]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: replace bi_bdev with a gendisk pointer and partitions index
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336
337 if (q->mq_ops) {
338 struct blk_mq_hw_ctx *hctx;
339 int i;
340
341 queue_for_each_hw_ctx(q, hctx, i)
342 cancel_delayed_work_sync(&hctx->run_work);
343 } else {
344 cancel_delayed_work_sync(&q->delay_work);
345 }
346 }
347 EXPORT_SYMBOL(blk_sync_queue);
348
349 /**
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
352 *
353 * Description:
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
359 */
360 inline void __blk_run_queue_uncond(struct request_queue *q)
361 {
362 lockdep_assert_held(q->queue_lock);
363 WARN_ON_ONCE(q->mq_ops);
364
365 if (unlikely(blk_queue_dead(q)))
366 return;
367
368 /*
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
374 */
375 q->request_fn_active++;
376 q->request_fn(q);
377 q->request_fn_active--;
378 }
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
380
381 /**
382 * __blk_run_queue - run a single device queue
383 * @q: The queue to run
384 *
385 * Description:
386 * See @blk_run_queue.
387 */
388 void __blk_run_queue(struct request_queue *q)
389 {
390 lockdep_assert_held(q->queue_lock);
391 WARN_ON_ONCE(q->mq_ops);
392
393 if (unlikely(blk_queue_stopped(q)))
394 return;
395
396 __blk_run_queue_uncond(q);
397 }
398 EXPORT_SYMBOL(__blk_run_queue);
399
400 /**
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
403 *
404 * Description:
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
406 * of us.
407 *
408 * Note:
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
412 */
413 void blk_run_queue_async(struct request_queue *q)
414 {
415 lockdep_assert_held(q->queue_lock);
416 WARN_ON_ONCE(q->mq_ops);
417
418 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
419 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
420 }
421 EXPORT_SYMBOL(blk_run_queue_async);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 *
427 * Description:
428 * Invoke request handling on this queue, if it has pending work to do.
429 * May be used to restart queueing when a request has completed.
430 */
431 void blk_run_queue(struct request_queue *q)
432 {
433 unsigned long flags;
434
435 WARN_ON_ONCE(q->mq_ops);
436
437 spin_lock_irqsave(q->queue_lock, flags);
438 __blk_run_queue(q);
439 spin_unlock_irqrestore(q->queue_lock, flags);
440 }
441 EXPORT_SYMBOL(blk_run_queue);
442
443 void blk_put_queue(struct request_queue *q)
444 {
445 kobject_put(&q->kobj);
446 }
447 EXPORT_SYMBOL(blk_put_queue);
448
449 /**
450 * __blk_drain_queue - drain requests from request_queue
451 * @q: queue to drain
452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
453 *
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
457 */
458 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
459 __releases(q->queue_lock)
460 __acquires(q->queue_lock)
461 {
462 int i;
463
464 lockdep_assert_held(q->queue_lock);
465 WARN_ON_ONCE(q->mq_ops);
466
467 while (true) {
468 bool drain = false;
469
470 /*
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
473 */
474 if (q->elevator)
475 elv_drain_elevator(q);
476
477 blkcg_drain_queue(q);
478
479 /*
480 * This function might be called on a queue which failed
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
485 */
486 if (!list_empty(&q->queue_head) && q->request_fn)
487 __blk_run_queue(q);
488
489 drain |= q->nr_rqs_elvpriv;
490 drain |= q->request_fn_active;
491
492 /*
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
496 */
497 if (drain_all) {
498 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
499 drain |= !list_empty(&q->queue_head);
500 for (i = 0; i < 2; i++) {
501 drain |= q->nr_rqs[i];
502 drain |= q->in_flight[i];
503 if (fq)
504 drain |= !list_empty(&fq->flush_queue[i]);
505 }
506 }
507
508 if (!drain)
509 break;
510
511 spin_unlock_irq(q->queue_lock);
512
513 msleep(10);
514
515 spin_lock_irq(q->queue_lock);
516 }
517
518 /*
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
522 */
523 if (q->request_fn) {
524 struct request_list *rl;
525
526 blk_queue_for_each_rl(rl, q)
527 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
528 wake_up_all(&rl->wait[i]);
529 }
530 }
531
532 /**
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
535 *
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
538 * throttled or issued before. On return, it's guaranteed that no request
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
541 */
542 void blk_queue_bypass_start(struct request_queue *q)
543 {
544 WARN_ON_ONCE(q->mq_ops);
545
546 spin_lock_irq(q->queue_lock);
547 q->bypass_depth++;
548 queue_flag_set(QUEUE_FLAG_BYPASS, q);
549 spin_unlock_irq(q->queue_lock);
550
551 /*
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
555 */
556 if (blk_queue_init_done(q)) {
557 spin_lock_irq(q->queue_lock);
558 __blk_drain_queue(q, false);
559 spin_unlock_irq(q->queue_lock);
560
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
562 synchronize_rcu();
563 }
564 }
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
566
567 /**
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
570 *
571 * Leave bypass mode and restore the normal queueing behavior.
572 *
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
575 */
576 void blk_queue_bypass_end(struct request_queue *q)
577 {
578 spin_lock_irq(q->queue_lock);
579 if (!--q->bypass_depth)
580 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
581 WARN_ON_ONCE(q->bypass_depth < 0);
582 spin_unlock_irq(q->queue_lock);
583 }
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
585
586 void blk_set_queue_dying(struct request_queue *q)
587 {
588 spin_lock_irq(q->queue_lock);
589 queue_flag_set(QUEUE_FLAG_DYING, q);
590 spin_unlock_irq(q->queue_lock);
591
592 /*
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
596 */
597 blk_freeze_queue_start(q);
598
599 if (q->mq_ops)
600 blk_mq_wake_waiters(q);
601 else {
602 struct request_list *rl;
603
604 spin_lock_irq(q->queue_lock);
605 blk_queue_for_each_rl(rl, q) {
606 if (rl->rq_pool) {
607 wake_up(&rl->wait[BLK_RW_SYNC]);
608 wake_up(&rl->wait[BLK_RW_ASYNC]);
609 }
610 }
611 spin_unlock_irq(q->queue_lock);
612 }
613 }
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
615
616 /**
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
619 *
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
622 */
623 void blk_cleanup_queue(struct request_queue *q)
624 {
625 spinlock_t *lock = q->queue_lock;
626
627 /* mark @q DYING, no new request or merges will be allowed afterwards */
628 mutex_lock(&q->sysfs_lock);
629 blk_set_queue_dying(q);
630 spin_lock_irq(lock);
631
632 /*
633 * A dying queue is permanently in bypass mode till released. Note
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
640 */
641 q->bypass_depth++;
642 queue_flag_set(QUEUE_FLAG_BYPASS, q);
643
644 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
646 queue_flag_set(QUEUE_FLAG_DYING, q);
647 spin_unlock_irq(lock);
648 mutex_unlock(&q->sysfs_lock);
649
650 /*
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
653 */
654 blk_freeze_queue(q);
655 spin_lock_irq(lock);
656 if (!q->mq_ops)
657 __blk_drain_queue(q, true);
658 queue_flag_set(QUEUE_FLAG_DEAD, q);
659 spin_unlock_irq(lock);
660
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
663
664 /* @q won't process any more request, flush async actions */
665 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
666 blk_sync_queue(q);
667
668 if (q->mq_ops)
669 blk_mq_free_queue(q);
670 percpu_ref_exit(&q->q_usage_counter);
671
672 spin_lock_irq(lock);
673 if (q->queue_lock != &q->__queue_lock)
674 q->queue_lock = &q->__queue_lock;
675 spin_unlock_irq(lock);
676
677 /* @q is and will stay empty, shutdown and put */
678 blk_put_queue(q);
679 }
680 EXPORT_SYMBOL(blk_cleanup_queue);
681
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
684 {
685 struct request_queue *q = data;
686
687 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
688 }
689
690 static void free_request_simple(void *element, void *data)
691 {
692 kmem_cache_free(request_cachep, element);
693 }
694
695 static void *alloc_request_size(gfp_t gfp_mask, void *data)
696 {
697 struct request_queue *q = data;
698 struct request *rq;
699
700 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
701 q->node);
702 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
703 kfree(rq);
704 rq = NULL;
705 }
706 return rq;
707 }
708
709 static void free_request_size(void *element, void *data)
710 {
711 struct request_queue *q = data;
712
713 if (q->exit_rq_fn)
714 q->exit_rq_fn(q, element);
715 kfree(element);
716 }
717
718 int blk_init_rl(struct request_list *rl, struct request_queue *q,
719 gfp_t gfp_mask)
720 {
721 if (unlikely(rl->rq_pool))
722 return 0;
723
724 rl->q = q;
725 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
726 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
727 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
728 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
729
730 if (q->cmd_size) {
731 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
732 alloc_request_size, free_request_size,
733 q, gfp_mask, q->node);
734 } else {
735 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
736 alloc_request_simple, free_request_simple,
737 q, gfp_mask, q->node);
738 }
739 if (!rl->rq_pool)
740 return -ENOMEM;
741
742 if (rl != &q->root_rl)
743 WARN_ON_ONCE(!blk_get_queue(q));
744
745 return 0;
746 }
747
748 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
749 {
750 if (rl->rq_pool) {
751 mempool_destroy(rl->rq_pool);
752 if (rl != &q->root_rl)
753 blk_put_queue(q);
754 }
755 }
756
757 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
758 {
759 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
760 }
761 EXPORT_SYMBOL(blk_alloc_queue);
762
763 int blk_queue_enter(struct request_queue *q, bool nowait)
764 {
765 while (true) {
766 int ret;
767
768 if (percpu_ref_tryget_live(&q->q_usage_counter))
769 return 0;
770
771 if (nowait)
772 return -EBUSY;
773
774 /*
775 * read pair of barrier in blk_freeze_queue_start(),
776 * we need to order reading __PERCPU_REF_DEAD flag of
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
780 */
781 smp_rmb();
782
783 ret = wait_event_interruptible(q->mq_freeze_wq,
784 !atomic_read(&q->mq_freeze_depth) ||
785 blk_queue_dying(q));
786 if (blk_queue_dying(q))
787 return -ENODEV;
788 if (ret)
789 return ret;
790 }
791 }
792
793 void blk_queue_exit(struct request_queue *q)
794 {
795 percpu_ref_put(&q->q_usage_counter);
796 }
797
798 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
799 {
800 struct request_queue *q =
801 container_of(ref, struct request_queue, q_usage_counter);
802
803 wake_up_all(&q->mq_freeze_wq);
804 }
805
806 static void blk_rq_timed_out_timer(unsigned long data)
807 {
808 struct request_queue *q = (struct request_queue *)data;
809
810 kblockd_schedule_work(&q->timeout_work);
811 }
812
813 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
814 {
815 struct request_queue *q;
816
817 q = kmem_cache_alloc_node(blk_requestq_cachep,
818 gfp_mask | __GFP_ZERO, node_id);
819 if (!q)
820 return NULL;
821
822 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
823 if (q->id < 0)
824 goto fail_q;
825
826 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
827 if (!q->bio_split)
828 goto fail_id;
829
830 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
831 if (!q->backing_dev_info)
832 goto fail_split;
833
834 q->stats = blk_alloc_queue_stats();
835 if (!q->stats)
836 goto fail_stats;
837
838 q->backing_dev_info->ra_pages =
839 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
840 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
841 q->backing_dev_info->name = "block";
842 q->node = node_id;
843
844 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
845 laptop_mode_timer_fn, (unsigned long) q);
846 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
847 INIT_LIST_HEAD(&q->queue_head);
848 INIT_LIST_HEAD(&q->timeout_list);
849 INIT_LIST_HEAD(&q->icq_list);
850 #ifdef CONFIG_BLK_CGROUP
851 INIT_LIST_HEAD(&q->blkg_list);
852 #endif
853 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
854
855 kobject_init(&q->kobj, &blk_queue_ktype);
856
857 mutex_init(&q->sysfs_lock);
858 spin_lock_init(&q->__queue_lock);
859
860 /*
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
863 */
864 q->queue_lock = &q->__queue_lock;
865
866 /*
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
871 */
872 q->bypass_depth = 1;
873 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
874
875 init_waitqueue_head(&q->mq_freeze_wq);
876
877 /*
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
880 */
881 if (percpu_ref_init(&q->q_usage_counter,
882 blk_queue_usage_counter_release,
883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
884 goto fail_bdi;
885
886 if (blkcg_init_queue(q))
887 goto fail_ref;
888
889 return q;
890
891 fail_ref:
892 percpu_ref_exit(&q->q_usage_counter);
893 fail_bdi:
894 blk_free_queue_stats(q->stats);
895 fail_stats:
896 bdi_put(q->backing_dev_info);
897 fail_split:
898 bioset_free(q->bio_split);
899 fail_id:
900 ida_simple_remove(&blk_queue_ida, q->id);
901 fail_q:
902 kmem_cache_free(blk_requestq_cachep, q);
903 return NULL;
904 }
905 EXPORT_SYMBOL(blk_alloc_queue_node);
906
907 /**
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
912 *
913 * Description:
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
922 *
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
927 *
928 * The queue spin lock must be held while manipulating the requests on the
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
931 *
932 * Function returns a pointer to the initialized request queue, or %NULL if
933 * it didn't succeed.
934 *
935 * Note:
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
938 **/
939
940 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
941 {
942 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
943 }
944 EXPORT_SYMBOL(blk_init_queue);
945
946 struct request_queue *
947 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
948 {
949 struct request_queue *q;
950
951 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
952 if (!q)
953 return NULL;
954
955 q->request_fn = rfn;
956 if (lock)
957 q->queue_lock = lock;
958 if (blk_init_allocated_queue(q) < 0) {
959 blk_cleanup_queue(q);
960 return NULL;
961 }
962
963 return q;
964 }
965 EXPORT_SYMBOL(blk_init_queue_node);
966
967 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
968
969
970 int blk_init_allocated_queue(struct request_queue *q)
971 {
972 WARN_ON_ONCE(q->mq_ops);
973
974 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
975 if (!q->fq)
976 return -ENOMEM;
977
978 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
979 goto out_free_flush_queue;
980
981 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
982 goto out_exit_flush_rq;
983
984 INIT_WORK(&q->timeout_work, blk_timeout_work);
985 q->queue_flags |= QUEUE_FLAG_DEFAULT;
986
987 /*
988 * This also sets hw/phys segments, boundary and size
989 */
990 blk_queue_make_request(q, blk_queue_bio);
991
992 q->sg_reserved_size = INT_MAX;
993
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q->sysfs_lock);
996
997 /* init elevator */
998 if (elevator_init(q, NULL)) {
999 mutex_unlock(&q->sysfs_lock);
1000 goto out_exit_flush_rq;
1001 }
1002
1003 mutex_unlock(&q->sysfs_lock);
1004 return 0;
1005
1006 out_exit_flush_rq:
1007 if (q->exit_rq_fn)
1008 q->exit_rq_fn(q, q->fq->flush_rq);
1009 out_free_flush_queue:
1010 blk_free_flush_queue(q->fq);
1011 return -ENOMEM;
1012 }
1013 EXPORT_SYMBOL(blk_init_allocated_queue);
1014
1015 bool blk_get_queue(struct request_queue *q)
1016 {
1017 if (likely(!blk_queue_dying(q))) {
1018 __blk_get_queue(q);
1019 return true;
1020 }
1021
1022 return false;
1023 }
1024 EXPORT_SYMBOL(blk_get_queue);
1025
1026 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1027 {
1028 if (rq->rq_flags & RQF_ELVPRIV) {
1029 elv_put_request(rl->q, rq);
1030 if (rq->elv.icq)
1031 put_io_context(rq->elv.icq->ioc);
1032 }
1033
1034 mempool_free(rq, rl->rq_pool);
1035 }
1036
1037 /*
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1040 */
1041 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1042 {
1043 if (!ioc)
1044 return 0;
1045
1046 /*
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1049 * lose wakeups.
1050 */
1051 return ioc->nr_batch_requests == q->nr_batching ||
1052 (ioc->nr_batch_requests > 0
1053 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1054 }
1055
1056 /*
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1060 * a nice run.
1061 */
1062 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1063 {
1064 if (!ioc || ioc_batching(q, ioc))
1065 return;
1066
1067 ioc->nr_batch_requests = q->nr_batching;
1068 ioc->last_waited = jiffies;
1069 }
1070
1071 static void __freed_request(struct request_list *rl, int sync)
1072 {
1073 struct request_queue *q = rl->q;
1074
1075 if (rl->count[sync] < queue_congestion_off_threshold(q))
1076 blk_clear_congested(rl, sync);
1077
1078 if (rl->count[sync] + 1 <= q->nr_requests) {
1079 if (waitqueue_active(&rl->wait[sync]))
1080 wake_up(&rl->wait[sync]);
1081
1082 blk_clear_rl_full(rl, sync);
1083 }
1084 }
1085
1086 /*
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1089 */
1090 static void freed_request(struct request_list *rl, bool sync,
1091 req_flags_t rq_flags)
1092 {
1093 struct request_queue *q = rl->q;
1094
1095 q->nr_rqs[sync]--;
1096 rl->count[sync]--;
1097 if (rq_flags & RQF_ELVPRIV)
1098 q->nr_rqs_elvpriv--;
1099
1100 __freed_request(rl, sync);
1101
1102 if (unlikely(rl->starved[sync ^ 1]))
1103 __freed_request(rl, sync ^ 1);
1104 }
1105
1106 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1107 {
1108 struct request_list *rl;
1109 int on_thresh, off_thresh;
1110
1111 WARN_ON_ONCE(q->mq_ops);
1112
1113 spin_lock_irq(q->queue_lock);
1114 q->nr_requests = nr;
1115 blk_queue_congestion_threshold(q);
1116 on_thresh = queue_congestion_on_threshold(q);
1117 off_thresh = queue_congestion_off_threshold(q);
1118
1119 blk_queue_for_each_rl(rl, q) {
1120 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1121 blk_set_congested(rl, BLK_RW_SYNC);
1122 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1123 blk_clear_congested(rl, BLK_RW_SYNC);
1124
1125 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1126 blk_set_congested(rl, BLK_RW_ASYNC);
1127 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1128 blk_clear_congested(rl, BLK_RW_ASYNC);
1129
1130 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1131 blk_set_rl_full(rl, BLK_RW_SYNC);
1132 } else {
1133 blk_clear_rl_full(rl, BLK_RW_SYNC);
1134 wake_up(&rl->wait[BLK_RW_SYNC]);
1135 }
1136
1137 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1138 blk_set_rl_full(rl, BLK_RW_ASYNC);
1139 } else {
1140 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1141 wake_up(&rl->wait[BLK_RW_ASYNC]);
1142 }
1143 }
1144
1145 spin_unlock_irq(q->queue_lock);
1146 return 0;
1147 }
1148
1149 /**
1150 * __get_request - get a free request
1151 * @rl: request list to allocate from
1152 * @op: operation and flags
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1155 *
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1158 *
1159 * Must be called with @q->queue_lock held and,
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1162 */
1163 static struct request *__get_request(struct request_list *rl, unsigned int op,
1164 struct bio *bio, gfp_t gfp_mask)
1165 {
1166 struct request_queue *q = rl->q;
1167 struct request *rq;
1168 struct elevator_type *et = q->elevator->type;
1169 struct io_context *ioc = rq_ioc(bio);
1170 struct io_cq *icq = NULL;
1171 const bool is_sync = op_is_sync(op);
1172 int may_queue;
1173 req_flags_t rq_flags = RQF_ALLOCED;
1174
1175 lockdep_assert_held(q->queue_lock);
1176
1177 if (unlikely(blk_queue_dying(q)))
1178 return ERR_PTR(-ENODEV);
1179
1180 may_queue = elv_may_queue(q, op);
1181 if (may_queue == ELV_MQUEUE_NO)
1182 goto rq_starved;
1183
1184 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1185 if (rl->count[is_sync]+1 >= q->nr_requests) {
1186 /*
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1191 */
1192 if (!blk_rl_full(rl, is_sync)) {
1193 ioc_set_batching(q, ioc);
1194 blk_set_rl_full(rl, is_sync);
1195 } else {
1196 if (may_queue != ELV_MQUEUE_MUST
1197 && !ioc_batching(q, ioc)) {
1198 /*
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1202 */
1203 return ERR_PTR(-ENOMEM);
1204 }
1205 }
1206 }
1207 blk_set_congested(rl, is_sync);
1208 }
1209
1210 /*
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1214 */
1215 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1216 return ERR_PTR(-ENOMEM);
1217
1218 q->nr_rqs[is_sync]++;
1219 rl->count[is_sync]++;
1220 rl->starved[is_sync] = 0;
1221
1222 /*
1223 * Decide whether the new request will be managed by elevator. If
1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1228 *
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1231 *
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1234 */
1235 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1236 rq_flags |= RQF_ELVPRIV;
1237 q->nr_rqs_elvpriv++;
1238 if (et->icq_cache && ioc)
1239 icq = ioc_lookup_icq(ioc, q);
1240 }
1241
1242 if (blk_queue_io_stat(q))
1243 rq_flags |= RQF_IO_STAT;
1244 spin_unlock_irq(q->queue_lock);
1245
1246 /* allocate and init request */
1247 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1248 if (!rq)
1249 goto fail_alloc;
1250
1251 blk_rq_init(q, rq);
1252 blk_rq_set_rl(rq, rl);
1253 rq->cmd_flags = op;
1254 rq->rq_flags = rq_flags;
1255
1256 /* init elvpriv */
1257 if (rq_flags & RQF_ELVPRIV) {
1258 if (unlikely(et->icq_cache && !icq)) {
1259 if (ioc)
1260 icq = ioc_create_icq(ioc, q, gfp_mask);
1261 if (!icq)
1262 goto fail_elvpriv;
1263 }
1264
1265 rq->elv.icq = icq;
1266 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1267 goto fail_elvpriv;
1268
1269 /* @rq->elv.icq holds io_context until @rq is freed */
1270 if (icq)
1271 get_io_context(icq->ioc);
1272 }
1273 out:
1274 /*
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1279 */
1280 if (ioc_batching(q, ioc))
1281 ioc->nr_batch_requests--;
1282
1283 trace_block_getrq(q, bio, op);
1284 return rq;
1285
1286 fail_elvpriv:
1287 /*
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1292 */
1293 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1294 __func__, dev_name(q->backing_dev_info->dev));
1295
1296 rq->rq_flags &= ~RQF_ELVPRIV;
1297 rq->elv.icq = NULL;
1298
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_rqs_elvpriv--;
1301 spin_unlock_irq(q->queue_lock);
1302 goto out;
1303
1304 fail_alloc:
1305 /*
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1308 *
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1311 */
1312 spin_lock_irq(q->queue_lock);
1313 freed_request(rl, is_sync, rq_flags);
1314
1315 /*
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1320 * READ and WRITE
1321 */
1322 rq_starved:
1323 if (unlikely(rl->count[is_sync] == 0))
1324 rl->starved[is_sync] = 1;
1325 return ERR_PTR(-ENOMEM);
1326 }
1327
1328 /**
1329 * get_request - get a free request
1330 * @q: request_queue to allocate request from
1331 * @op: operation and flags
1332 * @bio: bio to allocate request for (can be %NULL)
1333 * @gfp_mask: allocation mask
1334 *
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
1337 *
1338 * Must be called with @q->queue_lock held and,
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1341 */
1342 static struct request *get_request(struct request_queue *q, unsigned int op,
1343 struct bio *bio, gfp_t gfp_mask)
1344 {
1345 const bool is_sync = op_is_sync(op);
1346 DEFINE_WAIT(wait);
1347 struct request_list *rl;
1348 struct request *rq;
1349
1350 lockdep_assert_held(q->queue_lock);
1351 WARN_ON_ONCE(q->mq_ops);
1352
1353 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1354 retry:
1355 rq = __get_request(rl, op, bio, gfp_mask);
1356 if (!IS_ERR(rq))
1357 return rq;
1358
1359 if (op & REQ_NOWAIT) {
1360 blk_put_rl(rl);
1361 return ERR_PTR(-EAGAIN);
1362 }
1363
1364 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1365 blk_put_rl(rl);
1366 return rq;
1367 }
1368
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1371 TASK_UNINTERRUPTIBLE);
1372
1373 trace_block_sleeprq(q, bio, op);
1374
1375 spin_unlock_irq(q->queue_lock);
1376 io_schedule();
1377
1378 /*
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1382 */
1383 ioc_set_batching(q, current->io_context);
1384
1385 spin_lock_irq(q->queue_lock);
1386 finish_wait(&rl->wait[is_sync], &wait);
1387
1388 goto retry;
1389 }
1390
1391 static struct request *blk_old_get_request(struct request_queue *q,
1392 unsigned int op, gfp_t gfp_mask)
1393 {
1394 struct request *rq;
1395
1396 WARN_ON_ONCE(q->mq_ops);
1397
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask, q->node);
1400
1401 spin_lock_irq(q->queue_lock);
1402 rq = get_request(q, op, NULL, gfp_mask);
1403 if (IS_ERR(rq)) {
1404 spin_unlock_irq(q->queue_lock);
1405 return rq;
1406 }
1407
1408 /* q->queue_lock is unlocked at this point */
1409 rq->__data_len = 0;
1410 rq->__sector = (sector_t) -1;
1411 rq->bio = rq->biotail = NULL;
1412 return rq;
1413 }
1414
1415 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1416 gfp_t gfp_mask)
1417 {
1418 struct request *req;
1419
1420 if (q->mq_ops) {
1421 req = blk_mq_alloc_request(q, op,
1422 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1423 0 : BLK_MQ_REQ_NOWAIT);
1424 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1425 q->mq_ops->initialize_rq_fn(req);
1426 } else {
1427 req = blk_old_get_request(q, op, gfp_mask);
1428 if (!IS_ERR(req) && q->initialize_rq_fn)
1429 q->initialize_rq_fn(req);
1430 }
1431
1432 return req;
1433 }
1434 EXPORT_SYMBOL(blk_get_request);
1435
1436 /**
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1440 *
1441 * Description:
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1445 */
1446 void blk_requeue_request(struct request_queue *q, struct request *rq)
1447 {
1448 lockdep_assert_held(q->queue_lock);
1449 WARN_ON_ONCE(q->mq_ops);
1450
1451 blk_delete_timer(rq);
1452 blk_clear_rq_complete(rq);
1453 trace_block_rq_requeue(q, rq);
1454 wbt_requeue(q->rq_wb, &rq->issue_stat);
1455
1456 if (rq->rq_flags & RQF_QUEUED)
1457 blk_queue_end_tag(q, rq);
1458
1459 BUG_ON(blk_queued_rq(rq));
1460
1461 elv_requeue_request(q, rq);
1462 }
1463 EXPORT_SYMBOL(blk_requeue_request);
1464
1465 static void add_acct_request(struct request_queue *q, struct request *rq,
1466 int where)
1467 {
1468 blk_account_io_start(rq, true);
1469 __elv_add_request(q, rq, where);
1470 }
1471
1472 static void part_round_stats_single(struct request_queue *q, int cpu,
1473 struct hd_struct *part, unsigned long now,
1474 unsigned int inflight)
1475 {
1476 if (inflight) {
1477 __part_stat_add(cpu, part, time_in_queue,
1478 inflight * (now - part->stamp));
1479 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1480 }
1481 part->stamp = now;
1482 }
1483
1484 /**
1485 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1486 * @q: target block queue
1487 * @cpu: cpu number for stats access
1488 * @part: target partition
1489 *
1490 * The average IO queue length and utilisation statistics are maintained
1491 * by observing the current state of the queue length and the amount of
1492 * time it has been in this state for.
1493 *
1494 * Normally, that accounting is done on IO completion, but that can result
1495 * in more than a second's worth of IO being accounted for within any one
1496 * second, leading to >100% utilisation. To deal with that, we call this
1497 * function to do a round-off before returning the results when reading
1498 * /proc/diskstats. This accounts immediately for all queue usage up to
1499 * the current jiffies and restarts the counters again.
1500 */
1501 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1502 {
1503 struct hd_struct *part2 = NULL;
1504 unsigned long now = jiffies;
1505 unsigned int inflight[2];
1506 int stats = 0;
1507
1508 if (part->stamp != now)
1509 stats |= 1;
1510
1511 if (part->partno) {
1512 part2 = &part_to_disk(part)->part0;
1513 if (part2->stamp != now)
1514 stats |= 2;
1515 }
1516
1517 if (!stats)
1518 return;
1519
1520 part_in_flight(q, part, inflight);
1521
1522 if (stats & 2)
1523 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1524 if (stats & 1)
1525 part_round_stats_single(q, cpu, part, now, inflight[0]);
1526 }
1527 EXPORT_SYMBOL_GPL(part_round_stats);
1528
1529 #ifdef CONFIG_PM
1530 static void blk_pm_put_request(struct request *rq)
1531 {
1532 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1533 pm_runtime_mark_last_busy(rq->q->dev);
1534 }
1535 #else
1536 static inline void blk_pm_put_request(struct request *rq) {}
1537 #endif
1538
1539 void __blk_put_request(struct request_queue *q, struct request *req)
1540 {
1541 req_flags_t rq_flags = req->rq_flags;
1542
1543 if (unlikely(!q))
1544 return;
1545
1546 if (q->mq_ops) {
1547 blk_mq_free_request(req);
1548 return;
1549 }
1550
1551 lockdep_assert_held(q->queue_lock);
1552
1553 blk_pm_put_request(req);
1554
1555 elv_completed_request(q, req);
1556
1557 /* this is a bio leak */
1558 WARN_ON(req->bio != NULL);
1559
1560 wbt_done(q->rq_wb, &req->issue_stat);
1561
1562 /*
1563 * Request may not have originated from ll_rw_blk. if not,
1564 * it didn't come out of our reserved rq pools
1565 */
1566 if (rq_flags & RQF_ALLOCED) {
1567 struct request_list *rl = blk_rq_rl(req);
1568 bool sync = op_is_sync(req->cmd_flags);
1569
1570 BUG_ON(!list_empty(&req->queuelist));
1571 BUG_ON(ELV_ON_HASH(req));
1572
1573 blk_free_request(rl, req);
1574 freed_request(rl, sync, rq_flags);
1575 blk_put_rl(rl);
1576 }
1577 }
1578 EXPORT_SYMBOL_GPL(__blk_put_request);
1579
1580 void blk_put_request(struct request *req)
1581 {
1582 struct request_queue *q = req->q;
1583
1584 if (q->mq_ops)
1585 blk_mq_free_request(req);
1586 else {
1587 unsigned long flags;
1588
1589 spin_lock_irqsave(q->queue_lock, flags);
1590 __blk_put_request(q, req);
1591 spin_unlock_irqrestore(q->queue_lock, flags);
1592 }
1593 }
1594 EXPORT_SYMBOL(blk_put_request);
1595
1596 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1597 struct bio *bio)
1598 {
1599 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1600
1601 if (!ll_back_merge_fn(q, req, bio))
1602 return false;
1603
1604 trace_block_bio_backmerge(q, req, bio);
1605
1606 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1607 blk_rq_set_mixed_merge(req);
1608
1609 req->biotail->bi_next = bio;
1610 req->biotail = bio;
1611 req->__data_len += bio->bi_iter.bi_size;
1612 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1613
1614 blk_account_io_start(req, false);
1615 return true;
1616 }
1617
1618 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1619 struct bio *bio)
1620 {
1621 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1622
1623 if (!ll_front_merge_fn(q, req, bio))
1624 return false;
1625
1626 trace_block_bio_frontmerge(q, req, bio);
1627
1628 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1629 blk_rq_set_mixed_merge(req);
1630
1631 bio->bi_next = req->bio;
1632 req->bio = bio;
1633
1634 req->__sector = bio->bi_iter.bi_sector;
1635 req->__data_len += bio->bi_iter.bi_size;
1636 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1637
1638 blk_account_io_start(req, false);
1639 return true;
1640 }
1641
1642 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1643 struct bio *bio)
1644 {
1645 unsigned short segments = blk_rq_nr_discard_segments(req);
1646
1647 if (segments >= queue_max_discard_segments(q))
1648 goto no_merge;
1649 if (blk_rq_sectors(req) + bio_sectors(bio) >
1650 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1651 goto no_merge;
1652
1653 req->biotail->bi_next = bio;
1654 req->biotail = bio;
1655 req->__data_len += bio->bi_iter.bi_size;
1656 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1657 req->nr_phys_segments = segments + 1;
1658
1659 blk_account_io_start(req, false);
1660 return true;
1661 no_merge:
1662 req_set_nomerge(q, req);
1663 return false;
1664 }
1665
1666 /**
1667 * blk_attempt_plug_merge - try to merge with %current's plugged list
1668 * @q: request_queue new bio is being queued at
1669 * @bio: new bio being queued
1670 * @request_count: out parameter for number of traversed plugged requests
1671 * @same_queue_rq: pointer to &struct request that gets filled in when
1672 * another request associated with @q is found on the plug list
1673 * (optional, may be %NULL)
1674 *
1675 * Determine whether @bio being queued on @q can be merged with a request
1676 * on %current's plugged list. Returns %true if merge was successful,
1677 * otherwise %false.
1678 *
1679 * Plugging coalesces IOs from the same issuer for the same purpose without
1680 * going through @q->queue_lock. As such it's more of an issuing mechanism
1681 * than scheduling, and the request, while may have elvpriv data, is not
1682 * added on the elevator at this point. In addition, we don't have
1683 * reliable access to the elevator outside queue lock. Only check basic
1684 * merging parameters without querying the elevator.
1685 *
1686 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1687 */
1688 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1689 unsigned int *request_count,
1690 struct request **same_queue_rq)
1691 {
1692 struct blk_plug *plug;
1693 struct request *rq;
1694 struct list_head *plug_list;
1695
1696 plug = current->plug;
1697 if (!plug)
1698 return false;
1699 *request_count = 0;
1700
1701 if (q->mq_ops)
1702 plug_list = &plug->mq_list;
1703 else
1704 plug_list = &plug->list;
1705
1706 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1707 bool merged = false;
1708
1709 if (rq->q == q) {
1710 (*request_count)++;
1711 /*
1712 * Only blk-mq multiple hardware queues case checks the
1713 * rq in the same queue, there should be only one such
1714 * rq in a queue
1715 **/
1716 if (same_queue_rq)
1717 *same_queue_rq = rq;
1718 }
1719
1720 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1721 continue;
1722
1723 switch (blk_try_merge(rq, bio)) {
1724 case ELEVATOR_BACK_MERGE:
1725 merged = bio_attempt_back_merge(q, rq, bio);
1726 break;
1727 case ELEVATOR_FRONT_MERGE:
1728 merged = bio_attempt_front_merge(q, rq, bio);
1729 break;
1730 case ELEVATOR_DISCARD_MERGE:
1731 merged = bio_attempt_discard_merge(q, rq, bio);
1732 break;
1733 default:
1734 break;
1735 }
1736
1737 if (merged)
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744 unsigned int blk_plug_queued_count(struct request_queue *q)
1745 {
1746 struct blk_plug *plug;
1747 struct request *rq;
1748 struct list_head *plug_list;
1749 unsigned int ret = 0;
1750
1751 plug = current->plug;
1752 if (!plug)
1753 goto out;
1754
1755 if (q->mq_ops)
1756 plug_list = &plug->mq_list;
1757 else
1758 plug_list = &plug->list;
1759
1760 list_for_each_entry(rq, plug_list, queuelist) {
1761 if (rq->q == q)
1762 ret++;
1763 }
1764 out:
1765 return ret;
1766 }
1767
1768 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1769 {
1770 struct io_context *ioc = rq_ioc(bio);
1771
1772 if (bio->bi_opf & REQ_RAHEAD)
1773 req->cmd_flags |= REQ_FAILFAST_MASK;
1774
1775 req->__sector = bio->bi_iter.bi_sector;
1776 if (ioprio_valid(bio_prio(bio)))
1777 req->ioprio = bio_prio(bio);
1778 else if (ioc)
1779 req->ioprio = ioc->ioprio;
1780 else
1781 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1782 req->write_hint = bio->bi_write_hint;
1783 blk_rq_bio_prep(req->q, req, bio);
1784 }
1785 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1786
1787 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1788 {
1789 struct blk_plug *plug;
1790 int where = ELEVATOR_INSERT_SORT;
1791 struct request *req, *free;
1792 unsigned int request_count = 0;
1793 unsigned int wb_acct;
1794
1795 /*
1796 * low level driver can indicate that it wants pages above a
1797 * certain limit bounced to low memory (ie for highmem, or even
1798 * ISA dma in theory)
1799 */
1800 blk_queue_bounce(q, &bio);
1801
1802 blk_queue_split(q, &bio);
1803
1804 if (!bio_integrity_prep(bio))
1805 return BLK_QC_T_NONE;
1806
1807 if (op_is_flush(bio->bi_opf)) {
1808 spin_lock_irq(q->queue_lock);
1809 where = ELEVATOR_INSERT_FLUSH;
1810 goto get_rq;
1811 }
1812
1813 /*
1814 * Check if we can merge with the plugged list before grabbing
1815 * any locks.
1816 */
1817 if (!blk_queue_nomerges(q)) {
1818 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1819 return BLK_QC_T_NONE;
1820 } else
1821 request_count = blk_plug_queued_count(q);
1822
1823 spin_lock_irq(q->queue_lock);
1824
1825 switch (elv_merge(q, &req, bio)) {
1826 case ELEVATOR_BACK_MERGE:
1827 if (!bio_attempt_back_merge(q, req, bio))
1828 break;
1829 elv_bio_merged(q, req, bio);
1830 free = attempt_back_merge(q, req);
1831 if (free)
1832 __blk_put_request(q, free);
1833 else
1834 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1835 goto out_unlock;
1836 case ELEVATOR_FRONT_MERGE:
1837 if (!bio_attempt_front_merge(q, req, bio))
1838 break;
1839 elv_bio_merged(q, req, bio);
1840 free = attempt_front_merge(q, req);
1841 if (free)
1842 __blk_put_request(q, free);
1843 else
1844 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1845 goto out_unlock;
1846 default:
1847 break;
1848 }
1849
1850 get_rq:
1851 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1852
1853 /*
1854 * Grab a free request. This is might sleep but can not fail.
1855 * Returns with the queue unlocked.
1856 */
1857 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1858 if (IS_ERR(req)) {
1859 __wbt_done(q->rq_wb, wb_acct);
1860 if (PTR_ERR(req) == -ENOMEM)
1861 bio->bi_status = BLK_STS_RESOURCE;
1862 else
1863 bio->bi_status = BLK_STS_IOERR;
1864 bio_endio(bio);
1865 goto out_unlock;
1866 }
1867
1868 wbt_track(&req->issue_stat, wb_acct);
1869
1870 /*
1871 * After dropping the lock and possibly sleeping here, our request
1872 * may now be mergeable after it had proven unmergeable (above).
1873 * We don't worry about that case for efficiency. It won't happen
1874 * often, and the elevators are able to handle it.
1875 */
1876 blk_init_request_from_bio(req, bio);
1877
1878 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1879 req->cpu = raw_smp_processor_id();
1880
1881 plug = current->plug;
1882 if (plug) {
1883 /*
1884 * If this is the first request added after a plug, fire
1885 * of a plug trace.
1886 *
1887 * @request_count may become stale because of schedule
1888 * out, so check plug list again.
1889 */
1890 if (!request_count || list_empty(&plug->list))
1891 trace_block_plug(q);
1892 else {
1893 struct request *last = list_entry_rq(plug->list.prev);
1894 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1895 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1896 blk_flush_plug_list(plug, false);
1897 trace_block_plug(q);
1898 }
1899 }
1900 list_add_tail(&req->queuelist, &plug->list);
1901 blk_account_io_start(req, true);
1902 } else {
1903 spin_lock_irq(q->queue_lock);
1904 add_acct_request(q, req, where);
1905 __blk_run_queue(q);
1906 out_unlock:
1907 spin_unlock_irq(q->queue_lock);
1908 }
1909
1910 return BLK_QC_T_NONE;
1911 }
1912
1913 static void handle_bad_sector(struct bio *bio)
1914 {
1915 char b[BDEVNAME_SIZE];
1916
1917 printk(KERN_INFO "attempt to access beyond end of device\n");
1918 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1919 bio_devname(bio, b), bio->bi_opf,
1920 (unsigned long long)bio_end_sector(bio),
1921 (long long)get_capacity(bio->bi_disk));
1922 }
1923
1924 #ifdef CONFIG_FAIL_MAKE_REQUEST
1925
1926 static DECLARE_FAULT_ATTR(fail_make_request);
1927
1928 static int __init setup_fail_make_request(char *str)
1929 {
1930 return setup_fault_attr(&fail_make_request, str);
1931 }
1932 __setup("fail_make_request=", setup_fail_make_request);
1933
1934 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1935 {
1936 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1937 }
1938
1939 static int __init fail_make_request_debugfs(void)
1940 {
1941 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1942 NULL, &fail_make_request);
1943
1944 return PTR_ERR_OR_ZERO(dir);
1945 }
1946
1947 late_initcall(fail_make_request_debugfs);
1948
1949 #else /* CONFIG_FAIL_MAKE_REQUEST */
1950
1951 static inline bool should_fail_request(struct hd_struct *part,
1952 unsigned int bytes)
1953 {
1954 return false;
1955 }
1956
1957 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1958
1959 /*
1960 * Remap block n of partition p to block n+start(p) of the disk.
1961 */
1962 static inline int blk_partition_remap(struct bio *bio)
1963 {
1964 struct hd_struct *p;
1965 int ret = 0;
1966
1967 /*
1968 * Zone reset does not include bi_size so bio_sectors() is always 0.
1969 * Include a test for the reset op code and perform the remap if needed.
1970 */
1971 if (!bio->bi_partno ||
1972 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
1973 return 0;
1974
1975 rcu_read_lock();
1976 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
1977 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
1978 bio->bi_iter.bi_sector += p->start_sect;
1979 bio->bi_partno = 0;
1980 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
1981 bio->bi_iter.bi_sector - p->start_sect);
1982 } else {
1983 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
1984 ret = -EIO;
1985 }
1986 rcu_read_unlock();
1987
1988 return ret;
1989 }
1990
1991 /*
1992 * Check whether this bio extends beyond the end of the device.
1993 */
1994 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1995 {
1996 sector_t maxsector;
1997
1998 if (!nr_sectors)
1999 return 0;
2000
2001 /* Test device or partition size, when known. */
2002 maxsector = get_capacity(bio->bi_disk);
2003 if (maxsector) {
2004 sector_t sector = bio->bi_iter.bi_sector;
2005
2006 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2007 /*
2008 * This may well happen - the kernel calls bread()
2009 * without checking the size of the device, e.g., when
2010 * mounting a device.
2011 */
2012 handle_bad_sector(bio);
2013 return 1;
2014 }
2015 }
2016
2017 return 0;
2018 }
2019
2020 static noinline_for_stack bool
2021 generic_make_request_checks(struct bio *bio)
2022 {
2023 struct request_queue *q;
2024 int nr_sectors = bio_sectors(bio);
2025 blk_status_t status = BLK_STS_IOERR;
2026 char b[BDEVNAME_SIZE];
2027
2028 might_sleep();
2029
2030 if (bio_check_eod(bio, nr_sectors))
2031 goto end_io;
2032
2033 q = bio->bi_disk->queue;
2034 if (unlikely(!q)) {
2035 printk(KERN_ERR
2036 "generic_make_request: Trying to access "
2037 "nonexistent block-device %s (%Lu)\n",
2038 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2039 goto end_io;
2040 }
2041
2042 /*
2043 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2044 * if queue is not a request based queue.
2045 */
2046
2047 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2048 goto not_supported;
2049
2050 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2051 goto end_io;
2052
2053 if (blk_partition_remap(bio))
2054 goto end_io;
2055
2056 if (bio_check_eod(bio, nr_sectors))
2057 goto end_io;
2058
2059 /*
2060 * Filter flush bio's early so that make_request based
2061 * drivers without flush support don't have to worry
2062 * about them.
2063 */
2064 if (op_is_flush(bio->bi_opf) &&
2065 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2066 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2067 if (!nr_sectors) {
2068 status = BLK_STS_OK;
2069 goto end_io;
2070 }
2071 }
2072
2073 switch (bio_op(bio)) {
2074 case REQ_OP_DISCARD:
2075 if (!blk_queue_discard(q))
2076 goto not_supported;
2077 break;
2078 case REQ_OP_SECURE_ERASE:
2079 if (!blk_queue_secure_erase(q))
2080 goto not_supported;
2081 break;
2082 case REQ_OP_WRITE_SAME:
2083 if (!q->limits.max_write_same_sectors)
2084 goto not_supported;
2085 break;
2086 case REQ_OP_ZONE_REPORT:
2087 case REQ_OP_ZONE_RESET:
2088 if (!blk_queue_is_zoned(q))
2089 goto not_supported;
2090 break;
2091 case REQ_OP_WRITE_ZEROES:
2092 if (!q->limits.max_write_zeroes_sectors)
2093 goto not_supported;
2094 break;
2095 default:
2096 break;
2097 }
2098
2099 /*
2100 * Various block parts want %current->io_context and lazy ioc
2101 * allocation ends up trading a lot of pain for a small amount of
2102 * memory. Just allocate it upfront. This may fail and block
2103 * layer knows how to live with it.
2104 */
2105 create_io_context(GFP_ATOMIC, q->node);
2106
2107 if (!blkcg_bio_issue_check(q, bio))
2108 return false;
2109
2110 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2111 trace_block_bio_queue(q, bio);
2112 /* Now that enqueuing has been traced, we need to trace
2113 * completion as well.
2114 */
2115 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2116 }
2117 return true;
2118
2119 not_supported:
2120 status = BLK_STS_NOTSUPP;
2121 end_io:
2122 bio->bi_status = status;
2123 bio_endio(bio);
2124 return false;
2125 }
2126
2127 /**
2128 * generic_make_request - hand a buffer to its device driver for I/O
2129 * @bio: The bio describing the location in memory and on the device.
2130 *
2131 * generic_make_request() is used to make I/O requests of block
2132 * devices. It is passed a &struct bio, which describes the I/O that needs
2133 * to be done.
2134 *
2135 * generic_make_request() does not return any status. The
2136 * success/failure status of the request, along with notification of
2137 * completion, is delivered asynchronously through the bio->bi_end_io
2138 * function described (one day) else where.
2139 *
2140 * The caller of generic_make_request must make sure that bi_io_vec
2141 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2142 * set to describe the device address, and the
2143 * bi_end_io and optionally bi_private are set to describe how
2144 * completion notification should be signaled.
2145 *
2146 * generic_make_request and the drivers it calls may use bi_next if this
2147 * bio happens to be merged with someone else, and may resubmit the bio to
2148 * a lower device by calling into generic_make_request recursively, which
2149 * means the bio should NOT be touched after the call to ->make_request_fn.
2150 */
2151 blk_qc_t generic_make_request(struct bio *bio)
2152 {
2153 /*
2154 * bio_list_on_stack[0] contains bios submitted by the current
2155 * make_request_fn.
2156 * bio_list_on_stack[1] contains bios that were submitted before
2157 * the current make_request_fn, but that haven't been processed
2158 * yet.
2159 */
2160 struct bio_list bio_list_on_stack[2];
2161 blk_qc_t ret = BLK_QC_T_NONE;
2162
2163 if (!generic_make_request_checks(bio))
2164 goto out;
2165
2166 /*
2167 * We only want one ->make_request_fn to be active at a time, else
2168 * stack usage with stacked devices could be a problem. So use
2169 * current->bio_list to keep a list of requests submited by a
2170 * make_request_fn function. current->bio_list is also used as a
2171 * flag to say if generic_make_request is currently active in this
2172 * task or not. If it is NULL, then no make_request is active. If
2173 * it is non-NULL, then a make_request is active, and new requests
2174 * should be added at the tail
2175 */
2176 if (current->bio_list) {
2177 bio_list_add(&current->bio_list[0], bio);
2178 goto out;
2179 }
2180
2181 /* following loop may be a bit non-obvious, and so deserves some
2182 * explanation.
2183 * Before entering the loop, bio->bi_next is NULL (as all callers
2184 * ensure that) so we have a list with a single bio.
2185 * We pretend that we have just taken it off a longer list, so
2186 * we assign bio_list to a pointer to the bio_list_on_stack,
2187 * thus initialising the bio_list of new bios to be
2188 * added. ->make_request() may indeed add some more bios
2189 * through a recursive call to generic_make_request. If it
2190 * did, we find a non-NULL value in bio_list and re-enter the loop
2191 * from the top. In this case we really did just take the bio
2192 * of the top of the list (no pretending) and so remove it from
2193 * bio_list, and call into ->make_request() again.
2194 */
2195 BUG_ON(bio->bi_next);
2196 bio_list_init(&bio_list_on_stack[0]);
2197 current->bio_list = bio_list_on_stack;
2198 do {
2199 struct request_queue *q = bio->bi_disk->queue;
2200
2201 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2202 struct bio_list lower, same;
2203
2204 /* Create a fresh bio_list for all subordinate requests */
2205 bio_list_on_stack[1] = bio_list_on_stack[0];
2206 bio_list_init(&bio_list_on_stack[0]);
2207 ret = q->make_request_fn(q, bio);
2208
2209 blk_queue_exit(q);
2210
2211 /* sort new bios into those for a lower level
2212 * and those for the same level
2213 */
2214 bio_list_init(&lower);
2215 bio_list_init(&same);
2216 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2217 if (q == bio->bi_disk->queue)
2218 bio_list_add(&same, bio);
2219 else
2220 bio_list_add(&lower, bio);
2221 /* now assemble so we handle the lowest level first */
2222 bio_list_merge(&bio_list_on_stack[0], &lower);
2223 bio_list_merge(&bio_list_on_stack[0], &same);
2224 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2225 } else {
2226 if (unlikely(!blk_queue_dying(q) &&
2227 (bio->bi_opf & REQ_NOWAIT)))
2228 bio_wouldblock_error(bio);
2229 else
2230 bio_io_error(bio);
2231 }
2232 bio = bio_list_pop(&bio_list_on_stack[0]);
2233 } while (bio);
2234 current->bio_list = NULL; /* deactivate */
2235
2236 out:
2237 return ret;
2238 }
2239 EXPORT_SYMBOL(generic_make_request);
2240
2241 /**
2242 * submit_bio - submit a bio to the block device layer for I/O
2243 * @bio: The &struct bio which describes the I/O
2244 *
2245 * submit_bio() is very similar in purpose to generic_make_request(), and
2246 * uses that function to do most of the work. Both are fairly rough
2247 * interfaces; @bio must be presetup and ready for I/O.
2248 *
2249 */
2250 blk_qc_t submit_bio(struct bio *bio)
2251 {
2252 /*
2253 * If it's a regular read/write or a barrier with data attached,
2254 * go through the normal accounting stuff before submission.
2255 */
2256 if (bio_has_data(bio)) {
2257 unsigned int count;
2258
2259 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2260 count = queue_logical_block_size(bio->bi_disk->queue);
2261 else
2262 count = bio_sectors(bio);
2263
2264 if (op_is_write(bio_op(bio))) {
2265 count_vm_events(PGPGOUT, count);
2266 } else {
2267 task_io_account_read(bio->bi_iter.bi_size);
2268 count_vm_events(PGPGIN, count);
2269 }
2270
2271 if (unlikely(block_dump)) {
2272 char b[BDEVNAME_SIZE];
2273 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2274 current->comm, task_pid_nr(current),
2275 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2276 (unsigned long long)bio->bi_iter.bi_sector,
2277 bio_devname(bio, b), count);
2278 }
2279 }
2280
2281 return generic_make_request(bio);
2282 }
2283 EXPORT_SYMBOL(submit_bio);
2284
2285 /**
2286 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2287 * for new the queue limits
2288 * @q: the queue
2289 * @rq: the request being checked
2290 *
2291 * Description:
2292 * @rq may have been made based on weaker limitations of upper-level queues
2293 * in request stacking drivers, and it may violate the limitation of @q.
2294 * Since the block layer and the underlying device driver trust @rq
2295 * after it is inserted to @q, it should be checked against @q before
2296 * the insertion using this generic function.
2297 *
2298 * Request stacking drivers like request-based dm may change the queue
2299 * limits when retrying requests on other queues. Those requests need
2300 * to be checked against the new queue limits again during dispatch.
2301 */
2302 static int blk_cloned_rq_check_limits(struct request_queue *q,
2303 struct request *rq)
2304 {
2305 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2306 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2307 return -EIO;
2308 }
2309
2310 /*
2311 * queue's settings related to segment counting like q->bounce_pfn
2312 * may differ from that of other stacking queues.
2313 * Recalculate it to check the request correctly on this queue's
2314 * limitation.
2315 */
2316 blk_recalc_rq_segments(rq);
2317 if (rq->nr_phys_segments > queue_max_segments(q)) {
2318 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2319 return -EIO;
2320 }
2321
2322 return 0;
2323 }
2324
2325 /**
2326 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2327 * @q: the queue to submit the request
2328 * @rq: the request being queued
2329 */
2330 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2331 {
2332 unsigned long flags;
2333 int where = ELEVATOR_INSERT_BACK;
2334
2335 if (blk_cloned_rq_check_limits(q, rq))
2336 return BLK_STS_IOERR;
2337
2338 if (rq->rq_disk &&
2339 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2340 return BLK_STS_IOERR;
2341
2342 if (q->mq_ops) {
2343 if (blk_queue_io_stat(q))
2344 blk_account_io_start(rq, true);
2345 blk_mq_sched_insert_request(rq, false, true, false, false);
2346 return BLK_STS_OK;
2347 }
2348
2349 spin_lock_irqsave(q->queue_lock, flags);
2350 if (unlikely(blk_queue_dying(q))) {
2351 spin_unlock_irqrestore(q->queue_lock, flags);
2352 return BLK_STS_IOERR;
2353 }
2354
2355 /*
2356 * Submitting request must be dequeued before calling this function
2357 * because it will be linked to another request_queue
2358 */
2359 BUG_ON(blk_queued_rq(rq));
2360
2361 if (op_is_flush(rq->cmd_flags))
2362 where = ELEVATOR_INSERT_FLUSH;
2363
2364 add_acct_request(q, rq, where);
2365 if (where == ELEVATOR_INSERT_FLUSH)
2366 __blk_run_queue(q);
2367 spin_unlock_irqrestore(q->queue_lock, flags);
2368
2369 return BLK_STS_OK;
2370 }
2371 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2372
2373 /**
2374 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2375 * @rq: request to examine
2376 *
2377 * Description:
2378 * A request could be merge of IOs which require different failure
2379 * handling. This function determines the number of bytes which
2380 * can be failed from the beginning of the request without
2381 * crossing into area which need to be retried further.
2382 *
2383 * Return:
2384 * The number of bytes to fail.
2385 */
2386 unsigned int blk_rq_err_bytes(const struct request *rq)
2387 {
2388 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2389 unsigned int bytes = 0;
2390 struct bio *bio;
2391
2392 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2393 return blk_rq_bytes(rq);
2394
2395 /*
2396 * Currently the only 'mixing' which can happen is between
2397 * different fastfail types. We can safely fail portions
2398 * which have all the failfast bits that the first one has -
2399 * the ones which are at least as eager to fail as the first
2400 * one.
2401 */
2402 for (bio = rq->bio; bio; bio = bio->bi_next) {
2403 if ((bio->bi_opf & ff) != ff)
2404 break;
2405 bytes += bio->bi_iter.bi_size;
2406 }
2407
2408 /* this could lead to infinite loop */
2409 BUG_ON(blk_rq_bytes(rq) && !bytes);
2410 return bytes;
2411 }
2412 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2413
2414 void blk_account_io_completion(struct request *req, unsigned int bytes)
2415 {
2416 if (blk_do_io_stat(req)) {
2417 const int rw = rq_data_dir(req);
2418 struct hd_struct *part;
2419 int cpu;
2420
2421 cpu = part_stat_lock();
2422 part = req->part;
2423 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2424 part_stat_unlock();
2425 }
2426 }
2427
2428 void blk_account_io_done(struct request *req)
2429 {
2430 /*
2431 * Account IO completion. flush_rq isn't accounted as a
2432 * normal IO on queueing nor completion. Accounting the
2433 * containing request is enough.
2434 */
2435 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2436 unsigned long duration = jiffies - req->start_time;
2437 const int rw = rq_data_dir(req);
2438 struct hd_struct *part;
2439 int cpu;
2440
2441 cpu = part_stat_lock();
2442 part = req->part;
2443
2444 part_stat_inc(cpu, part, ios[rw]);
2445 part_stat_add(cpu, part, ticks[rw], duration);
2446 part_round_stats(req->q, cpu, part);
2447 part_dec_in_flight(req->q, part, rw);
2448
2449 hd_struct_put(part);
2450 part_stat_unlock();
2451 }
2452 }
2453
2454 #ifdef CONFIG_PM
2455 /*
2456 * Don't process normal requests when queue is suspended
2457 * or in the process of suspending/resuming
2458 */
2459 static struct request *blk_pm_peek_request(struct request_queue *q,
2460 struct request *rq)
2461 {
2462 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2463 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2464 return NULL;
2465 else
2466 return rq;
2467 }
2468 #else
2469 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2470 struct request *rq)
2471 {
2472 return rq;
2473 }
2474 #endif
2475
2476 void blk_account_io_start(struct request *rq, bool new_io)
2477 {
2478 struct hd_struct *part;
2479 int rw = rq_data_dir(rq);
2480 int cpu;
2481
2482 if (!blk_do_io_stat(rq))
2483 return;
2484
2485 cpu = part_stat_lock();
2486
2487 if (!new_io) {
2488 part = rq->part;
2489 part_stat_inc(cpu, part, merges[rw]);
2490 } else {
2491 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2492 if (!hd_struct_try_get(part)) {
2493 /*
2494 * The partition is already being removed,
2495 * the request will be accounted on the disk only
2496 *
2497 * We take a reference on disk->part0 although that
2498 * partition will never be deleted, so we can treat
2499 * it as any other partition.
2500 */
2501 part = &rq->rq_disk->part0;
2502 hd_struct_get(part);
2503 }
2504 part_round_stats(rq->q, cpu, part);
2505 part_inc_in_flight(rq->q, part, rw);
2506 rq->part = part;
2507 }
2508
2509 part_stat_unlock();
2510 }
2511
2512 /**
2513 * blk_peek_request - peek at the top of a request queue
2514 * @q: request queue to peek at
2515 *
2516 * Description:
2517 * Return the request at the top of @q. The returned request
2518 * should be started using blk_start_request() before LLD starts
2519 * processing it.
2520 *
2521 * Return:
2522 * Pointer to the request at the top of @q if available. Null
2523 * otherwise.
2524 */
2525 struct request *blk_peek_request(struct request_queue *q)
2526 {
2527 struct request *rq;
2528 int ret;
2529
2530 lockdep_assert_held(q->queue_lock);
2531 WARN_ON_ONCE(q->mq_ops);
2532
2533 while ((rq = __elv_next_request(q)) != NULL) {
2534
2535 rq = blk_pm_peek_request(q, rq);
2536 if (!rq)
2537 break;
2538
2539 if (!(rq->rq_flags & RQF_STARTED)) {
2540 /*
2541 * This is the first time the device driver
2542 * sees this request (possibly after
2543 * requeueing). Notify IO scheduler.
2544 */
2545 if (rq->rq_flags & RQF_SORTED)
2546 elv_activate_rq(q, rq);
2547
2548 /*
2549 * just mark as started even if we don't start
2550 * it, a request that has been delayed should
2551 * not be passed by new incoming requests
2552 */
2553 rq->rq_flags |= RQF_STARTED;
2554 trace_block_rq_issue(q, rq);
2555 }
2556
2557 if (!q->boundary_rq || q->boundary_rq == rq) {
2558 q->end_sector = rq_end_sector(rq);
2559 q->boundary_rq = NULL;
2560 }
2561
2562 if (rq->rq_flags & RQF_DONTPREP)
2563 break;
2564
2565 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2566 /*
2567 * make sure space for the drain appears we
2568 * know we can do this because max_hw_segments
2569 * has been adjusted to be one fewer than the
2570 * device can handle
2571 */
2572 rq->nr_phys_segments++;
2573 }
2574
2575 if (!q->prep_rq_fn)
2576 break;
2577
2578 ret = q->prep_rq_fn(q, rq);
2579 if (ret == BLKPREP_OK) {
2580 break;
2581 } else if (ret == BLKPREP_DEFER) {
2582 /*
2583 * the request may have been (partially) prepped.
2584 * we need to keep this request in the front to
2585 * avoid resource deadlock. RQF_STARTED will
2586 * prevent other fs requests from passing this one.
2587 */
2588 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2589 !(rq->rq_flags & RQF_DONTPREP)) {
2590 /*
2591 * remove the space for the drain we added
2592 * so that we don't add it again
2593 */
2594 --rq->nr_phys_segments;
2595 }
2596
2597 rq = NULL;
2598 break;
2599 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2600 rq->rq_flags |= RQF_QUIET;
2601 /*
2602 * Mark this request as started so we don't trigger
2603 * any debug logic in the end I/O path.
2604 */
2605 blk_start_request(rq);
2606 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2607 BLK_STS_TARGET : BLK_STS_IOERR);
2608 } else {
2609 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2610 break;
2611 }
2612 }
2613
2614 return rq;
2615 }
2616 EXPORT_SYMBOL(blk_peek_request);
2617
2618 void blk_dequeue_request(struct request *rq)
2619 {
2620 struct request_queue *q = rq->q;
2621
2622 BUG_ON(list_empty(&rq->queuelist));
2623 BUG_ON(ELV_ON_HASH(rq));
2624
2625 list_del_init(&rq->queuelist);
2626
2627 /*
2628 * the time frame between a request being removed from the lists
2629 * and to it is freed is accounted as io that is in progress at
2630 * the driver side.
2631 */
2632 if (blk_account_rq(rq)) {
2633 q->in_flight[rq_is_sync(rq)]++;
2634 set_io_start_time_ns(rq);
2635 }
2636 }
2637
2638 /**
2639 * blk_start_request - start request processing on the driver
2640 * @req: request to dequeue
2641 *
2642 * Description:
2643 * Dequeue @req and start timeout timer on it. This hands off the
2644 * request to the driver.
2645 *
2646 * Block internal functions which don't want to start timer should
2647 * call blk_dequeue_request().
2648 */
2649 void blk_start_request(struct request *req)
2650 {
2651 lockdep_assert_held(req->q->queue_lock);
2652 WARN_ON_ONCE(req->q->mq_ops);
2653
2654 blk_dequeue_request(req);
2655
2656 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2657 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2658 req->rq_flags |= RQF_STATS;
2659 wbt_issue(req->q->rq_wb, &req->issue_stat);
2660 }
2661
2662 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2663 blk_add_timer(req);
2664 }
2665 EXPORT_SYMBOL(blk_start_request);
2666
2667 /**
2668 * blk_fetch_request - fetch a request from a request queue
2669 * @q: request queue to fetch a request from
2670 *
2671 * Description:
2672 * Return the request at the top of @q. The request is started on
2673 * return and LLD can start processing it immediately.
2674 *
2675 * Return:
2676 * Pointer to the request at the top of @q if available. Null
2677 * otherwise.
2678 */
2679 struct request *blk_fetch_request(struct request_queue *q)
2680 {
2681 struct request *rq;
2682
2683 lockdep_assert_held(q->queue_lock);
2684 WARN_ON_ONCE(q->mq_ops);
2685
2686 rq = blk_peek_request(q);
2687 if (rq)
2688 blk_start_request(rq);
2689 return rq;
2690 }
2691 EXPORT_SYMBOL(blk_fetch_request);
2692
2693 /**
2694 * blk_update_request - Special helper function for request stacking drivers
2695 * @req: the request being processed
2696 * @error: block status code
2697 * @nr_bytes: number of bytes to complete @req
2698 *
2699 * Description:
2700 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2701 * the request structure even if @req doesn't have leftover.
2702 * If @req has leftover, sets it up for the next range of segments.
2703 *
2704 * This special helper function is only for request stacking drivers
2705 * (e.g. request-based dm) so that they can handle partial completion.
2706 * Actual device drivers should use blk_end_request instead.
2707 *
2708 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2709 * %false return from this function.
2710 *
2711 * Return:
2712 * %false - this request doesn't have any more data
2713 * %true - this request has more data
2714 **/
2715 bool blk_update_request(struct request *req, blk_status_t error,
2716 unsigned int nr_bytes)
2717 {
2718 int total_bytes;
2719
2720 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2721
2722 if (!req->bio)
2723 return false;
2724
2725 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2726 !(req->rq_flags & RQF_QUIET)))
2727 print_req_error(req, error);
2728
2729 blk_account_io_completion(req, nr_bytes);
2730
2731 total_bytes = 0;
2732 while (req->bio) {
2733 struct bio *bio = req->bio;
2734 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2735
2736 if (bio_bytes == bio->bi_iter.bi_size)
2737 req->bio = bio->bi_next;
2738
2739 /* Completion has already been traced */
2740 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2741 req_bio_endio(req, bio, bio_bytes, error);
2742
2743 total_bytes += bio_bytes;
2744 nr_bytes -= bio_bytes;
2745
2746 if (!nr_bytes)
2747 break;
2748 }
2749
2750 /*
2751 * completely done
2752 */
2753 if (!req->bio) {
2754 /*
2755 * Reset counters so that the request stacking driver
2756 * can find how many bytes remain in the request
2757 * later.
2758 */
2759 req->__data_len = 0;
2760 return false;
2761 }
2762
2763 req->__data_len -= total_bytes;
2764
2765 /* update sector only for requests with clear definition of sector */
2766 if (!blk_rq_is_passthrough(req))
2767 req->__sector += total_bytes >> 9;
2768
2769 /* mixed attributes always follow the first bio */
2770 if (req->rq_flags & RQF_MIXED_MERGE) {
2771 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2772 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2773 }
2774
2775 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2776 /*
2777 * If total number of sectors is less than the first segment
2778 * size, something has gone terribly wrong.
2779 */
2780 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2781 blk_dump_rq_flags(req, "request botched");
2782 req->__data_len = blk_rq_cur_bytes(req);
2783 }
2784
2785 /* recalculate the number of segments */
2786 blk_recalc_rq_segments(req);
2787 }
2788
2789 return true;
2790 }
2791 EXPORT_SYMBOL_GPL(blk_update_request);
2792
2793 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2794 unsigned int nr_bytes,
2795 unsigned int bidi_bytes)
2796 {
2797 if (blk_update_request(rq, error, nr_bytes))
2798 return true;
2799
2800 /* Bidi request must be completed as a whole */
2801 if (unlikely(blk_bidi_rq(rq)) &&
2802 blk_update_request(rq->next_rq, error, bidi_bytes))
2803 return true;
2804
2805 if (blk_queue_add_random(rq->q))
2806 add_disk_randomness(rq->rq_disk);
2807
2808 return false;
2809 }
2810
2811 /**
2812 * blk_unprep_request - unprepare a request
2813 * @req: the request
2814 *
2815 * This function makes a request ready for complete resubmission (or
2816 * completion). It happens only after all error handling is complete,
2817 * so represents the appropriate moment to deallocate any resources
2818 * that were allocated to the request in the prep_rq_fn. The queue
2819 * lock is held when calling this.
2820 */
2821 void blk_unprep_request(struct request *req)
2822 {
2823 struct request_queue *q = req->q;
2824
2825 req->rq_flags &= ~RQF_DONTPREP;
2826 if (q->unprep_rq_fn)
2827 q->unprep_rq_fn(q, req);
2828 }
2829 EXPORT_SYMBOL_GPL(blk_unprep_request);
2830
2831 void blk_finish_request(struct request *req, blk_status_t error)
2832 {
2833 struct request_queue *q = req->q;
2834
2835 lockdep_assert_held(req->q->queue_lock);
2836 WARN_ON_ONCE(q->mq_ops);
2837
2838 if (req->rq_flags & RQF_STATS)
2839 blk_stat_add(req);
2840
2841 if (req->rq_flags & RQF_QUEUED)
2842 blk_queue_end_tag(q, req);
2843
2844 BUG_ON(blk_queued_rq(req));
2845
2846 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2847 laptop_io_completion(req->q->backing_dev_info);
2848
2849 blk_delete_timer(req);
2850
2851 if (req->rq_flags & RQF_DONTPREP)
2852 blk_unprep_request(req);
2853
2854 blk_account_io_done(req);
2855
2856 if (req->end_io) {
2857 wbt_done(req->q->rq_wb, &req->issue_stat);
2858 req->end_io(req, error);
2859 } else {
2860 if (blk_bidi_rq(req))
2861 __blk_put_request(req->next_rq->q, req->next_rq);
2862
2863 __blk_put_request(q, req);
2864 }
2865 }
2866 EXPORT_SYMBOL(blk_finish_request);
2867
2868 /**
2869 * blk_end_bidi_request - Complete a bidi request
2870 * @rq: the request to complete
2871 * @error: block status code
2872 * @nr_bytes: number of bytes to complete @rq
2873 * @bidi_bytes: number of bytes to complete @rq->next_rq
2874 *
2875 * Description:
2876 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2877 * Drivers that supports bidi can safely call this member for any
2878 * type of request, bidi or uni. In the later case @bidi_bytes is
2879 * just ignored.
2880 *
2881 * Return:
2882 * %false - we are done with this request
2883 * %true - still buffers pending for this request
2884 **/
2885 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
2886 unsigned int nr_bytes, unsigned int bidi_bytes)
2887 {
2888 struct request_queue *q = rq->q;
2889 unsigned long flags;
2890
2891 WARN_ON_ONCE(q->mq_ops);
2892
2893 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2894 return true;
2895
2896 spin_lock_irqsave(q->queue_lock, flags);
2897 blk_finish_request(rq, error);
2898 spin_unlock_irqrestore(q->queue_lock, flags);
2899
2900 return false;
2901 }
2902
2903 /**
2904 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2905 * @rq: the request to complete
2906 * @error: block status code
2907 * @nr_bytes: number of bytes to complete @rq
2908 * @bidi_bytes: number of bytes to complete @rq->next_rq
2909 *
2910 * Description:
2911 * Identical to blk_end_bidi_request() except that queue lock is
2912 * assumed to be locked on entry and remains so on return.
2913 *
2914 * Return:
2915 * %false - we are done with this request
2916 * %true - still buffers pending for this request
2917 **/
2918 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
2919 unsigned int nr_bytes, unsigned int bidi_bytes)
2920 {
2921 lockdep_assert_held(rq->q->queue_lock);
2922 WARN_ON_ONCE(rq->q->mq_ops);
2923
2924 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2925 return true;
2926
2927 blk_finish_request(rq, error);
2928
2929 return false;
2930 }
2931
2932 /**
2933 * blk_end_request - Helper function for drivers to complete the request.
2934 * @rq: the request being processed
2935 * @error: block status code
2936 * @nr_bytes: number of bytes to complete
2937 *
2938 * Description:
2939 * Ends I/O on a number of bytes attached to @rq.
2940 * If @rq has leftover, sets it up for the next range of segments.
2941 *
2942 * Return:
2943 * %false - we are done with this request
2944 * %true - still buffers pending for this request
2945 **/
2946 bool blk_end_request(struct request *rq, blk_status_t error,
2947 unsigned int nr_bytes)
2948 {
2949 WARN_ON_ONCE(rq->q->mq_ops);
2950 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2951 }
2952 EXPORT_SYMBOL(blk_end_request);
2953
2954 /**
2955 * blk_end_request_all - Helper function for drives to finish the request.
2956 * @rq: the request to finish
2957 * @error: block status code
2958 *
2959 * Description:
2960 * Completely finish @rq.
2961 */
2962 void blk_end_request_all(struct request *rq, blk_status_t error)
2963 {
2964 bool pending;
2965 unsigned int bidi_bytes = 0;
2966
2967 if (unlikely(blk_bidi_rq(rq)))
2968 bidi_bytes = blk_rq_bytes(rq->next_rq);
2969
2970 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2971 BUG_ON(pending);
2972 }
2973 EXPORT_SYMBOL(blk_end_request_all);
2974
2975 /**
2976 * __blk_end_request - Helper function for drivers to complete the request.
2977 * @rq: the request being processed
2978 * @error: block status code
2979 * @nr_bytes: number of bytes to complete
2980 *
2981 * Description:
2982 * Must be called with queue lock held unlike blk_end_request().
2983 *
2984 * Return:
2985 * %false - we are done with this request
2986 * %true - still buffers pending for this request
2987 **/
2988 bool __blk_end_request(struct request *rq, blk_status_t error,
2989 unsigned int nr_bytes)
2990 {
2991 lockdep_assert_held(rq->q->queue_lock);
2992 WARN_ON_ONCE(rq->q->mq_ops);
2993
2994 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2995 }
2996 EXPORT_SYMBOL(__blk_end_request);
2997
2998 /**
2999 * __blk_end_request_all - Helper function for drives to finish the request.
3000 * @rq: the request to finish
3001 * @error: block status code
3002 *
3003 * Description:
3004 * Completely finish @rq. Must be called with queue lock held.
3005 */
3006 void __blk_end_request_all(struct request *rq, blk_status_t error)
3007 {
3008 bool pending;
3009 unsigned int bidi_bytes = 0;
3010
3011 lockdep_assert_held(rq->q->queue_lock);
3012 WARN_ON_ONCE(rq->q->mq_ops);
3013
3014 if (unlikely(blk_bidi_rq(rq)))
3015 bidi_bytes = blk_rq_bytes(rq->next_rq);
3016
3017 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3018 BUG_ON(pending);
3019 }
3020 EXPORT_SYMBOL(__blk_end_request_all);
3021
3022 /**
3023 * __blk_end_request_cur - Helper function to finish the current request chunk.
3024 * @rq: the request to finish the current chunk for
3025 * @error: block status code
3026 *
3027 * Description:
3028 * Complete the current consecutively mapped chunk from @rq. Must
3029 * be called with queue lock held.
3030 *
3031 * Return:
3032 * %false - we are done with this request
3033 * %true - still buffers pending for this request
3034 */
3035 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3036 {
3037 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3038 }
3039 EXPORT_SYMBOL(__blk_end_request_cur);
3040
3041 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3042 struct bio *bio)
3043 {
3044 if (bio_has_data(bio))
3045 rq->nr_phys_segments = bio_phys_segments(q, bio);
3046
3047 rq->__data_len = bio->bi_iter.bi_size;
3048 rq->bio = rq->biotail = bio;
3049
3050 if (bio->bi_disk)
3051 rq->rq_disk = bio->bi_disk;
3052 }
3053
3054 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3055 /**
3056 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3057 * @rq: the request to be flushed
3058 *
3059 * Description:
3060 * Flush all pages in @rq.
3061 */
3062 void rq_flush_dcache_pages(struct request *rq)
3063 {
3064 struct req_iterator iter;
3065 struct bio_vec bvec;
3066
3067 rq_for_each_segment(bvec, rq, iter)
3068 flush_dcache_page(bvec.bv_page);
3069 }
3070 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3071 #endif
3072
3073 /**
3074 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3075 * @q : the queue of the device being checked
3076 *
3077 * Description:
3078 * Check if underlying low-level drivers of a device are busy.
3079 * If the drivers want to export their busy state, they must set own
3080 * exporting function using blk_queue_lld_busy() first.
3081 *
3082 * Basically, this function is used only by request stacking drivers
3083 * to stop dispatching requests to underlying devices when underlying
3084 * devices are busy. This behavior helps more I/O merging on the queue
3085 * of the request stacking driver and prevents I/O throughput regression
3086 * on burst I/O load.
3087 *
3088 * Return:
3089 * 0 - Not busy (The request stacking driver should dispatch request)
3090 * 1 - Busy (The request stacking driver should stop dispatching request)
3091 */
3092 int blk_lld_busy(struct request_queue *q)
3093 {
3094 if (q->lld_busy_fn)
3095 return q->lld_busy_fn(q);
3096
3097 return 0;
3098 }
3099 EXPORT_SYMBOL_GPL(blk_lld_busy);
3100
3101 /**
3102 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3103 * @rq: the clone request to be cleaned up
3104 *
3105 * Description:
3106 * Free all bios in @rq for a cloned request.
3107 */
3108 void blk_rq_unprep_clone(struct request *rq)
3109 {
3110 struct bio *bio;
3111
3112 while ((bio = rq->bio) != NULL) {
3113 rq->bio = bio->bi_next;
3114
3115 bio_put(bio);
3116 }
3117 }
3118 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3119
3120 /*
3121 * Copy attributes of the original request to the clone request.
3122 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3123 */
3124 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3125 {
3126 dst->cpu = src->cpu;
3127 dst->__sector = blk_rq_pos(src);
3128 dst->__data_len = blk_rq_bytes(src);
3129 dst->nr_phys_segments = src->nr_phys_segments;
3130 dst->ioprio = src->ioprio;
3131 dst->extra_len = src->extra_len;
3132 }
3133
3134 /**
3135 * blk_rq_prep_clone - Helper function to setup clone request
3136 * @rq: the request to be setup
3137 * @rq_src: original request to be cloned
3138 * @bs: bio_set that bios for clone are allocated from
3139 * @gfp_mask: memory allocation mask for bio
3140 * @bio_ctr: setup function to be called for each clone bio.
3141 * Returns %0 for success, non %0 for failure.
3142 * @data: private data to be passed to @bio_ctr
3143 *
3144 * Description:
3145 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3146 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3147 * are not copied, and copying such parts is the caller's responsibility.
3148 * Also, pages which the original bios are pointing to are not copied
3149 * and the cloned bios just point same pages.
3150 * So cloned bios must be completed before original bios, which means
3151 * the caller must complete @rq before @rq_src.
3152 */
3153 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3154 struct bio_set *bs, gfp_t gfp_mask,
3155 int (*bio_ctr)(struct bio *, struct bio *, void *),
3156 void *data)
3157 {
3158 struct bio *bio, *bio_src;
3159
3160 if (!bs)
3161 bs = fs_bio_set;
3162
3163 __rq_for_each_bio(bio_src, rq_src) {
3164 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3165 if (!bio)
3166 goto free_and_out;
3167
3168 if (bio_ctr && bio_ctr(bio, bio_src, data))
3169 goto free_and_out;
3170
3171 if (rq->bio) {
3172 rq->biotail->bi_next = bio;
3173 rq->biotail = bio;
3174 } else
3175 rq->bio = rq->biotail = bio;
3176 }
3177
3178 __blk_rq_prep_clone(rq, rq_src);
3179
3180 return 0;
3181
3182 free_and_out:
3183 if (bio)
3184 bio_put(bio);
3185 blk_rq_unprep_clone(rq);
3186
3187 return -ENOMEM;
3188 }
3189 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3190
3191 int kblockd_schedule_work(struct work_struct *work)
3192 {
3193 return queue_work(kblockd_workqueue, work);
3194 }
3195 EXPORT_SYMBOL(kblockd_schedule_work);
3196
3197 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3198 {
3199 return queue_work_on(cpu, kblockd_workqueue, work);
3200 }
3201 EXPORT_SYMBOL(kblockd_schedule_work_on);
3202
3203 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3204 unsigned long delay)
3205 {
3206 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3207 }
3208 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3209
3210 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3211 unsigned long delay)
3212 {
3213 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3214 }
3215 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3216
3217 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3218 unsigned long delay)
3219 {
3220 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3221 }
3222 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3223
3224 /**
3225 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3226 * @plug: The &struct blk_plug that needs to be initialized
3227 *
3228 * Description:
3229 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3230 * pending I/O should the task end up blocking between blk_start_plug() and
3231 * blk_finish_plug(). This is important from a performance perspective, but
3232 * also ensures that we don't deadlock. For instance, if the task is blocking
3233 * for a memory allocation, memory reclaim could end up wanting to free a
3234 * page belonging to that request that is currently residing in our private
3235 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3236 * this kind of deadlock.
3237 */
3238 void blk_start_plug(struct blk_plug *plug)
3239 {
3240 struct task_struct *tsk = current;
3241
3242 /*
3243 * If this is a nested plug, don't actually assign it.
3244 */
3245 if (tsk->plug)
3246 return;
3247
3248 INIT_LIST_HEAD(&plug->list);
3249 INIT_LIST_HEAD(&plug->mq_list);
3250 INIT_LIST_HEAD(&plug->cb_list);
3251 /*
3252 * Store ordering should not be needed here, since a potential
3253 * preempt will imply a full memory barrier
3254 */
3255 tsk->plug = plug;
3256 }
3257 EXPORT_SYMBOL(blk_start_plug);
3258
3259 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3260 {
3261 struct request *rqa = container_of(a, struct request, queuelist);
3262 struct request *rqb = container_of(b, struct request, queuelist);
3263
3264 return !(rqa->q < rqb->q ||
3265 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3266 }
3267
3268 /*
3269 * If 'from_schedule' is true, then postpone the dispatch of requests
3270 * until a safe kblockd context. We due this to avoid accidental big
3271 * additional stack usage in driver dispatch, in places where the originally
3272 * plugger did not intend it.
3273 */
3274 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3275 bool from_schedule)
3276 __releases(q->queue_lock)
3277 {
3278 lockdep_assert_held(q->queue_lock);
3279
3280 trace_block_unplug(q, depth, !from_schedule);
3281
3282 if (from_schedule)
3283 blk_run_queue_async(q);
3284 else
3285 __blk_run_queue(q);
3286 spin_unlock(q->queue_lock);
3287 }
3288
3289 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3290 {
3291 LIST_HEAD(callbacks);
3292
3293 while (!list_empty(&plug->cb_list)) {
3294 list_splice_init(&plug->cb_list, &callbacks);
3295
3296 while (!list_empty(&callbacks)) {
3297 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3298 struct blk_plug_cb,
3299 list);
3300 list_del(&cb->list);
3301 cb->callback(cb, from_schedule);
3302 }
3303 }
3304 }
3305
3306 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3307 int size)
3308 {
3309 struct blk_plug *plug = current->plug;
3310 struct blk_plug_cb *cb;
3311
3312 if (!plug)
3313 return NULL;
3314
3315 list_for_each_entry(cb, &plug->cb_list, list)
3316 if (cb->callback == unplug && cb->data == data)
3317 return cb;
3318
3319 /* Not currently on the callback list */
3320 BUG_ON(size < sizeof(*cb));
3321 cb = kzalloc(size, GFP_ATOMIC);
3322 if (cb) {
3323 cb->data = data;
3324 cb->callback = unplug;
3325 list_add(&cb->list, &plug->cb_list);
3326 }
3327 return cb;
3328 }
3329 EXPORT_SYMBOL(blk_check_plugged);
3330
3331 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3332 {
3333 struct request_queue *q;
3334 unsigned long flags;
3335 struct request *rq;
3336 LIST_HEAD(list);
3337 unsigned int depth;
3338
3339 flush_plug_callbacks(plug, from_schedule);
3340
3341 if (!list_empty(&plug->mq_list))
3342 blk_mq_flush_plug_list(plug, from_schedule);
3343
3344 if (list_empty(&plug->list))
3345 return;
3346
3347 list_splice_init(&plug->list, &list);
3348
3349 list_sort(NULL, &list, plug_rq_cmp);
3350
3351 q = NULL;
3352 depth = 0;
3353
3354 /*
3355 * Save and disable interrupts here, to avoid doing it for every
3356 * queue lock we have to take.
3357 */
3358 local_irq_save(flags);
3359 while (!list_empty(&list)) {
3360 rq = list_entry_rq(list.next);
3361 list_del_init(&rq->queuelist);
3362 BUG_ON(!rq->q);
3363 if (rq->q != q) {
3364 /*
3365 * This drops the queue lock
3366 */
3367 if (q)
3368 queue_unplugged(q, depth, from_schedule);
3369 q = rq->q;
3370 depth = 0;
3371 spin_lock(q->queue_lock);
3372 }
3373
3374 /*
3375 * Short-circuit if @q is dead
3376 */
3377 if (unlikely(blk_queue_dying(q))) {
3378 __blk_end_request_all(rq, BLK_STS_IOERR);
3379 continue;
3380 }
3381
3382 /*
3383 * rq is already accounted, so use raw insert
3384 */
3385 if (op_is_flush(rq->cmd_flags))
3386 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3387 else
3388 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3389
3390 depth++;
3391 }
3392
3393 /*
3394 * This drops the queue lock
3395 */
3396 if (q)
3397 queue_unplugged(q, depth, from_schedule);
3398
3399 local_irq_restore(flags);
3400 }
3401
3402 void blk_finish_plug(struct blk_plug *plug)
3403 {
3404 if (plug != current->plug)
3405 return;
3406 blk_flush_plug_list(plug, false);
3407
3408 current->plug = NULL;
3409 }
3410 EXPORT_SYMBOL(blk_finish_plug);
3411
3412 #ifdef CONFIG_PM
3413 /**
3414 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3415 * @q: the queue of the device
3416 * @dev: the device the queue belongs to
3417 *
3418 * Description:
3419 * Initialize runtime-PM-related fields for @q and start auto suspend for
3420 * @dev. Drivers that want to take advantage of request-based runtime PM
3421 * should call this function after @dev has been initialized, and its
3422 * request queue @q has been allocated, and runtime PM for it can not happen
3423 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3424 * cases, driver should call this function before any I/O has taken place.
3425 *
3426 * This function takes care of setting up using auto suspend for the device,
3427 * the autosuspend delay is set to -1 to make runtime suspend impossible
3428 * until an updated value is either set by user or by driver. Drivers do
3429 * not need to touch other autosuspend settings.
3430 *
3431 * The block layer runtime PM is request based, so only works for drivers
3432 * that use request as their IO unit instead of those directly use bio's.
3433 */
3434 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3435 {
3436 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3437 if (q->mq_ops)
3438 return;
3439
3440 q->dev = dev;
3441 q->rpm_status = RPM_ACTIVE;
3442 pm_runtime_set_autosuspend_delay(q->dev, -1);
3443 pm_runtime_use_autosuspend(q->dev);
3444 }
3445 EXPORT_SYMBOL(blk_pm_runtime_init);
3446
3447 /**
3448 * blk_pre_runtime_suspend - Pre runtime suspend check
3449 * @q: the queue of the device
3450 *
3451 * Description:
3452 * This function will check if runtime suspend is allowed for the device
3453 * by examining if there are any requests pending in the queue. If there
3454 * are requests pending, the device can not be runtime suspended; otherwise,
3455 * the queue's status will be updated to SUSPENDING and the driver can
3456 * proceed to suspend the device.
3457 *
3458 * For the not allowed case, we mark last busy for the device so that
3459 * runtime PM core will try to autosuspend it some time later.
3460 *
3461 * This function should be called near the start of the device's
3462 * runtime_suspend callback.
3463 *
3464 * Return:
3465 * 0 - OK to runtime suspend the device
3466 * -EBUSY - Device should not be runtime suspended
3467 */
3468 int blk_pre_runtime_suspend(struct request_queue *q)
3469 {
3470 int ret = 0;
3471
3472 if (!q->dev)
3473 return ret;
3474
3475 spin_lock_irq(q->queue_lock);
3476 if (q->nr_pending) {
3477 ret = -EBUSY;
3478 pm_runtime_mark_last_busy(q->dev);
3479 } else {
3480 q->rpm_status = RPM_SUSPENDING;
3481 }
3482 spin_unlock_irq(q->queue_lock);
3483 return ret;
3484 }
3485 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3486
3487 /**
3488 * blk_post_runtime_suspend - Post runtime suspend processing
3489 * @q: the queue of the device
3490 * @err: return value of the device's runtime_suspend function
3491 *
3492 * Description:
3493 * Update the queue's runtime status according to the return value of the
3494 * device's runtime suspend function and mark last busy for the device so
3495 * that PM core will try to auto suspend the device at a later time.
3496 *
3497 * This function should be called near the end of the device's
3498 * runtime_suspend callback.
3499 */
3500 void blk_post_runtime_suspend(struct request_queue *q, int err)
3501 {
3502 if (!q->dev)
3503 return;
3504
3505 spin_lock_irq(q->queue_lock);
3506 if (!err) {
3507 q->rpm_status = RPM_SUSPENDED;
3508 } else {
3509 q->rpm_status = RPM_ACTIVE;
3510 pm_runtime_mark_last_busy(q->dev);
3511 }
3512 spin_unlock_irq(q->queue_lock);
3513 }
3514 EXPORT_SYMBOL(blk_post_runtime_suspend);
3515
3516 /**
3517 * blk_pre_runtime_resume - Pre runtime resume processing
3518 * @q: the queue of the device
3519 *
3520 * Description:
3521 * Update the queue's runtime status to RESUMING in preparation for the
3522 * runtime resume of the device.
3523 *
3524 * This function should be called near the start of the device's
3525 * runtime_resume callback.
3526 */
3527 void blk_pre_runtime_resume(struct request_queue *q)
3528 {
3529 if (!q->dev)
3530 return;
3531
3532 spin_lock_irq(q->queue_lock);
3533 q->rpm_status = RPM_RESUMING;
3534 spin_unlock_irq(q->queue_lock);
3535 }
3536 EXPORT_SYMBOL(blk_pre_runtime_resume);
3537
3538 /**
3539 * blk_post_runtime_resume - Post runtime resume processing
3540 * @q: the queue of the device
3541 * @err: return value of the device's runtime_resume function
3542 *
3543 * Description:
3544 * Update the queue's runtime status according to the return value of the
3545 * device's runtime_resume function. If it is successfully resumed, process
3546 * the requests that are queued into the device's queue when it is resuming
3547 * and then mark last busy and initiate autosuspend for it.
3548 *
3549 * This function should be called near the end of the device's
3550 * runtime_resume callback.
3551 */
3552 void blk_post_runtime_resume(struct request_queue *q, int err)
3553 {
3554 if (!q->dev)
3555 return;
3556
3557 spin_lock_irq(q->queue_lock);
3558 if (!err) {
3559 q->rpm_status = RPM_ACTIVE;
3560 __blk_run_queue(q);
3561 pm_runtime_mark_last_busy(q->dev);
3562 pm_request_autosuspend(q->dev);
3563 } else {
3564 q->rpm_status = RPM_SUSPENDED;
3565 }
3566 spin_unlock_irq(q->queue_lock);
3567 }
3568 EXPORT_SYMBOL(blk_post_runtime_resume);
3569
3570 /**
3571 * blk_set_runtime_active - Force runtime status of the queue to be active
3572 * @q: the queue of the device
3573 *
3574 * If the device is left runtime suspended during system suspend the resume
3575 * hook typically resumes the device and corrects runtime status
3576 * accordingly. However, that does not affect the queue runtime PM status
3577 * which is still "suspended". This prevents processing requests from the
3578 * queue.
3579 *
3580 * This function can be used in driver's resume hook to correct queue
3581 * runtime PM status and re-enable peeking requests from the queue. It
3582 * should be called before first request is added to the queue.
3583 */
3584 void blk_set_runtime_active(struct request_queue *q)
3585 {
3586 spin_lock_irq(q->queue_lock);
3587 q->rpm_status = RPM_ACTIVE;
3588 pm_runtime_mark_last_busy(q->dev);
3589 pm_request_autosuspend(q->dev);
3590 spin_unlock_irq(q->queue_lock);
3591 }
3592 EXPORT_SYMBOL(blk_set_runtime_active);
3593 #endif
3594
3595 int __init blk_dev_init(void)
3596 {
3597 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3598 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3599 FIELD_SIZEOF(struct request, cmd_flags));
3600 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3601 FIELD_SIZEOF(struct bio, bi_opf));
3602
3603 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3604 kblockd_workqueue = alloc_workqueue("kblockd",
3605 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3606 if (!kblockd_workqueue)
3607 panic("Failed to create kblockd\n");
3608
3609 request_cachep = kmem_cache_create("blkdev_requests",
3610 sizeof(struct request), 0, SLAB_PANIC, NULL);
3611
3612 blk_requestq_cachep = kmem_cache_create("request_queue",
3613 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3614
3615 #ifdef CONFIG_DEBUG_FS
3616 blk_debugfs_root = debugfs_create_dir("block", NULL);
3617 #endif
3618
3619 return 0;
3620 }