHEAD)
1627 req->cmd_flags |= REQ_FAILFAST_MASK;
1628
1629 req->errors = 0;
1630 req->__sector = bio->bi_iter.bi_sector;
1631 req->ioprio = bio_prio(bio);
1632 blk_rq_bio_prep(req->q, req, bio);
1633 }
1634
1635 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1636 {
1637 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1638 struct blk_plug *plug;
1639 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1640 struct request *req;
1641 unsigned int request_count = 0;
1642
1643 blk_queue_split(q, &bio, q->bio_split);
1644
1645 /*
1646 * low level driver can indicate that it wants pages above a
1647 * certain limit bounced to low memory (ie for highmem, or even
1648 * ISA dma in theory)
1649 */
1650 blk_queue_bounce(q, &bio);
1651
1652 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1653 bio->bi_error = -EIO;
1654 bio_endio(bio);
1655 return;
1656 }
1657
1658 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1659 spin_lock_irq(q->queue_lock);
1660 where = ELEVATOR_INSERT_FLUSH;
1661 goto get_rq;
1662 }
1663
1664 /*
1665 * Check if we can merge with the plugged list before grabbing
1666 * any locks.
1667 */
1668 if (!blk_queue_nomerges(q)) {
1669 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1670 return;
1671 } else
1672 request_count = blk_plug_queued_count(q);
1673
1674 spin_lock_irq(q->queue_lock);
1675
1676 el_ret = elv_merge(q, &req, bio);
1677 if (el_ret == ELEVATOR_BACK_MERGE) {
1678 if (bio_attempt_back_merge(q, req, bio)) {
1679 elv_bio_merged(q, req, bio);
1680 if (!attempt_back_merge(q, req))
1681 elv_merged_request(q, req, el_ret);
1682 goto out_unlock;
1683 }
1684 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1685 if (bio_attempt_front_merge(q, req, bio)) {
1686 elv_bio_merged(q, req, bio);
1687 if (!attempt_front_merge(q, req))
1688 elv_merged_request(q, req, el_ret);
1689 goto out_unlock;
1690 }
1691 }
1692
1693 get_rq:
1694 /*
1695 * This sync check and mask will be re-done in init_request_from_bio(),
1696 * but we need to set it earlier to expose the sync flag to the
1697 * rq allocator and io schedulers.
1698 */
1699 rw_flags = bio_data_dir(bio);
1700 if (sync)
1701 rw_flags |= REQ_SYNC;
1702
1703 /*
1704 * Grab a free request. This is might sleep but can not fail.
1705 * Returns with the queue unlocked.
1706 */
1707 req = get_request(q, rw_flags, bio, GFP_NOIO);
1708 if (IS_ERR(req)) {
1709 bio->bi_error = PTR_ERR(req);
1710 bio_endio(bio);
1711 goto out_unlock;
1712 }
1713
1714 /*
1715 * After dropping the lock and possibly sleeping here, our request
1716 * may now be mergeable after it had proven unmergeable (above).
1717 * We don't worry about that case for efficiency. It won't happen
1718 * often, and the elevators are able to handle it.
1719 */
1720 init_request_from_bio(req, bio);
1721
1722 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1723 req->cpu = raw_smp_processor_id();
1724
1725 plug = current->plug;
1726 if (plug) {
1727 /*
1728 * If this is the first request added after a plug, fire
1729 * of a plug trace.
1730 */
1731 if (!request_count)
1732 trace_block_plug(q);
1733 else {
1734 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1735 blk_flush_plug_list(plug, false);
1736 trace_block_plug(q);
1737 }
1738 }
1739 list_add_tail(&req->queuelist, &plug->list);
1740 blk_account_io_start(req, true);
1741 } else {
1742 spin_lock_irq(q->queue_lock);
1743 add_acct_request(q, req, where);
1744 __blk_run_queue(q);
1745 out_unlock:
1746 spin_unlock_irq(q->queue_lock);
1747 }
1748 }
1749
1750 /*
1751 * If bio->bi_dev is a partition, remap the location
1752 */
1753 static inline void blk_partition_remap(struct bio *bio)
1754 {
1755 struct block_device *bdev = bio->bi_bdev;
1756
1757 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1758 struct hd_struct *p = bdev->bd_part;
1759
1760 bio->bi_iter.bi_sector += p->start_sect;
1761 bio->bi_bdev = bdev->bd_contains;
1762
1763 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1764 bdev->bd_dev,
1765 bio->bi_iter.bi_sector - p->start_sect);
1766 }
1767 }
1768
1769 static void handle_bad_sector(struct bio *bio)
1770 {
1771 char b[BDEVNAME_SIZE];
1772
1773 printk(KERN_INFO "attempt to access beyond end of device\n");
1774 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1775 bdevname(bio->bi_bdev, b),
1776 bio->bi_rw,
1777 (unsigned long long)bio_end_sector(bio),
1778 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1779 }
1780
1781 #ifdef CONFIG_FAIL_MAKE_REQUEST
1782
1783 static DECLARE_FAULT_ATTR(fail_make_request);
1784
1785 static int __init setup_fail_make_request(char *str)
1786 {
1787 return setup_fault_attr(&fail_make_request, str);
1788 }
1789 __setup("fail_make_request=", setup_fail_make_request);
1790
1791 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1792 {
1793 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1794 }
1795
1796 static int __init fail_make_request_debugfs(void)
1797 {
1798 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1799 NULL, &fail_make_request);
1800
1801 return PTR_ERR_OR_ZERO(dir);
1802 }
1803
1804 late_initcall(fail_make_request_debugfs);
1805
1806 #else /* CONFIG_FAIL_MAKE_REQUEST */
1807
1808 static inline bool should_fail_request(struct hd_struct *part,
1809 unsigned int bytes)
1810 {
1811 return false;
1812 }
1813
1814 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1815
1816 /*
1817 * Check whether this bio extends beyond the end of the device.
1818 */
1819 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1820 {
1821 sector_t maxsector;
1822
1823 if (!nr_sectors)
1824 return 0;
1825
1826 /* Test device or partition size, when known. */
1827 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1828 if (maxsector) {
1829 sector_t sector = bio->bi_iter.bi_sector;
1830
1831 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1832 /*
1833 * This may well happen - the kernel calls bread()
1834 * without checking the size of the device, e.g., when
1835 * mounting a device.
1836 */
1837 handle_bad_sector(bio);
1838 return 1;
1839 }
1840 }
1841
1842 return 0;
1843 }
1844
1845 static noinline_for_stack bool
1846 generic_make_request_checks(struct bio *bio)
1847 {
1848 struct request_queue *q;
1849 int nr_sectors = bio_sectors(bio);
1850 int err = -EIO;
1851 char b[BDEVNAME_SIZE];
1852 struct hd_struct *part;
1853
1854 might_sleep();
1855
1856 if (bio_check_eod(bio, nr_sectors))
1857 goto end_io;
1858
1859 q = bdev_get_queue(bio->bi_bdev);
1860 if (unlikely(!q)) {
1861 printk(KERN_ERR
1862 "generic_make_request: Trying to access "
1863 "nonexistent block-device %s (%Lu)\n",
1864 bdevname(bio->bi_bdev, b),
1865 (long long) bio->bi_iter.bi_sector);
1866 goto end_io;
1867 }
1868
1869 part = bio->bi_bdev->bd_part;
1870 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1871 should_fail_request(&part_to_disk(part)->part0,
1872 bio->bi_iter.bi_size))
1873 goto end_io;
1874
1875 /*
1876 * If this device has partitions, remap block n
1877 * of partition p to block n+start(p) of the disk.
1878 */
1879 blk_partition_remap(bio);
1880
1881 if (bio_check_eod(bio, nr_sectors))
1882 goto end_io;
1883
1884 /*
1885 * Filter flush bio's early so that make_request based
1886 * drivers without flush support don't have to worry
1887 * about them.
1888 */
1889 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1890 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1891 if (!nr_sectors) {
1892 err = 0;
1893 goto end_io;
1894 }
1895 }
1896
1897 if ((bio->bi_rw & REQ_DISCARD) &&
1898 (!blk_queue_discard(q) ||
1899 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1900 err = -EOPNOTSUPP;
1901 goto end_io;
1902 }
1903
1904 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1905 err = -EOPNOTSUPP;
1906 goto end_io;
1907 }
1908
1909 /*
1910 * Various block parts want %current->io_context and lazy ioc
1911 * allocation ends up trading a lot of pain for a small amount of
1912 * memory. Just allocate it upfront. This may fail and block
1913 * layer knows how to live with it.
1914 */
1915 create_io_context(GFP_ATOMIC, q->node);
1916
1917 if (!blkcg_bio_issue_check(q, bio))
1918 return false;
1919
1920 trace_block_bio_queue(q, bio);
1921 return true;
1922
1923 end_io:
1924 bio->bi_error = err;
1925 bio_endio(bio);
1926 return false;
1927 }
1928
1929 /**
1930 * generic_make_request - hand a buffer to its device driver for I/O
1931 * @bio: The bio describing the location in memory and on the device.
1932 *
1933 * generic_make_request() is used to make I/O requests of block
1934 * devices. It is passed a &struct bio, which describes the I/O that needs
1935 * to be done.
1936 *
1937 * generic_make_request() does not return any status. The
1938 * success/failure status of the request, along with notification of
1939 * completion, is delivered asynchronously through the bio->bi_end_io
1940 * function described (one day) else where.
1941 *
1942 * The caller of generic_make_request must make sure that bi_io_vec
1943 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1944 * set to describe the device address, and the
1945 * bi_end_io and optionally bi_private are set to describe how
1946 * completion notification should be signaled.
1947 *
1948 * generic_make_request and the drivers it calls may use bi_next if this
1949 * bio happens to be merged with someone else, and may resubmit the bio to
1950 * a lower device by calling into generic_make_request recursively, which
1951 * means the bio should NOT be touched after the call to ->make_request_fn.
1952 */
1953 void generic_make_request(struct bio *bio)
1954 {
1955 struct bio_list bio_list_on_stack;
1956
1957 if (!generic_make_request_checks(bio))
1958 return;
1959
1960 /*
1961 * We only want one ->make_request_fn to be active at a time, else
1962 * stack usage with stacked devices could be a problem. So use
1963 * current->bio_list to keep a list of requests submited by a
1964 * make_request_fn function. current->bio_list is also used as a
1965 * flag to say if generic_make_request is currently active in this
1966 * task or not. If it is NULL, then no make_request is active. If
1967 * it is non-NULL, then a make_request is active, and new requests
1968 * should be added at the tail
1969 */
1970 if (current->bio_list) {
1971 bio_list_add(current->bio_list, bio);
1972 return;
1973 }
1974
1975 /* following loop may be a bit non-obvious, and so deserves some
1976 * explanation.
1977 * Before entering the loop, bio->bi_next is NULL (as all callers
1978 * ensure that) so we have a list with a single bio.
1979 * We pretend that we have just taken it off a longer list, so
1980 * we assign bio_list to a pointer to the bio_list_on_stack,
1981 * thus initialising the bio_list of new bios to be
1982 * added. ->make_request() may indeed add some more bios
1983 * through a recursive call to generic_make_request. If it
1984 * did, we find a non-NULL value in bio_list and re-enter the loop
1985 * from the top. In this case we really did just take the bio
1986 * of the top of the list (no pretending) and so remove it from
1987 * bio_list, and call into ->make_request() again.
1988 */
1989 BUG_ON(bio->bi_next);
1990 bio_list_init(&bio_list_on_stack);
1991 current->bio_list = &bio_list_on_stack;
1992 do {
1993 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1994
1995 q->make_request_fn(q, bio);
1996
1997 bio = bio_list_pop(current->bio_list);
1998 } while (bio);
1999 current->bio_list = NULL; /* deactivate */
2000 }
2001 EXPORT_SYMBOL(generic_make_request);
2002
2003 /**
2004 * submit_bio - submit a bio to the block device layer for I/O
2005 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2006 * @bio: The &struct bio which describes the I/O
2007 *
2008 * submit_bio() is very similar in purpose to generic_make_request(), and
2009 * uses that function to do most of the work. Both are fairly rough
2010 * interfaces; @bio must be presetup and ready for I/O.
2011 *
2012 */
2013 void submit_bio(int rw, struct bio *bio)
2014 {
2015 bio->bi_rw |= rw;
2016
2017 /*
2018 * If it's a regular read/write or a barrier with data attached,
2019 * go through the normal accounting stuff before submission.
2020 */
2021 if (bio_has_data(bio)) {
2022 unsigned int count;
2023
2024 if (unlikely(rw & REQ_WRITE_SAME))
2025 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2026 else
2027 count = bio_sectors(bio);
2028
2029 if (rw & WRITE) {
2030 count_vm_events(PGPGOUT, count);
2031 } else {
2032 task_io_account_read(bio->bi_iter.bi_size);
2033 count_vm_events(PGPGIN, count);
2034 }
2035
2036 if (unlikely(block_dump)) {
2037 char b[BDEVNAME_SIZE];
2038 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2039 current->comm, task_pid_nr(current),
2040 (rw & WRITE) ? "WRITE" : "READ",
2041 (unsigned long long)bio->bi_iter.bi_sector,
2042 bdevname(bio->bi_bdev, b),
2043 count);
2044 }
2045 }
2046
2047 generic_make_request(bio);
2048 }
2049 EXPORT_SYMBOL(submit_bio);
2050
2051 /**
2052 * blk_rq_check_limits - Helper function to check a request for the queue limit
2053 * @q: the queue
2054 * @rq: the request being checked
2055 *
2056 * Description:
2057 * @rq may have been made based on weaker limitations of upper-level queues
2058 * in request stacking drivers, and it may violate the limitation of @q.
2059 * Since the block layer and the underlying device driver trust @rq
2060 * after it is inserted to @q, it should be checked against @q before
2061 * the insertion using this generic function.
2062 *
2063 * This function should also be useful for request stacking drivers
2064 * in some cases below, so export this function.
2065 * Request stacking drivers like request-based dm may change the queue
2066 * limits while requests are in the queue (e.g. dm's table swapping).
2067 * Such request stacking drivers should check those requests against
2068 * the new queue limits again when they dispatch those requests,
2069 * although such checkings are also done against the old queue limits
2070 * when submitting requests.
2071 */
2072 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2073 {
2074 if (!rq_mergeable(rq))
2075 return 0;
2076
2077 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2078 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2079 return -EIO;
2080 }
2081
2082 /*
2083 * queue's settings related to segment counting like q->bounce_pfn
2084 * may differ from that of other stacking queues.
2085 * Recalculate it to check the request correctly on this queue's
2086 * limitation.
2087 */
2088 blk_recalc_rq_segments(rq);
2089 if (rq->nr_phys_segments > queue_max_segments(q)) {
2090 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2091 return -EIO;
2092 }
2093
2094 return 0;
2095 }
2096 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2097
2098 /**
2099 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2100 * @q: the queue to submit the request
2101 * @rq: the request being queued
2102 */
2103 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2104 {
2105 unsigned long flags;
2106 int where = ELEVATOR_INSERT_BACK;
2107
2108 if (blk_rq_check_limits(q, rq))
2109 return -EIO;
2110
2111 if (rq->rq_disk &&
2112 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2113 return -EIO;
2114
2115 if (q->mq_ops) {
2116 if (blk_queue_io_stat(q))
2117 blk_account_io_start(rq, true);
2118 blk_mq_insert_request(rq, false, true, true);
2119 return 0;
2120 }
2121
2122 spin_lock_irqsave(q->queue_lock, flags);
2123 if (unlikely(blk_queue_dying(q))) {
2124 spin_unlock_irqrestore(q->queue_lock, flags);
2125 return -ENODEV;
2126 }
2127
2128 /*
2129 * Submitting request must be dequeued before calling this function
2130 * because it will be linked to another request_queue
2131 */
2132 BUG_ON(blk_queued_rq(rq));
2133
2134 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2135 where = ELEVATOR_INSERT_FLUSH;
2136
2137 add_acct_request(q, rq, where);
2138 if (where == ELEVATOR_INSERT_FLUSH)
2139 __blk_run_queue(q);
2140 spin_unlock_irqrestore(q->queue_lock, flags);
2141
2142 return 0;
2143 }
2144 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2145
2146 /**
2147 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2148 * @rq: request to examine
2149 *
2150 * Description:
2151 * A request could be merge of IOs which require different failure
2152 * handling. This function determines the number of bytes which
2153 * can be failed from the beginning of the request without
2154 * crossing into area which need to be retried further.
2155 *
2156 * Return:
2157 * The number of bytes to fail.
2158 *
2159 * Context:
2160 * queue_lock must be held.
2161 */
2162 unsigned int blk_rq_err_bytes(const struct request *rq)
2163 {
2164 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2165 unsigned int bytes = 0;
2166 struct bio *bio;
2167
2168 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2169 return blk_rq_bytes(rq);
2170
2171 /*
2172 * Currently the only 'mixing' which can happen is between
2173 * different fastfail types. We can safely fail portions
2174 * which have all the failfast bits that the first one has -
2175 * the ones which are at least as eager to fail as the first
2176 * one.
2177 */
2178 for (bio = rq->bio; bio; bio = bio->bi_next) {
2179 if ((bio->bi_rw & ff) != ff)
2180 break;
2181 bytes += bio->bi_iter.bi_size;
2182 }
2183
2184 /* this could lead to infinite loop */
2185 BUG_ON(blk_rq_bytes(rq) && !bytes);
2186 return bytes;
2187 }
2188 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2189
2190 void blk_account_io_completion(struct request *req, unsigned int bytes)
2191 {
2192 if (blk_do_io_stat(req)) {
2193 const int rw = rq_data_dir(req);
2194 struct hd_struct *part;
2195 int cpu;
2196
2197 cpu = part_stat_lock();
2198 part = req->part;
2199 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2200 part_stat_unlock();
2201 }
2202 }
2203
2204 void blk_account_io_done(struct request *req)
2205 {
2206 /*
2207 * Account IO completion. flush_rq isn't accounted as a
2208 * normal IO on queueing nor completion. Accounting the
2209 * containing request is enough.
2210 */
2211 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2212 unsigned long duration = jiffies - req->start_time;
2213 const int rw = rq_data_dir(req);
2214 struct hd_struct *part;
2215 int cpu;
2216
2217 cpu = part_stat_lock();
2218 part = req->part;
2219
2220 part_stat_inc(cpu, part, ios[rw]);
2221 part_stat_add(cpu, part, ticks[rw], duration);
2222 part_round_stats(cpu, part);
2223 part_dec_in_flight(part, rw);
2224
2225 hd_struct_put(part);
2226 part_stat_unlock();
2227 }
2228 }
2229
2230 #ifdef CONFIG_PM
2231 /*
2232 * Don't process normal requests when queue is suspended
2233 * or in the process of suspending/resuming
2234 */
2235 static struct request *blk_pm_peek_request(struct request_queue *q,
2236 struct request *rq)
2237 {
2238 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2239 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2240 return NULL;
2241 else
2242 return rq;
2243 }
2244 #else
2245 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2246 struct request *rq)
2247 {
2248 return rq;
2249 }
2250 #endif
2251
2252 void blk_account_io_start(struct request *rq, bool new_io)
2253 {
2254 struct hd_struct *part;
2255 int rw = rq_data_dir(rq);
2256 int cpu;
2257
2258 if (!blk_do_io_stat(rq))
2259 return;
2260
2261 cpu = part_stat_lock();
2262
2263 if (!new_io) {
2264 part = rq->part;
2265 part_stat_inc(cpu, part, merges[rw]);
2266 } else {
2267 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2268 if (!hd_struct_try_get(part)) {
2269 /*
2270 * The partition is already being removed,
2271 * the request will be accounted on the disk only
2272 *
2273 * We take a reference on disk->part0 although that
2274 * partition will never be deleted, so we can treat
2275 * it as any other partition.
2276 */
2277 part = &rq->rq_disk->part0;
2278 hd_struct_get(part);
2279 }
2280 part_round_stats(cpu, part);
2281 part_inc_in_flight(part, rw);
2282 rq->part = part;
2283 }
2284
2285 part_stat_unlock();
2286 }
2287
2288 /**
2289 * blk_peek_request - peek at the top of a request queue
2290 * @q: request queue to peek at
2291 *
2292 * Description:
2293 * Return the request at the top of @q. The returned request
2294 * should be started using blk_start_request() before LLD starts
2295 * processing it.
2296 *
2297 * Return:
2298 * Pointer to the request at the top of @q if available. Null
2299 * otherwise.
2300 *
2301 * Context:
2302 * queue_lock must be held.
2303 */
2304 struct request *blk_peek_request(struct request_queue *q)
2305 {
2306 struct request *rq;
2307 int ret;
2308
2309 while ((rq = __elv_next_request(q)) != NULL) {
2310
2311 rq = blk_pm_peek_request(q, rq);
2312 if (!rq)
2313 break;
2314
2315 if (!(rq->cmd_flags & REQ_STARTED)) {
2316 /*
2317 * This is the first time the device driver
2318 * sees this request (possibly after
2319 * requeueing). Notify IO scheduler.
2320 */
2321 if (rq->cmd_flags & REQ_SORTED)
2322 elv_activate_rq(q, rq);
2323
2324 /*
2325 * just mark as started even if we don't start
2326 * it, a request that has been delayed should
2327 * not be passed by new incoming requests
2328 */
2329 rq->cmd_flags |= REQ_STARTED;
2330 trace_block_rq_issue(q, rq);
2331 }
2332
2333 if (!q->boundary_rq || q->boundary_rq == rq) {
2334 q->end_sector = rq_end_sector(rq);
2335 q->boundary_rq = NULL;
2336 }
2337
2338 if (rq->cmd_flags & REQ_DONTPREP)
2339 break;
2340
2341 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2342 /*
2343 * make sure space for the drain appears we
2344 * know we can do this because max_hw_segments
2345 * has been adjusted to be one fewer than the
2346 * device can handle
2347 */
2348 rq->nr_phys_segments++;
2349 }
2350
2351 if (!q->prep_rq_fn)
2352 break;
2353
2354 ret = q->prep_rq_fn(q, rq);
2355 if (ret == BLKPREP_OK) {
2356 break;
2357 } else if (ret == BLKPREP_DEFER) {
2358 /*
2359 * the request may have been (partially) prepped.
2360 * we need to keep this request in the front to
2361 * avoid resource deadlock. REQ_STARTED will
2362 * prevent other fs requests from passing this one.
2363 */
2364 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2365 !(rq->cmd_flags & REQ_DONTPREP)) {
2366 /*
2367 * remove the space for the drain we added
2368 * so that we don't add it again
2369 */
2370 --rq->nr_phys_segments;
2371 }
2372
2373 rq = NULL;
2374 break;
2375 } else if (ret == BLKPREP_KILL) {
2376 rq->cmd_flags |= REQ_QUIET;
2377 /*
2378 * Mark this request as started so we don't trigger
2379 * any debug logic in the end I/O path.
2380 */
2381 blk_start_request(rq);
2382 __blk_end_request_all(rq, -EIO);
2383 } else {
2384 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2385 break;
2386 }
2387 }
2388
2389 return rq;
2390 }
2391 EXPORT_SYMBOL(blk_peek_request);
2392
2393 void blk_dequeue_request(struct request *rq)
2394 {
2395 struct request_queue *q = rq->q;
2396
2397 BUG_ON(list_empty(&rq->queuelist));
2398 BUG_ON(ELV_ON_HASH(rq));
2399
2400 list_del_init(&rq->queuelist);
2401
2402 /*
2403 * the time frame between a request being removed from the lists
2404 * and to it is freed is accounted as io that is in progress at
2405 * the driver side.
2406 */
2407 if (blk_account_rq(rq)) {
2408 q->in_flight[rq_is_sync(rq)]++;
2409 set_io_start_time_ns(rq);
2410 }
2411 }
2412
2413 /**
2414 * blk_start_request - start request processing on the driver
2415 * @req: request to dequeue
2416 *
2417 * Description:
2418 * Dequeue @req and start timeout timer on it. This hands off the
2419 * request to the driver.
2420 *
2421 * Block internal functions which don't want to start timer should
2422 * call blk_dequeue_request().
2423 *
2424 * Context:
2425 * queue_lock must be held.
2426 */
2427 void blk_start_request(struct request *req)
2428 {
2429 blk_dequeue_request(req);
2430
2431 /*
2432 * We are now handing the request to the hardware, initialize
2433 * resid_len to full count and add the timeout handler.
2434 */
2435 req->resid_len = blk_rq_bytes(req);
2436 if (unlikely(blk_bidi_rq(req)))
2437 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2438
2439 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2440 blk_add_timer(req);
2441 }
2442 EXPORT_SYMBOL(blk_start_request);
2443
2444 /**
2445 * blk_fetch_request - fetch a request from a request queue
2446 * @q: request queue to fetch a request from
2447 *
2448 * Description:
2449 * Return the request at the top of @q. The request is started on
2450 * return and LLD can start processing it immediately.
2451 *
2452 * Return:
2453 * Pointer to the request at the top of @q if available. Null
2454 * otherwise.
2455 *
2456 * Context:
2457 * queue_lock must be held.
2458 */
2459 struct request *blk_fetch_request(struct request_queue *q)
2460 {
2461 struct request *rq;
2462
2463 rq = blk_peek_request(q);
2464 if (rq)
2465 blk_start_request(rq);
2466 return rq;
2467 }
2468 EXPORT_SYMBOL(blk_fetch_request);
2469
2470 /**
2471 * blk_update_request - Special helper function for request stacking drivers
2472 * @req: the request being processed
2473 * @error: %0 for success, < %0 for error
2474 * @nr_bytes: number of bytes to complete @req
2475 *
2476 * Description:
2477 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2478 * the request structure even if @req doesn't have leftover.
2479 * If @req has leftover, sets it up for the next range of segments.
2480 *
2481 * This special helper function is only for request stacking drivers
2482 * (e.g. request-based dm) so that they can handle partial completion.
2483 * Actual device drivers should use blk_end_request instead.
2484 *
2485 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2486 * %false return from this function.
2487 *
2488 * Return:
2489 * %false - this request doesn't have any more data
2490 * %true - this request has more data
2491 **/
2492 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2493 {
2494 int total_bytes;
2495
2496 trace_block_rq_complete(req->q, req, nr_bytes);
2497
2498 if (!req->bio)
2499 return false;
2500
2501 /*
2502 * For fs requests, rq is just carrier of independent bio's
2503 * and each partial completion should be handled separately.
2504 * Reset per-request error on each partial completion.
2505 *
2506 * TODO: tj: This is too subtle. It would be better to let
2507 * low level drivers do what they see fit.
2508 */
2509 if (req->cmd_type == REQ_TYPE_FS)
2510 req->errors = 0;
2511
2512 if (error && req->cmd_type == REQ_TYPE_FS &&
2513 !(req->cmd_flags & REQ_QUIET)) {
2514 char *error_type;
2515
2516 switch (error) {
2517 case -ENOLINK:
2518 error_type = "recoverable transport";
2519 break;
2520 case -EREMOTEIO:
2521 error_type = "critical target";
2522 break;
2523 case -EBADE:
2524 error_type = "critical nexus";
2525 break;
2526 case -ETIMEDOUT:
2527 error_type = "timeout";
2528 break;
2529 case -ENOSPC:
2530 error_type = "critical space allocation";
2531 break;
2532 case -ENODATA:
2533 error_type = "critical medium";
2534 break;
2535 case -EIO:
2536 default:
2537 error_type = "I/O";
2538 break;
2539 }
2540 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2541 __func__, error_type, req->rq_disk ?
2542 req->rq_disk->disk_name : "?",
2543 (unsigned long long)blk_rq_pos(req));
2544
2545 }
2546
2547 blk_account_io_completion(req, nr_bytes);
2548
2549 total_bytes = 0;
2550 while (req->bio) {
2551 struct bio *bio = req->bio;
2552 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2553
2554 if (bio_bytes == bio->bi_iter.bi_size)
2555 req->bio = bio->bi_next;
2556
2557 req_bio_endio(req, bio, bio_bytes, error);
2558
2559 total_bytes += bio_bytes;
2560 nr_bytes -= bio_bytes;
2561
2562 if (!nr_bytes)
2563 break;
2564 }
2565
2566 /*
2567 * completely done
2568 */
2569 if (!req->bio) {
2570 /*
2571 * Reset counters so that the request stacking driver
2572 * can find how many bytes remain in the request
2573 * later.
2574 */
2575 req->__data_len = 0;
2576 return false;
2577 }
2578
2579 req->__data_len -= total_bytes;
2580
2581 /* update sector only for requests with clear definition of sector */
2582 if (req->cmd_type == REQ_TYPE_FS)
2583 req->__sector += total_bytes >> 9;
2584
2585 /* mixed attributes always follow the first bio */
2586 if (req->cmd_flags & REQ_MIXED_MERGE) {
2587 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2588 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2589 }
2590
2591 /*
2592 * If total number of sectors is less than the first segment
2593 * size, something has gone terribly wrong.
2594 */
2595 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2596 blk_dump_rq_flags(req, "request botched");
2597 req->__data_len = blk_rq_cur_bytes(req);
2598 }
2599
2600 /* recalculate the number of segments */
2601 blk_recalc_rq_segments(req);
2602
2603 return true;
2604 }
2605 EXPORT_SYMBOL_GPL(blk_update_request);
2606
2607 static bool blk_update_bidi_request(struct request *rq, int error,
2608 unsigned int nr_bytes,
2609 unsigned int bidi_bytes)
2610 {
2611 if (blk_update_request(rq, error, nr_bytes))
2612 return true;
2613
2614 /* Bidi request must be completed as a whole */
2615 if (unlikely(blk_bidi_rq(rq)) &&
2616 blk_update_request(rq->next_rq, error, bidi_bytes))
2617 return true;
2618
2619 if (blk_queue_add_random(rq->q))
2620 add_disk_randomness(rq->rq_disk);
2621
2622 return false;
2623 }
2624
2625 /**
2626 * blk_unprep_request - unprepare a request
2627 * @req: the request
2628 *
2629 * This function makes a request ready for complete resubmission (or
2630 * completion). It happens only after all error handling is complete,
2631 * so represents the appropriate moment to deallocate any resources
2632 * that were allocated to the request in the prep_rq_fn. The queue
2633 * lock is held when calling this.
2634 */
2635 void blk_unprep_request(struct request *req)
2636 {
2637 struct request_queue *q = req->q;
2638
2639 req->cmd_flags &= ~REQ_DONTPREP;
2640 if (q->unprep_rq_fn)
2641 q->unprep_rq_fn(q, req);
2642 }
2643 EXPORT_SYMBOL_GPL(blk_unprep_request);
2644
2645 /*
2646 * queue lock must be held
2647 */
2648 void blk_finish_request(struct request *req, int error)
2649 {
2650 if (req->cmd_flags & REQ_QUEUED)
2651 blk_queue_end_tag(req->q, req);
2652
2653 BUG_ON(blk_queued_rq(req));
2654
2655 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2656 laptop_io_completion(&req->q->backing_dev_info);
2657
2658 blk_delete_timer(req);
2659
2660 if (req->cmd_flags & REQ_DONTPREP)
2661 blk_unprep_request(req);
2662
2663 blk_account_io_done(req);
2664
2665 if (req->end_io)
2666 req->end_io(req, error);
2667 else {
2668 if (blk_bidi_rq(req))
2669 __blk_put_request(req->next_rq->q, req->next_rq);
2670
2671 __blk_put_request(req->q, req);
2672 }
2673 }
2674 EXPORT_SYMBOL(blk_finish_request);
2675
2676 /**
2677 * blk_end_bidi_request - Complete a bidi request
2678 * @rq: the request to complete
2679 * @error: %0 for success, < %0 for error
2680 * @nr_bytes: number of bytes to complete @rq
2681 * @bidi_bytes: number of bytes to complete @rq->next_rq
2682 *
2683 * Description:
2684 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2685 * Drivers that supports bidi can safely call this member for any
2686 * type of request, bidi or uni. In the later case @bidi_bytes is
2687 * just ignored.
2688 *
2689 * Return:
2690 * %false - we are done with this request
2691 * %true - still buffers pending for this request
2692 **/
2693 static bool blk_end_bidi_request(struct request *rq, int error,
2694 unsigned int nr_bytes, unsigned int bidi_bytes)
2695 {
2696 struct request_queue *q = rq->q;
2697 unsigned long flags;
2698
2699 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2700 return true;
2701
2702 spin_lock_irqsave(q->queue_lock, flags);
2703 blk_finish_request(rq, error);
2704 spin_unlock_irqrestore(q->queue_lock, flags);
2705
2706 return false;
2707 }
2708
2709 /**
2710 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2711 * @rq: the request to complete
2712 * @error: %0 for success, < %0 for error
2713 * @nr_bytes: number of bytes to complete @rq
2714 * @bidi_bytes: number of bytes to complete @rq->next_rq
2715 *
2716 * Description:
2717 * Identical to blk_end_bidi_request() except that queue lock is
2718 * assumed to be locked on entry and remains so on return.
2719 *
2720 * Return:
2721 * %false - we are done with this request
2722 * %true - still buffers pending for this request
2723 **/
2724 bool __blk_end_bidi_request(struct request *rq, int error,
2725 unsigned int nr_bytes, unsigned int bidi_bytes)
2726 {
2727 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2728 return true;
2729
2730 blk_finish_request(rq, error);
2731
2732 return false;
2733 }
2734
2735 /**
2736 * blk_end_request - Helper function for drivers to complete the request.
2737 * @rq: the request being processed
2738 * @error: %0 for success, < %0 for error
2739 * @nr_bytes: number of bytes to complete
2740 *
2741 * Description:
2742 * Ends I/O on a number of bytes attached to @rq.
2743 * If @rq has leftover, sets it up for the next range of segments.
2744 *
2745 * Return:
2746 * %false - we are done with this request
2747 * %true - still buffers pending for this request
2748 **/
2749 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2750 {
2751 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2752 }
2753 EXPORT_SYMBOL(blk_end_request);
2754
2755 /**
2756 * blk_end_request_all - Helper function for drives to finish the request.
2757 * @rq: the request to finish
2758 * @error: %0 for success, < %0 for error
2759 *
2760 * Description:
2761 * Completely finish @rq.
2762 */
2763 void blk_end_request_all(struct request *rq, int error)
2764 {
2765 bool pending;
2766 unsigned int bidi_bytes = 0;
2767
2768 if (unlikely(blk_bidi_rq(rq)))
2769 bidi_bytes = blk_rq_bytes(rq->next_rq);
2770
2771 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2772 BUG_ON(pending);
2773 }
2774 EXPORT_SYMBOL(blk_end_request_all);
2775
2776 /**
2777 * blk_end_request_cur - Helper function to finish the current request chunk.
2778 * @rq: the request to finish the current chunk for
2779 * @error: %0 for success, < %0 for error
2780 *
2781 * Description:
2782 * Complete the current consecutively mapped chunk from @rq.
2783 *
2784 * Return:
2785 * %false - we are done with this request
2786 * %true - still buffers pending for this request
2787 */
2788 bool blk_end_request_cur(struct request *rq, int error)
2789 {
2790 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2791 }
2792 EXPORT_SYMBOL(blk_end_request_cur);
2793
2794 /**
2795 * blk_end_request_err - Finish a request till the next failure boundary.
2796 * @rq: the request to finish till the next failure boundary for
2797 * @error: must be negative errno
2798 *
2799 * Description:
2800 * Complete @rq till the next failure boundary.
2801 *
2802 * Return:
2803 * %false - we are done with this request
2804 * %true - still buffers pending for this request
2805 */
2806 bool blk_end_request_err(struct request *rq, int error)
2807 {
2808 WARN_ON(error >= 0);
2809 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2810 }
2811 EXPORT_SYMBOL_GPL(blk_end_request_err);
2812
2813 /**
2814 * __blk_end_request - Helper function for drivers to complete the request.
2815 * @rq: the request being processed
2816 * @error: %0 for success, < %0 for error
2817 * @nr_bytes: number of bytes to complete
2818 *
2819 * Description:
2820 * Must be called with queue lock held unlike blk_end_request().
2821 *
2822 * Return:
2823 * %false - we are done with this request
2824 * %true - still buffers pending for this request
2825 **/
2826 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2827 {
2828 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2829 }
2830 EXPORT_SYMBOL(__blk_end_request);
2831
2832 /**
2833 * __blk_end_request_all - Helper function for drives to finish the request.
2834 * @rq: the request to finish
2835 * @error: %0 for success, < %0 for error
2836 *
2837 * Description:
2838 * Completely finish @rq. Must be called with queue lock held.
2839 */
2840 void __blk_end_request_all(struct request *rq, int error)
2841 {
2842 bool pending;
2843 unsigned int bidi_bytes = 0;
2844
2845 if (unlikely(blk_bidi_rq(rq)))
2846 bidi_bytes = blk_rq_bytes(rq->next_rq);
2847
2848 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2849 BUG_ON(pending);
2850 }
2851 EXPORT_SYMBOL(__blk_end_request_all);
2852
2853 /**
2854 * __blk_end_request_cur - Helper function to finish the current request chunk.
2855 * @rq: the request to finish the current chunk for
2856 * @error: %0 for success, < %0 for error
2857 *
2858 * Description:
2859 * Complete the current consecutively mapped chunk from @rq. Must
2860 * be called with queue lock held.
2861 *
2862 * Return:
2863 * %false - we are done with this request
2864 * %true - still buffers pending for this request
2865 */
2866 bool __blk_end_request_cur(struct request *rq, int error)
2867 {
2868 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2869 }
2870 EXPORT_SYMBOL(__blk_end_request_cur);
2871
2872 /**
2873 * __blk_end_request_err - Finish a request till the next failure boundary.
2874 * @rq: the request to finish till the next failure boundary for
2875 * @error: must be negative errno
2876 *
2877 * Description:
2878 * Complete @rq till the next failure boundary. Must be called
2879 * with queue lock held.
2880 *
2881 * Return:
2882 * %false - we are done with this request
2883 * %true - still buffers pending for this request
2884 */
2885 bool __blk_end_request_err(struct request *rq, int error)
2886 {
2887 WARN_ON(error >= 0);
2888 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2889 }
2890 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2891
2892 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2893 struct bio *bio)
2894 {
2895 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2896 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2897
2898 if (bio_has_data(bio))
2899 rq->nr_phys_segments = bio_phys_segments(q, bio);
2900
2901 rq->__data_len = bio->bi_iter.bi_size;
2902 rq->bio = rq->biotail = bio;
2903
2904 if (bio->bi_bdev)
2905 rq->rq_disk = bio->bi_bdev->bd_disk;
2906 }
2907
2908 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2909 /**
2910 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2911 * @rq: the request to be flushed
2912 *
2913 * Description:
2914 * Flush all pages in @rq.
2915 */
2916 void rq_flush_dcache_pages(struct request *rq)
2917 {
2918 struct req_iterator iter;
2919 struct bio_vec bvec;
2920
2921 rq_for_each_segment(bvec, rq, iter)
2922 flush_dcache_page(bvec.bv_page);
2923 }
2924 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2925 #endif
2926
2927 /**
2928 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2929 * @q : the queue of the device being checked
2930 *
2931 * Description:
2932 * Check if underlying low-level drivers of a device are busy.
2933 * If the drivers want to export their busy state, they must set own
2934 * exporting function using blk_queue_lld_busy() first.
2935 *
2936 * Basically, this function is used only by request stacking drivers
2937 * to stop dispatching requests to underlying devices when underlying
2938 * devices are busy. This behavior helps more I/O merging on the queue
2939 * of the request stacking driver and prevents I/O throughput regression
2940 * on burst I/O load.
2941 *
2942 * Return:
2943 * 0 - Not busy (The request stacking driver should dispatch request)
2944 * 1 - Busy (The request stacking driver should stop dispatching request)
2945 */
2946 int blk_lld_busy(struct request_queue *q)
2947 {
2948 if (q->lld_busy_fn)
2949 return q->lld_busy_fn(q);
2950
2951 return 0;
2952 }
2953 EXPORT_SYMBOL_GPL(blk_lld_busy);
2954
2955 /**
2956 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2957 * @rq: the clone request to be cleaned up
2958 *
2959 * Description:
2960 * Free all bios in @rq for a cloned request.
2961 */
2962 void blk_rq_unprep_clone(struct request *rq)
2963 {
2964 struct bio *bio;
2965
2966 while ((bio = rq->bio) != NULL) {
2967 rq->bio = bio->bi_next;
2968
2969 bio_put(bio);
2970 }
2971 }
2972 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2973
2974 /*
2975 * Copy attributes of the original request to the clone request.
2976 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2977 */
2978 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2979 {
2980 dst->cpu = src->cpu;
2981 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2982 dst->cmd_type = src->cmd_type;
2983 dst->__sector = blk_rq_pos(src);
2984 dst->__data_len = blk_rq_bytes(src);
2985 dst->nr_phys_segments = src->nr_phys_segments;
2986 dst->ioprio = src->ioprio;
2987 dst->extra_len = src->extra_len;
2988 }
2989
2990 /**
2991 * blk_rq_prep_clone - Helper function to setup clone request
2992 * @rq: the request to be setup
2993 * @rq_src: original request to be cloned
2994 * @bs: bio_set that bios for clone are allocated from
2995 * @gfp_mask: memory allocation mask for bio
2996 * @bio_ctr: setup function to be called for each clone bio.
2997 * Returns %0 for success, non %0 for failure.
2998 * @data: private data to be passed to @bio_ctr
2999 *
3000 * Description:
3001 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3002 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3003 * are not copied, and copying such parts is the caller's responsibility.
3004 * Also, pages which the original bios are pointing to are not copied
3005 * and the cloned bios just point same pages.
3006 * So cloned bios must be completed before original bios, which means
3007 * the caller must complete @rq before @rq_src.
3008 */
3009 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3010 struct bio_set *bs, gfp_t gfp_mask,
3011 int (*bio_ctr)(struct bio *, struct bio *, void *),
3012 void *data)
3013 {
3014 struct bio *bio, *bio_src;
3015
3016 if (!bs)
3017 bs = fs_bio_set;
3018
3019 __rq_for_each_bio(bio_src, rq_src) {
3020 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3021 if (!bio)
3022 goto free_and_out;
3023
3024 if (bio_ctr && bio_ctr(bio, bio_src, data))
3025 goto free_and_out;
3026
3027 if (rq->bio) {
3028 rq->biotail->bi_next = bio;
3029 rq->biotail = bio;
3030 } else
3031 rq->bio = rq->biotail = bio;
3032 }
3033
3034 __blk_rq_prep_clone(rq, rq_src);
3035
3036 return 0;
3037
3038 free_and_out:
3039 if (bio)
3040 bio_put(bio);
3041 blk_rq_unprep_clone(rq);
3042
3043 return -ENOMEM;
3044 }
3045 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3046
3047 int kblockd_schedule_work(struct work_struct *work)
3048 {
3049 return queue_work(kblockd_workqueue, work);
3050 }
3051 EXPORT_SYMBOL(kblockd_schedule_work);
3052
3053 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3054 unsigned long delay)
3055 {
3056 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3057 }
3058 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3059
3060 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3061 unsigned long delay)
3062 {
3063 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3064 }
3065 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3066
3067 /**
3068 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3069 * @plug: The &struct blk_plug that needs to be initialized
3070 *
3071 * Description:
3072 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3073 * pending I/O should the task end up blocking between blk_start_plug() and
3074 * blk_finish_plug(). This is important from a performance perspective, but
3075 * also ensures that we don't deadlock. For instance, if the task is blocking
3076 * for a memory allocation, memory reclaim could end up wanting to free a
3077 * page belonging to that request that is currently residing in our private
3078 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3079 * this kind of deadlock.
3080 */
3081 void blk_start_plug(struct blk_plug *plug)
3082 {
3083 struct task_struct *tsk = current;
3084
3085 /*
3086 * If this is a nested plug, don't actually assign it.
3087 */
3088 if (tsk->plug)
3089 return;
3090
3091 INIT_LIST_HEAD(&plug->list);
3092 INIT_LIST_HEAD(&plug->mq_list);
3093 INIT_LIST_HEAD(&plug->cb_list);
3094 /*
3095 * Store ordering should not be needed here, since a potential
3096 * preempt will imply a full memory barrier
3097 */
3098 tsk->plug = plug;
3099 }
3100 EXPORT_SYMBOL(blk_start_plug);
3101
3102 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3103 {
3104 struct request *rqa = container_of(a, struct request, queuelist);
3105 struct request *rqb = container_of(b, struct request, queuelist);
3106
3107 return !(rqa->q < rqb->q ||
3108 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3109 }
3110
3111 /*
3112 * If 'from_schedule' is true, then postpone the dispatch of requests
3113 * until a safe kblockd context. We due this to avoid accidental big
3114 * additional stack usage in driver dispatch, in places where the originally
3115 * plugger did not intend it.
3116 */
3117 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3118 bool from_schedule)
3119 __releases(q->queue_lock)
3120 {
3121 trace_block_unplug(q, depth, !from_schedule);
3122
3123 if (from_schedule)
3124 blk_run_queue_async(q);
3125 else
3126 __blk_run_queue(q);
3127 spin_unlock(q->queue_lock);
3128 }
3129
3130 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3131 {
3132 LIST_HEAD(callbacks);
3133
3134 while (!list_empty(&plug->cb_list)) {
3135 list_splice_init(&plug->cb_list, &callbacks);
3136
3137 while (!list_empty(&callbacks)) {
3138 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3139 struct blk_plug_cb,
3140 list);
3141 list_del(&cb->list);
3142 cb->callback(cb, from_schedule);
3143 }
3144 }
3145 }
3146
3147 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3148 int size)
3149 {
3150 struct blk_plug *plug = current->plug;
3151 struct blk_plug_cb *cb;
3152
3153 if (!plug)
3154 return NULL;
3155
3156 list_for_each_entry(cb, &plug->cb_list, list)
3157 if (cb->callback == unplug && cb->data == data)
3158 return cb;
3159
3160 /* Not currently on the callback list */
3161 BUG_ON(size < sizeof(*cb));
3162 cb = kzalloc(size, GFP_ATOMIC);
3163 if (cb) {
3164 cb->data = data;
3165 cb->callback = unplug;
3166 list_add(&cb->list, &plug->cb_list);
3167 }
3168 return cb;
3169 }
3170 EXPORT_SYMBOL(blk_check_plugged);
3171
3172 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3173 {
3174 struct request_queue *q;
3175 unsigned long flags;
3176 struct request *rq;
3177 LIST_HEAD(list);
3178 unsigned int depth;
3179
3180 flush_plug_callbacks(plug, from_schedule);
3181
3182 if (!list_empty(&plug->mq_list))
3183 blk_mq_flush_plug_list(plug, from_schedule);
3184
3185 if (list_empty(&plug->list))
3186 return;
3187
3188 list_splice_init(&plug->list, &list);
3189
3190 list_sort(NULL, &list, plug_rq_cmp);
3191
3192 q = NULL;
3193 depth = 0;
3194
3195 /*
3196 * Save and disable interrupts here, to avoid doing it for every
3197 * queue lock we have to take.
3198 */
3199 local_irq_save(flags);
3200 while (!list_empty(&list)) {
3201 rq = list_entry_rq(list.next);
3202 list_del_init(&rq->queuelist);
3203 BUG_ON(!rq->q);
3204 if (rq->q != q) {
3205 /*
3206 * This drops the queue lock
3207 */
3208 if (q)
3209 queue_unplugged(q, depth, from_schedule);
3210 q = rq->q;
3211 depth = 0;
3212 spin_lock(q->queue_lock);
3213 }
3214
3215 /*
3216 * Short-circuit if @q is dead
3217 */
3218 if (unlikely(blk_queue_dying(q))) {
3219 __blk_end_request_all(rq, -ENODEV);
3220 continue;
3221 }
3222
3223 /*
3224 * rq is already accounted, so use raw insert
3225 */
3226 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3227 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3228 else
3229 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3230
3231 depth++;
3232 }
3233
3234 /*
3235 * This drops the queue lock
3236 */
3237 if (q)
3238 queue_unplugged(q, depth, from_schedule);
3239
3240 local_irq_restore(flags);
3241 }
3242
3243 void blk_finish_plug(struct blk_plug *plug)
3244 {
3245 if (plug != current->plug)
3246 return;
3247 blk_flush_plug_list(plug, false);
3248
3249 current->plug = NULL;
3250 }
3251 EXPORT_SYMBOL(blk_finish_plug);
3252
3253 #ifdef CONFIG_PM
3254 /**
3255 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3256 * @q: the queue of the device
3257 * @dev: the device the queue belongs to
3258 *
3259 * Description:
3260 * Initialize runtime-PM-related fields for @q and start auto suspend for
3261 * @dev. Drivers that want to take advantage of request-based runtime PM
3262 * should call this function after @dev has been initialized, and its
3263 * request queue @q has been allocated, and runtime PM for it can not happen
3264 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3265 * cases, driver should call this function before any I/O has taken place.
3266 *
3267 * This function takes care of setting up using auto suspend for the device,
3268 * the autosuspend delay is set to -1 to make runtime suspend impossible
3269 * until an updated value is either set by user or by driver. Drivers do
3270 * not need to touch other autosuspend settings.
3271 *
3272 * The block layer runtime PM is request based, so only works for drivers
3273 * that use request as their IO unit instead of those directly use bio's.
3274 */
3275 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3276 {
3277 q->dev = dev;
3278 q->rpm_status = RPM_ACTIVE;
3279 pm_runtime_set_autosuspend_delay(q->dev, -1);
3280 pm_runtime_use_autosuspend(q->dev);
3281 }
3282 EXPORT_SYMBOL(blk_pm_runtime_init);
3283
3284 /**
3285 * blk_pre_runtime_suspend - Pre runtime suspend check
3286 * @q: the queue of the device
3287 *
3288 * Description:
3289 * This function will check if runtime suspend is allowed for the device
3290 * by examining if there are any requests pending in the queue. If there
3291 * are requests pending, the device can not be runtime suspended; otherwise,
3292 * the queue's status will be updated to SUSPENDING and the driver can
3293 * proceed to suspend the device.
3294 *
3295 * For the not allowed case, we mark last busy for the device so that
3296 * runtime PM core will try to autosuspend it some time later.
3297 *
3298 * This function should be called near the start of the device's
3299 * runtime_suspend callback.
3300 *
3301 * Return:
3302 * 0 - OK to runtime suspend the device
3303 * -EBUSY - Device should not be runtime suspended
3304 */
3305 int blk_pre_runtime_suspend(struct request_queue *q)
3306 {
3307 int ret = 0;
3308
3309 spin_lock_irq(q->queue_lock);
3310 if (q->nr_pending) {
3311 ret = -EBUSY;
3312 pm_runtime_mark_last_busy(q->dev);
3313 } else {
3314 q->rpm_status = RPM_SUSPENDING;
3315 }
3316 spin_unlock_irq(q->queue_lock);
3317 return ret;
3318 }
3319 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3320
3321 /**
3322 * blk_post_runtime_suspend - Post runtime suspend processing
3323 * @q: the queue of the device
3324 * @err: return value of the device's runtime_suspend function
3325 *
3326 * Description:
3327 * Update the queue's runtime status according to the return value of the
3328 * device's runtime suspend function and mark last busy for the device so
3329 * that PM core will try to auto suspend the device at a later time.
3330 *
3331 * This function should be called near the end of the device's
3332 * runtime_suspend callback.
3333 */
3334 void blk_post_runtime_suspend(struct request_queue *q, int err)
3335 {
3336 spin_lock_irq(q->queue_lock);
3337 if (!err) {
3338 q->rpm_status = RPM_SUSPENDED;
3339 } else {
3340 q->rpm_status = RPM_ACTIVE;
3341 pm_runtime_mark_last_busy(q->dev);
3342 }
3343 spin_unlock_irq(q->queue_lock);
3344 }
3345 EXPORT_SYMBOL(blk_post_runtime_suspend);
3346
3347 /**
3348 * blk_pre_runtime_resume - Pre runtime resume processing
3349 * @q: the queue of the device
3350 *
3351 * Description:
3352 * Update the queue's runtime status to RESUMING in preparation for the
3353 * runtime resume of the device.
3354 *
3355 * This function should be called near the start of the device's
3356 * runtime_resume callback.
3357 */
3358 void blk_pre_runtime_resume(struct request_queue *q)
3359 {
3360 spin_lock_irq(q->queue_lock);
3361 q->rpm_status = RPM_RESUMING;
3362 spin_unlock_irq(q->queue_lock);
3363 }
3364 EXPORT_SYMBOL(blk_pre_runtime_resume);
3365
3366 /**
3367 * blk_post_runtime_resume - Post runtime resume processing
3368 * @q: the queue of the device
3369 * @err: return value of the device's runtime_resume function
3370 *
3371 * Description:
3372 * Update the queue's runtime status according to the return value of the
3373 * device's runtime_resume function. If it is successfully resumed, process
3374 * the requests that are queued into the device's queue when it is resuming
3375 * and then mark last busy and initiate autosuspend for it.
3376 *
3377 * This function should be called near the end of the device's
3378 * runtime_resume callback.
3379 */
3380 void blk_post_runtime_resume(struct request_queue *q, int err)
3381 {
3382 spin_lock_irq(q->queue_lock);
3383 if (!err) {
3384 q->rpm_status = RPM_ACTIVE;
3385 __blk_run_queue(q);
3386 pm_runtime_mark_last_busy(q->dev);
3387 pm_request_autosuspend(q->dev);
3388 } else {
3389 q->rpm_status = RPM_SUSPENDED;
3390 }
3391 spin_unlock_irq(q->queue_lock);
3392 }
3393 EXPORT_SYMBOL(blk_post_runtime_resume);
3394 #endif
3395
3396 int __init blk_dev_init(void)
3397 {
3398 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3399 FIELD_SIZEOF(struct request, cmd_flags));
3400
3401 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3402 kblockd_workqueue = alloc_workqueue("kblockd",
3403 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3404 if (!kblockd_workqueue)
3405 panic("Failed to create kblockd\n");
3406
3407 request_cachep = kmem_cache_create("blkdev_requests",
3408 sizeof(struct request), 0, SLAB_PANIC, NULL);
3409
3410 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3411 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3412
3413 return 0;
3414 }