]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-core.c
Merge tag 'vfio-v5.0-rc4' of git://github.com/awilliam/linux-vfio
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-pm.h"
46 #include "blk-rq-qos.h"
47
48 #ifdef CONFIG_DEBUG_FS
49 struct dentry *blk_debugfs_root;
50 #endif
51
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57
58 DEFINE_IDA(blk_queue_ida);
59
60 /*
61 * For queue allocation
62 */
63 struct kmem_cache *blk_requestq_cachep;
64
65 /*
66 * Controlling structure to kblockd
67 */
68 static struct workqueue_struct *kblockd_workqueue;
69
70 /**
71 * blk_queue_flag_set - atomically set a queue flag
72 * @flag: flag to be set
73 * @q: request queue
74 */
75 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
76 {
77 set_bit(flag, &q->queue_flags);
78 }
79 EXPORT_SYMBOL(blk_queue_flag_set);
80
81 /**
82 * blk_queue_flag_clear - atomically clear a queue flag
83 * @flag: flag to be cleared
84 * @q: request queue
85 */
86 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
87 {
88 clear_bit(flag, &q->queue_flags);
89 }
90 EXPORT_SYMBOL(blk_queue_flag_clear);
91
92 /**
93 * blk_queue_flag_test_and_set - atomically test and set a queue flag
94 * @flag: flag to be set
95 * @q: request queue
96 *
97 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
98 * the flag was already set.
99 */
100 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
101 {
102 return test_and_set_bit(flag, &q->queue_flags);
103 }
104 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
105
106 void blk_rq_init(struct request_queue *q, struct request *rq)
107 {
108 memset(rq, 0, sizeof(*rq));
109
110 INIT_LIST_HEAD(&rq->queuelist);
111 rq->q = q;
112 rq->__sector = (sector_t) -1;
113 INIT_HLIST_NODE(&rq->hash);
114 RB_CLEAR_NODE(&rq->rb_node);
115 rq->tag = -1;
116 rq->internal_tag = -1;
117 rq->start_time_ns = ktime_get_ns();
118 rq->part = NULL;
119 }
120 EXPORT_SYMBOL(blk_rq_init);
121
122 static const struct {
123 int errno;
124 const char *name;
125 } blk_errors[] = {
126 [BLK_STS_OK] = { 0, "" },
127 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
128 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
129 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
130 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
131 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
132 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
133 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
134 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
135 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
136 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
137 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
138
139 /* device mapper special case, should not leak out: */
140 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
141
142 /* everything else not covered above: */
143 [BLK_STS_IOERR] = { -EIO, "I/O" },
144 };
145
146 blk_status_t errno_to_blk_status(int errno)
147 {
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
151 if (blk_errors[i].errno == errno)
152 return (__force blk_status_t)i;
153 }
154
155 return BLK_STS_IOERR;
156 }
157 EXPORT_SYMBOL_GPL(errno_to_blk_status);
158
159 int blk_status_to_errno(blk_status_t status)
160 {
161 int idx = (__force int)status;
162
163 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
164 return -EIO;
165 return blk_errors[idx].errno;
166 }
167 EXPORT_SYMBOL_GPL(blk_status_to_errno);
168
169 static void print_req_error(struct request *req, blk_status_t status)
170 {
171 int idx = (__force int)status;
172
173 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
174 return;
175
176 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
177 __func__, blk_errors[idx].name,
178 req->rq_disk ? req->rq_disk->disk_name : "?",
179 (unsigned long long)blk_rq_pos(req),
180 req->cmd_flags);
181 }
182
183 static void req_bio_endio(struct request *rq, struct bio *bio,
184 unsigned int nbytes, blk_status_t error)
185 {
186 if (error)
187 bio->bi_status = error;
188
189 if (unlikely(rq->rq_flags & RQF_QUIET))
190 bio_set_flag(bio, BIO_QUIET);
191
192 bio_advance(bio, nbytes);
193
194 /* don't actually finish bio if it's part of flush sequence */
195 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
196 bio_endio(bio);
197 }
198
199 void blk_dump_rq_flags(struct request *rq, char *msg)
200 {
201 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
202 rq->rq_disk ? rq->rq_disk->disk_name : "?",
203 (unsigned long long) rq->cmd_flags);
204
205 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
206 (unsigned long long)blk_rq_pos(rq),
207 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
208 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
209 rq->bio, rq->biotail, blk_rq_bytes(rq));
210 }
211 EXPORT_SYMBOL(blk_dump_rq_flags);
212
213 /**
214 * blk_sync_queue - cancel any pending callbacks on a queue
215 * @q: the queue
216 *
217 * Description:
218 * The block layer may perform asynchronous callback activity
219 * on a queue, such as calling the unplug function after a timeout.
220 * A block device may call blk_sync_queue to ensure that any
221 * such activity is cancelled, thus allowing it to release resources
222 * that the callbacks might use. The caller must already have made sure
223 * that its ->make_request_fn will not re-add plugging prior to calling
224 * this function.
225 *
226 * This function does not cancel any asynchronous activity arising
227 * out of elevator or throttling code. That would require elevator_exit()
228 * and blkcg_exit_queue() to be called with queue lock initialized.
229 *
230 */
231 void blk_sync_queue(struct request_queue *q)
232 {
233 del_timer_sync(&q->timeout);
234 cancel_work_sync(&q->timeout_work);
235
236 if (queue_is_mq(q)) {
237 struct blk_mq_hw_ctx *hctx;
238 int i;
239
240 cancel_delayed_work_sync(&q->requeue_work);
241 queue_for_each_hw_ctx(q, hctx, i)
242 cancel_delayed_work_sync(&hctx->run_work);
243 }
244 }
245 EXPORT_SYMBOL(blk_sync_queue);
246
247 /**
248 * blk_set_pm_only - increment pm_only counter
249 * @q: request queue pointer
250 */
251 void blk_set_pm_only(struct request_queue *q)
252 {
253 atomic_inc(&q->pm_only);
254 }
255 EXPORT_SYMBOL_GPL(blk_set_pm_only);
256
257 void blk_clear_pm_only(struct request_queue *q)
258 {
259 int pm_only;
260
261 pm_only = atomic_dec_return(&q->pm_only);
262 WARN_ON_ONCE(pm_only < 0);
263 if (pm_only == 0)
264 wake_up_all(&q->mq_freeze_wq);
265 }
266 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
267
268 void blk_put_queue(struct request_queue *q)
269 {
270 kobject_put(&q->kobj);
271 }
272 EXPORT_SYMBOL(blk_put_queue);
273
274 void blk_set_queue_dying(struct request_queue *q)
275 {
276 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
277
278 /*
279 * When queue DYING flag is set, we need to block new req
280 * entering queue, so we call blk_freeze_queue_start() to
281 * prevent I/O from crossing blk_queue_enter().
282 */
283 blk_freeze_queue_start(q);
284
285 if (queue_is_mq(q))
286 blk_mq_wake_waiters(q);
287
288 /* Make blk_queue_enter() reexamine the DYING flag. */
289 wake_up_all(&q->mq_freeze_wq);
290 }
291 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
292
293 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
294 void blk_exit_queue(struct request_queue *q)
295 {
296 /*
297 * Since the I/O scheduler exit code may access cgroup information,
298 * perform I/O scheduler exit before disassociating from the block
299 * cgroup controller.
300 */
301 if (q->elevator) {
302 ioc_clear_queue(q);
303 elevator_exit(q, q->elevator);
304 q->elevator = NULL;
305 }
306
307 /*
308 * Remove all references to @q from the block cgroup controller before
309 * restoring @q->queue_lock to avoid that restoring this pointer causes
310 * e.g. blkcg_print_blkgs() to crash.
311 */
312 blkcg_exit_queue(q);
313
314 /*
315 * Since the cgroup code may dereference the @q->backing_dev_info
316 * pointer, only decrease its reference count after having removed the
317 * association with the block cgroup controller.
318 */
319 bdi_put(q->backing_dev_info);
320 }
321
322 /**
323 * blk_cleanup_queue - shutdown a request queue
324 * @q: request queue to shutdown
325 *
326 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
327 * put it. All future requests will be failed immediately with -ENODEV.
328 */
329 void blk_cleanup_queue(struct request_queue *q)
330 {
331 /* mark @q DYING, no new request or merges will be allowed afterwards */
332 mutex_lock(&q->sysfs_lock);
333 blk_set_queue_dying(q);
334
335 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
336 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
337 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
338 mutex_unlock(&q->sysfs_lock);
339
340 /*
341 * Drain all requests queued before DYING marking. Set DEAD flag to
342 * prevent that q->request_fn() gets invoked after draining finished.
343 */
344 blk_freeze_queue(q);
345
346 rq_qos_exit(q);
347
348 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
349
350 /*
351 * make sure all in-progress dispatch are completed because
352 * blk_freeze_queue() can only complete all requests, and
353 * dispatch may still be in-progress since we dispatch requests
354 * from more than one contexts.
355 *
356 * We rely on driver to deal with the race in case that queue
357 * initialization isn't done.
358 */
359 if (queue_is_mq(q) && blk_queue_init_done(q))
360 blk_mq_quiesce_queue(q);
361
362 /* for synchronous bio-based driver finish in-flight integrity i/o */
363 blk_flush_integrity();
364
365 /* @q won't process any more request, flush async actions */
366 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
367 blk_sync_queue(q);
368
369 /*
370 * I/O scheduler exit is only safe after the sysfs scheduler attribute
371 * has been removed.
372 */
373 WARN_ON_ONCE(q->kobj.state_in_sysfs);
374
375 blk_exit_queue(q);
376
377 if (queue_is_mq(q))
378 blk_mq_free_queue(q);
379
380 percpu_ref_exit(&q->q_usage_counter);
381
382 /* @q is and will stay empty, shutdown and put */
383 blk_put_queue(q);
384 }
385 EXPORT_SYMBOL(blk_cleanup_queue);
386
387 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
388 {
389 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
390 }
391 EXPORT_SYMBOL(blk_alloc_queue);
392
393 /**
394 * blk_queue_enter() - try to increase q->q_usage_counter
395 * @q: request queue pointer
396 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
397 */
398 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
399 {
400 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
401
402 while (true) {
403 bool success = false;
404
405 rcu_read_lock();
406 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
407 /*
408 * The code that increments the pm_only counter is
409 * responsible for ensuring that that counter is
410 * globally visible before the queue is unfrozen.
411 */
412 if (pm || !blk_queue_pm_only(q)) {
413 success = true;
414 } else {
415 percpu_ref_put(&q->q_usage_counter);
416 }
417 }
418 rcu_read_unlock();
419
420 if (success)
421 return 0;
422
423 if (flags & BLK_MQ_REQ_NOWAIT)
424 return -EBUSY;
425
426 /*
427 * read pair of barrier in blk_freeze_queue_start(),
428 * we need to order reading __PERCPU_REF_DEAD flag of
429 * .q_usage_counter and reading .mq_freeze_depth or
430 * queue dying flag, otherwise the following wait may
431 * never return if the two reads are reordered.
432 */
433 smp_rmb();
434
435 wait_event(q->mq_freeze_wq,
436 (atomic_read(&q->mq_freeze_depth) == 0 &&
437 (pm || (blk_pm_request_resume(q),
438 !blk_queue_pm_only(q)))) ||
439 blk_queue_dying(q));
440 if (blk_queue_dying(q))
441 return -ENODEV;
442 }
443 }
444
445 void blk_queue_exit(struct request_queue *q)
446 {
447 percpu_ref_put(&q->q_usage_counter);
448 }
449
450 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
451 {
452 struct request_queue *q =
453 container_of(ref, struct request_queue, q_usage_counter);
454
455 wake_up_all(&q->mq_freeze_wq);
456 }
457
458 static void blk_rq_timed_out_timer(struct timer_list *t)
459 {
460 struct request_queue *q = from_timer(q, t, timeout);
461
462 kblockd_schedule_work(&q->timeout_work);
463 }
464
465 /**
466 * blk_alloc_queue_node - allocate a request queue
467 * @gfp_mask: memory allocation flags
468 * @node_id: NUMA node to allocate memory from
469 */
470 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
471 {
472 struct request_queue *q;
473 int ret;
474
475 q = kmem_cache_alloc_node(blk_requestq_cachep,
476 gfp_mask | __GFP_ZERO, node_id);
477 if (!q)
478 return NULL;
479
480 INIT_LIST_HEAD(&q->queue_head);
481 q->last_merge = NULL;
482
483 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
484 if (q->id < 0)
485 goto fail_q;
486
487 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
488 if (ret)
489 goto fail_id;
490
491 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
492 if (!q->backing_dev_info)
493 goto fail_split;
494
495 q->stats = blk_alloc_queue_stats();
496 if (!q->stats)
497 goto fail_stats;
498
499 q->backing_dev_info->ra_pages =
500 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
501 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
502 q->backing_dev_info->name = "block";
503 q->node = node_id;
504
505 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
506 laptop_mode_timer_fn, 0);
507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
508 INIT_WORK(&q->timeout_work, NULL);
509 INIT_LIST_HEAD(&q->icq_list);
510 #ifdef CONFIG_BLK_CGROUP
511 INIT_LIST_HEAD(&q->blkg_list);
512 #endif
513
514 kobject_init(&q->kobj, &blk_queue_ktype);
515
516 #ifdef CONFIG_BLK_DEV_IO_TRACE
517 mutex_init(&q->blk_trace_mutex);
518 #endif
519 mutex_init(&q->sysfs_lock);
520 spin_lock_init(&q->queue_lock);
521
522 init_waitqueue_head(&q->mq_freeze_wq);
523
524 /*
525 * Init percpu_ref in atomic mode so that it's faster to shutdown.
526 * See blk_register_queue() for details.
527 */
528 if (percpu_ref_init(&q->q_usage_counter,
529 blk_queue_usage_counter_release,
530 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
531 goto fail_bdi;
532
533 if (blkcg_init_queue(q))
534 goto fail_ref;
535
536 return q;
537
538 fail_ref:
539 percpu_ref_exit(&q->q_usage_counter);
540 fail_bdi:
541 blk_free_queue_stats(q->stats);
542 fail_stats:
543 bdi_put(q->backing_dev_info);
544 fail_split:
545 bioset_exit(&q->bio_split);
546 fail_id:
547 ida_simple_remove(&blk_queue_ida, q->id);
548 fail_q:
549 kmem_cache_free(blk_requestq_cachep, q);
550 return NULL;
551 }
552 EXPORT_SYMBOL(blk_alloc_queue_node);
553
554 bool blk_get_queue(struct request_queue *q)
555 {
556 if (likely(!blk_queue_dying(q))) {
557 __blk_get_queue(q);
558 return true;
559 }
560
561 return false;
562 }
563 EXPORT_SYMBOL(blk_get_queue);
564
565 /**
566 * blk_get_request - allocate a request
567 * @q: request queue to allocate a request for
568 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
569 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
570 */
571 struct request *blk_get_request(struct request_queue *q, unsigned int op,
572 blk_mq_req_flags_t flags)
573 {
574 struct request *req;
575
576 WARN_ON_ONCE(op & REQ_NOWAIT);
577 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
578
579 req = blk_mq_alloc_request(q, op, flags);
580 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
581 q->mq_ops->initialize_rq_fn(req);
582
583 return req;
584 }
585 EXPORT_SYMBOL(blk_get_request);
586
587 void blk_put_request(struct request *req)
588 {
589 blk_mq_free_request(req);
590 }
591 EXPORT_SYMBOL(blk_put_request);
592
593 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
594 struct bio *bio)
595 {
596 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
597
598 if (!ll_back_merge_fn(q, req, bio))
599 return false;
600
601 trace_block_bio_backmerge(q, req, bio);
602
603 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
604 blk_rq_set_mixed_merge(req);
605
606 req->biotail->bi_next = bio;
607 req->biotail = bio;
608 req->__data_len += bio->bi_iter.bi_size;
609
610 blk_account_io_start(req, false);
611 return true;
612 }
613
614 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
615 struct bio *bio)
616 {
617 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
618
619 if (!ll_front_merge_fn(q, req, bio))
620 return false;
621
622 trace_block_bio_frontmerge(q, req, bio);
623
624 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
625 blk_rq_set_mixed_merge(req);
626
627 bio->bi_next = req->bio;
628 req->bio = bio;
629
630 req->__sector = bio->bi_iter.bi_sector;
631 req->__data_len += bio->bi_iter.bi_size;
632
633 blk_account_io_start(req, false);
634 return true;
635 }
636
637 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
638 struct bio *bio)
639 {
640 unsigned short segments = blk_rq_nr_discard_segments(req);
641
642 if (segments >= queue_max_discard_segments(q))
643 goto no_merge;
644 if (blk_rq_sectors(req) + bio_sectors(bio) >
645 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
646 goto no_merge;
647
648 req->biotail->bi_next = bio;
649 req->biotail = bio;
650 req->__data_len += bio->bi_iter.bi_size;
651 req->nr_phys_segments = segments + 1;
652
653 blk_account_io_start(req, false);
654 return true;
655 no_merge:
656 req_set_nomerge(q, req);
657 return false;
658 }
659
660 /**
661 * blk_attempt_plug_merge - try to merge with %current's plugged list
662 * @q: request_queue new bio is being queued at
663 * @bio: new bio being queued
664 * @same_queue_rq: pointer to &struct request that gets filled in when
665 * another request associated with @q is found on the plug list
666 * (optional, may be %NULL)
667 *
668 * Determine whether @bio being queued on @q can be merged with a request
669 * on %current's plugged list. Returns %true if merge was successful,
670 * otherwise %false.
671 *
672 * Plugging coalesces IOs from the same issuer for the same purpose without
673 * going through @q->queue_lock. As such it's more of an issuing mechanism
674 * than scheduling, and the request, while may have elvpriv data, is not
675 * added on the elevator at this point. In addition, we don't have
676 * reliable access to the elevator outside queue lock. Only check basic
677 * merging parameters without querying the elevator.
678 *
679 * Caller must ensure !blk_queue_nomerges(q) beforehand.
680 */
681 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
682 struct request **same_queue_rq)
683 {
684 struct blk_plug *plug;
685 struct request *rq;
686 struct list_head *plug_list;
687
688 plug = current->plug;
689 if (!plug)
690 return false;
691
692 plug_list = &plug->mq_list;
693
694 list_for_each_entry_reverse(rq, plug_list, queuelist) {
695 bool merged = false;
696
697 if (rq->q == q && same_queue_rq) {
698 /*
699 * Only blk-mq multiple hardware queues case checks the
700 * rq in the same queue, there should be only one such
701 * rq in a queue
702 **/
703 *same_queue_rq = rq;
704 }
705
706 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
707 continue;
708
709 switch (blk_try_merge(rq, bio)) {
710 case ELEVATOR_BACK_MERGE:
711 merged = bio_attempt_back_merge(q, rq, bio);
712 break;
713 case ELEVATOR_FRONT_MERGE:
714 merged = bio_attempt_front_merge(q, rq, bio);
715 break;
716 case ELEVATOR_DISCARD_MERGE:
717 merged = bio_attempt_discard_merge(q, rq, bio);
718 break;
719 default:
720 break;
721 }
722
723 if (merged)
724 return true;
725 }
726
727 return false;
728 }
729
730 void blk_init_request_from_bio(struct request *req, struct bio *bio)
731 {
732 if (bio->bi_opf & REQ_RAHEAD)
733 req->cmd_flags |= REQ_FAILFAST_MASK;
734
735 req->__sector = bio->bi_iter.bi_sector;
736 req->ioprio = bio_prio(bio);
737 req->write_hint = bio->bi_write_hint;
738 blk_rq_bio_prep(req->q, req, bio);
739 }
740 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
741
742 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
743 {
744 char b[BDEVNAME_SIZE];
745
746 printk(KERN_INFO "attempt to access beyond end of device\n");
747 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
748 bio_devname(bio, b), bio->bi_opf,
749 (unsigned long long)bio_end_sector(bio),
750 (long long)maxsector);
751 }
752
753 #ifdef CONFIG_FAIL_MAKE_REQUEST
754
755 static DECLARE_FAULT_ATTR(fail_make_request);
756
757 static int __init setup_fail_make_request(char *str)
758 {
759 return setup_fault_attr(&fail_make_request, str);
760 }
761 __setup("fail_make_request=", setup_fail_make_request);
762
763 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
764 {
765 return part->make_it_fail && should_fail(&fail_make_request, bytes);
766 }
767
768 static int __init fail_make_request_debugfs(void)
769 {
770 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
771 NULL, &fail_make_request);
772
773 return PTR_ERR_OR_ZERO(dir);
774 }
775
776 late_initcall(fail_make_request_debugfs);
777
778 #else /* CONFIG_FAIL_MAKE_REQUEST */
779
780 static inline bool should_fail_request(struct hd_struct *part,
781 unsigned int bytes)
782 {
783 return false;
784 }
785
786 #endif /* CONFIG_FAIL_MAKE_REQUEST */
787
788 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
789 {
790 const int op = bio_op(bio);
791
792 if (part->policy && op_is_write(op)) {
793 char b[BDEVNAME_SIZE];
794
795 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
796 return false;
797
798 WARN_ONCE(1,
799 "generic_make_request: Trying to write "
800 "to read-only block-device %s (partno %d)\n",
801 bio_devname(bio, b), part->partno);
802 /* Older lvm-tools actually trigger this */
803 return false;
804 }
805
806 return false;
807 }
808
809 static noinline int should_fail_bio(struct bio *bio)
810 {
811 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
812 return -EIO;
813 return 0;
814 }
815 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
816
817 /*
818 * Check whether this bio extends beyond the end of the device or partition.
819 * This may well happen - the kernel calls bread() without checking the size of
820 * the device, e.g., when mounting a file system.
821 */
822 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
823 {
824 unsigned int nr_sectors = bio_sectors(bio);
825
826 if (nr_sectors && maxsector &&
827 (nr_sectors > maxsector ||
828 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
829 handle_bad_sector(bio, maxsector);
830 return -EIO;
831 }
832 return 0;
833 }
834
835 /*
836 * Remap block n of partition p to block n+start(p) of the disk.
837 */
838 static inline int blk_partition_remap(struct bio *bio)
839 {
840 struct hd_struct *p;
841 int ret = -EIO;
842
843 rcu_read_lock();
844 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
845 if (unlikely(!p))
846 goto out;
847 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
848 goto out;
849 if (unlikely(bio_check_ro(bio, p)))
850 goto out;
851
852 /*
853 * Zone reset does not include bi_size so bio_sectors() is always 0.
854 * Include a test for the reset op code and perform the remap if needed.
855 */
856 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
857 if (bio_check_eod(bio, part_nr_sects_read(p)))
858 goto out;
859 bio->bi_iter.bi_sector += p->start_sect;
860 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
861 bio->bi_iter.bi_sector - p->start_sect);
862 }
863 bio->bi_partno = 0;
864 ret = 0;
865 out:
866 rcu_read_unlock();
867 return ret;
868 }
869
870 static noinline_for_stack bool
871 generic_make_request_checks(struct bio *bio)
872 {
873 struct request_queue *q;
874 int nr_sectors = bio_sectors(bio);
875 blk_status_t status = BLK_STS_IOERR;
876 char b[BDEVNAME_SIZE];
877
878 might_sleep();
879
880 q = bio->bi_disk->queue;
881 if (unlikely(!q)) {
882 printk(KERN_ERR
883 "generic_make_request: Trying to access "
884 "nonexistent block-device %s (%Lu)\n",
885 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
886 goto end_io;
887 }
888
889 /*
890 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
891 * if queue is not a request based queue.
892 */
893 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
894 goto not_supported;
895
896 if (should_fail_bio(bio))
897 goto end_io;
898
899 if (bio->bi_partno) {
900 if (unlikely(blk_partition_remap(bio)))
901 goto end_io;
902 } else {
903 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
904 goto end_io;
905 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
906 goto end_io;
907 }
908
909 /*
910 * Filter flush bio's early so that make_request based
911 * drivers without flush support don't have to worry
912 * about them.
913 */
914 if (op_is_flush(bio->bi_opf) &&
915 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
916 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
917 if (!nr_sectors) {
918 status = BLK_STS_OK;
919 goto end_io;
920 }
921 }
922
923 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
924 bio->bi_opf &= ~REQ_HIPRI;
925
926 switch (bio_op(bio)) {
927 case REQ_OP_DISCARD:
928 if (!blk_queue_discard(q))
929 goto not_supported;
930 break;
931 case REQ_OP_SECURE_ERASE:
932 if (!blk_queue_secure_erase(q))
933 goto not_supported;
934 break;
935 case REQ_OP_WRITE_SAME:
936 if (!q->limits.max_write_same_sectors)
937 goto not_supported;
938 break;
939 case REQ_OP_ZONE_RESET:
940 if (!blk_queue_is_zoned(q))
941 goto not_supported;
942 break;
943 case REQ_OP_WRITE_ZEROES:
944 if (!q->limits.max_write_zeroes_sectors)
945 goto not_supported;
946 break;
947 default:
948 break;
949 }
950
951 /*
952 * Various block parts want %current->io_context and lazy ioc
953 * allocation ends up trading a lot of pain for a small amount of
954 * memory. Just allocate it upfront. This may fail and block
955 * layer knows how to live with it.
956 */
957 create_io_context(GFP_ATOMIC, q->node);
958
959 if (!blkcg_bio_issue_check(q, bio))
960 return false;
961
962 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
963 trace_block_bio_queue(q, bio);
964 /* Now that enqueuing has been traced, we need to trace
965 * completion as well.
966 */
967 bio_set_flag(bio, BIO_TRACE_COMPLETION);
968 }
969 return true;
970
971 not_supported:
972 status = BLK_STS_NOTSUPP;
973 end_io:
974 bio->bi_status = status;
975 bio_endio(bio);
976 return false;
977 }
978
979 /**
980 * generic_make_request - hand a buffer to its device driver for I/O
981 * @bio: The bio describing the location in memory and on the device.
982 *
983 * generic_make_request() is used to make I/O requests of block
984 * devices. It is passed a &struct bio, which describes the I/O that needs
985 * to be done.
986 *
987 * generic_make_request() does not return any status. The
988 * success/failure status of the request, along with notification of
989 * completion, is delivered asynchronously through the bio->bi_end_io
990 * function described (one day) else where.
991 *
992 * The caller of generic_make_request must make sure that bi_io_vec
993 * are set to describe the memory buffer, and that bi_dev and bi_sector are
994 * set to describe the device address, and the
995 * bi_end_io and optionally bi_private are set to describe how
996 * completion notification should be signaled.
997 *
998 * generic_make_request and the drivers it calls may use bi_next if this
999 * bio happens to be merged with someone else, and may resubmit the bio to
1000 * a lower device by calling into generic_make_request recursively, which
1001 * means the bio should NOT be touched after the call to ->make_request_fn.
1002 */
1003 blk_qc_t generic_make_request(struct bio *bio)
1004 {
1005 /*
1006 * bio_list_on_stack[0] contains bios submitted by the current
1007 * make_request_fn.
1008 * bio_list_on_stack[1] contains bios that were submitted before
1009 * the current make_request_fn, but that haven't been processed
1010 * yet.
1011 */
1012 struct bio_list bio_list_on_stack[2];
1013 blk_mq_req_flags_t flags = 0;
1014 struct request_queue *q = bio->bi_disk->queue;
1015 blk_qc_t ret = BLK_QC_T_NONE;
1016
1017 if (bio->bi_opf & REQ_NOWAIT)
1018 flags = BLK_MQ_REQ_NOWAIT;
1019 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1020 blk_queue_enter_live(q);
1021 else if (blk_queue_enter(q, flags) < 0) {
1022 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1023 bio_wouldblock_error(bio);
1024 else
1025 bio_io_error(bio);
1026 return ret;
1027 }
1028
1029 if (!generic_make_request_checks(bio))
1030 goto out;
1031
1032 /*
1033 * We only want one ->make_request_fn to be active at a time, else
1034 * stack usage with stacked devices could be a problem. So use
1035 * current->bio_list to keep a list of requests submited by a
1036 * make_request_fn function. current->bio_list is also used as a
1037 * flag to say if generic_make_request is currently active in this
1038 * task or not. If it is NULL, then no make_request is active. If
1039 * it is non-NULL, then a make_request is active, and new requests
1040 * should be added at the tail
1041 */
1042 if (current->bio_list) {
1043 bio_list_add(&current->bio_list[0], bio);
1044 goto out;
1045 }
1046
1047 /* following loop may be a bit non-obvious, and so deserves some
1048 * explanation.
1049 * Before entering the loop, bio->bi_next is NULL (as all callers
1050 * ensure that) so we have a list with a single bio.
1051 * We pretend that we have just taken it off a longer list, so
1052 * we assign bio_list to a pointer to the bio_list_on_stack,
1053 * thus initialising the bio_list of new bios to be
1054 * added. ->make_request() may indeed add some more bios
1055 * through a recursive call to generic_make_request. If it
1056 * did, we find a non-NULL value in bio_list and re-enter the loop
1057 * from the top. In this case we really did just take the bio
1058 * of the top of the list (no pretending) and so remove it from
1059 * bio_list, and call into ->make_request() again.
1060 */
1061 BUG_ON(bio->bi_next);
1062 bio_list_init(&bio_list_on_stack[0]);
1063 current->bio_list = bio_list_on_stack;
1064 do {
1065 bool enter_succeeded = true;
1066
1067 if (unlikely(q != bio->bi_disk->queue)) {
1068 if (q)
1069 blk_queue_exit(q);
1070 q = bio->bi_disk->queue;
1071 flags = 0;
1072 if (bio->bi_opf & REQ_NOWAIT)
1073 flags = BLK_MQ_REQ_NOWAIT;
1074 if (blk_queue_enter(q, flags) < 0) {
1075 enter_succeeded = false;
1076 q = NULL;
1077 }
1078 }
1079
1080 if (enter_succeeded) {
1081 struct bio_list lower, same;
1082
1083 /* Create a fresh bio_list for all subordinate requests */
1084 bio_list_on_stack[1] = bio_list_on_stack[0];
1085 bio_list_init(&bio_list_on_stack[0]);
1086
1087 /*
1088 * Since we're recursing into make_request here, ensure
1089 * that we mark this bio as already having entered the queue.
1090 * If not, and the queue is going away, we can get stuck
1091 * forever on waiting for the queue reference to drop. But
1092 * that will never happen, as we're already holding a
1093 * reference to it.
1094 */
1095 bio_set_flag(bio, BIO_QUEUE_ENTERED);
1096 ret = q->make_request_fn(q, bio);
1097 bio_clear_flag(bio, BIO_QUEUE_ENTERED);
1098
1099 /* sort new bios into those for a lower level
1100 * and those for the same level
1101 */
1102 bio_list_init(&lower);
1103 bio_list_init(&same);
1104 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1105 if (q == bio->bi_disk->queue)
1106 bio_list_add(&same, bio);
1107 else
1108 bio_list_add(&lower, bio);
1109 /* now assemble so we handle the lowest level first */
1110 bio_list_merge(&bio_list_on_stack[0], &lower);
1111 bio_list_merge(&bio_list_on_stack[0], &same);
1112 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1113 } else {
1114 if (unlikely(!blk_queue_dying(q) &&
1115 (bio->bi_opf & REQ_NOWAIT)))
1116 bio_wouldblock_error(bio);
1117 else
1118 bio_io_error(bio);
1119 }
1120 bio = bio_list_pop(&bio_list_on_stack[0]);
1121 } while (bio);
1122 current->bio_list = NULL; /* deactivate */
1123
1124 out:
1125 if (q)
1126 blk_queue_exit(q);
1127 return ret;
1128 }
1129 EXPORT_SYMBOL(generic_make_request);
1130
1131 /**
1132 * direct_make_request - hand a buffer directly to its device driver for I/O
1133 * @bio: The bio describing the location in memory and on the device.
1134 *
1135 * This function behaves like generic_make_request(), but does not protect
1136 * against recursion. Must only be used if the called driver is known
1137 * to not call generic_make_request (or direct_make_request) again from
1138 * its make_request function. (Calling direct_make_request again from
1139 * a workqueue is perfectly fine as that doesn't recurse).
1140 */
1141 blk_qc_t direct_make_request(struct bio *bio)
1142 {
1143 struct request_queue *q = bio->bi_disk->queue;
1144 bool nowait = bio->bi_opf & REQ_NOWAIT;
1145 blk_qc_t ret;
1146
1147 if (!generic_make_request_checks(bio))
1148 return BLK_QC_T_NONE;
1149
1150 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1151 if (nowait && !blk_queue_dying(q))
1152 bio->bi_status = BLK_STS_AGAIN;
1153 else
1154 bio->bi_status = BLK_STS_IOERR;
1155 bio_endio(bio);
1156 return BLK_QC_T_NONE;
1157 }
1158
1159 ret = q->make_request_fn(q, bio);
1160 blk_queue_exit(q);
1161 return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(direct_make_request);
1164
1165 /**
1166 * submit_bio - submit a bio to the block device layer for I/O
1167 * @bio: The &struct bio which describes the I/O
1168 *
1169 * submit_bio() is very similar in purpose to generic_make_request(), and
1170 * uses that function to do most of the work. Both are fairly rough
1171 * interfaces; @bio must be presetup and ready for I/O.
1172 *
1173 */
1174 blk_qc_t submit_bio(struct bio *bio)
1175 {
1176 /*
1177 * If it's a regular read/write or a barrier with data attached,
1178 * go through the normal accounting stuff before submission.
1179 */
1180 if (bio_has_data(bio)) {
1181 unsigned int count;
1182
1183 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1184 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1185 else
1186 count = bio_sectors(bio);
1187
1188 if (op_is_write(bio_op(bio))) {
1189 count_vm_events(PGPGOUT, count);
1190 } else {
1191 task_io_account_read(bio->bi_iter.bi_size);
1192 count_vm_events(PGPGIN, count);
1193 }
1194
1195 if (unlikely(block_dump)) {
1196 char b[BDEVNAME_SIZE];
1197 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1198 current->comm, task_pid_nr(current),
1199 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1200 (unsigned long long)bio->bi_iter.bi_sector,
1201 bio_devname(bio, b), count);
1202 }
1203 }
1204
1205 return generic_make_request(bio);
1206 }
1207 EXPORT_SYMBOL(submit_bio);
1208
1209 /**
1210 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1211 * for new the queue limits
1212 * @q: the queue
1213 * @rq: the request being checked
1214 *
1215 * Description:
1216 * @rq may have been made based on weaker limitations of upper-level queues
1217 * in request stacking drivers, and it may violate the limitation of @q.
1218 * Since the block layer and the underlying device driver trust @rq
1219 * after it is inserted to @q, it should be checked against @q before
1220 * the insertion using this generic function.
1221 *
1222 * Request stacking drivers like request-based dm may change the queue
1223 * limits when retrying requests on other queues. Those requests need
1224 * to be checked against the new queue limits again during dispatch.
1225 */
1226 static int blk_cloned_rq_check_limits(struct request_queue *q,
1227 struct request *rq)
1228 {
1229 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1230 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1231 return -EIO;
1232 }
1233
1234 /*
1235 * queue's settings related to segment counting like q->bounce_pfn
1236 * may differ from that of other stacking queues.
1237 * Recalculate it to check the request correctly on this queue's
1238 * limitation.
1239 */
1240 blk_recalc_rq_segments(rq);
1241 if (rq->nr_phys_segments > queue_max_segments(q)) {
1242 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1243 return -EIO;
1244 }
1245
1246 return 0;
1247 }
1248
1249 /**
1250 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1251 * @q: the queue to submit the request
1252 * @rq: the request being queued
1253 */
1254 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1255 {
1256 blk_qc_t unused;
1257
1258 if (blk_cloned_rq_check_limits(q, rq))
1259 return BLK_STS_IOERR;
1260
1261 if (rq->rq_disk &&
1262 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1263 return BLK_STS_IOERR;
1264
1265 if (blk_queue_io_stat(q))
1266 blk_account_io_start(rq, true);
1267
1268 /*
1269 * Since we have a scheduler attached on the top device,
1270 * bypass a potential scheduler on the bottom device for
1271 * insert.
1272 */
1273 return blk_mq_try_issue_directly(rq->mq_hctx, rq, &unused, true, true);
1274 }
1275 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1276
1277 /**
1278 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1279 * @rq: request to examine
1280 *
1281 * Description:
1282 * A request could be merge of IOs which require different failure
1283 * handling. This function determines the number of bytes which
1284 * can be failed from the beginning of the request without
1285 * crossing into area which need to be retried further.
1286 *
1287 * Return:
1288 * The number of bytes to fail.
1289 */
1290 unsigned int blk_rq_err_bytes(const struct request *rq)
1291 {
1292 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1293 unsigned int bytes = 0;
1294 struct bio *bio;
1295
1296 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1297 return blk_rq_bytes(rq);
1298
1299 /*
1300 * Currently the only 'mixing' which can happen is between
1301 * different fastfail types. We can safely fail portions
1302 * which have all the failfast bits that the first one has -
1303 * the ones which are at least as eager to fail as the first
1304 * one.
1305 */
1306 for (bio = rq->bio; bio; bio = bio->bi_next) {
1307 if ((bio->bi_opf & ff) != ff)
1308 break;
1309 bytes += bio->bi_iter.bi_size;
1310 }
1311
1312 /* this could lead to infinite loop */
1313 BUG_ON(blk_rq_bytes(rq) && !bytes);
1314 return bytes;
1315 }
1316 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1317
1318 void blk_account_io_completion(struct request *req, unsigned int bytes)
1319 {
1320 if (blk_do_io_stat(req)) {
1321 const int sgrp = op_stat_group(req_op(req));
1322 struct hd_struct *part;
1323
1324 part_stat_lock();
1325 part = req->part;
1326 part_stat_add(part, sectors[sgrp], bytes >> 9);
1327 part_stat_unlock();
1328 }
1329 }
1330
1331 void blk_account_io_done(struct request *req, u64 now)
1332 {
1333 /*
1334 * Account IO completion. flush_rq isn't accounted as a
1335 * normal IO on queueing nor completion. Accounting the
1336 * containing request is enough.
1337 */
1338 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1339 const int sgrp = op_stat_group(req_op(req));
1340 struct hd_struct *part;
1341
1342 part_stat_lock();
1343 part = req->part;
1344
1345 update_io_ticks(part, jiffies);
1346 part_stat_inc(part, ios[sgrp]);
1347 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1348 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1349 part_dec_in_flight(req->q, part, rq_data_dir(req));
1350
1351 hd_struct_put(part);
1352 part_stat_unlock();
1353 }
1354 }
1355
1356 void blk_account_io_start(struct request *rq, bool new_io)
1357 {
1358 struct hd_struct *part;
1359 int rw = rq_data_dir(rq);
1360
1361 if (!blk_do_io_stat(rq))
1362 return;
1363
1364 part_stat_lock();
1365
1366 if (!new_io) {
1367 part = rq->part;
1368 part_stat_inc(part, merges[rw]);
1369 } else {
1370 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1371 if (!hd_struct_try_get(part)) {
1372 /*
1373 * The partition is already being removed,
1374 * the request will be accounted on the disk only
1375 *
1376 * We take a reference on disk->part0 although that
1377 * partition will never be deleted, so we can treat
1378 * it as any other partition.
1379 */
1380 part = &rq->rq_disk->part0;
1381 hd_struct_get(part);
1382 }
1383 part_inc_in_flight(rq->q, part, rw);
1384 rq->part = part;
1385 }
1386
1387 update_io_ticks(part, jiffies);
1388
1389 part_stat_unlock();
1390 }
1391
1392 /*
1393 * Steal bios from a request and add them to a bio list.
1394 * The request must not have been partially completed before.
1395 */
1396 void blk_steal_bios(struct bio_list *list, struct request *rq)
1397 {
1398 if (rq->bio) {
1399 if (list->tail)
1400 list->tail->bi_next = rq->bio;
1401 else
1402 list->head = rq->bio;
1403 list->tail = rq->biotail;
1404
1405 rq->bio = NULL;
1406 rq->biotail = NULL;
1407 }
1408
1409 rq->__data_len = 0;
1410 }
1411 EXPORT_SYMBOL_GPL(blk_steal_bios);
1412
1413 /**
1414 * blk_update_request - Special helper function for request stacking drivers
1415 * @req: the request being processed
1416 * @error: block status code
1417 * @nr_bytes: number of bytes to complete @req
1418 *
1419 * Description:
1420 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1421 * the request structure even if @req doesn't have leftover.
1422 * If @req has leftover, sets it up for the next range of segments.
1423 *
1424 * This special helper function is only for request stacking drivers
1425 * (e.g. request-based dm) so that they can handle partial completion.
1426 * Actual device drivers should use blk_end_request instead.
1427 *
1428 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1429 * %false return from this function.
1430 *
1431 * Note:
1432 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1433 * blk_rq_bytes() and in blk_update_request().
1434 *
1435 * Return:
1436 * %false - this request doesn't have any more data
1437 * %true - this request has more data
1438 **/
1439 bool blk_update_request(struct request *req, blk_status_t error,
1440 unsigned int nr_bytes)
1441 {
1442 int total_bytes;
1443
1444 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1445
1446 if (!req->bio)
1447 return false;
1448
1449 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1450 !(req->rq_flags & RQF_QUIET)))
1451 print_req_error(req, error);
1452
1453 blk_account_io_completion(req, nr_bytes);
1454
1455 total_bytes = 0;
1456 while (req->bio) {
1457 struct bio *bio = req->bio;
1458 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1459
1460 if (bio_bytes == bio->bi_iter.bi_size)
1461 req->bio = bio->bi_next;
1462
1463 /* Completion has already been traced */
1464 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1465 req_bio_endio(req, bio, bio_bytes, error);
1466
1467 total_bytes += bio_bytes;
1468 nr_bytes -= bio_bytes;
1469
1470 if (!nr_bytes)
1471 break;
1472 }
1473
1474 /*
1475 * completely done
1476 */
1477 if (!req->bio) {
1478 /*
1479 * Reset counters so that the request stacking driver
1480 * can find how many bytes remain in the request
1481 * later.
1482 */
1483 req->__data_len = 0;
1484 return false;
1485 }
1486
1487 req->__data_len -= total_bytes;
1488
1489 /* update sector only for requests with clear definition of sector */
1490 if (!blk_rq_is_passthrough(req))
1491 req->__sector += total_bytes >> 9;
1492
1493 /* mixed attributes always follow the first bio */
1494 if (req->rq_flags & RQF_MIXED_MERGE) {
1495 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1496 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1497 }
1498
1499 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1500 /*
1501 * If total number of sectors is less than the first segment
1502 * size, something has gone terribly wrong.
1503 */
1504 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1505 blk_dump_rq_flags(req, "request botched");
1506 req->__data_len = blk_rq_cur_bytes(req);
1507 }
1508
1509 /* recalculate the number of segments */
1510 blk_recalc_rq_segments(req);
1511 }
1512
1513 return true;
1514 }
1515 EXPORT_SYMBOL_GPL(blk_update_request);
1516
1517 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1518 struct bio *bio)
1519 {
1520 if (bio_has_data(bio))
1521 rq->nr_phys_segments = bio_phys_segments(q, bio);
1522 else if (bio_op(bio) == REQ_OP_DISCARD)
1523 rq->nr_phys_segments = 1;
1524
1525 rq->__data_len = bio->bi_iter.bi_size;
1526 rq->bio = rq->biotail = bio;
1527
1528 if (bio->bi_disk)
1529 rq->rq_disk = bio->bi_disk;
1530 }
1531
1532 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1533 /**
1534 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1535 * @rq: the request to be flushed
1536 *
1537 * Description:
1538 * Flush all pages in @rq.
1539 */
1540 void rq_flush_dcache_pages(struct request *rq)
1541 {
1542 struct req_iterator iter;
1543 struct bio_vec bvec;
1544
1545 rq_for_each_segment(bvec, rq, iter)
1546 flush_dcache_page(bvec.bv_page);
1547 }
1548 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1549 #endif
1550
1551 /**
1552 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1553 * @q : the queue of the device being checked
1554 *
1555 * Description:
1556 * Check if underlying low-level drivers of a device are busy.
1557 * If the drivers want to export their busy state, they must set own
1558 * exporting function using blk_queue_lld_busy() first.
1559 *
1560 * Basically, this function is used only by request stacking drivers
1561 * to stop dispatching requests to underlying devices when underlying
1562 * devices are busy. This behavior helps more I/O merging on the queue
1563 * of the request stacking driver and prevents I/O throughput regression
1564 * on burst I/O load.
1565 *
1566 * Return:
1567 * 0 - Not busy (The request stacking driver should dispatch request)
1568 * 1 - Busy (The request stacking driver should stop dispatching request)
1569 */
1570 int blk_lld_busy(struct request_queue *q)
1571 {
1572 if (queue_is_mq(q) && q->mq_ops->busy)
1573 return q->mq_ops->busy(q);
1574
1575 return 0;
1576 }
1577 EXPORT_SYMBOL_GPL(blk_lld_busy);
1578
1579 /**
1580 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1581 * @rq: the clone request to be cleaned up
1582 *
1583 * Description:
1584 * Free all bios in @rq for a cloned request.
1585 */
1586 void blk_rq_unprep_clone(struct request *rq)
1587 {
1588 struct bio *bio;
1589
1590 while ((bio = rq->bio) != NULL) {
1591 rq->bio = bio->bi_next;
1592
1593 bio_put(bio);
1594 }
1595 }
1596 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1597
1598 /*
1599 * Copy attributes of the original request to the clone request.
1600 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1601 */
1602 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1603 {
1604 dst->__sector = blk_rq_pos(src);
1605 dst->__data_len = blk_rq_bytes(src);
1606 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1607 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1608 dst->special_vec = src->special_vec;
1609 }
1610 dst->nr_phys_segments = src->nr_phys_segments;
1611 dst->ioprio = src->ioprio;
1612 dst->extra_len = src->extra_len;
1613 }
1614
1615 /**
1616 * blk_rq_prep_clone - Helper function to setup clone request
1617 * @rq: the request to be setup
1618 * @rq_src: original request to be cloned
1619 * @bs: bio_set that bios for clone are allocated from
1620 * @gfp_mask: memory allocation mask for bio
1621 * @bio_ctr: setup function to be called for each clone bio.
1622 * Returns %0 for success, non %0 for failure.
1623 * @data: private data to be passed to @bio_ctr
1624 *
1625 * Description:
1626 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1627 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1628 * are not copied, and copying such parts is the caller's responsibility.
1629 * Also, pages which the original bios are pointing to are not copied
1630 * and the cloned bios just point same pages.
1631 * So cloned bios must be completed before original bios, which means
1632 * the caller must complete @rq before @rq_src.
1633 */
1634 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1635 struct bio_set *bs, gfp_t gfp_mask,
1636 int (*bio_ctr)(struct bio *, struct bio *, void *),
1637 void *data)
1638 {
1639 struct bio *bio, *bio_src;
1640
1641 if (!bs)
1642 bs = &fs_bio_set;
1643
1644 __rq_for_each_bio(bio_src, rq_src) {
1645 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1646 if (!bio)
1647 goto free_and_out;
1648
1649 if (bio_ctr && bio_ctr(bio, bio_src, data))
1650 goto free_and_out;
1651
1652 if (rq->bio) {
1653 rq->biotail->bi_next = bio;
1654 rq->biotail = bio;
1655 } else
1656 rq->bio = rq->biotail = bio;
1657 }
1658
1659 __blk_rq_prep_clone(rq, rq_src);
1660
1661 return 0;
1662
1663 free_and_out:
1664 if (bio)
1665 bio_put(bio);
1666 blk_rq_unprep_clone(rq);
1667
1668 return -ENOMEM;
1669 }
1670 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1671
1672 int kblockd_schedule_work(struct work_struct *work)
1673 {
1674 return queue_work(kblockd_workqueue, work);
1675 }
1676 EXPORT_SYMBOL(kblockd_schedule_work);
1677
1678 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1679 {
1680 return queue_work_on(cpu, kblockd_workqueue, work);
1681 }
1682 EXPORT_SYMBOL(kblockd_schedule_work_on);
1683
1684 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1685 unsigned long delay)
1686 {
1687 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1688 }
1689 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1690
1691 /**
1692 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1693 * @plug: The &struct blk_plug that needs to be initialized
1694 *
1695 * Description:
1696 * blk_start_plug() indicates to the block layer an intent by the caller
1697 * to submit multiple I/O requests in a batch. The block layer may use
1698 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1699 * is called. However, the block layer may choose to submit requests
1700 * before a call to blk_finish_plug() if the number of queued I/Os
1701 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1702 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1703 * the task schedules (see below).
1704 *
1705 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1706 * pending I/O should the task end up blocking between blk_start_plug() and
1707 * blk_finish_plug(). This is important from a performance perspective, but
1708 * also ensures that we don't deadlock. For instance, if the task is blocking
1709 * for a memory allocation, memory reclaim could end up wanting to free a
1710 * page belonging to that request that is currently residing in our private
1711 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1712 * this kind of deadlock.
1713 */
1714 void blk_start_plug(struct blk_plug *plug)
1715 {
1716 struct task_struct *tsk = current;
1717
1718 /*
1719 * If this is a nested plug, don't actually assign it.
1720 */
1721 if (tsk->plug)
1722 return;
1723
1724 INIT_LIST_HEAD(&plug->mq_list);
1725 INIT_LIST_HEAD(&plug->cb_list);
1726 plug->rq_count = 0;
1727 plug->multiple_queues = false;
1728
1729 /*
1730 * Store ordering should not be needed here, since a potential
1731 * preempt will imply a full memory barrier
1732 */
1733 tsk->plug = plug;
1734 }
1735 EXPORT_SYMBOL(blk_start_plug);
1736
1737 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1738 {
1739 LIST_HEAD(callbacks);
1740
1741 while (!list_empty(&plug->cb_list)) {
1742 list_splice_init(&plug->cb_list, &callbacks);
1743
1744 while (!list_empty(&callbacks)) {
1745 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1746 struct blk_plug_cb,
1747 list);
1748 list_del(&cb->list);
1749 cb->callback(cb, from_schedule);
1750 }
1751 }
1752 }
1753
1754 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1755 int size)
1756 {
1757 struct blk_plug *plug = current->plug;
1758 struct blk_plug_cb *cb;
1759
1760 if (!plug)
1761 return NULL;
1762
1763 list_for_each_entry(cb, &plug->cb_list, list)
1764 if (cb->callback == unplug && cb->data == data)
1765 return cb;
1766
1767 /* Not currently on the callback list */
1768 BUG_ON(size < sizeof(*cb));
1769 cb = kzalloc(size, GFP_ATOMIC);
1770 if (cb) {
1771 cb->data = data;
1772 cb->callback = unplug;
1773 list_add(&cb->list, &plug->cb_list);
1774 }
1775 return cb;
1776 }
1777 EXPORT_SYMBOL(blk_check_plugged);
1778
1779 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1780 {
1781 flush_plug_callbacks(plug, from_schedule);
1782
1783 if (!list_empty(&plug->mq_list))
1784 blk_mq_flush_plug_list(plug, from_schedule);
1785 }
1786
1787 /**
1788 * blk_finish_plug - mark the end of a batch of submitted I/O
1789 * @plug: The &struct blk_plug passed to blk_start_plug()
1790 *
1791 * Description:
1792 * Indicate that a batch of I/O submissions is complete. This function
1793 * must be paired with an initial call to blk_start_plug(). The intent
1794 * is to allow the block layer to optimize I/O submission. See the
1795 * documentation for blk_start_plug() for more information.
1796 */
1797 void blk_finish_plug(struct blk_plug *plug)
1798 {
1799 if (plug != current->plug)
1800 return;
1801 blk_flush_plug_list(plug, false);
1802
1803 current->plug = NULL;
1804 }
1805 EXPORT_SYMBOL(blk_finish_plug);
1806
1807 int __init blk_dev_init(void)
1808 {
1809 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1810 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1811 FIELD_SIZEOF(struct request, cmd_flags));
1812 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1813 FIELD_SIZEOF(struct bio, bi_opf));
1814
1815 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1816 kblockd_workqueue = alloc_workqueue("kblockd",
1817 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1818 if (!kblockd_workqueue)
1819 panic("Failed to create kblockd\n");
1820
1821 blk_requestq_cachep = kmem_cache_create("request_queue",
1822 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1823
1824 #ifdef CONFIG_DEBUG_FS
1825 blk_debugfs_root = debugfs_create_dir("block", NULL);
1826 #endif
1827
1828 return 0;
1829 }