]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - block/blk-core.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-kernels.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/blk-integrity.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-throttle.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63
64 DEFINE_IDA(blk_queue_ida);
65
66 /*
67 * For queue allocation
68 */
69 struct kmem_cache *blk_requestq_cachep;
70
71 /*
72 * Controlling structure to kblockd
73 */
74 static struct workqueue_struct *kblockd_workqueue;
75
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 memset(rq, 0, sizeof(*rq));
115
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
137 REQ_OP_NAME(ZONE_RESET_ALL),
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
141 REQ_OP_NAME(ZONE_APPEND),
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
144 REQ_OP_NAME(DRV_IN),
145 REQ_OP_NAME(DRV_OUT),
146 };
147 #undef REQ_OP_NAME
148
149 /**
150 * blk_op_str - Return string XXX in the REQ_OP_XXX.
151 * @op: REQ_OP_XXX.
152 *
153 * Description: Centralize block layer function to convert REQ_OP_XXX into
154 * string format. Useful in the debugging and tracing bio or request. For
155 * invalid REQ_OP_XXX it returns string "UNKNOWN".
156 */
157 inline const char *blk_op_str(unsigned int op)
158 {
159 const char *op_str = "UNKNOWN";
160
161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
162 op_str = blk_op_name[op];
163
164 return op_str;
165 }
166 EXPORT_SYMBOL_GPL(blk_op_str);
167
168 static const struct {
169 int errno;
170 const char *name;
171 } blk_errors[] = {
172 [BLK_STS_OK] = { 0, "" },
173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
184
185 /* device mapper special case, should not leak out: */
186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
187
188 /* zone device specific errors */
189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
191
192 /* everything else not covered above: */
193 [BLK_STS_IOERR] = { -EIO, "I/O" },
194 };
195
196 blk_status_t errno_to_blk_status(int errno)
197 {
198 int i;
199
200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
201 if (blk_errors[i].errno == errno)
202 return (__force blk_status_t)i;
203 }
204
205 return BLK_STS_IOERR;
206 }
207 EXPORT_SYMBOL_GPL(errno_to_blk_status);
208
209 int blk_status_to_errno(blk_status_t status)
210 {
211 int idx = (__force int)status;
212
213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
214 return -EIO;
215 return blk_errors[idx].errno;
216 }
217 EXPORT_SYMBOL_GPL(blk_status_to_errno);
218
219 void blk_print_req_error(struct request *req, blk_status_t status)
220 {
221 int idx = (__force int)status;
222
223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 return;
225
226 printk_ratelimited(KERN_ERR
227 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
229 blk_errors[idx].name,
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
235 }
236
237 void blk_dump_rq_flags(struct request *rq, char *msg)
238 {
239 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
240 rq->rq_disk ? rq->rq_disk->disk_name : "?",
241 (unsigned long long) rq->cmd_flags);
242
243 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
244 (unsigned long long)blk_rq_pos(rq),
245 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
246 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
247 rq->bio, rq->biotail, blk_rq_bytes(rq));
248 }
249 EXPORT_SYMBOL(blk_dump_rq_flags);
250
251 /**
252 * blk_sync_queue - cancel any pending callbacks on a queue
253 * @q: the queue
254 *
255 * Description:
256 * The block layer may perform asynchronous callback activity
257 * on a queue, such as calling the unplug function after a timeout.
258 * A block device may call blk_sync_queue to ensure that any
259 * such activity is cancelled, thus allowing it to release resources
260 * that the callbacks might use. The caller must already have made sure
261 * that its ->submit_bio will not re-add plugging prior to calling
262 * this function.
263 *
264 * This function does not cancel any asynchronous activity arising
265 * out of elevator or throttling code. That would require elevator_exit()
266 * and blkcg_exit_queue() to be called with queue lock initialized.
267 *
268 */
269 void blk_sync_queue(struct request_queue *q)
270 {
271 del_timer_sync(&q->timeout);
272 cancel_work_sync(&q->timeout_work);
273 }
274 EXPORT_SYMBOL(blk_sync_queue);
275
276 /**
277 * blk_set_pm_only - increment pm_only counter
278 * @q: request queue pointer
279 */
280 void blk_set_pm_only(struct request_queue *q)
281 {
282 atomic_inc(&q->pm_only);
283 }
284 EXPORT_SYMBOL_GPL(blk_set_pm_only);
285
286 void blk_clear_pm_only(struct request_queue *q)
287 {
288 int pm_only;
289
290 pm_only = atomic_dec_return(&q->pm_only);
291 WARN_ON_ONCE(pm_only < 0);
292 if (pm_only == 0)
293 wake_up_all(&q->mq_freeze_wq);
294 }
295 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
296
297 /**
298 * blk_put_queue - decrement the request_queue refcount
299 * @q: the request_queue structure to decrement the refcount for
300 *
301 * Decrements the refcount of the request_queue kobject. When this reaches 0
302 * we'll have blk_release_queue() called.
303 *
304 * Context: Any context, but the last reference must not be dropped from
305 * atomic context.
306 */
307 void blk_put_queue(struct request_queue *q)
308 {
309 kobject_put(&q->kobj);
310 }
311 EXPORT_SYMBOL(blk_put_queue);
312
313 void blk_queue_start_drain(struct request_queue *q)
314 {
315 /*
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
319 */
320 blk_freeze_queue_start(q);
321 if (queue_is_mq(q))
322 blk_mq_wake_waiters(q);
323 /* Make blk_queue_enter() reexamine the DYING flag. */
324 wake_up_all(&q->mq_freeze_wq);
325 }
326
327 void blk_set_queue_dying(struct request_queue *q)
328 {
329 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 blk_queue_start_drain(q);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333
334 /**
335 * blk_cleanup_queue - shutdown a request queue
336 * @q: request queue to shutdown
337 *
338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339 * put it. All future requests will be failed immediately with -ENODEV.
340 *
341 * Context: can sleep
342 */
343 void blk_cleanup_queue(struct request_queue *q)
344 {
345 /* cannot be called from atomic context */
346 might_sleep();
347
348 WARN_ON_ONCE(blk_queue_registered(q));
349
350 /* mark @q DYING, no new request or merges will be allowed afterwards */
351 blk_set_queue_dying(q);
352
353 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
354 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
355
356 /*
357 * Drain all requests queued before DYING marking. Set DEAD flag to
358 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
359 * after draining finished.
360 */
361 blk_freeze_queue(q);
362
363 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
364
365 blk_sync_queue(q);
366 if (queue_is_mq(q))
367 blk_mq_exit_queue(q);
368
369 /*
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
373 *
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
376 */
377 mutex_lock(&q->sysfs_lock);
378 if (q->elevator)
379 blk_mq_sched_free_rqs(q);
380 mutex_unlock(&q->sysfs_lock);
381
382 percpu_ref_exit(&q->q_usage_counter);
383
384 /* @q is and will stay empty, shutdown and put */
385 blk_put_queue(q);
386 }
387 EXPORT_SYMBOL(blk_cleanup_queue);
388
389 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
390 {
391 rcu_read_lock();
392 if (!percpu_ref_tryget_live_rcu(&q->q_usage_counter))
393 goto fail;
394
395 /*
396 * The code that increments the pm_only counter must ensure that the
397 * counter is globally visible before the queue is unfrozen.
398 */
399 if (blk_queue_pm_only(q) &&
400 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
401 goto fail_put;
402
403 rcu_read_unlock();
404 return true;
405
406 fail_put:
407 blk_queue_exit(q);
408 fail:
409 rcu_read_unlock();
410 return false;
411 }
412
413 /**
414 * blk_queue_enter() - try to increase q->q_usage_counter
415 * @q: request queue pointer
416 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
417 */
418 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
419 {
420 const bool pm = flags & BLK_MQ_REQ_PM;
421
422 while (!blk_try_enter_queue(q, pm)) {
423 if (flags & BLK_MQ_REQ_NOWAIT)
424 return -EBUSY;
425
426 /*
427 * read pair of barrier in blk_freeze_queue_start(), we need to
428 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
429 * reading .mq_freeze_depth or queue dying flag, otherwise the
430 * following wait may never return if the two reads are
431 * reordered.
432 */
433 smp_rmb();
434 wait_event(q->mq_freeze_wq,
435 (!q->mq_freeze_depth &&
436 blk_pm_resume_queue(pm, q)) ||
437 blk_queue_dying(q));
438 if (blk_queue_dying(q))
439 return -ENODEV;
440 }
441
442 return 0;
443 }
444
445 static inline int bio_queue_enter(struct bio *bio)
446 {
447 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
448
449 while (!blk_try_enter_queue(q, false)) {
450 struct gendisk *disk = bio->bi_bdev->bd_disk;
451
452 if (bio->bi_opf & REQ_NOWAIT) {
453 if (test_bit(GD_DEAD, &disk->state))
454 goto dead;
455 bio_wouldblock_error(bio);
456 return -EBUSY;
457 }
458
459 /*
460 * read pair of barrier in blk_freeze_queue_start(), we need to
461 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
462 * reading .mq_freeze_depth or queue dying flag, otherwise the
463 * following wait may never return if the two reads are
464 * reordered.
465 */
466 smp_rmb();
467 wait_event(q->mq_freeze_wq,
468 (!q->mq_freeze_depth &&
469 blk_pm_resume_queue(false, q)) ||
470 test_bit(GD_DEAD, &disk->state));
471 if (test_bit(GD_DEAD, &disk->state))
472 goto dead;
473 }
474
475 return 0;
476 dead:
477 bio_io_error(bio);
478 return -ENODEV;
479 }
480
481 void blk_queue_exit(struct request_queue *q)
482 {
483 percpu_ref_put(&q->q_usage_counter);
484 }
485
486 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
487 {
488 struct request_queue *q =
489 container_of(ref, struct request_queue, q_usage_counter);
490
491 wake_up_all(&q->mq_freeze_wq);
492 }
493
494 static void blk_rq_timed_out_timer(struct timer_list *t)
495 {
496 struct request_queue *q = from_timer(q, t, timeout);
497
498 kblockd_schedule_work(&q->timeout_work);
499 }
500
501 static void blk_timeout_work(struct work_struct *work)
502 {
503 }
504
505 struct request_queue *blk_alloc_queue(int node_id)
506 {
507 struct request_queue *q;
508 int ret;
509
510 q = kmem_cache_alloc_node(blk_requestq_cachep,
511 GFP_KERNEL | __GFP_ZERO, node_id);
512 if (!q)
513 return NULL;
514
515 q->last_merge = NULL;
516
517 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
518 if (q->id < 0)
519 goto fail_q;
520
521 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
522 if (ret)
523 goto fail_id;
524
525 q->stats = blk_alloc_queue_stats();
526 if (!q->stats)
527 goto fail_split;
528
529 q->node = node_id;
530
531 atomic_set(&q->nr_active_requests_shared_tags, 0);
532
533 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
534 INIT_WORK(&q->timeout_work, blk_timeout_work);
535 INIT_LIST_HEAD(&q->icq_list);
536 #ifdef CONFIG_BLK_CGROUP
537 INIT_LIST_HEAD(&q->blkg_list);
538 #endif
539
540 kobject_init(&q->kobj, &blk_queue_ktype);
541
542 mutex_init(&q->debugfs_mutex);
543 mutex_init(&q->sysfs_lock);
544 mutex_init(&q->sysfs_dir_lock);
545 spin_lock_init(&q->queue_lock);
546
547 init_waitqueue_head(&q->mq_freeze_wq);
548 mutex_init(&q->mq_freeze_lock);
549
550 /*
551 * Init percpu_ref in atomic mode so that it's faster to shutdown.
552 * See blk_register_queue() for details.
553 */
554 if (percpu_ref_init(&q->q_usage_counter,
555 blk_queue_usage_counter_release,
556 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
557 goto fail_stats;
558
559 if (blkcg_init_queue(q))
560 goto fail_ref;
561
562 blk_queue_dma_alignment(q, 511);
563 blk_set_default_limits(&q->limits);
564 q->nr_requests = BLKDEV_DEFAULT_RQ;
565
566 return q;
567
568 fail_ref:
569 percpu_ref_exit(&q->q_usage_counter);
570 fail_stats:
571 blk_free_queue_stats(q->stats);
572 fail_split:
573 bioset_exit(&q->bio_split);
574 fail_id:
575 ida_simple_remove(&blk_queue_ida, q->id);
576 fail_q:
577 kmem_cache_free(blk_requestq_cachep, q);
578 return NULL;
579 }
580
581 /**
582 * blk_get_queue - increment the request_queue refcount
583 * @q: the request_queue structure to increment the refcount for
584 *
585 * Increment the refcount of the request_queue kobject.
586 *
587 * Context: Any context.
588 */
589 bool blk_get_queue(struct request_queue *q)
590 {
591 if (likely(!blk_queue_dying(q))) {
592 __blk_get_queue(q);
593 return true;
594 }
595
596 return false;
597 }
598 EXPORT_SYMBOL(blk_get_queue);
599
600 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
601 {
602 char b[BDEVNAME_SIZE];
603
604 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
605 "%s: rw=%d, want=%llu, limit=%llu\n",
606 current->comm,
607 bio_devname(bio, b), bio->bi_opf,
608 bio_end_sector(bio), maxsector);
609 }
610
611 #ifdef CONFIG_FAIL_MAKE_REQUEST
612
613 static DECLARE_FAULT_ATTR(fail_make_request);
614
615 static int __init setup_fail_make_request(char *str)
616 {
617 return setup_fault_attr(&fail_make_request, str);
618 }
619 __setup("fail_make_request=", setup_fail_make_request);
620
621 static bool should_fail_request(struct block_device *part, unsigned int bytes)
622 {
623 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
624 }
625
626 static int __init fail_make_request_debugfs(void)
627 {
628 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
629 NULL, &fail_make_request);
630
631 return PTR_ERR_OR_ZERO(dir);
632 }
633
634 late_initcall(fail_make_request_debugfs);
635
636 #else /* CONFIG_FAIL_MAKE_REQUEST */
637
638 static inline bool should_fail_request(struct block_device *part,
639 unsigned int bytes)
640 {
641 return false;
642 }
643
644 #endif /* CONFIG_FAIL_MAKE_REQUEST */
645
646 static inline bool bio_check_ro(struct bio *bio)
647 {
648 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
649 char b[BDEVNAME_SIZE];
650
651 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
652 return false;
653
654 WARN_ONCE(1,
655 "Trying to write to read-only block-device %s (partno %d)\n",
656 bio_devname(bio, b), bio->bi_bdev->bd_partno);
657 /* Older lvm-tools actually trigger this */
658 return false;
659 }
660
661 return false;
662 }
663
664 static noinline int should_fail_bio(struct bio *bio)
665 {
666 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
667 return -EIO;
668 return 0;
669 }
670 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
671
672 /*
673 * Check whether this bio extends beyond the end of the device or partition.
674 * This may well happen - the kernel calls bread() without checking the size of
675 * the device, e.g., when mounting a file system.
676 */
677 static inline int bio_check_eod(struct bio *bio)
678 {
679 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
680 unsigned int nr_sectors = bio_sectors(bio);
681
682 if (nr_sectors && maxsector &&
683 (nr_sectors > maxsector ||
684 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
685 handle_bad_sector(bio, maxsector);
686 return -EIO;
687 }
688 return 0;
689 }
690
691 /*
692 * Remap block n of partition p to block n+start(p) of the disk.
693 */
694 static int blk_partition_remap(struct bio *bio)
695 {
696 struct block_device *p = bio->bi_bdev;
697
698 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
699 return -EIO;
700 if (bio_sectors(bio)) {
701 bio->bi_iter.bi_sector += p->bd_start_sect;
702 trace_block_bio_remap(bio, p->bd_dev,
703 bio->bi_iter.bi_sector -
704 p->bd_start_sect);
705 }
706 bio_set_flag(bio, BIO_REMAPPED);
707 return 0;
708 }
709
710 /*
711 * Check write append to a zoned block device.
712 */
713 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
714 struct bio *bio)
715 {
716 sector_t pos = bio->bi_iter.bi_sector;
717 int nr_sectors = bio_sectors(bio);
718
719 /* Only applicable to zoned block devices */
720 if (!blk_queue_is_zoned(q))
721 return BLK_STS_NOTSUPP;
722
723 /* The bio sector must point to the start of a sequential zone */
724 if (pos & (blk_queue_zone_sectors(q) - 1) ||
725 !blk_queue_zone_is_seq(q, pos))
726 return BLK_STS_IOERR;
727
728 /*
729 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
730 * split and could result in non-contiguous sectors being written in
731 * different zones.
732 */
733 if (nr_sectors > q->limits.chunk_sectors)
734 return BLK_STS_IOERR;
735
736 /* Make sure the BIO is small enough and will not get split */
737 if (nr_sectors > q->limits.max_zone_append_sectors)
738 return BLK_STS_IOERR;
739
740 bio->bi_opf |= REQ_NOMERGE;
741
742 return BLK_STS_OK;
743 }
744
745 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
746 {
747 struct block_device *bdev = bio->bi_bdev;
748 struct request_queue *q = bdev_get_queue(bdev);
749 blk_status_t status = BLK_STS_IOERR;
750 struct blk_plug *plug;
751
752 might_sleep();
753
754 plug = blk_mq_plug(q, bio);
755 if (plug && plug->nowait)
756 bio->bi_opf |= REQ_NOWAIT;
757
758 /*
759 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
760 * if queue does not support NOWAIT.
761 */
762 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
763 goto not_supported;
764
765 if (should_fail_bio(bio))
766 goto end_io;
767 if (unlikely(bio_check_ro(bio)))
768 goto end_io;
769 if (!bio_flagged(bio, BIO_REMAPPED)) {
770 if (unlikely(bio_check_eod(bio)))
771 goto end_io;
772 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
773 goto end_io;
774 }
775
776 /*
777 * Filter flush bio's early so that bio based drivers without flush
778 * support don't have to worry about them.
779 */
780 if (op_is_flush(bio->bi_opf) &&
781 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
782 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
783 if (!bio_sectors(bio)) {
784 status = BLK_STS_OK;
785 goto end_io;
786 }
787 }
788
789 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
790 bio_clear_polled(bio);
791
792 switch (bio_op(bio)) {
793 case REQ_OP_DISCARD:
794 if (!blk_queue_discard(q))
795 goto not_supported;
796 break;
797 case REQ_OP_SECURE_ERASE:
798 if (!blk_queue_secure_erase(q))
799 goto not_supported;
800 break;
801 case REQ_OP_WRITE_SAME:
802 if (!q->limits.max_write_same_sectors)
803 goto not_supported;
804 break;
805 case REQ_OP_ZONE_APPEND:
806 status = blk_check_zone_append(q, bio);
807 if (status != BLK_STS_OK)
808 goto end_io;
809 break;
810 case REQ_OP_ZONE_RESET:
811 case REQ_OP_ZONE_OPEN:
812 case REQ_OP_ZONE_CLOSE:
813 case REQ_OP_ZONE_FINISH:
814 if (!blk_queue_is_zoned(q))
815 goto not_supported;
816 break;
817 case REQ_OP_ZONE_RESET_ALL:
818 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
819 goto not_supported;
820 break;
821 case REQ_OP_WRITE_ZEROES:
822 if (!q->limits.max_write_zeroes_sectors)
823 goto not_supported;
824 break;
825 default:
826 break;
827 }
828
829 /*
830 * Various block parts want %current->io_context, so allocate it up
831 * front rather than dealing with lots of pain to allocate it only
832 * where needed. This may fail and the block layer knows how to live
833 * with it.
834 */
835 if (unlikely(!current->io_context))
836 create_task_io_context(current, GFP_ATOMIC, q->node);
837
838 if (blk_throtl_bio(bio)) {
839 blkcg_bio_issue_init(bio);
840 return false;
841 }
842
843 blk_cgroup_bio_start(bio);
844 blkcg_bio_issue_init(bio);
845
846 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
847 trace_block_bio_queue(bio);
848 /* Now that enqueuing has been traced, we need to trace
849 * completion as well.
850 */
851 bio_set_flag(bio, BIO_TRACE_COMPLETION);
852 }
853 return true;
854
855 not_supported:
856 status = BLK_STS_NOTSUPP;
857 end_io:
858 bio->bi_status = status;
859 bio_endio(bio);
860 return false;
861 }
862
863 static void __submit_bio(struct bio *bio)
864 {
865 struct gendisk *disk = bio->bi_bdev->bd_disk;
866
867 if (unlikely(bio_queue_enter(bio) != 0))
868 return;
869
870 if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
871 goto queue_exit;
872 if (!disk->fops->submit_bio) {
873 blk_mq_submit_bio(bio);
874 return;
875 }
876 disk->fops->submit_bio(bio);
877 queue_exit:
878 blk_queue_exit(disk->queue);
879 }
880
881 /*
882 * The loop in this function may be a bit non-obvious, and so deserves some
883 * explanation:
884 *
885 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
886 * that), so we have a list with a single bio.
887 * - We pretend that we have just taken it off a longer list, so we assign
888 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
889 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
890 * bios through a recursive call to submit_bio_noacct. If it did, we find a
891 * non-NULL value in bio_list and re-enter the loop from the top.
892 * - In this case we really did just take the bio of the top of the list (no
893 * pretending) and so remove it from bio_list, and call into ->submit_bio()
894 * again.
895 *
896 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
897 * bio_list_on_stack[1] contains bios that were submitted before the current
898 * ->submit_bio_bio, but that haven't been processed yet.
899 */
900 static void __submit_bio_noacct(struct bio *bio)
901 {
902 struct bio_list bio_list_on_stack[2];
903
904 BUG_ON(bio->bi_next);
905
906 bio_list_init(&bio_list_on_stack[0]);
907 current->bio_list = bio_list_on_stack;
908
909 do {
910 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
911 struct bio_list lower, same;
912
913 /*
914 * Create a fresh bio_list for all subordinate requests.
915 */
916 bio_list_on_stack[1] = bio_list_on_stack[0];
917 bio_list_init(&bio_list_on_stack[0]);
918
919 __submit_bio(bio);
920
921 /*
922 * Sort new bios into those for a lower level and those for the
923 * same level.
924 */
925 bio_list_init(&lower);
926 bio_list_init(&same);
927 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
928 if (q == bdev_get_queue(bio->bi_bdev))
929 bio_list_add(&same, bio);
930 else
931 bio_list_add(&lower, bio);
932
933 /*
934 * Now assemble so we handle the lowest level first.
935 */
936 bio_list_merge(&bio_list_on_stack[0], &lower);
937 bio_list_merge(&bio_list_on_stack[0], &same);
938 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
939 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
940
941 current->bio_list = NULL;
942 }
943
944 static void __submit_bio_noacct_mq(struct bio *bio)
945 {
946 struct bio_list bio_list[2] = { };
947
948 current->bio_list = bio_list;
949
950 do {
951 __submit_bio(bio);
952 } while ((bio = bio_list_pop(&bio_list[0])));
953
954 current->bio_list = NULL;
955 }
956
957 /**
958 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
959 * @bio: The bio describing the location in memory and on the device.
960 *
961 * This is a version of submit_bio() that shall only be used for I/O that is
962 * resubmitted to lower level drivers by stacking block drivers. All file
963 * systems and other upper level users of the block layer should use
964 * submit_bio() instead.
965 */
966 void submit_bio_noacct(struct bio *bio)
967 {
968 /*
969 * We only want one ->submit_bio to be active at a time, else stack
970 * usage with stacked devices could be a problem. Use current->bio_list
971 * to collect a list of requests submited by a ->submit_bio method while
972 * it is active, and then process them after it returned.
973 */
974 if (current->bio_list)
975 bio_list_add(&current->bio_list[0], bio);
976 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
977 __submit_bio_noacct_mq(bio);
978 else
979 __submit_bio_noacct(bio);
980 }
981 EXPORT_SYMBOL(submit_bio_noacct);
982
983 /**
984 * submit_bio - submit a bio to the block device layer for I/O
985 * @bio: The &struct bio which describes the I/O
986 *
987 * submit_bio() is used to submit I/O requests to block devices. It is passed a
988 * fully set up &struct bio that describes the I/O that needs to be done. The
989 * bio will be send to the device described by the bi_bdev field.
990 *
991 * The success/failure status of the request, along with notification of
992 * completion, is delivered asynchronously through the ->bi_end_io() callback
993 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
994 * been called.
995 */
996 void submit_bio(struct bio *bio)
997 {
998 if (blkcg_punt_bio_submit(bio))
999 return;
1000
1001 /*
1002 * If it's a regular read/write or a barrier with data attached,
1003 * go through the normal accounting stuff before submission.
1004 */
1005 if (bio_has_data(bio)) {
1006 unsigned int count;
1007
1008 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1009 count = queue_logical_block_size(
1010 bdev_get_queue(bio->bi_bdev)) >> 9;
1011 else
1012 count = bio_sectors(bio);
1013
1014 if (op_is_write(bio_op(bio))) {
1015 count_vm_events(PGPGOUT, count);
1016 } else {
1017 task_io_account_read(bio->bi_iter.bi_size);
1018 count_vm_events(PGPGIN, count);
1019 }
1020 }
1021
1022 /*
1023 * If we're reading data that is part of the userspace workingset, count
1024 * submission time as memory stall. When the device is congested, or
1025 * the submitting cgroup IO-throttled, submission can be a significant
1026 * part of overall IO time.
1027 */
1028 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1029 bio_flagged(bio, BIO_WORKINGSET))) {
1030 unsigned long pflags;
1031
1032 psi_memstall_enter(&pflags);
1033 submit_bio_noacct(bio);
1034 psi_memstall_leave(&pflags);
1035 return;
1036 }
1037
1038 submit_bio_noacct(bio);
1039 }
1040 EXPORT_SYMBOL(submit_bio);
1041
1042 /**
1043 * bio_poll - poll for BIO completions
1044 * @bio: bio to poll for
1045 * @flags: BLK_POLL_* flags that control the behavior
1046 *
1047 * Poll for completions on queue associated with the bio. Returns number of
1048 * completed entries found.
1049 *
1050 * Note: the caller must either be the context that submitted @bio, or
1051 * be in a RCU critical section to prevent freeing of @bio.
1052 */
1053 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
1054 {
1055 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1056 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
1057 int ret;
1058
1059 if (cookie == BLK_QC_T_NONE ||
1060 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1061 return 0;
1062
1063 if (current->plug)
1064 blk_flush_plug(current->plug, false);
1065
1066 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
1067 return 0;
1068 if (WARN_ON_ONCE(!queue_is_mq(q)))
1069 ret = 0; /* not yet implemented, should not happen */
1070 else
1071 ret = blk_mq_poll(q, cookie, iob, flags);
1072 blk_queue_exit(q);
1073 return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(bio_poll);
1076
1077 /*
1078 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1079 * in iocb->private, and cleared before freeing the bio.
1080 */
1081 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1082 unsigned int flags)
1083 {
1084 struct bio *bio;
1085 int ret = 0;
1086
1087 /*
1088 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1089 * point to a freshly allocated bio at this point. If that happens
1090 * we have a few cases to consider:
1091 *
1092 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1093 * simply nothing in this case
1094 * 2) the bio points to a not poll enabled device. bio_poll will catch
1095 * this and return 0
1096 * 3) the bio points to a poll capable device, including but not
1097 * limited to the one that the original bio pointed to. In this
1098 * case we will call into the actual poll method and poll for I/O,
1099 * even if we don't need to, but it won't cause harm either.
1100 *
1101 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1102 * is still allocated. Because partitions hold a reference to the whole
1103 * device bdev and thus disk, the disk is also still valid. Grabbing
1104 * a reference to the queue in bio_poll() ensures the hctxs and requests
1105 * are still valid as well.
1106 */
1107 rcu_read_lock();
1108 bio = READ_ONCE(kiocb->private);
1109 if (bio && bio->bi_bdev)
1110 ret = bio_poll(bio, iob, flags);
1111 rcu_read_unlock();
1112
1113 return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1116
1117 /**
1118 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1119 * for the new queue limits
1120 * @q: the queue
1121 * @rq: the request being checked
1122 *
1123 * Description:
1124 * @rq may have been made based on weaker limitations of upper-level queues
1125 * in request stacking drivers, and it may violate the limitation of @q.
1126 * Since the block layer and the underlying device driver trust @rq
1127 * after it is inserted to @q, it should be checked against @q before
1128 * the insertion using this generic function.
1129 *
1130 * Request stacking drivers like request-based dm may change the queue
1131 * limits when retrying requests on other queues. Those requests need
1132 * to be checked against the new queue limits again during dispatch.
1133 */
1134 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1135 struct request *rq)
1136 {
1137 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1138
1139 if (blk_rq_sectors(rq) > max_sectors) {
1140 /*
1141 * SCSI device does not have a good way to return if
1142 * Write Same/Zero is actually supported. If a device rejects
1143 * a non-read/write command (discard, write same,etc.) the
1144 * low-level device driver will set the relevant queue limit to
1145 * 0 to prevent blk-lib from issuing more of the offending
1146 * operations. Commands queued prior to the queue limit being
1147 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1148 * errors being propagated to upper layers.
1149 */
1150 if (max_sectors == 0)
1151 return BLK_STS_NOTSUPP;
1152
1153 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1154 __func__, blk_rq_sectors(rq), max_sectors);
1155 return BLK_STS_IOERR;
1156 }
1157
1158 /*
1159 * The queue settings related to segment counting may differ from the
1160 * original queue.
1161 */
1162 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1163 if (rq->nr_phys_segments > queue_max_segments(q)) {
1164 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1165 __func__, rq->nr_phys_segments, queue_max_segments(q));
1166 return BLK_STS_IOERR;
1167 }
1168
1169 return BLK_STS_OK;
1170 }
1171
1172 /**
1173 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1174 * @q: the queue to submit the request
1175 * @rq: the request being queued
1176 */
1177 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1178 {
1179 blk_status_t ret;
1180
1181 ret = blk_cloned_rq_check_limits(q, rq);
1182 if (ret != BLK_STS_OK)
1183 return ret;
1184
1185 if (rq->rq_disk &&
1186 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1187 return BLK_STS_IOERR;
1188
1189 if (blk_crypto_insert_cloned_request(rq))
1190 return BLK_STS_IOERR;
1191
1192 blk_account_io_start(rq);
1193
1194 /*
1195 * Since we have a scheduler attached on the top device,
1196 * bypass a potential scheduler on the bottom device for
1197 * insert.
1198 */
1199 return blk_mq_request_issue_directly(rq, true);
1200 }
1201 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1202
1203 /**
1204 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1205 * @rq: request to examine
1206 *
1207 * Description:
1208 * A request could be merge of IOs which require different failure
1209 * handling. This function determines the number of bytes which
1210 * can be failed from the beginning of the request without
1211 * crossing into area which need to be retried further.
1212 *
1213 * Return:
1214 * The number of bytes to fail.
1215 */
1216 unsigned int blk_rq_err_bytes(const struct request *rq)
1217 {
1218 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1219 unsigned int bytes = 0;
1220 struct bio *bio;
1221
1222 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1223 return blk_rq_bytes(rq);
1224
1225 /*
1226 * Currently the only 'mixing' which can happen is between
1227 * different fastfail types. We can safely fail portions
1228 * which have all the failfast bits that the first one has -
1229 * the ones which are at least as eager to fail as the first
1230 * one.
1231 */
1232 for (bio = rq->bio; bio; bio = bio->bi_next) {
1233 if ((bio->bi_opf & ff) != ff)
1234 break;
1235 bytes += bio->bi_iter.bi_size;
1236 }
1237
1238 /* this could lead to infinite loop */
1239 BUG_ON(blk_rq_bytes(rq) && !bytes);
1240 return bytes;
1241 }
1242 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1243
1244 static void update_io_ticks(struct block_device *part, unsigned long now,
1245 bool end)
1246 {
1247 unsigned long stamp;
1248 again:
1249 stamp = READ_ONCE(part->bd_stamp);
1250 if (unlikely(time_after(now, stamp))) {
1251 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1252 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1253 }
1254 if (part->bd_partno) {
1255 part = bdev_whole(part);
1256 goto again;
1257 }
1258 }
1259
1260 void __blk_account_io_done(struct request *req, u64 now)
1261 {
1262 const int sgrp = op_stat_group(req_op(req));
1263
1264 part_stat_lock();
1265 update_io_ticks(req->part, jiffies, true);
1266 part_stat_inc(req->part, ios[sgrp]);
1267 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1268 part_stat_unlock();
1269 }
1270
1271 void __blk_account_io_start(struct request *rq)
1272 {
1273 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1274 if (rq->bio && rq->bio->bi_bdev)
1275 rq->part = rq->bio->bi_bdev;
1276 else
1277 rq->part = rq->rq_disk->part0;
1278
1279 part_stat_lock();
1280 update_io_ticks(rq->part, jiffies, false);
1281 part_stat_unlock();
1282 }
1283
1284 static unsigned long __part_start_io_acct(struct block_device *part,
1285 unsigned int sectors, unsigned int op)
1286 {
1287 const int sgrp = op_stat_group(op);
1288 unsigned long now = READ_ONCE(jiffies);
1289
1290 part_stat_lock();
1291 update_io_ticks(part, now, false);
1292 part_stat_inc(part, ios[sgrp]);
1293 part_stat_add(part, sectors[sgrp], sectors);
1294 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1295 part_stat_unlock();
1296
1297 return now;
1298 }
1299
1300 /**
1301 * bio_start_io_acct - start I/O accounting for bio based drivers
1302 * @bio: bio to start account for
1303 *
1304 * Returns the start time that should be passed back to bio_end_io_acct().
1305 */
1306 unsigned long bio_start_io_acct(struct bio *bio)
1307 {
1308 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1309 }
1310 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1311
1312 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1313 unsigned int op)
1314 {
1315 return __part_start_io_acct(disk->part0, sectors, op);
1316 }
1317 EXPORT_SYMBOL(disk_start_io_acct);
1318
1319 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1320 unsigned long start_time)
1321 {
1322 const int sgrp = op_stat_group(op);
1323 unsigned long now = READ_ONCE(jiffies);
1324 unsigned long duration = now - start_time;
1325
1326 part_stat_lock();
1327 update_io_ticks(part, now, true);
1328 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1329 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1330 part_stat_unlock();
1331 }
1332
1333 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1334 struct block_device *orig_bdev)
1335 {
1336 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1337 }
1338 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1339
1340 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1341 unsigned long start_time)
1342 {
1343 __part_end_io_acct(disk->part0, op, start_time);
1344 }
1345 EXPORT_SYMBOL(disk_end_io_acct);
1346
1347 /*
1348 * Steal bios from a request and add them to a bio list.
1349 * The request must not have been partially completed before.
1350 */
1351 void blk_steal_bios(struct bio_list *list, struct request *rq)
1352 {
1353 if (rq->bio) {
1354 if (list->tail)
1355 list->tail->bi_next = rq->bio;
1356 else
1357 list->head = rq->bio;
1358 list->tail = rq->biotail;
1359
1360 rq->bio = NULL;
1361 rq->biotail = NULL;
1362 }
1363
1364 rq->__data_len = 0;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_steal_bios);
1367
1368 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1369 /**
1370 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1371 * @rq: the request to be flushed
1372 *
1373 * Description:
1374 * Flush all pages in @rq.
1375 */
1376 void rq_flush_dcache_pages(struct request *rq)
1377 {
1378 struct req_iterator iter;
1379 struct bio_vec bvec;
1380
1381 rq_for_each_segment(bvec, rq, iter)
1382 flush_dcache_page(bvec.bv_page);
1383 }
1384 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1385 #endif
1386
1387 /**
1388 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1389 * @q : the queue of the device being checked
1390 *
1391 * Description:
1392 * Check if underlying low-level drivers of a device are busy.
1393 * If the drivers want to export their busy state, they must set own
1394 * exporting function using blk_queue_lld_busy() first.
1395 *
1396 * Basically, this function is used only by request stacking drivers
1397 * to stop dispatching requests to underlying devices when underlying
1398 * devices are busy. This behavior helps more I/O merging on the queue
1399 * of the request stacking driver and prevents I/O throughput regression
1400 * on burst I/O load.
1401 *
1402 * Return:
1403 * 0 - Not busy (The request stacking driver should dispatch request)
1404 * 1 - Busy (The request stacking driver should stop dispatching request)
1405 */
1406 int blk_lld_busy(struct request_queue *q)
1407 {
1408 if (queue_is_mq(q) && q->mq_ops->busy)
1409 return q->mq_ops->busy(q);
1410
1411 return 0;
1412 }
1413 EXPORT_SYMBOL_GPL(blk_lld_busy);
1414
1415 /**
1416 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1417 * @rq: the clone request to be cleaned up
1418 *
1419 * Description:
1420 * Free all bios in @rq for a cloned request.
1421 */
1422 void blk_rq_unprep_clone(struct request *rq)
1423 {
1424 struct bio *bio;
1425
1426 while ((bio = rq->bio) != NULL) {
1427 rq->bio = bio->bi_next;
1428
1429 bio_put(bio);
1430 }
1431 }
1432 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1433
1434 /**
1435 * blk_rq_prep_clone - Helper function to setup clone request
1436 * @rq: the request to be setup
1437 * @rq_src: original request to be cloned
1438 * @bs: bio_set that bios for clone are allocated from
1439 * @gfp_mask: memory allocation mask for bio
1440 * @bio_ctr: setup function to be called for each clone bio.
1441 * Returns %0 for success, non %0 for failure.
1442 * @data: private data to be passed to @bio_ctr
1443 *
1444 * Description:
1445 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1446 * Also, pages which the original bios are pointing to are not copied
1447 * and the cloned bios just point same pages.
1448 * So cloned bios must be completed before original bios, which means
1449 * the caller must complete @rq before @rq_src.
1450 */
1451 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1452 struct bio_set *bs, gfp_t gfp_mask,
1453 int (*bio_ctr)(struct bio *, struct bio *, void *),
1454 void *data)
1455 {
1456 struct bio *bio, *bio_src;
1457
1458 if (!bs)
1459 bs = &fs_bio_set;
1460
1461 __rq_for_each_bio(bio_src, rq_src) {
1462 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1463 if (!bio)
1464 goto free_and_out;
1465
1466 if (bio_ctr && bio_ctr(bio, bio_src, data))
1467 goto free_and_out;
1468
1469 if (rq->bio) {
1470 rq->biotail->bi_next = bio;
1471 rq->biotail = bio;
1472 } else {
1473 rq->bio = rq->biotail = bio;
1474 }
1475 bio = NULL;
1476 }
1477
1478 /* Copy attributes of the original request to the clone request. */
1479 rq->__sector = blk_rq_pos(rq_src);
1480 rq->__data_len = blk_rq_bytes(rq_src);
1481 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1482 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1483 rq->special_vec = rq_src->special_vec;
1484 }
1485 rq->nr_phys_segments = rq_src->nr_phys_segments;
1486 rq->ioprio = rq_src->ioprio;
1487
1488 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1489 goto free_and_out;
1490
1491 return 0;
1492
1493 free_and_out:
1494 if (bio)
1495 bio_put(bio);
1496 blk_rq_unprep_clone(rq);
1497
1498 return -ENOMEM;
1499 }
1500 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1501
1502 int kblockd_schedule_work(struct work_struct *work)
1503 {
1504 return queue_work(kblockd_workqueue, work);
1505 }
1506 EXPORT_SYMBOL(kblockd_schedule_work);
1507
1508 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1509 unsigned long delay)
1510 {
1511 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1512 }
1513 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1514
1515 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1516 {
1517 struct task_struct *tsk = current;
1518
1519 /*
1520 * If this is a nested plug, don't actually assign it.
1521 */
1522 if (tsk->plug)
1523 return;
1524
1525 plug->mq_list = NULL;
1526 plug->cached_rq = NULL;
1527 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1528 plug->rq_count = 0;
1529 plug->multiple_queues = false;
1530 plug->has_elevator = false;
1531 plug->nowait = false;
1532 INIT_LIST_HEAD(&plug->cb_list);
1533
1534 /*
1535 * Store ordering should not be needed here, since a potential
1536 * preempt will imply a full memory barrier
1537 */
1538 tsk->plug = plug;
1539 }
1540
1541 /**
1542 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1543 * @plug: The &struct blk_plug that needs to be initialized
1544 *
1545 * Description:
1546 * blk_start_plug() indicates to the block layer an intent by the caller
1547 * to submit multiple I/O requests in a batch. The block layer may use
1548 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1549 * is called. However, the block layer may choose to submit requests
1550 * before a call to blk_finish_plug() if the number of queued I/Os
1551 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1552 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1553 * the task schedules (see below).
1554 *
1555 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1556 * pending I/O should the task end up blocking between blk_start_plug() and
1557 * blk_finish_plug(). This is important from a performance perspective, but
1558 * also ensures that we don't deadlock. For instance, if the task is blocking
1559 * for a memory allocation, memory reclaim could end up wanting to free a
1560 * page belonging to that request that is currently residing in our private
1561 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1562 * this kind of deadlock.
1563 */
1564 void blk_start_plug(struct blk_plug *plug)
1565 {
1566 blk_start_plug_nr_ios(plug, 1);
1567 }
1568 EXPORT_SYMBOL(blk_start_plug);
1569
1570 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1571 {
1572 LIST_HEAD(callbacks);
1573
1574 while (!list_empty(&plug->cb_list)) {
1575 list_splice_init(&plug->cb_list, &callbacks);
1576
1577 while (!list_empty(&callbacks)) {
1578 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1579 struct blk_plug_cb,
1580 list);
1581 list_del(&cb->list);
1582 cb->callback(cb, from_schedule);
1583 }
1584 }
1585 }
1586
1587 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1588 int size)
1589 {
1590 struct blk_plug *plug = current->plug;
1591 struct blk_plug_cb *cb;
1592
1593 if (!plug)
1594 return NULL;
1595
1596 list_for_each_entry(cb, &plug->cb_list, list)
1597 if (cb->callback == unplug && cb->data == data)
1598 return cb;
1599
1600 /* Not currently on the callback list */
1601 BUG_ON(size < sizeof(*cb));
1602 cb = kzalloc(size, GFP_ATOMIC);
1603 if (cb) {
1604 cb->data = data;
1605 cb->callback = unplug;
1606 list_add(&cb->list, &plug->cb_list);
1607 }
1608 return cb;
1609 }
1610 EXPORT_SYMBOL(blk_check_plugged);
1611
1612 void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1613 {
1614 if (!list_empty(&plug->cb_list))
1615 flush_plug_callbacks(plug, from_schedule);
1616 if (!rq_list_empty(plug->mq_list))
1617 blk_mq_flush_plug_list(plug, from_schedule);
1618 if (unlikely(!from_schedule && plug->cached_rq))
1619 blk_mq_free_plug_rqs(plug);
1620 }
1621
1622 /**
1623 * blk_finish_plug - mark the end of a batch of submitted I/O
1624 * @plug: The &struct blk_plug passed to blk_start_plug()
1625 *
1626 * Description:
1627 * Indicate that a batch of I/O submissions is complete. This function
1628 * must be paired with an initial call to blk_start_plug(). The intent
1629 * is to allow the block layer to optimize I/O submission. See the
1630 * documentation for blk_start_plug() for more information.
1631 */
1632 void blk_finish_plug(struct blk_plug *plug)
1633 {
1634 if (plug == current->plug) {
1635 blk_flush_plug(plug, false);
1636 current->plug = NULL;
1637 }
1638 }
1639 EXPORT_SYMBOL(blk_finish_plug);
1640
1641 void blk_io_schedule(void)
1642 {
1643 /* Prevent hang_check timer from firing at us during very long I/O */
1644 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1645
1646 if (timeout)
1647 io_schedule_timeout(timeout);
1648 else
1649 io_schedule();
1650 }
1651 EXPORT_SYMBOL_GPL(blk_io_schedule);
1652
1653 int __init blk_dev_init(void)
1654 {
1655 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1656 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1657 sizeof_field(struct request, cmd_flags));
1658 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1659 sizeof_field(struct bio, bi_opf));
1660
1661 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1662 kblockd_workqueue = alloc_workqueue("kblockd",
1663 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1664 if (!kblockd_workqueue)
1665 panic("Failed to create kblockd\n");
1666
1667 blk_requestq_cachep = kmem_cache_create("request_queue",
1668 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1669
1670 blk_debugfs_root = debugfs_create_dir("block", NULL);
1671
1672 return 0;
1673 }