]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-mq: improve DM's blk-mq IO merging via blk_insert_cloned_request feedback
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 queue_for_each_hw_ctx(q, hctx, i)
343 cancel_delayed_work_sync(&hctx->run_work);
344 } else {
345 cancel_delayed_work_sync(&q->delay_work);
346 }
347 }
348 EXPORT_SYMBOL(blk_sync_queue);
349
350 /**
351 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
352 * @q: request queue pointer
353 *
354 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
355 * set and 1 if the flag was already set.
356 */
357 int blk_set_preempt_only(struct request_queue *q)
358 {
359 unsigned long flags;
360 int res;
361
362 spin_lock_irqsave(q->queue_lock, flags);
363 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
364 spin_unlock_irqrestore(q->queue_lock, flags);
365
366 return res;
367 }
368 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
369
370 void blk_clear_preempt_only(struct request_queue *q)
371 {
372 unsigned long flags;
373
374 spin_lock_irqsave(q->queue_lock, flags);
375 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
376 wake_up_all(&q->mq_freeze_wq);
377 spin_unlock_irqrestore(q->queue_lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
380
381 /**
382 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
383 * @q: The queue to run
384 *
385 * Description:
386 * Invoke request handling on a queue if there are any pending requests.
387 * May be used to restart request handling after a request has completed.
388 * This variant runs the queue whether or not the queue has been
389 * stopped. Must be called with the queue lock held and interrupts
390 * disabled. See also @blk_run_queue.
391 */
392 inline void __blk_run_queue_uncond(struct request_queue *q)
393 {
394 lockdep_assert_held(q->queue_lock);
395 WARN_ON_ONCE(q->mq_ops);
396
397 if (unlikely(blk_queue_dead(q)))
398 return;
399
400 /*
401 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
402 * the queue lock internally. As a result multiple threads may be
403 * running such a request function concurrently. Keep track of the
404 * number of active request_fn invocations such that blk_drain_queue()
405 * can wait until all these request_fn calls have finished.
406 */
407 q->request_fn_active++;
408 q->request_fn(q);
409 q->request_fn_active--;
410 }
411 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
412
413 /**
414 * __blk_run_queue - run a single device queue
415 * @q: The queue to run
416 *
417 * Description:
418 * See @blk_run_queue.
419 */
420 void __blk_run_queue(struct request_queue *q)
421 {
422 lockdep_assert_held(q->queue_lock);
423 WARN_ON_ONCE(q->mq_ops);
424
425 if (unlikely(blk_queue_stopped(q)))
426 return;
427
428 __blk_run_queue_uncond(q);
429 }
430 EXPORT_SYMBOL(__blk_run_queue);
431
432 /**
433 * blk_run_queue_async - run a single device queue in workqueue context
434 * @q: The queue to run
435 *
436 * Description:
437 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
438 * of us.
439 *
440 * Note:
441 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
442 * has canceled q->delay_work, callers must hold the queue lock to avoid
443 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
444 */
445 void blk_run_queue_async(struct request_queue *q)
446 {
447 lockdep_assert_held(q->queue_lock);
448 WARN_ON_ONCE(q->mq_ops);
449
450 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
451 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
452 }
453 EXPORT_SYMBOL(blk_run_queue_async);
454
455 /**
456 * blk_run_queue - run a single device queue
457 * @q: The queue to run
458 *
459 * Description:
460 * Invoke request handling on this queue, if it has pending work to do.
461 * May be used to restart queueing when a request has completed.
462 */
463 void blk_run_queue(struct request_queue *q)
464 {
465 unsigned long flags;
466
467 WARN_ON_ONCE(q->mq_ops);
468
469 spin_lock_irqsave(q->queue_lock, flags);
470 __blk_run_queue(q);
471 spin_unlock_irqrestore(q->queue_lock, flags);
472 }
473 EXPORT_SYMBOL(blk_run_queue);
474
475 void blk_put_queue(struct request_queue *q)
476 {
477 kobject_put(&q->kobj);
478 }
479 EXPORT_SYMBOL(blk_put_queue);
480
481 /**
482 * __blk_drain_queue - drain requests from request_queue
483 * @q: queue to drain
484 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
485 *
486 * Drain requests from @q. If @drain_all is set, all requests are drained.
487 * If not, only ELVPRIV requests are drained. The caller is responsible
488 * for ensuring that no new requests which need to be drained are queued.
489 */
490 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
491 __releases(q->queue_lock)
492 __acquires(q->queue_lock)
493 {
494 int i;
495
496 lockdep_assert_held(q->queue_lock);
497 WARN_ON_ONCE(q->mq_ops);
498
499 while (true) {
500 bool drain = false;
501
502 /*
503 * The caller might be trying to drain @q before its
504 * elevator is initialized.
505 */
506 if (q->elevator)
507 elv_drain_elevator(q);
508
509 blkcg_drain_queue(q);
510
511 /*
512 * This function might be called on a queue which failed
513 * driver init after queue creation or is not yet fully
514 * active yet. Some drivers (e.g. fd and loop) get unhappy
515 * in such cases. Kick queue iff dispatch queue has
516 * something on it and @q has request_fn set.
517 */
518 if (!list_empty(&q->queue_head) && q->request_fn)
519 __blk_run_queue(q);
520
521 drain |= q->nr_rqs_elvpriv;
522 drain |= q->request_fn_active;
523
524 /*
525 * Unfortunately, requests are queued at and tracked from
526 * multiple places and there's no single counter which can
527 * be drained. Check all the queues and counters.
528 */
529 if (drain_all) {
530 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
531 drain |= !list_empty(&q->queue_head);
532 for (i = 0; i < 2; i++) {
533 drain |= q->nr_rqs[i];
534 drain |= q->in_flight[i];
535 if (fq)
536 drain |= !list_empty(&fq->flush_queue[i]);
537 }
538 }
539
540 if (!drain)
541 break;
542
543 spin_unlock_irq(q->queue_lock);
544
545 msleep(10);
546
547 spin_lock_irq(q->queue_lock);
548 }
549
550 /*
551 * With queue marked dead, any woken up waiter will fail the
552 * allocation path, so the wakeup chaining is lost and we're
553 * left with hung waiters. We need to wake up those waiters.
554 */
555 if (q->request_fn) {
556 struct request_list *rl;
557
558 blk_queue_for_each_rl(rl, q)
559 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
560 wake_up_all(&rl->wait[i]);
561 }
562 }
563
564 void blk_drain_queue(struct request_queue *q)
565 {
566 spin_lock_irq(q->queue_lock);
567 __blk_drain_queue(q, true);
568 spin_unlock_irq(q->queue_lock);
569 }
570
571 /**
572 * blk_queue_bypass_start - enter queue bypass mode
573 * @q: queue of interest
574 *
575 * In bypass mode, only the dispatch FIFO queue of @q is used. This
576 * function makes @q enter bypass mode and drains all requests which were
577 * throttled or issued before. On return, it's guaranteed that no request
578 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
579 * inside queue or RCU read lock.
580 */
581 void blk_queue_bypass_start(struct request_queue *q)
582 {
583 WARN_ON_ONCE(q->mq_ops);
584
585 spin_lock_irq(q->queue_lock);
586 q->bypass_depth++;
587 queue_flag_set(QUEUE_FLAG_BYPASS, q);
588 spin_unlock_irq(q->queue_lock);
589
590 /*
591 * Queues start drained. Skip actual draining till init is
592 * complete. This avoids lenghty delays during queue init which
593 * can happen many times during boot.
594 */
595 if (blk_queue_init_done(q)) {
596 spin_lock_irq(q->queue_lock);
597 __blk_drain_queue(q, false);
598 spin_unlock_irq(q->queue_lock);
599
600 /* ensure blk_queue_bypass() is %true inside RCU read lock */
601 synchronize_rcu();
602 }
603 }
604 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
605
606 /**
607 * blk_queue_bypass_end - leave queue bypass mode
608 * @q: queue of interest
609 *
610 * Leave bypass mode and restore the normal queueing behavior.
611 *
612 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
613 * this function is called for both blk-sq and blk-mq queues.
614 */
615 void blk_queue_bypass_end(struct request_queue *q)
616 {
617 spin_lock_irq(q->queue_lock);
618 if (!--q->bypass_depth)
619 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
620 WARN_ON_ONCE(q->bypass_depth < 0);
621 spin_unlock_irq(q->queue_lock);
622 }
623 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
624
625 void blk_set_queue_dying(struct request_queue *q)
626 {
627 spin_lock_irq(q->queue_lock);
628 queue_flag_set(QUEUE_FLAG_DYING, q);
629 spin_unlock_irq(q->queue_lock);
630
631 /*
632 * When queue DYING flag is set, we need to block new req
633 * entering queue, so we call blk_freeze_queue_start() to
634 * prevent I/O from crossing blk_queue_enter().
635 */
636 blk_freeze_queue_start(q);
637
638 if (q->mq_ops)
639 blk_mq_wake_waiters(q);
640 else {
641 struct request_list *rl;
642
643 spin_lock_irq(q->queue_lock);
644 blk_queue_for_each_rl(rl, q) {
645 if (rl->rq_pool) {
646 wake_up_all(&rl->wait[BLK_RW_SYNC]);
647 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
648 }
649 }
650 spin_unlock_irq(q->queue_lock);
651 }
652
653 /* Make blk_queue_enter() reexamine the DYING flag. */
654 wake_up_all(&q->mq_freeze_wq);
655 }
656 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
657
658 /**
659 * blk_cleanup_queue - shutdown a request queue
660 * @q: request queue to shutdown
661 *
662 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
663 * put it. All future requests will be failed immediately with -ENODEV.
664 */
665 void blk_cleanup_queue(struct request_queue *q)
666 {
667 spinlock_t *lock = q->queue_lock;
668
669 /* mark @q DYING, no new request or merges will be allowed afterwards */
670 mutex_lock(&q->sysfs_lock);
671 blk_set_queue_dying(q);
672 spin_lock_irq(lock);
673
674 /*
675 * A dying queue is permanently in bypass mode till released. Note
676 * that, unlike blk_queue_bypass_start(), we aren't performing
677 * synchronize_rcu() after entering bypass mode to avoid the delay
678 * as some drivers create and destroy a lot of queues while
679 * probing. This is still safe because blk_release_queue() will be
680 * called only after the queue refcnt drops to zero and nothing,
681 * RCU or not, would be traversing the queue by then.
682 */
683 q->bypass_depth++;
684 queue_flag_set(QUEUE_FLAG_BYPASS, q);
685
686 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
687 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
688 queue_flag_set(QUEUE_FLAG_DYING, q);
689 spin_unlock_irq(lock);
690 mutex_unlock(&q->sysfs_lock);
691
692 /*
693 * Drain all requests queued before DYING marking. Set DEAD flag to
694 * prevent that q->request_fn() gets invoked after draining finished.
695 */
696 blk_freeze_queue(q);
697 spin_lock_irq(lock);
698 queue_flag_set(QUEUE_FLAG_DEAD, q);
699 spin_unlock_irq(lock);
700
701 /*
702 * make sure all in-progress dispatch are completed because
703 * blk_freeze_queue() can only complete all requests, and
704 * dispatch may still be in-progress since we dispatch requests
705 * from more than one contexts.
706 *
707 * We rely on driver to deal with the race in case that queue
708 * initialization isn't done.
709 */
710 if (q->mq_ops && blk_queue_init_done(q))
711 blk_mq_quiesce_queue(q);
712
713 /* for synchronous bio-based driver finish in-flight integrity i/o */
714 blk_flush_integrity();
715
716 /* @q won't process any more request, flush async actions */
717 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
718 blk_sync_queue(q);
719
720 if (q->mq_ops)
721 blk_mq_exit_queue(q);
722
723 percpu_ref_exit(&q->q_usage_counter);
724
725 spin_lock_irq(lock);
726 if (q->queue_lock != &q->__queue_lock)
727 q->queue_lock = &q->__queue_lock;
728 spin_unlock_irq(lock);
729
730 /* @q is and will stay empty, shutdown and put */
731 blk_put_queue(q);
732 }
733 EXPORT_SYMBOL(blk_cleanup_queue);
734
735 /* Allocate memory local to the request queue */
736 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
737 {
738 struct request_queue *q = data;
739
740 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
741 }
742
743 static void free_request_simple(void *element, void *data)
744 {
745 kmem_cache_free(request_cachep, element);
746 }
747
748 static void *alloc_request_size(gfp_t gfp_mask, void *data)
749 {
750 struct request_queue *q = data;
751 struct request *rq;
752
753 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
754 q->node);
755 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
756 kfree(rq);
757 rq = NULL;
758 }
759 return rq;
760 }
761
762 static void free_request_size(void *element, void *data)
763 {
764 struct request_queue *q = data;
765
766 if (q->exit_rq_fn)
767 q->exit_rq_fn(q, element);
768 kfree(element);
769 }
770
771 int blk_init_rl(struct request_list *rl, struct request_queue *q,
772 gfp_t gfp_mask)
773 {
774 if (unlikely(rl->rq_pool) || q->mq_ops)
775 return 0;
776
777 rl->q = q;
778 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
779 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
780 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
781 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
782
783 if (q->cmd_size) {
784 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
785 alloc_request_size, free_request_size,
786 q, gfp_mask, q->node);
787 } else {
788 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
789 alloc_request_simple, free_request_simple,
790 q, gfp_mask, q->node);
791 }
792 if (!rl->rq_pool)
793 return -ENOMEM;
794
795 if (rl != &q->root_rl)
796 WARN_ON_ONCE(!blk_get_queue(q));
797
798 return 0;
799 }
800
801 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
802 {
803 if (rl->rq_pool) {
804 mempool_destroy(rl->rq_pool);
805 if (rl != &q->root_rl)
806 blk_put_queue(q);
807 }
808 }
809
810 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
811 {
812 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
813 }
814 EXPORT_SYMBOL(blk_alloc_queue);
815
816 /**
817 * blk_queue_enter() - try to increase q->q_usage_counter
818 * @q: request queue pointer
819 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
820 */
821 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
822 {
823 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
824
825 while (true) {
826 bool success = false;
827
828 rcu_read_lock();
829 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
830 /*
831 * The code that sets the PREEMPT_ONLY flag is
832 * responsible for ensuring that that flag is globally
833 * visible before the queue is unfrozen.
834 */
835 if (preempt || !blk_queue_preempt_only(q)) {
836 success = true;
837 } else {
838 percpu_ref_put(&q->q_usage_counter);
839 }
840 }
841 rcu_read_unlock();
842
843 if (success)
844 return 0;
845
846 if (flags & BLK_MQ_REQ_NOWAIT)
847 return -EBUSY;
848
849 /*
850 * read pair of barrier in blk_freeze_queue_start(),
851 * we need to order reading __PERCPU_REF_DEAD flag of
852 * .q_usage_counter and reading .mq_freeze_depth or
853 * queue dying flag, otherwise the following wait may
854 * never return if the two reads are reordered.
855 */
856 smp_rmb();
857
858 wait_event(q->mq_freeze_wq,
859 (atomic_read(&q->mq_freeze_depth) == 0 &&
860 (preempt || !blk_queue_preempt_only(q))) ||
861 blk_queue_dying(q));
862 if (blk_queue_dying(q))
863 return -ENODEV;
864 }
865 }
866
867 void blk_queue_exit(struct request_queue *q)
868 {
869 percpu_ref_put(&q->q_usage_counter);
870 }
871
872 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
873 {
874 struct request_queue *q =
875 container_of(ref, struct request_queue, q_usage_counter);
876
877 wake_up_all(&q->mq_freeze_wq);
878 }
879
880 static void blk_rq_timed_out_timer(struct timer_list *t)
881 {
882 struct request_queue *q = from_timer(q, t, timeout);
883
884 kblockd_schedule_work(&q->timeout_work);
885 }
886
887 static void blk_timeout_work_dummy(struct work_struct *work)
888 {
889 }
890
891 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
892 {
893 struct request_queue *q;
894
895 q = kmem_cache_alloc_node(blk_requestq_cachep,
896 gfp_mask | __GFP_ZERO, node_id);
897 if (!q)
898 return NULL;
899
900 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
901 if (q->id < 0)
902 goto fail_q;
903
904 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
905 if (!q->bio_split)
906 goto fail_id;
907
908 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
909 if (!q->backing_dev_info)
910 goto fail_split;
911
912 q->stats = blk_alloc_queue_stats();
913 if (!q->stats)
914 goto fail_stats;
915
916 q->backing_dev_info->ra_pages =
917 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
918 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
919 q->backing_dev_info->name = "block";
920 q->node = node_id;
921
922 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
923 laptop_mode_timer_fn, 0);
924 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
925 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
926 INIT_LIST_HEAD(&q->queue_head);
927 INIT_LIST_HEAD(&q->timeout_list);
928 INIT_LIST_HEAD(&q->icq_list);
929 #ifdef CONFIG_BLK_CGROUP
930 INIT_LIST_HEAD(&q->blkg_list);
931 #endif
932 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
933
934 kobject_init(&q->kobj, &blk_queue_ktype);
935
936 #ifdef CONFIG_BLK_DEV_IO_TRACE
937 mutex_init(&q->blk_trace_mutex);
938 #endif
939 mutex_init(&q->sysfs_lock);
940 spin_lock_init(&q->__queue_lock);
941
942 /*
943 * By default initialize queue_lock to internal lock and driver can
944 * override it later if need be.
945 */
946 q->queue_lock = &q->__queue_lock;
947
948 /*
949 * A queue starts its life with bypass turned on to avoid
950 * unnecessary bypass on/off overhead and nasty surprises during
951 * init. The initial bypass will be finished when the queue is
952 * registered by blk_register_queue().
953 */
954 q->bypass_depth = 1;
955 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
956
957 init_waitqueue_head(&q->mq_freeze_wq);
958
959 /*
960 * Init percpu_ref in atomic mode so that it's faster to shutdown.
961 * See blk_register_queue() for details.
962 */
963 if (percpu_ref_init(&q->q_usage_counter,
964 blk_queue_usage_counter_release,
965 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
966 goto fail_bdi;
967
968 if (blkcg_init_queue(q))
969 goto fail_ref;
970
971 return q;
972
973 fail_ref:
974 percpu_ref_exit(&q->q_usage_counter);
975 fail_bdi:
976 blk_free_queue_stats(q->stats);
977 fail_stats:
978 bdi_put(q->backing_dev_info);
979 fail_split:
980 bioset_free(q->bio_split);
981 fail_id:
982 ida_simple_remove(&blk_queue_ida, q->id);
983 fail_q:
984 kmem_cache_free(blk_requestq_cachep, q);
985 return NULL;
986 }
987 EXPORT_SYMBOL(blk_alloc_queue_node);
988
989 /**
990 * blk_init_queue - prepare a request queue for use with a block device
991 * @rfn: The function to be called to process requests that have been
992 * placed on the queue.
993 * @lock: Request queue spin lock
994 *
995 * Description:
996 * If a block device wishes to use the standard request handling procedures,
997 * which sorts requests and coalesces adjacent requests, then it must
998 * call blk_init_queue(). The function @rfn will be called when there
999 * are requests on the queue that need to be processed. If the device
1000 * supports plugging, then @rfn may not be called immediately when requests
1001 * are available on the queue, but may be called at some time later instead.
1002 * Plugged queues are generally unplugged when a buffer belonging to one
1003 * of the requests on the queue is needed, or due to memory pressure.
1004 *
1005 * @rfn is not required, or even expected, to remove all requests off the
1006 * queue, but only as many as it can handle at a time. If it does leave
1007 * requests on the queue, it is responsible for arranging that the requests
1008 * get dealt with eventually.
1009 *
1010 * The queue spin lock must be held while manipulating the requests on the
1011 * request queue; this lock will be taken also from interrupt context, so irq
1012 * disabling is needed for it.
1013 *
1014 * Function returns a pointer to the initialized request queue, or %NULL if
1015 * it didn't succeed.
1016 *
1017 * Note:
1018 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1019 * when the block device is deactivated (such as at module unload).
1020 **/
1021
1022 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1023 {
1024 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1025 }
1026 EXPORT_SYMBOL(blk_init_queue);
1027
1028 struct request_queue *
1029 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1030 {
1031 struct request_queue *q;
1032
1033 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1034 if (!q)
1035 return NULL;
1036
1037 q->request_fn = rfn;
1038 if (lock)
1039 q->queue_lock = lock;
1040 if (blk_init_allocated_queue(q) < 0) {
1041 blk_cleanup_queue(q);
1042 return NULL;
1043 }
1044
1045 return q;
1046 }
1047 EXPORT_SYMBOL(blk_init_queue_node);
1048
1049 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1050
1051
1052 int blk_init_allocated_queue(struct request_queue *q)
1053 {
1054 WARN_ON_ONCE(q->mq_ops);
1055
1056 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL);
1057 if (!q->fq)
1058 return -ENOMEM;
1059
1060 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1061 goto out_free_flush_queue;
1062
1063 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1064 goto out_exit_flush_rq;
1065
1066 INIT_WORK(&q->timeout_work, blk_timeout_work);
1067 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1068
1069 /*
1070 * This also sets hw/phys segments, boundary and size
1071 */
1072 blk_queue_make_request(q, blk_queue_bio);
1073
1074 q->sg_reserved_size = INT_MAX;
1075
1076 /* Protect q->elevator from elevator_change */
1077 mutex_lock(&q->sysfs_lock);
1078
1079 /* init elevator */
1080 if (elevator_init(q, NULL)) {
1081 mutex_unlock(&q->sysfs_lock);
1082 goto out_exit_flush_rq;
1083 }
1084
1085 mutex_unlock(&q->sysfs_lock);
1086 return 0;
1087
1088 out_exit_flush_rq:
1089 if (q->exit_rq_fn)
1090 q->exit_rq_fn(q, q->fq->flush_rq);
1091 out_free_flush_queue:
1092 blk_free_flush_queue(q->fq);
1093 q->fq = NULL;
1094 return -ENOMEM;
1095 }
1096 EXPORT_SYMBOL(blk_init_allocated_queue);
1097
1098 bool blk_get_queue(struct request_queue *q)
1099 {
1100 if (likely(!blk_queue_dying(q))) {
1101 __blk_get_queue(q);
1102 return true;
1103 }
1104
1105 return false;
1106 }
1107 EXPORT_SYMBOL(blk_get_queue);
1108
1109 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1110 {
1111 if (rq->rq_flags & RQF_ELVPRIV) {
1112 elv_put_request(rl->q, rq);
1113 if (rq->elv.icq)
1114 put_io_context(rq->elv.icq->ioc);
1115 }
1116
1117 mempool_free(rq, rl->rq_pool);
1118 }
1119
1120 /*
1121 * ioc_batching returns true if the ioc is a valid batching request and
1122 * should be given priority access to a request.
1123 */
1124 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1125 {
1126 if (!ioc)
1127 return 0;
1128
1129 /*
1130 * Make sure the process is able to allocate at least 1 request
1131 * even if the batch times out, otherwise we could theoretically
1132 * lose wakeups.
1133 */
1134 return ioc->nr_batch_requests == q->nr_batching ||
1135 (ioc->nr_batch_requests > 0
1136 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1137 }
1138
1139 /*
1140 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1141 * will cause the process to be a "batcher" on all queues in the system. This
1142 * is the behaviour we want though - once it gets a wakeup it should be given
1143 * a nice run.
1144 */
1145 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1146 {
1147 if (!ioc || ioc_batching(q, ioc))
1148 return;
1149
1150 ioc->nr_batch_requests = q->nr_batching;
1151 ioc->last_waited = jiffies;
1152 }
1153
1154 static void __freed_request(struct request_list *rl, int sync)
1155 {
1156 struct request_queue *q = rl->q;
1157
1158 if (rl->count[sync] < queue_congestion_off_threshold(q))
1159 blk_clear_congested(rl, sync);
1160
1161 if (rl->count[sync] + 1 <= q->nr_requests) {
1162 if (waitqueue_active(&rl->wait[sync]))
1163 wake_up(&rl->wait[sync]);
1164
1165 blk_clear_rl_full(rl, sync);
1166 }
1167 }
1168
1169 /*
1170 * A request has just been released. Account for it, update the full and
1171 * congestion status, wake up any waiters. Called under q->queue_lock.
1172 */
1173 static void freed_request(struct request_list *rl, bool sync,
1174 req_flags_t rq_flags)
1175 {
1176 struct request_queue *q = rl->q;
1177
1178 q->nr_rqs[sync]--;
1179 rl->count[sync]--;
1180 if (rq_flags & RQF_ELVPRIV)
1181 q->nr_rqs_elvpriv--;
1182
1183 __freed_request(rl, sync);
1184
1185 if (unlikely(rl->starved[sync ^ 1]))
1186 __freed_request(rl, sync ^ 1);
1187 }
1188
1189 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1190 {
1191 struct request_list *rl;
1192 int on_thresh, off_thresh;
1193
1194 WARN_ON_ONCE(q->mq_ops);
1195
1196 spin_lock_irq(q->queue_lock);
1197 q->nr_requests = nr;
1198 blk_queue_congestion_threshold(q);
1199 on_thresh = queue_congestion_on_threshold(q);
1200 off_thresh = queue_congestion_off_threshold(q);
1201
1202 blk_queue_for_each_rl(rl, q) {
1203 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1204 blk_set_congested(rl, BLK_RW_SYNC);
1205 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1206 blk_clear_congested(rl, BLK_RW_SYNC);
1207
1208 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1209 blk_set_congested(rl, BLK_RW_ASYNC);
1210 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1211 blk_clear_congested(rl, BLK_RW_ASYNC);
1212
1213 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1214 blk_set_rl_full(rl, BLK_RW_SYNC);
1215 } else {
1216 blk_clear_rl_full(rl, BLK_RW_SYNC);
1217 wake_up(&rl->wait[BLK_RW_SYNC]);
1218 }
1219
1220 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1221 blk_set_rl_full(rl, BLK_RW_ASYNC);
1222 } else {
1223 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1224 wake_up(&rl->wait[BLK_RW_ASYNC]);
1225 }
1226 }
1227
1228 spin_unlock_irq(q->queue_lock);
1229 return 0;
1230 }
1231
1232 /**
1233 * __get_request - get a free request
1234 * @rl: request list to allocate from
1235 * @op: operation and flags
1236 * @bio: bio to allocate request for (can be %NULL)
1237 * @flags: BLQ_MQ_REQ_* flags
1238 *
1239 * Get a free request from @q. This function may fail under memory
1240 * pressure or if @q is dead.
1241 *
1242 * Must be called with @q->queue_lock held and,
1243 * Returns ERR_PTR on failure, with @q->queue_lock held.
1244 * Returns request pointer on success, with @q->queue_lock *not held*.
1245 */
1246 static struct request *__get_request(struct request_list *rl, unsigned int op,
1247 struct bio *bio, blk_mq_req_flags_t flags)
1248 {
1249 struct request_queue *q = rl->q;
1250 struct request *rq;
1251 struct elevator_type *et = q->elevator->type;
1252 struct io_context *ioc = rq_ioc(bio);
1253 struct io_cq *icq = NULL;
1254 const bool is_sync = op_is_sync(op);
1255 int may_queue;
1256 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1257 __GFP_DIRECT_RECLAIM;
1258 req_flags_t rq_flags = RQF_ALLOCED;
1259
1260 lockdep_assert_held(q->queue_lock);
1261
1262 if (unlikely(blk_queue_dying(q)))
1263 return ERR_PTR(-ENODEV);
1264
1265 may_queue = elv_may_queue(q, op);
1266 if (may_queue == ELV_MQUEUE_NO)
1267 goto rq_starved;
1268
1269 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1270 if (rl->count[is_sync]+1 >= q->nr_requests) {
1271 /*
1272 * The queue will fill after this allocation, so set
1273 * it as full, and mark this process as "batching".
1274 * This process will be allowed to complete a batch of
1275 * requests, others will be blocked.
1276 */
1277 if (!blk_rl_full(rl, is_sync)) {
1278 ioc_set_batching(q, ioc);
1279 blk_set_rl_full(rl, is_sync);
1280 } else {
1281 if (may_queue != ELV_MQUEUE_MUST
1282 && !ioc_batching(q, ioc)) {
1283 /*
1284 * The queue is full and the allocating
1285 * process is not a "batcher", and not
1286 * exempted by the IO scheduler
1287 */
1288 return ERR_PTR(-ENOMEM);
1289 }
1290 }
1291 }
1292 blk_set_congested(rl, is_sync);
1293 }
1294
1295 /*
1296 * Only allow batching queuers to allocate up to 50% over the defined
1297 * limit of requests, otherwise we could have thousands of requests
1298 * allocated with any setting of ->nr_requests
1299 */
1300 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1301 return ERR_PTR(-ENOMEM);
1302
1303 q->nr_rqs[is_sync]++;
1304 rl->count[is_sync]++;
1305 rl->starved[is_sync] = 0;
1306
1307 /*
1308 * Decide whether the new request will be managed by elevator. If
1309 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1310 * prevent the current elevator from being destroyed until the new
1311 * request is freed. This guarantees icq's won't be destroyed and
1312 * makes creating new ones safe.
1313 *
1314 * Flush requests do not use the elevator so skip initialization.
1315 * This allows a request to share the flush and elevator data.
1316 *
1317 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1318 * it will be created after releasing queue_lock.
1319 */
1320 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1321 rq_flags |= RQF_ELVPRIV;
1322 q->nr_rqs_elvpriv++;
1323 if (et->icq_cache && ioc)
1324 icq = ioc_lookup_icq(ioc, q);
1325 }
1326
1327 if (blk_queue_io_stat(q))
1328 rq_flags |= RQF_IO_STAT;
1329 spin_unlock_irq(q->queue_lock);
1330
1331 /* allocate and init request */
1332 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1333 if (!rq)
1334 goto fail_alloc;
1335
1336 blk_rq_init(q, rq);
1337 blk_rq_set_rl(rq, rl);
1338 rq->cmd_flags = op;
1339 rq->rq_flags = rq_flags;
1340 if (flags & BLK_MQ_REQ_PREEMPT)
1341 rq->rq_flags |= RQF_PREEMPT;
1342
1343 /* init elvpriv */
1344 if (rq_flags & RQF_ELVPRIV) {
1345 if (unlikely(et->icq_cache && !icq)) {
1346 if (ioc)
1347 icq = ioc_create_icq(ioc, q, gfp_mask);
1348 if (!icq)
1349 goto fail_elvpriv;
1350 }
1351
1352 rq->elv.icq = icq;
1353 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1354 goto fail_elvpriv;
1355
1356 /* @rq->elv.icq holds io_context until @rq is freed */
1357 if (icq)
1358 get_io_context(icq->ioc);
1359 }
1360 out:
1361 /*
1362 * ioc may be NULL here, and ioc_batching will be false. That's
1363 * OK, if the queue is under the request limit then requests need
1364 * not count toward the nr_batch_requests limit. There will always
1365 * be some limit enforced by BLK_BATCH_TIME.
1366 */
1367 if (ioc_batching(q, ioc))
1368 ioc->nr_batch_requests--;
1369
1370 trace_block_getrq(q, bio, op);
1371 return rq;
1372
1373 fail_elvpriv:
1374 /*
1375 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1376 * and may fail indefinitely under memory pressure and thus
1377 * shouldn't stall IO. Treat this request as !elvpriv. This will
1378 * disturb iosched and blkcg but weird is bettern than dead.
1379 */
1380 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1381 __func__, dev_name(q->backing_dev_info->dev));
1382
1383 rq->rq_flags &= ~RQF_ELVPRIV;
1384 rq->elv.icq = NULL;
1385
1386 spin_lock_irq(q->queue_lock);
1387 q->nr_rqs_elvpriv--;
1388 spin_unlock_irq(q->queue_lock);
1389 goto out;
1390
1391 fail_alloc:
1392 /*
1393 * Allocation failed presumably due to memory. Undo anything we
1394 * might have messed up.
1395 *
1396 * Allocating task should really be put onto the front of the wait
1397 * queue, but this is pretty rare.
1398 */
1399 spin_lock_irq(q->queue_lock);
1400 freed_request(rl, is_sync, rq_flags);
1401
1402 /*
1403 * in the very unlikely event that allocation failed and no
1404 * requests for this direction was pending, mark us starved so that
1405 * freeing of a request in the other direction will notice
1406 * us. another possible fix would be to split the rq mempool into
1407 * READ and WRITE
1408 */
1409 rq_starved:
1410 if (unlikely(rl->count[is_sync] == 0))
1411 rl->starved[is_sync] = 1;
1412 return ERR_PTR(-ENOMEM);
1413 }
1414
1415 /**
1416 * get_request - get a free request
1417 * @q: request_queue to allocate request from
1418 * @op: operation and flags
1419 * @bio: bio to allocate request for (can be %NULL)
1420 * @flags: BLK_MQ_REQ_* flags.
1421 *
1422 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1423 * this function keeps retrying under memory pressure and fails iff @q is dead.
1424 *
1425 * Must be called with @q->queue_lock held and,
1426 * Returns ERR_PTR on failure, with @q->queue_lock held.
1427 * Returns request pointer on success, with @q->queue_lock *not held*.
1428 */
1429 static struct request *get_request(struct request_queue *q, unsigned int op,
1430 struct bio *bio, blk_mq_req_flags_t flags)
1431 {
1432 const bool is_sync = op_is_sync(op);
1433 DEFINE_WAIT(wait);
1434 struct request_list *rl;
1435 struct request *rq;
1436
1437 lockdep_assert_held(q->queue_lock);
1438 WARN_ON_ONCE(q->mq_ops);
1439
1440 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1441 retry:
1442 rq = __get_request(rl, op, bio, flags);
1443 if (!IS_ERR(rq))
1444 return rq;
1445
1446 if (op & REQ_NOWAIT) {
1447 blk_put_rl(rl);
1448 return ERR_PTR(-EAGAIN);
1449 }
1450
1451 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1452 blk_put_rl(rl);
1453 return rq;
1454 }
1455
1456 /* wait on @rl and retry */
1457 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1458 TASK_UNINTERRUPTIBLE);
1459
1460 trace_block_sleeprq(q, bio, op);
1461
1462 spin_unlock_irq(q->queue_lock);
1463 io_schedule();
1464
1465 /*
1466 * After sleeping, we become a "batching" process and will be able
1467 * to allocate at least one request, and up to a big batch of them
1468 * for a small period time. See ioc_batching, ioc_set_batching
1469 */
1470 ioc_set_batching(q, current->io_context);
1471
1472 spin_lock_irq(q->queue_lock);
1473 finish_wait(&rl->wait[is_sync], &wait);
1474
1475 goto retry;
1476 }
1477
1478 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1479 static struct request *blk_old_get_request(struct request_queue *q,
1480 unsigned int op, blk_mq_req_flags_t flags)
1481 {
1482 struct request *rq;
1483 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1484 __GFP_DIRECT_RECLAIM;
1485 int ret = 0;
1486
1487 WARN_ON_ONCE(q->mq_ops);
1488
1489 /* create ioc upfront */
1490 create_io_context(gfp_mask, q->node);
1491
1492 ret = blk_queue_enter(q, flags);
1493 if (ret)
1494 return ERR_PTR(ret);
1495 spin_lock_irq(q->queue_lock);
1496 rq = get_request(q, op, NULL, flags);
1497 if (IS_ERR(rq)) {
1498 spin_unlock_irq(q->queue_lock);
1499 blk_queue_exit(q);
1500 return rq;
1501 }
1502
1503 /* q->queue_lock is unlocked at this point */
1504 rq->__data_len = 0;
1505 rq->__sector = (sector_t) -1;
1506 rq->bio = rq->biotail = NULL;
1507 return rq;
1508 }
1509
1510 /**
1511 * blk_get_request_flags - allocate a request
1512 * @q: request queue to allocate a request for
1513 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1514 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1515 */
1516 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1517 blk_mq_req_flags_t flags)
1518 {
1519 struct request *req;
1520
1521 WARN_ON_ONCE(op & REQ_NOWAIT);
1522 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1523
1524 if (q->mq_ops) {
1525 req = blk_mq_alloc_request(q, op, flags);
1526 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1527 q->mq_ops->initialize_rq_fn(req);
1528 } else {
1529 req = blk_old_get_request(q, op, flags);
1530 if (!IS_ERR(req) && q->initialize_rq_fn)
1531 q->initialize_rq_fn(req);
1532 }
1533
1534 return req;
1535 }
1536 EXPORT_SYMBOL(blk_get_request_flags);
1537
1538 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1539 gfp_t gfp_mask)
1540 {
1541 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1542 0 : BLK_MQ_REQ_NOWAIT);
1543 }
1544 EXPORT_SYMBOL(blk_get_request);
1545
1546 /**
1547 * blk_requeue_request - put a request back on queue
1548 * @q: request queue where request should be inserted
1549 * @rq: request to be inserted
1550 *
1551 * Description:
1552 * Drivers often keep queueing requests until the hardware cannot accept
1553 * more, when that condition happens we need to put the request back
1554 * on the queue. Must be called with queue lock held.
1555 */
1556 void blk_requeue_request(struct request_queue *q, struct request *rq)
1557 {
1558 lockdep_assert_held(q->queue_lock);
1559 WARN_ON_ONCE(q->mq_ops);
1560
1561 blk_delete_timer(rq);
1562 blk_clear_rq_complete(rq);
1563 trace_block_rq_requeue(q, rq);
1564 wbt_requeue(q->rq_wb, &rq->issue_stat);
1565
1566 if (rq->rq_flags & RQF_QUEUED)
1567 blk_queue_end_tag(q, rq);
1568
1569 BUG_ON(blk_queued_rq(rq));
1570
1571 elv_requeue_request(q, rq);
1572 }
1573 EXPORT_SYMBOL(blk_requeue_request);
1574
1575 static void add_acct_request(struct request_queue *q, struct request *rq,
1576 int where)
1577 {
1578 blk_account_io_start(rq, true);
1579 __elv_add_request(q, rq, where);
1580 }
1581
1582 static void part_round_stats_single(struct request_queue *q, int cpu,
1583 struct hd_struct *part, unsigned long now,
1584 unsigned int inflight)
1585 {
1586 if (inflight) {
1587 __part_stat_add(cpu, part, time_in_queue,
1588 inflight * (now - part->stamp));
1589 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1590 }
1591 part->stamp = now;
1592 }
1593
1594 /**
1595 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1596 * @q: target block queue
1597 * @cpu: cpu number for stats access
1598 * @part: target partition
1599 *
1600 * The average IO queue length and utilisation statistics are maintained
1601 * by observing the current state of the queue length and the amount of
1602 * time it has been in this state for.
1603 *
1604 * Normally, that accounting is done on IO completion, but that can result
1605 * in more than a second's worth of IO being accounted for within any one
1606 * second, leading to >100% utilisation. To deal with that, we call this
1607 * function to do a round-off before returning the results when reading
1608 * /proc/diskstats. This accounts immediately for all queue usage up to
1609 * the current jiffies and restarts the counters again.
1610 */
1611 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1612 {
1613 struct hd_struct *part2 = NULL;
1614 unsigned long now = jiffies;
1615 unsigned int inflight[2];
1616 int stats = 0;
1617
1618 if (part->stamp != now)
1619 stats |= 1;
1620
1621 if (part->partno) {
1622 part2 = &part_to_disk(part)->part0;
1623 if (part2->stamp != now)
1624 stats |= 2;
1625 }
1626
1627 if (!stats)
1628 return;
1629
1630 part_in_flight(q, part, inflight);
1631
1632 if (stats & 2)
1633 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1634 if (stats & 1)
1635 part_round_stats_single(q, cpu, part, now, inflight[0]);
1636 }
1637 EXPORT_SYMBOL_GPL(part_round_stats);
1638
1639 #ifdef CONFIG_PM
1640 static void blk_pm_put_request(struct request *rq)
1641 {
1642 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1643 pm_runtime_mark_last_busy(rq->q->dev);
1644 }
1645 #else
1646 static inline void blk_pm_put_request(struct request *rq) {}
1647 #endif
1648
1649 void __blk_put_request(struct request_queue *q, struct request *req)
1650 {
1651 req_flags_t rq_flags = req->rq_flags;
1652
1653 if (unlikely(!q))
1654 return;
1655
1656 if (q->mq_ops) {
1657 blk_mq_free_request(req);
1658 return;
1659 }
1660
1661 lockdep_assert_held(q->queue_lock);
1662
1663 blk_pm_put_request(req);
1664
1665 elv_completed_request(q, req);
1666
1667 /* this is a bio leak */
1668 WARN_ON(req->bio != NULL);
1669
1670 wbt_done(q->rq_wb, &req->issue_stat);
1671
1672 /*
1673 * Request may not have originated from ll_rw_blk. if not,
1674 * it didn't come out of our reserved rq pools
1675 */
1676 if (rq_flags & RQF_ALLOCED) {
1677 struct request_list *rl = blk_rq_rl(req);
1678 bool sync = op_is_sync(req->cmd_flags);
1679
1680 BUG_ON(!list_empty(&req->queuelist));
1681 BUG_ON(ELV_ON_HASH(req));
1682
1683 blk_free_request(rl, req);
1684 freed_request(rl, sync, rq_flags);
1685 blk_put_rl(rl);
1686 blk_queue_exit(q);
1687 }
1688 }
1689 EXPORT_SYMBOL_GPL(__blk_put_request);
1690
1691 void blk_put_request(struct request *req)
1692 {
1693 struct request_queue *q = req->q;
1694
1695 if (q->mq_ops)
1696 blk_mq_free_request(req);
1697 else {
1698 unsigned long flags;
1699
1700 spin_lock_irqsave(q->queue_lock, flags);
1701 __blk_put_request(q, req);
1702 spin_unlock_irqrestore(q->queue_lock, flags);
1703 }
1704 }
1705 EXPORT_SYMBOL(blk_put_request);
1706
1707 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1708 struct bio *bio)
1709 {
1710 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1711
1712 if (!ll_back_merge_fn(q, req, bio))
1713 return false;
1714
1715 trace_block_bio_backmerge(q, req, bio);
1716
1717 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1718 blk_rq_set_mixed_merge(req);
1719
1720 req->biotail->bi_next = bio;
1721 req->biotail = bio;
1722 req->__data_len += bio->bi_iter.bi_size;
1723 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1724
1725 blk_account_io_start(req, false);
1726 return true;
1727 }
1728
1729 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1730 struct bio *bio)
1731 {
1732 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1733
1734 if (!ll_front_merge_fn(q, req, bio))
1735 return false;
1736
1737 trace_block_bio_frontmerge(q, req, bio);
1738
1739 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1740 blk_rq_set_mixed_merge(req);
1741
1742 bio->bi_next = req->bio;
1743 req->bio = bio;
1744
1745 req->__sector = bio->bi_iter.bi_sector;
1746 req->__data_len += bio->bi_iter.bi_size;
1747 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1748
1749 blk_account_io_start(req, false);
1750 return true;
1751 }
1752
1753 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1754 struct bio *bio)
1755 {
1756 unsigned short segments = blk_rq_nr_discard_segments(req);
1757
1758 if (segments >= queue_max_discard_segments(q))
1759 goto no_merge;
1760 if (blk_rq_sectors(req) + bio_sectors(bio) >
1761 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1762 goto no_merge;
1763
1764 req->biotail->bi_next = bio;
1765 req->biotail = bio;
1766 req->__data_len += bio->bi_iter.bi_size;
1767 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1768 req->nr_phys_segments = segments + 1;
1769
1770 blk_account_io_start(req, false);
1771 return true;
1772 no_merge:
1773 req_set_nomerge(q, req);
1774 return false;
1775 }
1776
1777 /**
1778 * blk_attempt_plug_merge - try to merge with %current's plugged list
1779 * @q: request_queue new bio is being queued at
1780 * @bio: new bio being queued
1781 * @request_count: out parameter for number of traversed plugged requests
1782 * @same_queue_rq: pointer to &struct request that gets filled in when
1783 * another request associated with @q is found on the plug list
1784 * (optional, may be %NULL)
1785 *
1786 * Determine whether @bio being queued on @q can be merged with a request
1787 * on %current's plugged list. Returns %true if merge was successful,
1788 * otherwise %false.
1789 *
1790 * Plugging coalesces IOs from the same issuer for the same purpose without
1791 * going through @q->queue_lock. As such it's more of an issuing mechanism
1792 * than scheduling, and the request, while may have elvpriv data, is not
1793 * added on the elevator at this point. In addition, we don't have
1794 * reliable access to the elevator outside queue lock. Only check basic
1795 * merging parameters without querying the elevator.
1796 *
1797 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1798 */
1799 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1800 unsigned int *request_count,
1801 struct request **same_queue_rq)
1802 {
1803 struct blk_plug *plug;
1804 struct request *rq;
1805 struct list_head *plug_list;
1806
1807 plug = current->plug;
1808 if (!plug)
1809 return false;
1810 *request_count = 0;
1811
1812 if (q->mq_ops)
1813 plug_list = &plug->mq_list;
1814 else
1815 plug_list = &plug->list;
1816
1817 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1818 bool merged = false;
1819
1820 if (rq->q == q) {
1821 (*request_count)++;
1822 /*
1823 * Only blk-mq multiple hardware queues case checks the
1824 * rq in the same queue, there should be only one such
1825 * rq in a queue
1826 **/
1827 if (same_queue_rq)
1828 *same_queue_rq = rq;
1829 }
1830
1831 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1832 continue;
1833
1834 switch (blk_try_merge(rq, bio)) {
1835 case ELEVATOR_BACK_MERGE:
1836 merged = bio_attempt_back_merge(q, rq, bio);
1837 break;
1838 case ELEVATOR_FRONT_MERGE:
1839 merged = bio_attempt_front_merge(q, rq, bio);
1840 break;
1841 case ELEVATOR_DISCARD_MERGE:
1842 merged = bio_attempt_discard_merge(q, rq, bio);
1843 break;
1844 default:
1845 break;
1846 }
1847
1848 if (merged)
1849 return true;
1850 }
1851
1852 return false;
1853 }
1854
1855 unsigned int blk_plug_queued_count(struct request_queue *q)
1856 {
1857 struct blk_plug *plug;
1858 struct request *rq;
1859 struct list_head *plug_list;
1860 unsigned int ret = 0;
1861
1862 plug = current->plug;
1863 if (!plug)
1864 goto out;
1865
1866 if (q->mq_ops)
1867 plug_list = &plug->mq_list;
1868 else
1869 plug_list = &plug->list;
1870
1871 list_for_each_entry(rq, plug_list, queuelist) {
1872 if (rq->q == q)
1873 ret++;
1874 }
1875 out:
1876 return ret;
1877 }
1878
1879 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1880 {
1881 struct io_context *ioc = rq_ioc(bio);
1882
1883 if (bio->bi_opf & REQ_RAHEAD)
1884 req->cmd_flags |= REQ_FAILFAST_MASK;
1885
1886 req->__sector = bio->bi_iter.bi_sector;
1887 if (ioprio_valid(bio_prio(bio)))
1888 req->ioprio = bio_prio(bio);
1889 else if (ioc)
1890 req->ioprio = ioc->ioprio;
1891 else
1892 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1893 req->write_hint = bio->bi_write_hint;
1894 blk_rq_bio_prep(req->q, req, bio);
1895 }
1896 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1897
1898 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1899 {
1900 struct blk_plug *plug;
1901 int where = ELEVATOR_INSERT_SORT;
1902 struct request *req, *free;
1903 unsigned int request_count = 0;
1904 unsigned int wb_acct;
1905
1906 /*
1907 * low level driver can indicate that it wants pages above a
1908 * certain limit bounced to low memory (ie for highmem, or even
1909 * ISA dma in theory)
1910 */
1911 blk_queue_bounce(q, &bio);
1912
1913 blk_queue_split(q, &bio);
1914
1915 if (!bio_integrity_prep(bio))
1916 return BLK_QC_T_NONE;
1917
1918 if (op_is_flush(bio->bi_opf)) {
1919 spin_lock_irq(q->queue_lock);
1920 where = ELEVATOR_INSERT_FLUSH;
1921 goto get_rq;
1922 }
1923
1924 /*
1925 * Check if we can merge with the plugged list before grabbing
1926 * any locks.
1927 */
1928 if (!blk_queue_nomerges(q)) {
1929 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1930 return BLK_QC_T_NONE;
1931 } else
1932 request_count = blk_plug_queued_count(q);
1933
1934 spin_lock_irq(q->queue_lock);
1935
1936 switch (elv_merge(q, &req, bio)) {
1937 case ELEVATOR_BACK_MERGE:
1938 if (!bio_attempt_back_merge(q, req, bio))
1939 break;
1940 elv_bio_merged(q, req, bio);
1941 free = attempt_back_merge(q, req);
1942 if (free)
1943 __blk_put_request(q, free);
1944 else
1945 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1946 goto out_unlock;
1947 case ELEVATOR_FRONT_MERGE:
1948 if (!bio_attempt_front_merge(q, req, bio))
1949 break;
1950 elv_bio_merged(q, req, bio);
1951 free = attempt_front_merge(q, req);
1952 if (free)
1953 __blk_put_request(q, free);
1954 else
1955 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1956 goto out_unlock;
1957 default:
1958 break;
1959 }
1960
1961 get_rq:
1962 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1963
1964 /*
1965 * Grab a free request. This is might sleep but can not fail.
1966 * Returns with the queue unlocked.
1967 */
1968 blk_queue_enter_live(q);
1969 req = get_request(q, bio->bi_opf, bio, 0);
1970 if (IS_ERR(req)) {
1971 blk_queue_exit(q);
1972 __wbt_done(q->rq_wb, wb_acct);
1973 if (PTR_ERR(req) == -ENOMEM)
1974 bio->bi_status = BLK_STS_RESOURCE;
1975 else
1976 bio->bi_status = BLK_STS_IOERR;
1977 bio_endio(bio);
1978 goto out_unlock;
1979 }
1980
1981 wbt_track(&req->issue_stat, wb_acct);
1982
1983 /*
1984 * After dropping the lock and possibly sleeping here, our request
1985 * may now be mergeable after it had proven unmergeable (above).
1986 * We don't worry about that case for efficiency. It won't happen
1987 * often, and the elevators are able to handle it.
1988 */
1989 blk_init_request_from_bio(req, bio);
1990
1991 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1992 req->cpu = raw_smp_processor_id();
1993
1994 plug = current->plug;
1995 if (plug) {
1996 /*
1997 * If this is the first request added after a plug, fire
1998 * of a plug trace.
1999 *
2000 * @request_count may become stale because of schedule
2001 * out, so check plug list again.
2002 */
2003 if (!request_count || list_empty(&plug->list))
2004 trace_block_plug(q);
2005 else {
2006 struct request *last = list_entry_rq(plug->list.prev);
2007 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2008 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2009 blk_flush_plug_list(plug, false);
2010 trace_block_plug(q);
2011 }
2012 }
2013 list_add_tail(&req->queuelist, &plug->list);
2014 blk_account_io_start(req, true);
2015 } else {
2016 spin_lock_irq(q->queue_lock);
2017 add_acct_request(q, req, where);
2018 __blk_run_queue(q);
2019 out_unlock:
2020 spin_unlock_irq(q->queue_lock);
2021 }
2022
2023 return BLK_QC_T_NONE;
2024 }
2025
2026 static void handle_bad_sector(struct bio *bio)
2027 {
2028 char b[BDEVNAME_SIZE];
2029
2030 printk(KERN_INFO "attempt to access beyond end of device\n");
2031 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2032 bio_devname(bio, b), bio->bi_opf,
2033 (unsigned long long)bio_end_sector(bio),
2034 (long long)get_capacity(bio->bi_disk));
2035 }
2036
2037 #ifdef CONFIG_FAIL_MAKE_REQUEST
2038
2039 static DECLARE_FAULT_ATTR(fail_make_request);
2040
2041 static int __init setup_fail_make_request(char *str)
2042 {
2043 return setup_fault_attr(&fail_make_request, str);
2044 }
2045 __setup("fail_make_request=", setup_fail_make_request);
2046
2047 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2048 {
2049 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2050 }
2051
2052 static int __init fail_make_request_debugfs(void)
2053 {
2054 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2055 NULL, &fail_make_request);
2056
2057 return PTR_ERR_OR_ZERO(dir);
2058 }
2059
2060 late_initcall(fail_make_request_debugfs);
2061
2062 #else /* CONFIG_FAIL_MAKE_REQUEST */
2063
2064 static inline bool should_fail_request(struct hd_struct *part,
2065 unsigned int bytes)
2066 {
2067 return false;
2068 }
2069
2070 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2071
2072 /*
2073 * Remap block n of partition p to block n+start(p) of the disk.
2074 */
2075 static inline int blk_partition_remap(struct bio *bio)
2076 {
2077 struct hd_struct *p;
2078 int ret = 0;
2079
2080 /*
2081 * Zone reset does not include bi_size so bio_sectors() is always 0.
2082 * Include a test for the reset op code and perform the remap if needed.
2083 */
2084 if (!bio->bi_partno ||
2085 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2086 return 0;
2087
2088 rcu_read_lock();
2089 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2090 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2091 bio->bi_iter.bi_sector += p->start_sect;
2092 bio->bi_partno = 0;
2093 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2094 bio->bi_iter.bi_sector - p->start_sect);
2095 } else {
2096 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2097 ret = -EIO;
2098 }
2099 rcu_read_unlock();
2100
2101 return ret;
2102 }
2103
2104 /*
2105 * Check whether this bio extends beyond the end of the device.
2106 */
2107 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2108 {
2109 sector_t maxsector;
2110
2111 if (!nr_sectors)
2112 return 0;
2113
2114 /* Test device or partition size, when known. */
2115 maxsector = get_capacity(bio->bi_disk);
2116 if (maxsector) {
2117 sector_t sector = bio->bi_iter.bi_sector;
2118
2119 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2120 /*
2121 * This may well happen - the kernel calls bread()
2122 * without checking the size of the device, e.g., when
2123 * mounting a device.
2124 */
2125 handle_bad_sector(bio);
2126 return 1;
2127 }
2128 }
2129
2130 return 0;
2131 }
2132
2133 static noinline_for_stack bool
2134 generic_make_request_checks(struct bio *bio)
2135 {
2136 struct request_queue *q;
2137 int nr_sectors = bio_sectors(bio);
2138 blk_status_t status = BLK_STS_IOERR;
2139 char b[BDEVNAME_SIZE];
2140
2141 might_sleep();
2142
2143 if (bio_check_eod(bio, nr_sectors))
2144 goto end_io;
2145
2146 q = bio->bi_disk->queue;
2147 if (unlikely(!q)) {
2148 printk(KERN_ERR
2149 "generic_make_request: Trying to access "
2150 "nonexistent block-device %s (%Lu)\n",
2151 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2152 goto end_io;
2153 }
2154
2155 /*
2156 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2157 * if queue is not a request based queue.
2158 */
2159
2160 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2161 goto not_supported;
2162
2163 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2164 goto end_io;
2165
2166 if (blk_partition_remap(bio))
2167 goto end_io;
2168
2169 if (bio_check_eod(bio, nr_sectors))
2170 goto end_io;
2171
2172 /*
2173 * Filter flush bio's early so that make_request based
2174 * drivers without flush support don't have to worry
2175 * about them.
2176 */
2177 if (op_is_flush(bio->bi_opf) &&
2178 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2179 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2180 if (!nr_sectors) {
2181 status = BLK_STS_OK;
2182 goto end_io;
2183 }
2184 }
2185
2186 switch (bio_op(bio)) {
2187 case REQ_OP_DISCARD:
2188 if (!blk_queue_discard(q))
2189 goto not_supported;
2190 break;
2191 case REQ_OP_SECURE_ERASE:
2192 if (!blk_queue_secure_erase(q))
2193 goto not_supported;
2194 break;
2195 case REQ_OP_WRITE_SAME:
2196 if (!q->limits.max_write_same_sectors)
2197 goto not_supported;
2198 break;
2199 case REQ_OP_ZONE_REPORT:
2200 case REQ_OP_ZONE_RESET:
2201 if (!blk_queue_is_zoned(q))
2202 goto not_supported;
2203 break;
2204 case REQ_OP_WRITE_ZEROES:
2205 if (!q->limits.max_write_zeroes_sectors)
2206 goto not_supported;
2207 break;
2208 default:
2209 break;
2210 }
2211
2212 /*
2213 * Various block parts want %current->io_context and lazy ioc
2214 * allocation ends up trading a lot of pain for a small amount of
2215 * memory. Just allocate it upfront. This may fail and block
2216 * layer knows how to live with it.
2217 */
2218 create_io_context(GFP_ATOMIC, q->node);
2219
2220 if (!blkcg_bio_issue_check(q, bio))
2221 return false;
2222
2223 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2224 trace_block_bio_queue(q, bio);
2225 /* Now that enqueuing has been traced, we need to trace
2226 * completion as well.
2227 */
2228 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2229 }
2230 return true;
2231
2232 not_supported:
2233 status = BLK_STS_NOTSUPP;
2234 end_io:
2235 bio->bi_status = status;
2236 bio_endio(bio);
2237 return false;
2238 }
2239
2240 /**
2241 * generic_make_request - hand a buffer to its device driver for I/O
2242 * @bio: The bio describing the location in memory and on the device.
2243 *
2244 * generic_make_request() is used to make I/O requests of block
2245 * devices. It is passed a &struct bio, which describes the I/O that needs
2246 * to be done.
2247 *
2248 * generic_make_request() does not return any status. The
2249 * success/failure status of the request, along with notification of
2250 * completion, is delivered asynchronously through the bio->bi_end_io
2251 * function described (one day) else where.
2252 *
2253 * The caller of generic_make_request must make sure that bi_io_vec
2254 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2255 * set to describe the device address, and the
2256 * bi_end_io and optionally bi_private are set to describe how
2257 * completion notification should be signaled.
2258 *
2259 * generic_make_request and the drivers it calls may use bi_next if this
2260 * bio happens to be merged with someone else, and may resubmit the bio to
2261 * a lower device by calling into generic_make_request recursively, which
2262 * means the bio should NOT be touched after the call to ->make_request_fn.
2263 */
2264 blk_qc_t generic_make_request(struct bio *bio)
2265 {
2266 /*
2267 * bio_list_on_stack[0] contains bios submitted by the current
2268 * make_request_fn.
2269 * bio_list_on_stack[1] contains bios that were submitted before
2270 * the current make_request_fn, but that haven't been processed
2271 * yet.
2272 */
2273 struct bio_list bio_list_on_stack[2];
2274 blk_qc_t ret = BLK_QC_T_NONE;
2275
2276 if (!generic_make_request_checks(bio))
2277 goto out;
2278
2279 /*
2280 * We only want one ->make_request_fn to be active at a time, else
2281 * stack usage with stacked devices could be a problem. So use
2282 * current->bio_list to keep a list of requests submited by a
2283 * make_request_fn function. current->bio_list is also used as a
2284 * flag to say if generic_make_request is currently active in this
2285 * task or not. If it is NULL, then no make_request is active. If
2286 * it is non-NULL, then a make_request is active, and new requests
2287 * should be added at the tail
2288 */
2289 if (current->bio_list) {
2290 bio_list_add(&current->bio_list[0], bio);
2291 goto out;
2292 }
2293
2294 /* following loop may be a bit non-obvious, and so deserves some
2295 * explanation.
2296 * Before entering the loop, bio->bi_next is NULL (as all callers
2297 * ensure that) so we have a list with a single bio.
2298 * We pretend that we have just taken it off a longer list, so
2299 * we assign bio_list to a pointer to the bio_list_on_stack,
2300 * thus initialising the bio_list of new bios to be
2301 * added. ->make_request() may indeed add some more bios
2302 * through a recursive call to generic_make_request. If it
2303 * did, we find a non-NULL value in bio_list and re-enter the loop
2304 * from the top. In this case we really did just take the bio
2305 * of the top of the list (no pretending) and so remove it from
2306 * bio_list, and call into ->make_request() again.
2307 */
2308 BUG_ON(bio->bi_next);
2309 bio_list_init(&bio_list_on_stack[0]);
2310 current->bio_list = bio_list_on_stack;
2311 do {
2312 struct request_queue *q = bio->bi_disk->queue;
2313 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2314 BLK_MQ_REQ_NOWAIT : 0;
2315
2316 if (likely(blk_queue_enter(q, flags) == 0)) {
2317 struct bio_list lower, same;
2318
2319 /* Create a fresh bio_list for all subordinate requests */
2320 bio_list_on_stack[1] = bio_list_on_stack[0];
2321 bio_list_init(&bio_list_on_stack[0]);
2322 ret = q->make_request_fn(q, bio);
2323
2324 blk_queue_exit(q);
2325
2326 /* sort new bios into those for a lower level
2327 * and those for the same level
2328 */
2329 bio_list_init(&lower);
2330 bio_list_init(&same);
2331 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2332 if (q == bio->bi_disk->queue)
2333 bio_list_add(&same, bio);
2334 else
2335 bio_list_add(&lower, bio);
2336 /* now assemble so we handle the lowest level first */
2337 bio_list_merge(&bio_list_on_stack[0], &lower);
2338 bio_list_merge(&bio_list_on_stack[0], &same);
2339 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2340 } else {
2341 if (unlikely(!blk_queue_dying(q) &&
2342 (bio->bi_opf & REQ_NOWAIT)))
2343 bio_wouldblock_error(bio);
2344 else
2345 bio_io_error(bio);
2346 }
2347 bio = bio_list_pop(&bio_list_on_stack[0]);
2348 } while (bio);
2349 current->bio_list = NULL; /* deactivate */
2350
2351 out:
2352 return ret;
2353 }
2354 EXPORT_SYMBOL(generic_make_request);
2355
2356 /**
2357 * direct_make_request - hand a buffer directly to its device driver for I/O
2358 * @bio: The bio describing the location in memory and on the device.
2359 *
2360 * This function behaves like generic_make_request(), but does not protect
2361 * against recursion. Must only be used if the called driver is known
2362 * to not call generic_make_request (or direct_make_request) again from
2363 * its make_request function. (Calling direct_make_request again from
2364 * a workqueue is perfectly fine as that doesn't recurse).
2365 */
2366 blk_qc_t direct_make_request(struct bio *bio)
2367 {
2368 struct request_queue *q = bio->bi_disk->queue;
2369 bool nowait = bio->bi_opf & REQ_NOWAIT;
2370 blk_qc_t ret;
2371
2372 if (!generic_make_request_checks(bio))
2373 return BLK_QC_T_NONE;
2374
2375 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2376 if (nowait && !blk_queue_dying(q))
2377 bio->bi_status = BLK_STS_AGAIN;
2378 else
2379 bio->bi_status = BLK_STS_IOERR;
2380 bio_endio(bio);
2381 return BLK_QC_T_NONE;
2382 }
2383
2384 ret = q->make_request_fn(q, bio);
2385 blk_queue_exit(q);
2386 return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(direct_make_request);
2389
2390 /**
2391 * submit_bio - submit a bio to the block device layer for I/O
2392 * @bio: The &struct bio which describes the I/O
2393 *
2394 * submit_bio() is very similar in purpose to generic_make_request(), and
2395 * uses that function to do most of the work. Both are fairly rough
2396 * interfaces; @bio must be presetup and ready for I/O.
2397 *
2398 */
2399 blk_qc_t submit_bio(struct bio *bio)
2400 {
2401 /*
2402 * If it's a regular read/write or a barrier with data attached,
2403 * go through the normal accounting stuff before submission.
2404 */
2405 if (bio_has_data(bio)) {
2406 unsigned int count;
2407
2408 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2409 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2410 else
2411 count = bio_sectors(bio);
2412
2413 if (op_is_write(bio_op(bio))) {
2414 count_vm_events(PGPGOUT, count);
2415 } else {
2416 task_io_account_read(bio->bi_iter.bi_size);
2417 count_vm_events(PGPGIN, count);
2418 }
2419
2420 if (unlikely(block_dump)) {
2421 char b[BDEVNAME_SIZE];
2422 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2423 current->comm, task_pid_nr(current),
2424 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2425 (unsigned long long)bio->bi_iter.bi_sector,
2426 bio_devname(bio, b), count);
2427 }
2428 }
2429
2430 return generic_make_request(bio);
2431 }
2432 EXPORT_SYMBOL(submit_bio);
2433
2434 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2435 {
2436 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2437 return false;
2438
2439 if (current->plug)
2440 blk_flush_plug_list(current->plug, false);
2441 return q->poll_fn(q, cookie);
2442 }
2443 EXPORT_SYMBOL_GPL(blk_poll);
2444
2445 /**
2446 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2447 * for new the queue limits
2448 * @q: the queue
2449 * @rq: the request being checked
2450 *
2451 * Description:
2452 * @rq may have been made based on weaker limitations of upper-level queues
2453 * in request stacking drivers, and it may violate the limitation of @q.
2454 * Since the block layer and the underlying device driver trust @rq
2455 * after it is inserted to @q, it should be checked against @q before
2456 * the insertion using this generic function.
2457 *
2458 * Request stacking drivers like request-based dm may change the queue
2459 * limits when retrying requests on other queues. Those requests need
2460 * to be checked against the new queue limits again during dispatch.
2461 */
2462 static int blk_cloned_rq_check_limits(struct request_queue *q,
2463 struct request *rq)
2464 {
2465 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2466 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2467 return -EIO;
2468 }
2469
2470 /*
2471 * queue's settings related to segment counting like q->bounce_pfn
2472 * may differ from that of other stacking queues.
2473 * Recalculate it to check the request correctly on this queue's
2474 * limitation.
2475 */
2476 blk_recalc_rq_segments(rq);
2477 if (rq->nr_phys_segments > queue_max_segments(q)) {
2478 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2479 return -EIO;
2480 }
2481
2482 return 0;
2483 }
2484
2485 /**
2486 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2487 * @q: the queue to submit the request
2488 * @rq: the request being queued
2489 */
2490 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2491 {
2492 unsigned long flags;
2493 int where = ELEVATOR_INSERT_BACK;
2494
2495 if (blk_cloned_rq_check_limits(q, rq))
2496 return BLK_STS_IOERR;
2497
2498 if (rq->rq_disk &&
2499 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2500 return BLK_STS_IOERR;
2501
2502 if (q->mq_ops) {
2503 if (blk_queue_io_stat(q))
2504 blk_account_io_start(rq, true);
2505 /*
2506 * Since we have a scheduler attached on the top device,
2507 * bypass a potential scheduler on the bottom device for
2508 * insert.
2509 */
2510 return blk_mq_request_direct_issue(rq);
2511 }
2512
2513 spin_lock_irqsave(q->queue_lock, flags);
2514 if (unlikely(blk_queue_dying(q))) {
2515 spin_unlock_irqrestore(q->queue_lock, flags);
2516 return BLK_STS_IOERR;
2517 }
2518
2519 /*
2520 * Submitting request must be dequeued before calling this function
2521 * because it will be linked to another request_queue
2522 */
2523 BUG_ON(blk_queued_rq(rq));
2524
2525 if (op_is_flush(rq->cmd_flags))
2526 where = ELEVATOR_INSERT_FLUSH;
2527
2528 add_acct_request(q, rq, where);
2529 if (where == ELEVATOR_INSERT_FLUSH)
2530 __blk_run_queue(q);
2531 spin_unlock_irqrestore(q->queue_lock, flags);
2532
2533 return BLK_STS_OK;
2534 }
2535 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2536
2537 /**
2538 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2539 * @rq: request to examine
2540 *
2541 * Description:
2542 * A request could be merge of IOs which require different failure
2543 * handling. This function determines the number of bytes which
2544 * can be failed from the beginning of the request without
2545 * crossing into area which need to be retried further.
2546 *
2547 * Return:
2548 * The number of bytes to fail.
2549 */
2550 unsigned int blk_rq_err_bytes(const struct request *rq)
2551 {
2552 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2553 unsigned int bytes = 0;
2554 struct bio *bio;
2555
2556 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2557 return blk_rq_bytes(rq);
2558
2559 /*
2560 * Currently the only 'mixing' which can happen is between
2561 * different fastfail types. We can safely fail portions
2562 * which have all the failfast bits that the first one has -
2563 * the ones which are at least as eager to fail as the first
2564 * one.
2565 */
2566 for (bio = rq->bio; bio; bio = bio->bi_next) {
2567 if ((bio->bi_opf & ff) != ff)
2568 break;
2569 bytes += bio->bi_iter.bi_size;
2570 }
2571
2572 /* this could lead to infinite loop */
2573 BUG_ON(blk_rq_bytes(rq) && !bytes);
2574 return bytes;
2575 }
2576 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2577
2578 void blk_account_io_completion(struct request *req, unsigned int bytes)
2579 {
2580 if (blk_do_io_stat(req)) {
2581 const int rw = rq_data_dir(req);
2582 struct hd_struct *part;
2583 int cpu;
2584
2585 cpu = part_stat_lock();
2586 part = req->part;
2587 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2588 part_stat_unlock();
2589 }
2590 }
2591
2592 void blk_account_io_done(struct request *req)
2593 {
2594 /*
2595 * Account IO completion. flush_rq isn't accounted as a
2596 * normal IO on queueing nor completion. Accounting the
2597 * containing request is enough.
2598 */
2599 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2600 unsigned long duration = jiffies - req->start_time;
2601 const int rw = rq_data_dir(req);
2602 struct hd_struct *part;
2603 int cpu;
2604
2605 cpu = part_stat_lock();
2606 part = req->part;
2607
2608 part_stat_inc(cpu, part, ios[rw]);
2609 part_stat_add(cpu, part, ticks[rw], duration);
2610 part_round_stats(req->q, cpu, part);
2611 part_dec_in_flight(req->q, part, rw);
2612
2613 hd_struct_put(part);
2614 part_stat_unlock();
2615 }
2616 }
2617
2618 #ifdef CONFIG_PM
2619 /*
2620 * Don't process normal requests when queue is suspended
2621 * or in the process of suspending/resuming
2622 */
2623 static bool blk_pm_allow_request(struct request *rq)
2624 {
2625 switch (rq->q->rpm_status) {
2626 case RPM_RESUMING:
2627 case RPM_SUSPENDING:
2628 return rq->rq_flags & RQF_PM;
2629 case RPM_SUSPENDED:
2630 return false;
2631 }
2632
2633 return true;
2634 }
2635 #else
2636 static bool blk_pm_allow_request(struct request *rq)
2637 {
2638 return true;
2639 }
2640 #endif
2641
2642 void blk_account_io_start(struct request *rq, bool new_io)
2643 {
2644 struct hd_struct *part;
2645 int rw = rq_data_dir(rq);
2646 int cpu;
2647
2648 if (!blk_do_io_stat(rq))
2649 return;
2650
2651 cpu = part_stat_lock();
2652
2653 if (!new_io) {
2654 part = rq->part;
2655 part_stat_inc(cpu, part, merges[rw]);
2656 } else {
2657 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2658 if (!hd_struct_try_get(part)) {
2659 /*
2660 * The partition is already being removed,
2661 * the request will be accounted on the disk only
2662 *
2663 * We take a reference on disk->part0 although that
2664 * partition will never be deleted, so we can treat
2665 * it as any other partition.
2666 */
2667 part = &rq->rq_disk->part0;
2668 hd_struct_get(part);
2669 }
2670 part_round_stats(rq->q, cpu, part);
2671 part_inc_in_flight(rq->q, part, rw);
2672 rq->part = part;
2673 }
2674
2675 part_stat_unlock();
2676 }
2677
2678 static struct request *elv_next_request(struct request_queue *q)
2679 {
2680 struct request *rq;
2681 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2682
2683 WARN_ON_ONCE(q->mq_ops);
2684
2685 while (1) {
2686 list_for_each_entry(rq, &q->queue_head, queuelist) {
2687 if (blk_pm_allow_request(rq))
2688 return rq;
2689
2690 if (rq->rq_flags & RQF_SOFTBARRIER)
2691 break;
2692 }
2693
2694 /*
2695 * Flush request is running and flush request isn't queueable
2696 * in the drive, we can hold the queue till flush request is
2697 * finished. Even we don't do this, driver can't dispatch next
2698 * requests and will requeue them. And this can improve
2699 * throughput too. For example, we have request flush1, write1,
2700 * flush 2. flush1 is dispatched, then queue is hold, write1
2701 * isn't inserted to queue. After flush1 is finished, flush2
2702 * will be dispatched. Since disk cache is already clean,
2703 * flush2 will be finished very soon, so looks like flush2 is
2704 * folded to flush1.
2705 * Since the queue is hold, a flag is set to indicate the queue
2706 * should be restarted later. Please see flush_end_io() for
2707 * details.
2708 */
2709 if (fq->flush_pending_idx != fq->flush_running_idx &&
2710 !queue_flush_queueable(q)) {
2711 fq->flush_queue_delayed = 1;
2712 return NULL;
2713 }
2714 if (unlikely(blk_queue_bypass(q)) ||
2715 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2716 return NULL;
2717 }
2718 }
2719
2720 /**
2721 * blk_peek_request - peek at the top of a request queue
2722 * @q: request queue to peek at
2723 *
2724 * Description:
2725 * Return the request at the top of @q. The returned request
2726 * should be started using blk_start_request() before LLD starts
2727 * processing it.
2728 *
2729 * Return:
2730 * Pointer to the request at the top of @q if available. Null
2731 * otherwise.
2732 */
2733 struct request *blk_peek_request(struct request_queue *q)
2734 {
2735 struct request *rq;
2736 int ret;
2737
2738 lockdep_assert_held(q->queue_lock);
2739 WARN_ON_ONCE(q->mq_ops);
2740
2741 while ((rq = elv_next_request(q)) != NULL) {
2742 if (!(rq->rq_flags & RQF_STARTED)) {
2743 /*
2744 * This is the first time the device driver
2745 * sees this request (possibly after
2746 * requeueing). Notify IO scheduler.
2747 */
2748 if (rq->rq_flags & RQF_SORTED)
2749 elv_activate_rq(q, rq);
2750
2751 /*
2752 * just mark as started even if we don't start
2753 * it, a request that has been delayed should
2754 * not be passed by new incoming requests
2755 */
2756 rq->rq_flags |= RQF_STARTED;
2757 trace_block_rq_issue(q, rq);
2758 }
2759
2760 if (!q->boundary_rq || q->boundary_rq == rq) {
2761 q->end_sector = rq_end_sector(rq);
2762 q->boundary_rq = NULL;
2763 }
2764
2765 if (rq->rq_flags & RQF_DONTPREP)
2766 break;
2767
2768 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2769 /*
2770 * make sure space for the drain appears we
2771 * know we can do this because max_hw_segments
2772 * has been adjusted to be one fewer than the
2773 * device can handle
2774 */
2775 rq->nr_phys_segments++;
2776 }
2777
2778 if (!q->prep_rq_fn)
2779 break;
2780
2781 ret = q->prep_rq_fn(q, rq);
2782 if (ret == BLKPREP_OK) {
2783 break;
2784 } else if (ret == BLKPREP_DEFER) {
2785 /*
2786 * the request may have been (partially) prepped.
2787 * we need to keep this request in the front to
2788 * avoid resource deadlock. RQF_STARTED will
2789 * prevent other fs requests from passing this one.
2790 */
2791 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2792 !(rq->rq_flags & RQF_DONTPREP)) {
2793 /*
2794 * remove the space for the drain we added
2795 * so that we don't add it again
2796 */
2797 --rq->nr_phys_segments;
2798 }
2799
2800 rq = NULL;
2801 break;
2802 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2803 rq->rq_flags |= RQF_QUIET;
2804 /*
2805 * Mark this request as started so we don't trigger
2806 * any debug logic in the end I/O path.
2807 */
2808 blk_start_request(rq);
2809 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2810 BLK_STS_TARGET : BLK_STS_IOERR);
2811 } else {
2812 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2813 break;
2814 }
2815 }
2816
2817 return rq;
2818 }
2819 EXPORT_SYMBOL(blk_peek_request);
2820
2821 static void blk_dequeue_request(struct request *rq)
2822 {
2823 struct request_queue *q = rq->q;
2824
2825 BUG_ON(list_empty(&rq->queuelist));
2826 BUG_ON(ELV_ON_HASH(rq));
2827
2828 list_del_init(&rq->queuelist);
2829
2830 /*
2831 * the time frame between a request being removed from the lists
2832 * and to it is freed is accounted as io that is in progress at
2833 * the driver side.
2834 */
2835 if (blk_account_rq(rq)) {
2836 q->in_flight[rq_is_sync(rq)]++;
2837 set_io_start_time_ns(rq);
2838 }
2839 }
2840
2841 /**
2842 * blk_start_request - start request processing on the driver
2843 * @req: request to dequeue
2844 *
2845 * Description:
2846 * Dequeue @req and start timeout timer on it. This hands off the
2847 * request to the driver.
2848 */
2849 void blk_start_request(struct request *req)
2850 {
2851 lockdep_assert_held(req->q->queue_lock);
2852 WARN_ON_ONCE(req->q->mq_ops);
2853
2854 blk_dequeue_request(req);
2855
2856 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2857 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2858 req->rq_flags |= RQF_STATS;
2859 wbt_issue(req->q->rq_wb, &req->issue_stat);
2860 }
2861
2862 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2863 blk_add_timer(req);
2864 }
2865 EXPORT_SYMBOL(blk_start_request);
2866
2867 /**
2868 * blk_fetch_request - fetch a request from a request queue
2869 * @q: request queue to fetch a request from
2870 *
2871 * Description:
2872 * Return the request at the top of @q. The request is started on
2873 * return and LLD can start processing it immediately.
2874 *
2875 * Return:
2876 * Pointer to the request at the top of @q if available. Null
2877 * otherwise.
2878 */
2879 struct request *blk_fetch_request(struct request_queue *q)
2880 {
2881 struct request *rq;
2882
2883 lockdep_assert_held(q->queue_lock);
2884 WARN_ON_ONCE(q->mq_ops);
2885
2886 rq = blk_peek_request(q);
2887 if (rq)
2888 blk_start_request(rq);
2889 return rq;
2890 }
2891 EXPORT_SYMBOL(blk_fetch_request);
2892
2893 /*
2894 * Steal bios from a request and add them to a bio list.
2895 * The request must not have been partially completed before.
2896 */
2897 void blk_steal_bios(struct bio_list *list, struct request *rq)
2898 {
2899 if (rq->bio) {
2900 if (list->tail)
2901 list->tail->bi_next = rq->bio;
2902 else
2903 list->head = rq->bio;
2904 list->tail = rq->biotail;
2905
2906 rq->bio = NULL;
2907 rq->biotail = NULL;
2908 }
2909
2910 rq->__data_len = 0;
2911 }
2912 EXPORT_SYMBOL_GPL(blk_steal_bios);
2913
2914 /**
2915 * blk_update_request - Special helper function for request stacking drivers
2916 * @req: the request being processed
2917 * @error: block status code
2918 * @nr_bytes: number of bytes to complete @req
2919 *
2920 * Description:
2921 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2922 * the request structure even if @req doesn't have leftover.
2923 * If @req has leftover, sets it up for the next range of segments.
2924 *
2925 * This special helper function is only for request stacking drivers
2926 * (e.g. request-based dm) so that they can handle partial completion.
2927 * Actual device drivers should use blk_end_request instead.
2928 *
2929 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2930 * %false return from this function.
2931 *
2932 * Return:
2933 * %false - this request doesn't have any more data
2934 * %true - this request has more data
2935 **/
2936 bool blk_update_request(struct request *req, blk_status_t error,
2937 unsigned int nr_bytes)
2938 {
2939 int total_bytes;
2940
2941 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2942
2943 if (!req->bio)
2944 return false;
2945
2946 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2947 !(req->rq_flags & RQF_QUIET)))
2948 print_req_error(req, error);
2949
2950 blk_account_io_completion(req, nr_bytes);
2951
2952 total_bytes = 0;
2953 while (req->bio) {
2954 struct bio *bio = req->bio;
2955 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2956
2957 if (bio_bytes == bio->bi_iter.bi_size)
2958 req->bio = bio->bi_next;
2959
2960 /* Completion has already been traced */
2961 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2962 req_bio_endio(req, bio, bio_bytes, error);
2963
2964 total_bytes += bio_bytes;
2965 nr_bytes -= bio_bytes;
2966
2967 if (!nr_bytes)
2968 break;
2969 }
2970
2971 /*
2972 * completely done
2973 */
2974 if (!req->bio) {
2975 /*
2976 * Reset counters so that the request stacking driver
2977 * can find how many bytes remain in the request
2978 * later.
2979 */
2980 req->__data_len = 0;
2981 return false;
2982 }
2983
2984 req->__data_len -= total_bytes;
2985
2986 /* update sector only for requests with clear definition of sector */
2987 if (!blk_rq_is_passthrough(req))
2988 req->__sector += total_bytes >> 9;
2989
2990 /* mixed attributes always follow the first bio */
2991 if (req->rq_flags & RQF_MIXED_MERGE) {
2992 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2993 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2994 }
2995
2996 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2997 /*
2998 * If total number of sectors is less than the first segment
2999 * size, something has gone terribly wrong.
3000 */
3001 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3002 blk_dump_rq_flags(req, "request botched");
3003 req->__data_len = blk_rq_cur_bytes(req);
3004 }
3005
3006 /* recalculate the number of segments */
3007 blk_recalc_rq_segments(req);
3008 }
3009
3010 return true;
3011 }
3012 EXPORT_SYMBOL_GPL(blk_update_request);
3013
3014 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3015 unsigned int nr_bytes,
3016 unsigned int bidi_bytes)
3017 {
3018 if (blk_update_request(rq, error, nr_bytes))
3019 return true;
3020
3021 /* Bidi request must be completed as a whole */
3022 if (unlikely(blk_bidi_rq(rq)) &&
3023 blk_update_request(rq->next_rq, error, bidi_bytes))
3024 return true;
3025
3026 if (blk_queue_add_random(rq->q))
3027 add_disk_randomness(rq->rq_disk);
3028
3029 return false;
3030 }
3031
3032 /**
3033 * blk_unprep_request - unprepare a request
3034 * @req: the request
3035 *
3036 * This function makes a request ready for complete resubmission (or
3037 * completion). It happens only after all error handling is complete,
3038 * so represents the appropriate moment to deallocate any resources
3039 * that were allocated to the request in the prep_rq_fn. The queue
3040 * lock is held when calling this.
3041 */
3042 void blk_unprep_request(struct request *req)
3043 {
3044 struct request_queue *q = req->q;
3045
3046 req->rq_flags &= ~RQF_DONTPREP;
3047 if (q->unprep_rq_fn)
3048 q->unprep_rq_fn(q, req);
3049 }
3050 EXPORT_SYMBOL_GPL(blk_unprep_request);
3051
3052 void blk_finish_request(struct request *req, blk_status_t error)
3053 {
3054 struct request_queue *q = req->q;
3055
3056 lockdep_assert_held(req->q->queue_lock);
3057 WARN_ON_ONCE(q->mq_ops);
3058
3059 if (req->rq_flags & RQF_STATS)
3060 blk_stat_add(req);
3061
3062 if (req->rq_flags & RQF_QUEUED)
3063 blk_queue_end_tag(q, req);
3064
3065 BUG_ON(blk_queued_rq(req));
3066
3067 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3068 laptop_io_completion(req->q->backing_dev_info);
3069
3070 blk_delete_timer(req);
3071
3072 if (req->rq_flags & RQF_DONTPREP)
3073 blk_unprep_request(req);
3074
3075 blk_account_io_done(req);
3076
3077 if (req->end_io) {
3078 wbt_done(req->q->rq_wb, &req->issue_stat);
3079 req->end_io(req, error);
3080 } else {
3081 if (blk_bidi_rq(req))
3082 __blk_put_request(req->next_rq->q, req->next_rq);
3083
3084 __blk_put_request(q, req);
3085 }
3086 }
3087 EXPORT_SYMBOL(blk_finish_request);
3088
3089 /**
3090 * blk_end_bidi_request - Complete a bidi request
3091 * @rq: the request to complete
3092 * @error: block status code
3093 * @nr_bytes: number of bytes to complete @rq
3094 * @bidi_bytes: number of bytes to complete @rq->next_rq
3095 *
3096 * Description:
3097 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3098 * Drivers that supports bidi can safely call this member for any
3099 * type of request, bidi or uni. In the later case @bidi_bytes is
3100 * just ignored.
3101 *
3102 * Return:
3103 * %false - we are done with this request
3104 * %true - still buffers pending for this request
3105 **/
3106 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3107 unsigned int nr_bytes, unsigned int bidi_bytes)
3108 {
3109 struct request_queue *q = rq->q;
3110 unsigned long flags;
3111
3112 WARN_ON_ONCE(q->mq_ops);
3113
3114 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3115 return true;
3116
3117 spin_lock_irqsave(q->queue_lock, flags);
3118 blk_finish_request(rq, error);
3119 spin_unlock_irqrestore(q->queue_lock, flags);
3120
3121 return false;
3122 }
3123
3124 /**
3125 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3126 * @rq: the request to complete
3127 * @error: block status code
3128 * @nr_bytes: number of bytes to complete @rq
3129 * @bidi_bytes: number of bytes to complete @rq->next_rq
3130 *
3131 * Description:
3132 * Identical to blk_end_bidi_request() except that queue lock is
3133 * assumed to be locked on entry and remains so on return.
3134 *
3135 * Return:
3136 * %false - we are done with this request
3137 * %true - still buffers pending for this request
3138 **/
3139 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3140 unsigned int nr_bytes, unsigned int bidi_bytes)
3141 {
3142 lockdep_assert_held(rq->q->queue_lock);
3143 WARN_ON_ONCE(rq->q->mq_ops);
3144
3145 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3146 return true;
3147
3148 blk_finish_request(rq, error);
3149
3150 return false;
3151 }
3152
3153 /**
3154 * blk_end_request - Helper function for drivers to complete the request.
3155 * @rq: the request being processed
3156 * @error: block status code
3157 * @nr_bytes: number of bytes to complete
3158 *
3159 * Description:
3160 * Ends I/O on a number of bytes attached to @rq.
3161 * If @rq has leftover, sets it up for the next range of segments.
3162 *
3163 * Return:
3164 * %false - we are done with this request
3165 * %true - still buffers pending for this request
3166 **/
3167 bool blk_end_request(struct request *rq, blk_status_t error,
3168 unsigned int nr_bytes)
3169 {
3170 WARN_ON_ONCE(rq->q->mq_ops);
3171 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3172 }
3173 EXPORT_SYMBOL(blk_end_request);
3174
3175 /**
3176 * blk_end_request_all - Helper function for drives to finish the request.
3177 * @rq: the request to finish
3178 * @error: block status code
3179 *
3180 * Description:
3181 * Completely finish @rq.
3182 */
3183 void blk_end_request_all(struct request *rq, blk_status_t error)
3184 {
3185 bool pending;
3186 unsigned int bidi_bytes = 0;
3187
3188 if (unlikely(blk_bidi_rq(rq)))
3189 bidi_bytes = blk_rq_bytes(rq->next_rq);
3190
3191 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3192 BUG_ON(pending);
3193 }
3194 EXPORT_SYMBOL(blk_end_request_all);
3195
3196 /**
3197 * __blk_end_request - Helper function for drivers to complete the request.
3198 * @rq: the request being processed
3199 * @error: block status code
3200 * @nr_bytes: number of bytes to complete
3201 *
3202 * Description:
3203 * Must be called with queue lock held unlike blk_end_request().
3204 *
3205 * Return:
3206 * %false - we are done with this request
3207 * %true - still buffers pending for this request
3208 **/
3209 bool __blk_end_request(struct request *rq, blk_status_t error,
3210 unsigned int nr_bytes)
3211 {
3212 lockdep_assert_held(rq->q->queue_lock);
3213 WARN_ON_ONCE(rq->q->mq_ops);
3214
3215 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3216 }
3217 EXPORT_SYMBOL(__blk_end_request);
3218
3219 /**
3220 * __blk_end_request_all - Helper function for drives to finish the request.
3221 * @rq: the request to finish
3222 * @error: block status code
3223 *
3224 * Description:
3225 * Completely finish @rq. Must be called with queue lock held.
3226 */
3227 void __blk_end_request_all(struct request *rq, blk_status_t error)
3228 {
3229 bool pending;
3230 unsigned int bidi_bytes = 0;
3231
3232 lockdep_assert_held(rq->q->queue_lock);
3233 WARN_ON_ONCE(rq->q->mq_ops);
3234
3235 if (unlikely(blk_bidi_rq(rq)))
3236 bidi_bytes = blk_rq_bytes(rq->next_rq);
3237
3238 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3239 BUG_ON(pending);
3240 }
3241 EXPORT_SYMBOL(__blk_end_request_all);
3242
3243 /**
3244 * __blk_end_request_cur - Helper function to finish the current request chunk.
3245 * @rq: the request to finish the current chunk for
3246 * @error: block status code
3247 *
3248 * Description:
3249 * Complete the current consecutively mapped chunk from @rq. Must
3250 * be called with queue lock held.
3251 *
3252 * Return:
3253 * %false - we are done with this request
3254 * %true - still buffers pending for this request
3255 */
3256 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3257 {
3258 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3259 }
3260 EXPORT_SYMBOL(__blk_end_request_cur);
3261
3262 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3263 struct bio *bio)
3264 {
3265 if (bio_has_data(bio))
3266 rq->nr_phys_segments = bio_phys_segments(q, bio);
3267 else if (bio_op(bio) == REQ_OP_DISCARD)
3268 rq->nr_phys_segments = 1;
3269
3270 rq->__data_len = bio->bi_iter.bi_size;
3271 rq->bio = rq->biotail = bio;
3272
3273 if (bio->bi_disk)
3274 rq->rq_disk = bio->bi_disk;
3275 }
3276
3277 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3278 /**
3279 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3280 * @rq: the request to be flushed
3281 *
3282 * Description:
3283 * Flush all pages in @rq.
3284 */
3285 void rq_flush_dcache_pages(struct request *rq)
3286 {
3287 struct req_iterator iter;
3288 struct bio_vec bvec;
3289
3290 rq_for_each_segment(bvec, rq, iter)
3291 flush_dcache_page(bvec.bv_page);
3292 }
3293 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3294 #endif
3295
3296 /**
3297 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3298 * @q : the queue of the device being checked
3299 *
3300 * Description:
3301 * Check if underlying low-level drivers of a device are busy.
3302 * If the drivers want to export their busy state, they must set own
3303 * exporting function using blk_queue_lld_busy() first.
3304 *
3305 * Basically, this function is used only by request stacking drivers
3306 * to stop dispatching requests to underlying devices when underlying
3307 * devices are busy. This behavior helps more I/O merging on the queue
3308 * of the request stacking driver and prevents I/O throughput regression
3309 * on burst I/O load.
3310 *
3311 * Return:
3312 * 0 - Not busy (The request stacking driver should dispatch request)
3313 * 1 - Busy (The request stacking driver should stop dispatching request)
3314 */
3315 int blk_lld_busy(struct request_queue *q)
3316 {
3317 if (q->lld_busy_fn)
3318 return q->lld_busy_fn(q);
3319
3320 return 0;
3321 }
3322 EXPORT_SYMBOL_GPL(blk_lld_busy);
3323
3324 /**
3325 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3326 * @rq: the clone request to be cleaned up
3327 *
3328 * Description:
3329 * Free all bios in @rq for a cloned request.
3330 */
3331 void blk_rq_unprep_clone(struct request *rq)
3332 {
3333 struct bio *bio;
3334
3335 while ((bio = rq->bio) != NULL) {
3336 rq->bio = bio->bi_next;
3337
3338 bio_put(bio);
3339 }
3340 }
3341 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3342
3343 /*
3344 * Copy attributes of the original request to the clone request.
3345 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3346 */
3347 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3348 {
3349 dst->cpu = src->cpu;
3350 dst->__sector = blk_rq_pos(src);
3351 dst->__data_len = blk_rq_bytes(src);
3352 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3353 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3354 dst->special_vec = src->special_vec;
3355 }
3356 dst->nr_phys_segments = src->nr_phys_segments;
3357 dst->ioprio = src->ioprio;
3358 dst->extra_len = src->extra_len;
3359 }
3360
3361 /**
3362 * blk_rq_prep_clone - Helper function to setup clone request
3363 * @rq: the request to be setup
3364 * @rq_src: original request to be cloned
3365 * @bs: bio_set that bios for clone are allocated from
3366 * @gfp_mask: memory allocation mask for bio
3367 * @bio_ctr: setup function to be called for each clone bio.
3368 * Returns %0 for success, non %0 for failure.
3369 * @data: private data to be passed to @bio_ctr
3370 *
3371 * Description:
3372 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3373 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3374 * are not copied, and copying such parts is the caller's responsibility.
3375 * Also, pages which the original bios are pointing to are not copied
3376 * and the cloned bios just point same pages.
3377 * So cloned bios must be completed before original bios, which means
3378 * the caller must complete @rq before @rq_src.
3379 */
3380 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3381 struct bio_set *bs, gfp_t gfp_mask,
3382 int (*bio_ctr)(struct bio *, struct bio *, void *),
3383 void *data)
3384 {
3385 struct bio *bio, *bio_src;
3386
3387 if (!bs)
3388 bs = fs_bio_set;
3389
3390 __rq_for_each_bio(bio_src, rq_src) {
3391 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3392 if (!bio)
3393 goto free_and_out;
3394
3395 if (bio_ctr && bio_ctr(bio, bio_src, data))
3396 goto free_and_out;
3397
3398 if (rq->bio) {
3399 rq->biotail->bi_next = bio;
3400 rq->biotail = bio;
3401 } else
3402 rq->bio = rq->biotail = bio;
3403 }
3404
3405 __blk_rq_prep_clone(rq, rq_src);
3406
3407 return 0;
3408
3409 free_and_out:
3410 if (bio)
3411 bio_put(bio);
3412 blk_rq_unprep_clone(rq);
3413
3414 return -ENOMEM;
3415 }
3416 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3417
3418 int kblockd_schedule_work(struct work_struct *work)
3419 {
3420 return queue_work(kblockd_workqueue, work);
3421 }
3422 EXPORT_SYMBOL(kblockd_schedule_work);
3423
3424 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3425 {
3426 return queue_work_on(cpu, kblockd_workqueue, work);
3427 }
3428 EXPORT_SYMBOL(kblockd_schedule_work_on);
3429
3430 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3431 unsigned long delay)
3432 {
3433 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3434 }
3435 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3436
3437 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3438 unsigned long delay)
3439 {
3440 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3441 }
3442 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3443
3444 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3445 unsigned long delay)
3446 {
3447 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3448 }
3449 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3450
3451 /**
3452 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3453 * @plug: The &struct blk_plug that needs to be initialized
3454 *
3455 * Description:
3456 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3457 * pending I/O should the task end up blocking between blk_start_plug() and
3458 * blk_finish_plug(). This is important from a performance perspective, but
3459 * also ensures that we don't deadlock. For instance, if the task is blocking
3460 * for a memory allocation, memory reclaim could end up wanting to free a
3461 * page belonging to that request that is currently residing in our private
3462 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3463 * this kind of deadlock.
3464 */
3465 void blk_start_plug(struct blk_plug *plug)
3466 {
3467 struct task_struct *tsk = current;
3468
3469 /*
3470 * If this is a nested plug, don't actually assign it.
3471 */
3472 if (tsk->plug)
3473 return;
3474
3475 INIT_LIST_HEAD(&plug->list);
3476 INIT_LIST_HEAD(&plug->mq_list);
3477 INIT_LIST_HEAD(&plug->cb_list);
3478 /*
3479 * Store ordering should not be needed here, since a potential
3480 * preempt will imply a full memory barrier
3481 */
3482 tsk->plug = plug;
3483 }
3484 EXPORT_SYMBOL(blk_start_plug);
3485
3486 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3487 {
3488 struct request *rqa = container_of(a, struct request, queuelist);
3489 struct request *rqb = container_of(b, struct request, queuelist);
3490
3491 return !(rqa->q < rqb->q ||
3492 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3493 }
3494
3495 /*
3496 * If 'from_schedule' is true, then postpone the dispatch of requests
3497 * until a safe kblockd context. We due this to avoid accidental big
3498 * additional stack usage in driver dispatch, in places where the originally
3499 * plugger did not intend it.
3500 */
3501 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3502 bool from_schedule)
3503 __releases(q->queue_lock)
3504 {
3505 lockdep_assert_held(q->queue_lock);
3506
3507 trace_block_unplug(q, depth, !from_schedule);
3508
3509 if (from_schedule)
3510 blk_run_queue_async(q);
3511 else
3512 __blk_run_queue(q);
3513 spin_unlock(q->queue_lock);
3514 }
3515
3516 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3517 {
3518 LIST_HEAD(callbacks);
3519
3520 while (!list_empty(&plug->cb_list)) {
3521 list_splice_init(&plug->cb_list, &callbacks);
3522
3523 while (!list_empty(&callbacks)) {
3524 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3525 struct blk_plug_cb,
3526 list);
3527 list_del(&cb->list);
3528 cb->callback(cb, from_schedule);
3529 }
3530 }
3531 }
3532
3533 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3534 int size)
3535 {
3536 struct blk_plug *plug = current->plug;
3537 struct blk_plug_cb *cb;
3538
3539 if (!plug)
3540 return NULL;
3541
3542 list_for_each_entry(cb, &plug->cb_list, list)
3543 if (cb->callback == unplug && cb->data == data)
3544 return cb;
3545
3546 /* Not currently on the callback list */
3547 BUG_ON(size < sizeof(*cb));
3548 cb = kzalloc(size, GFP_ATOMIC);
3549 if (cb) {
3550 cb->data = data;
3551 cb->callback = unplug;
3552 list_add(&cb->list, &plug->cb_list);
3553 }
3554 return cb;
3555 }
3556 EXPORT_SYMBOL(blk_check_plugged);
3557
3558 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3559 {
3560 struct request_queue *q;
3561 unsigned long flags;
3562 struct request *rq;
3563 LIST_HEAD(list);
3564 unsigned int depth;
3565
3566 flush_plug_callbacks(plug, from_schedule);
3567
3568 if (!list_empty(&plug->mq_list))
3569 blk_mq_flush_plug_list(plug, from_schedule);
3570
3571 if (list_empty(&plug->list))
3572 return;
3573
3574 list_splice_init(&plug->list, &list);
3575
3576 list_sort(NULL, &list, plug_rq_cmp);
3577
3578 q = NULL;
3579 depth = 0;
3580
3581 /*
3582 * Save and disable interrupts here, to avoid doing it for every
3583 * queue lock we have to take.
3584 */
3585 local_irq_save(flags);
3586 while (!list_empty(&list)) {
3587 rq = list_entry_rq(list.next);
3588 list_del_init(&rq->queuelist);
3589 BUG_ON(!rq->q);
3590 if (rq->q != q) {
3591 /*
3592 * This drops the queue lock
3593 */
3594 if (q)
3595 queue_unplugged(q, depth, from_schedule);
3596 q = rq->q;
3597 depth = 0;
3598 spin_lock(q->queue_lock);
3599 }
3600
3601 /*
3602 * Short-circuit if @q is dead
3603 */
3604 if (unlikely(blk_queue_dying(q))) {
3605 __blk_end_request_all(rq, BLK_STS_IOERR);
3606 continue;
3607 }
3608
3609 /*
3610 * rq is already accounted, so use raw insert
3611 */
3612 if (op_is_flush(rq->cmd_flags))
3613 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3614 else
3615 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3616
3617 depth++;
3618 }
3619
3620 /*
3621 * This drops the queue lock
3622 */
3623 if (q)
3624 queue_unplugged(q, depth, from_schedule);
3625
3626 local_irq_restore(flags);
3627 }
3628
3629 void blk_finish_plug(struct blk_plug *plug)
3630 {
3631 if (plug != current->plug)
3632 return;
3633 blk_flush_plug_list(plug, false);
3634
3635 current->plug = NULL;
3636 }
3637 EXPORT_SYMBOL(blk_finish_plug);
3638
3639 #ifdef CONFIG_PM
3640 /**
3641 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3642 * @q: the queue of the device
3643 * @dev: the device the queue belongs to
3644 *
3645 * Description:
3646 * Initialize runtime-PM-related fields for @q and start auto suspend for
3647 * @dev. Drivers that want to take advantage of request-based runtime PM
3648 * should call this function after @dev has been initialized, and its
3649 * request queue @q has been allocated, and runtime PM for it can not happen
3650 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3651 * cases, driver should call this function before any I/O has taken place.
3652 *
3653 * This function takes care of setting up using auto suspend for the device,
3654 * the autosuspend delay is set to -1 to make runtime suspend impossible
3655 * until an updated value is either set by user or by driver. Drivers do
3656 * not need to touch other autosuspend settings.
3657 *
3658 * The block layer runtime PM is request based, so only works for drivers
3659 * that use request as their IO unit instead of those directly use bio's.
3660 */
3661 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3662 {
3663 /* Don't enable runtime PM for blk-mq until it is ready */
3664 if (q->mq_ops) {
3665 pm_runtime_disable(dev);
3666 return;
3667 }
3668
3669 q->dev = dev;
3670 q->rpm_status = RPM_ACTIVE;
3671 pm_runtime_set_autosuspend_delay(q->dev, -1);
3672 pm_runtime_use_autosuspend(q->dev);
3673 }
3674 EXPORT_SYMBOL(blk_pm_runtime_init);
3675
3676 /**
3677 * blk_pre_runtime_suspend - Pre runtime suspend check
3678 * @q: the queue of the device
3679 *
3680 * Description:
3681 * This function will check if runtime suspend is allowed for the device
3682 * by examining if there are any requests pending in the queue. If there
3683 * are requests pending, the device can not be runtime suspended; otherwise,
3684 * the queue's status will be updated to SUSPENDING and the driver can
3685 * proceed to suspend the device.
3686 *
3687 * For the not allowed case, we mark last busy for the device so that
3688 * runtime PM core will try to autosuspend it some time later.
3689 *
3690 * This function should be called near the start of the device's
3691 * runtime_suspend callback.
3692 *
3693 * Return:
3694 * 0 - OK to runtime suspend the device
3695 * -EBUSY - Device should not be runtime suspended
3696 */
3697 int blk_pre_runtime_suspend(struct request_queue *q)
3698 {
3699 int ret = 0;
3700
3701 if (!q->dev)
3702 return ret;
3703
3704 spin_lock_irq(q->queue_lock);
3705 if (q->nr_pending) {
3706 ret = -EBUSY;
3707 pm_runtime_mark_last_busy(q->dev);
3708 } else {
3709 q->rpm_status = RPM_SUSPENDING;
3710 }
3711 spin_unlock_irq(q->queue_lock);
3712 return ret;
3713 }
3714 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3715
3716 /**
3717 * blk_post_runtime_suspend - Post runtime suspend processing
3718 * @q: the queue of the device
3719 * @err: return value of the device's runtime_suspend function
3720 *
3721 * Description:
3722 * Update the queue's runtime status according to the return value of the
3723 * device's runtime suspend function and mark last busy for the device so
3724 * that PM core will try to auto suspend the device at a later time.
3725 *
3726 * This function should be called near the end of the device's
3727 * runtime_suspend callback.
3728 */
3729 void blk_post_runtime_suspend(struct request_queue *q, int err)
3730 {
3731 if (!q->dev)
3732 return;
3733
3734 spin_lock_irq(q->queue_lock);
3735 if (!err) {
3736 q->rpm_status = RPM_SUSPENDED;
3737 } else {
3738 q->rpm_status = RPM_ACTIVE;
3739 pm_runtime_mark_last_busy(q->dev);
3740 }
3741 spin_unlock_irq(q->queue_lock);
3742 }
3743 EXPORT_SYMBOL(blk_post_runtime_suspend);
3744
3745 /**
3746 * blk_pre_runtime_resume - Pre runtime resume processing
3747 * @q: the queue of the device
3748 *
3749 * Description:
3750 * Update the queue's runtime status to RESUMING in preparation for the
3751 * runtime resume of the device.
3752 *
3753 * This function should be called near the start of the device's
3754 * runtime_resume callback.
3755 */
3756 void blk_pre_runtime_resume(struct request_queue *q)
3757 {
3758 if (!q->dev)
3759 return;
3760
3761 spin_lock_irq(q->queue_lock);
3762 q->rpm_status = RPM_RESUMING;
3763 spin_unlock_irq(q->queue_lock);
3764 }
3765 EXPORT_SYMBOL(blk_pre_runtime_resume);
3766
3767 /**
3768 * blk_post_runtime_resume - Post runtime resume processing
3769 * @q: the queue of the device
3770 * @err: return value of the device's runtime_resume function
3771 *
3772 * Description:
3773 * Update the queue's runtime status according to the return value of the
3774 * device's runtime_resume function. If it is successfully resumed, process
3775 * the requests that are queued into the device's queue when it is resuming
3776 * and then mark last busy and initiate autosuspend for it.
3777 *
3778 * This function should be called near the end of the device's
3779 * runtime_resume callback.
3780 */
3781 void blk_post_runtime_resume(struct request_queue *q, int err)
3782 {
3783 if (!q->dev)
3784 return;
3785
3786 spin_lock_irq(q->queue_lock);
3787 if (!err) {
3788 q->rpm_status = RPM_ACTIVE;
3789 __blk_run_queue(q);
3790 pm_runtime_mark_last_busy(q->dev);
3791 pm_request_autosuspend(q->dev);
3792 } else {
3793 q->rpm_status = RPM_SUSPENDED;
3794 }
3795 spin_unlock_irq(q->queue_lock);
3796 }
3797 EXPORT_SYMBOL(blk_post_runtime_resume);
3798
3799 /**
3800 * blk_set_runtime_active - Force runtime status of the queue to be active
3801 * @q: the queue of the device
3802 *
3803 * If the device is left runtime suspended during system suspend the resume
3804 * hook typically resumes the device and corrects runtime status
3805 * accordingly. However, that does not affect the queue runtime PM status
3806 * which is still "suspended". This prevents processing requests from the
3807 * queue.
3808 *
3809 * This function can be used in driver's resume hook to correct queue
3810 * runtime PM status and re-enable peeking requests from the queue. It
3811 * should be called before first request is added to the queue.
3812 */
3813 void blk_set_runtime_active(struct request_queue *q)
3814 {
3815 spin_lock_irq(q->queue_lock);
3816 q->rpm_status = RPM_ACTIVE;
3817 pm_runtime_mark_last_busy(q->dev);
3818 pm_request_autosuspend(q->dev);
3819 spin_unlock_irq(q->queue_lock);
3820 }
3821 EXPORT_SYMBOL(blk_set_runtime_active);
3822 #endif
3823
3824 int __init blk_dev_init(void)
3825 {
3826 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3827 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3828 FIELD_SIZEOF(struct request, cmd_flags));
3829 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3830 FIELD_SIZEOF(struct bio, bi_opf));
3831
3832 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3833 kblockd_workqueue = alloc_workqueue("kblockd",
3834 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3835 if (!kblockd_workqueue)
3836 panic("Failed to create kblockd\n");
3837
3838 request_cachep = kmem_cache_create("blkdev_requests",
3839 sizeof(struct request), 0, SLAB_PANIC, NULL);
3840
3841 blk_requestq_cachep = kmem_cache_create("request_queue",
3842 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3843
3844 #ifdef CONFIG_DEBUG_FS
3845 blk_debugfs_root = debugfs_create_dir("block", NULL);
3846 #endif
3847
3848 return 0;
3849 }