]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: fix race between request completion and timeout handling
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 #include <linux/pm_runtime.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/block.h>
37
38 #include "blk.h"
39 #include "blk-cgroup.h"
40
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
45
46 DEFINE_IDA(blk_queue_ida);
47
48 /*
49 * For the allocated request tables
50 */
51 static struct kmem_cache *request_cachep;
52
53 /*
54 * For queue allocation
55 */
56 struct kmem_cache *blk_requestq_cachep;
57
58 /*
59 * Controlling structure to kblockd
60 */
61 static struct workqueue_struct *kblockd_workqueue;
62
63 static void drive_stat_acct(struct request *rq, int new_io)
64 {
65 struct hd_struct *part;
66 int rw = rq_data_dir(rq);
67 int cpu;
68
69 if (!blk_do_io_stat(rq))
70 return;
71
72 cpu = part_stat_lock();
73
74 if (!new_io) {
75 part = rq->part;
76 part_stat_inc(cpu, part, merges[rw]);
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
79 if (!hd_struct_try_get(part)) {
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
89 hd_struct_get(part);
90 }
91 part_round_stats(cpu, part);
92 part_inc_in_flight(part, rw);
93 rq->part = part;
94 }
95
96 part_stat_unlock();
97 }
98
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112 }
113
114 /**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124 {
125 struct backing_dev_info *ret = NULL;
126 struct request_queue *q = bdev_get_queue(bdev);
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131 }
132 EXPORT_SYMBOL(blk_get_backing_dev_info);
133
134 void blk_rq_init(struct request_queue *q, struct request *rq)
135 {
136 memset(rq, 0, sizeof(*rq));
137
138 INIT_LIST_HEAD(&rq->queuelist);
139 INIT_LIST_HEAD(&rq->timeout_list);
140 rq->cpu = -1;
141 rq->q = q;
142 rq->__sector = (sector_t) -1;
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
145 rq->cmd = rq->__cmd;
146 rq->cmd_len = BLK_MAX_CDB;
147 rq->tag = -1;
148 rq->ref_count = 1;
149 rq->start_time = jiffies;
150 set_start_time_ns(rq);
151 rq->part = NULL;
152 }
153 EXPORT_SYMBOL(blk_rq_init);
154
155 static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
157 {
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio_advance(bio, nbytes);
167
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
171 }
172
173 void blk_dump_rq_flags(struct request *rq, char *msg)
174 {
175 int bit;
176
177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
180
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
186
187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
188 printk(KERN_INFO " cdb: ");
189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193 }
194 EXPORT_SYMBOL(blk_dump_rq_flags);
195
196 static void blk_delay_work(struct work_struct *work)
197 {
198 struct request_queue *q;
199
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
202 __blk_run_queue(q);
203 spin_unlock_irq(q->queue_lock);
204 }
205
206 /**
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
210 *
211 * Description:
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
214 * restarted around the specified time. Queue lock must be held.
215 */
216 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
217 {
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
221 }
222 EXPORT_SYMBOL(blk_delay_queue);
223
224 /**
225 * blk_start_queue - restart a previously stopped queue
226 * @q: The &struct request_queue in question
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
233 void blk_start_queue(struct request_queue *q)
234 {
235 WARN_ON(!irqs_disabled());
236
237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
238 __blk_run_queue(q);
239 }
240 EXPORT_SYMBOL(blk_start_queue);
241
242 /**
243 * blk_stop_queue - stop a queue
244 * @q: The &struct request_queue in question
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
256 void blk_stop_queue(struct request_queue *q)
257 {
258 cancel_delayed_work(&q->delay_work);
259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
260 }
261 EXPORT_SYMBOL(blk_stop_queue);
262
263 /**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
272 * that the callbacks might use. The caller must already have made sure
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
278 * and blkcg_exit_queue() to be called with queue lock initialized.
279 *
280 */
281 void blk_sync_queue(struct request_queue *q)
282 {
283 del_timer_sync(&q->timeout);
284 cancel_delayed_work_sync(&q->delay_work);
285 }
286 EXPORT_SYMBOL(blk_sync_queue);
287
288 /**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299 inline void __blk_run_queue_uncond(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
312 q->request_fn(q);
313 q->request_fn_active--;
314 }
315
316 /**
317 * __blk_run_queue - run a single device queue
318 * @q: The queue to run
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
322 * held and interrupts disabled.
323 */
324 void __blk_run_queue(struct request_queue *q)
325 {
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
329 __blk_run_queue_uncond(q);
330 }
331 EXPORT_SYMBOL(__blk_run_queue);
332
333 /**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
339 * of us. The caller must hold the queue lock.
340 */
341 void blk_run_queue_async(struct request_queue *q)
342 {
343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
345 }
346 EXPORT_SYMBOL(blk_run_queue_async);
347
348 /**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
354 * May be used to restart queueing when a request has completed.
355 */
356 void blk_run_queue(struct request_queue *q)
357 {
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
361 __blk_run_queue(q);
362 spin_unlock_irqrestore(q->queue_lock, flags);
363 }
364 EXPORT_SYMBOL(blk_run_queue);
365
366 void blk_put_queue(struct request_queue *q)
367 {
368 kobject_put(&q->kobj);
369 }
370 EXPORT_SYMBOL(blk_put_queue);
371
372 /**
373 * __blk_drain_queue - drain requests from request_queue
374 * @q: queue to drain
375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
376 *
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
380 */
381 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
384 {
385 int i;
386
387 lockdep_assert_held(q->queue_lock);
388
389 while (true) {
390 bool drain = false;
391
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
399 blkcg_drain_queue(q);
400
401 /*
402 * This function might be called on a queue which failed
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
407 */
408 if (!list_empty(&q->queue_head) && q->request_fn)
409 __blk_run_queue(q);
410
411 drain |= q->nr_rqs_elvpriv;
412 drain |= q->request_fn_active;
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
422 drain |= q->nr_rqs[i];
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
427
428 if (!drain)
429 break;
430
431 spin_unlock_irq(q->queue_lock);
432
433 msleep(10);
434
435 spin_lock_irq(q->queue_lock);
436 }
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
444 struct request_list *rl;
445
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
449 }
450 }
451
452 /**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
458 * throttled or issued before. On return, it's guaranteed that no request
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
461 */
462 void blk_queue_bypass_start(struct request_queue *q)
463 {
464 bool drain;
465
466 spin_lock_irq(q->queue_lock);
467 drain = !q->bypass_depth++;
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
471 if (drain) {
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
479 }
480 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482 /**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488 void blk_queue_bypass_end(struct request_queue *q)
489 {
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495 }
496 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
498 /**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
504 */
505 void blk_cleanup_queue(struct request_queue *q)
506 {
507 spinlock_t *lock = q->queue_lock;
508
509 /* mark @q DYING, no new request or merges will be allowed afterwards */
510 mutex_lock(&q->sysfs_lock);
511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
512 spin_lock_irq(lock);
513
514 /*
515 * A dying queue is permanently in bypass mode till released. Note
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
528 queue_flag_set(QUEUE_FLAG_DYING, q);
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
538 queue_flag_set(QUEUE_FLAG_DEAD, q);
539 spin_unlock_irq(lock);
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
550 /* @q is and will stay empty, shutdown and put */
551 blk_put_queue(q);
552 }
553 EXPORT_SYMBOL(blk_cleanup_queue);
554
555 int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
557 {
558 if (unlikely(rl->rq_pool))
559 return 0;
560
561 rl->q = q;
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
566
567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
568 mempool_free_slab, request_cachep,
569 gfp_mask, q->node);
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574 }
575
576 void blk_exit_rl(struct request_list *rl)
577 {
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580 }
581
582 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
583 {
584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
585 }
586 EXPORT_SYMBOL(blk_alloc_queue);
587
588 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
589 {
590 struct request_queue *q;
591 int err;
592
593 q = kmem_cache_alloc_node(blk_requestq_cachep,
594 gfp_mask | __GFP_ZERO, node_id);
595 if (!q)
596 return NULL;
597
598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
599 if (q->id < 0)
600 goto fail_q;
601
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
606 q->backing_dev_info.name = "block";
607 q->node = node_id;
608
609 err = bdi_init(&q->backing_dev_info);
610 if (err)
611 goto fail_id;
612
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
616 INIT_LIST_HEAD(&q->queue_head);
617 INIT_LIST_HEAD(&q->timeout_list);
618 INIT_LIST_HEAD(&q->icq_list);
619 #ifdef CONFIG_BLK_CGROUP
620 INIT_LIST_HEAD(&q->blkg_list);
621 #endif
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
626
627 kobject_init(&q->kobj, &blk_queue_ktype);
628
629 mutex_init(&q->sysfs_lock);
630 spin_lock_init(&q->__queue_lock);
631
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
647 if (blkcg_init_queue(q))
648 goto fail_id;
649
650 return q;
651
652 fail_id:
653 ida_simple_remove(&blk_queue_ida, q->id);
654 fail_q:
655 kmem_cache_free(blk_requestq_cachep, q);
656 return NULL;
657 }
658 EXPORT_SYMBOL(blk_alloc_queue_node);
659
660 /**
661 * blk_init_queue - prepare a request queue for use with a block device
662 * @rfn: The function to be called to process requests that have been
663 * placed on the queue.
664 * @lock: Request queue spin lock
665 *
666 * Description:
667 * If a block device wishes to use the standard request handling procedures,
668 * which sorts requests and coalesces adjacent requests, then it must
669 * call blk_init_queue(). The function @rfn will be called when there
670 * are requests on the queue that need to be processed. If the device
671 * supports plugging, then @rfn may not be called immediately when requests
672 * are available on the queue, but may be called at some time later instead.
673 * Plugged queues are generally unplugged when a buffer belonging to one
674 * of the requests on the queue is needed, or due to memory pressure.
675 *
676 * @rfn is not required, or even expected, to remove all requests off the
677 * queue, but only as many as it can handle at a time. If it does leave
678 * requests on the queue, it is responsible for arranging that the requests
679 * get dealt with eventually.
680 *
681 * The queue spin lock must be held while manipulating the requests on the
682 * request queue; this lock will be taken also from interrupt context, so irq
683 * disabling is needed for it.
684 *
685 * Function returns a pointer to the initialized request queue, or %NULL if
686 * it didn't succeed.
687 *
688 * Note:
689 * blk_init_queue() must be paired with a blk_cleanup_queue() call
690 * when the block device is deactivated (such as at module unload).
691 **/
692
693 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
694 {
695 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
696 }
697 EXPORT_SYMBOL(blk_init_queue);
698
699 struct request_queue *
700 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
701 {
702 struct request_queue *uninit_q, *q;
703
704 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
705 if (!uninit_q)
706 return NULL;
707
708 q = blk_init_allocated_queue(uninit_q, rfn, lock);
709 if (!q)
710 blk_cleanup_queue(uninit_q);
711
712 return q;
713 }
714 EXPORT_SYMBOL(blk_init_queue_node);
715
716 struct request_queue *
717 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
718 spinlock_t *lock)
719 {
720 if (!q)
721 return NULL;
722
723 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
724 return NULL;
725
726 q->request_fn = rfn;
727 q->prep_rq_fn = NULL;
728 q->unprep_rq_fn = NULL;
729 q->queue_flags |= QUEUE_FLAG_DEFAULT;
730
731 /* Override internal queue lock with supplied lock pointer */
732 if (lock)
733 q->queue_lock = lock;
734
735 /*
736 * This also sets hw/phys segments, boundary and size
737 */
738 blk_queue_make_request(q, blk_queue_bio);
739
740 q->sg_reserved_size = INT_MAX;
741
742 /* init elevator */
743 if (elevator_init(q, NULL))
744 return NULL;
745 return q;
746 }
747 EXPORT_SYMBOL(blk_init_allocated_queue);
748
749 bool blk_get_queue(struct request_queue *q)
750 {
751 if (likely(!blk_queue_dying(q))) {
752 __blk_get_queue(q);
753 return true;
754 }
755
756 return false;
757 }
758 EXPORT_SYMBOL(blk_get_queue);
759
760 static inline void blk_free_request(struct request_list *rl, struct request *rq)
761 {
762 if (rq->cmd_flags & REQ_ELVPRIV) {
763 elv_put_request(rl->q, rq);
764 if (rq->elv.icq)
765 put_io_context(rq->elv.icq->ioc);
766 }
767
768 mempool_free(rq, rl->rq_pool);
769 }
770
771 /*
772 * ioc_batching returns true if the ioc is a valid batching request and
773 * should be given priority access to a request.
774 */
775 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
776 {
777 if (!ioc)
778 return 0;
779
780 /*
781 * Make sure the process is able to allocate at least 1 request
782 * even if the batch times out, otherwise we could theoretically
783 * lose wakeups.
784 */
785 return ioc->nr_batch_requests == q->nr_batching ||
786 (ioc->nr_batch_requests > 0
787 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
788 }
789
790 /*
791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
792 * will cause the process to be a "batcher" on all queues in the system. This
793 * is the behaviour we want though - once it gets a wakeup it should be given
794 * a nice run.
795 */
796 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
797 {
798 if (!ioc || ioc_batching(q, ioc))
799 return;
800
801 ioc->nr_batch_requests = q->nr_batching;
802 ioc->last_waited = jiffies;
803 }
804
805 static void __freed_request(struct request_list *rl, int sync)
806 {
807 struct request_queue *q = rl->q;
808
809 /*
810 * bdi isn't aware of blkcg yet. As all async IOs end up root
811 * blkcg anyway, just use root blkcg state.
812 */
813 if (rl == &q->root_rl &&
814 rl->count[sync] < queue_congestion_off_threshold(q))
815 blk_clear_queue_congested(q, sync);
816
817 if (rl->count[sync] + 1 <= q->nr_requests) {
818 if (waitqueue_active(&rl->wait[sync]))
819 wake_up(&rl->wait[sync]);
820
821 blk_clear_rl_full(rl, sync);
822 }
823 }
824
825 /*
826 * A request has just been released. Account for it, update the full and
827 * congestion status, wake up any waiters. Called under q->queue_lock.
828 */
829 static void freed_request(struct request_list *rl, unsigned int flags)
830 {
831 struct request_queue *q = rl->q;
832 int sync = rw_is_sync(flags);
833
834 q->nr_rqs[sync]--;
835 rl->count[sync]--;
836 if (flags & REQ_ELVPRIV)
837 q->nr_rqs_elvpriv--;
838
839 __freed_request(rl, sync);
840
841 if (unlikely(rl->starved[sync ^ 1]))
842 __freed_request(rl, sync ^ 1);
843 }
844
845 /*
846 * Determine if elevator data should be initialized when allocating the
847 * request associated with @bio.
848 */
849 static bool blk_rq_should_init_elevator(struct bio *bio)
850 {
851 if (!bio)
852 return true;
853
854 /*
855 * Flush requests do not use the elevator so skip initialization.
856 * This allows a request to share the flush and elevator data.
857 */
858 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
859 return false;
860
861 return true;
862 }
863
864 /**
865 * rq_ioc - determine io_context for request allocation
866 * @bio: request being allocated is for this bio (can be %NULL)
867 *
868 * Determine io_context to use for request allocation for @bio. May return
869 * %NULL if %current->io_context doesn't exist.
870 */
871 static struct io_context *rq_ioc(struct bio *bio)
872 {
873 #ifdef CONFIG_BLK_CGROUP
874 if (bio && bio->bi_ioc)
875 return bio->bi_ioc;
876 #endif
877 return current->io_context;
878 }
879
880 /**
881 * __get_request - get a free request
882 * @rl: request list to allocate from
883 * @rw_flags: RW and SYNC flags
884 * @bio: bio to allocate request for (can be %NULL)
885 * @gfp_mask: allocation mask
886 *
887 * Get a free request from @q. This function may fail under memory
888 * pressure or if @q is dead.
889 *
890 * Must be callled with @q->queue_lock held and,
891 * Returns %NULL on failure, with @q->queue_lock held.
892 * Returns !%NULL on success, with @q->queue_lock *not held*.
893 */
894 static struct request *__get_request(struct request_list *rl, int rw_flags,
895 struct bio *bio, gfp_t gfp_mask)
896 {
897 struct request_queue *q = rl->q;
898 struct request *rq;
899 struct elevator_type *et = q->elevator->type;
900 struct io_context *ioc = rq_ioc(bio);
901 struct io_cq *icq = NULL;
902 const bool is_sync = rw_is_sync(rw_flags) != 0;
903 int may_queue;
904
905 if (unlikely(blk_queue_dying(q)))
906 return NULL;
907
908 may_queue = elv_may_queue(q, rw_flags);
909 if (may_queue == ELV_MQUEUE_NO)
910 goto rq_starved;
911
912 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
913 if (rl->count[is_sync]+1 >= q->nr_requests) {
914 /*
915 * The queue will fill after this allocation, so set
916 * it as full, and mark this process as "batching".
917 * This process will be allowed to complete a batch of
918 * requests, others will be blocked.
919 */
920 if (!blk_rl_full(rl, is_sync)) {
921 ioc_set_batching(q, ioc);
922 blk_set_rl_full(rl, is_sync);
923 } else {
924 if (may_queue != ELV_MQUEUE_MUST
925 && !ioc_batching(q, ioc)) {
926 /*
927 * The queue is full and the allocating
928 * process is not a "batcher", and not
929 * exempted by the IO scheduler
930 */
931 return NULL;
932 }
933 }
934 }
935 /*
936 * bdi isn't aware of blkcg yet. As all async IOs end up
937 * root blkcg anyway, just use root blkcg state.
938 */
939 if (rl == &q->root_rl)
940 blk_set_queue_congested(q, is_sync);
941 }
942
943 /*
944 * Only allow batching queuers to allocate up to 50% over the defined
945 * limit of requests, otherwise we could have thousands of requests
946 * allocated with any setting of ->nr_requests
947 */
948 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
949 return NULL;
950
951 q->nr_rqs[is_sync]++;
952 rl->count[is_sync]++;
953 rl->starved[is_sync] = 0;
954
955 /*
956 * Decide whether the new request will be managed by elevator. If
957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
958 * prevent the current elevator from being destroyed until the new
959 * request is freed. This guarantees icq's won't be destroyed and
960 * makes creating new ones safe.
961 *
962 * Also, lookup icq while holding queue_lock. If it doesn't exist,
963 * it will be created after releasing queue_lock.
964 */
965 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
966 rw_flags |= REQ_ELVPRIV;
967 q->nr_rqs_elvpriv++;
968 if (et->icq_cache && ioc)
969 icq = ioc_lookup_icq(ioc, q);
970 }
971
972 if (blk_queue_io_stat(q))
973 rw_flags |= REQ_IO_STAT;
974 spin_unlock_irq(q->queue_lock);
975
976 /* allocate and init request */
977 rq = mempool_alloc(rl->rq_pool, gfp_mask);
978 if (!rq)
979 goto fail_alloc;
980
981 blk_rq_init(q, rq);
982 blk_rq_set_rl(rq, rl);
983 rq->cmd_flags = rw_flags | REQ_ALLOCED;
984
985 /* init elvpriv */
986 if (rw_flags & REQ_ELVPRIV) {
987 if (unlikely(et->icq_cache && !icq)) {
988 if (ioc)
989 icq = ioc_create_icq(ioc, q, gfp_mask);
990 if (!icq)
991 goto fail_elvpriv;
992 }
993
994 rq->elv.icq = icq;
995 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
996 goto fail_elvpriv;
997
998 /* @rq->elv.icq holds io_context until @rq is freed */
999 if (icq)
1000 get_io_context(icq->ioc);
1001 }
1002 out:
1003 /*
1004 * ioc may be NULL here, and ioc_batching will be false. That's
1005 * OK, if the queue is under the request limit then requests need
1006 * not count toward the nr_batch_requests limit. There will always
1007 * be some limit enforced by BLK_BATCH_TIME.
1008 */
1009 if (ioc_batching(q, ioc))
1010 ioc->nr_batch_requests--;
1011
1012 trace_block_getrq(q, bio, rw_flags & 1);
1013 return rq;
1014
1015 fail_elvpriv:
1016 /*
1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1018 * and may fail indefinitely under memory pressure and thus
1019 * shouldn't stall IO. Treat this request as !elvpriv. This will
1020 * disturb iosched and blkcg but weird is bettern than dead.
1021 */
1022 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1023 dev_name(q->backing_dev_info.dev));
1024
1025 rq->cmd_flags &= ~REQ_ELVPRIV;
1026 rq->elv.icq = NULL;
1027
1028 spin_lock_irq(q->queue_lock);
1029 q->nr_rqs_elvpriv--;
1030 spin_unlock_irq(q->queue_lock);
1031 goto out;
1032
1033 fail_alloc:
1034 /*
1035 * Allocation failed presumably due to memory. Undo anything we
1036 * might have messed up.
1037 *
1038 * Allocating task should really be put onto the front of the wait
1039 * queue, but this is pretty rare.
1040 */
1041 spin_lock_irq(q->queue_lock);
1042 freed_request(rl, rw_flags);
1043
1044 /*
1045 * in the very unlikely event that allocation failed and no
1046 * requests for this direction was pending, mark us starved so that
1047 * freeing of a request in the other direction will notice
1048 * us. another possible fix would be to split the rq mempool into
1049 * READ and WRITE
1050 */
1051 rq_starved:
1052 if (unlikely(rl->count[is_sync] == 0))
1053 rl->starved[is_sync] = 1;
1054 return NULL;
1055 }
1056
1057 /**
1058 * get_request - get a free request
1059 * @q: request_queue to allocate request from
1060 * @rw_flags: RW and SYNC flags
1061 * @bio: bio to allocate request for (can be %NULL)
1062 * @gfp_mask: allocation mask
1063 *
1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1065 * function keeps retrying under memory pressure and fails iff @q is dead.
1066 *
1067 * Must be callled with @q->queue_lock held and,
1068 * Returns %NULL on failure, with @q->queue_lock held.
1069 * Returns !%NULL on success, with @q->queue_lock *not held*.
1070 */
1071 static struct request *get_request(struct request_queue *q, int rw_flags,
1072 struct bio *bio, gfp_t gfp_mask)
1073 {
1074 const bool is_sync = rw_is_sync(rw_flags) != 0;
1075 DEFINE_WAIT(wait);
1076 struct request_list *rl;
1077 struct request *rq;
1078
1079 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1080 retry:
1081 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1082 if (rq)
1083 return rq;
1084
1085 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1086 blk_put_rl(rl);
1087 return NULL;
1088 }
1089
1090 /* wait on @rl and retry */
1091 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1092 TASK_UNINTERRUPTIBLE);
1093
1094 trace_block_sleeprq(q, bio, rw_flags & 1);
1095
1096 spin_unlock_irq(q->queue_lock);
1097 io_schedule();
1098
1099 /*
1100 * After sleeping, we become a "batching" process and will be able
1101 * to allocate at least one request, and up to a big batch of them
1102 * for a small period time. See ioc_batching, ioc_set_batching
1103 */
1104 ioc_set_batching(q, current->io_context);
1105
1106 spin_lock_irq(q->queue_lock);
1107 finish_wait(&rl->wait[is_sync], &wait);
1108
1109 goto retry;
1110 }
1111
1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1113 {
1114 struct request *rq;
1115
1116 BUG_ON(rw != READ && rw != WRITE);
1117
1118 /* create ioc upfront */
1119 create_io_context(gfp_mask, q->node);
1120
1121 spin_lock_irq(q->queue_lock);
1122 rq = get_request(q, rw, NULL, gfp_mask);
1123 if (!rq)
1124 spin_unlock_irq(q->queue_lock);
1125 /* q->queue_lock is unlocked at this point */
1126
1127 return rq;
1128 }
1129 EXPORT_SYMBOL(blk_get_request);
1130
1131 /**
1132 * blk_make_request - given a bio, allocate a corresponding struct request.
1133 * @q: target request queue
1134 * @bio: The bio describing the memory mappings that will be submitted for IO.
1135 * It may be a chained-bio properly constructed by block/bio layer.
1136 * @gfp_mask: gfp flags to be used for memory allocation
1137 *
1138 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1139 * type commands. Where the struct request needs to be farther initialized by
1140 * the caller. It is passed a &struct bio, which describes the memory info of
1141 * the I/O transfer.
1142 *
1143 * The caller of blk_make_request must make sure that bi_io_vec
1144 * are set to describe the memory buffers. That bio_data_dir() will return
1145 * the needed direction of the request. (And all bio's in the passed bio-chain
1146 * are properly set accordingly)
1147 *
1148 * If called under none-sleepable conditions, mapped bio buffers must not
1149 * need bouncing, by calling the appropriate masked or flagged allocator,
1150 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1151 * BUG.
1152 *
1153 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1154 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1155 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1156 * completion of a bio that hasn't been submitted yet, thus resulting in a
1157 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1158 * of bio_alloc(), as that avoids the mempool deadlock.
1159 * If possible a big IO should be split into smaller parts when allocation
1160 * fails. Partial allocation should not be an error, or you risk a live-lock.
1161 */
1162 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1163 gfp_t gfp_mask)
1164 {
1165 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1166
1167 if (unlikely(!rq))
1168 return ERR_PTR(-ENOMEM);
1169
1170 for_each_bio(bio) {
1171 struct bio *bounce_bio = bio;
1172 int ret;
1173
1174 blk_queue_bounce(q, &bounce_bio);
1175 ret = blk_rq_append_bio(q, rq, bounce_bio);
1176 if (unlikely(ret)) {
1177 blk_put_request(rq);
1178 return ERR_PTR(ret);
1179 }
1180 }
1181
1182 return rq;
1183 }
1184 EXPORT_SYMBOL(blk_make_request);
1185
1186 /**
1187 * blk_requeue_request - put a request back on queue
1188 * @q: request queue where request should be inserted
1189 * @rq: request to be inserted
1190 *
1191 * Description:
1192 * Drivers often keep queueing requests until the hardware cannot accept
1193 * more, when that condition happens we need to put the request back
1194 * on the queue. Must be called with queue lock held.
1195 */
1196 void blk_requeue_request(struct request_queue *q, struct request *rq)
1197 {
1198 blk_delete_timer(rq);
1199 blk_clear_rq_complete(rq);
1200 trace_block_rq_requeue(q, rq);
1201
1202 if (blk_rq_tagged(rq))
1203 blk_queue_end_tag(q, rq);
1204
1205 BUG_ON(blk_queued_rq(rq));
1206
1207 elv_requeue_request(q, rq);
1208 }
1209 EXPORT_SYMBOL(blk_requeue_request);
1210
1211 static void add_acct_request(struct request_queue *q, struct request *rq,
1212 int where)
1213 {
1214 drive_stat_acct(rq, 1);
1215 __elv_add_request(q, rq, where);
1216 }
1217
1218 static void part_round_stats_single(int cpu, struct hd_struct *part,
1219 unsigned long now)
1220 {
1221 if (now == part->stamp)
1222 return;
1223
1224 if (part_in_flight(part)) {
1225 __part_stat_add(cpu, part, time_in_queue,
1226 part_in_flight(part) * (now - part->stamp));
1227 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1228 }
1229 part->stamp = now;
1230 }
1231
1232 /**
1233 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1234 * @cpu: cpu number for stats access
1235 * @part: target partition
1236 *
1237 * The average IO queue length and utilisation statistics are maintained
1238 * by observing the current state of the queue length and the amount of
1239 * time it has been in this state for.
1240 *
1241 * Normally, that accounting is done on IO completion, but that can result
1242 * in more than a second's worth of IO being accounted for within any one
1243 * second, leading to >100% utilisation. To deal with that, we call this
1244 * function to do a round-off before returning the results when reading
1245 * /proc/diskstats. This accounts immediately for all queue usage up to
1246 * the current jiffies and restarts the counters again.
1247 */
1248 void part_round_stats(int cpu, struct hd_struct *part)
1249 {
1250 unsigned long now = jiffies;
1251
1252 if (part->partno)
1253 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1254 part_round_stats_single(cpu, part, now);
1255 }
1256 EXPORT_SYMBOL_GPL(part_round_stats);
1257
1258 #ifdef CONFIG_PM_RUNTIME
1259 static void blk_pm_put_request(struct request *rq)
1260 {
1261 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1262 pm_runtime_mark_last_busy(rq->q->dev);
1263 }
1264 #else
1265 static inline void blk_pm_put_request(struct request *rq) {}
1266 #endif
1267
1268 /*
1269 * queue lock must be held
1270 */
1271 void __blk_put_request(struct request_queue *q, struct request *req)
1272 {
1273 if (unlikely(!q))
1274 return;
1275 if (unlikely(--req->ref_count))
1276 return;
1277
1278 blk_pm_put_request(req);
1279
1280 elv_completed_request(q, req);
1281
1282 /* this is a bio leak */
1283 WARN_ON(req->bio != NULL);
1284
1285 /*
1286 * Request may not have originated from ll_rw_blk. if not,
1287 * it didn't come out of our reserved rq pools
1288 */
1289 if (req->cmd_flags & REQ_ALLOCED) {
1290 unsigned int flags = req->cmd_flags;
1291 struct request_list *rl = blk_rq_rl(req);
1292
1293 BUG_ON(!list_empty(&req->queuelist));
1294 BUG_ON(!hlist_unhashed(&req->hash));
1295
1296 blk_free_request(rl, req);
1297 freed_request(rl, flags);
1298 blk_put_rl(rl);
1299 }
1300 }
1301 EXPORT_SYMBOL_GPL(__blk_put_request);
1302
1303 void blk_put_request(struct request *req)
1304 {
1305 unsigned long flags;
1306 struct request_queue *q = req->q;
1307
1308 spin_lock_irqsave(q->queue_lock, flags);
1309 __blk_put_request(q, req);
1310 spin_unlock_irqrestore(q->queue_lock, flags);
1311 }
1312 EXPORT_SYMBOL(blk_put_request);
1313
1314 /**
1315 * blk_add_request_payload - add a payload to a request
1316 * @rq: request to update
1317 * @page: page backing the payload
1318 * @len: length of the payload.
1319 *
1320 * This allows to later add a payload to an already submitted request by
1321 * a block driver. The driver needs to take care of freeing the payload
1322 * itself.
1323 *
1324 * Note that this is a quite horrible hack and nothing but handling of
1325 * discard requests should ever use it.
1326 */
1327 void blk_add_request_payload(struct request *rq, struct page *page,
1328 unsigned int len)
1329 {
1330 struct bio *bio = rq->bio;
1331
1332 bio->bi_io_vec->bv_page = page;
1333 bio->bi_io_vec->bv_offset = 0;
1334 bio->bi_io_vec->bv_len = len;
1335
1336 bio->bi_size = len;
1337 bio->bi_vcnt = 1;
1338 bio->bi_phys_segments = 1;
1339
1340 rq->__data_len = rq->resid_len = len;
1341 rq->nr_phys_segments = 1;
1342 rq->buffer = bio_data(bio);
1343 }
1344 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1345
1346 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1347 struct bio *bio)
1348 {
1349 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1350
1351 if (!ll_back_merge_fn(q, req, bio))
1352 return false;
1353
1354 trace_block_bio_backmerge(q, req, bio);
1355
1356 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1357 blk_rq_set_mixed_merge(req);
1358
1359 req->biotail->bi_next = bio;
1360 req->biotail = bio;
1361 req->__data_len += bio->bi_size;
1362 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1363
1364 drive_stat_acct(req, 0);
1365 return true;
1366 }
1367
1368 static bool bio_attempt_front_merge(struct request_queue *q,
1369 struct request *req, struct bio *bio)
1370 {
1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1372
1373 if (!ll_front_merge_fn(q, req, bio))
1374 return false;
1375
1376 trace_block_bio_frontmerge(q, req, bio);
1377
1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 blk_rq_set_mixed_merge(req);
1380
1381 bio->bi_next = req->bio;
1382 req->bio = bio;
1383
1384 /*
1385 * may not be valid. if the low level driver said
1386 * it didn't need a bounce buffer then it better
1387 * not touch req->buffer either...
1388 */
1389 req->buffer = bio_data(bio);
1390 req->__sector = bio->bi_sector;
1391 req->__data_len += bio->bi_size;
1392 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1393
1394 drive_stat_acct(req, 0);
1395 return true;
1396 }
1397
1398 /**
1399 * attempt_plug_merge - try to merge with %current's plugged list
1400 * @q: request_queue new bio is being queued at
1401 * @bio: new bio being queued
1402 * @request_count: out parameter for number of traversed plugged requests
1403 *
1404 * Determine whether @bio being queued on @q can be merged with a request
1405 * on %current's plugged list. Returns %true if merge was successful,
1406 * otherwise %false.
1407 *
1408 * Plugging coalesces IOs from the same issuer for the same purpose without
1409 * going through @q->queue_lock. As such it's more of an issuing mechanism
1410 * than scheduling, and the request, while may have elvpriv data, is not
1411 * added on the elevator at this point. In addition, we don't have
1412 * reliable access to the elevator outside queue lock. Only check basic
1413 * merging parameters without querying the elevator.
1414 */
1415 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1416 unsigned int *request_count)
1417 {
1418 struct blk_plug *plug;
1419 struct request *rq;
1420 bool ret = false;
1421
1422 plug = current->plug;
1423 if (!plug)
1424 goto out;
1425 *request_count = 0;
1426
1427 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1428 int el_ret;
1429
1430 if (rq->q == q)
1431 (*request_count)++;
1432
1433 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1434 continue;
1435
1436 el_ret = blk_try_merge(rq, bio);
1437 if (el_ret == ELEVATOR_BACK_MERGE) {
1438 ret = bio_attempt_back_merge(q, rq, bio);
1439 if (ret)
1440 break;
1441 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1442 ret = bio_attempt_front_merge(q, rq, bio);
1443 if (ret)
1444 break;
1445 }
1446 }
1447 out:
1448 return ret;
1449 }
1450
1451 void init_request_from_bio(struct request *req, struct bio *bio)
1452 {
1453 req->cmd_type = REQ_TYPE_FS;
1454
1455 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1456 if (bio->bi_rw & REQ_RAHEAD)
1457 req->cmd_flags |= REQ_FAILFAST_MASK;
1458
1459 req->errors = 0;
1460 req->__sector = bio->bi_sector;
1461 req->ioprio = bio_prio(bio);
1462 blk_rq_bio_prep(req->q, req, bio);
1463 }
1464
1465 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1466 {
1467 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1468 struct blk_plug *plug;
1469 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1470 struct request *req;
1471 unsigned int request_count = 0;
1472
1473 /*
1474 * low level driver can indicate that it wants pages above a
1475 * certain limit bounced to low memory (ie for highmem, or even
1476 * ISA dma in theory)
1477 */
1478 blk_queue_bounce(q, &bio);
1479
1480 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1481 bio_endio(bio, -EIO);
1482 return;
1483 }
1484
1485 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1486 spin_lock_irq(q->queue_lock);
1487 where = ELEVATOR_INSERT_FLUSH;
1488 goto get_rq;
1489 }
1490
1491 /*
1492 * Check if we can merge with the plugged list before grabbing
1493 * any locks.
1494 */
1495 if (attempt_plug_merge(q, bio, &request_count))
1496 return;
1497
1498 spin_lock_irq(q->queue_lock);
1499
1500 el_ret = elv_merge(q, &req, bio);
1501 if (el_ret == ELEVATOR_BACK_MERGE) {
1502 if (bio_attempt_back_merge(q, req, bio)) {
1503 elv_bio_merged(q, req, bio);
1504 if (!attempt_back_merge(q, req))
1505 elv_merged_request(q, req, el_ret);
1506 goto out_unlock;
1507 }
1508 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1509 if (bio_attempt_front_merge(q, req, bio)) {
1510 elv_bio_merged(q, req, bio);
1511 if (!attempt_front_merge(q, req))
1512 elv_merged_request(q, req, el_ret);
1513 goto out_unlock;
1514 }
1515 }
1516
1517 get_rq:
1518 /*
1519 * This sync check and mask will be re-done in init_request_from_bio(),
1520 * but we need to set it earlier to expose the sync flag to the
1521 * rq allocator and io schedulers.
1522 */
1523 rw_flags = bio_data_dir(bio);
1524 if (sync)
1525 rw_flags |= REQ_SYNC;
1526
1527 /*
1528 * Grab a free request. This is might sleep but can not fail.
1529 * Returns with the queue unlocked.
1530 */
1531 req = get_request(q, rw_flags, bio, GFP_NOIO);
1532 if (unlikely(!req)) {
1533 bio_endio(bio, -ENODEV); /* @q is dead */
1534 goto out_unlock;
1535 }
1536
1537 /*
1538 * After dropping the lock and possibly sleeping here, our request
1539 * may now be mergeable after it had proven unmergeable (above).
1540 * We don't worry about that case for efficiency. It won't happen
1541 * often, and the elevators are able to handle it.
1542 */
1543 init_request_from_bio(req, bio);
1544
1545 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1546 req->cpu = raw_smp_processor_id();
1547
1548 plug = current->plug;
1549 if (plug) {
1550 /*
1551 * If this is the first request added after a plug, fire
1552 * of a plug trace.
1553 */
1554 if (!request_count)
1555 trace_block_plug(q);
1556 else {
1557 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1558 blk_flush_plug_list(plug, false);
1559 trace_block_plug(q);
1560 }
1561 }
1562 list_add_tail(&req->queuelist, &plug->list);
1563 drive_stat_acct(req, 1);
1564 } else {
1565 spin_lock_irq(q->queue_lock);
1566 add_acct_request(q, req, where);
1567 __blk_run_queue(q);
1568 out_unlock:
1569 spin_unlock_irq(q->queue_lock);
1570 }
1571 }
1572 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1573
1574 /*
1575 * If bio->bi_dev is a partition, remap the location
1576 */
1577 static inline void blk_partition_remap(struct bio *bio)
1578 {
1579 struct block_device *bdev = bio->bi_bdev;
1580
1581 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1582 struct hd_struct *p = bdev->bd_part;
1583
1584 bio->bi_sector += p->start_sect;
1585 bio->bi_bdev = bdev->bd_contains;
1586
1587 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1588 bdev->bd_dev,
1589 bio->bi_sector - p->start_sect);
1590 }
1591 }
1592
1593 static void handle_bad_sector(struct bio *bio)
1594 {
1595 char b[BDEVNAME_SIZE];
1596
1597 printk(KERN_INFO "attempt to access beyond end of device\n");
1598 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1599 bdevname(bio->bi_bdev, b),
1600 bio->bi_rw,
1601 (unsigned long long)bio_end_sector(bio),
1602 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1603
1604 set_bit(BIO_EOF, &bio->bi_flags);
1605 }
1606
1607 #ifdef CONFIG_FAIL_MAKE_REQUEST
1608
1609 static DECLARE_FAULT_ATTR(fail_make_request);
1610
1611 static int __init setup_fail_make_request(char *str)
1612 {
1613 return setup_fault_attr(&fail_make_request, str);
1614 }
1615 __setup("fail_make_request=", setup_fail_make_request);
1616
1617 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1618 {
1619 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1620 }
1621
1622 static int __init fail_make_request_debugfs(void)
1623 {
1624 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1625 NULL, &fail_make_request);
1626
1627 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1628 }
1629
1630 late_initcall(fail_make_request_debugfs);
1631
1632 #else /* CONFIG_FAIL_MAKE_REQUEST */
1633
1634 static inline bool should_fail_request(struct hd_struct *part,
1635 unsigned int bytes)
1636 {
1637 return false;
1638 }
1639
1640 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1641
1642 /*
1643 * Check whether this bio extends beyond the end of the device.
1644 */
1645 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1646 {
1647 sector_t maxsector;
1648
1649 if (!nr_sectors)
1650 return 0;
1651
1652 /* Test device or partition size, when known. */
1653 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1654 if (maxsector) {
1655 sector_t sector = bio->bi_sector;
1656
1657 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1658 /*
1659 * This may well happen - the kernel calls bread()
1660 * without checking the size of the device, e.g., when
1661 * mounting a device.
1662 */
1663 handle_bad_sector(bio);
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 static noinline_for_stack bool
1672 generic_make_request_checks(struct bio *bio)
1673 {
1674 struct request_queue *q;
1675 int nr_sectors = bio_sectors(bio);
1676 int err = -EIO;
1677 char b[BDEVNAME_SIZE];
1678 struct hd_struct *part;
1679
1680 might_sleep();
1681
1682 if (bio_check_eod(bio, nr_sectors))
1683 goto end_io;
1684
1685 q = bdev_get_queue(bio->bi_bdev);
1686 if (unlikely(!q)) {
1687 printk(KERN_ERR
1688 "generic_make_request: Trying to access "
1689 "nonexistent block-device %s (%Lu)\n",
1690 bdevname(bio->bi_bdev, b),
1691 (long long) bio->bi_sector);
1692 goto end_io;
1693 }
1694
1695 if (likely(bio_is_rw(bio) &&
1696 nr_sectors > queue_max_hw_sectors(q))) {
1697 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1698 bdevname(bio->bi_bdev, b),
1699 bio_sectors(bio),
1700 queue_max_hw_sectors(q));
1701 goto end_io;
1702 }
1703
1704 part = bio->bi_bdev->bd_part;
1705 if (should_fail_request(part, bio->bi_size) ||
1706 should_fail_request(&part_to_disk(part)->part0,
1707 bio->bi_size))
1708 goto end_io;
1709
1710 /*
1711 * If this device has partitions, remap block n
1712 * of partition p to block n+start(p) of the disk.
1713 */
1714 blk_partition_remap(bio);
1715
1716 if (bio_check_eod(bio, nr_sectors))
1717 goto end_io;
1718
1719 /*
1720 * Filter flush bio's early so that make_request based
1721 * drivers without flush support don't have to worry
1722 * about them.
1723 */
1724 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1725 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1726 if (!nr_sectors) {
1727 err = 0;
1728 goto end_io;
1729 }
1730 }
1731
1732 if ((bio->bi_rw & REQ_DISCARD) &&
1733 (!blk_queue_discard(q) ||
1734 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1735 err = -EOPNOTSUPP;
1736 goto end_io;
1737 }
1738
1739 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1740 err = -EOPNOTSUPP;
1741 goto end_io;
1742 }
1743
1744 /*
1745 * Various block parts want %current->io_context and lazy ioc
1746 * allocation ends up trading a lot of pain for a small amount of
1747 * memory. Just allocate it upfront. This may fail and block
1748 * layer knows how to live with it.
1749 */
1750 create_io_context(GFP_ATOMIC, q->node);
1751
1752 if (blk_throtl_bio(q, bio))
1753 return false; /* throttled, will be resubmitted later */
1754
1755 trace_block_bio_queue(q, bio);
1756 return true;
1757
1758 end_io:
1759 bio_endio(bio, err);
1760 return false;
1761 }
1762
1763 /**
1764 * generic_make_request - hand a buffer to its device driver for I/O
1765 * @bio: The bio describing the location in memory and on the device.
1766 *
1767 * generic_make_request() is used to make I/O requests of block
1768 * devices. It is passed a &struct bio, which describes the I/O that needs
1769 * to be done.
1770 *
1771 * generic_make_request() does not return any status. The
1772 * success/failure status of the request, along with notification of
1773 * completion, is delivered asynchronously through the bio->bi_end_io
1774 * function described (one day) else where.
1775 *
1776 * The caller of generic_make_request must make sure that bi_io_vec
1777 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1778 * set to describe the device address, and the
1779 * bi_end_io and optionally bi_private are set to describe how
1780 * completion notification should be signaled.
1781 *
1782 * generic_make_request and the drivers it calls may use bi_next if this
1783 * bio happens to be merged with someone else, and may resubmit the bio to
1784 * a lower device by calling into generic_make_request recursively, which
1785 * means the bio should NOT be touched after the call to ->make_request_fn.
1786 */
1787 void generic_make_request(struct bio *bio)
1788 {
1789 struct bio_list bio_list_on_stack;
1790
1791 if (!generic_make_request_checks(bio))
1792 return;
1793
1794 /*
1795 * We only want one ->make_request_fn to be active at a time, else
1796 * stack usage with stacked devices could be a problem. So use
1797 * current->bio_list to keep a list of requests submited by a
1798 * make_request_fn function. current->bio_list is also used as a
1799 * flag to say if generic_make_request is currently active in this
1800 * task or not. If it is NULL, then no make_request is active. If
1801 * it is non-NULL, then a make_request is active, and new requests
1802 * should be added at the tail
1803 */
1804 if (current->bio_list) {
1805 bio_list_add(current->bio_list, bio);
1806 return;
1807 }
1808
1809 /* following loop may be a bit non-obvious, and so deserves some
1810 * explanation.
1811 * Before entering the loop, bio->bi_next is NULL (as all callers
1812 * ensure that) so we have a list with a single bio.
1813 * We pretend that we have just taken it off a longer list, so
1814 * we assign bio_list to a pointer to the bio_list_on_stack,
1815 * thus initialising the bio_list of new bios to be
1816 * added. ->make_request() may indeed add some more bios
1817 * through a recursive call to generic_make_request. If it
1818 * did, we find a non-NULL value in bio_list and re-enter the loop
1819 * from the top. In this case we really did just take the bio
1820 * of the top of the list (no pretending) and so remove it from
1821 * bio_list, and call into ->make_request() again.
1822 */
1823 BUG_ON(bio->bi_next);
1824 bio_list_init(&bio_list_on_stack);
1825 current->bio_list = &bio_list_on_stack;
1826 do {
1827 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1828
1829 q->make_request_fn(q, bio);
1830
1831 bio = bio_list_pop(current->bio_list);
1832 } while (bio);
1833 current->bio_list = NULL; /* deactivate */
1834 }
1835 EXPORT_SYMBOL(generic_make_request);
1836
1837 /**
1838 * submit_bio - submit a bio to the block device layer for I/O
1839 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1840 * @bio: The &struct bio which describes the I/O
1841 *
1842 * submit_bio() is very similar in purpose to generic_make_request(), and
1843 * uses that function to do most of the work. Both are fairly rough
1844 * interfaces; @bio must be presetup and ready for I/O.
1845 *
1846 */
1847 void submit_bio(int rw, struct bio *bio)
1848 {
1849 bio->bi_rw |= rw;
1850
1851 /*
1852 * If it's a regular read/write or a barrier with data attached,
1853 * go through the normal accounting stuff before submission.
1854 */
1855 if (bio_has_data(bio)) {
1856 unsigned int count;
1857
1858 if (unlikely(rw & REQ_WRITE_SAME))
1859 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1860 else
1861 count = bio_sectors(bio);
1862
1863 if (rw & WRITE) {
1864 count_vm_events(PGPGOUT, count);
1865 } else {
1866 task_io_account_read(bio->bi_size);
1867 count_vm_events(PGPGIN, count);
1868 }
1869
1870 if (unlikely(block_dump)) {
1871 char b[BDEVNAME_SIZE];
1872 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1873 current->comm, task_pid_nr(current),
1874 (rw & WRITE) ? "WRITE" : "READ",
1875 (unsigned long long)bio->bi_sector,
1876 bdevname(bio->bi_bdev, b),
1877 count);
1878 }
1879 }
1880
1881 generic_make_request(bio);
1882 }
1883 EXPORT_SYMBOL(submit_bio);
1884
1885 /**
1886 * blk_rq_check_limits - Helper function to check a request for the queue limit
1887 * @q: the queue
1888 * @rq: the request being checked
1889 *
1890 * Description:
1891 * @rq may have been made based on weaker limitations of upper-level queues
1892 * in request stacking drivers, and it may violate the limitation of @q.
1893 * Since the block layer and the underlying device driver trust @rq
1894 * after it is inserted to @q, it should be checked against @q before
1895 * the insertion using this generic function.
1896 *
1897 * This function should also be useful for request stacking drivers
1898 * in some cases below, so export this function.
1899 * Request stacking drivers like request-based dm may change the queue
1900 * limits while requests are in the queue (e.g. dm's table swapping).
1901 * Such request stacking drivers should check those requests agaist
1902 * the new queue limits again when they dispatch those requests,
1903 * although such checkings are also done against the old queue limits
1904 * when submitting requests.
1905 */
1906 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1907 {
1908 if (!rq_mergeable(rq))
1909 return 0;
1910
1911 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1912 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1913 return -EIO;
1914 }
1915
1916 /*
1917 * queue's settings related to segment counting like q->bounce_pfn
1918 * may differ from that of other stacking queues.
1919 * Recalculate it to check the request correctly on this queue's
1920 * limitation.
1921 */
1922 blk_recalc_rq_segments(rq);
1923 if (rq->nr_phys_segments > queue_max_segments(q)) {
1924 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1925 return -EIO;
1926 }
1927
1928 return 0;
1929 }
1930 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1931
1932 /**
1933 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1934 * @q: the queue to submit the request
1935 * @rq: the request being queued
1936 */
1937 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1938 {
1939 unsigned long flags;
1940 int where = ELEVATOR_INSERT_BACK;
1941
1942 if (blk_rq_check_limits(q, rq))
1943 return -EIO;
1944
1945 if (rq->rq_disk &&
1946 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1947 return -EIO;
1948
1949 spin_lock_irqsave(q->queue_lock, flags);
1950 if (unlikely(blk_queue_dying(q))) {
1951 spin_unlock_irqrestore(q->queue_lock, flags);
1952 return -ENODEV;
1953 }
1954
1955 /*
1956 * Submitting request must be dequeued before calling this function
1957 * because it will be linked to another request_queue
1958 */
1959 BUG_ON(blk_queued_rq(rq));
1960
1961 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1962 where = ELEVATOR_INSERT_FLUSH;
1963
1964 add_acct_request(q, rq, where);
1965 if (where == ELEVATOR_INSERT_FLUSH)
1966 __blk_run_queue(q);
1967 spin_unlock_irqrestore(q->queue_lock, flags);
1968
1969 return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1972
1973 /**
1974 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1975 * @rq: request to examine
1976 *
1977 * Description:
1978 * A request could be merge of IOs which require different failure
1979 * handling. This function determines the number of bytes which
1980 * can be failed from the beginning of the request without
1981 * crossing into area which need to be retried further.
1982 *
1983 * Return:
1984 * The number of bytes to fail.
1985 *
1986 * Context:
1987 * queue_lock must be held.
1988 */
1989 unsigned int blk_rq_err_bytes(const struct request *rq)
1990 {
1991 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1992 unsigned int bytes = 0;
1993 struct bio *bio;
1994
1995 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1996 return blk_rq_bytes(rq);
1997
1998 /*
1999 * Currently the only 'mixing' which can happen is between
2000 * different fastfail types. We can safely fail portions
2001 * which have all the failfast bits that the first one has -
2002 * the ones which are at least as eager to fail as the first
2003 * one.
2004 */
2005 for (bio = rq->bio; bio; bio = bio->bi_next) {
2006 if ((bio->bi_rw & ff) != ff)
2007 break;
2008 bytes += bio->bi_size;
2009 }
2010
2011 /* this could lead to infinite loop */
2012 BUG_ON(blk_rq_bytes(rq) && !bytes);
2013 return bytes;
2014 }
2015 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2016
2017 static void blk_account_io_completion(struct request *req, unsigned int bytes)
2018 {
2019 if (blk_do_io_stat(req)) {
2020 const int rw = rq_data_dir(req);
2021 struct hd_struct *part;
2022 int cpu;
2023
2024 cpu = part_stat_lock();
2025 part = req->part;
2026 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2027 part_stat_unlock();
2028 }
2029 }
2030
2031 static void blk_account_io_done(struct request *req)
2032 {
2033 /*
2034 * Account IO completion. flush_rq isn't accounted as a
2035 * normal IO on queueing nor completion. Accounting the
2036 * containing request is enough.
2037 */
2038 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2039 unsigned long duration = jiffies - req->start_time;
2040 const int rw = rq_data_dir(req);
2041 struct hd_struct *part;
2042 int cpu;
2043
2044 cpu = part_stat_lock();
2045 part = req->part;
2046
2047 part_stat_inc(cpu, part, ios[rw]);
2048 part_stat_add(cpu, part, ticks[rw], duration);
2049 part_round_stats(cpu, part);
2050 part_dec_in_flight(part, rw);
2051
2052 hd_struct_put(part);
2053 part_stat_unlock();
2054 }
2055 }
2056
2057 #ifdef CONFIG_PM_RUNTIME
2058 /*
2059 * Don't process normal requests when queue is suspended
2060 * or in the process of suspending/resuming
2061 */
2062 static struct request *blk_pm_peek_request(struct request_queue *q,
2063 struct request *rq)
2064 {
2065 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2066 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2067 return NULL;
2068 else
2069 return rq;
2070 }
2071 #else
2072 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2073 struct request *rq)
2074 {
2075 return rq;
2076 }
2077 #endif
2078
2079 /**
2080 * blk_peek_request - peek at the top of a request queue
2081 * @q: request queue to peek at
2082 *
2083 * Description:
2084 * Return the request at the top of @q. The returned request
2085 * should be started using blk_start_request() before LLD starts
2086 * processing it.
2087 *
2088 * Return:
2089 * Pointer to the request at the top of @q if available. Null
2090 * otherwise.
2091 *
2092 * Context:
2093 * queue_lock must be held.
2094 */
2095 struct request *blk_peek_request(struct request_queue *q)
2096 {
2097 struct request *rq;
2098 int ret;
2099
2100 while ((rq = __elv_next_request(q)) != NULL) {
2101
2102 rq = blk_pm_peek_request(q, rq);
2103 if (!rq)
2104 break;
2105
2106 if (!(rq->cmd_flags & REQ_STARTED)) {
2107 /*
2108 * This is the first time the device driver
2109 * sees this request (possibly after
2110 * requeueing). Notify IO scheduler.
2111 */
2112 if (rq->cmd_flags & REQ_SORTED)
2113 elv_activate_rq(q, rq);
2114
2115 /*
2116 * just mark as started even if we don't start
2117 * it, a request that has been delayed should
2118 * not be passed by new incoming requests
2119 */
2120 rq->cmd_flags |= REQ_STARTED;
2121 trace_block_rq_issue(q, rq);
2122 }
2123
2124 if (!q->boundary_rq || q->boundary_rq == rq) {
2125 q->end_sector = rq_end_sector(rq);
2126 q->boundary_rq = NULL;
2127 }
2128
2129 if (rq->cmd_flags & REQ_DONTPREP)
2130 break;
2131
2132 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2133 /*
2134 * make sure space for the drain appears we
2135 * know we can do this because max_hw_segments
2136 * has been adjusted to be one fewer than the
2137 * device can handle
2138 */
2139 rq->nr_phys_segments++;
2140 }
2141
2142 if (!q->prep_rq_fn)
2143 break;
2144
2145 ret = q->prep_rq_fn(q, rq);
2146 if (ret == BLKPREP_OK) {
2147 break;
2148 } else if (ret == BLKPREP_DEFER) {
2149 /*
2150 * the request may have been (partially) prepped.
2151 * we need to keep this request in the front to
2152 * avoid resource deadlock. REQ_STARTED will
2153 * prevent other fs requests from passing this one.
2154 */
2155 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2156 !(rq->cmd_flags & REQ_DONTPREP)) {
2157 /*
2158 * remove the space for the drain we added
2159 * so that we don't add it again
2160 */
2161 --rq->nr_phys_segments;
2162 }
2163
2164 rq = NULL;
2165 break;
2166 } else if (ret == BLKPREP_KILL) {
2167 rq->cmd_flags |= REQ_QUIET;
2168 /*
2169 * Mark this request as started so we don't trigger
2170 * any debug logic in the end I/O path.
2171 */
2172 blk_start_request(rq);
2173 __blk_end_request_all(rq, -EIO);
2174 } else {
2175 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2176 break;
2177 }
2178 }
2179
2180 return rq;
2181 }
2182 EXPORT_SYMBOL(blk_peek_request);
2183
2184 void blk_dequeue_request(struct request *rq)
2185 {
2186 struct request_queue *q = rq->q;
2187
2188 BUG_ON(list_empty(&rq->queuelist));
2189 BUG_ON(ELV_ON_HASH(rq));
2190
2191 list_del_init(&rq->queuelist);
2192
2193 /*
2194 * the time frame between a request being removed from the lists
2195 * and to it is freed is accounted as io that is in progress at
2196 * the driver side.
2197 */
2198 if (blk_account_rq(rq)) {
2199 q->in_flight[rq_is_sync(rq)]++;
2200 set_io_start_time_ns(rq);
2201 }
2202 }
2203
2204 /**
2205 * blk_start_request - start request processing on the driver
2206 * @req: request to dequeue
2207 *
2208 * Description:
2209 * Dequeue @req and start timeout timer on it. This hands off the
2210 * request to the driver.
2211 *
2212 * Block internal functions which don't want to start timer should
2213 * call blk_dequeue_request().
2214 *
2215 * Context:
2216 * queue_lock must be held.
2217 */
2218 void blk_start_request(struct request *req)
2219 {
2220 blk_dequeue_request(req);
2221
2222 /*
2223 * We are now handing the request to the hardware, initialize
2224 * resid_len to full count and add the timeout handler.
2225 */
2226 req->resid_len = blk_rq_bytes(req);
2227 if (unlikely(blk_bidi_rq(req)))
2228 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2229
2230 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2231 blk_add_timer(req);
2232 }
2233 EXPORT_SYMBOL(blk_start_request);
2234
2235 /**
2236 * blk_fetch_request - fetch a request from a request queue
2237 * @q: request queue to fetch a request from
2238 *
2239 * Description:
2240 * Return the request at the top of @q. The request is started on
2241 * return and LLD can start processing it immediately.
2242 *
2243 * Return:
2244 * Pointer to the request at the top of @q if available. Null
2245 * otherwise.
2246 *
2247 * Context:
2248 * queue_lock must be held.
2249 */
2250 struct request *blk_fetch_request(struct request_queue *q)
2251 {
2252 struct request *rq;
2253
2254 rq = blk_peek_request(q);
2255 if (rq)
2256 blk_start_request(rq);
2257 return rq;
2258 }
2259 EXPORT_SYMBOL(blk_fetch_request);
2260
2261 /**
2262 * blk_update_request - Special helper function for request stacking drivers
2263 * @req: the request being processed
2264 * @error: %0 for success, < %0 for error
2265 * @nr_bytes: number of bytes to complete @req
2266 *
2267 * Description:
2268 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2269 * the request structure even if @req doesn't have leftover.
2270 * If @req has leftover, sets it up for the next range of segments.
2271 *
2272 * This special helper function is only for request stacking drivers
2273 * (e.g. request-based dm) so that they can handle partial completion.
2274 * Actual device drivers should use blk_end_request instead.
2275 *
2276 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2277 * %false return from this function.
2278 *
2279 * Return:
2280 * %false - this request doesn't have any more data
2281 * %true - this request has more data
2282 **/
2283 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2284 {
2285 int total_bytes;
2286
2287 if (!req->bio)
2288 return false;
2289
2290 trace_block_rq_complete(req->q, req);
2291
2292 /*
2293 * For fs requests, rq is just carrier of independent bio's
2294 * and each partial completion should be handled separately.
2295 * Reset per-request error on each partial completion.
2296 *
2297 * TODO: tj: This is too subtle. It would be better to let
2298 * low level drivers do what they see fit.
2299 */
2300 if (req->cmd_type == REQ_TYPE_FS)
2301 req->errors = 0;
2302
2303 if (error && req->cmd_type == REQ_TYPE_FS &&
2304 !(req->cmd_flags & REQ_QUIET)) {
2305 char *error_type;
2306
2307 switch (error) {
2308 case -ENOLINK:
2309 error_type = "recoverable transport";
2310 break;
2311 case -EREMOTEIO:
2312 error_type = "critical target";
2313 break;
2314 case -EBADE:
2315 error_type = "critical nexus";
2316 break;
2317 case -ETIMEDOUT:
2318 error_type = "timeout";
2319 break;
2320 case -ENOSPC:
2321 error_type = "critical space allocation";
2322 break;
2323 case -ENODATA:
2324 error_type = "critical medium";
2325 break;
2326 case -EIO:
2327 default:
2328 error_type = "I/O";
2329 break;
2330 }
2331 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2332 error_type, req->rq_disk ?
2333 req->rq_disk->disk_name : "?",
2334 (unsigned long long)blk_rq_pos(req));
2335
2336 }
2337
2338 blk_account_io_completion(req, nr_bytes);
2339
2340 total_bytes = 0;
2341 while (req->bio) {
2342 struct bio *bio = req->bio;
2343 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
2344
2345 if (bio_bytes == bio->bi_size)
2346 req->bio = bio->bi_next;
2347
2348 req_bio_endio(req, bio, bio_bytes, error);
2349
2350 total_bytes += bio_bytes;
2351 nr_bytes -= bio_bytes;
2352
2353 if (!nr_bytes)
2354 break;
2355 }
2356
2357 /*
2358 * completely done
2359 */
2360 if (!req->bio) {
2361 /*
2362 * Reset counters so that the request stacking driver
2363 * can find how many bytes remain in the request
2364 * later.
2365 */
2366 req->__data_len = 0;
2367 return false;
2368 }
2369
2370 req->__data_len -= total_bytes;
2371 req->buffer = bio_data(req->bio);
2372
2373 /* update sector only for requests with clear definition of sector */
2374 if (req->cmd_type == REQ_TYPE_FS)
2375 req->__sector += total_bytes >> 9;
2376
2377 /* mixed attributes always follow the first bio */
2378 if (req->cmd_flags & REQ_MIXED_MERGE) {
2379 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2380 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2381 }
2382
2383 /*
2384 * If total number of sectors is less than the first segment
2385 * size, something has gone terribly wrong.
2386 */
2387 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2388 blk_dump_rq_flags(req, "request botched");
2389 req->__data_len = blk_rq_cur_bytes(req);
2390 }
2391
2392 /* recalculate the number of segments */
2393 blk_recalc_rq_segments(req);
2394
2395 return true;
2396 }
2397 EXPORT_SYMBOL_GPL(blk_update_request);
2398
2399 static bool blk_update_bidi_request(struct request *rq, int error,
2400 unsigned int nr_bytes,
2401 unsigned int bidi_bytes)
2402 {
2403 if (blk_update_request(rq, error, nr_bytes))
2404 return true;
2405
2406 /* Bidi request must be completed as a whole */
2407 if (unlikely(blk_bidi_rq(rq)) &&
2408 blk_update_request(rq->next_rq, error, bidi_bytes))
2409 return true;
2410
2411 if (blk_queue_add_random(rq->q))
2412 add_disk_randomness(rq->rq_disk);
2413
2414 return false;
2415 }
2416
2417 /**
2418 * blk_unprep_request - unprepare a request
2419 * @req: the request
2420 *
2421 * This function makes a request ready for complete resubmission (or
2422 * completion). It happens only after all error handling is complete,
2423 * so represents the appropriate moment to deallocate any resources
2424 * that were allocated to the request in the prep_rq_fn. The queue
2425 * lock is held when calling this.
2426 */
2427 void blk_unprep_request(struct request *req)
2428 {
2429 struct request_queue *q = req->q;
2430
2431 req->cmd_flags &= ~REQ_DONTPREP;
2432 if (q->unprep_rq_fn)
2433 q->unprep_rq_fn(q, req);
2434 }
2435 EXPORT_SYMBOL_GPL(blk_unprep_request);
2436
2437 /*
2438 * queue lock must be held
2439 */
2440 static void blk_finish_request(struct request *req, int error)
2441 {
2442 if (blk_rq_tagged(req))
2443 blk_queue_end_tag(req->q, req);
2444
2445 BUG_ON(blk_queued_rq(req));
2446
2447 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2448 laptop_io_completion(&req->q->backing_dev_info);
2449
2450 blk_delete_timer(req);
2451
2452 if (req->cmd_flags & REQ_DONTPREP)
2453 blk_unprep_request(req);
2454
2455
2456 blk_account_io_done(req);
2457
2458 if (req->end_io)
2459 req->end_io(req, error);
2460 else {
2461 if (blk_bidi_rq(req))
2462 __blk_put_request(req->next_rq->q, req->next_rq);
2463
2464 __blk_put_request(req->q, req);
2465 }
2466 }
2467
2468 /**
2469 * blk_end_bidi_request - Complete a bidi request
2470 * @rq: the request to complete
2471 * @error: %0 for success, < %0 for error
2472 * @nr_bytes: number of bytes to complete @rq
2473 * @bidi_bytes: number of bytes to complete @rq->next_rq
2474 *
2475 * Description:
2476 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2477 * Drivers that supports bidi can safely call this member for any
2478 * type of request, bidi or uni. In the later case @bidi_bytes is
2479 * just ignored.
2480 *
2481 * Return:
2482 * %false - we are done with this request
2483 * %true - still buffers pending for this request
2484 **/
2485 static bool blk_end_bidi_request(struct request *rq, int error,
2486 unsigned int nr_bytes, unsigned int bidi_bytes)
2487 {
2488 struct request_queue *q = rq->q;
2489 unsigned long flags;
2490
2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2492 return true;
2493
2494 spin_lock_irqsave(q->queue_lock, flags);
2495 blk_finish_request(rq, error);
2496 spin_unlock_irqrestore(q->queue_lock, flags);
2497
2498 return false;
2499 }
2500
2501 /**
2502 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2503 * @rq: the request to complete
2504 * @error: %0 for success, < %0 for error
2505 * @nr_bytes: number of bytes to complete @rq
2506 * @bidi_bytes: number of bytes to complete @rq->next_rq
2507 *
2508 * Description:
2509 * Identical to blk_end_bidi_request() except that queue lock is
2510 * assumed to be locked on entry and remains so on return.
2511 *
2512 * Return:
2513 * %false - we are done with this request
2514 * %true - still buffers pending for this request
2515 **/
2516 bool __blk_end_bidi_request(struct request *rq, int error,
2517 unsigned int nr_bytes, unsigned int bidi_bytes)
2518 {
2519 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2520 return true;
2521
2522 blk_finish_request(rq, error);
2523
2524 return false;
2525 }
2526
2527 /**
2528 * blk_end_request - Helper function for drivers to complete the request.
2529 * @rq: the request being processed
2530 * @error: %0 for success, < %0 for error
2531 * @nr_bytes: number of bytes to complete
2532 *
2533 * Description:
2534 * Ends I/O on a number of bytes attached to @rq.
2535 * If @rq has leftover, sets it up for the next range of segments.
2536 *
2537 * Return:
2538 * %false - we are done with this request
2539 * %true - still buffers pending for this request
2540 **/
2541 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2542 {
2543 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2544 }
2545 EXPORT_SYMBOL(blk_end_request);
2546
2547 /**
2548 * blk_end_request_all - Helper function for drives to finish the request.
2549 * @rq: the request to finish
2550 * @error: %0 for success, < %0 for error
2551 *
2552 * Description:
2553 * Completely finish @rq.
2554 */
2555 void blk_end_request_all(struct request *rq, int error)
2556 {
2557 bool pending;
2558 unsigned int bidi_bytes = 0;
2559
2560 if (unlikely(blk_bidi_rq(rq)))
2561 bidi_bytes = blk_rq_bytes(rq->next_rq);
2562
2563 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2564 BUG_ON(pending);
2565 }
2566 EXPORT_SYMBOL(blk_end_request_all);
2567
2568 /**
2569 * blk_end_request_cur - Helper function to finish the current request chunk.
2570 * @rq: the request to finish the current chunk for
2571 * @error: %0 for success, < %0 for error
2572 *
2573 * Description:
2574 * Complete the current consecutively mapped chunk from @rq.
2575 *
2576 * Return:
2577 * %false - we are done with this request
2578 * %true - still buffers pending for this request
2579 */
2580 bool blk_end_request_cur(struct request *rq, int error)
2581 {
2582 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2583 }
2584 EXPORT_SYMBOL(blk_end_request_cur);
2585
2586 /**
2587 * blk_end_request_err - Finish a request till the next failure boundary.
2588 * @rq: the request to finish till the next failure boundary for
2589 * @error: must be negative errno
2590 *
2591 * Description:
2592 * Complete @rq till the next failure boundary.
2593 *
2594 * Return:
2595 * %false - we are done with this request
2596 * %true - still buffers pending for this request
2597 */
2598 bool blk_end_request_err(struct request *rq, int error)
2599 {
2600 WARN_ON(error >= 0);
2601 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2602 }
2603 EXPORT_SYMBOL_GPL(blk_end_request_err);
2604
2605 /**
2606 * __blk_end_request - Helper function for drivers to complete the request.
2607 * @rq: the request being processed
2608 * @error: %0 for success, < %0 for error
2609 * @nr_bytes: number of bytes to complete
2610 *
2611 * Description:
2612 * Must be called with queue lock held unlike blk_end_request().
2613 *
2614 * Return:
2615 * %false - we are done with this request
2616 * %true - still buffers pending for this request
2617 **/
2618 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2619 {
2620 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2621 }
2622 EXPORT_SYMBOL(__blk_end_request);
2623
2624 /**
2625 * __blk_end_request_all - Helper function for drives to finish the request.
2626 * @rq: the request to finish
2627 * @error: %0 for success, < %0 for error
2628 *
2629 * Description:
2630 * Completely finish @rq. Must be called with queue lock held.
2631 */
2632 void __blk_end_request_all(struct request *rq, int error)
2633 {
2634 bool pending;
2635 unsigned int bidi_bytes = 0;
2636
2637 if (unlikely(blk_bidi_rq(rq)))
2638 bidi_bytes = blk_rq_bytes(rq->next_rq);
2639
2640 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2641 BUG_ON(pending);
2642 }
2643 EXPORT_SYMBOL(__blk_end_request_all);
2644
2645 /**
2646 * __blk_end_request_cur - Helper function to finish the current request chunk.
2647 * @rq: the request to finish the current chunk for
2648 * @error: %0 for success, < %0 for error
2649 *
2650 * Description:
2651 * Complete the current consecutively mapped chunk from @rq. Must
2652 * be called with queue lock held.
2653 *
2654 * Return:
2655 * %false - we are done with this request
2656 * %true - still buffers pending for this request
2657 */
2658 bool __blk_end_request_cur(struct request *rq, int error)
2659 {
2660 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2661 }
2662 EXPORT_SYMBOL(__blk_end_request_cur);
2663
2664 /**
2665 * __blk_end_request_err - Finish a request till the next failure boundary.
2666 * @rq: the request to finish till the next failure boundary for
2667 * @error: must be negative errno
2668 *
2669 * Description:
2670 * Complete @rq till the next failure boundary. Must be called
2671 * with queue lock held.
2672 *
2673 * Return:
2674 * %false - we are done with this request
2675 * %true - still buffers pending for this request
2676 */
2677 bool __blk_end_request_err(struct request *rq, int error)
2678 {
2679 WARN_ON(error >= 0);
2680 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2681 }
2682 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2683
2684 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2685 struct bio *bio)
2686 {
2687 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2688 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2689
2690 if (bio_has_data(bio)) {
2691 rq->nr_phys_segments = bio_phys_segments(q, bio);
2692 rq->buffer = bio_data(bio);
2693 }
2694 rq->__data_len = bio->bi_size;
2695 rq->bio = rq->biotail = bio;
2696
2697 if (bio->bi_bdev)
2698 rq->rq_disk = bio->bi_bdev->bd_disk;
2699 }
2700
2701 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2702 /**
2703 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2704 * @rq: the request to be flushed
2705 *
2706 * Description:
2707 * Flush all pages in @rq.
2708 */
2709 void rq_flush_dcache_pages(struct request *rq)
2710 {
2711 struct req_iterator iter;
2712 struct bio_vec *bvec;
2713
2714 rq_for_each_segment(bvec, rq, iter)
2715 flush_dcache_page(bvec->bv_page);
2716 }
2717 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2718 #endif
2719
2720 /**
2721 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2722 * @q : the queue of the device being checked
2723 *
2724 * Description:
2725 * Check if underlying low-level drivers of a device are busy.
2726 * If the drivers want to export their busy state, they must set own
2727 * exporting function using blk_queue_lld_busy() first.
2728 *
2729 * Basically, this function is used only by request stacking drivers
2730 * to stop dispatching requests to underlying devices when underlying
2731 * devices are busy. This behavior helps more I/O merging on the queue
2732 * of the request stacking driver and prevents I/O throughput regression
2733 * on burst I/O load.
2734 *
2735 * Return:
2736 * 0 - Not busy (The request stacking driver should dispatch request)
2737 * 1 - Busy (The request stacking driver should stop dispatching request)
2738 */
2739 int blk_lld_busy(struct request_queue *q)
2740 {
2741 if (q->lld_busy_fn)
2742 return q->lld_busy_fn(q);
2743
2744 return 0;
2745 }
2746 EXPORT_SYMBOL_GPL(blk_lld_busy);
2747
2748 /**
2749 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2750 * @rq: the clone request to be cleaned up
2751 *
2752 * Description:
2753 * Free all bios in @rq for a cloned request.
2754 */
2755 void blk_rq_unprep_clone(struct request *rq)
2756 {
2757 struct bio *bio;
2758
2759 while ((bio = rq->bio) != NULL) {
2760 rq->bio = bio->bi_next;
2761
2762 bio_put(bio);
2763 }
2764 }
2765 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2766
2767 /*
2768 * Copy attributes of the original request to the clone request.
2769 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2770 */
2771 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2772 {
2773 dst->cpu = src->cpu;
2774 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2775 dst->cmd_type = src->cmd_type;
2776 dst->__sector = blk_rq_pos(src);
2777 dst->__data_len = blk_rq_bytes(src);
2778 dst->nr_phys_segments = src->nr_phys_segments;
2779 dst->ioprio = src->ioprio;
2780 dst->extra_len = src->extra_len;
2781 }
2782
2783 /**
2784 * blk_rq_prep_clone - Helper function to setup clone request
2785 * @rq: the request to be setup
2786 * @rq_src: original request to be cloned
2787 * @bs: bio_set that bios for clone are allocated from
2788 * @gfp_mask: memory allocation mask for bio
2789 * @bio_ctr: setup function to be called for each clone bio.
2790 * Returns %0 for success, non %0 for failure.
2791 * @data: private data to be passed to @bio_ctr
2792 *
2793 * Description:
2794 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2795 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2796 * are not copied, and copying such parts is the caller's responsibility.
2797 * Also, pages which the original bios are pointing to are not copied
2798 * and the cloned bios just point same pages.
2799 * So cloned bios must be completed before original bios, which means
2800 * the caller must complete @rq before @rq_src.
2801 */
2802 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2803 struct bio_set *bs, gfp_t gfp_mask,
2804 int (*bio_ctr)(struct bio *, struct bio *, void *),
2805 void *data)
2806 {
2807 struct bio *bio, *bio_src;
2808
2809 if (!bs)
2810 bs = fs_bio_set;
2811
2812 blk_rq_init(NULL, rq);
2813
2814 __rq_for_each_bio(bio_src, rq_src) {
2815 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2816 if (!bio)
2817 goto free_and_out;
2818
2819 if (bio_ctr && bio_ctr(bio, bio_src, data))
2820 goto free_and_out;
2821
2822 if (rq->bio) {
2823 rq->biotail->bi_next = bio;
2824 rq->biotail = bio;
2825 } else
2826 rq->bio = rq->biotail = bio;
2827 }
2828
2829 __blk_rq_prep_clone(rq, rq_src);
2830
2831 return 0;
2832
2833 free_and_out:
2834 if (bio)
2835 bio_put(bio);
2836 blk_rq_unprep_clone(rq);
2837
2838 return -ENOMEM;
2839 }
2840 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2841
2842 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2843 {
2844 return queue_work(kblockd_workqueue, work);
2845 }
2846 EXPORT_SYMBOL(kblockd_schedule_work);
2847
2848 int kblockd_schedule_delayed_work(struct request_queue *q,
2849 struct delayed_work *dwork, unsigned long delay)
2850 {
2851 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2852 }
2853 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2854
2855 #define PLUG_MAGIC 0x91827364
2856
2857 /**
2858 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2859 * @plug: The &struct blk_plug that needs to be initialized
2860 *
2861 * Description:
2862 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2863 * pending I/O should the task end up blocking between blk_start_plug() and
2864 * blk_finish_plug(). This is important from a performance perspective, but
2865 * also ensures that we don't deadlock. For instance, if the task is blocking
2866 * for a memory allocation, memory reclaim could end up wanting to free a
2867 * page belonging to that request that is currently residing in our private
2868 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2869 * this kind of deadlock.
2870 */
2871 void blk_start_plug(struct blk_plug *plug)
2872 {
2873 struct task_struct *tsk = current;
2874
2875 plug->magic = PLUG_MAGIC;
2876 INIT_LIST_HEAD(&plug->list);
2877 INIT_LIST_HEAD(&plug->cb_list);
2878
2879 /*
2880 * If this is a nested plug, don't actually assign it. It will be
2881 * flushed on its own.
2882 */
2883 if (!tsk->plug) {
2884 /*
2885 * Store ordering should not be needed here, since a potential
2886 * preempt will imply a full memory barrier
2887 */
2888 tsk->plug = plug;
2889 }
2890 }
2891 EXPORT_SYMBOL(blk_start_plug);
2892
2893 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2894 {
2895 struct request *rqa = container_of(a, struct request, queuelist);
2896 struct request *rqb = container_of(b, struct request, queuelist);
2897
2898 return !(rqa->q < rqb->q ||
2899 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2900 }
2901
2902 /*
2903 * If 'from_schedule' is true, then postpone the dispatch of requests
2904 * until a safe kblockd context. We due this to avoid accidental big
2905 * additional stack usage in driver dispatch, in places where the originally
2906 * plugger did not intend it.
2907 */
2908 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2909 bool from_schedule)
2910 __releases(q->queue_lock)
2911 {
2912 trace_block_unplug(q, depth, !from_schedule);
2913
2914 if (from_schedule)
2915 blk_run_queue_async(q);
2916 else
2917 __blk_run_queue(q);
2918 spin_unlock(q->queue_lock);
2919 }
2920
2921 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2922 {
2923 LIST_HEAD(callbacks);
2924
2925 while (!list_empty(&plug->cb_list)) {
2926 list_splice_init(&plug->cb_list, &callbacks);
2927
2928 while (!list_empty(&callbacks)) {
2929 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2930 struct blk_plug_cb,
2931 list);
2932 list_del(&cb->list);
2933 cb->callback(cb, from_schedule);
2934 }
2935 }
2936 }
2937
2938 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2939 int size)
2940 {
2941 struct blk_plug *plug = current->plug;
2942 struct blk_plug_cb *cb;
2943
2944 if (!plug)
2945 return NULL;
2946
2947 list_for_each_entry(cb, &plug->cb_list, list)
2948 if (cb->callback == unplug && cb->data == data)
2949 return cb;
2950
2951 /* Not currently on the callback list */
2952 BUG_ON(size < sizeof(*cb));
2953 cb = kzalloc(size, GFP_ATOMIC);
2954 if (cb) {
2955 cb->data = data;
2956 cb->callback = unplug;
2957 list_add(&cb->list, &plug->cb_list);
2958 }
2959 return cb;
2960 }
2961 EXPORT_SYMBOL(blk_check_plugged);
2962
2963 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2964 {
2965 struct request_queue *q;
2966 unsigned long flags;
2967 struct request *rq;
2968 LIST_HEAD(list);
2969 unsigned int depth;
2970
2971 BUG_ON(plug->magic != PLUG_MAGIC);
2972
2973 flush_plug_callbacks(plug, from_schedule);
2974 if (list_empty(&plug->list))
2975 return;
2976
2977 list_splice_init(&plug->list, &list);
2978
2979 list_sort(NULL, &list, plug_rq_cmp);
2980
2981 q = NULL;
2982 depth = 0;
2983
2984 /*
2985 * Save and disable interrupts here, to avoid doing it for every
2986 * queue lock we have to take.
2987 */
2988 local_irq_save(flags);
2989 while (!list_empty(&list)) {
2990 rq = list_entry_rq(list.next);
2991 list_del_init(&rq->queuelist);
2992 BUG_ON(!rq->q);
2993 if (rq->q != q) {
2994 /*
2995 * This drops the queue lock
2996 */
2997 if (q)
2998 queue_unplugged(q, depth, from_schedule);
2999 q = rq->q;
3000 depth = 0;
3001 spin_lock(q->queue_lock);
3002 }
3003
3004 /*
3005 * Short-circuit if @q is dead
3006 */
3007 if (unlikely(blk_queue_dying(q))) {
3008 __blk_end_request_all(rq, -ENODEV);
3009 continue;
3010 }
3011
3012 /*
3013 * rq is already accounted, so use raw insert
3014 */
3015 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3016 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3017 else
3018 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3019
3020 depth++;
3021 }
3022
3023 /*
3024 * This drops the queue lock
3025 */
3026 if (q)
3027 queue_unplugged(q, depth, from_schedule);
3028
3029 local_irq_restore(flags);
3030 }
3031
3032 void blk_finish_plug(struct blk_plug *plug)
3033 {
3034 blk_flush_plug_list(plug, false);
3035
3036 if (plug == current->plug)
3037 current->plug = NULL;
3038 }
3039 EXPORT_SYMBOL(blk_finish_plug);
3040
3041 #ifdef CONFIG_PM_RUNTIME
3042 /**
3043 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3044 * @q: the queue of the device
3045 * @dev: the device the queue belongs to
3046 *
3047 * Description:
3048 * Initialize runtime-PM-related fields for @q and start auto suspend for
3049 * @dev. Drivers that want to take advantage of request-based runtime PM
3050 * should call this function after @dev has been initialized, and its
3051 * request queue @q has been allocated, and runtime PM for it can not happen
3052 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3053 * cases, driver should call this function before any I/O has taken place.
3054 *
3055 * This function takes care of setting up using auto suspend for the device,
3056 * the autosuspend delay is set to -1 to make runtime suspend impossible
3057 * until an updated value is either set by user or by driver. Drivers do
3058 * not need to touch other autosuspend settings.
3059 *
3060 * The block layer runtime PM is request based, so only works for drivers
3061 * that use request as their IO unit instead of those directly use bio's.
3062 */
3063 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3064 {
3065 q->dev = dev;
3066 q->rpm_status = RPM_ACTIVE;
3067 pm_runtime_set_autosuspend_delay(q->dev, -1);
3068 pm_runtime_use_autosuspend(q->dev);
3069 }
3070 EXPORT_SYMBOL(blk_pm_runtime_init);
3071
3072 /**
3073 * blk_pre_runtime_suspend - Pre runtime suspend check
3074 * @q: the queue of the device
3075 *
3076 * Description:
3077 * This function will check if runtime suspend is allowed for the device
3078 * by examining if there are any requests pending in the queue. If there
3079 * are requests pending, the device can not be runtime suspended; otherwise,
3080 * the queue's status will be updated to SUSPENDING and the driver can
3081 * proceed to suspend the device.
3082 *
3083 * For the not allowed case, we mark last busy for the device so that
3084 * runtime PM core will try to autosuspend it some time later.
3085 *
3086 * This function should be called near the start of the device's
3087 * runtime_suspend callback.
3088 *
3089 * Return:
3090 * 0 - OK to runtime suspend the device
3091 * -EBUSY - Device should not be runtime suspended
3092 */
3093 int blk_pre_runtime_suspend(struct request_queue *q)
3094 {
3095 int ret = 0;
3096
3097 spin_lock_irq(q->queue_lock);
3098 if (q->nr_pending) {
3099 ret = -EBUSY;
3100 pm_runtime_mark_last_busy(q->dev);
3101 } else {
3102 q->rpm_status = RPM_SUSPENDING;
3103 }
3104 spin_unlock_irq(q->queue_lock);
3105 return ret;
3106 }
3107 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3108
3109 /**
3110 * blk_post_runtime_suspend - Post runtime suspend processing
3111 * @q: the queue of the device
3112 * @err: return value of the device's runtime_suspend function
3113 *
3114 * Description:
3115 * Update the queue's runtime status according to the return value of the
3116 * device's runtime suspend function and mark last busy for the device so
3117 * that PM core will try to auto suspend the device at a later time.
3118 *
3119 * This function should be called near the end of the device's
3120 * runtime_suspend callback.
3121 */
3122 void blk_post_runtime_suspend(struct request_queue *q, int err)
3123 {
3124 spin_lock_irq(q->queue_lock);
3125 if (!err) {
3126 q->rpm_status = RPM_SUSPENDED;
3127 } else {
3128 q->rpm_status = RPM_ACTIVE;
3129 pm_runtime_mark_last_busy(q->dev);
3130 }
3131 spin_unlock_irq(q->queue_lock);
3132 }
3133 EXPORT_SYMBOL(blk_post_runtime_suspend);
3134
3135 /**
3136 * blk_pre_runtime_resume - Pre runtime resume processing
3137 * @q: the queue of the device
3138 *
3139 * Description:
3140 * Update the queue's runtime status to RESUMING in preparation for the
3141 * runtime resume of the device.
3142 *
3143 * This function should be called near the start of the device's
3144 * runtime_resume callback.
3145 */
3146 void blk_pre_runtime_resume(struct request_queue *q)
3147 {
3148 spin_lock_irq(q->queue_lock);
3149 q->rpm_status = RPM_RESUMING;
3150 spin_unlock_irq(q->queue_lock);
3151 }
3152 EXPORT_SYMBOL(blk_pre_runtime_resume);
3153
3154 /**
3155 * blk_post_runtime_resume - Post runtime resume processing
3156 * @q: the queue of the device
3157 * @err: return value of the device's runtime_resume function
3158 *
3159 * Description:
3160 * Update the queue's runtime status according to the return value of the
3161 * device's runtime_resume function. If it is successfully resumed, process
3162 * the requests that are queued into the device's queue when it is resuming
3163 * and then mark last busy and initiate autosuspend for it.
3164 *
3165 * This function should be called near the end of the device's
3166 * runtime_resume callback.
3167 */
3168 void blk_post_runtime_resume(struct request_queue *q, int err)
3169 {
3170 spin_lock_irq(q->queue_lock);
3171 if (!err) {
3172 q->rpm_status = RPM_ACTIVE;
3173 __blk_run_queue(q);
3174 pm_runtime_mark_last_busy(q->dev);
3175 pm_request_autosuspend(q->dev);
3176 } else {
3177 q->rpm_status = RPM_SUSPENDED;
3178 }
3179 spin_unlock_irq(q->queue_lock);
3180 }
3181 EXPORT_SYMBOL(blk_post_runtime_resume);
3182 #endif
3183
3184 int __init blk_dev_init(void)
3185 {
3186 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3187 sizeof(((struct request *)0)->cmd_flags));
3188
3189 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3190 kblockd_workqueue = alloc_workqueue("kblockd",
3191 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3192 WQ_POWER_EFFICIENT, 0);
3193 if (!kblockd_workqueue)
3194 panic("Failed to create kblockd\n");
3195
3196 request_cachep = kmem_cache_create("blkdev_requests",
3197 sizeof(struct request), 0, SLAB_PANIC, NULL);
3198
3199 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3200 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3201
3202 return 0;
3203 }