]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: Change a rcu_read_{lock,unlock}_sched() pair into rcu_read_{lock,unlock}()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts
707 */
708 if (q->mq_ops)
709 blk_mq_quiesce_queue(q);
710
711 /* for synchronous bio-based driver finish in-flight integrity i/o */
712 blk_flush_integrity();
713
714 /* @q won't process any more request, flush async actions */
715 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
716 blk_sync_queue(q);
717
718 if (q->mq_ops)
719 blk_mq_free_queue(q);
720 percpu_ref_exit(&q->q_usage_counter);
721
722 spin_lock_irq(lock);
723 if (q->queue_lock != &q->__queue_lock)
724 q->queue_lock = &q->__queue_lock;
725 spin_unlock_irq(lock);
726
727 /* @q is and will stay empty, shutdown and put */
728 blk_put_queue(q);
729 }
730 EXPORT_SYMBOL(blk_cleanup_queue);
731
732 /* Allocate memory local to the request queue */
733 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
734 {
735 struct request_queue *q = data;
736
737 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
738 }
739
740 static void free_request_simple(void *element, void *data)
741 {
742 kmem_cache_free(request_cachep, element);
743 }
744
745 static void *alloc_request_size(gfp_t gfp_mask, void *data)
746 {
747 struct request_queue *q = data;
748 struct request *rq;
749
750 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
751 q->node);
752 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
753 kfree(rq);
754 rq = NULL;
755 }
756 return rq;
757 }
758
759 static void free_request_size(void *element, void *data)
760 {
761 struct request_queue *q = data;
762
763 if (q->exit_rq_fn)
764 q->exit_rq_fn(q, element);
765 kfree(element);
766 }
767
768 int blk_init_rl(struct request_list *rl, struct request_queue *q,
769 gfp_t gfp_mask)
770 {
771 if (unlikely(rl->rq_pool) || q->mq_ops)
772 return 0;
773
774 rl->q = q;
775 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
776 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
777 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
778 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
779
780 if (q->cmd_size) {
781 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
782 alloc_request_size, free_request_size,
783 q, gfp_mask, q->node);
784 } else {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_simple, free_request_simple,
787 q, gfp_mask, q->node);
788 }
789 if (!rl->rq_pool)
790 return -ENOMEM;
791
792 if (rl != &q->root_rl)
793 WARN_ON_ONCE(!blk_get_queue(q));
794
795 return 0;
796 }
797
798 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
799 {
800 if (rl->rq_pool) {
801 mempool_destroy(rl->rq_pool);
802 if (rl != &q->root_rl)
803 blk_put_queue(q);
804 }
805 }
806
807 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
808 {
809 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
810 }
811 EXPORT_SYMBOL(blk_alloc_queue);
812
813 /**
814 * blk_queue_enter() - try to increase q->q_usage_counter
815 * @q: request queue pointer
816 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
817 */
818 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
819 {
820 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
821
822 while (true) {
823 bool success = false;
824 int ret;
825
826 rcu_read_lock();
827 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
828 /*
829 * The code that sets the PREEMPT_ONLY flag is
830 * responsible for ensuring that that flag is globally
831 * visible before the queue is unfrozen.
832 */
833 if (preempt || !blk_queue_preempt_only(q)) {
834 success = true;
835 } else {
836 percpu_ref_put(&q->q_usage_counter);
837 }
838 }
839 rcu_read_unlock();
840
841 if (success)
842 return 0;
843
844 if (flags & BLK_MQ_REQ_NOWAIT)
845 return -EBUSY;
846
847 /*
848 * read pair of barrier in blk_freeze_queue_start(),
849 * we need to order reading __PERCPU_REF_DEAD flag of
850 * .q_usage_counter and reading .mq_freeze_depth or
851 * queue dying flag, otherwise the following wait may
852 * never return if the two reads are reordered.
853 */
854 smp_rmb();
855
856 ret = wait_event_interruptible(q->mq_freeze_wq,
857 (atomic_read(&q->mq_freeze_depth) == 0 &&
858 (preempt || !blk_queue_preempt_only(q))) ||
859 blk_queue_dying(q));
860 if (blk_queue_dying(q))
861 return -ENODEV;
862 if (ret)
863 return ret;
864 }
865 }
866
867 void blk_queue_exit(struct request_queue *q)
868 {
869 percpu_ref_put(&q->q_usage_counter);
870 }
871
872 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
873 {
874 struct request_queue *q =
875 container_of(ref, struct request_queue, q_usage_counter);
876
877 wake_up_all(&q->mq_freeze_wq);
878 }
879
880 static void blk_rq_timed_out_timer(struct timer_list *t)
881 {
882 struct request_queue *q = from_timer(q, t, timeout);
883
884 kblockd_schedule_work(&q->timeout_work);
885 }
886
887 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
888 {
889 struct request_queue *q;
890
891 q = kmem_cache_alloc_node(blk_requestq_cachep,
892 gfp_mask | __GFP_ZERO, node_id);
893 if (!q)
894 return NULL;
895
896 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
897 if (q->id < 0)
898 goto fail_q;
899
900 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
901 if (!q->bio_split)
902 goto fail_id;
903
904 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
905 if (!q->backing_dev_info)
906 goto fail_split;
907
908 q->stats = blk_alloc_queue_stats();
909 if (!q->stats)
910 goto fail_stats;
911
912 q->backing_dev_info->ra_pages =
913 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
914 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
915 q->backing_dev_info->name = "block";
916 q->node = node_id;
917
918 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
919 laptop_mode_timer_fn, 0);
920 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
921 INIT_WORK(&q->timeout_work, NULL);
922 INIT_LIST_HEAD(&q->queue_head);
923 INIT_LIST_HEAD(&q->timeout_list);
924 INIT_LIST_HEAD(&q->icq_list);
925 #ifdef CONFIG_BLK_CGROUP
926 INIT_LIST_HEAD(&q->blkg_list);
927 #endif
928 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
929
930 kobject_init(&q->kobj, &blk_queue_ktype);
931
932 #ifdef CONFIG_BLK_DEV_IO_TRACE
933 mutex_init(&q->blk_trace_mutex);
934 #endif
935 mutex_init(&q->sysfs_lock);
936 spin_lock_init(&q->__queue_lock);
937
938 /*
939 * By default initialize queue_lock to internal lock and driver can
940 * override it later if need be.
941 */
942 q->queue_lock = &q->__queue_lock;
943
944 /*
945 * A queue starts its life with bypass turned on to avoid
946 * unnecessary bypass on/off overhead and nasty surprises during
947 * init. The initial bypass will be finished when the queue is
948 * registered by blk_register_queue().
949 */
950 q->bypass_depth = 1;
951 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
952
953 init_waitqueue_head(&q->mq_freeze_wq);
954
955 /*
956 * Init percpu_ref in atomic mode so that it's faster to shutdown.
957 * See blk_register_queue() for details.
958 */
959 if (percpu_ref_init(&q->q_usage_counter,
960 blk_queue_usage_counter_release,
961 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
962 goto fail_bdi;
963
964 if (blkcg_init_queue(q))
965 goto fail_ref;
966
967 return q;
968
969 fail_ref:
970 percpu_ref_exit(&q->q_usage_counter);
971 fail_bdi:
972 blk_free_queue_stats(q->stats);
973 fail_stats:
974 bdi_put(q->backing_dev_info);
975 fail_split:
976 bioset_free(q->bio_split);
977 fail_id:
978 ida_simple_remove(&blk_queue_ida, q->id);
979 fail_q:
980 kmem_cache_free(blk_requestq_cachep, q);
981 return NULL;
982 }
983 EXPORT_SYMBOL(blk_alloc_queue_node);
984
985 /**
986 * blk_init_queue - prepare a request queue for use with a block device
987 * @rfn: The function to be called to process requests that have been
988 * placed on the queue.
989 * @lock: Request queue spin lock
990 *
991 * Description:
992 * If a block device wishes to use the standard request handling procedures,
993 * which sorts requests and coalesces adjacent requests, then it must
994 * call blk_init_queue(). The function @rfn will be called when there
995 * are requests on the queue that need to be processed. If the device
996 * supports plugging, then @rfn may not be called immediately when requests
997 * are available on the queue, but may be called at some time later instead.
998 * Plugged queues are generally unplugged when a buffer belonging to one
999 * of the requests on the queue is needed, or due to memory pressure.
1000 *
1001 * @rfn is not required, or even expected, to remove all requests off the
1002 * queue, but only as many as it can handle at a time. If it does leave
1003 * requests on the queue, it is responsible for arranging that the requests
1004 * get dealt with eventually.
1005 *
1006 * The queue spin lock must be held while manipulating the requests on the
1007 * request queue; this lock will be taken also from interrupt context, so irq
1008 * disabling is needed for it.
1009 *
1010 * Function returns a pointer to the initialized request queue, or %NULL if
1011 * it didn't succeed.
1012 *
1013 * Note:
1014 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1015 * when the block device is deactivated (such as at module unload).
1016 **/
1017
1018 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1019 {
1020 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1021 }
1022 EXPORT_SYMBOL(blk_init_queue);
1023
1024 struct request_queue *
1025 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1026 {
1027 struct request_queue *q;
1028
1029 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1030 if (!q)
1031 return NULL;
1032
1033 q->request_fn = rfn;
1034 if (lock)
1035 q->queue_lock = lock;
1036 if (blk_init_allocated_queue(q) < 0) {
1037 blk_cleanup_queue(q);
1038 return NULL;
1039 }
1040
1041 return q;
1042 }
1043 EXPORT_SYMBOL(blk_init_queue_node);
1044
1045 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1046
1047
1048 int blk_init_allocated_queue(struct request_queue *q)
1049 {
1050 WARN_ON_ONCE(q->mq_ops);
1051
1052 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1053 if (!q->fq)
1054 return -ENOMEM;
1055
1056 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1057 goto out_free_flush_queue;
1058
1059 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1060 goto out_exit_flush_rq;
1061
1062 INIT_WORK(&q->timeout_work, blk_timeout_work);
1063 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1064
1065 /*
1066 * This also sets hw/phys segments, boundary and size
1067 */
1068 blk_queue_make_request(q, blk_queue_bio);
1069
1070 q->sg_reserved_size = INT_MAX;
1071
1072 /* Protect q->elevator from elevator_change */
1073 mutex_lock(&q->sysfs_lock);
1074
1075 /* init elevator */
1076 if (elevator_init(q, NULL)) {
1077 mutex_unlock(&q->sysfs_lock);
1078 goto out_exit_flush_rq;
1079 }
1080
1081 mutex_unlock(&q->sysfs_lock);
1082 return 0;
1083
1084 out_exit_flush_rq:
1085 if (q->exit_rq_fn)
1086 q->exit_rq_fn(q, q->fq->flush_rq);
1087 out_free_flush_queue:
1088 blk_free_flush_queue(q->fq);
1089 return -ENOMEM;
1090 }
1091 EXPORT_SYMBOL(blk_init_allocated_queue);
1092
1093 bool blk_get_queue(struct request_queue *q)
1094 {
1095 if (likely(!blk_queue_dying(q))) {
1096 __blk_get_queue(q);
1097 return true;
1098 }
1099
1100 return false;
1101 }
1102 EXPORT_SYMBOL(blk_get_queue);
1103
1104 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1105 {
1106 if (rq->rq_flags & RQF_ELVPRIV) {
1107 elv_put_request(rl->q, rq);
1108 if (rq->elv.icq)
1109 put_io_context(rq->elv.icq->ioc);
1110 }
1111
1112 mempool_free(rq, rl->rq_pool);
1113 }
1114
1115 /*
1116 * ioc_batching returns true if the ioc is a valid batching request and
1117 * should be given priority access to a request.
1118 */
1119 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1120 {
1121 if (!ioc)
1122 return 0;
1123
1124 /*
1125 * Make sure the process is able to allocate at least 1 request
1126 * even if the batch times out, otherwise we could theoretically
1127 * lose wakeups.
1128 */
1129 return ioc->nr_batch_requests == q->nr_batching ||
1130 (ioc->nr_batch_requests > 0
1131 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1132 }
1133
1134 /*
1135 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1136 * will cause the process to be a "batcher" on all queues in the system. This
1137 * is the behaviour we want though - once it gets a wakeup it should be given
1138 * a nice run.
1139 */
1140 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1141 {
1142 if (!ioc || ioc_batching(q, ioc))
1143 return;
1144
1145 ioc->nr_batch_requests = q->nr_batching;
1146 ioc->last_waited = jiffies;
1147 }
1148
1149 static void __freed_request(struct request_list *rl, int sync)
1150 {
1151 struct request_queue *q = rl->q;
1152
1153 if (rl->count[sync] < queue_congestion_off_threshold(q))
1154 blk_clear_congested(rl, sync);
1155
1156 if (rl->count[sync] + 1 <= q->nr_requests) {
1157 if (waitqueue_active(&rl->wait[sync]))
1158 wake_up(&rl->wait[sync]);
1159
1160 blk_clear_rl_full(rl, sync);
1161 }
1162 }
1163
1164 /*
1165 * A request has just been released. Account for it, update the full and
1166 * congestion status, wake up any waiters. Called under q->queue_lock.
1167 */
1168 static void freed_request(struct request_list *rl, bool sync,
1169 req_flags_t rq_flags)
1170 {
1171 struct request_queue *q = rl->q;
1172
1173 q->nr_rqs[sync]--;
1174 rl->count[sync]--;
1175 if (rq_flags & RQF_ELVPRIV)
1176 q->nr_rqs_elvpriv--;
1177
1178 __freed_request(rl, sync);
1179
1180 if (unlikely(rl->starved[sync ^ 1]))
1181 __freed_request(rl, sync ^ 1);
1182 }
1183
1184 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1185 {
1186 struct request_list *rl;
1187 int on_thresh, off_thresh;
1188
1189 WARN_ON_ONCE(q->mq_ops);
1190
1191 spin_lock_irq(q->queue_lock);
1192 q->nr_requests = nr;
1193 blk_queue_congestion_threshold(q);
1194 on_thresh = queue_congestion_on_threshold(q);
1195 off_thresh = queue_congestion_off_threshold(q);
1196
1197 blk_queue_for_each_rl(rl, q) {
1198 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1199 blk_set_congested(rl, BLK_RW_SYNC);
1200 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1201 blk_clear_congested(rl, BLK_RW_SYNC);
1202
1203 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1204 blk_set_congested(rl, BLK_RW_ASYNC);
1205 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1206 blk_clear_congested(rl, BLK_RW_ASYNC);
1207
1208 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1209 blk_set_rl_full(rl, BLK_RW_SYNC);
1210 } else {
1211 blk_clear_rl_full(rl, BLK_RW_SYNC);
1212 wake_up(&rl->wait[BLK_RW_SYNC]);
1213 }
1214
1215 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1216 blk_set_rl_full(rl, BLK_RW_ASYNC);
1217 } else {
1218 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1219 wake_up(&rl->wait[BLK_RW_ASYNC]);
1220 }
1221 }
1222
1223 spin_unlock_irq(q->queue_lock);
1224 return 0;
1225 }
1226
1227 /**
1228 * __get_request - get a free request
1229 * @rl: request list to allocate from
1230 * @op: operation and flags
1231 * @bio: bio to allocate request for (can be %NULL)
1232 * @flags: BLQ_MQ_REQ_* flags
1233 *
1234 * Get a free request from @q. This function may fail under memory
1235 * pressure or if @q is dead.
1236 *
1237 * Must be called with @q->queue_lock held and,
1238 * Returns ERR_PTR on failure, with @q->queue_lock held.
1239 * Returns request pointer on success, with @q->queue_lock *not held*.
1240 */
1241 static struct request *__get_request(struct request_list *rl, unsigned int op,
1242 struct bio *bio, blk_mq_req_flags_t flags)
1243 {
1244 struct request_queue *q = rl->q;
1245 struct request *rq;
1246 struct elevator_type *et = q->elevator->type;
1247 struct io_context *ioc = rq_ioc(bio);
1248 struct io_cq *icq = NULL;
1249 const bool is_sync = op_is_sync(op);
1250 int may_queue;
1251 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1252 __GFP_DIRECT_RECLAIM;
1253 req_flags_t rq_flags = RQF_ALLOCED;
1254
1255 lockdep_assert_held(q->queue_lock);
1256
1257 if (unlikely(blk_queue_dying(q)))
1258 return ERR_PTR(-ENODEV);
1259
1260 may_queue = elv_may_queue(q, op);
1261 if (may_queue == ELV_MQUEUE_NO)
1262 goto rq_starved;
1263
1264 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1265 if (rl->count[is_sync]+1 >= q->nr_requests) {
1266 /*
1267 * The queue will fill after this allocation, so set
1268 * it as full, and mark this process as "batching".
1269 * This process will be allowed to complete a batch of
1270 * requests, others will be blocked.
1271 */
1272 if (!blk_rl_full(rl, is_sync)) {
1273 ioc_set_batching(q, ioc);
1274 blk_set_rl_full(rl, is_sync);
1275 } else {
1276 if (may_queue != ELV_MQUEUE_MUST
1277 && !ioc_batching(q, ioc)) {
1278 /*
1279 * The queue is full and the allocating
1280 * process is not a "batcher", and not
1281 * exempted by the IO scheduler
1282 */
1283 return ERR_PTR(-ENOMEM);
1284 }
1285 }
1286 }
1287 blk_set_congested(rl, is_sync);
1288 }
1289
1290 /*
1291 * Only allow batching queuers to allocate up to 50% over the defined
1292 * limit of requests, otherwise we could have thousands of requests
1293 * allocated with any setting of ->nr_requests
1294 */
1295 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1296 return ERR_PTR(-ENOMEM);
1297
1298 q->nr_rqs[is_sync]++;
1299 rl->count[is_sync]++;
1300 rl->starved[is_sync] = 0;
1301
1302 /*
1303 * Decide whether the new request will be managed by elevator. If
1304 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1305 * prevent the current elevator from being destroyed until the new
1306 * request is freed. This guarantees icq's won't be destroyed and
1307 * makes creating new ones safe.
1308 *
1309 * Flush requests do not use the elevator so skip initialization.
1310 * This allows a request to share the flush and elevator data.
1311 *
1312 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1313 * it will be created after releasing queue_lock.
1314 */
1315 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1316 rq_flags |= RQF_ELVPRIV;
1317 q->nr_rqs_elvpriv++;
1318 if (et->icq_cache && ioc)
1319 icq = ioc_lookup_icq(ioc, q);
1320 }
1321
1322 if (blk_queue_io_stat(q))
1323 rq_flags |= RQF_IO_STAT;
1324 spin_unlock_irq(q->queue_lock);
1325
1326 /* allocate and init request */
1327 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1328 if (!rq)
1329 goto fail_alloc;
1330
1331 blk_rq_init(q, rq);
1332 blk_rq_set_rl(rq, rl);
1333 rq->cmd_flags = op;
1334 rq->rq_flags = rq_flags;
1335 if (flags & BLK_MQ_REQ_PREEMPT)
1336 rq->rq_flags |= RQF_PREEMPT;
1337
1338 /* init elvpriv */
1339 if (rq_flags & RQF_ELVPRIV) {
1340 if (unlikely(et->icq_cache && !icq)) {
1341 if (ioc)
1342 icq = ioc_create_icq(ioc, q, gfp_mask);
1343 if (!icq)
1344 goto fail_elvpriv;
1345 }
1346
1347 rq->elv.icq = icq;
1348 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1349 goto fail_elvpriv;
1350
1351 /* @rq->elv.icq holds io_context until @rq is freed */
1352 if (icq)
1353 get_io_context(icq->ioc);
1354 }
1355 out:
1356 /*
1357 * ioc may be NULL here, and ioc_batching will be false. That's
1358 * OK, if the queue is under the request limit then requests need
1359 * not count toward the nr_batch_requests limit. There will always
1360 * be some limit enforced by BLK_BATCH_TIME.
1361 */
1362 if (ioc_batching(q, ioc))
1363 ioc->nr_batch_requests--;
1364
1365 trace_block_getrq(q, bio, op);
1366 return rq;
1367
1368 fail_elvpriv:
1369 /*
1370 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1371 * and may fail indefinitely under memory pressure and thus
1372 * shouldn't stall IO. Treat this request as !elvpriv. This will
1373 * disturb iosched and blkcg but weird is bettern than dead.
1374 */
1375 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1376 __func__, dev_name(q->backing_dev_info->dev));
1377
1378 rq->rq_flags &= ~RQF_ELVPRIV;
1379 rq->elv.icq = NULL;
1380
1381 spin_lock_irq(q->queue_lock);
1382 q->nr_rqs_elvpriv--;
1383 spin_unlock_irq(q->queue_lock);
1384 goto out;
1385
1386 fail_alloc:
1387 /*
1388 * Allocation failed presumably due to memory. Undo anything we
1389 * might have messed up.
1390 *
1391 * Allocating task should really be put onto the front of the wait
1392 * queue, but this is pretty rare.
1393 */
1394 spin_lock_irq(q->queue_lock);
1395 freed_request(rl, is_sync, rq_flags);
1396
1397 /*
1398 * in the very unlikely event that allocation failed and no
1399 * requests for this direction was pending, mark us starved so that
1400 * freeing of a request in the other direction will notice
1401 * us. another possible fix would be to split the rq mempool into
1402 * READ and WRITE
1403 */
1404 rq_starved:
1405 if (unlikely(rl->count[is_sync] == 0))
1406 rl->starved[is_sync] = 1;
1407 return ERR_PTR(-ENOMEM);
1408 }
1409
1410 /**
1411 * get_request - get a free request
1412 * @q: request_queue to allocate request from
1413 * @op: operation and flags
1414 * @bio: bio to allocate request for (can be %NULL)
1415 * @flags: BLK_MQ_REQ_* flags.
1416 *
1417 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1418 * this function keeps retrying under memory pressure and fails iff @q is dead.
1419 *
1420 * Must be called with @q->queue_lock held and,
1421 * Returns ERR_PTR on failure, with @q->queue_lock held.
1422 * Returns request pointer on success, with @q->queue_lock *not held*.
1423 */
1424 static struct request *get_request(struct request_queue *q, unsigned int op,
1425 struct bio *bio, blk_mq_req_flags_t flags)
1426 {
1427 const bool is_sync = op_is_sync(op);
1428 DEFINE_WAIT(wait);
1429 struct request_list *rl;
1430 struct request *rq;
1431
1432 lockdep_assert_held(q->queue_lock);
1433 WARN_ON_ONCE(q->mq_ops);
1434
1435 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1436 retry:
1437 rq = __get_request(rl, op, bio, flags);
1438 if (!IS_ERR(rq))
1439 return rq;
1440
1441 if (op & REQ_NOWAIT) {
1442 blk_put_rl(rl);
1443 return ERR_PTR(-EAGAIN);
1444 }
1445
1446 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1447 blk_put_rl(rl);
1448 return rq;
1449 }
1450
1451 /* wait on @rl and retry */
1452 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1453 TASK_UNINTERRUPTIBLE);
1454
1455 trace_block_sleeprq(q, bio, op);
1456
1457 spin_unlock_irq(q->queue_lock);
1458 io_schedule();
1459
1460 /*
1461 * After sleeping, we become a "batching" process and will be able
1462 * to allocate at least one request, and up to a big batch of them
1463 * for a small period time. See ioc_batching, ioc_set_batching
1464 */
1465 ioc_set_batching(q, current->io_context);
1466
1467 spin_lock_irq(q->queue_lock);
1468 finish_wait(&rl->wait[is_sync], &wait);
1469
1470 goto retry;
1471 }
1472
1473 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1474 static struct request *blk_old_get_request(struct request_queue *q,
1475 unsigned int op, blk_mq_req_flags_t flags)
1476 {
1477 struct request *rq;
1478 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1479 __GFP_DIRECT_RECLAIM;
1480 int ret = 0;
1481
1482 WARN_ON_ONCE(q->mq_ops);
1483
1484 /* create ioc upfront */
1485 create_io_context(gfp_mask, q->node);
1486
1487 ret = blk_queue_enter(q, flags);
1488 if (ret)
1489 return ERR_PTR(ret);
1490 spin_lock_irq(q->queue_lock);
1491 rq = get_request(q, op, NULL, flags);
1492 if (IS_ERR(rq)) {
1493 spin_unlock_irq(q->queue_lock);
1494 blk_queue_exit(q);
1495 return rq;
1496 }
1497
1498 /* q->queue_lock is unlocked at this point */
1499 rq->__data_len = 0;
1500 rq->__sector = (sector_t) -1;
1501 rq->bio = rq->biotail = NULL;
1502 return rq;
1503 }
1504
1505 /**
1506 * blk_get_request_flags - allocate a request
1507 * @q: request queue to allocate a request for
1508 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1509 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1510 */
1511 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1512 blk_mq_req_flags_t flags)
1513 {
1514 struct request *req;
1515
1516 WARN_ON_ONCE(op & REQ_NOWAIT);
1517 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1518
1519 if (q->mq_ops) {
1520 req = blk_mq_alloc_request(q, op, flags);
1521 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1522 q->mq_ops->initialize_rq_fn(req);
1523 } else {
1524 req = blk_old_get_request(q, op, flags);
1525 if (!IS_ERR(req) && q->initialize_rq_fn)
1526 q->initialize_rq_fn(req);
1527 }
1528
1529 return req;
1530 }
1531 EXPORT_SYMBOL(blk_get_request_flags);
1532
1533 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1534 gfp_t gfp_mask)
1535 {
1536 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1537 0 : BLK_MQ_REQ_NOWAIT);
1538 }
1539 EXPORT_SYMBOL(blk_get_request);
1540
1541 /**
1542 * blk_requeue_request - put a request back on queue
1543 * @q: request queue where request should be inserted
1544 * @rq: request to be inserted
1545 *
1546 * Description:
1547 * Drivers often keep queueing requests until the hardware cannot accept
1548 * more, when that condition happens we need to put the request back
1549 * on the queue. Must be called with queue lock held.
1550 */
1551 void blk_requeue_request(struct request_queue *q, struct request *rq)
1552 {
1553 lockdep_assert_held(q->queue_lock);
1554 WARN_ON_ONCE(q->mq_ops);
1555
1556 blk_delete_timer(rq);
1557 blk_clear_rq_complete(rq);
1558 trace_block_rq_requeue(q, rq);
1559 wbt_requeue(q->rq_wb, &rq->issue_stat);
1560
1561 if (rq->rq_flags & RQF_QUEUED)
1562 blk_queue_end_tag(q, rq);
1563
1564 BUG_ON(blk_queued_rq(rq));
1565
1566 elv_requeue_request(q, rq);
1567 }
1568 EXPORT_SYMBOL(blk_requeue_request);
1569
1570 static void add_acct_request(struct request_queue *q, struct request *rq,
1571 int where)
1572 {
1573 blk_account_io_start(rq, true);
1574 __elv_add_request(q, rq, where);
1575 }
1576
1577 static void part_round_stats_single(struct request_queue *q, int cpu,
1578 struct hd_struct *part, unsigned long now,
1579 unsigned int inflight)
1580 {
1581 if (inflight) {
1582 __part_stat_add(cpu, part, time_in_queue,
1583 inflight * (now - part->stamp));
1584 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1585 }
1586 part->stamp = now;
1587 }
1588
1589 /**
1590 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1591 * @q: target block queue
1592 * @cpu: cpu number for stats access
1593 * @part: target partition
1594 *
1595 * The average IO queue length and utilisation statistics are maintained
1596 * by observing the current state of the queue length and the amount of
1597 * time it has been in this state for.
1598 *
1599 * Normally, that accounting is done on IO completion, but that can result
1600 * in more than a second's worth of IO being accounted for within any one
1601 * second, leading to >100% utilisation. To deal with that, we call this
1602 * function to do a round-off before returning the results when reading
1603 * /proc/diskstats. This accounts immediately for all queue usage up to
1604 * the current jiffies and restarts the counters again.
1605 */
1606 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1607 {
1608 struct hd_struct *part2 = NULL;
1609 unsigned long now = jiffies;
1610 unsigned int inflight[2];
1611 int stats = 0;
1612
1613 if (part->stamp != now)
1614 stats |= 1;
1615
1616 if (part->partno) {
1617 part2 = &part_to_disk(part)->part0;
1618 if (part2->stamp != now)
1619 stats |= 2;
1620 }
1621
1622 if (!stats)
1623 return;
1624
1625 part_in_flight(q, part, inflight);
1626
1627 if (stats & 2)
1628 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1629 if (stats & 1)
1630 part_round_stats_single(q, cpu, part, now, inflight[0]);
1631 }
1632 EXPORT_SYMBOL_GPL(part_round_stats);
1633
1634 #ifdef CONFIG_PM
1635 static void blk_pm_put_request(struct request *rq)
1636 {
1637 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1638 pm_runtime_mark_last_busy(rq->q->dev);
1639 }
1640 #else
1641 static inline void blk_pm_put_request(struct request *rq) {}
1642 #endif
1643
1644 void __blk_put_request(struct request_queue *q, struct request *req)
1645 {
1646 req_flags_t rq_flags = req->rq_flags;
1647
1648 if (unlikely(!q))
1649 return;
1650
1651 if (q->mq_ops) {
1652 blk_mq_free_request(req);
1653 return;
1654 }
1655
1656 lockdep_assert_held(q->queue_lock);
1657
1658 blk_pm_put_request(req);
1659
1660 elv_completed_request(q, req);
1661
1662 /* this is a bio leak */
1663 WARN_ON(req->bio != NULL);
1664
1665 wbt_done(q->rq_wb, &req->issue_stat);
1666
1667 /*
1668 * Request may not have originated from ll_rw_blk. if not,
1669 * it didn't come out of our reserved rq pools
1670 */
1671 if (rq_flags & RQF_ALLOCED) {
1672 struct request_list *rl = blk_rq_rl(req);
1673 bool sync = op_is_sync(req->cmd_flags);
1674
1675 BUG_ON(!list_empty(&req->queuelist));
1676 BUG_ON(ELV_ON_HASH(req));
1677
1678 blk_free_request(rl, req);
1679 freed_request(rl, sync, rq_flags);
1680 blk_put_rl(rl);
1681 blk_queue_exit(q);
1682 }
1683 }
1684 EXPORT_SYMBOL_GPL(__blk_put_request);
1685
1686 void blk_put_request(struct request *req)
1687 {
1688 struct request_queue *q = req->q;
1689
1690 if (q->mq_ops)
1691 blk_mq_free_request(req);
1692 else {
1693 unsigned long flags;
1694
1695 spin_lock_irqsave(q->queue_lock, flags);
1696 __blk_put_request(q, req);
1697 spin_unlock_irqrestore(q->queue_lock, flags);
1698 }
1699 }
1700 EXPORT_SYMBOL(blk_put_request);
1701
1702 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1703 struct bio *bio)
1704 {
1705 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1706
1707 if (!ll_back_merge_fn(q, req, bio))
1708 return false;
1709
1710 trace_block_bio_backmerge(q, req, bio);
1711
1712 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1713 blk_rq_set_mixed_merge(req);
1714
1715 req->biotail->bi_next = bio;
1716 req->biotail = bio;
1717 req->__data_len += bio->bi_iter.bi_size;
1718 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1719
1720 blk_account_io_start(req, false);
1721 return true;
1722 }
1723
1724 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1725 struct bio *bio)
1726 {
1727 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1728
1729 if (!ll_front_merge_fn(q, req, bio))
1730 return false;
1731
1732 trace_block_bio_frontmerge(q, req, bio);
1733
1734 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1735 blk_rq_set_mixed_merge(req);
1736
1737 bio->bi_next = req->bio;
1738 req->bio = bio;
1739
1740 req->__sector = bio->bi_iter.bi_sector;
1741 req->__data_len += bio->bi_iter.bi_size;
1742 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1743
1744 blk_account_io_start(req, false);
1745 return true;
1746 }
1747
1748 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1749 struct bio *bio)
1750 {
1751 unsigned short segments = blk_rq_nr_discard_segments(req);
1752
1753 if (segments >= queue_max_discard_segments(q))
1754 goto no_merge;
1755 if (blk_rq_sectors(req) + bio_sectors(bio) >
1756 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1757 goto no_merge;
1758
1759 req->biotail->bi_next = bio;
1760 req->biotail = bio;
1761 req->__data_len += bio->bi_iter.bi_size;
1762 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1763 req->nr_phys_segments = segments + 1;
1764
1765 blk_account_io_start(req, false);
1766 return true;
1767 no_merge:
1768 req_set_nomerge(q, req);
1769 return false;
1770 }
1771
1772 /**
1773 * blk_attempt_plug_merge - try to merge with %current's plugged list
1774 * @q: request_queue new bio is being queued at
1775 * @bio: new bio being queued
1776 * @request_count: out parameter for number of traversed plugged requests
1777 * @same_queue_rq: pointer to &struct request that gets filled in when
1778 * another request associated with @q is found on the plug list
1779 * (optional, may be %NULL)
1780 *
1781 * Determine whether @bio being queued on @q can be merged with a request
1782 * on %current's plugged list. Returns %true if merge was successful,
1783 * otherwise %false.
1784 *
1785 * Plugging coalesces IOs from the same issuer for the same purpose without
1786 * going through @q->queue_lock. As such it's more of an issuing mechanism
1787 * than scheduling, and the request, while may have elvpriv data, is not
1788 * added on the elevator at this point. In addition, we don't have
1789 * reliable access to the elevator outside queue lock. Only check basic
1790 * merging parameters without querying the elevator.
1791 *
1792 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1793 */
1794 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1795 unsigned int *request_count,
1796 struct request **same_queue_rq)
1797 {
1798 struct blk_plug *plug;
1799 struct request *rq;
1800 struct list_head *plug_list;
1801
1802 plug = current->plug;
1803 if (!plug)
1804 return false;
1805 *request_count = 0;
1806
1807 if (q->mq_ops)
1808 plug_list = &plug->mq_list;
1809 else
1810 plug_list = &plug->list;
1811
1812 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1813 bool merged = false;
1814
1815 if (rq->q == q) {
1816 (*request_count)++;
1817 /*
1818 * Only blk-mq multiple hardware queues case checks the
1819 * rq in the same queue, there should be only one such
1820 * rq in a queue
1821 **/
1822 if (same_queue_rq)
1823 *same_queue_rq = rq;
1824 }
1825
1826 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1827 continue;
1828
1829 switch (blk_try_merge(rq, bio)) {
1830 case ELEVATOR_BACK_MERGE:
1831 merged = bio_attempt_back_merge(q, rq, bio);
1832 break;
1833 case ELEVATOR_FRONT_MERGE:
1834 merged = bio_attempt_front_merge(q, rq, bio);
1835 break;
1836 case ELEVATOR_DISCARD_MERGE:
1837 merged = bio_attempt_discard_merge(q, rq, bio);
1838 break;
1839 default:
1840 break;
1841 }
1842
1843 if (merged)
1844 return true;
1845 }
1846
1847 return false;
1848 }
1849
1850 unsigned int blk_plug_queued_count(struct request_queue *q)
1851 {
1852 struct blk_plug *plug;
1853 struct request *rq;
1854 struct list_head *plug_list;
1855 unsigned int ret = 0;
1856
1857 plug = current->plug;
1858 if (!plug)
1859 goto out;
1860
1861 if (q->mq_ops)
1862 plug_list = &plug->mq_list;
1863 else
1864 plug_list = &plug->list;
1865
1866 list_for_each_entry(rq, plug_list, queuelist) {
1867 if (rq->q == q)
1868 ret++;
1869 }
1870 out:
1871 return ret;
1872 }
1873
1874 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1875 {
1876 struct io_context *ioc = rq_ioc(bio);
1877
1878 if (bio->bi_opf & REQ_RAHEAD)
1879 req->cmd_flags |= REQ_FAILFAST_MASK;
1880
1881 req->__sector = bio->bi_iter.bi_sector;
1882 if (ioprio_valid(bio_prio(bio)))
1883 req->ioprio = bio_prio(bio);
1884 else if (ioc)
1885 req->ioprio = ioc->ioprio;
1886 else
1887 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1888 req->write_hint = bio->bi_write_hint;
1889 blk_rq_bio_prep(req->q, req, bio);
1890 }
1891 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1892
1893 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1894 {
1895 struct blk_plug *plug;
1896 int where = ELEVATOR_INSERT_SORT;
1897 struct request *req, *free;
1898 unsigned int request_count = 0;
1899 unsigned int wb_acct;
1900
1901 /*
1902 * low level driver can indicate that it wants pages above a
1903 * certain limit bounced to low memory (ie for highmem, or even
1904 * ISA dma in theory)
1905 */
1906 blk_queue_bounce(q, &bio);
1907
1908 blk_queue_split(q, &bio);
1909
1910 if (!bio_integrity_prep(bio))
1911 return BLK_QC_T_NONE;
1912
1913 if (op_is_flush(bio->bi_opf)) {
1914 spin_lock_irq(q->queue_lock);
1915 where = ELEVATOR_INSERT_FLUSH;
1916 goto get_rq;
1917 }
1918
1919 /*
1920 * Check if we can merge with the plugged list before grabbing
1921 * any locks.
1922 */
1923 if (!blk_queue_nomerges(q)) {
1924 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1925 return BLK_QC_T_NONE;
1926 } else
1927 request_count = blk_plug_queued_count(q);
1928
1929 spin_lock_irq(q->queue_lock);
1930
1931 switch (elv_merge(q, &req, bio)) {
1932 case ELEVATOR_BACK_MERGE:
1933 if (!bio_attempt_back_merge(q, req, bio))
1934 break;
1935 elv_bio_merged(q, req, bio);
1936 free = attempt_back_merge(q, req);
1937 if (free)
1938 __blk_put_request(q, free);
1939 else
1940 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1941 goto out_unlock;
1942 case ELEVATOR_FRONT_MERGE:
1943 if (!bio_attempt_front_merge(q, req, bio))
1944 break;
1945 elv_bio_merged(q, req, bio);
1946 free = attempt_front_merge(q, req);
1947 if (free)
1948 __blk_put_request(q, free);
1949 else
1950 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1951 goto out_unlock;
1952 default:
1953 break;
1954 }
1955
1956 get_rq:
1957 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1958
1959 /*
1960 * Grab a free request. This is might sleep but can not fail.
1961 * Returns with the queue unlocked.
1962 */
1963 blk_queue_enter_live(q);
1964 req = get_request(q, bio->bi_opf, bio, 0);
1965 if (IS_ERR(req)) {
1966 blk_queue_exit(q);
1967 __wbt_done(q->rq_wb, wb_acct);
1968 if (PTR_ERR(req) == -ENOMEM)
1969 bio->bi_status = BLK_STS_RESOURCE;
1970 else
1971 bio->bi_status = BLK_STS_IOERR;
1972 bio_endio(bio);
1973 goto out_unlock;
1974 }
1975
1976 wbt_track(&req->issue_stat, wb_acct);
1977
1978 /*
1979 * After dropping the lock and possibly sleeping here, our request
1980 * may now be mergeable after it had proven unmergeable (above).
1981 * We don't worry about that case for efficiency. It won't happen
1982 * often, and the elevators are able to handle it.
1983 */
1984 blk_init_request_from_bio(req, bio);
1985
1986 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1987 req->cpu = raw_smp_processor_id();
1988
1989 plug = current->plug;
1990 if (plug) {
1991 /*
1992 * If this is the first request added after a plug, fire
1993 * of a plug trace.
1994 *
1995 * @request_count may become stale because of schedule
1996 * out, so check plug list again.
1997 */
1998 if (!request_count || list_empty(&plug->list))
1999 trace_block_plug(q);
2000 else {
2001 struct request *last = list_entry_rq(plug->list.prev);
2002 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2003 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2004 blk_flush_plug_list(plug, false);
2005 trace_block_plug(q);
2006 }
2007 }
2008 list_add_tail(&req->queuelist, &plug->list);
2009 blk_account_io_start(req, true);
2010 } else {
2011 spin_lock_irq(q->queue_lock);
2012 add_acct_request(q, req, where);
2013 __blk_run_queue(q);
2014 out_unlock:
2015 spin_unlock_irq(q->queue_lock);
2016 }
2017
2018 return BLK_QC_T_NONE;
2019 }
2020
2021 static void handle_bad_sector(struct bio *bio)
2022 {
2023 char b[BDEVNAME_SIZE];
2024
2025 printk(KERN_INFO "attempt to access beyond end of device\n");
2026 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2027 bio_devname(bio, b), bio->bi_opf,
2028 (unsigned long long)bio_end_sector(bio),
2029 (long long)get_capacity(bio->bi_disk));
2030 }
2031
2032 #ifdef CONFIG_FAIL_MAKE_REQUEST
2033
2034 static DECLARE_FAULT_ATTR(fail_make_request);
2035
2036 static int __init setup_fail_make_request(char *str)
2037 {
2038 return setup_fault_attr(&fail_make_request, str);
2039 }
2040 __setup("fail_make_request=", setup_fail_make_request);
2041
2042 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2043 {
2044 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2045 }
2046
2047 static int __init fail_make_request_debugfs(void)
2048 {
2049 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2050 NULL, &fail_make_request);
2051
2052 return PTR_ERR_OR_ZERO(dir);
2053 }
2054
2055 late_initcall(fail_make_request_debugfs);
2056
2057 #else /* CONFIG_FAIL_MAKE_REQUEST */
2058
2059 static inline bool should_fail_request(struct hd_struct *part,
2060 unsigned int bytes)
2061 {
2062 return false;
2063 }
2064
2065 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2066
2067 /*
2068 * Remap block n of partition p to block n+start(p) of the disk.
2069 */
2070 static inline int blk_partition_remap(struct bio *bio)
2071 {
2072 struct hd_struct *p;
2073 int ret = 0;
2074
2075 /*
2076 * Zone reset does not include bi_size so bio_sectors() is always 0.
2077 * Include a test for the reset op code and perform the remap if needed.
2078 */
2079 if (!bio->bi_partno ||
2080 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2081 return 0;
2082
2083 rcu_read_lock();
2084 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2085 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2086 bio->bi_iter.bi_sector += p->start_sect;
2087 bio->bi_partno = 0;
2088 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2089 bio->bi_iter.bi_sector - p->start_sect);
2090 } else {
2091 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2092 ret = -EIO;
2093 }
2094 rcu_read_unlock();
2095
2096 return ret;
2097 }
2098
2099 /*
2100 * Check whether this bio extends beyond the end of the device.
2101 */
2102 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2103 {
2104 sector_t maxsector;
2105
2106 if (!nr_sectors)
2107 return 0;
2108
2109 /* Test device or partition size, when known. */
2110 maxsector = get_capacity(bio->bi_disk);
2111 if (maxsector) {
2112 sector_t sector = bio->bi_iter.bi_sector;
2113
2114 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2115 /*
2116 * This may well happen - the kernel calls bread()
2117 * without checking the size of the device, e.g., when
2118 * mounting a device.
2119 */
2120 handle_bad_sector(bio);
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 static noinline_for_stack bool
2129 generic_make_request_checks(struct bio *bio)
2130 {
2131 struct request_queue *q;
2132 int nr_sectors = bio_sectors(bio);
2133 blk_status_t status = BLK_STS_IOERR;
2134 char b[BDEVNAME_SIZE];
2135
2136 might_sleep();
2137
2138 if (bio_check_eod(bio, nr_sectors))
2139 goto end_io;
2140
2141 q = bio->bi_disk->queue;
2142 if (unlikely(!q)) {
2143 printk(KERN_ERR
2144 "generic_make_request: Trying to access "
2145 "nonexistent block-device %s (%Lu)\n",
2146 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2147 goto end_io;
2148 }
2149
2150 /*
2151 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2152 * if queue is not a request based queue.
2153 */
2154
2155 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2156 goto not_supported;
2157
2158 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2159 goto end_io;
2160
2161 if (blk_partition_remap(bio))
2162 goto end_io;
2163
2164 if (bio_check_eod(bio, nr_sectors))
2165 goto end_io;
2166
2167 /*
2168 * Filter flush bio's early so that make_request based
2169 * drivers without flush support don't have to worry
2170 * about them.
2171 */
2172 if (op_is_flush(bio->bi_opf) &&
2173 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2174 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2175 if (!nr_sectors) {
2176 status = BLK_STS_OK;
2177 goto end_io;
2178 }
2179 }
2180
2181 switch (bio_op(bio)) {
2182 case REQ_OP_DISCARD:
2183 if (!blk_queue_discard(q))
2184 goto not_supported;
2185 break;
2186 case REQ_OP_SECURE_ERASE:
2187 if (!blk_queue_secure_erase(q))
2188 goto not_supported;
2189 break;
2190 case REQ_OP_WRITE_SAME:
2191 if (!q->limits.max_write_same_sectors)
2192 goto not_supported;
2193 break;
2194 case REQ_OP_ZONE_REPORT:
2195 case REQ_OP_ZONE_RESET:
2196 if (!blk_queue_is_zoned(q))
2197 goto not_supported;
2198 break;
2199 case REQ_OP_WRITE_ZEROES:
2200 if (!q->limits.max_write_zeroes_sectors)
2201 goto not_supported;
2202 break;
2203 default:
2204 break;
2205 }
2206
2207 /*
2208 * Various block parts want %current->io_context and lazy ioc
2209 * allocation ends up trading a lot of pain for a small amount of
2210 * memory. Just allocate it upfront. This may fail and block
2211 * layer knows how to live with it.
2212 */
2213 create_io_context(GFP_ATOMIC, q->node);
2214
2215 if (!blkcg_bio_issue_check(q, bio))
2216 return false;
2217
2218 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2219 trace_block_bio_queue(q, bio);
2220 /* Now that enqueuing has been traced, we need to trace
2221 * completion as well.
2222 */
2223 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2224 }
2225 return true;
2226
2227 not_supported:
2228 status = BLK_STS_NOTSUPP;
2229 end_io:
2230 bio->bi_status = status;
2231 bio_endio(bio);
2232 return false;
2233 }
2234
2235 /**
2236 * generic_make_request - hand a buffer to its device driver for I/O
2237 * @bio: The bio describing the location in memory and on the device.
2238 *
2239 * generic_make_request() is used to make I/O requests of block
2240 * devices. It is passed a &struct bio, which describes the I/O that needs
2241 * to be done.
2242 *
2243 * generic_make_request() does not return any status. The
2244 * success/failure status of the request, along with notification of
2245 * completion, is delivered asynchronously through the bio->bi_end_io
2246 * function described (one day) else where.
2247 *
2248 * The caller of generic_make_request must make sure that bi_io_vec
2249 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2250 * set to describe the device address, and the
2251 * bi_end_io and optionally bi_private are set to describe how
2252 * completion notification should be signaled.
2253 *
2254 * generic_make_request and the drivers it calls may use bi_next if this
2255 * bio happens to be merged with someone else, and may resubmit the bio to
2256 * a lower device by calling into generic_make_request recursively, which
2257 * means the bio should NOT be touched after the call to ->make_request_fn.
2258 */
2259 blk_qc_t generic_make_request(struct bio *bio)
2260 {
2261 /*
2262 * bio_list_on_stack[0] contains bios submitted by the current
2263 * make_request_fn.
2264 * bio_list_on_stack[1] contains bios that were submitted before
2265 * the current make_request_fn, but that haven't been processed
2266 * yet.
2267 */
2268 struct bio_list bio_list_on_stack[2];
2269 blk_qc_t ret = BLK_QC_T_NONE;
2270
2271 if (!generic_make_request_checks(bio))
2272 goto out;
2273
2274 /*
2275 * We only want one ->make_request_fn to be active at a time, else
2276 * stack usage with stacked devices could be a problem. So use
2277 * current->bio_list to keep a list of requests submited by a
2278 * make_request_fn function. current->bio_list is also used as a
2279 * flag to say if generic_make_request is currently active in this
2280 * task or not. If it is NULL, then no make_request is active. If
2281 * it is non-NULL, then a make_request is active, and new requests
2282 * should be added at the tail
2283 */
2284 if (current->bio_list) {
2285 bio_list_add(&current->bio_list[0], bio);
2286 goto out;
2287 }
2288
2289 /* following loop may be a bit non-obvious, and so deserves some
2290 * explanation.
2291 * Before entering the loop, bio->bi_next is NULL (as all callers
2292 * ensure that) so we have a list with a single bio.
2293 * We pretend that we have just taken it off a longer list, so
2294 * we assign bio_list to a pointer to the bio_list_on_stack,
2295 * thus initialising the bio_list of new bios to be
2296 * added. ->make_request() may indeed add some more bios
2297 * through a recursive call to generic_make_request. If it
2298 * did, we find a non-NULL value in bio_list and re-enter the loop
2299 * from the top. In this case we really did just take the bio
2300 * of the top of the list (no pretending) and so remove it from
2301 * bio_list, and call into ->make_request() again.
2302 */
2303 BUG_ON(bio->bi_next);
2304 bio_list_init(&bio_list_on_stack[0]);
2305 current->bio_list = bio_list_on_stack;
2306 do {
2307 struct request_queue *q = bio->bi_disk->queue;
2308 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2309 BLK_MQ_REQ_NOWAIT : 0;
2310
2311 if (likely(blk_queue_enter(q, flags) == 0)) {
2312 struct bio_list lower, same;
2313
2314 /* Create a fresh bio_list for all subordinate requests */
2315 bio_list_on_stack[1] = bio_list_on_stack[0];
2316 bio_list_init(&bio_list_on_stack[0]);
2317 ret = q->make_request_fn(q, bio);
2318
2319 blk_queue_exit(q);
2320
2321 /* sort new bios into those for a lower level
2322 * and those for the same level
2323 */
2324 bio_list_init(&lower);
2325 bio_list_init(&same);
2326 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2327 if (q == bio->bi_disk->queue)
2328 bio_list_add(&same, bio);
2329 else
2330 bio_list_add(&lower, bio);
2331 /* now assemble so we handle the lowest level first */
2332 bio_list_merge(&bio_list_on_stack[0], &lower);
2333 bio_list_merge(&bio_list_on_stack[0], &same);
2334 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2335 } else {
2336 if (unlikely(!blk_queue_dying(q) &&
2337 (bio->bi_opf & REQ_NOWAIT)))
2338 bio_wouldblock_error(bio);
2339 else
2340 bio_io_error(bio);
2341 }
2342 bio = bio_list_pop(&bio_list_on_stack[0]);
2343 } while (bio);
2344 current->bio_list = NULL; /* deactivate */
2345
2346 out:
2347 return ret;
2348 }
2349 EXPORT_SYMBOL(generic_make_request);
2350
2351 /**
2352 * direct_make_request - hand a buffer directly to its device driver for I/O
2353 * @bio: The bio describing the location in memory and on the device.
2354 *
2355 * This function behaves like generic_make_request(), but does not protect
2356 * against recursion. Must only be used if the called driver is known
2357 * to not call generic_make_request (or direct_make_request) again from
2358 * its make_request function. (Calling direct_make_request again from
2359 * a workqueue is perfectly fine as that doesn't recurse).
2360 */
2361 blk_qc_t direct_make_request(struct bio *bio)
2362 {
2363 struct request_queue *q = bio->bi_disk->queue;
2364 bool nowait = bio->bi_opf & REQ_NOWAIT;
2365 blk_qc_t ret;
2366
2367 if (!generic_make_request_checks(bio))
2368 return BLK_QC_T_NONE;
2369
2370 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2371 if (nowait && !blk_queue_dying(q))
2372 bio->bi_status = BLK_STS_AGAIN;
2373 else
2374 bio->bi_status = BLK_STS_IOERR;
2375 bio_endio(bio);
2376 return BLK_QC_T_NONE;
2377 }
2378
2379 ret = q->make_request_fn(q, bio);
2380 blk_queue_exit(q);
2381 return ret;
2382 }
2383 EXPORT_SYMBOL_GPL(direct_make_request);
2384
2385 /**
2386 * submit_bio - submit a bio to the block device layer for I/O
2387 * @bio: The &struct bio which describes the I/O
2388 *
2389 * submit_bio() is very similar in purpose to generic_make_request(), and
2390 * uses that function to do most of the work. Both are fairly rough
2391 * interfaces; @bio must be presetup and ready for I/O.
2392 *
2393 */
2394 blk_qc_t submit_bio(struct bio *bio)
2395 {
2396 /*
2397 * If it's a regular read/write or a barrier with data attached,
2398 * go through the normal accounting stuff before submission.
2399 */
2400 if (bio_has_data(bio)) {
2401 unsigned int count;
2402
2403 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2404 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2405 else
2406 count = bio_sectors(bio);
2407
2408 if (op_is_write(bio_op(bio))) {
2409 count_vm_events(PGPGOUT, count);
2410 } else {
2411 task_io_account_read(bio->bi_iter.bi_size);
2412 count_vm_events(PGPGIN, count);
2413 }
2414
2415 if (unlikely(block_dump)) {
2416 char b[BDEVNAME_SIZE];
2417 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2418 current->comm, task_pid_nr(current),
2419 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2420 (unsigned long long)bio->bi_iter.bi_sector,
2421 bio_devname(bio, b), count);
2422 }
2423 }
2424
2425 return generic_make_request(bio);
2426 }
2427 EXPORT_SYMBOL(submit_bio);
2428
2429 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2430 {
2431 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2432 return false;
2433
2434 if (current->plug)
2435 blk_flush_plug_list(current->plug, false);
2436 return q->poll_fn(q, cookie);
2437 }
2438 EXPORT_SYMBOL_GPL(blk_poll);
2439
2440 /**
2441 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2442 * for new the queue limits
2443 * @q: the queue
2444 * @rq: the request being checked
2445 *
2446 * Description:
2447 * @rq may have been made based on weaker limitations of upper-level queues
2448 * in request stacking drivers, and it may violate the limitation of @q.
2449 * Since the block layer and the underlying device driver trust @rq
2450 * after it is inserted to @q, it should be checked against @q before
2451 * the insertion using this generic function.
2452 *
2453 * Request stacking drivers like request-based dm may change the queue
2454 * limits when retrying requests on other queues. Those requests need
2455 * to be checked against the new queue limits again during dispatch.
2456 */
2457 static int blk_cloned_rq_check_limits(struct request_queue *q,
2458 struct request *rq)
2459 {
2460 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2461 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2462 return -EIO;
2463 }
2464
2465 /*
2466 * queue's settings related to segment counting like q->bounce_pfn
2467 * may differ from that of other stacking queues.
2468 * Recalculate it to check the request correctly on this queue's
2469 * limitation.
2470 */
2471 blk_recalc_rq_segments(rq);
2472 if (rq->nr_phys_segments > queue_max_segments(q)) {
2473 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2474 return -EIO;
2475 }
2476
2477 return 0;
2478 }
2479
2480 /**
2481 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2482 * @q: the queue to submit the request
2483 * @rq: the request being queued
2484 */
2485 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2486 {
2487 unsigned long flags;
2488 int where = ELEVATOR_INSERT_BACK;
2489
2490 if (blk_cloned_rq_check_limits(q, rq))
2491 return BLK_STS_IOERR;
2492
2493 if (rq->rq_disk &&
2494 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2495 return BLK_STS_IOERR;
2496
2497 if (q->mq_ops) {
2498 if (blk_queue_io_stat(q))
2499 blk_account_io_start(rq, true);
2500 /*
2501 * Since we have a scheduler attached on the top device,
2502 * bypass a potential scheduler on the bottom device for
2503 * insert.
2504 */
2505 blk_mq_request_bypass_insert(rq, true);
2506 return BLK_STS_OK;
2507 }
2508
2509 spin_lock_irqsave(q->queue_lock, flags);
2510 if (unlikely(blk_queue_dying(q))) {
2511 spin_unlock_irqrestore(q->queue_lock, flags);
2512 return BLK_STS_IOERR;
2513 }
2514
2515 /*
2516 * Submitting request must be dequeued before calling this function
2517 * because it will be linked to another request_queue
2518 */
2519 BUG_ON(blk_queued_rq(rq));
2520
2521 if (op_is_flush(rq->cmd_flags))
2522 where = ELEVATOR_INSERT_FLUSH;
2523
2524 add_acct_request(q, rq, where);
2525 if (where == ELEVATOR_INSERT_FLUSH)
2526 __blk_run_queue(q);
2527 spin_unlock_irqrestore(q->queue_lock, flags);
2528
2529 return BLK_STS_OK;
2530 }
2531 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2532
2533 /**
2534 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2535 * @rq: request to examine
2536 *
2537 * Description:
2538 * A request could be merge of IOs which require different failure
2539 * handling. This function determines the number of bytes which
2540 * can be failed from the beginning of the request without
2541 * crossing into area which need to be retried further.
2542 *
2543 * Return:
2544 * The number of bytes to fail.
2545 */
2546 unsigned int blk_rq_err_bytes(const struct request *rq)
2547 {
2548 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2549 unsigned int bytes = 0;
2550 struct bio *bio;
2551
2552 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2553 return blk_rq_bytes(rq);
2554
2555 /*
2556 * Currently the only 'mixing' which can happen is between
2557 * different fastfail types. We can safely fail portions
2558 * which have all the failfast bits that the first one has -
2559 * the ones which are at least as eager to fail as the first
2560 * one.
2561 */
2562 for (bio = rq->bio; bio; bio = bio->bi_next) {
2563 if ((bio->bi_opf & ff) != ff)
2564 break;
2565 bytes += bio->bi_iter.bi_size;
2566 }
2567
2568 /* this could lead to infinite loop */
2569 BUG_ON(blk_rq_bytes(rq) && !bytes);
2570 return bytes;
2571 }
2572 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2573
2574 void blk_account_io_completion(struct request *req, unsigned int bytes)
2575 {
2576 if (blk_do_io_stat(req)) {
2577 const int rw = rq_data_dir(req);
2578 struct hd_struct *part;
2579 int cpu;
2580
2581 cpu = part_stat_lock();
2582 part = req->part;
2583 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2584 part_stat_unlock();
2585 }
2586 }
2587
2588 void blk_account_io_done(struct request *req)
2589 {
2590 /*
2591 * Account IO completion. flush_rq isn't accounted as a
2592 * normal IO on queueing nor completion. Accounting the
2593 * containing request is enough.
2594 */
2595 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2596 unsigned long duration = jiffies - req->start_time;
2597 const int rw = rq_data_dir(req);
2598 struct hd_struct *part;
2599 int cpu;
2600
2601 cpu = part_stat_lock();
2602 part = req->part;
2603
2604 part_stat_inc(cpu, part, ios[rw]);
2605 part_stat_add(cpu, part, ticks[rw], duration);
2606 part_round_stats(req->q, cpu, part);
2607 part_dec_in_flight(req->q, part, rw);
2608
2609 hd_struct_put(part);
2610 part_stat_unlock();
2611 }
2612 }
2613
2614 #ifdef CONFIG_PM
2615 /*
2616 * Don't process normal requests when queue is suspended
2617 * or in the process of suspending/resuming
2618 */
2619 static bool blk_pm_allow_request(struct request *rq)
2620 {
2621 switch (rq->q->rpm_status) {
2622 case RPM_RESUMING:
2623 case RPM_SUSPENDING:
2624 return rq->rq_flags & RQF_PM;
2625 case RPM_SUSPENDED:
2626 return false;
2627 }
2628
2629 return true;
2630 }
2631 #else
2632 static bool blk_pm_allow_request(struct request *rq)
2633 {
2634 return true;
2635 }
2636 #endif
2637
2638 void blk_account_io_start(struct request *rq, bool new_io)
2639 {
2640 struct hd_struct *part;
2641 int rw = rq_data_dir(rq);
2642 int cpu;
2643
2644 if (!blk_do_io_stat(rq))
2645 return;
2646
2647 cpu = part_stat_lock();
2648
2649 if (!new_io) {
2650 part = rq->part;
2651 part_stat_inc(cpu, part, merges[rw]);
2652 } else {
2653 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2654 if (!hd_struct_try_get(part)) {
2655 /*
2656 * The partition is already being removed,
2657 * the request will be accounted on the disk only
2658 *
2659 * We take a reference on disk->part0 although that
2660 * partition will never be deleted, so we can treat
2661 * it as any other partition.
2662 */
2663 part = &rq->rq_disk->part0;
2664 hd_struct_get(part);
2665 }
2666 part_round_stats(rq->q, cpu, part);
2667 part_inc_in_flight(rq->q, part, rw);
2668 rq->part = part;
2669 }
2670
2671 part_stat_unlock();
2672 }
2673
2674 static struct request *elv_next_request(struct request_queue *q)
2675 {
2676 struct request *rq;
2677 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2678
2679 WARN_ON_ONCE(q->mq_ops);
2680
2681 while (1) {
2682 list_for_each_entry(rq, &q->queue_head, queuelist) {
2683 if (blk_pm_allow_request(rq))
2684 return rq;
2685
2686 if (rq->rq_flags & RQF_SOFTBARRIER)
2687 break;
2688 }
2689
2690 /*
2691 * Flush request is running and flush request isn't queueable
2692 * in the drive, we can hold the queue till flush request is
2693 * finished. Even we don't do this, driver can't dispatch next
2694 * requests and will requeue them. And this can improve
2695 * throughput too. For example, we have request flush1, write1,
2696 * flush 2. flush1 is dispatched, then queue is hold, write1
2697 * isn't inserted to queue. After flush1 is finished, flush2
2698 * will be dispatched. Since disk cache is already clean,
2699 * flush2 will be finished very soon, so looks like flush2 is
2700 * folded to flush1.
2701 * Since the queue is hold, a flag is set to indicate the queue
2702 * should be restarted later. Please see flush_end_io() for
2703 * details.
2704 */
2705 if (fq->flush_pending_idx != fq->flush_running_idx &&
2706 !queue_flush_queueable(q)) {
2707 fq->flush_queue_delayed = 1;
2708 return NULL;
2709 }
2710 if (unlikely(blk_queue_bypass(q)) ||
2711 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2712 return NULL;
2713 }
2714 }
2715
2716 /**
2717 * blk_peek_request - peek at the top of a request queue
2718 * @q: request queue to peek at
2719 *
2720 * Description:
2721 * Return the request at the top of @q. The returned request
2722 * should be started using blk_start_request() before LLD starts
2723 * processing it.
2724 *
2725 * Return:
2726 * Pointer to the request at the top of @q if available. Null
2727 * otherwise.
2728 */
2729 struct request *blk_peek_request(struct request_queue *q)
2730 {
2731 struct request *rq;
2732 int ret;
2733
2734 lockdep_assert_held(q->queue_lock);
2735 WARN_ON_ONCE(q->mq_ops);
2736
2737 while ((rq = elv_next_request(q)) != NULL) {
2738 if (!(rq->rq_flags & RQF_STARTED)) {
2739 /*
2740 * This is the first time the device driver
2741 * sees this request (possibly after
2742 * requeueing). Notify IO scheduler.
2743 */
2744 if (rq->rq_flags & RQF_SORTED)
2745 elv_activate_rq(q, rq);
2746
2747 /*
2748 * just mark as started even if we don't start
2749 * it, a request that has been delayed should
2750 * not be passed by new incoming requests
2751 */
2752 rq->rq_flags |= RQF_STARTED;
2753 trace_block_rq_issue(q, rq);
2754 }
2755
2756 if (!q->boundary_rq || q->boundary_rq == rq) {
2757 q->end_sector = rq_end_sector(rq);
2758 q->boundary_rq = NULL;
2759 }
2760
2761 if (rq->rq_flags & RQF_DONTPREP)
2762 break;
2763
2764 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2765 /*
2766 * make sure space for the drain appears we
2767 * know we can do this because max_hw_segments
2768 * has been adjusted to be one fewer than the
2769 * device can handle
2770 */
2771 rq->nr_phys_segments++;
2772 }
2773
2774 if (!q->prep_rq_fn)
2775 break;
2776
2777 ret = q->prep_rq_fn(q, rq);
2778 if (ret == BLKPREP_OK) {
2779 break;
2780 } else if (ret == BLKPREP_DEFER) {
2781 /*
2782 * the request may have been (partially) prepped.
2783 * we need to keep this request in the front to
2784 * avoid resource deadlock. RQF_STARTED will
2785 * prevent other fs requests from passing this one.
2786 */
2787 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2788 !(rq->rq_flags & RQF_DONTPREP)) {
2789 /*
2790 * remove the space for the drain we added
2791 * so that we don't add it again
2792 */
2793 --rq->nr_phys_segments;
2794 }
2795
2796 rq = NULL;
2797 break;
2798 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2799 rq->rq_flags |= RQF_QUIET;
2800 /*
2801 * Mark this request as started so we don't trigger
2802 * any debug logic in the end I/O path.
2803 */
2804 blk_start_request(rq);
2805 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2806 BLK_STS_TARGET : BLK_STS_IOERR);
2807 } else {
2808 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2809 break;
2810 }
2811 }
2812
2813 return rq;
2814 }
2815 EXPORT_SYMBOL(blk_peek_request);
2816
2817 static void blk_dequeue_request(struct request *rq)
2818 {
2819 struct request_queue *q = rq->q;
2820
2821 BUG_ON(list_empty(&rq->queuelist));
2822 BUG_ON(ELV_ON_HASH(rq));
2823
2824 list_del_init(&rq->queuelist);
2825
2826 /*
2827 * the time frame between a request being removed from the lists
2828 * and to it is freed is accounted as io that is in progress at
2829 * the driver side.
2830 */
2831 if (blk_account_rq(rq)) {
2832 q->in_flight[rq_is_sync(rq)]++;
2833 set_io_start_time_ns(rq);
2834 }
2835 }
2836
2837 /**
2838 * blk_start_request - start request processing on the driver
2839 * @req: request to dequeue
2840 *
2841 * Description:
2842 * Dequeue @req and start timeout timer on it. This hands off the
2843 * request to the driver.
2844 */
2845 void blk_start_request(struct request *req)
2846 {
2847 lockdep_assert_held(req->q->queue_lock);
2848 WARN_ON_ONCE(req->q->mq_ops);
2849
2850 blk_dequeue_request(req);
2851
2852 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2853 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2854 req->rq_flags |= RQF_STATS;
2855 wbt_issue(req->q->rq_wb, &req->issue_stat);
2856 }
2857
2858 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2859 blk_add_timer(req);
2860 }
2861 EXPORT_SYMBOL(blk_start_request);
2862
2863 /**
2864 * blk_fetch_request - fetch a request from a request queue
2865 * @q: request queue to fetch a request from
2866 *
2867 * Description:
2868 * Return the request at the top of @q. The request is started on
2869 * return and LLD can start processing it immediately.
2870 *
2871 * Return:
2872 * Pointer to the request at the top of @q if available. Null
2873 * otherwise.
2874 */
2875 struct request *blk_fetch_request(struct request_queue *q)
2876 {
2877 struct request *rq;
2878
2879 lockdep_assert_held(q->queue_lock);
2880 WARN_ON_ONCE(q->mq_ops);
2881
2882 rq = blk_peek_request(q);
2883 if (rq)
2884 blk_start_request(rq);
2885 return rq;
2886 }
2887 EXPORT_SYMBOL(blk_fetch_request);
2888
2889 /*
2890 * Steal bios from a request and add them to a bio list.
2891 * The request must not have been partially completed before.
2892 */
2893 void blk_steal_bios(struct bio_list *list, struct request *rq)
2894 {
2895 if (rq->bio) {
2896 if (list->tail)
2897 list->tail->bi_next = rq->bio;
2898 else
2899 list->head = rq->bio;
2900 list->tail = rq->biotail;
2901
2902 rq->bio = NULL;
2903 rq->biotail = NULL;
2904 }
2905
2906 rq->__data_len = 0;
2907 }
2908 EXPORT_SYMBOL_GPL(blk_steal_bios);
2909
2910 /**
2911 * blk_update_request - Special helper function for request stacking drivers
2912 * @req: the request being processed
2913 * @error: block status code
2914 * @nr_bytes: number of bytes to complete @req
2915 *
2916 * Description:
2917 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2918 * the request structure even if @req doesn't have leftover.
2919 * If @req has leftover, sets it up for the next range of segments.
2920 *
2921 * This special helper function is only for request stacking drivers
2922 * (e.g. request-based dm) so that they can handle partial completion.
2923 * Actual device drivers should use blk_end_request instead.
2924 *
2925 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2926 * %false return from this function.
2927 *
2928 * Return:
2929 * %false - this request doesn't have any more data
2930 * %true - this request has more data
2931 **/
2932 bool blk_update_request(struct request *req, blk_status_t error,
2933 unsigned int nr_bytes)
2934 {
2935 int total_bytes;
2936
2937 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2938
2939 if (!req->bio)
2940 return false;
2941
2942 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2943 !(req->rq_flags & RQF_QUIET)))
2944 print_req_error(req, error);
2945
2946 blk_account_io_completion(req, nr_bytes);
2947
2948 total_bytes = 0;
2949 while (req->bio) {
2950 struct bio *bio = req->bio;
2951 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2952
2953 if (bio_bytes == bio->bi_iter.bi_size)
2954 req->bio = bio->bi_next;
2955
2956 /* Completion has already been traced */
2957 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2958 req_bio_endio(req, bio, bio_bytes, error);
2959
2960 total_bytes += bio_bytes;
2961 nr_bytes -= bio_bytes;
2962
2963 if (!nr_bytes)
2964 break;
2965 }
2966
2967 /*
2968 * completely done
2969 */
2970 if (!req->bio) {
2971 /*
2972 * Reset counters so that the request stacking driver
2973 * can find how many bytes remain in the request
2974 * later.
2975 */
2976 req->__data_len = 0;
2977 return false;
2978 }
2979
2980 req->__data_len -= total_bytes;
2981
2982 /* update sector only for requests with clear definition of sector */
2983 if (!blk_rq_is_passthrough(req))
2984 req->__sector += total_bytes >> 9;
2985
2986 /* mixed attributes always follow the first bio */
2987 if (req->rq_flags & RQF_MIXED_MERGE) {
2988 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2989 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2990 }
2991
2992 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2993 /*
2994 * If total number of sectors is less than the first segment
2995 * size, something has gone terribly wrong.
2996 */
2997 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2998 blk_dump_rq_flags(req, "request botched");
2999 req->__data_len = blk_rq_cur_bytes(req);
3000 }
3001
3002 /* recalculate the number of segments */
3003 blk_recalc_rq_segments(req);
3004 }
3005
3006 return true;
3007 }
3008 EXPORT_SYMBOL_GPL(blk_update_request);
3009
3010 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3011 unsigned int nr_bytes,
3012 unsigned int bidi_bytes)
3013 {
3014 if (blk_update_request(rq, error, nr_bytes))
3015 return true;
3016
3017 /* Bidi request must be completed as a whole */
3018 if (unlikely(blk_bidi_rq(rq)) &&
3019 blk_update_request(rq->next_rq, error, bidi_bytes))
3020 return true;
3021
3022 if (blk_queue_add_random(rq->q))
3023 add_disk_randomness(rq->rq_disk);
3024
3025 return false;
3026 }
3027
3028 /**
3029 * blk_unprep_request - unprepare a request
3030 * @req: the request
3031 *
3032 * This function makes a request ready for complete resubmission (or
3033 * completion). It happens only after all error handling is complete,
3034 * so represents the appropriate moment to deallocate any resources
3035 * that were allocated to the request in the prep_rq_fn. The queue
3036 * lock is held when calling this.
3037 */
3038 void blk_unprep_request(struct request *req)
3039 {
3040 struct request_queue *q = req->q;
3041
3042 req->rq_flags &= ~RQF_DONTPREP;
3043 if (q->unprep_rq_fn)
3044 q->unprep_rq_fn(q, req);
3045 }
3046 EXPORT_SYMBOL_GPL(blk_unprep_request);
3047
3048 void blk_finish_request(struct request *req, blk_status_t error)
3049 {
3050 struct request_queue *q = req->q;
3051
3052 lockdep_assert_held(req->q->queue_lock);
3053 WARN_ON_ONCE(q->mq_ops);
3054
3055 if (req->rq_flags & RQF_STATS)
3056 blk_stat_add(req);
3057
3058 if (req->rq_flags & RQF_QUEUED)
3059 blk_queue_end_tag(q, req);
3060
3061 BUG_ON(blk_queued_rq(req));
3062
3063 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3064 laptop_io_completion(req->q->backing_dev_info);
3065
3066 blk_delete_timer(req);
3067
3068 if (req->rq_flags & RQF_DONTPREP)
3069 blk_unprep_request(req);
3070
3071 blk_account_io_done(req);
3072
3073 if (req->end_io) {
3074 wbt_done(req->q->rq_wb, &req->issue_stat);
3075 req->end_io(req, error);
3076 } else {
3077 if (blk_bidi_rq(req))
3078 __blk_put_request(req->next_rq->q, req->next_rq);
3079
3080 __blk_put_request(q, req);
3081 }
3082 }
3083 EXPORT_SYMBOL(blk_finish_request);
3084
3085 /**
3086 * blk_end_bidi_request - Complete a bidi request
3087 * @rq: the request to complete
3088 * @error: block status code
3089 * @nr_bytes: number of bytes to complete @rq
3090 * @bidi_bytes: number of bytes to complete @rq->next_rq
3091 *
3092 * Description:
3093 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3094 * Drivers that supports bidi can safely call this member for any
3095 * type of request, bidi or uni. In the later case @bidi_bytes is
3096 * just ignored.
3097 *
3098 * Return:
3099 * %false - we are done with this request
3100 * %true - still buffers pending for this request
3101 **/
3102 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3103 unsigned int nr_bytes, unsigned int bidi_bytes)
3104 {
3105 struct request_queue *q = rq->q;
3106 unsigned long flags;
3107
3108 WARN_ON_ONCE(q->mq_ops);
3109
3110 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3111 return true;
3112
3113 spin_lock_irqsave(q->queue_lock, flags);
3114 blk_finish_request(rq, error);
3115 spin_unlock_irqrestore(q->queue_lock, flags);
3116
3117 return false;
3118 }
3119
3120 /**
3121 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3122 * @rq: the request to complete
3123 * @error: block status code
3124 * @nr_bytes: number of bytes to complete @rq
3125 * @bidi_bytes: number of bytes to complete @rq->next_rq
3126 *
3127 * Description:
3128 * Identical to blk_end_bidi_request() except that queue lock is
3129 * assumed to be locked on entry and remains so on return.
3130 *
3131 * Return:
3132 * %false - we are done with this request
3133 * %true - still buffers pending for this request
3134 **/
3135 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3136 unsigned int nr_bytes, unsigned int bidi_bytes)
3137 {
3138 lockdep_assert_held(rq->q->queue_lock);
3139 WARN_ON_ONCE(rq->q->mq_ops);
3140
3141 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3142 return true;
3143
3144 blk_finish_request(rq, error);
3145
3146 return false;
3147 }
3148
3149 /**
3150 * blk_end_request - Helper function for drivers to complete the request.
3151 * @rq: the request being processed
3152 * @error: block status code
3153 * @nr_bytes: number of bytes to complete
3154 *
3155 * Description:
3156 * Ends I/O on a number of bytes attached to @rq.
3157 * If @rq has leftover, sets it up for the next range of segments.
3158 *
3159 * Return:
3160 * %false - we are done with this request
3161 * %true - still buffers pending for this request
3162 **/
3163 bool blk_end_request(struct request *rq, blk_status_t error,
3164 unsigned int nr_bytes)
3165 {
3166 WARN_ON_ONCE(rq->q->mq_ops);
3167 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3168 }
3169 EXPORT_SYMBOL(blk_end_request);
3170
3171 /**
3172 * blk_end_request_all - Helper function for drives to finish the request.
3173 * @rq: the request to finish
3174 * @error: block status code
3175 *
3176 * Description:
3177 * Completely finish @rq.
3178 */
3179 void blk_end_request_all(struct request *rq, blk_status_t error)
3180 {
3181 bool pending;
3182 unsigned int bidi_bytes = 0;
3183
3184 if (unlikely(blk_bidi_rq(rq)))
3185 bidi_bytes = blk_rq_bytes(rq->next_rq);
3186
3187 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3188 BUG_ON(pending);
3189 }
3190 EXPORT_SYMBOL(blk_end_request_all);
3191
3192 /**
3193 * __blk_end_request - Helper function for drivers to complete the request.
3194 * @rq: the request being processed
3195 * @error: block status code
3196 * @nr_bytes: number of bytes to complete
3197 *
3198 * Description:
3199 * Must be called with queue lock held unlike blk_end_request().
3200 *
3201 * Return:
3202 * %false - we are done with this request
3203 * %true - still buffers pending for this request
3204 **/
3205 bool __blk_end_request(struct request *rq, blk_status_t error,
3206 unsigned int nr_bytes)
3207 {
3208 lockdep_assert_held(rq->q->queue_lock);
3209 WARN_ON_ONCE(rq->q->mq_ops);
3210
3211 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3212 }
3213 EXPORT_SYMBOL(__blk_end_request);
3214
3215 /**
3216 * __blk_end_request_all - Helper function for drives to finish the request.
3217 * @rq: the request to finish
3218 * @error: block status code
3219 *
3220 * Description:
3221 * Completely finish @rq. Must be called with queue lock held.
3222 */
3223 void __blk_end_request_all(struct request *rq, blk_status_t error)
3224 {
3225 bool pending;
3226 unsigned int bidi_bytes = 0;
3227
3228 lockdep_assert_held(rq->q->queue_lock);
3229 WARN_ON_ONCE(rq->q->mq_ops);
3230
3231 if (unlikely(blk_bidi_rq(rq)))
3232 bidi_bytes = blk_rq_bytes(rq->next_rq);
3233
3234 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3235 BUG_ON(pending);
3236 }
3237 EXPORT_SYMBOL(__blk_end_request_all);
3238
3239 /**
3240 * __blk_end_request_cur - Helper function to finish the current request chunk.
3241 * @rq: the request to finish the current chunk for
3242 * @error: block status code
3243 *
3244 * Description:
3245 * Complete the current consecutively mapped chunk from @rq. Must
3246 * be called with queue lock held.
3247 *
3248 * Return:
3249 * %false - we are done with this request
3250 * %true - still buffers pending for this request
3251 */
3252 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3253 {
3254 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3255 }
3256 EXPORT_SYMBOL(__blk_end_request_cur);
3257
3258 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3259 struct bio *bio)
3260 {
3261 if (bio_has_data(bio))
3262 rq->nr_phys_segments = bio_phys_segments(q, bio);
3263
3264 rq->__data_len = bio->bi_iter.bi_size;
3265 rq->bio = rq->biotail = bio;
3266
3267 if (bio->bi_disk)
3268 rq->rq_disk = bio->bi_disk;
3269 }
3270
3271 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3272 /**
3273 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3274 * @rq: the request to be flushed
3275 *
3276 * Description:
3277 * Flush all pages in @rq.
3278 */
3279 void rq_flush_dcache_pages(struct request *rq)
3280 {
3281 struct req_iterator iter;
3282 struct bio_vec bvec;
3283
3284 rq_for_each_segment(bvec, rq, iter)
3285 flush_dcache_page(bvec.bv_page);
3286 }
3287 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3288 #endif
3289
3290 /**
3291 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3292 * @q : the queue of the device being checked
3293 *
3294 * Description:
3295 * Check if underlying low-level drivers of a device are busy.
3296 * If the drivers want to export their busy state, they must set own
3297 * exporting function using blk_queue_lld_busy() first.
3298 *
3299 * Basically, this function is used only by request stacking drivers
3300 * to stop dispatching requests to underlying devices when underlying
3301 * devices are busy. This behavior helps more I/O merging on the queue
3302 * of the request stacking driver and prevents I/O throughput regression
3303 * on burst I/O load.
3304 *
3305 * Return:
3306 * 0 - Not busy (The request stacking driver should dispatch request)
3307 * 1 - Busy (The request stacking driver should stop dispatching request)
3308 */
3309 int blk_lld_busy(struct request_queue *q)
3310 {
3311 if (q->lld_busy_fn)
3312 return q->lld_busy_fn(q);
3313
3314 return 0;
3315 }
3316 EXPORT_SYMBOL_GPL(blk_lld_busy);
3317
3318 /**
3319 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3320 * @rq: the clone request to be cleaned up
3321 *
3322 * Description:
3323 * Free all bios in @rq for a cloned request.
3324 */
3325 void blk_rq_unprep_clone(struct request *rq)
3326 {
3327 struct bio *bio;
3328
3329 while ((bio = rq->bio) != NULL) {
3330 rq->bio = bio->bi_next;
3331
3332 bio_put(bio);
3333 }
3334 }
3335 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3336
3337 /*
3338 * Copy attributes of the original request to the clone request.
3339 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3340 */
3341 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3342 {
3343 dst->cpu = src->cpu;
3344 dst->__sector = blk_rq_pos(src);
3345 dst->__data_len = blk_rq_bytes(src);
3346 dst->nr_phys_segments = src->nr_phys_segments;
3347 dst->ioprio = src->ioprio;
3348 dst->extra_len = src->extra_len;
3349 }
3350
3351 /**
3352 * blk_rq_prep_clone - Helper function to setup clone request
3353 * @rq: the request to be setup
3354 * @rq_src: original request to be cloned
3355 * @bs: bio_set that bios for clone are allocated from
3356 * @gfp_mask: memory allocation mask for bio
3357 * @bio_ctr: setup function to be called for each clone bio.
3358 * Returns %0 for success, non %0 for failure.
3359 * @data: private data to be passed to @bio_ctr
3360 *
3361 * Description:
3362 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3363 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3364 * are not copied, and copying such parts is the caller's responsibility.
3365 * Also, pages which the original bios are pointing to are not copied
3366 * and the cloned bios just point same pages.
3367 * So cloned bios must be completed before original bios, which means
3368 * the caller must complete @rq before @rq_src.
3369 */
3370 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3371 struct bio_set *bs, gfp_t gfp_mask,
3372 int (*bio_ctr)(struct bio *, struct bio *, void *),
3373 void *data)
3374 {
3375 struct bio *bio, *bio_src;
3376
3377 if (!bs)
3378 bs = fs_bio_set;
3379
3380 __rq_for_each_bio(bio_src, rq_src) {
3381 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3382 if (!bio)
3383 goto free_and_out;
3384
3385 if (bio_ctr && bio_ctr(bio, bio_src, data))
3386 goto free_and_out;
3387
3388 if (rq->bio) {
3389 rq->biotail->bi_next = bio;
3390 rq->biotail = bio;
3391 } else
3392 rq->bio = rq->biotail = bio;
3393 }
3394
3395 __blk_rq_prep_clone(rq, rq_src);
3396
3397 return 0;
3398
3399 free_and_out:
3400 if (bio)
3401 bio_put(bio);
3402 blk_rq_unprep_clone(rq);
3403
3404 return -ENOMEM;
3405 }
3406 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3407
3408 int kblockd_schedule_work(struct work_struct *work)
3409 {
3410 return queue_work(kblockd_workqueue, work);
3411 }
3412 EXPORT_SYMBOL(kblockd_schedule_work);
3413
3414 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3415 {
3416 return queue_work_on(cpu, kblockd_workqueue, work);
3417 }
3418 EXPORT_SYMBOL(kblockd_schedule_work_on);
3419
3420 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3421 unsigned long delay)
3422 {
3423 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3424 }
3425 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3426
3427 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3428 unsigned long delay)
3429 {
3430 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3431 }
3432 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3433
3434 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3435 unsigned long delay)
3436 {
3437 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3438 }
3439 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3440
3441 /**
3442 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3443 * @plug: The &struct blk_plug that needs to be initialized
3444 *
3445 * Description:
3446 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3447 * pending I/O should the task end up blocking between blk_start_plug() and
3448 * blk_finish_plug(). This is important from a performance perspective, but
3449 * also ensures that we don't deadlock. For instance, if the task is blocking
3450 * for a memory allocation, memory reclaim could end up wanting to free a
3451 * page belonging to that request that is currently residing in our private
3452 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3453 * this kind of deadlock.
3454 */
3455 void blk_start_plug(struct blk_plug *plug)
3456 {
3457 struct task_struct *tsk = current;
3458
3459 /*
3460 * If this is a nested plug, don't actually assign it.
3461 */
3462 if (tsk->plug)
3463 return;
3464
3465 INIT_LIST_HEAD(&plug->list);
3466 INIT_LIST_HEAD(&plug->mq_list);
3467 INIT_LIST_HEAD(&plug->cb_list);
3468 /*
3469 * Store ordering should not be needed here, since a potential
3470 * preempt will imply a full memory barrier
3471 */
3472 tsk->plug = plug;
3473 }
3474 EXPORT_SYMBOL(blk_start_plug);
3475
3476 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3477 {
3478 struct request *rqa = container_of(a, struct request, queuelist);
3479 struct request *rqb = container_of(b, struct request, queuelist);
3480
3481 return !(rqa->q < rqb->q ||
3482 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3483 }
3484
3485 /*
3486 * If 'from_schedule' is true, then postpone the dispatch of requests
3487 * until a safe kblockd context. We due this to avoid accidental big
3488 * additional stack usage in driver dispatch, in places where the originally
3489 * plugger did not intend it.
3490 */
3491 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3492 bool from_schedule)
3493 __releases(q->queue_lock)
3494 {
3495 lockdep_assert_held(q->queue_lock);
3496
3497 trace_block_unplug(q, depth, !from_schedule);
3498
3499 if (from_schedule)
3500 blk_run_queue_async(q);
3501 else
3502 __blk_run_queue(q);
3503 spin_unlock(q->queue_lock);
3504 }
3505
3506 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3507 {
3508 LIST_HEAD(callbacks);
3509
3510 while (!list_empty(&plug->cb_list)) {
3511 list_splice_init(&plug->cb_list, &callbacks);
3512
3513 while (!list_empty(&callbacks)) {
3514 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3515 struct blk_plug_cb,
3516 list);
3517 list_del(&cb->list);
3518 cb->callback(cb, from_schedule);
3519 }
3520 }
3521 }
3522
3523 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3524 int size)
3525 {
3526 struct blk_plug *plug = current->plug;
3527 struct blk_plug_cb *cb;
3528
3529 if (!plug)
3530 return NULL;
3531
3532 list_for_each_entry(cb, &plug->cb_list, list)
3533 if (cb->callback == unplug && cb->data == data)
3534 return cb;
3535
3536 /* Not currently on the callback list */
3537 BUG_ON(size < sizeof(*cb));
3538 cb = kzalloc(size, GFP_ATOMIC);
3539 if (cb) {
3540 cb->data = data;
3541 cb->callback = unplug;
3542 list_add(&cb->list, &plug->cb_list);
3543 }
3544 return cb;
3545 }
3546 EXPORT_SYMBOL(blk_check_plugged);
3547
3548 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3549 {
3550 struct request_queue *q;
3551 unsigned long flags;
3552 struct request *rq;
3553 LIST_HEAD(list);
3554 unsigned int depth;
3555
3556 flush_plug_callbacks(plug, from_schedule);
3557
3558 if (!list_empty(&plug->mq_list))
3559 blk_mq_flush_plug_list(plug, from_schedule);
3560
3561 if (list_empty(&plug->list))
3562 return;
3563
3564 list_splice_init(&plug->list, &list);
3565
3566 list_sort(NULL, &list, plug_rq_cmp);
3567
3568 q = NULL;
3569 depth = 0;
3570
3571 /*
3572 * Save and disable interrupts here, to avoid doing it for every
3573 * queue lock we have to take.
3574 */
3575 local_irq_save(flags);
3576 while (!list_empty(&list)) {
3577 rq = list_entry_rq(list.next);
3578 list_del_init(&rq->queuelist);
3579 BUG_ON(!rq->q);
3580 if (rq->q != q) {
3581 /*
3582 * This drops the queue lock
3583 */
3584 if (q)
3585 queue_unplugged(q, depth, from_schedule);
3586 q = rq->q;
3587 depth = 0;
3588 spin_lock(q->queue_lock);
3589 }
3590
3591 /*
3592 * Short-circuit if @q is dead
3593 */
3594 if (unlikely(blk_queue_dying(q))) {
3595 __blk_end_request_all(rq, BLK_STS_IOERR);
3596 continue;
3597 }
3598
3599 /*
3600 * rq is already accounted, so use raw insert
3601 */
3602 if (op_is_flush(rq->cmd_flags))
3603 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3604 else
3605 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3606
3607 depth++;
3608 }
3609
3610 /*
3611 * This drops the queue lock
3612 */
3613 if (q)
3614 queue_unplugged(q, depth, from_schedule);
3615
3616 local_irq_restore(flags);
3617 }
3618
3619 void blk_finish_plug(struct blk_plug *plug)
3620 {
3621 if (plug != current->plug)
3622 return;
3623 blk_flush_plug_list(plug, false);
3624
3625 current->plug = NULL;
3626 }
3627 EXPORT_SYMBOL(blk_finish_plug);
3628
3629 #ifdef CONFIG_PM
3630 /**
3631 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3632 * @q: the queue of the device
3633 * @dev: the device the queue belongs to
3634 *
3635 * Description:
3636 * Initialize runtime-PM-related fields for @q and start auto suspend for
3637 * @dev. Drivers that want to take advantage of request-based runtime PM
3638 * should call this function after @dev has been initialized, and its
3639 * request queue @q has been allocated, and runtime PM for it can not happen
3640 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3641 * cases, driver should call this function before any I/O has taken place.
3642 *
3643 * This function takes care of setting up using auto suspend for the device,
3644 * the autosuspend delay is set to -1 to make runtime suspend impossible
3645 * until an updated value is either set by user or by driver. Drivers do
3646 * not need to touch other autosuspend settings.
3647 *
3648 * The block layer runtime PM is request based, so only works for drivers
3649 * that use request as their IO unit instead of those directly use bio's.
3650 */
3651 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3652 {
3653 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3654 if (q->mq_ops)
3655 return;
3656
3657 q->dev = dev;
3658 q->rpm_status = RPM_ACTIVE;
3659 pm_runtime_set_autosuspend_delay(q->dev, -1);
3660 pm_runtime_use_autosuspend(q->dev);
3661 }
3662 EXPORT_SYMBOL(blk_pm_runtime_init);
3663
3664 /**
3665 * blk_pre_runtime_suspend - Pre runtime suspend check
3666 * @q: the queue of the device
3667 *
3668 * Description:
3669 * This function will check if runtime suspend is allowed for the device
3670 * by examining if there are any requests pending in the queue. If there
3671 * are requests pending, the device can not be runtime suspended; otherwise,
3672 * the queue's status will be updated to SUSPENDING and the driver can
3673 * proceed to suspend the device.
3674 *
3675 * For the not allowed case, we mark last busy for the device so that
3676 * runtime PM core will try to autosuspend it some time later.
3677 *
3678 * This function should be called near the start of the device's
3679 * runtime_suspend callback.
3680 *
3681 * Return:
3682 * 0 - OK to runtime suspend the device
3683 * -EBUSY - Device should not be runtime suspended
3684 */
3685 int blk_pre_runtime_suspend(struct request_queue *q)
3686 {
3687 int ret = 0;
3688
3689 if (!q->dev)
3690 return ret;
3691
3692 spin_lock_irq(q->queue_lock);
3693 if (q->nr_pending) {
3694 ret = -EBUSY;
3695 pm_runtime_mark_last_busy(q->dev);
3696 } else {
3697 q->rpm_status = RPM_SUSPENDING;
3698 }
3699 spin_unlock_irq(q->queue_lock);
3700 return ret;
3701 }
3702 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3703
3704 /**
3705 * blk_post_runtime_suspend - Post runtime suspend processing
3706 * @q: the queue of the device
3707 * @err: return value of the device's runtime_suspend function
3708 *
3709 * Description:
3710 * Update the queue's runtime status according to the return value of the
3711 * device's runtime suspend function and mark last busy for the device so
3712 * that PM core will try to auto suspend the device at a later time.
3713 *
3714 * This function should be called near the end of the device's
3715 * runtime_suspend callback.
3716 */
3717 void blk_post_runtime_suspend(struct request_queue *q, int err)
3718 {
3719 if (!q->dev)
3720 return;
3721
3722 spin_lock_irq(q->queue_lock);
3723 if (!err) {
3724 q->rpm_status = RPM_SUSPENDED;
3725 } else {
3726 q->rpm_status = RPM_ACTIVE;
3727 pm_runtime_mark_last_busy(q->dev);
3728 }
3729 spin_unlock_irq(q->queue_lock);
3730 }
3731 EXPORT_SYMBOL(blk_post_runtime_suspend);
3732
3733 /**
3734 * blk_pre_runtime_resume - Pre runtime resume processing
3735 * @q: the queue of the device
3736 *
3737 * Description:
3738 * Update the queue's runtime status to RESUMING in preparation for the
3739 * runtime resume of the device.
3740 *
3741 * This function should be called near the start of the device's
3742 * runtime_resume callback.
3743 */
3744 void blk_pre_runtime_resume(struct request_queue *q)
3745 {
3746 if (!q->dev)
3747 return;
3748
3749 spin_lock_irq(q->queue_lock);
3750 q->rpm_status = RPM_RESUMING;
3751 spin_unlock_irq(q->queue_lock);
3752 }
3753 EXPORT_SYMBOL(blk_pre_runtime_resume);
3754
3755 /**
3756 * blk_post_runtime_resume - Post runtime resume processing
3757 * @q: the queue of the device
3758 * @err: return value of the device's runtime_resume function
3759 *
3760 * Description:
3761 * Update the queue's runtime status according to the return value of the
3762 * device's runtime_resume function. If it is successfully resumed, process
3763 * the requests that are queued into the device's queue when it is resuming
3764 * and then mark last busy and initiate autosuspend for it.
3765 *
3766 * This function should be called near the end of the device's
3767 * runtime_resume callback.
3768 */
3769 void blk_post_runtime_resume(struct request_queue *q, int err)
3770 {
3771 if (!q->dev)
3772 return;
3773
3774 spin_lock_irq(q->queue_lock);
3775 if (!err) {
3776 q->rpm_status = RPM_ACTIVE;
3777 __blk_run_queue(q);
3778 pm_runtime_mark_last_busy(q->dev);
3779 pm_request_autosuspend(q->dev);
3780 } else {
3781 q->rpm_status = RPM_SUSPENDED;
3782 }
3783 spin_unlock_irq(q->queue_lock);
3784 }
3785 EXPORT_SYMBOL(blk_post_runtime_resume);
3786
3787 /**
3788 * blk_set_runtime_active - Force runtime status of the queue to be active
3789 * @q: the queue of the device
3790 *
3791 * If the device is left runtime suspended during system suspend the resume
3792 * hook typically resumes the device and corrects runtime status
3793 * accordingly. However, that does not affect the queue runtime PM status
3794 * which is still "suspended". This prevents processing requests from the
3795 * queue.
3796 *
3797 * This function can be used in driver's resume hook to correct queue
3798 * runtime PM status and re-enable peeking requests from the queue. It
3799 * should be called before first request is added to the queue.
3800 */
3801 void blk_set_runtime_active(struct request_queue *q)
3802 {
3803 spin_lock_irq(q->queue_lock);
3804 q->rpm_status = RPM_ACTIVE;
3805 pm_runtime_mark_last_busy(q->dev);
3806 pm_request_autosuspend(q->dev);
3807 spin_unlock_irq(q->queue_lock);
3808 }
3809 EXPORT_SYMBOL(blk_set_runtime_active);
3810 #endif
3811
3812 int __init blk_dev_init(void)
3813 {
3814 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3815 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3816 FIELD_SIZEOF(struct request, cmd_flags));
3817 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3818 FIELD_SIZEOF(struct bio, bi_opf));
3819
3820 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3821 kblockd_workqueue = alloc_workqueue("kblockd",
3822 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3823 if (!kblockd_workqueue)
3824 panic("Failed to create kblockd\n");
3825
3826 request_cachep = kmem_cache_create("blkdev_requests",
3827 sizeof(struct request), 0, SLAB_PANIC, NULL);
3828
3829 blk_requestq_cachep = kmem_cache_create("request_queue",
3830 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3831
3832 #ifdef CONFIG_DEBUG_FS
3833 blk_debugfs_root = debugfs_create_dir("block", NULL);
3834 #endif
3835
3836 return 0;
3837 }