]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
Merge tag 'tty-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-wbt.h"
43
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49
50 DEFINE_IDA(blk_queue_ida);
51
52 /*
53 * For the allocated request tables
54 */
55 struct kmem_cache *request_cachep;
56
57 /*
58 * For queue allocation
59 */
60 struct kmem_cache *blk_requestq_cachep;
61
62 /*
63 * Controlling structure to kblockd
64 */
65 static struct workqueue_struct *kblockd_workqueue;
66
67 static void blk_clear_congested(struct request_list *rl, int sync)
68 {
69 #ifdef CONFIG_CGROUP_WRITEBACK
70 clear_wb_congested(rl->blkg->wb_congested, sync);
71 #else
72 /*
73 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
74 * flip its congestion state for events on other blkcgs.
75 */
76 if (rl == &rl->q->root_rl)
77 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
78 #endif
79 }
80
81 static void blk_set_congested(struct request_list *rl, int sync)
82 {
83 #ifdef CONFIG_CGROUP_WRITEBACK
84 set_wb_congested(rl->blkg->wb_congested, sync);
85 #else
86 /* see blk_clear_congested() */
87 if (rl == &rl->q->root_rl)
88 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
89 #endif
90 }
91
92 void blk_queue_congestion_threshold(struct request_queue *q)
93 {
94 int nr;
95
96 nr = q->nr_requests - (q->nr_requests / 8) + 1;
97 if (nr > q->nr_requests)
98 nr = q->nr_requests;
99 q->nr_congestion_on = nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
102 if (nr < 1)
103 nr = 1;
104 q->nr_congestion_off = nr;
105 }
106
107 /**
108 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
109 * @bdev: device
110 *
111 * Locates the passed device's request queue and returns the address of its
112 * backing_dev_info. This function can only be called if @bdev is opened
113 * and the return value is never NULL.
114 */
115 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 {
117 struct request_queue *q = bdev_get_queue(bdev);
118
119 return &q->backing_dev_info;
120 }
121 EXPORT_SYMBOL(blk_get_backing_dev_info);
122
123 void blk_rq_init(struct request_queue *q, struct request *rq)
124 {
125 memset(rq, 0, sizeof(*rq));
126
127 INIT_LIST_HEAD(&rq->queuelist);
128 INIT_LIST_HEAD(&rq->timeout_list);
129 rq->cpu = -1;
130 rq->q = q;
131 rq->__sector = (sector_t) -1;
132 INIT_HLIST_NODE(&rq->hash);
133 RB_CLEAR_NODE(&rq->rb_node);
134 rq->cmd = rq->__cmd;
135 rq->cmd_len = BLK_MAX_CDB;
136 rq->tag = -1;
137 rq->start_time = jiffies;
138 set_start_time_ns(rq);
139 rq->part = NULL;
140 }
141 EXPORT_SYMBOL(blk_rq_init);
142
143 static void req_bio_endio(struct request *rq, struct bio *bio,
144 unsigned int nbytes, int error)
145 {
146 if (error)
147 bio->bi_error = error;
148
149 if (unlikely(rq->rq_flags & RQF_QUIET))
150 bio_set_flag(bio, BIO_QUIET);
151
152 bio_advance(bio, nbytes);
153
154 /* don't actually finish bio if it's part of flush sequence */
155 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
156 bio_endio(bio);
157 }
158
159 void blk_dump_rq_flags(struct request *rq, char *msg)
160 {
161 int bit;
162
163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
165 (unsigned long long) rq->cmd_flags);
166
167 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
168 (unsigned long long)blk_rq_pos(rq),
169 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
170 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
171 rq->bio, rq->biotail, blk_rq_bytes(rq));
172
173 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
174 printk(KERN_INFO " cdb: ");
175 for (bit = 0; bit < BLK_MAX_CDB; bit++)
176 printk("%02x ", rq->cmd[bit]);
177 printk("\n");
178 }
179 }
180 EXPORT_SYMBOL(blk_dump_rq_flags);
181
182 static void blk_delay_work(struct work_struct *work)
183 {
184 struct request_queue *q;
185
186 q = container_of(work, struct request_queue, delay_work.work);
187 spin_lock_irq(q->queue_lock);
188 __blk_run_queue(q);
189 spin_unlock_irq(q->queue_lock);
190 }
191
192 /**
193 * blk_delay_queue - restart queueing after defined interval
194 * @q: The &struct request_queue in question
195 * @msecs: Delay in msecs
196 *
197 * Description:
198 * Sometimes queueing needs to be postponed for a little while, to allow
199 * resources to come back. This function will make sure that queueing is
200 * restarted around the specified time. Queue lock must be held.
201 */
202 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 {
204 if (likely(!blk_queue_dead(q)))
205 queue_delayed_work(kblockd_workqueue, &q->delay_work,
206 msecs_to_jiffies(msecs));
207 }
208 EXPORT_SYMBOL(blk_delay_queue);
209
210 /**
211 * blk_start_queue_async - asynchronously restart a previously stopped queue
212 * @q: The &struct request_queue in question
213 *
214 * Description:
215 * blk_start_queue_async() will clear the stop flag on the queue, and
216 * ensure that the request_fn for the queue is run from an async
217 * context.
218 **/
219 void blk_start_queue_async(struct request_queue *q)
220 {
221 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
222 blk_run_queue_async(q);
223 }
224 EXPORT_SYMBOL(blk_start_queue_async);
225
226 /**
227 * blk_start_queue - restart a previously stopped queue
228 * @q: The &struct request_queue in question
229 *
230 * Description:
231 * blk_start_queue() will clear the stop flag on the queue, and call
232 * the request_fn for the queue if it was in a stopped state when
233 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 **/
235 void blk_start_queue(struct request_queue *q)
236 {
237 WARN_ON(!irqs_disabled());
238
239 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
240 __blk_run_queue(q);
241 }
242 EXPORT_SYMBOL(blk_start_queue);
243
244 /**
245 * blk_stop_queue - stop a queue
246 * @q: The &struct request_queue in question
247 *
248 * Description:
249 * The Linux block layer assumes that a block driver will consume all
250 * entries on the request queue when the request_fn strategy is called.
251 * Often this will not happen, because of hardware limitations (queue
252 * depth settings). If a device driver gets a 'queue full' response,
253 * or if it simply chooses not to queue more I/O at one point, it can
254 * call this function to prevent the request_fn from being called until
255 * the driver has signalled it's ready to go again. This happens by calling
256 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 **/
258 void blk_stop_queue(struct request_queue *q)
259 {
260 cancel_delayed_work(&q->delay_work);
261 queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 }
263 EXPORT_SYMBOL(blk_stop_queue);
264
265 /**
266 * blk_sync_queue - cancel any pending callbacks on a queue
267 * @q: the queue
268 *
269 * Description:
270 * The block layer may perform asynchronous callback activity
271 * on a queue, such as calling the unplug function after a timeout.
272 * A block device may call blk_sync_queue to ensure that any
273 * such activity is cancelled, thus allowing it to release resources
274 * that the callbacks might use. The caller must already have made sure
275 * that its ->make_request_fn will not re-add plugging prior to calling
276 * this function.
277 *
278 * This function does not cancel any asynchronous activity arising
279 * out of elevator or throttling code. That would require elevator_exit()
280 * and blkcg_exit_queue() to be called with queue lock initialized.
281 *
282 */
283 void blk_sync_queue(struct request_queue *q)
284 {
285 del_timer_sync(&q->timeout);
286
287 if (q->mq_ops) {
288 struct blk_mq_hw_ctx *hctx;
289 int i;
290
291 queue_for_each_hw_ctx(q, hctx, i) {
292 cancel_work_sync(&hctx->run_work);
293 cancel_delayed_work_sync(&hctx->delay_work);
294 }
295 } else {
296 cancel_delayed_work_sync(&q->delay_work);
297 }
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300
301 /**
302 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
303 * @q: The queue to run
304 *
305 * Description:
306 * Invoke request handling on a queue if there are any pending requests.
307 * May be used to restart request handling after a request has completed.
308 * This variant runs the queue whether or not the queue has been
309 * stopped. Must be called with the queue lock held and interrupts
310 * disabled. See also @blk_run_queue.
311 */
312 inline void __blk_run_queue_uncond(struct request_queue *q)
313 {
314 if (unlikely(blk_queue_dead(q)))
315 return;
316
317 /*
318 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
319 * the queue lock internally. As a result multiple threads may be
320 * running such a request function concurrently. Keep track of the
321 * number of active request_fn invocations such that blk_drain_queue()
322 * can wait until all these request_fn calls have finished.
323 */
324 q->request_fn_active++;
325 q->request_fn(q);
326 q->request_fn_active--;
327 }
328 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
329
330 /**
331 * __blk_run_queue - run a single device queue
332 * @q: The queue to run
333 *
334 * Description:
335 * See @blk_run_queue. This variant must be called with the queue lock
336 * held and interrupts disabled.
337 */
338 void __blk_run_queue(struct request_queue *q)
339 {
340 if (unlikely(blk_queue_stopped(q)))
341 return;
342
343 __blk_run_queue_uncond(q);
344 }
345 EXPORT_SYMBOL(__blk_run_queue);
346
347 /**
348 * blk_run_queue_async - run a single device queue in workqueue context
349 * @q: The queue to run
350 *
351 * Description:
352 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
353 * of us. The caller must hold the queue lock.
354 */
355 void blk_run_queue_async(struct request_queue *q)
356 {
357 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
358 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 }
360 EXPORT_SYMBOL(blk_run_queue_async);
361
362 /**
363 * blk_run_queue - run a single device queue
364 * @q: The queue to run
365 *
366 * Description:
367 * Invoke request handling on this queue, if it has pending work to do.
368 * May be used to restart queueing when a request has completed.
369 */
370 void blk_run_queue(struct request_queue *q)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
375 __blk_run_queue(q);
376 spin_unlock_irqrestore(q->queue_lock, flags);
377 }
378 EXPORT_SYMBOL(blk_run_queue);
379
380 void blk_put_queue(struct request_queue *q)
381 {
382 kobject_put(&q->kobj);
383 }
384 EXPORT_SYMBOL(blk_put_queue);
385
386 /**
387 * __blk_drain_queue - drain requests from request_queue
388 * @q: queue to drain
389 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390 *
391 * Drain requests from @q. If @drain_all is set, all requests are drained.
392 * If not, only ELVPRIV requests are drained. The caller is responsible
393 * for ensuring that no new requests which need to be drained are queued.
394 */
395 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
396 __releases(q->queue_lock)
397 __acquires(q->queue_lock)
398 {
399 int i;
400
401 lockdep_assert_held(q->queue_lock);
402
403 while (true) {
404 bool drain = false;
405
406 /*
407 * The caller might be trying to drain @q before its
408 * elevator is initialized.
409 */
410 if (q->elevator)
411 elv_drain_elevator(q);
412
413 blkcg_drain_queue(q);
414
415 /*
416 * This function might be called on a queue which failed
417 * driver init after queue creation or is not yet fully
418 * active yet. Some drivers (e.g. fd and loop) get unhappy
419 * in such cases. Kick queue iff dispatch queue has
420 * something on it and @q has request_fn set.
421 */
422 if (!list_empty(&q->queue_head) && q->request_fn)
423 __blk_run_queue(q);
424
425 drain |= q->nr_rqs_elvpriv;
426 drain |= q->request_fn_active;
427
428 /*
429 * Unfortunately, requests are queued at and tracked from
430 * multiple places and there's no single counter which can
431 * be drained. Check all the queues and counters.
432 */
433 if (drain_all) {
434 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
435 drain |= !list_empty(&q->queue_head);
436 for (i = 0; i < 2; i++) {
437 drain |= q->nr_rqs[i];
438 drain |= q->in_flight[i];
439 if (fq)
440 drain |= !list_empty(&fq->flush_queue[i]);
441 }
442 }
443
444 if (!drain)
445 break;
446
447 spin_unlock_irq(q->queue_lock);
448
449 msleep(10);
450
451 spin_lock_irq(q->queue_lock);
452 }
453
454 /*
455 * With queue marked dead, any woken up waiter will fail the
456 * allocation path, so the wakeup chaining is lost and we're
457 * left with hung waiters. We need to wake up those waiters.
458 */
459 if (q->request_fn) {
460 struct request_list *rl;
461
462 blk_queue_for_each_rl(rl, q)
463 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
464 wake_up_all(&rl->wait[i]);
465 }
466 }
467
468 /**
469 * blk_queue_bypass_start - enter queue bypass mode
470 * @q: queue of interest
471 *
472 * In bypass mode, only the dispatch FIFO queue of @q is used. This
473 * function makes @q enter bypass mode and drains all requests which were
474 * throttled or issued before. On return, it's guaranteed that no request
475 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
476 * inside queue or RCU read lock.
477 */
478 void blk_queue_bypass_start(struct request_queue *q)
479 {
480 spin_lock_irq(q->queue_lock);
481 q->bypass_depth++;
482 queue_flag_set(QUEUE_FLAG_BYPASS, q);
483 spin_unlock_irq(q->queue_lock);
484
485 /*
486 * Queues start drained. Skip actual draining till init is
487 * complete. This avoids lenghty delays during queue init which
488 * can happen many times during boot.
489 */
490 if (blk_queue_init_done(q)) {
491 spin_lock_irq(q->queue_lock);
492 __blk_drain_queue(q, false);
493 spin_unlock_irq(q->queue_lock);
494
495 /* ensure blk_queue_bypass() is %true inside RCU read lock */
496 synchronize_rcu();
497 }
498 }
499 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
500
501 /**
502 * blk_queue_bypass_end - leave queue bypass mode
503 * @q: queue of interest
504 *
505 * Leave bypass mode and restore the normal queueing behavior.
506 */
507 void blk_queue_bypass_end(struct request_queue *q)
508 {
509 spin_lock_irq(q->queue_lock);
510 if (!--q->bypass_depth)
511 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
512 WARN_ON_ONCE(q->bypass_depth < 0);
513 spin_unlock_irq(q->queue_lock);
514 }
515 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516
517 void blk_set_queue_dying(struct request_queue *q)
518 {
519 spin_lock_irq(q->queue_lock);
520 queue_flag_set(QUEUE_FLAG_DYING, q);
521 spin_unlock_irq(q->queue_lock);
522
523 if (q->mq_ops)
524 blk_mq_wake_waiters(q);
525 else {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q) {
529 if (rl->rq_pool) {
530 wake_up(&rl->wait[BLK_RW_SYNC]);
531 wake_up(&rl->wait[BLK_RW_ASYNC]);
532 }
533 }
534 }
535 }
536 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
537
538 /**
539 * blk_cleanup_queue - shutdown a request queue
540 * @q: request queue to shutdown
541 *
542 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
543 * put it. All future requests will be failed immediately with -ENODEV.
544 */
545 void blk_cleanup_queue(struct request_queue *q)
546 {
547 spinlock_t *lock = q->queue_lock;
548
549 /* mark @q DYING, no new request or merges will be allowed afterwards */
550 mutex_lock(&q->sysfs_lock);
551 blk_set_queue_dying(q);
552 spin_lock_irq(lock);
553
554 /*
555 * A dying queue is permanently in bypass mode till released. Note
556 * that, unlike blk_queue_bypass_start(), we aren't performing
557 * synchronize_rcu() after entering bypass mode to avoid the delay
558 * as some drivers create and destroy a lot of queues while
559 * probing. This is still safe because blk_release_queue() will be
560 * called only after the queue refcnt drops to zero and nothing,
561 * RCU or not, would be traversing the queue by then.
562 */
563 q->bypass_depth++;
564 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565
566 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
567 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
568 queue_flag_set(QUEUE_FLAG_DYING, q);
569 spin_unlock_irq(lock);
570 mutex_unlock(&q->sysfs_lock);
571
572 /*
573 * Drain all requests queued before DYING marking. Set DEAD flag to
574 * prevent that q->request_fn() gets invoked after draining finished.
575 */
576 blk_freeze_queue(q);
577 spin_lock_irq(lock);
578 if (!q->mq_ops)
579 __blk_drain_queue(q, true);
580 queue_flag_set(QUEUE_FLAG_DEAD, q);
581 spin_unlock_irq(lock);
582
583 /* for synchronous bio-based driver finish in-flight integrity i/o */
584 blk_flush_integrity();
585
586 /* @q won't process any more request, flush async actions */
587 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
588 blk_sync_queue(q);
589
590 if (q->mq_ops)
591 blk_mq_free_queue(q);
592 percpu_ref_exit(&q->q_usage_counter);
593
594 spin_lock_irq(lock);
595 if (q->queue_lock != &q->__queue_lock)
596 q->queue_lock = &q->__queue_lock;
597 spin_unlock_irq(lock);
598
599 bdi_unregister(&q->backing_dev_info);
600
601 /* @q is and will stay empty, shutdown and put */
602 blk_put_queue(q);
603 }
604 EXPORT_SYMBOL(blk_cleanup_queue);
605
606 /* Allocate memory local to the request queue */
607 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 {
609 int nid = (int)(long)data;
610 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
611 }
612
613 static void free_request_struct(void *element, void *unused)
614 {
615 kmem_cache_free(request_cachep, element);
616 }
617
618 int blk_init_rl(struct request_list *rl, struct request_queue *q,
619 gfp_t gfp_mask)
620 {
621 if (unlikely(rl->rq_pool))
622 return 0;
623
624 rl->q = q;
625 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
626 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
627 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
628 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629
630 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
631 free_request_struct,
632 (void *)(long)q->node, gfp_mask,
633 q->node);
634 if (!rl->rq_pool)
635 return -ENOMEM;
636
637 return 0;
638 }
639
640 void blk_exit_rl(struct request_list *rl)
641 {
642 if (rl->rq_pool)
643 mempool_destroy(rl->rq_pool);
644 }
645
646 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 {
648 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 }
650 EXPORT_SYMBOL(blk_alloc_queue);
651
652 int blk_queue_enter(struct request_queue *q, bool nowait)
653 {
654 while (true) {
655 int ret;
656
657 if (percpu_ref_tryget_live(&q->q_usage_counter))
658 return 0;
659
660 if (nowait)
661 return -EBUSY;
662
663 ret = wait_event_interruptible(q->mq_freeze_wq,
664 !atomic_read(&q->mq_freeze_depth) ||
665 blk_queue_dying(q));
666 if (blk_queue_dying(q))
667 return -ENODEV;
668 if (ret)
669 return ret;
670 }
671 }
672
673 void blk_queue_exit(struct request_queue *q)
674 {
675 percpu_ref_put(&q->q_usage_counter);
676 }
677
678 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
679 {
680 struct request_queue *q =
681 container_of(ref, struct request_queue, q_usage_counter);
682
683 wake_up_all(&q->mq_freeze_wq);
684 }
685
686 static void blk_rq_timed_out_timer(unsigned long data)
687 {
688 struct request_queue *q = (struct request_queue *)data;
689
690 kblockd_schedule_work(&q->timeout_work);
691 }
692
693 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
694 {
695 struct request_queue *q;
696 int err;
697
698 q = kmem_cache_alloc_node(blk_requestq_cachep,
699 gfp_mask | __GFP_ZERO, node_id);
700 if (!q)
701 return NULL;
702
703 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
704 if (q->id < 0)
705 goto fail_q;
706
707 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
708 if (!q->bio_split)
709 goto fail_id;
710
711 q->backing_dev_info.ra_pages =
712 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
713 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
714 q->backing_dev_info.name = "block";
715 q->node = node_id;
716
717 err = bdi_init(&q->backing_dev_info);
718 if (err)
719 goto fail_split;
720
721 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
722 laptop_mode_timer_fn, (unsigned long) q);
723 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
724 INIT_LIST_HEAD(&q->queue_head);
725 INIT_LIST_HEAD(&q->timeout_list);
726 INIT_LIST_HEAD(&q->icq_list);
727 #ifdef CONFIG_BLK_CGROUP
728 INIT_LIST_HEAD(&q->blkg_list);
729 #endif
730 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
731
732 kobject_init(&q->kobj, &blk_queue_ktype);
733
734 mutex_init(&q->sysfs_lock);
735 spin_lock_init(&q->__queue_lock);
736
737 /*
738 * By default initialize queue_lock to internal lock and driver can
739 * override it later if need be.
740 */
741 q->queue_lock = &q->__queue_lock;
742
743 /*
744 * A queue starts its life with bypass turned on to avoid
745 * unnecessary bypass on/off overhead and nasty surprises during
746 * init. The initial bypass will be finished when the queue is
747 * registered by blk_register_queue().
748 */
749 q->bypass_depth = 1;
750 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
751
752 init_waitqueue_head(&q->mq_freeze_wq);
753
754 /*
755 * Init percpu_ref in atomic mode so that it's faster to shutdown.
756 * See blk_register_queue() for details.
757 */
758 if (percpu_ref_init(&q->q_usage_counter,
759 blk_queue_usage_counter_release,
760 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
761 goto fail_bdi;
762
763 if (blkcg_init_queue(q))
764 goto fail_ref;
765
766 return q;
767
768 fail_ref:
769 percpu_ref_exit(&q->q_usage_counter);
770 fail_bdi:
771 bdi_destroy(&q->backing_dev_info);
772 fail_split:
773 bioset_free(q->bio_split);
774 fail_id:
775 ida_simple_remove(&blk_queue_ida, q->id);
776 fail_q:
777 kmem_cache_free(blk_requestq_cachep, q);
778 return NULL;
779 }
780 EXPORT_SYMBOL(blk_alloc_queue_node);
781
782 /**
783 * blk_init_queue - prepare a request queue for use with a block device
784 * @rfn: The function to be called to process requests that have been
785 * placed on the queue.
786 * @lock: Request queue spin lock
787 *
788 * Description:
789 * If a block device wishes to use the standard request handling procedures,
790 * which sorts requests and coalesces adjacent requests, then it must
791 * call blk_init_queue(). The function @rfn will be called when there
792 * are requests on the queue that need to be processed. If the device
793 * supports plugging, then @rfn may not be called immediately when requests
794 * are available on the queue, but may be called at some time later instead.
795 * Plugged queues are generally unplugged when a buffer belonging to one
796 * of the requests on the queue is needed, or due to memory pressure.
797 *
798 * @rfn is not required, or even expected, to remove all requests off the
799 * queue, but only as many as it can handle at a time. If it does leave
800 * requests on the queue, it is responsible for arranging that the requests
801 * get dealt with eventually.
802 *
803 * The queue spin lock must be held while manipulating the requests on the
804 * request queue; this lock will be taken also from interrupt context, so irq
805 * disabling is needed for it.
806 *
807 * Function returns a pointer to the initialized request queue, or %NULL if
808 * it didn't succeed.
809 *
810 * Note:
811 * blk_init_queue() must be paired with a blk_cleanup_queue() call
812 * when the block device is deactivated (such as at module unload).
813 **/
814
815 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
816 {
817 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
818 }
819 EXPORT_SYMBOL(blk_init_queue);
820
821 struct request_queue *
822 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
823 {
824 struct request_queue *uninit_q, *q;
825
826 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
827 if (!uninit_q)
828 return NULL;
829
830 q = blk_init_allocated_queue(uninit_q, rfn, lock);
831 if (!q)
832 blk_cleanup_queue(uninit_q);
833
834 return q;
835 }
836 EXPORT_SYMBOL(blk_init_queue_node);
837
838 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
839
840 struct request_queue *
841 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
842 spinlock_t *lock)
843 {
844 if (!q)
845 return NULL;
846
847 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
848 if (!q->fq)
849 return NULL;
850
851 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
852 goto fail;
853
854 INIT_WORK(&q->timeout_work, blk_timeout_work);
855 q->request_fn = rfn;
856 q->prep_rq_fn = NULL;
857 q->unprep_rq_fn = NULL;
858 q->queue_flags |= QUEUE_FLAG_DEFAULT;
859
860 /* Override internal queue lock with supplied lock pointer */
861 if (lock)
862 q->queue_lock = lock;
863
864 /*
865 * This also sets hw/phys segments, boundary and size
866 */
867 blk_queue_make_request(q, blk_queue_bio);
868
869 q->sg_reserved_size = INT_MAX;
870
871 /* Protect q->elevator from elevator_change */
872 mutex_lock(&q->sysfs_lock);
873
874 /* init elevator */
875 if (elevator_init(q, NULL)) {
876 mutex_unlock(&q->sysfs_lock);
877 goto fail;
878 }
879
880 mutex_unlock(&q->sysfs_lock);
881
882 return q;
883
884 fail:
885 blk_free_flush_queue(q->fq);
886 wbt_exit(q);
887 return NULL;
888 }
889 EXPORT_SYMBOL(blk_init_allocated_queue);
890
891 bool blk_get_queue(struct request_queue *q)
892 {
893 if (likely(!blk_queue_dying(q))) {
894 __blk_get_queue(q);
895 return true;
896 }
897
898 return false;
899 }
900 EXPORT_SYMBOL(blk_get_queue);
901
902 static inline void blk_free_request(struct request_list *rl, struct request *rq)
903 {
904 if (rq->rq_flags & RQF_ELVPRIV) {
905 elv_put_request(rl->q, rq);
906 if (rq->elv.icq)
907 put_io_context(rq->elv.icq->ioc);
908 }
909
910 mempool_free(rq, rl->rq_pool);
911 }
912
913 /*
914 * ioc_batching returns true if the ioc is a valid batching request and
915 * should be given priority access to a request.
916 */
917 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
918 {
919 if (!ioc)
920 return 0;
921
922 /*
923 * Make sure the process is able to allocate at least 1 request
924 * even if the batch times out, otherwise we could theoretically
925 * lose wakeups.
926 */
927 return ioc->nr_batch_requests == q->nr_batching ||
928 (ioc->nr_batch_requests > 0
929 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
930 }
931
932 /*
933 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
934 * will cause the process to be a "batcher" on all queues in the system. This
935 * is the behaviour we want though - once it gets a wakeup it should be given
936 * a nice run.
937 */
938 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
939 {
940 if (!ioc || ioc_batching(q, ioc))
941 return;
942
943 ioc->nr_batch_requests = q->nr_batching;
944 ioc->last_waited = jiffies;
945 }
946
947 static void __freed_request(struct request_list *rl, int sync)
948 {
949 struct request_queue *q = rl->q;
950
951 if (rl->count[sync] < queue_congestion_off_threshold(q))
952 blk_clear_congested(rl, sync);
953
954 if (rl->count[sync] + 1 <= q->nr_requests) {
955 if (waitqueue_active(&rl->wait[sync]))
956 wake_up(&rl->wait[sync]);
957
958 blk_clear_rl_full(rl, sync);
959 }
960 }
961
962 /*
963 * A request has just been released. Account for it, update the full and
964 * congestion status, wake up any waiters. Called under q->queue_lock.
965 */
966 static void freed_request(struct request_list *rl, bool sync,
967 req_flags_t rq_flags)
968 {
969 struct request_queue *q = rl->q;
970
971 q->nr_rqs[sync]--;
972 rl->count[sync]--;
973 if (rq_flags & RQF_ELVPRIV)
974 q->nr_rqs_elvpriv--;
975
976 __freed_request(rl, sync);
977
978 if (unlikely(rl->starved[sync ^ 1]))
979 __freed_request(rl, sync ^ 1);
980 }
981
982 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
983 {
984 struct request_list *rl;
985 int on_thresh, off_thresh;
986
987 spin_lock_irq(q->queue_lock);
988 q->nr_requests = nr;
989 blk_queue_congestion_threshold(q);
990 on_thresh = queue_congestion_on_threshold(q);
991 off_thresh = queue_congestion_off_threshold(q);
992
993 blk_queue_for_each_rl(rl, q) {
994 if (rl->count[BLK_RW_SYNC] >= on_thresh)
995 blk_set_congested(rl, BLK_RW_SYNC);
996 else if (rl->count[BLK_RW_SYNC] < off_thresh)
997 blk_clear_congested(rl, BLK_RW_SYNC);
998
999 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1000 blk_set_congested(rl, BLK_RW_ASYNC);
1001 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1002 blk_clear_congested(rl, BLK_RW_ASYNC);
1003
1004 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1005 blk_set_rl_full(rl, BLK_RW_SYNC);
1006 } else {
1007 blk_clear_rl_full(rl, BLK_RW_SYNC);
1008 wake_up(&rl->wait[BLK_RW_SYNC]);
1009 }
1010
1011 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1012 blk_set_rl_full(rl, BLK_RW_ASYNC);
1013 } else {
1014 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1015 wake_up(&rl->wait[BLK_RW_ASYNC]);
1016 }
1017 }
1018
1019 spin_unlock_irq(q->queue_lock);
1020 return 0;
1021 }
1022
1023 /*
1024 * Determine if elevator data should be initialized when allocating the
1025 * request associated with @bio.
1026 */
1027 static bool blk_rq_should_init_elevator(struct bio *bio)
1028 {
1029 if (!bio)
1030 return true;
1031
1032 /*
1033 * Flush requests do not use the elevator so skip initialization.
1034 * This allows a request to share the flush and elevator data.
1035 */
1036 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA))
1037 return false;
1038
1039 return true;
1040 }
1041
1042 /**
1043 * rq_ioc - determine io_context for request allocation
1044 * @bio: request being allocated is for this bio (can be %NULL)
1045 *
1046 * Determine io_context to use for request allocation for @bio. May return
1047 * %NULL if %current->io_context doesn't exist.
1048 */
1049 static struct io_context *rq_ioc(struct bio *bio)
1050 {
1051 #ifdef CONFIG_BLK_CGROUP
1052 if (bio && bio->bi_ioc)
1053 return bio->bi_ioc;
1054 #endif
1055 return current->io_context;
1056 }
1057
1058 /**
1059 * __get_request - get a free request
1060 * @rl: request list to allocate from
1061 * @op: operation and flags
1062 * @bio: bio to allocate request for (can be %NULL)
1063 * @gfp_mask: allocation mask
1064 *
1065 * Get a free request from @q. This function may fail under memory
1066 * pressure or if @q is dead.
1067 *
1068 * Must be called with @q->queue_lock held and,
1069 * Returns ERR_PTR on failure, with @q->queue_lock held.
1070 * Returns request pointer on success, with @q->queue_lock *not held*.
1071 */
1072 static struct request *__get_request(struct request_list *rl, unsigned int op,
1073 struct bio *bio, gfp_t gfp_mask)
1074 {
1075 struct request_queue *q = rl->q;
1076 struct request *rq;
1077 struct elevator_type *et = q->elevator->type;
1078 struct io_context *ioc = rq_ioc(bio);
1079 struct io_cq *icq = NULL;
1080 const bool is_sync = op_is_sync(op);
1081 int may_queue;
1082 req_flags_t rq_flags = RQF_ALLOCED;
1083
1084 if (unlikely(blk_queue_dying(q)))
1085 return ERR_PTR(-ENODEV);
1086
1087 may_queue = elv_may_queue(q, op);
1088 if (may_queue == ELV_MQUEUE_NO)
1089 goto rq_starved;
1090
1091 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1092 if (rl->count[is_sync]+1 >= q->nr_requests) {
1093 /*
1094 * The queue will fill after this allocation, so set
1095 * it as full, and mark this process as "batching".
1096 * This process will be allowed to complete a batch of
1097 * requests, others will be blocked.
1098 */
1099 if (!blk_rl_full(rl, is_sync)) {
1100 ioc_set_batching(q, ioc);
1101 blk_set_rl_full(rl, is_sync);
1102 } else {
1103 if (may_queue != ELV_MQUEUE_MUST
1104 && !ioc_batching(q, ioc)) {
1105 /*
1106 * The queue is full and the allocating
1107 * process is not a "batcher", and not
1108 * exempted by the IO scheduler
1109 */
1110 return ERR_PTR(-ENOMEM);
1111 }
1112 }
1113 }
1114 blk_set_congested(rl, is_sync);
1115 }
1116
1117 /*
1118 * Only allow batching queuers to allocate up to 50% over the defined
1119 * limit of requests, otherwise we could have thousands of requests
1120 * allocated with any setting of ->nr_requests
1121 */
1122 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1123 return ERR_PTR(-ENOMEM);
1124
1125 q->nr_rqs[is_sync]++;
1126 rl->count[is_sync]++;
1127 rl->starved[is_sync] = 0;
1128
1129 /*
1130 * Decide whether the new request will be managed by elevator. If
1131 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1132 * prevent the current elevator from being destroyed until the new
1133 * request is freed. This guarantees icq's won't be destroyed and
1134 * makes creating new ones safe.
1135 *
1136 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1137 * it will be created after releasing queue_lock.
1138 */
1139 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1140 rq_flags |= RQF_ELVPRIV;
1141 q->nr_rqs_elvpriv++;
1142 if (et->icq_cache && ioc)
1143 icq = ioc_lookup_icq(ioc, q);
1144 }
1145
1146 if (blk_queue_io_stat(q))
1147 rq_flags |= RQF_IO_STAT;
1148 spin_unlock_irq(q->queue_lock);
1149
1150 /* allocate and init request */
1151 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1152 if (!rq)
1153 goto fail_alloc;
1154
1155 blk_rq_init(q, rq);
1156 blk_rq_set_rl(rq, rl);
1157 rq->cmd_flags = op;
1158 rq->rq_flags = rq_flags;
1159
1160 /* init elvpriv */
1161 if (rq_flags & RQF_ELVPRIV) {
1162 if (unlikely(et->icq_cache && !icq)) {
1163 if (ioc)
1164 icq = ioc_create_icq(ioc, q, gfp_mask);
1165 if (!icq)
1166 goto fail_elvpriv;
1167 }
1168
1169 rq->elv.icq = icq;
1170 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1171 goto fail_elvpriv;
1172
1173 /* @rq->elv.icq holds io_context until @rq is freed */
1174 if (icq)
1175 get_io_context(icq->ioc);
1176 }
1177 out:
1178 /*
1179 * ioc may be NULL here, and ioc_batching will be false. That's
1180 * OK, if the queue is under the request limit then requests need
1181 * not count toward the nr_batch_requests limit. There will always
1182 * be some limit enforced by BLK_BATCH_TIME.
1183 */
1184 if (ioc_batching(q, ioc))
1185 ioc->nr_batch_requests--;
1186
1187 trace_block_getrq(q, bio, op);
1188 return rq;
1189
1190 fail_elvpriv:
1191 /*
1192 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1193 * and may fail indefinitely under memory pressure and thus
1194 * shouldn't stall IO. Treat this request as !elvpriv. This will
1195 * disturb iosched and blkcg but weird is bettern than dead.
1196 */
1197 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1198 __func__, dev_name(q->backing_dev_info.dev));
1199
1200 rq->rq_flags &= ~RQF_ELVPRIV;
1201 rq->elv.icq = NULL;
1202
1203 spin_lock_irq(q->queue_lock);
1204 q->nr_rqs_elvpriv--;
1205 spin_unlock_irq(q->queue_lock);
1206 goto out;
1207
1208 fail_alloc:
1209 /*
1210 * Allocation failed presumably due to memory. Undo anything we
1211 * might have messed up.
1212 *
1213 * Allocating task should really be put onto the front of the wait
1214 * queue, but this is pretty rare.
1215 */
1216 spin_lock_irq(q->queue_lock);
1217 freed_request(rl, is_sync, rq_flags);
1218
1219 /*
1220 * in the very unlikely event that allocation failed and no
1221 * requests for this direction was pending, mark us starved so that
1222 * freeing of a request in the other direction will notice
1223 * us. another possible fix would be to split the rq mempool into
1224 * READ and WRITE
1225 */
1226 rq_starved:
1227 if (unlikely(rl->count[is_sync] == 0))
1228 rl->starved[is_sync] = 1;
1229 return ERR_PTR(-ENOMEM);
1230 }
1231
1232 /**
1233 * get_request - get a free request
1234 * @q: request_queue to allocate request from
1235 * @op: operation and flags
1236 * @bio: bio to allocate request for (can be %NULL)
1237 * @gfp_mask: allocation mask
1238 *
1239 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1240 * this function keeps retrying under memory pressure and fails iff @q is dead.
1241 *
1242 * Must be called with @q->queue_lock held and,
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1245 */
1246 static struct request *get_request(struct request_queue *q, unsigned int op,
1247 struct bio *bio, gfp_t gfp_mask)
1248 {
1249 const bool is_sync = op_is_sync(op);
1250 DEFINE_WAIT(wait);
1251 struct request_list *rl;
1252 struct request *rq;
1253
1254 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1255 retry:
1256 rq = __get_request(rl, op, bio, gfp_mask);
1257 if (!IS_ERR(rq))
1258 return rq;
1259
1260 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1261 blk_put_rl(rl);
1262 return rq;
1263 }
1264
1265 /* wait on @rl and retry */
1266 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1267 TASK_UNINTERRUPTIBLE);
1268
1269 trace_block_sleeprq(q, bio, op);
1270
1271 spin_unlock_irq(q->queue_lock);
1272 io_schedule();
1273
1274 /*
1275 * After sleeping, we become a "batching" process and will be able
1276 * to allocate at least one request, and up to a big batch of them
1277 * for a small period time. See ioc_batching, ioc_set_batching
1278 */
1279 ioc_set_batching(q, current->io_context);
1280
1281 spin_lock_irq(q->queue_lock);
1282 finish_wait(&rl->wait[is_sync], &wait);
1283
1284 goto retry;
1285 }
1286
1287 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1288 gfp_t gfp_mask)
1289 {
1290 struct request *rq;
1291
1292 BUG_ON(rw != READ && rw != WRITE);
1293
1294 /* create ioc upfront */
1295 create_io_context(gfp_mask, q->node);
1296
1297 spin_lock_irq(q->queue_lock);
1298 rq = get_request(q, rw, NULL, gfp_mask);
1299 if (IS_ERR(rq)) {
1300 spin_unlock_irq(q->queue_lock);
1301 return rq;
1302 }
1303
1304 /* q->queue_lock is unlocked at this point */
1305 rq->__data_len = 0;
1306 rq->__sector = (sector_t) -1;
1307 rq->bio = rq->biotail = NULL;
1308 return rq;
1309 }
1310
1311 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1312 {
1313 if (q->mq_ops)
1314 return blk_mq_alloc_request(q, rw,
1315 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1316 0 : BLK_MQ_REQ_NOWAIT);
1317 else
1318 return blk_old_get_request(q, rw, gfp_mask);
1319 }
1320 EXPORT_SYMBOL(blk_get_request);
1321
1322 /**
1323 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1324 * @rq: request to be initialized
1325 *
1326 */
1327 void blk_rq_set_block_pc(struct request *rq)
1328 {
1329 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1330 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1331 }
1332 EXPORT_SYMBOL(blk_rq_set_block_pc);
1333
1334 /**
1335 * blk_requeue_request - put a request back on queue
1336 * @q: request queue where request should be inserted
1337 * @rq: request to be inserted
1338 *
1339 * Description:
1340 * Drivers often keep queueing requests until the hardware cannot accept
1341 * more, when that condition happens we need to put the request back
1342 * on the queue. Must be called with queue lock held.
1343 */
1344 void blk_requeue_request(struct request_queue *q, struct request *rq)
1345 {
1346 blk_delete_timer(rq);
1347 blk_clear_rq_complete(rq);
1348 trace_block_rq_requeue(q, rq);
1349 wbt_requeue(q->rq_wb, &rq->issue_stat);
1350
1351 if (rq->rq_flags & RQF_QUEUED)
1352 blk_queue_end_tag(q, rq);
1353
1354 BUG_ON(blk_queued_rq(rq));
1355
1356 elv_requeue_request(q, rq);
1357 }
1358 EXPORT_SYMBOL(blk_requeue_request);
1359
1360 static void add_acct_request(struct request_queue *q, struct request *rq,
1361 int where)
1362 {
1363 blk_account_io_start(rq, true);
1364 __elv_add_request(q, rq, where);
1365 }
1366
1367 static void part_round_stats_single(int cpu, struct hd_struct *part,
1368 unsigned long now)
1369 {
1370 int inflight;
1371
1372 if (now == part->stamp)
1373 return;
1374
1375 inflight = part_in_flight(part);
1376 if (inflight) {
1377 __part_stat_add(cpu, part, time_in_queue,
1378 inflight * (now - part->stamp));
1379 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1380 }
1381 part->stamp = now;
1382 }
1383
1384 /**
1385 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1386 * @cpu: cpu number for stats access
1387 * @part: target partition
1388 *
1389 * The average IO queue length and utilisation statistics are maintained
1390 * by observing the current state of the queue length and the amount of
1391 * time it has been in this state for.
1392 *
1393 * Normally, that accounting is done on IO completion, but that can result
1394 * in more than a second's worth of IO being accounted for within any one
1395 * second, leading to >100% utilisation. To deal with that, we call this
1396 * function to do a round-off before returning the results when reading
1397 * /proc/diskstats. This accounts immediately for all queue usage up to
1398 * the current jiffies and restarts the counters again.
1399 */
1400 void part_round_stats(int cpu, struct hd_struct *part)
1401 {
1402 unsigned long now = jiffies;
1403
1404 if (part->partno)
1405 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1406 part_round_stats_single(cpu, part, now);
1407 }
1408 EXPORT_SYMBOL_GPL(part_round_stats);
1409
1410 #ifdef CONFIG_PM
1411 static void blk_pm_put_request(struct request *rq)
1412 {
1413 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1414 pm_runtime_mark_last_busy(rq->q->dev);
1415 }
1416 #else
1417 static inline void blk_pm_put_request(struct request *rq) {}
1418 #endif
1419
1420 /*
1421 * queue lock must be held
1422 */
1423 void __blk_put_request(struct request_queue *q, struct request *req)
1424 {
1425 req_flags_t rq_flags = req->rq_flags;
1426
1427 if (unlikely(!q))
1428 return;
1429
1430 if (q->mq_ops) {
1431 blk_mq_free_request(req);
1432 return;
1433 }
1434
1435 blk_pm_put_request(req);
1436
1437 elv_completed_request(q, req);
1438
1439 /* this is a bio leak */
1440 WARN_ON(req->bio != NULL);
1441
1442 wbt_done(q->rq_wb, &req->issue_stat);
1443
1444 /*
1445 * Request may not have originated from ll_rw_blk. if not,
1446 * it didn't come out of our reserved rq pools
1447 */
1448 if (rq_flags & RQF_ALLOCED) {
1449 struct request_list *rl = blk_rq_rl(req);
1450 bool sync = op_is_sync(req->cmd_flags);
1451
1452 BUG_ON(!list_empty(&req->queuelist));
1453 BUG_ON(ELV_ON_HASH(req));
1454
1455 blk_free_request(rl, req);
1456 freed_request(rl, sync, rq_flags);
1457 blk_put_rl(rl);
1458 }
1459 }
1460 EXPORT_SYMBOL_GPL(__blk_put_request);
1461
1462 void blk_put_request(struct request *req)
1463 {
1464 struct request_queue *q = req->q;
1465
1466 if (q->mq_ops)
1467 blk_mq_free_request(req);
1468 else {
1469 unsigned long flags;
1470
1471 spin_lock_irqsave(q->queue_lock, flags);
1472 __blk_put_request(q, req);
1473 spin_unlock_irqrestore(q->queue_lock, flags);
1474 }
1475 }
1476 EXPORT_SYMBOL(blk_put_request);
1477
1478 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1479 struct bio *bio)
1480 {
1481 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1482
1483 if (!ll_back_merge_fn(q, req, bio))
1484 return false;
1485
1486 trace_block_bio_backmerge(q, req, bio);
1487
1488 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1489 blk_rq_set_mixed_merge(req);
1490
1491 req->biotail->bi_next = bio;
1492 req->biotail = bio;
1493 req->__data_len += bio->bi_iter.bi_size;
1494 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1495
1496 blk_account_io_start(req, false);
1497 return true;
1498 }
1499
1500 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1501 struct bio *bio)
1502 {
1503 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1504
1505 if (!ll_front_merge_fn(q, req, bio))
1506 return false;
1507
1508 trace_block_bio_frontmerge(q, req, bio);
1509
1510 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1511 blk_rq_set_mixed_merge(req);
1512
1513 bio->bi_next = req->bio;
1514 req->bio = bio;
1515
1516 req->__sector = bio->bi_iter.bi_sector;
1517 req->__data_len += bio->bi_iter.bi_size;
1518 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1519
1520 blk_account_io_start(req, false);
1521 return true;
1522 }
1523
1524 /**
1525 * blk_attempt_plug_merge - try to merge with %current's plugged list
1526 * @q: request_queue new bio is being queued at
1527 * @bio: new bio being queued
1528 * @request_count: out parameter for number of traversed plugged requests
1529 * @same_queue_rq: pointer to &struct request that gets filled in when
1530 * another request associated with @q is found on the plug list
1531 * (optional, may be %NULL)
1532 *
1533 * Determine whether @bio being queued on @q can be merged with a request
1534 * on %current's plugged list. Returns %true if merge was successful,
1535 * otherwise %false.
1536 *
1537 * Plugging coalesces IOs from the same issuer for the same purpose without
1538 * going through @q->queue_lock. As such it's more of an issuing mechanism
1539 * than scheduling, and the request, while may have elvpriv data, is not
1540 * added on the elevator at this point. In addition, we don't have
1541 * reliable access to the elevator outside queue lock. Only check basic
1542 * merging parameters without querying the elevator.
1543 *
1544 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1545 */
1546 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1547 unsigned int *request_count,
1548 struct request **same_queue_rq)
1549 {
1550 struct blk_plug *plug;
1551 struct request *rq;
1552 bool ret = false;
1553 struct list_head *plug_list;
1554
1555 plug = current->plug;
1556 if (!plug)
1557 goto out;
1558 *request_count = 0;
1559
1560 if (q->mq_ops)
1561 plug_list = &plug->mq_list;
1562 else
1563 plug_list = &plug->list;
1564
1565 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1566 int el_ret;
1567
1568 if (rq->q == q) {
1569 (*request_count)++;
1570 /*
1571 * Only blk-mq multiple hardware queues case checks the
1572 * rq in the same queue, there should be only one such
1573 * rq in a queue
1574 **/
1575 if (same_queue_rq)
1576 *same_queue_rq = rq;
1577 }
1578
1579 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1580 continue;
1581
1582 el_ret = blk_try_merge(rq, bio);
1583 if (el_ret == ELEVATOR_BACK_MERGE) {
1584 ret = bio_attempt_back_merge(q, rq, bio);
1585 if (ret)
1586 break;
1587 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1588 ret = bio_attempt_front_merge(q, rq, bio);
1589 if (ret)
1590 break;
1591 }
1592 }
1593 out:
1594 return ret;
1595 }
1596
1597 unsigned int blk_plug_queued_count(struct request_queue *q)
1598 {
1599 struct blk_plug *plug;
1600 struct request *rq;
1601 struct list_head *plug_list;
1602 unsigned int ret = 0;
1603
1604 plug = current->plug;
1605 if (!plug)
1606 goto out;
1607
1608 if (q->mq_ops)
1609 plug_list = &plug->mq_list;
1610 else
1611 plug_list = &plug->list;
1612
1613 list_for_each_entry(rq, plug_list, queuelist) {
1614 if (rq->q == q)
1615 ret++;
1616 }
1617 out:
1618 return ret;
1619 }
1620
1621 void init_request_from_bio(struct request *req, struct bio *bio)
1622 {
1623 req->cmd_type = REQ_TYPE_FS;
1624 if (bio->bi_opf & REQ_RAHEAD)
1625 req->cmd_flags |= REQ_FAILFAST_MASK;
1626
1627 req->errors = 0;
1628 req->__sector = bio->bi_iter.bi_sector;
1629 req->ioprio = bio_prio(bio);
1630 blk_rq_bio_prep(req->q, req, bio);
1631 }
1632
1633 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1634 {
1635 struct blk_plug *plug;
1636 int el_ret, where = ELEVATOR_INSERT_SORT;
1637 struct request *req;
1638 unsigned int request_count = 0;
1639 unsigned int wb_acct;
1640
1641 /*
1642 * low level driver can indicate that it wants pages above a
1643 * certain limit bounced to low memory (ie for highmem, or even
1644 * ISA dma in theory)
1645 */
1646 blk_queue_bounce(q, &bio);
1647
1648 blk_queue_split(q, &bio, q->bio_split);
1649
1650 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1651 bio->bi_error = -EIO;
1652 bio_endio(bio);
1653 return BLK_QC_T_NONE;
1654 }
1655
1656 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) {
1657 spin_lock_irq(q->queue_lock);
1658 where = ELEVATOR_INSERT_FLUSH;
1659 goto get_rq;
1660 }
1661
1662 /*
1663 * Check if we can merge with the plugged list before grabbing
1664 * any locks.
1665 */
1666 if (!blk_queue_nomerges(q)) {
1667 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1668 return BLK_QC_T_NONE;
1669 } else
1670 request_count = blk_plug_queued_count(q);
1671
1672 spin_lock_irq(q->queue_lock);
1673
1674 el_ret = elv_merge(q, &req, bio);
1675 if (el_ret == ELEVATOR_BACK_MERGE) {
1676 if (bio_attempt_back_merge(q, req, bio)) {
1677 elv_bio_merged(q, req, bio);
1678 if (!attempt_back_merge(q, req))
1679 elv_merged_request(q, req, el_ret);
1680 goto out_unlock;
1681 }
1682 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1683 if (bio_attempt_front_merge(q, req, bio)) {
1684 elv_bio_merged(q, req, bio);
1685 if (!attempt_front_merge(q, req))
1686 elv_merged_request(q, req, el_ret);
1687 goto out_unlock;
1688 }
1689 }
1690
1691 get_rq:
1692 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1693
1694 /*
1695 * Grab a free request. This is might sleep but can not fail.
1696 * Returns with the queue unlocked.
1697 */
1698 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1699 if (IS_ERR(req)) {
1700 __wbt_done(q->rq_wb, wb_acct);
1701 bio->bi_error = PTR_ERR(req);
1702 bio_endio(bio);
1703 goto out_unlock;
1704 }
1705
1706 wbt_track(&req->issue_stat, wb_acct);
1707
1708 /*
1709 * After dropping the lock and possibly sleeping here, our request
1710 * may now be mergeable after it had proven unmergeable (above).
1711 * We don't worry about that case for efficiency. It won't happen
1712 * often, and the elevators are able to handle it.
1713 */
1714 init_request_from_bio(req, bio);
1715
1716 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1717 req->cpu = raw_smp_processor_id();
1718
1719 plug = current->plug;
1720 if (plug) {
1721 /*
1722 * If this is the first request added after a plug, fire
1723 * of a plug trace.
1724 *
1725 * @request_count may become stale because of schedule
1726 * out, so check plug list again.
1727 */
1728 if (!request_count || list_empty(&plug->list))
1729 trace_block_plug(q);
1730 else {
1731 struct request *last = list_entry_rq(plug->list.prev);
1732 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1733 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1734 blk_flush_plug_list(plug, false);
1735 trace_block_plug(q);
1736 }
1737 }
1738 list_add_tail(&req->queuelist, &plug->list);
1739 blk_account_io_start(req, true);
1740 } else {
1741 spin_lock_irq(q->queue_lock);
1742 add_acct_request(q, req, where);
1743 __blk_run_queue(q);
1744 out_unlock:
1745 spin_unlock_irq(q->queue_lock);
1746 }
1747
1748 return BLK_QC_T_NONE;
1749 }
1750
1751 /*
1752 * If bio->bi_dev is a partition, remap the location
1753 */
1754 static inline void blk_partition_remap(struct bio *bio)
1755 {
1756 struct block_device *bdev = bio->bi_bdev;
1757
1758 /*
1759 * Zone reset does not include bi_size so bio_sectors() is always 0.
1760 * Include a test for the reset op code and perform the remap if needed.
1761 */
1762 if (bdev != bdev->bd_contains &&
1763 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1764 struct hd_struct *p = bdev->bd_part;
1765
1766 bio->bi_iter.bi_sector += p->start_sect;
1767 bio->bi_bdev = bdev->bd_contains;
1768
1769 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1770 bdev->bd_dev,
1771 bio->bi_iter.bi_sector - p->start_sect);
1772 }
1773 }
1774
1775 static void handle_bad_sector(struct bio *bio)
1776 {
1777 char b[BDEVNAME_SIZE];
1778
1779 printk(KERN_INFO "attempt to access beyond end of device\n");
1780 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1781 bdevname(bio->bi_bdev, b),
1782 bio->bi_opf,
1783 (unsigned long long)bio_end_sector(bio),
1784 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1785 }
1786
1787 #ifdef CONFIG_FAIL_MAKE_REQUEST
1788
1789 static DECLARE_FAULT_ATTR(fail_make_request);
1790
1791 static int __init setup_fail_make_request(char *str)
1792 {
1793 return setup_fault_attr(&fail_make_request, str);
1794 }
1795 __setup("fail_make_request=", setup_fail_make_request);
1796
1797 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1798 {
1799 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1800 }
1801
1802 static int __init fail_make_request_debugfs(void)
1803 {
1804 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1805 NULL, &fail_make_request);
1806
1807 return PTR_ERR_OR_ZERO(dir);
1808 }
1809
1810 late_initcall(fail_make_request_debugfs);
1811
1812 #else /* CONFIG_FAIL_MAKE_REQUEST */
1813
1814 static inline bool should_fail_request(struct hd_struct *part,
1815 unsigned int bytes)
1816 {
1817 return false;
1818 }
1819
1820 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1821
1822 /*
1823 * Check whether this bio extends beyond the end of the device.
1824 */
1825 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1826 {
1827 sector_t maxsector;
1828
1829 if (!nr_sectors)
1830 return 0;
1831
1832 /* Test device or partition size, when known. */
1833 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1834 if (maxsector) {
1835 sector_t sector = bio->bi_iter.bi_sector;
1836
1837 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1838 /*
1839 * This may well happen - the kernel calls bread()
1840 * without checking the size of the device, e.g., when
1841 * mounting a device.
1842 */
1843 handle_bad_sector(bio);
1844 return 1;
1845 }
1846 }
1847
1848 return 0;
1849 }
1850
1851 static noinline_for_stack bool
1852 generic_make_request_checks(struct bio *bio)
1853 {
1854 struct request_queue *q;
1855 int nr_sectors = bio_sectors(bio);
1856 int err = -EIO;
1857 char b[BDEVNAME_SIZE];
1858 struct hd_struct *part;
1859
1860 might_sleep();
1861
1862 if (bio_check_eod(bio, nr_sectors))
1863 goto end_io;
1864
1865 q = bdev_get_queue(bio->bi_bdev);
1866 if (unlikely(!q)) {
1867 printk(KERN_ERR
1868 "generic_make_request: Trying to access "
1869 "nonexistent block-device %s (%Lu)\n",
1870 bdevname(bio->bi_bdev, b),
1871 (long long) bio->bi_iter.bi_sector);
1872 goto end_io;
1873 }
1874
1875 part = bio->bi_bdev->bd_part;
1876 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1877 should_fail_request(&part_to_disk(part)->part0,
1878 bio->bi_iter.bi_size))
1879 goto end_io;
1880
1881 /*
1882 * If this device has partitions, remap block n
1883 * of partition p to block n+start(p) of the disk.
1884 */
1885 blk_partition_remap(bio);
1886
1887 if (bio_check_eod(bio, nr_sectors))
1888 goto end_io;
1889
1890 /*
1891 * Filter flush bio's early so that make_request based
1892 * drivers without flush support don't have to worry
1893 * about them.
1894 */
1895 if ((bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
1896 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1897 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1898 if (!nr_sectors) {
1899 err = 0;
1900 goto end_io;
1901 }
1902 }
1903
1904 switch (bio_op(bio)) {
1905 case REQ_OP_DISCARD:
1906 if (!blk_queue_discard(q))
1907 goto not_supported;
1908 break;
1909 case REQ_OP_SECURE_ERASE:
1910 if (!blk_queue_secure_erase(q))
1911 goto not_supported;
1912 break;
1913 case REQ_OP_WRITE_SAME:
1914 if (!bdev_write_same(bio->bi_bdev))
1915 goto not_supported;
1916 break;
1917 case REQ_OP_ZONE_REPORT:
1918 case REQ_OP_ZONE_RESET:
1919 if (!bdev_is_zoned(bio->bi_bdev))
1920 goto not_supported;
1921 break;
1922 case REQ_OP_WRITE_ZEROES:
1923 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1924 goto not_supported;
1925 break;
1926 default:
1927 break;
1928 }
1929
1930 /*
1931 * Various block parts want %current->io_context and lazy ioc
1932 * allocation ends up trading a lot of pain for a small amount of
1933 * memory. Just allocate it upfront. This may fail and block
1934 * layer knows how to live with it.
1935 */
1936 create_io_context(GFP_ATOMIC, q->node);
1937
1938 if (!blkcg_bio_issue_check(q, bio))
1939 return false;
1940
1941 trace_block_bio_queue(q, bio);
1942 return true;
1943
1944 not_supported:
1945 err = -EOPNOTSUPP;
1946 end_io:
1947 bio->bi_error = err;
1948 bio_endio(bio);
1949 return false;
1950 }
1951
1952 /**
1953 * generic_make_request - hand a buffer to its device driver for I/O
1954 * @bio: The bio describing the location in memory and on the device.
1955 *
1956 * generic_make_request() is used to make I/O requests of block
1957 * devices. It is passed a &struct bio, which describes the I/O that needs
1958 * to be done.
1959 *
1960 * generic_make_request() does not return any status. The
1961 * success/failure status of the request, along with notification of
1962 * completion, is delivered asynchronously through the bio->bi_end_io
1963 * function described (one day) else where.
1964 *
1965 * The caller of generic_make_request must make sure that bi_io_vec
1966 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1967 * set to describe the device address, and the
1968 * bi_end_io and optionally bi_private are set to describe how
1969 * completion notification should be signaled.
1970 *
1971 * generic_make_request and the drivers it calls may use bi_next if this
1972 * bio happens to be merged with someone else, and may resubmit the bio to
1973 * a lower device by calling into generic_make_request recursively, which
1974 * means the bio should NOT be touched after the call to ->make_request_fn.
1975 */
1976 blk_qc_t generic_make_request(struct bio *bio)
1977 {
1978 struct bio_list bio_list_on_stack;
1979 blk_qc_t ret = BLK_QC_T_NONE;
1980
1981 if (!generic_make_request_checks(bio))
1982 goto out;
1983
1984 /*
1985 * We only want one ->make_request_fn to be active at a time, else
1986 * stack usage with stacked devices could be a problem. So use
1987 * current->bio_list to keep a list of requests submited by a
1988 * make_request_fn function. current->bio_list is also used as a
1989 * flag to say if generic_make_request is currently active in this
1990 * task or not. If it is NULL, then no make_request is active. If
1991 * it is non-NULL, then a make_request is active, and new requests
1992 * should be added at the tail
1993 */
1994 if (current->bio_list) {
1995 bio_list_add(current->bio_list, bio);
1996 goto out;
1997 }
1998
1999 /* following loop may be a bit non-obvious, and so deserves some
2000 * explanation.
2001 * Before entering the loop, bio->bi_next is NULL (as all callers
2002 * ensure that) so we have a list with a single bio.
2003 * We pretend that we have just taken it off a longer list, so
2004 * we assign bio_list to a pointer to the bio_list_on_stack,
2005 * thus initialising the bio_list of new bios to be
2006 * added. ->make_request() may indeed add some more bios
2007 * through a recursive call to generic_make_request. If it
2008 * did, we find a non-NULL value in bio_list and re-enter the loop
2009 * from the top. In this case we really did just take the bio
2010 * of the top of the list (no pretending) and so remove it from
2011 * bio_list, and call into ->make_request() again.
2012 */
2013 BUG_ON(bio->bi_next);
2014 bio_list_init(&bio_list_on_stack);
2015 current->bio_list = &bio_list_on_stack;
2016 do {
2017 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2018
2019 if (likely(blk_queue_enter(q, false) == 0)) {
2020 ret = q->make_request_fn(q, bio);
2021
2022 blk_queue_exit(q);
2023
2024 bio = bio_list_pop(current->bio_list);
2025 } else {
2026 struct bio *bio_next = bio_list_pop(current->bio_list);
2027
2028 bio_io_error(bio);
2029 bio = bio_next;
2030 }
2031 } while (bio);
2032 current->bio_list = NULL; /* deactivate */
2033
2034 out:
2035 return ret;
2036 }
2037 EXPORT_SYMBOL(generic_make_request);
2038
2039 /**
2040 * submit_bio - submit a bio to the block device layer for I/O
2041 * @bio: The &struct bio which describes the I/O
2042 *
2043 * submit_bio() is very similar in purpose to generic_make_request(), and
2044 * uses that function to do most of the work. Both are fairly rough
2045 * interfaces; @bio must be presetup and ready for I/O.
2046 *
2047 */
2048 blk_qc_t submit_bio(struct bio *bio)
2049 {
2050 /*
2051 * If it's a regular read/write or a barrier with data attached,
2052 * go through the normal accounting stuff before submission.
2053 */
2054 if (bio_has_data(bio)) {
2055 unsigned int count;
2056
2057 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2058 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2059 else
2060 count = bio_sectors(bio);
2061
2062 if (op_is_write(bio_op(bio))) {
2063 count_vm_events(PGPGOUT, count);
2064 } else {
2065 task_io_account_read(bio->bi_iter.bi_size);
2066 count_vm_events(PGPGIN, count);
2067 }
2068
2069 if (unlikely(block_dump)) {
2070 char b[BDEVNAME_SIZE];
2071 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2072 current->comm, task_pid_nr(current),
2073 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2074 (unsigned long long)bio->bi_iter.bi_sector,
2075 bdevname(bio->bi_bdev, b),
2076 count);
2077 }
2078 }
2079
2080 return generic_make_request(bio);
2081 }
2082 EXPORT_SYMBOL(submit_bio);
2083
2084 /**
2085 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2086 * for new the queue limits
2087 * @q: the queue
2088 * @rq: the request being checked
2089 *
2090 * Description:
2091 * @rq may have been made based on weaker limitations of upper-level queues
2092 * in request stacking drivers, and it may violate the limitation of @q.
2093 * Since the block layer and the underlying device driver trust @rq
2094 * after it is inserted to @q, it should be checked against @q before
2095 * the insertion using this generic function.
2096 *
2097 * Request stacking drivers like request-based dm may change the queue
2098 * limits when retrying requests on other queues. Those requests need
2099 * to be checked against the new queue limits again during dispatch.
2100 */
2101 static int blk_cloned_rq_check_limits(struct request_queue *q,
2102 struct request *rq)
2103 {
2104 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2105 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2106 return -EIO;
2107 }
2108
2109 /*
2110 * queue's settings related to segment counting like q->bounce_pfn
2111 * may differ from that of other stacking queues.
2112 * Recalculate it to check the request correctly on this queue's
2113 * limitation.
2114 */
2115 blk_recalc_rq_segments(rq);
2116 if (rq->nr_phys_segments > queue_max_segments(q)) {
2117 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2118 return -EIO;
2119 }
2120
2121 return 0;
2122 }
2123
2124 /**
2125 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2126 * @q: the queue to submit the request
2127 * @rq: the request being queued
2128 */
2129 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2130 {
2131 unsigned long flags;
2132 int where = ELEVATOR_INSERT_BACK;
2133
2134 if (blk_cloned_rq_check_limits(q, rq))
2135 return -EIO;
2136
2137 if (rq->rq_disk &&
2138 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2139 return -EIO;
2140
2141 if (q->mq_ops) {
2142 if (blk_queue_io_stat(q))
2143 blk_account_io_start(rq, true);
2144 blk_mq_insert_request(rq, false, true, false);
2145 return 0;
2146 }
2147
2148 spin_lock_irqsave(q->queue_lock, flags);
2149 if (unlikely(blk_queue_dying(q))) {
2150 spin_unlock_irqrestore(q->queue_lock, flags);
2151 return -ENODEV;
2152 }
2153
2154 /*
2155 * Submitting request must be dequeued before calling this function
2156 * because it will be linked to another request_queue
2157 */
2158 BUG_ON(blk_queued_rq(rq));
2159
2160 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2161 where = ELEVATOR_INSERT_FLUSH;
2162
2163 add_acct_request(q, rq, where);
2164 if (where == ELEVATOR_INSERT_FLUSH)
2165 __blk_run_queue(q);
2166 spin_unlock_irqrestore(q->queue_lock, flags);
2167
2168 return 0;
2169 }
2170 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2171
2172 /**
2173 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2174 * @rq: request to examine
2175 *
2176 * Description:
2177 * A request could be merge of IOs which require different failure
2178 * handling. This function determines the number of bytes which
2179 * can be failed from the beginning of the request without
2180 * crossing into area which need to be retried further.
2181 *
2182 * Return:
2183 * The number of bytes to fail.
2184 *
2185 * Context:
2186 * queue_lock must be held.
2187 */
2188 unsigned int blk_rq_err_bytes(const struct request *rq)
2189 {
2190 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2191 unsigned int bytes = 0;
2192 struct bio *bio;
2193
2194 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2195 return blk_rq_bytes(rq);
2196
2197 /*
2198 * Currently the only 'mixing' which can happen is between
2199 * different fastfail types. We can safely fail portions
2200 * which have all the failfast bits that the first one has -
2201 * the ones which are at least as eager to fail as the first
2202 * one.
2203 */
2204 for (bio = rq->bio; bio; bio = bio->bi_next) {
2205 if ((bio->bi_opf & ff) != ff)
2206 break;
2207 bytes += bio->bi_iter.bi_size;
2208 }
2209
2210 /* this could lead to infinite loop */
2211 BUG_ON(blk_rq_bytes(rq) && !bytes);
2212 return bytes;
2213 }
2214 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2215
2216 void blk_account_io_completion(struct request *req, unsigned int bytes)
2217 {
2218 if (blk_do_io_stat(req)) {
2219 const int rw = rq_data_dir(req);
2220 struct hd_struct *part;
2221 int cpu;
2222
2223 cpu = part_stat_lock();
2224 part = req->part;
2225 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2226 part_stat_unlock();
2227 }
2228 }
2229
2230 void blk_account_io_done(struct request *req)
2231 {
2232 /*
2233 * Account IO completion. flush_rq isn't accounted as a
2234 * normal IO on queueing nor completion. Accounting the
2235 * containing request is enough.
2236 */
2237 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2238 unsigned long duration = jiffies - req->start_time;
2239 const int rw = rq_data_dir(req);
2240 struct hd_struct *part;
2241 int cpu;
2242
2243 cpu = part_stat_lock();
2244 part = req->part;
2245
2246 part_stat_inc(cpu, part, ios[rw]);
2247 part_stat_add(cpu, part, ticks[rw], duration);
2248 part_round_stats(cpu, part);
2249 part_dec_in_flight(part, rw);
2250
2251 hd_struct_put(part);
2252 part_stat_unlock();
2253 }
2254 }
2255
2256 #ifdef CONFIG_PM
2257 /*
2258 * Don't process normal requests when queue is suspended
2259 * or in the process of suspending/resuming
2260 */
2261 static struct request *blk_pm_peek_request(struct request_queue *q,
2262 struct request *rq)
2263 {
2264 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2265 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2266 return NULL;
2267 else
2268 return rq;
2269 }
2270 #else
2271 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2272 struct request *rq)
2273 {
2274 return rq;
2275 }
2276 #endif
2277
2278 void blk_account_io_start(struct request *rq, bool new_io)
2279 {
2280 struct hd_struct *part;
2281 int rw = rq_data_dir(rq);
2282 int cpu;
2283
2284 if (!blk_do_io_stat(rq))
2285 return;
2286
2287 cpu = part_stat_lock();
2288
2289 if (!new_io) {
2290 part = rq->part;
2291 part_stat_inc(cpu, part, merges[rw]);
2292 } else {
2293 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2294 if (!hd_struct_try_get(part)) {
2295 /*
2296 * The partition is already being removed,
2297 * the request will be accounted on the disk only
2298 *
2299 * We take a reference on disk->part0 although that
2300 * partition will never be deleted, so we can treat
2301 * it as any other partition.
2302 */
2303 part = &rq->rq_disk->part0;
2304 hd_struct_get(part);
2305 }
2306 part_round_stats(cpu, part);
2307 part_inc_in_flight(part, rw);
2308 rq->part = part;
2309 }
2310
2311 part_stat_unlock();
2312 }
2313
2314 /**
2315 * blk_peek_request - peek at the top of a request queue
2316 * @q: request queue to peek at
2317 *
2318 * Description:
2319 * Return the request at the top of @q. The returned request
2320 * should be started using blk_start_request() before LLD starts
2321 * processing it.
2322 *
2323 * Return:
2324 * Pointer to the request at the top of @q if available. Null
2325 * otherwise.
2326 *
2327 * Context:
2328 * queue_lock must be held.
2329 */
2330 struct request *blk_peek_request(struct request_queue *q)
2331 {
2332 struct request *rq;
2333 int ret;
2334
2335 while ((rq = __elv_next_request(q)) != NULL) {
2336
2337 rq = blk_pm_peek_request(q, rq);
2338 if (!rq)
2339 break;
2340
2341 if (!(rq->rq_flags & RQF_STARTED)) {
2342 /*
2343 * This is the first time the device driver
2344 * sees this request (possibly after
2345 * requeueing). Notify IO scheduler.
2346 */
2347 if (rq->rq_flags & RQF_SORTED)
2348 elv_activate_rq(q, rq);
2349
2350 /*
2351 * just mark as started even if we don't start
2352 * it, a request that has been delayed should
2353 * not be passed by new incoming requests
2354 */
2355 rq->rq_flags |= RQF_STARTED;
2356 trace_block_rq_issue(q, rq);
2357 }
2358
2359 if (!q->boundary_rq || q->boundary_rq == rq) {
2360 q->end_sector = rq_end_sector(rq);
2361 q->boundary_rq = NULL;
2362 }
2363
2364 if (rq->rq_flags & RQF_DONTPREP)
2365 break;
2366
2367 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2368 /*
2369 * make sure space for the drain appears we
2370 * know we can do this because max_hw_segments
2371 * has been adjusted to be one fewer than the
2372 * device can handle
2373 */
2374 rq->nr_phys_segments++;
2375 }
2376
2377 if (!q->prep_rq_fn)
2378 break;
2379
2380 ret = q->prep_rq_fn(q, rq);
2381 if (ret == BLKPREP_OK) {
2382 break;
2383 } else if (ret == BLKPREP_DEFER) {
2384 /*
2385 * the request may have been (partially) prepped.
2386 * we need to keep this request in the front to
2387 * avoid resource deadlock. RQF_STARTED will
2388 * prevent other fs requests from passing this one.
2389 */
2390 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2391 !(rq->rq_flags & RQF_DONTPREP)) {
2392 /*
2393 * remove the space for the drain we added
2394 * so that we don't add it again
2395 */
2396 --rq->nr_phys_segments;
2397 }
2398
2399 rq = NULL;
2400 break;
2401 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2402 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2403
2404 rq->rq_flags |= RQF_QUIET;
2405 /*
2406 * Mark this request as started so we don't trigger
2407 * any debug logic in the end I/O path.
2408 */
2409 blk_start_request(rq);
2410 __blk_end_request_all(rq, err);
2411 } else {
2412 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2413 break;
2414 }
2415 }
2416
2417 return rq;
2418 }
2419 EXPORT_SYMBOL(blk_peek_request);
2420
2421 void blk_dequeue_request(struct request *rq)
2422 {
2423 struct request_queue *q = rq->q;
2424
2425 BUG_ON(list_empty(&rq->queuelist));
2426 BUG_ON(ELV_ON_HASH(rq));
2427
2428 list_del_init(&rq->queuelist);
2429
2430 /*
2431 * the time frame between a request being removed from the lists
2432 * and to it is freed is accounted as io that is in progress at
2433 * the driver side.
2434 */
2435 if (blk_account_rq(rq)) {
2436 q->in_flight[rq_is_sync(rq)]++;
2437 set_io_start_time_ns(rq);
2438 }
2439 }
2440
2441 /**
2442 * blk_start_request - start request processing on the driver
2443 * @req: request to dequeue
2444 *
2445 * Description:
2446 * Dequeue @req and start timeout timer on it. This hands off the
2447 * request to the driver.
2448 *
2449 * Block internal functions which don't want to start timer should
2450 * call blk_dequeue_request().
2451 *
2452 * Context:
2453 * queue_lock must be held.
2454 */
2455 void blk_start_request(struct request *req)
2456 {
2457 blk_dequeue_request(req);
2458
2459 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2460 blk_stat_set_issue_time(&req->issue_stat);
2461 req->rq_flags |= RQF_STATS;
2462 wbt_issue(req->q->rq_wb, &req->issue_stat);
2463 }
2464
2465 /*
2466 * We are now handing the request to the hardware, initialize
2467 * resid_len to full count and add the timeout handler.
2468 */
2469 req->resid_len = blk_rq_bytes(req);
2470 if (unlikely(blk_bidi_rq(req)))
2471 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2472
2473 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2474 blk_add_timer(req);
2475 }
2476 EXPORT_SYMBOL(blk_start_request);
2477
2478 /**
2479 * blk_fetch_request - fetch a request from a request queue
2480 * @q: request queue to fetch a request from
2481 *
2482 * Description:
2483 * Return the request at the top of @q. The request is started on
2484 * return and LLD can start processing it immediately.
2485 *
2486 * Return:
2487 * Pointer to the request at the top of @q if available. Null
2488 * otherwise.
2489 *
2490 * Context:
2491 * queue_lock must be held.
2492 */
2493 struct request *blk_fetch_request(struct request_queue *q)
2494 {
2495 struct request *rq;
2496
2497 rq = blk_peek_request(q);
2498 if (rq)
2499 blk_start_request(rq);
2500 return rq;
2501 }
2502 EXPORT_SYMBOL(blk_fetch_request);
2503
2504 /**
2505 * blk_update_request - Special helper function for request stacking drivers
2506 * @req: the request being processed
2507 * @error: %0 for success, < %0 for error
2508 * @nr_bytes: number of bytes to complete @req
2509 *
2510 * Description:
2511 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2512 * the request structure even if @req doesn't have leftover.
2513 * If @req has leftover, sets it up for the next range of segments.
2514 *
2515 * This special helper function is only for request stacking drivers
2516 * (e.g. request-based dm) so that they can handle partial completion.
2517 * Actual device drivers should use blk_end_request instead.
2518 *
2519 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2520 * %false return from this function.
2521 *
2522 * Return:
2523 * %false - this request doesn't have any more data
2524 * %true - this request has more data
2525 **/
2526 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2527 {
2528 int total_bytes;
2529
2530 trace_block_rq_complete(req->q, req, nr_bytes);
2531
2532 if (!req->bio)
2533 return false;
2534
2535 /*
2536 * For fs requests, rq is just carrier of independent bio's
2537 * and each partial completion should be handled separately.
2538 * Reset per-request error on each partial completion.
2539 *
2540 * TODO: tj: This is too subtle. It would be better to let
2541 * low level drivers do what they see fit.
2542 */
2543 if (req->cmd_type == REQ_TYPE_FS)
2544 req->errors = 0;
2545
2546 if (error && req->cmd_type == REQ_TYPE_FS &&
2547 !(req->rq_flags & RQF_QUIET)) {
2548 char *error_type;
2549
2550 switch (error) {
2551 case -ENOLINK:
2552 error_type = "recoverable transport";
2553 break;
2554 case -EREMOTEIO:
2555 error_type = "critical target";
2556 break;
2557 case -EBADE:
2558 error_type = "critical nexus";
2559 break;
2560 case -ETIMEDOUT:
2561 error_type = "timeout";
2562 break;
2563 case -ENOSPC:
2564 error_type = "critical space allocation";
2565 break;
2566 case -ENODATA:
2567 error_type = "critical medium";
2568 break;
2569 case -EIO:
2570 default:
2571 error_type = "I/O";
2572 break;
2573 }
2574 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2575 __func__, error_type, req->rq_disk ?
2576 req->rq_disk->disk_name : "?",
2577 (unsigned long long)blk_rq_pos(req));
2578
2579 }
2580
2581 blk_account_io_completion(req, nr_bytes);
2582
2583 total_bytes = 0;
2584 while (req->bio) {
2585 struct bio *bio = req->bio;
2586 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2587
2588 if (bio_bytes == bio->bi_iter.bi_size)
2589 req->bio = bio->bi_next;
2590
2591 req_bio_endio(req, bio, bio_bytes, error);
2592
2593 total_bytes += bio_bytes;
2594 nr_bytes -= bio_bytes;
2595
2596 if (!nr_bytes)
2597 break;
2598 }
2599
2600 /*
2601 * completely done
2602 */
2603 if (!req->bio) {
2604 /*
2605 * Reset counters so that the request stacking driver
2606 * can find how many bytes remain in the request
2607 * later.
2608 */
2609 req->__data_len = 0;
2610 return false;
2611 }
2612
2613 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2614
2615 req->__data_len -= total_bytes;
2616
2617 /* update sector only for requests with clear definition of sector */
2618 if (req->cmd_type == REQ_TYPE_FS)
2619 req->__sector += total_bytes >> 9;
2620
2621 /* mixed attributes always follow the first bio */
2622 if (req->rq_flags & RQF_MIXED_MERGE) {
2623 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2624 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2625 }
2626
2627 /*
2628 * If total number of sectors is less than the first segment
2629 * size, something has gone terribly wrong.
2630 */
2631 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2632 blk_dump_rq_flags(req, "request botched");
2633 req->__data_len = blk_rq_cur_bytes(req);
2634 }
2635
2636 /* recalculate the number of segments */
2637 blk_recalc_rq_segments(req);
2638
2639 return true;
2640 }
2641 EXPORT_SYMBOL_GPL(blk_update_request);
2642
2643 static bool blk_update_bidi_request(struct request *rq, int error,
2644 unsigned int nr_bytes,
2645 unsigned int bidi_bytes)
2646 {
2647 if (blk_update_request(rq, error, nr_bytes))
2648 return true;
2649
2650 /* Bidi request must be completed as a whole */
2651 if (unlikely(blk_bidi_rq(rq)) &&
2652 blk_update_request(rq->next_rq, error, bidi_bytes))
2653 return true;
2654
2655 if (blk_queue_add_random(rq->q))
2656 add_disk_randomness(rq->rq_disk);
2657
2658 return false;
2659 }
2660
2661 /**
2662 * blk_unprep_request - unprepare a request
2663 * @req: the request
2664 *
2665 * This function makes a request ready for complete resubmission (or
2666 * completion). It happens only after all error handling is complete,
2667 * so represents the appropriate moment to deallocate any resources
2668 * that were allocated to the request in the prep_rq_fn. The queue
2669 * lock is held when calling this.
2670 */
2671 void blk_unprep_request(struct request *req)
2672 {
2673 struct request_queue *q = req->q;
2674
2675 req->rq_flags &= ~RQF_DONTPREP;
2676 if (q->unprep_rq_fn)
2677 q->unprep_rq_fn(q, req);
2678 }
2679 EXPORT_SYMBOL_GPL(blk_unprep_request);
2680
2681 /*
2682 * queue lock must be held
2683 */
2684 void blk_finish_request(struct request *req, int error)
2685 {
2686 struct request_queue *q = req->q;
2687
2688 if (req->rq_flags & RQF_STATS)
2689 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2690
2691 if (req->rq_flags & RQF_QUEUED)
2692 blk_queue_end_tag(q, req);
2693
2694 BUG_ON(blk_queued_rq(req));
2695
2696 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2697 laptop_io_completion(&req->q->backing_dev_info);
2698
2699 blk_delete_timer(req);
2700
2701 if (req->rq_flags & RQF_DONTPREP)
2702 blk_unprep_request(req);
2703
2704 blk_account_io_done(req);
2705
2706 if (req->end_io) {
2707 wbt_done(req->q->rq_wb, &req->issue_stat);
2708 req->end_io(req, error);
2709 } else {
2710 if (blk_bidi_rq(req))
2711 __blk_put_request(req->next_rq->q, req->next_rq);
2712
2713 __blk_put_request(q, req);
2714 }
2715 }
2716 EXPORT_SYMBOL(blk_finish_request);
2717
2718 /**
2719 * blk_end_bidi_request - Complete a bidi request
2720 * @rq: the request to complete
2721 * @error: %0 for success, < %0 for error
2722 * @nr_bytes: number of bytes to complete @rq
2723 * @bidi_bytes: number of bytes to complete @rq->next_rq
2724 *
2725 * Description:
2726 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2727 * Drivers that supports bidi can safely call this member for any
2728 * type of request, bidi or uni. In the later case @bidi_bytes is
2729 * just ignored.
2730 *
2731 * Return:
2732 * %false - we are done with this request
2733 * %true - still buffers pending for this request
2734 **/
2735 static bool blk_end_bidi_request(struct request *rq, int error,
2736 unsigned int nr_bytes, unsigned int bidi_bytes)
2737 {
2738 struct request_queue *q = rq->q;
2739 unsigned long flags;
2740
2741 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2742 return true;
2743
2744 spin_lock_irqsave(q->queue_lock, flags);
2745 blk_finish_request(rq, error);
2746 spin_unlock_irqrestore(q->queue_lock, flags);
2747
2748 return false;
2749 }
2750
2751 /**
2752 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2753 * @rq: the request to complete
2754 * @error: %0 for success, < %0 for error
2755 * @nr_bytes: number of bytes to complete @rq
2756 * @bidi_bytes: number of bytes to complete @rq->next_rq
2757 *
2758 * Description:
2759 * Identical to blk_end_bidi_request() except that queue lock is
2760 * assumed to be locked on entry and remains so on return.
2761 *
2762 * Return:
2763 * %false - we are done with this request
2764 * %true - still buffers pending for this request
2765 **/
2766 bool __blk_end_bidi_request(struct request *rq, int error,
2767 unsigned int nr_bytes, unsigned int bidi_bytes)
2768 {
2769 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2770 return true;
2771
2772 blk_finish_request(rq, error);
2773
2774 return false;
2775 }
2776
2777 /**
2778 * blk_end_request - Helper function for drivers to complete the request.
2779 * @rq: the request being processed
2780 * @error: %0 for success, < %0 for error
2781 * @nr_bytes: number of bytes to complete
2782 *
2783 * Description:
2784 * Ends I/O on a number of bytes attached to @rq.
2785 * If @rq has leftover, sets it up for the next range of segments.
2786 *
2787 * Return:
2788 * %false - we are done with this request
2789 * %true - still buffers pending for this request
2790 **/
2791 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2792 {
2793 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2794 }
2795 EXPORT_SYMBOL(blk_end_request);
2796
2797 /**
2798 * blk_end_request_all - Helper function for drives to finish the request.
2799 * @rq: the request to finish
2800 * @error: %0 for success, < %0 for error
2801 *
2802 * Description:
2803 * Completely finish @rq.
2804 */
2805 void blk_end_request_all(struct request *rq, int error)
2806 {
2807 bool pending;
2808 unsigned int bidi_bytes = 0;
2809
2810 if (unlikely(blk_bidi_rq(rq)))
2811 bidi_bytes = blk_rq_bytes(rq->next_rq);
2812
2813 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2814 BUG_ON(pending);
2815 }
2816 EXPORT_SYMBOL(blk_end_request_all);
2817
2818 /**
2819 * blk_end_request_cur - Helper function to finish the current request chunk.
2820 * @rq: the request to finish the current chunk for
2821 * @error: %0 for success, < %0 for error
2822 *
2823 * Description:
2824 * Complete the current consecutively mapped chunk from @rq.
2825 *
2826 * Return:
2827 * %false - we are done with this request
2828 * %true - still buffers pending for this request
2829 */
2830 bool blk_end_request_cur(struct request *rq, int error)
2831 {
2832 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2833 }
2834 EXPORT_SYMBOL(blk_end_request_cur);
2835
2836 /**
2837 * blk_end_request_err - Finish a request till the next failure boundary.
2838 * @rq: the request to finish till the next failure boundary for
2839 * @error: must be negative errno
2840 *
2841 * Description:
2842 * Complete @rq till the next failure boundary.
2843 *
2844 * Return:
2845 * %false - we are done with this request
2846 * %true - still buffers pending for this request
2847 */
2848 bool blk_end_request_err(struct request *rq, int error)
2849 {
2850 WARN_ON(error >= 0);
2851 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2852 }
2853 EXPORT_SYMBOL_GPL(blk_end_request_err);
2854
2855 /**
2856 * __blk_end_request - Helper function for drivers to complete the request.
2857 * @rq: the request being processed
2858 * @error: %0 for success, < %0 for error
2859 * @nr_bytes: number of bytes to complete
2860 *
2861 * Description:
2862 * Must be called with queue lock held unlike blk_end_request().
2863 *
2864 * Return:
2865 * %false - we are done with this request
2866 * %true - still buffers pending for this request
2867 **/
2868 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2869 {
2870 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2871 }
2872 EXPORT_SYMBOL(__blk_end_request);
2873
2874 /**
2875 * __blk_end_request_all - Helper function for drives to finish the request.
2876 * @rq: the request to finish
2877 * @error: %0 for success, < %0 for error
2878 *
2879 * Description:
2880 * Completely finish @rq. Must be called with queue lock held.
2881 */
2882 void __blk_end_request_all(struct request *rq, int error)
2883 {
2884 bool pending;
2885 unsigned int bidi_bytes = 0;
2886
2887 if (unlikely(blk_bidi_rq(rq)))
2888 bidi_bytes = blk_rq_bytes(rq->next_rq);
2889
2890 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2891 BUG_ON(pending);
2892 }
2893 EXPORT_SYMBOL(__blk_end_request_all);
2894
2895 /**
2896 * __blk_end_request_cur - Helper function to finish the current request chunk.
2897 * @rq: the request to finish the current chunk for
2898 * @error: %0 for success, < %0 for error
2899 *
2900 * Description:
2901 * Complete the current consecutively mapped chunk from @rq. Must
2902 * be called with queue lock held.
2903 *
2904 * Return:
2905 * %false - we are done with this request
2906 * %true - still buffers pending for this request
2907 */
2908 bool __blk_end_request_cur(struct request *rq, int error)
2909 {
2910 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2911 }
2912 EXPORT_SYMBOL(__blk_end_request_cur);
2913
2914 /**
2915 * __blk_end_request_err - Finish a request till the next failure boundary.
2916 * @rq: the request to finish till the next failure boundary for
2917 * @error: must be negative errno
2918 *
2919 * Description:
2920 * Complete @rq till the next failure boundary. Must be called
2921 * with queue lock held.
2922 *
2923 * Return:
2924 * %false - we are done with this request
2925 * %true - still buffers pending for this request
2926 */
2927 bool __blk_end_request_err(struct request *rq, int error)
2928 {
2929 WARN_ON(error >= 0);
2930 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2931 }
2932 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2933
2934 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2935 struct bio *bio)
2936 {
2937 if (bio_has_data(bio))
2938 rq->nr_phys_segments = bio_phys_segments(q, bio);
2939
2940 rq->__data_len = bio->bi_iter.bi_size;
2941 rq->bio = rq->biotail = bio;
2942
2943 if (bio->bi_bdev)
2944 rq->rq_disk = bio->bi_bdev->bd_disk;
2945 }
2946
2947 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2948 /**
2949 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2950 * @rq: the request to be flushed
2951 *
2952 * Description:
2953 * Flush all pages in @rq.
2954 */
2955 void rq_flush_dcache_pages(struct request *rq)
2956 {
2957 struct req_iterator iter;
2958 struct bio_vec bvec;
2959
2960 rq_for_each_segment(bvec, rq, iter)
2961 flush_dcache_page(bvec.bv_page);
2962 }
2963 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2964 #endif
2965
2966 /**
2967 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2968 * @q : the queue of the device being checked
2969 *
2970 * Description:
2971 * Check if underlying low-level drivers of a device are busy.
2972 * If the drivers want to export their busy state, they must set own
2973 * exporting function using blk_queue_lld_busy() first.
2974 *
2975 * Basically, this function is used only by request stacking drivers
2976 * to stop dispatching requests to underlying devices when underlying
2977 * devices are busy. This behavior helps more I/O merging on the queue
2978 * of the request stacking driver and prevents I/O throughput regression
2979 * on burst I/O load.
2980 *
2981 * Return:
2982 * 0 - Not busy (The request stacking driver should dispatch request)
2983 * 1 - Busy (The request stacking driver should stop dispatching request)
2984 */
2985 int blk_lld_busy(struct request_queue *q)
2986 {
2987 if (q->lld_busy_fn)
2988 return q->lld_busy_fn(q);
2989
2990 return 0;
2991 }
2992 EXPORT_SYMBOL_GPL(blk_lld_busy);
2993
2994 /**
2995 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2996 * @rq: the clone request to be cleaned up
2997 *
2998 * Description:
2999 * Free all bios in @rq for a cloned request.
3000 */
3001 void blk_rq_unprep_clone(struct request *rq)
3002 {
3003 struct bio *bio;
3004
3005 while ((bio = rq->bio) != NULL) {
3006 rq->bio = bio->bi_next;
3007
3008 bio_put(bio);
3009 }
3010 }
3011 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3012
3013 /*
3014 * Copy attributes of the original request to the clone request.
3015 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3016 */
3017 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3018 {
3019 dst->cpu = src->cpu;
3020 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
3021 dst->cmd_type = src->cmd_type;
3022 dst->__sector = blk_rq_pos(src);
3023 dst->__data_len = blk_rq_bytes(src);
3024 dst->nr_phys_segments = src->nr_phys_segments;
3025 dst->ioprio = src->ioprio;
3026 dst->extra_len = src->extra_len;
3027 }
3028
3029 /**
3030 * blk_rq_prep_clone - Helper function to setup clone request
3031 * @rq: the request to be setup
3032 * @rq_src: original request to be cloned
3033 * @bs: bio_set that bios for clone are allocated from
3034 * @gfp_mask: memory allocation mask for bio
3035 * @bio_ctr: setup function to be called for each clone bio.
3036 * Returns %0 for success, non %0 for failure.
3037 * @data: private data to be passed to @bio_ctr
3038 *
3039 * Description:
3040 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3041 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3042 * are not copied, and copying such parts is the caller's responsibility.
3043 * Also, pages which the original bios are pointing to are not copied
3044 * and the cloned bios just point same pages.
3045 * So cloned bios must be completed before original bios, which means
3046 * the caller must complete @rq before @rq_src.
3047 */
3048 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3049 struct bio_set *bs, gfp_t gfp_mask,
3050 int (*bio_ctr)(struct bio *, struct bio *, void *),
3051 void *data)
3052 {
3053 struct bio *bio, *bio_src;
3054
3055 if (!bs)
3056 bs = fs_bio_set;
3057
3058 __rq_for_each_bio(bio_src, rq_src) {
3059 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3060 if (!bio)
3061 goto free_and_out;
3062
3063 if (bio_ctr && bio_ctr(bio, bio_src, data))
3064 goto free_and_out;
3065
3066 if (rq->bio) {
3067 rq->biotail->bi_next = bio;
3068 rq->biotail = bio;
3069 } else
3070 rq->bio = rq->biotail = bio;
3071 }
3072
3073 __blk_rq_prep_clone(rq, rq_src);
3074
3075 return 0;
3076
3077 free_and_out:
3078 if (bio)
3079 bio_put(bio);
3080 blk_rq_unprep_clone(rq);
3081
3082 return -ENOMEM;
3083 }
3084 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3085
3086 int kblockd_schedule_work(struct work_struct *work)
3087 {
3088 return queue_work(kblockd_workqueue, work);
3089 }
3090 EXPORT_SYMBOL(kblockd_schedule_work);
3091
3092 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3093 {
3094 return queue_work_on(cpu, kblockd_workqueue, work);
3095 }
3096 EXPORT_SYMBOL(kblockd_schedule_work_on);
3097
3098 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3099 unsigned long delay)
3100 {
3101 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3102 }
3103 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3104
3105 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3106 unsigned long delay)
3107 {
3108 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3109 }
3110 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3111
3112 /**
3113 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3114 * @plug: The &struct blk_plug that needs to be initialized
3115 *
3116 * Description:
3117 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3118 * pending I/O should the task end up blocking between blk_start_plug() and
3119 * blk_finish_plug(). This is important from a performance perspective, but
3120 * also ensures that we don't deadlock. For instance, if the task is blocking
3121 * for a memory allocation, memory reclaim could end up wanting to free a
3122 * page belonging to that request that is currently residing in our private
3123 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3124 * this kind of deadlock.
3125 */
3126 void blk_start_plug(struct blk_plug *plug)
3127 {
3128 struct task_struct *tsk = current;
3129
3130 /*
3131 * If this is a nested plug, don't actually assign it.
3132 */
3133 if (tsk->plug)
3134 return;
3135
3136 INIT_LIST_HEAD(&plug->list);
3137 INIT_LIST_HEAD(&plug->mq_list);
3138 INIT_LIST_HEAD(&plug->cb_list);
3139 /*
3140 * Store ordering should not be needed here, since a potential
3141 * preempt will imply a full memory barrier
3142 */
3143 tsk->plug = plug;
3144 }
3145 EXPORT_SYMBOL(blk_start_plug);
3146
3147 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3148 {
3149 struct request *rqa = container_of(a, struct request, queuelist);
3150 struct request *rqb = container_of(b, struct request, queuelist);
3151
3152 return !(rqa->q < rqb->q ||
3153 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3154 }
3155
3156 /*
3157 * If 'from_schedule' is true, then postpone the dispatch of requests
3158 * until a safe kblockd context. We due this to avoid accidental big
3159 * additional stack usage in driver dispatch, in places where the originally
3160 * plugger did not intend it.
3161 */
3162 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3163 bool from_schedule)
3164 __releases(q->queue_lock)
3165 {
3166 trace_block_unplug(q, depth, !from_schedule);
3167
3168 if (from_schedule)
3169 blk_run_queue_async(q);
3170 else
3171 __blk_run_queue(q);
3172 spin_unlock(q->queue_lock);
3173 }
3174
3175 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3176 {
3177 LIST_HEAD(callbacks);
3178
3179 while (!list_empty(&plug->cb_list)) {
3180 list_splice_init(&plug->cb_list, &callbacks);
3181
3182 while (!list_empty(&callbacks)) {
3183 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3184 struct blk_plug_cb,
3185 list);
3186 list_del(&cb->list);
3187 cb->callback(cb, from_schedule);
3188 }
3189 }
3190 }
3191
3192 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3193 int size)
3194 {
3195 struct blk_plug *plug = current->plug;
3196 struct blk_plug_cb *cb;
3197
3198 if (!plug)
3199 return NULL;
3200
3201 list_for_each_entry(cb, &plug->cb_list, list)
3202 if (cb->callback == unplug && cb->data == data)
3203 return cb;
3204
3205 /* Not currently on the callback list */
3206 BUG_ON(size < sizeof(*cb));
3207 cb = kzalloc(size, GFP_ATOMIC);
3208 if (cb) {
3209 cb->data = data;
3210 cb->callback = unplug;
3211 list_add(&cb->list, &plug->cb_list);
3212 }
3213 return cb;
3214 }
3215 EXPORT_SYMBOL(blk_check_plugged);
3216
3217 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3218 {
3219 struct request_queue *q;
3220 unsigned long flags;
3221 struct request *rq;
3222 LIST_HEAD(list);
3223 unsigned int depth;
3224
3225 flush_plug_callbacks(plug, from_schedule);
3226
3227 if (!list_empty(&plug->mq_list))
3228 blk_mq_flush_plug_list(plug, from_schedule);
3229
3230 if (list_empty(&plug->list))
3231 return;
3232
3233 list_splice_init(&plug->list, &list);
3234
3235 list_sort(NULL, &list, plug_rq_cmp);
3236
3237 q = NULL;
3238 depth = 0;
3239
3240 /*
3241 * Save and disable interrupts here, to avoid doing it for every
3242 * queue lock we have to take.
3243 */
3244 local_irq_save(flags);
3245 while (!list_empty(&list)) {
3246 rq = list_entry_rq(list.next);
3247 list_del_init(&rq->queuelist);
3248 BUG_ON(!rq->q);
3249 if (rq->q != q) {
3250 /*
3251 * This drops the queue lock
3252 */
3253 if (q)
3254 queue_unplugged(q, depth, from_schedule);
3255 q = rq->q;
3256 depth = 0;
3257 spin_lock(q->queue_lock);
3258 }
3259
3260 /*
3261 * Short-circuit if @q is dead
3262 */
3263 if (unlikely(blk_queue_dying(q))) {
3264 __blk_end_request_all(rq, -ENODEV);
3265 continue;
3266 }
3267
3268 /*
3269 * rq is already accounted, so use raw insert
3270 */
3271 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3272 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3273 else
3274 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3275
3276 depth++;
3277 }
3278
3279 /*
3280 * This drops the queue lock
3281 */
3282 if (q)
3283 queue_unplugged(q, depth, from_schedule);
3284
3285 local_irq_restore(flags);
3286 }
3287
3288 void blk_finish_plug(struct blk_plug *plug)
3289 {
3290 if (plug != current->plug)
3291 return;
3292 blk_flush_plug_list(plug, false);
3293
3294 current->plug = NULL;
3295 }
3296 EXPORT_SYMBOL(blk_finish_plug);
3297
3298 #ifdef CONFIG_PM
3299 /**
3300 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3301 * @q: the queue of the device
3302 * @dev: the device the queue belongs to
3303 *
3304 * Description:
3305 * Initialize runtime-PM-related fields for @q and start auto suspend for
3306 * @dev. Drivers that want to take advantage of request-based runtime PM
3307 * should call this function after @dev has been initialized, and its
3308 * request queue @q has been allocated, and runtime PM for it can not happen
3309 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3310 * cases, driver should call this function before any I/O has taken place.
3311 *
3312 * This function takes care of setting up using auto suspend for the device,
3313 * the autosuspend delay is set to -1 to make runtime suspend impossible
3314 * until an updated value is either set by user or by driver. Drivers do
3315 * not need to touch other autosuspend settings.
3316 *
3317 * The block layer runtime PM is request based, so only works for drivers
3318 * that use request as their IO unit instead of those directly use bio's.
3319 */
3320 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3321 {
3322 q->dev = dev;
3323 q->rpm_status = RPM_ACTIVE;
3324 pm_runtime_set_autosuspend_delay(q->dev, -1);
3325 pm_runtime_use_autosuspend(q->dev);
3326 }
3327 EXPORT_SYMBOL(blk_pm_runtime_init);
3328
3329 /**
3330 * blk_pre_runtime_suspend - Pre runtime suspend check
3331 * @q: the queue of the device
3332 *
3333 * Description:
3334 * This function will check if runtime suspend is allowed for the device
3335 * by examining if there are any requests pending in the queue. If there
3336 * are requests pending, the device can not be runtime suspended; otherwise,
3337 * the queue's status will be updated to SUSPENDING and the driver can
3338 * proceed to suspend the device.
3339 *
3340 * For the not allowed case, we mark last busy for the device so that
3341 * runtime PM core will try to autosuspend it some time later.
3342 *
3343 * This function should be called near the start of the device's
3344 * runtime_suspend callback.
3345 *
3346 * Return:
3347 * 0 - OK to runtime suspend the device
3348 * -EBUSY - Device should not be runtime suspended
3349 */
3350 int blk_pre_runtime_suspend(struct request_queue *q)
3351 {
3352 int ret = 0;
3353
3354 if (!q->dev)
3355 return ret;
3356
3357 spin_lock_irq(q->queue_lock);
3358 if (q->nr_pending) {
3359 ret = -EBUSY;
3360 pm_runtime_mark_last_busy(q->dev);
3361 } else {
3362 q->rpm_status = RPM_SUSPENDING;
3363 }
3364 spin_unlock_irq(q->queue_lock);
3365 return ret;
3366 }
3367 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3368
3369 /**
3370 * blk_post_runtime_suspend - Post runtime suspend processing
3371 * @q: the queue of the device
3372 * @err: return value of the device's runtime_suspend function
3373 *
3374 * Description:
3375 * Update the queue's runtime status according to the return value of the
3376 * device's runtime suspend function and mark last busy for the device so
3377 * that PM core will try to auto suspend the device at a later time.
3378 *
3379 * This function should be called near the end of the device's
3380 * runtime_suspend callback.
3381 */
3382 void blk_post_runtime_suspend(struct request_queue *q, int err)
3383 {
3384 if (!q->dev)
3385 return;
3386
3387 spin_lock_irq(q->queue_lock);
3388 if (!err) {
3389 q->rpm_status = RPM_SUSPENDED;
3390 } else {
3391 q->rpm_status = RPM_ACTIVE;
3392 pm_runtime_mark_last_busy(q->dev);
3393 }
3394 spin_unlock_irq(q->queue_lock);
3395 }
3396 EXPORT_SYMBOL(blk_post_runtime_suspend);
3397
3398 /**
3399 * blk_pre_runtime_resume - Pre runtime resume processing
3400 * @q: the queue of the device
3401 *
3402 * Description:
3403 * Update the queue's runtime status to RESUMING in preparation for the
3404 * runtime resume of the device.
3405 *
3406 * This function should be called near the start of the device's
3407 * runtime_resume callback.
3408 */
3409 void blk_pre_runtime_resume(struct request_queue *q)
3410 {
3411 if (!q->dev)
3412 return;
3413
3414 spin_lock_irq(q->queue_lock);
3415 q->rpm_status = RPM_RESUMING;
3416 spin_unlock_irq(q->queue_lock);
3417 }
3418 EXPORT_SYMBOL(blk_pre_runtime_resume);
3419
3420 /**
3421 * blk_post_runtime_resume - Post runtime resume processing
3422 * @q: the queue of the device
3423 * @err: return value of the device's runtime_resume function
3424 *
3425 * Description:
3426 * Update the queue's runtime status according to the return value of the
3427 * device's runtime_resume function. If it is successfully resumed, process
3428 * the requests that are queued into the device's queue when it is resuming
3429 * and then mark last busy and initiate autosuspend for it.
3430 *
3431 * This function should be called near the end of the device's
3432 * runtime_resume callback.
3433 */
3434 void blk_post_runtime_resume(struct request_queue *q, int err)
3435 {
3436 if (!q->dev)
3437 return;
3438
3439 spin_lock_irq(q->queue_lock);
3440 if (!err) {
3441 q->rpm_status = RPM_ACTIVE;
3442 __blk_run_queue(q);
3443 pm_runtime_mark_last_busy(q->dev);
3444 pm_request_autosuspend(q->dev);
3445 } else {
3446 q->rpm_status = RPM_SUSPENDED;
3447 }
3448 spin_unlock_irq(q->queue_lock);
3449 }
3450 EXPORT_SYMBOL(blk_post_runtime_resume);
3451
3452 /**
3453 * blk_set_runtime_active - Force runtime status of the queue to be active
3454 * @q: the queue of the device
3455 *
3456 * If the device is left runtime suspended during system suspend the resume
3457 * hook typically resumes the device and corrects runtime status
3458 * accordingly. However, that does not affect the queue runtime PM status
3459 * which is still "suspended". This prevents processing requests from the
3460 * queue.
3461 *
3462 * This function can be used in driver's resume hook to correct queue
3463 * runtime PM status and re-enable peeking requests from the queue. It
3464 * should be called before first request is added to the queue.
3465 */
3466 void blk_set_runtime_active(struct request_queue *q)
3467 {
3468 spin_lock_irq(q->queue_lock);
3469 q->rpm_status = RPM_ACTIVE;
3470 pm_runtime_mark_last_busy(q->dev);
3471 pm_request_autosuspend(q->dev);
3472 spin_unlock_irq(q->queue_lock);
3473 }
3474 EXPORT_SYMBOL(blk_set_runtime_active);
3475 #endif
3476
3477 int __init blk_dev_init(void)
3478 {
3479 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3480 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3481 FIELD_SIZEOF(struct request, cmd_flags));
3482 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3483 FIELD_SIZEOF(struct bio, bi_opf));
3484
3485 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3486 kblockd_workqueue = alloc_workqueue("kblockd",
3487 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3488 if (!kblockd_workqueue)
3489 panic("Failed to create kblockd\n");
3490
3491 request_cachep = kmem_cache_create("blkdev_requests",
3492 sizeof(struct request), 0, SLAB_PANIC, NULL);
3493
3494 blk_requestq_cachep = kmem_cache_create("request_queue",
3495 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3496
3497 return 0;
3498 }