]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge branch 'x86/fpu' into x86/urgent
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 static struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
73 }
74 }
75
76 void blk_queue_congestion_threshold(struct request_queue *q)
77 {
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89 }
90
91 /**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 {
102 struct backing_dev_info *ret = NULL;
103 struct request_queue *q = bdev_get_queue(bdev);
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108 }
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
110
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 INIT_LIST_HEAD(&rq->donelist);
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->cmd = rq->__cmd;
122 rq->tag = -1;
123 rq->ref_count = 1;
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
129 {
130 struct request_queue *q = rq->q;
131
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
137
138 if (unlikely(nbytes > bio->bi_size)) {
139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 __func__, nbytes, bio->bi_size);
141 nbytes = bio->bi_size;
142 }
143
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
146
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
149
150 if (bio->bi_size == 0)
151 bio_endio(bio, error);
152 } else {
153
154 /*
155 * Okay, this is the barrier request in progress, just
156 * record the error;
157 */
158 if (error && !q->orderr)
159 q->orderr = error;
160 }
161 }
162
163 void blk_dump_rq_flags(struct request *rq, char *msg)
164 {
165 int bit;
166
167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
170
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
179
180 if (blk_pc_request(rq)) {
181 printk(KERN_INFO " cdb: ");
182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186 }
187 EXPORT_SYMBOL(blk_dump_rq_flags);
188
189 /*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
197 void blk_plug_device(struct request_queue *q)
198 {
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
205 if (blk_queue_stopped(q))
206 return;
207
208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 }
212 }
213 EXPORT_SYMBOL(blk_plug_device);
214
215 /**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223 void blk_plug_device_unlocked(struct request_queue *q)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230 }
231 EXPORT_SYMBOL(blk_plug_device_unlocked);
232
233 /*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
237 int blk_remove_plug(struct request_queue *q)
238 {
239 WARN_ON(!irqs_disabled());
240
241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246 }
247 EXPORT_SYMBOL(blk_remove_plug);
248
249 /*
250 * remove the plug and let it rip..
251 */
252 void __generic_unplug_device(struct request_queue *q)
253 {
254 if (unlikely(blk_queue_stopped(q)))
255 return;
256
257 if (!blk_remove_plug(q))
258 return;
259
260 q->request_fn(q);
261 }
262 EXPORT_SYMBOL(__generic_unplug_device);
263
264 /**
265 * generic_unplug_device - fire a request queue
266 * @q: The &struct request_queue in question
267 *
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
274 **/
275 void generic_unplug_device(struct request_queue *q)
276 {
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
281 }
282 }
283 EXPORT_SYMBOL(generic_unplug_device);
284
285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
287 {
288 struct request_queue *q = bdi->unplug_io_data;
289
290 blk_unplug(q);
291 }
292
293 void blk_unplug_work(struct work_struct *work)
294 {
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
297
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
300
301 q->unplug_fn(q);
302 }
303
304 void blk_unplug_timeout(unsigned long data)
305 {
306 struct request_queue *q = (struct request_queue *)data;
307
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
310
311 kblockd_schedule_work(&q->unplug_work);
312 }
313
314 void blk_unplug(struct request_queue *q)
315 {
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
322
323 q->unplug_fn(q);
324 }
325 }
326 EXPORT_SYMBOL(blk_unplug);
327
328 /**
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
331 *
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 **/
337 void blk_start_queue(struct request_queue *q)
338 {
339 WARN_ON(!irqs_disabled());
340
341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
342
343 /*
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
346 */
347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
348 q->request_fn(q);
349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
353 }
354 }
355 EXPORT_SYMBOL(blk_start_queue);
356
357 /**
358 * blk_stop_queue - stop a queue
359 * @q: The &struct request_queue in question
360 *
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
370 **/
371 void blk_stop_queue(struct request_queue *q)
372 {
373 blk_remove_plug(q);
374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
375 }
376 EXPORT_SYMBOL(blk_stop_queue);
377
378 /**
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
381 *
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
387 * that the callbacks might use. The caller must already have made sure
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
390 *
391 */
392 void blk_sync_queue(struct request_queue *q)
393 {
394 del_timer_sync(&q->unplug_timer);
395 kblockd_flush_work(&q->unplug_work);
396 }
397 EXPORT_SYMBOL(blk_sync_queue);
398
399 /**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
402 */
403 void __blk_run_queue(struct request_queue *q)
404 {
405 blk_remove_plug(q);
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!elv_queue_empty(q)) {
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 q->request_fn(q);
414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
418 }
419 }
420 }
421 EXPORT_SYMBOL(__blk_run_queue);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 */
427 void blk_run_queue(struct request_queue *q)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436
437 void blk_put_queue(struct request_queue *q)
438 {
439 kobject_put(&q->kobj);
440 }
441
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 mutex_lock(&q->sysfs_lock);
445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
446 mutex_unlock(&q->sysfs_lock);
447
448 if (q->elevator)
449 elevator_exit(q->elevator);
450
451 blk_put_queue(q);
452 }
453 EXPORT_SYMBOL(blk_cleanup_queue);
454
455 static int blk_init_free_list(struct request_queue *q)
456 {
457 struct request_list *rl = &q->rq;
458
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
461 rl->elvpriv = 0;
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
464
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
467
468 if (!rl->rq_pool)
469 return -ENOMEM;
470
471 return 0;
472 }
473
474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
475 {
476 return blk_alloc_queue_node(gfp_mask, -1);
477 }
478 EXPORT_SYMBOL(blk_alloc_queue);
479
480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 struct request_queue *q;
483 int err;
484
485 q = kmem_cache_alloc_node(blk_requestq_cachep,
486 gfp_mask | __GFP_ZERO, node_id);
487 if (!q)
488 return NULL;
489
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
494 kmem_cache_free(blk_requestq_cachep, q);
495 return NULL;
496 }
497
498 init_timer(&q->unplug_timer);
499
500 kobject_init(&q->kobj, &blk_queue_ktype);
501
502 mutex_init(&q->sysfs_lock);
503 spin_lock_init(&q->__queue_lock);
504
505 return q;
506 }
507 EXPORT_SYMBOL(blk_alloc_queue_node);
508
509 /**
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
514 *
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
524 *
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
529 *
530 * The queue spin lock must be held while manipulating the requests on the
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
533 *
534 * Function returns a pointer to the initialized request queue, or NULL if
535 * it didn't succeed.
536 *
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
540 **/
541
542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
543 {
544 return blk_init_queue_node(rfn, lock, -1);
545 }
546 EXPORT_SYMBOL(blk_init_queue);
547
548 struct request_queue *
549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550 {
551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
552
553 if (!q)
554 return NULL;
555
556 q->node = node_id;
557 if (blk_init_free_list(q)) {
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
560 }
561
562 /*
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
565 */
566 if (!lock)
567 lock = &q->__queue_lock;
568
569 q->request_fn = rfn;
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
574
575 blk_queue_segment_boundary(q, 0xffffffff);
576
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582
583 q->sg_reserved_size = INT_MAX;
584
585 /*
586 * all done
587 */
588 if (!elevator_init(q, NULL)) {
589 blk_queue_congestion_threshold(q);
590 return q;
591 }
592
593 blk_put_queue(q);
594 return NULL;
595 }
596 EXPORT_SYMBOL(blk_init_queue_node);
597
598 int blk_get_queue(struct request_queue *q)
599 {
600 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
601 kobject_get(&q->kobj);
602 return 0;
603 }
604
605 return 1;
606 }
607
608 static inline void blk_free_request(struct request_queue *q, struct request *rq)
609 {
610 if (rq->cmd_flags & REQ_ELVPRIV)
611 elv_put_request(q, rq);
612 mempool_free(rq, q->rq.rq_pool);
613 }
614
615 static struct request *
616 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
617 {
618 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
619
620 if (!rq)
621 return NULL;
622
623 blk_rq_init(q, rq);
624
625 /*
626 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
627 * see bio.h and blkdev.h
628 */
629 rq->cmd_flags = rw | REQ_ALLOCED;
630
631 if (priv) {
632 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
633 mempool_free(rq, q->rq.rq_pool);
634 return NULL;
635 }
636 rq->cmd_flags |= REQ_ELVPRIV;
637 }
638
639 return rq;
640 }
641
642 /*
643 * ioc_batching returns true if the ioc is a valid batching request and
644 * should be given priority access to a request.
645 */
646 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
647 {
648 if (!ioc)
649 return 0;
650
651 /*
652 * Make sure the process is able to allocate at least 1 request
653 * even if the batch times out, otherwise we could theoretically
654 * lose wakeups.
655 */
656 return ioc->nr_batch_requests == q->nr_batching ||
657 (ioc->nr_batch_requests > 0
658 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
659 }
660
661 /*
662 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
663 * will cause the process to be a "batcher" on all queues in the system. This
664 * is the behaviour we want though - once it gets a wakeup it should be given
665 * a nice run.
666 */
667 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
668 {
669 if (!ioc || ioc_batching(q, ioc))
670 return;
671
672 ioc->nr_batch_requests = q->nr_batching;
673 ioc->last_waited = jiffies;
674 }
675
676 static void __freed_request(struct request_queue *q, int rw)
677 {
678 struct request_list *rl = &q->rq;
679
680 if (rl->count[rw] < queue_congestion_off_threshold(q))
681 blk_clear_queue_congested(q, rw);
682
683 if (rl->count[rw] + 1 <= q->nr_requests) {
684 if (waitqueue_active(&rl->wait[rw]))
685 wake_up(&rl->wait[rw]);
686
687 blk_clear_queue_full(q, rw);
688 }
689 }
690
691 /*
692 * A request has just been released. Account for it, update the full and
693 * congestion status, wake up any waiters. Called under q->queue_lock.
694 */
695 static void freed_request(struct request_queue *q, int rw, int priv)
696 {
697 struct request_list *rl = &q->rq;
698
699 rl->count[rw]--;
700 if (priv)
701 rl->elvpriv--;
702
703 __freed_request(q, rw);
704
705 if (unlikely(rl->starved[rw ^ 1]))
706 __freed_request(q, rw ^ 1);
707 }
708
709 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
710 /*
711 * Get a free request, queue_lock must be held.
712 * Returns NULL on failure, with queue_lock held.
713 * Returns !NULL on success, with queue_lock *not held*.
714 */
715 static struct request *get_request(struct request_queue *q, int rw_flags,
716 struct bio *bio, gfp_t gfp_mask)
717 {
718 struct request *rq = NULL;
719 struct request_list *rl = &q->rq;
720 struct io_context *ioc = NULL;
721 const int rw = rw_flags & 0x01;
722 int may_queue, priv;
723
724 may_queue = elv_may_queue(q, rw_flags);
725 if (may_queue == ELV_MQUEUE_NO)
726 goto rq_starved;
727
728 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
729 if (rl->count[rw]+1 >= q->nr_requests) {
730 ioc = current_io_context(GFP_ATOMIC, q->node);
731 /*
732 * The queue will fill after this allocation, so set
733 * it as full, and mark this process as "batching".
734 * This process will be allowed to complete a batch of
735 * requests, others will be blocked.
736 */
737 if (!blk_queue_full(q, rw)) {
738 ioc_set_batching(q, ioc);
739 blk_set_queue_full(q, rw);
740 } else {
741 if (may_queue != ELV_MQUEUE_MUST
742 && !ioc_batching(q, ioc)) {
743 /*
744 * The queue is full and the allocating
745 * process is not a "batcher", and not
746 * exempted by the IO scheduler
747 */
748 goto out;
749 }
750 }
751 }
752 blk_set_queue_congested(q, rw);
753 }
754
755 /*
756 * Only allow batching queuers to allocate up to 50% over the defined
757 * limit of requests, otherwise we could have thousands of requests
758 * allocated with any setting of ->nr_requests
759 */
760 if (rl->count[rw] >= (3 * q->nr_requests / 2))
761 goto out;
762
763 rl->count[rw]++;
764 rl->starved[rw] = 0;
765
766 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
767 if (priv)
768 rl->elvpriv++;
769
770 spin_unlock_irq(q->queue_lock);
771
772 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
773 if (unlikely(!rq)) {
774 /*
775 * Allocation failed presumably due to memory. Undo anything
776 * we might have messed up.
777 *
778 * Allocating task should really be put onto the front of the
779 * wait queue, but this is pretty rare.
780 */
781 spin_lock_irq(q->queue_lock);
782 freed_request(q, rw, priv);
783
784 /*
785 * in the very unlikely event that allocation failed and no
786 * requests for this direction was pending, mark us starved
787 * so that freeing of a request in the other direction will
788 * notice us. another possible fix would be to split the
789 * rq mempool into READ and WRITE
790 */
791 rq_starved:
792 if (unlikely(rl->count[rw] == 0))
793 rl->starved[rw] = 1;
794
795 goto out;
796 }
797
798 /*
799 * ioc may be NULL here, and ioc_batching will be false. That's
800 * OK, if the queue is under the request limit then requests need
801 * not count toward the nr_batch_requests limit. There will always
802 * be some limit enforced by BLK_BATCH_TIME.
803 */
804 if (ioc_batching(q, ioc))
805 ioc->nr_batch_requests--;
806
807 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
808 out:
809 return rq;
810 }
811
812 /*
813 * No available requests for this queue, unplug the device and wait for some
814 * requests to become available.
815 *
816 * Called with q->queue_lock held, and returns with it unlocked.
817 */
818 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
819 struct bio *bio)
820 {
821 const int rw = rw_flags & 0x01;
822 struct request *rq;
823
824 rq = get_request(q, rw_flags, bio, GFP_NOIO);
825 while (!rq) {
826 DEFINE_WAIT(wait);
827 struct io_context *ioc;
828 struct request_list *rl = &q->rq;
829
830 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
831 TASK_UNINTERRUPTIBLE);
832
833 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
834
835 __generic_unplug_device(q);
836 spin_unlock_irq(q->queue_lock);
837 io_schedule();
838
839 /*
840 * After sleeping, we become a "batching" process and
841 * will be able to allocate at least one request, and
842 * up to a big batch of them for a small period time.
843 * See ioc_batching, ioc_set_batching
844 */
845 ioc = current_io_context(GFP_NOIO, q->node);
846 ioc_set_batching(q, ioc);
847
848 spin_lock_irq(q->queue_lock);
849 finish_wait(&rl->wait[rw], &wait);
850
851 rq = get_request(q, rw_flags, bio, GFP_NOIO);
852 };
853
854 return rq;
855 }
856
857 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
858 {
859 struct request *rq;
860
861 BUG_ON(rw != READ && rw != WRITE);
862
863 spin_lock_irq(q->queue_lock);
864 if (gfp_mask & __GFP_WAIT) {
865 rq = get_request_wait(q, rw, NULL);
866 } else {
867 rq = get_request(q, rw, NULL, gfp_mask);
868 if (!rq)
869 spin_unlock_irq(q->queue_lock);
870 }
871 /* q->queue_lock is unlocked at this point */
872
873 return rq;
874 }
875 EXPORT_SYMBOL(blk_get_request);
876
877 /**
878 * blk_start_queueing - initiate dispatch of requests to device
879 * @q: request queue to kick into gear
880 *
881 * This is basically a helper to remove the need to know whether a queue
882 * is plugged or not if someone just wants to initiate dispatch of requests
883 * for this queue.
884 *
885 * The queue lock must be held with interrupts disabled.
886 */
887 void blk_start_queueing(struct request_queue *q)
888 {
889 if (!blk_queue_plugged(q))
890 q->request_fn(q);
891 else
892 __generic_unplug_device(q);
893 }
894 EXPORT_SYMBOL(blk_start_queueing);
895
896 /**
897 * blk_requeue_request - put a request back on queue
898 * @q: request queue where request should be inserted
899 * @rq: request to be inserted
900 *
901 * Description:
902 * Drivers often keep queueing requests until the hardware cannot accept
903 * more, when that condition happens we need to put the request back
904 * on the queue. Must be called with queue lock held.
905 */
906 void blk_requeue_request(struct request_queue *q, struct request *rq)
907 {
908 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
909
910 if (blk_rq_tagged(rq))
911 blk_queue_end_tag(q, rq);
912
913 elv_requeue_request(q, rq);
914 }
915 EXPORT_SYMBOL(blk_requeue_request);
916
917 /**
918 * blk_insert_request - insert a special request in to a request queue
919 * @q: request queue where request should be inserted
920 * @rq: request to be inserted
921 * @at_head: insert request at head or tail of queue
922 * @data: private data
923 *
924 * Description:
925 * Many block devices need to execute commands asynchronously, so they don't
926 * block the whole kernel from preemption during request execution. This is
927 * accomplished normally by inserting aritficial requests tagged as
928 * REQ_SPECIAL in to the corresponding request queue, and letting them be
929 * scheduled for actual execution by the request queue.
930 *
931 * We have the option of inserting the head or the tail of the queue.
932 * Typically we use the tail for new ioctls and so forth. We use the head
933 * of the queue for things like a QUEUE_FULL message from a device, or a
934 * host that is unable to accept a particular command.
935 */
936 void blk_insert_request(struct request_queue *q, struct request *rq,
937 int at_head, void *data)
938 {
939 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
940 unsigned long flags;
941
942 /*
943 * tell I/O scheduler that this isn't a regular read/write (ie it
944 * must not attempt merges on this) and that it acts as a soft
945 * barrier
946 */
947 rq->cmd_type = REQ_TYPE_SPECIAL;
948 rq->cmd_flags |= REQ_SOFTBARRIER;
949
950 rq->special = data;
951
952 spin_lock_irqsave(q->queue_lock, flags);
953
954 /*
955 * If command is tagged, release the tag
956 */
957 if (blk_rq_tagged(rq))
958 blk_queue_end_tag(q, rq);
959
960 drive_stat_acct(rq, 1);
961 __elv_add_request(q, rq, where, 0);
962 blk_start_queueing(q);
963 spin_unlock_irqrestore(q->queue_lock, flags);
964 }
965 EXPORT_SYMBOL(blk_insert_request);
966
967 /*
968 * add-request adds a request to the linked list.
969 * queue lock is held and interrupts disabled, as we muck with the
970 * request queue list.
971 */
972 static inline void add_request(struct request_queue *q, struct request *req)
973 {
974 drive_stat_acct(req, 1);
975
976 /*
977 * elevator indicated where it wants this request to be
978 * inserted at elevator_merge time
979 */
980 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
981 }
982
983 /*
984 * disk_round_stats() - Round off the performance stats on a struct
985 * disk_stats.
986 *
987 * The average IO queue length and utilisation statistics are maintained
988 * by observing the current state of the queue length and the amount of
989 * time it has been in this state for.
990 *
991 * Normally, that accounting is done on IO completion, but that can result
992 * in more than a second's worth of IO being accounted for within any one
993 * second, leading to >100% utilisation. To deal with that, we call this
994 * function to do a round-off before returning the results when reading
995 * /proc/diskstats. This accounts immediately for all queue usage up to
996 * the current jiffies and restarts the counters again.
997 */
998 void disk_round_stats(struct gendisk *disk)
999 {
1000 unsigned long now = jiffies;
1001
1002 if (now == disk->stamp)
1003 return;
1004
1005 if (disk->in_flight) {
1006 __disk_stat_add(disk, time_in_queue,
1007 disk->in_flight * (now - disk->stamp));
1008 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1009 }
1010 disk->stamp = now;
1011 }
1012 EXPORT_SYMBOL_GPL(disk_round_stats);
1013
1014 void part_round_stats(struct hd_struct *part)
1015 {
1016 unsigned long now = jiffies;
1017
1018 if (now == part->stamp)
1019 return;
1020
1021 if (part->in_flight) {
1022 __part_stat_add(part, time_in_queue,
1023 part->in_flight * (now - part->stamp));
1024 __part_stat_add(part, io_ticks, (now - part->stamp));
1025 }
1026 part->stamp = now;
1027 }
1028
1029 /*
1030 * queue lock must be held
1031 */
1032 void __blk_put_request(struct request_queue *q, struct request *req)
1033 {
1034 if (unlikely(!q))
1035 return;
1036 if (unlikely(--req->ref_count))
1037 return;
1038
1039 elv_completed_request(q, req);
1040
1041 /*
1042 * Request may not have originated from ll_rw_blk. if not,
1043 * it didn't come out of our reserved rq pools
1044 */
1045 if (req->cmd_flags & REQ_ALLOCED) {
1046 int rw = rq_data_dir(req);
1047 int priv = req->cmd_flags & REQ_ELVPRIV;
1048
1049 BUG_ON(!list_empty(&req->queuelist));
1050 BUG_ON(!hlist_unhashed(&req->hash));
1051
1052 blk_free_request(q, req);
1053 freed_request(q, rw, priv);
1054 }
1055 }
1056 EXPORT_SYMBOL_GPL(__blk_put_request);
1057
1058 void blk_put_request(struct request *req)
1059 {
1060 unsigned long flags;
1061 struct request_queue *q = req->q;
1062
1063 spin_lock_irqsave(q->queue_lock, flags);
1064 __blk_put_request(q, req);
1065 spin_unlock_irqrestore(q->queue_lock, flags);
1066 }
1067 EXPORT_SYMBOL(blk_put_request);
1068
1069 void init_request_from_bio(struct request *req, struct bio *bio)
1070 {
1071 req->cmd_type = REQ_TYPE_FS;
1072
1073 /*
1074 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1075 */
1076 if (bio_rw_ahead(bio) || bio_failfast(bio))
1077 req->cmd_flags |= REQ_FAILFAST;
1078
1079 /*
1080 * REQ_BARRIER implies no merging, but lets make it explicit
1081 */
1082 if (unlikely(bio_barrier(bio)))
1083 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1084
1085 if (bio_sync(bio))
1086 req->cmd_flags |= REQ_RW_SYNC;
1087 if (bio_rw_meta(bio))
1088 req->cmd_flags |= REQ_RW_META;
1089
1090 req->errors = 0;
1091 req->hard_sector = req->sector = bio->bi_sector;
1092 req->ioprio = bio_prio(bio);
1093 req->start_time = jiffies;
1094 blk_rq_bio_prep(req->q, req, bio);
1095 }
1096
1097 static int __make_request(struct request_queue *q, struct bio *bio)
1098 {
1099 struct request *req;
1100 int el_ret, nr_sectors, barrier, err;
1101 const unsigned short prio = bio_prio(bio);
1102 const int sync = bio_sync(bio);
1103 int rw_flags;
1104
1105 nr_sectors = bio_sectors(bio);
1106
1107 /*
1108 * low level driver can indicate that it wants pages above a
1109 * certain limit bounced to low memory (ie for highmem, or even
1110 * ISA dma in theory)
1111 */
1112 blk_queue_bounce(q, &bio);
1113
1114 barrier = bio_barrier(bio);
1115 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1116 err = -EOPNOTSUPP;
1117 goto end_io;
1118 }
1119
1120 spin_lock_irq(q->queue_lock);
1121
1122 if (unlikely(barrier) || elv_queue_empty(q))
1123 goto get_rq;
1124
1125 el_ret = elv_merge(q, &req, bio);
1126 switch (el_ret) {
1127 case ELEVATOR_BACK_MERGE:
1128 BUG_ON(!rq_mergeable(req));
1129
1130 if (!ll_back_merge_fn(q, req, bio))
1131 break;
1132
1133 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1134
1135 req->biotail->bi_next = bio;
1136 req->biotail = bio;
1137 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1138 req->ioprio = ioprio_best(req->ioprio, prio);
1139 drive_stat_acct(req, 0);
1140 if (!attempt_back_merge(q, req))
1141 elv_merged_request(q, req, el_ret);
1142 goto out;
1143
1144 case ELEVATOR_FRONT_MERGE:
1145 BUG_ON(!rq_mergeable(req));
1146
1147 if (!ll_front_merge_fn(q, req, bio))
1148 break;
1149
1150 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1151
1152 bio->bi_next = req->bio;
1153 req->bio = bio;
1154
1155 /*
1156 * may not be valid. if the low level driver said
1157 * it didn't need a bounce buffer then it better
1158 * not touch req->buffer either...
1159 */
1160 req->buffer = bio_data(bio);
1161 req->current_nr_sectors = bio_cur_sectors(bio);
1162 req->hard_cur_sectors = req->current_nr_sectors;
1163 req->sector = req->hard_sector = bio->bi_sector;
1164 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1165 req->ioprio = ioprio_best(req->ioprio, prio);
1166 drive_stat_acct(req, 0);
1167 if (!attempt_front_merge(q, req))
1168 elv_merged_request(q, req, el_ret);
1169 goto out;
1170
1171 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1172 default:
1173 ;
1174 }
1175
1176 get_rq:
1177 /*
1178 * This sync check and mask will be re-done in init_request_from_bio(),
1179 * but we need to set it earlier to expose the sync flag to the
1180 * rq allocator and io schedulers.
1181 */
1182 rw_flags = bio_data_dir(bio);
1183 if (sync)
1184 rw_flags |= REQ_RW_SYNC;
1185
1186 /*
1187 * Grab a free request. This is might sleep but can not fail.
1188 * Returns with the queue unlocked.
1189 */
1190 req = get_request_wait(q, rw_flags, bio);
1191
1192 /*
1193 * After dropping the lock and possibly sleeping here, our request
1194 * may now be mergeable after it had proven unmergeable (above).
1195 * We don't worry about that case for efficiency. It won't happen
1196 * often, and the elevators are able to handle it.
1197 */
1198 init_request_from_bio(req, bio);
1199
1200 spin_lock_irq(q->queue_lock);
1201 if (elv_queue_empty(q))
1202 blk_plug_device(q);
1203 add_request(q, req);
1204 out:
1205 if (sync)
1206 __generic_unplug_device(q);
1207
1208 spin_unlock_irq(q->queue_lock);
1209 return 0;
1210
1211 end_io:
1212 bio_endio(bio, err);
1213 return 0;
1214 }
1215
1216 /*
1217 * If bio->bi_dev is a partition, remap the location
1218 */
1219 static inline void blk_partition_remap(struct bio *bio)
1220 {
1221 struct block_device *bdev = bio->bi_bdev;
1222
1223 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1224 struct hd_struct *p = bdev->bd_part;
1225
1226 bio->bi_sector += p->start_sect;
1227 bio->bi_bdev = bdev->bd_contains;
1228
1229 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1230 bdev->bd_dev, bio->bi_sector,
1231 bio->bi_sector - p->start_sect);
1232 }
1233 }
1234
1235 static void handle_bad_sector(struct bio *bio)
1236 {
1237 char b[BDEVNAME_SIZE];
1238
1239 printk(KERN_INFO "attempt to access beyond end of device\n");
1240 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1241 bdevname(bio->bi_bdev, b),
1242 bio->bi_rw,
1243 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1244 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1245
1246 set_bit(BIO_EOF, &bio->bi_flags);
1247 }
1248
1249 #ifdef CONFIG_FAIL_MAKE_REQUEST
1250
1251 static DECLARE_FAULT_ATTR(fail_make_request);
1252
1253 static int __init setup_fail_make_request(char *str)
1254 {
1255 return setup_fault_attr(&fail_make_request, str);
1256 }
1257 __setup("fail_make_request=", setup_fail_make_request);
1258
1259 static int should_fail_request(struct bio *bio)
1260 {
1261 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1262 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1263 return should_fail(&fail_make_request, bio->bi_size);
1264
1265 return 0;
1266 }
1267
1268 static int __init fail_make_request_debugfs(void)
1269 {
1270 return init_fault_attr_dentries(&fail_make_request,
1271 "fail_make_request");
1272 }
1273
1274 late_initcall(fail_make_request_debugfs);
1275
1276 #else /* CONFIG_FAIL_MAKE_REQUEST */
1277
1278 static inline int should_fail_request(struct bio *bio)
1279 {
1280 return 0;
1281 }
1282
1283 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1284
1285 /*
1286 * Check whether this bio extends beyond the end of the device.
1287 */
1288 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1289 {
1290 sector_t maxsector;
1291
1292 if (!nr_sectors)
1293 return 0;
1294
1295 /* Test device or partition size, when known. */
1296 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1297 if (maxsector) {
1298 sector_t sector = bio->bi_sector;
1299
1300 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1301 /*
1302 * This may well happen - the kernel calls bread()
1303 * without checking the size of the device, e.g., when
1304 * mounting a device.
1305 */
1306 handle_bad_sector(bio);
1307 return 1;
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * generic_make_request: hand a buffer to its device driver for I/O
1316 * @bio: The bio describing the location in memory and on the device.
1317 *
1318 * generic_make_request() is used to make I/O requests of block
1319 * devices. It is passed a &struct bio, which describes the I/O that needs
1320 * to be done.
1321 *
1322 * generic_make_request() does not return any status. The
1323 * success/failure status of the request, along with notification of
1324 * completion, is delivered asynchronously through the bio->bi_end_io
1325 * function described (one day) else where.
1326 *
1327 * The caller of generic_make_request must make sure that bi_io_vec
1328 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1329 * set to describe the device address, and the
1330 * bi_end_io and optionally bi_private are set to describe how
1331 * completion notification should be signaled.
1332 *
1333 * generic_make_request and the drivers it calls may use bi_next if this
1334 * bio happens to be merged with someone else, and may change bi_dev and
1335 * bi_sector for remaps as it sees fit. So the values of these fields
1336 * should NOT be depended on after the call to generic_make_request.
1337 */
1338 static inline void __generic_make_request(struct bio *bio)
1339 {
1340 struct request_queue *q;
1341 sector_t old_sector;
1342 int ret, nr_sectors = bio_sectors(bio);
1343 dev_t old_dev;
1344 int err = -EIO;
1345
1346 might_sleep();
1347
1348 if (bio_check_eod(bio, nr_sectors))
1349 goto end_io;
1350
1351 /*
1352 * Resolve the mapping until finished. (drivers are
1353 * still free to implement/resolve their own stacking
1354 * by explicitly returning 0)
1355 *
1356 * NOTE: we don't repeat the blk_size check for each new device.
1357 * Stacking drivers are expected to know what they are doing.
1358 */
1359 old_sector = -1;
1360 old_dev = 0;
1361 do {
1362 char b[BDEVNAME_SIZE];
1363
1364 q = bdev_get_queue(bio->bi_bdev);
1365 if (!q) {
1366 printk(KERN_ERR
1367 "generic_make_request: Trying to access "
1368 "nonexistent block-device %s (%Lu)\n",
1369 bdevname(bio->bi_bdev, b),
1370 (long long) bio->bi_sector);
1371 end_io:
1372 bio_endio(bio, err);
1373 break;
1374 }
1375
1376 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1377 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1378 bdevname(bio->bi_bdev, b),
1379 bio_sectors(bio),
1380 q->max_hw_sectors);
1381 goto end_io;
1382 }
1383
1384 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1385 goto end_io;
1386
1387 if (should_fail_request(bio))
1388 goto end_io;
1389
1390 /*
1391 * If this device has partitions, remap block n
1392 * of partition p to block n+start(p) of the disk.
1393 */
1394 blk_partition_remap(bio);
1395
1396 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1397 goto end_io;
1398
1399 if (old_sector != -1)
1400 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1401 old_sector);
1402
1403 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1404
1405 old_sector = bio->bi_sector;
1406 old_dev = bio->bi_bdev->bd_dev;
1407
1408 if (bio_check_eod(bio, nr_sectors))
1409 goto end_io;
1410 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
1411 err = -EOPNOTSUPP;
1412 goto end_io;
1413 }
1414
1415 ret = q->make_request_fn(q, bio);
1416 } while (ret);
1417 }
1418
1419 /*
1420 * We only want one ->make_request_fn to be active at a time,
1421 * else stack usage with stacked devices could be a problem.
1422 * So use current->bio_{list,tail} to keep a list of requests
1423 * submited by a make_request_fn function.
1424 * current->bio_tail is also used as a flag to say if
1425 * generic_make_request is currently active in this task or not.
1426 * If it is NULL, then no make_request is active. If it is non-NULL,
1427 * then a make_request is active, and new requests should be added
1428 * at the tail
1429 */
1430 void generic_make_request(struct bio *bio)
1431 {
1432 if (current->bio_tail) {
1433 /* make_request is active */
1434 *(current->bio_tail) = bio;
1435 bio->bi_next = NULL;
1436 current->bio_tail = &bio->bi_next;
1437 return;
1438 }
1439 /* following loop may be a bit non-obvious, and so deserves some
1440 * explanation.
1441 * Before entering the loop, bio->bi_next is NULL (as all callers
1442 * ensure that) so we have a list with a single bio.
1443 * We pretend that we have just taken it off a longer list, so
1444 * we assign bio_list to the next (which is NULL) and bio_tail
1445 * to &bio_list, thus initialising the bio_list of new bios to be
1446 * added. __generic_make_request may indeed add some more bios
1447 * through a recursive call to generic_make_request. If it
1448 * did, we find a non-NULL value in bio_list and re-enter the loop
1449 * from the top. In this case we really did just take the bio
1450 * of the top of the list (no pretending) and so fixup bio_list and
1451 * bio_tail or bi_next, and call into __generic_make_request again.
1452 *
1453 * The loop was structured like this to make only one call to
1454 * __generic_make_request (which is important as it is large and
1455 * inlined) and to keep the structure simple.
1456 */
1457 BUG_ON(bio->bi_next);
1458 do {
1459 current->bio_list = bio->bi_next;
1460 if (bio->bi_next == NULL)
1461 current->bio_tail = &current->bio_list;
1462 else
1463 bio->bi_next = NULL;
1464 __generic_make_request(bio);
1465 bio = current->bio_list;
1466 } while (bio);
1467 current->bio_tail = NULL; /* deactivate */
1468 }
1469 EXPORT_SYMBOL(generic_make_request);
1470
1471 /**
1472 * submit_bio: submit a bio to the block device layer for I/O
1473 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1474 * @bio: The &struct bio which describes the I/O
1475 *
1476 * submit_bio() is very similar in purpose to generic_make_request(), and
1477 * uses that function to do most of the work. Both are fairly rough
1478 * interfaces, @bio must be presetup and ready for I/O.
1479 *
1480 */
1481 void submit_bio(int rw, struct bio *bio)
1482 {
1483 int count = bio_sectors(bio);
1484
1485 bio->bi_rw |= rw;
1486
1487 /*
1488 * If it's a regular read/write or a barrier with data attached,
1489 * go through the normal accounting stuff before submission.
1490 */
1491 if (!bio_empty_barrier(bio)) {
1492
1493 BIO_BUG_ON(!bio->bi_size);
1494 BIO_BUG_ON(!bio->bi_io_vec);
1495
1496 if (rw & WRITE) {
1497 count_vm_events(PGPGOUT, count);
1498 } else {
1499 task_io_account_read(bio->bi_size);
1500 count_vm_events(PGPGIN, count);
1501 }
1502
1503 if (unlikely(block_dump)) {
1504 char b[BDEVNAME_SIZE];
1505 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1506 current->comm, task_pid_nr(current),
1507 (rw & WRITE) ? "WRITE" : "READ",
1508 (unsigned long long)bio->bi_sector,
1509 bdevname(bio->bi_bdev, b));
1510 }
1511 }
1512
1513 generic_make_request(bio);
1514 }
1515 EXPORT_SYMBOL(submit_bio);
1516
1517 /**
1518 * __end_that_request_first - end I/O on a request
1519 * @req: the request being processed
1520 * @error: 0 for success, < 0 for error
1521 * @nr_bytes: number of bytes to complete
1522 *
1523 * Description:
1524 * Ends I/O on a number of bytes attached to @req, and sets it up
1525 * for the next range of segments (if any) in the cluster.
1526 *
1527 * Return:
1528 * 0 - we are done with this request, call end_that_request_last()
1529 * 1 - still buffers pending for this request
1530 **/
1531 static int __end_that_request_first(struct request *req, int error,
1532 int nr_bytes)
1533 {
1534 int total_bytes, bio_nbytes, next_idx = 0;
1535 struct bio *bio;
1536
1537 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1538
1539 /*
1540 * for a REQ_BLOCK_PC request, we want to carry any eventual
1541 * sense key with us all the way through
1542 */
1543 if (!blk_pc_request(req))
1544 req->errors = 0;
1545
1546 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1547 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1548 req->rq_disk ? req->rq_disk->disk_name : "?",
1549 (unsigned long long)req->sector);
1550 }
1551
1552 if (blk_fs_request(req) && req->rq_disk) {
1553 struct hd_struct *part = get_part(req->rq_disk, req->sector);
1554 const int rw = rq_data_dir(req);
1555
1556 all_stat_add(req->rq_disk, part, sectors[rw],
1557 nr_bytes >> 9, req->sector);
1558 }
1559
1560 total_bytes = bio_nbytes = 0;
1561 while ((bio = req->bio) != NULL) {
1562 int nbytes;
1563
1564 /*
1565 * For an empty barrier request, the low level driver must
1566 * store a potential error location in ->sector. We pass
1567 * that back up in ->bi_sector.
1568 */
1569 if (blk_empty_barrier(req))
1570 bio->bi_sector = req->sector;
1571
1572 if (nr_bytes >= bio->bi_size) {
1573 req->bio = bio->bi_next;
1574 nbytes = bio->bi_size;
1575 req_bio_endio(req, bio, nbytes, error);
1576 next_idx = 0;
1577 bio_nbytes = 0;
1578 } else {
1579 int idx = bio->bi_idx + next_idx;
1580
1581 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1582 blk_dump_rq_flags(req, "__end_that");
1583 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1584 __func__, bio->bi_idx, bio->bi_vcnt);
1585 break;
1586 }
1587
1588 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1589 BIO_BUG_ON(nbytes > bio->bi_size);
1590
1591 /*
1592 * not a complete bvec done
1593 */
1594 if (unlikely(nbytes > nr_bytes)) {
1595 bio_nbytes += nr_bytes;
1596 total_bytes += nr_bytes;
1597 break;
1598 }
1599
1600 /*
1601 * advance to the next vector
1602 */
1603 next_idx++;
1604 bio_nbytes += nbytes;
1605 }
1606
1607 total_bytes += nbytes;
1608 nr_bytes -= nbytes;
1609
1610 bio = req->bio;
1611 if (bio) {
1612 /*
1613 * end more in this run, or just return 'not-done'
1614 */
1615 if (unlikely(nr_bytes <= 0))
1616 break;
1617 }
1618 }
1619
1620 /*
1621 * completely done
1622 */
1623 if (!req->bio)
1624 return 0;
1625
1626 /*
1627 * if the request wasn't completed, update state
1628 */
1629 if (bio_nbytes) {
1630 req_bio_endio(req, bio, bio_nbytes, error);
1631 bio->bi_idx += next_idx;
1632 bio_iovec(bio)->bv_offset += nr_bytes;
1633 bio_iovec(bio)->bv_len -= nr_bytes;
1634 }
1635
1636 blk_recalc_rq_sectors(req, total_bytes >> 9);
1637 blk_recalc_rq_segments(req);
1638 return 1;
1639 }
1640
1641 /*
1642 * splice the completion data to a local structure and hand off to
1643 * process_completion_queue() to complete the requests
1644 */
1645 static void blk_done_softirq(struct softirq_action *h)
1646 {
1647 struct list_head *cpu_list, local_list;
1648
1649 local_irq_disable();
1650 cpu_list = &__get_cpu_var(blk_cpu_done);
1651 list_replace_init(cpu_list, &local_list);
1652 local_irq_enable();
1653
1654 while (!list_empty(&local_list)) {
1655 struct request *rq;
1656
1657 rq = list_entry(local_list.next, struct request, donelist);
1658 list_del_init(&rq->donelist);
1659 rq->q->softirq_done_fn(rq);
1660 }
1661 }
1662
1663 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1664 unsigned long action, void *hcpu)
1665 {
1666 /*
1667 * If a CPU goes away, splice its entries to the current CPU
1668 * and trigger a run of the softirq
1669 */
1670 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1671 int cpu = (unsigned long) hcpu;
1672
1673 local_irq_disable();
1674 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1675 &__get_cpu_var(blk_cpu_done));
1676 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1677 local_irq_enable();
1678 }
1679
1680 return NOTIFY_OK;
1681 }
1682
1683
1684 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1685 .notifier_call = blk_cpu_notify,
1686 };
1687
1688 /**
1689 * blk_complete_request - end I/O on a request
1690 * @req: the request being processed
1691 *
1692 * Description:
1693 * Ends all I/O on a request. It does not handle partial completions,
1694 * unless the driver actually implements this in its completion callback
1695 * through requeueing. The actual completion happens out-of-order,
1696 * through a softirq handler. The user must have registered a completion
1697 * callback through blk_queue_softirq_done().
1698 **/
1699
1700 void blk_complete_request(struct request *req)
1701 {
1702 struct list_head *cpu_list;
1703 unsigned long flags;
1704
1705 BUG_ON(!req->q->softirq_done_fn);
1706
1707 local_irq_save(flags);
1708
1709 cpu_list = &__get_cpu_var(blk_cpu_done);
1710 list_add_tail(&req->donelist, cpu_list);
1711 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1712
1713 local_irq_restore(flags);
1714 }
1715 EXPORT_SYMBOL(blk_complete_request);
1716
1717 /*
1718 * queue lock must be held
1719 */
1720 static void end_that_request_last(struct request *req, int error)
1721 {
1722 struct gendisk *disk = req->rq_disk;
1723
1724 if (blk_rq_tagged(req))
1725 blk_queue_end_tag(req->q, req);
1726
1727 if (blk_queued_rq(req))
1728 blkdev_dequeue_request(req);
1729
1730 if (unlikely(laptop_mode) && blk_fs_request(req))
1731 laptop_io_completion();
1732
1733 /*
1734 * Account IO completion. bar_rq isn't accounted as a normal
1735 * IO on queueing nor completion. Accounting the containing
1736 * request is enough.
1737 */
1738 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1739 unsigned long duration = jiffies - req->start_time;
1740 const int rw = rq_data_dir(req);
1741 struct hd_struct *part = get_part(disk, req->sector);
1742
1743 __all_stat_inc(disk, part, ios[rw], req->sector);
1744 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1745 disk_round_stats(disk);
1746 disk->in_flight--;
1747 if (part) {
1748 part_round_stats(part);
1749 part->in_flight--;
1750 }
1751 }
1752
1753 if (req->end_io)
1754 req->end_io(req, error);
1755 else {
1756 if (blk_bidi_rq(req))
1757 __blk_put_request(req->next_rq->q, req->next_rq);
1758
1759 __blk_put_request(req->q, req);
1760 }
1761 }
1762
1763 static inline void __end_request(struct request *rq, int uptodate,
1764 unsigned int nr_bytes)
1765 {
1766 int error = 0;
1767
1768 if (uptodate <= 0)
1769 error = uptodate ? uptodate : -EIO;
1770
1771 __blk_end_request(rq, error, nr_bytes);
1772 }
1773
1774 /**
1775 * blk_rq_bytes - Returns bytes left to complete in the entire request
1776 * @rq: the request being processed
1777 **/
1778 unsigned int blk_rq_bytes(struct request *rq)
1779 {
1780 if (blk_fs_request(rq))
1781 return rq->hard_nr_sectors << 9;
1782
1783 return rq->data_len;
1784 }
1785 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1786
1787 /**
1788 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1789 * @rq: the request being processed
1790 **/
1791 unsigned int blk_rq_cur_bytes(struct request *rq)
1792 {
1793 if (blk_fs_request(rq))
1794 return rq->current_nr_sectors << 9;
1795
1796 if (rq->bio)
1797 return rq->bio->bi_size;
1798
1799 return rq->data_len;
1800 }
1801 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1802
1803 /**
1804 * end_queued_request - end all I/O on a queued request
1805 * @rq: the request being processed
1806 * @uptodate: error value or 0/1 uptodate flag
1807 *
1808 * Description:
1809 * Ends all I/O on a request, and removes it from the block layer queues.
1810 * Not suitable for normal IO completion, unless the driver still has
1811 * the request attached to the block layer.
1812 *
1813 **/
1814 void end_queued_request(struct request *rq, int uptodate)
1815 {
1816 __end_request(rq, uptodate, blk_rq_bytes(rq));
1817 }
1818 EXPORT_SYMBOL(end_queued_request);
1819
1820 /**
1821 * end_dequeued_request - end all I/O on a dequeued request
1822 * @rq: the request being processed
1823 * @uptodate: error value or 0/1 uptodate flag
1824 *
1825 * Description:
1826 * Ends all I/O on a request. The request must already have been
1827 * dequeued using blkdev_dequeue_request(), as is normally the case
1828 * for most drivers.
1829 *
1830 **/
1831 void end_dequeued_request(struct request *rq, int uptodate)
1832 {
1833 __end_request(rq, uptodate, blk_rq_bytes(rq));
1834 }
1835 EXPORT_SYMBOL(end_dequeued_request);
1836
1837
1838 /**
1839 * end_request - end I/O on the current segment of the request
1840 * @req: the request being processed
1841 * @uptodate: error value or 0/1 uptodate flag
1842 *
1843 * Description:
1844 * Ends I/O on the current segment of a request. If that is the only
1845 * remaining segment, the request is also completed and freed.
1846 *
1847 * This is a remnant of how older block drivers handled IO completions.
1848 * Modern drivers typically end IO on the full request in one go, unless
1849 * they have a residual value to account for. For that case this function
1850 * isn't really useful, unless the residual just happens to be the
1851 * full current segment. In other words, don't use this function in new
1852 * code. Either use end_request_completely(), or the
1853 * end_that_request_chunk() (along with end_that_request_last()) for
1854 * partial completions.
1855 *
1856 **/
1857 void end_request(struct request *req, int uptodate)
1858 {
1859 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1860 }
1861 EXPORT_SYMBOL(end_request);
1862
1863 /**
1864 * blk_end_io - Generic end_io function to complete a request.
1865 * @rq: the request being processed
1866 * @error: 0 for success, < 0 for error
1867 * @nr_bytes: number of bytes to complete @rq
1868 * @bidi_bytes: number of bytes to complete @rq->next_rq
1869 * @drv_callback: function called between completion of bios in the request
1870 * and completion of the request.
1871 * If the callback returns non 0, this helper returns without
1872 * completion of the request.
1873 *
1874 * Description:
1875 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1876 * If @rq has leftover, sets it up for the next range of segments.
1877 *
1878 * Return:
1879 * 0 - we are done with this request
1880 * 1 - this request is not freed yet, it still has pending buffers.
1881 **/
1882 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1883 unsigned int bidi_bytes,
1884 int (drv_callback)(struct request *))
1885 {
1886 struct request_queue *q = rq->q;
1887 unsigned long flags = 0UL;
1888
1889 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1890 if (__end_that_request_first(rq, error, nr_bytes))
1891 return 1;
1892
1893 /* Bidi request must be completed as a whole */
1894 if (blk_bidi_rq(rq) &&
1895 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1896 return 1;
1897 }
1898
1899 /* Special feature for tricky drivers */
1900 if (drv_callback && drv_callback(rq))
1901 return 1;
1902
1903 add_disk_randomness(rq->rq_disk);
1904
1905 spin_lock_irqsave(q->queue_lock, flags);
1906 end_that_request_last(rq, error);
1907 spin_unlock_irqrestore(q->queue_lock, flags);
1908
1909 return 0;
1910 }
1911
1912 /**
1913 * blk_end_request - Helper function for drivers to complete the request.
1914 * @rq: the request being processed
1915 * @error: 0 for success, < 0 for error
1916 * @nr_bytes: number of bytes to complete
1917 *
1918 * Description:
1919 * Ends I/O on a number of bytes attached to @rq.
1920 * If @rq has leftover, sets it up for the next range of segments.
1921 *
1922 * Return:
1923 * 0 - we are done with this request
1924 * 1 - still buffers pending for this request
1925 **/
1926 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1927 {
1928 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1929 }
1930 EXPORT_SYMBOL_GPL(blk_end_request);
1931
1932 /**
1933 * __blk_end_request - Helper function for drivers to complete the request.
1934 * @rq: the request being processed
1935 * @error: 0 for success, < 0 for error
1936 * @nr_bytes: number of bytes to complete
1937 *
1938 * Description:
1939 * Must be called with queue lock held unlike blk_end_request().
1940 *
1941 * Return:
1942 * 0 - we are done with this request
1943 * 1 - still buffers pending for this request
1944 **/
1945 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1946 {
1947 if (blk_fs_request(rq) || blk_pc_request(rq)) {
1948 if (__end_that_request_first(rq, error, nr_bytes))
1949 return 1;
1950 }
1951
1952 add_disk_randomness(rq->rq_disk);
1953
1954 end_that_request_last(rq, error);
1955
1956 return 0;
1957 }
1958 EXPORT_SYMBOL_GPL(__blk_end_request);
1959
1960 /**
1961 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1962 * @rq: the bidi request being processed
1963 * @error: 0 for success, < 0 for error
1964 * @nr_bytes: number of bytes to complete @rq
1965 * @bidi_bytes: number of bytes to complete @rq->next_rq
1966 *
1967 * Description:
1968 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1969 *
1970 * Return:
1971 * 0 - we are done with this request
1972 * 1 - still buffers pending for this request
1973 **/
1974 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1975 unsigned int bidi_bytes)
1976 {
1977 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1978 }
1979 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1980
1981 /**
1982 * blk_end_request_callback - Special helper function for tricky drivers
1983 * @rq: the request being processed
1984 * @error: 0 for success, < 0 for error
1985 * @nr_bytes: number of bytes to complete
1986 * @drv_callback: function called between completion of bios in the request
1987 * and completion of the request.
1988 * If the callback returns non 0, this helper returns without
1989 * completion of the request.
1990 *
1991 * Description:
1992 * Ends I/O on a number of bytes attached to @rq.
1993 * If @rq has leftover, sets it up for the next range of segments.
1994 *
1995 * This special helper function is used only for existing tricky drivers.
1996 * (e.g. cdrom_newpc_intr() of ide-cd)
1997 * This interface will be removed when such drivers are rewritten.
1998 * Don't use this interface in other places anymore.
1999 *
2000 * Return:
2001 * 0 - we are done with this request
2002 * 1 - this request is not freed yet.
2003 * this request still has pending buffers or
2004 * the driver doesn't want to finish this request yet.
2005 **/
2006 int blk_end_request_callback(struct request *rq, int error,
2007 unsigned int nr_bytes,
2008 int (drv_callback)(struct request *))
2009 {
2010 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2011 }
2012 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2013
2014 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2015 struct bio *bio)
2016 {
2017 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
2018 rq->cmd_flags |= (bio->bi_rw & 3);
2019
2020 rq->nr_phys_segments = bio_phys_segments(q, bio);
2021 rq->nr_hw_segments = bio_hw_segments(q, bio);
2022 rq->current_nr_sectors = bio_cur_sectors(bio);
2023 rq->hard_cur_sectors = rq->current_nr_sectors;
2024 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2025 rq->buffer = bio_data(bio);
2026 rq->data_len = bio->bi_size;
2027
2028 rq->bio = rq->biotail = bio;
2029
2030 if (bio->bi_bdev)
2031 rq->rq_disk = bio->bi_bdev->bd_disk;
2032 }
2033
2034 int kblockd_schedule_work(struct work_struct *work)
2035 {
2036 return queue_work(kblockd_workqueue, work);
2037 }
2038 EXPORT_SYMBOL(kblockd_schedule_work);
2039
2040 void kblockd_flush_work(struct work_struct *work)
2041 {
2042 cancel_work_sync(work);
2043 }
2044 EXPORT_SYMBOL(kblockd_flush_work);
2045
2046 int __init blk_dev_init(void)
2047 {
2048 int i;
2049
2050 kblockd_workqueue = create_workqueue("kblockd");
2051 if (!kblockd_workqueue)
2052 panic("Failed to create kblockd\n");
2053
2054 request_cachep = kmem_cache_create("blkdev_requests",
2055 sizeof(struct request), 0, SLAB_PANIC, NULL);
2056
2057 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2058 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2059
2060 for_each_possible_cpu(i)
2061 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2062
2063 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2064 register_hotcpu_notifier(&blk_cpu_notifier);
2065
2066 return 0;
2067 }
2068