]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: simplify blk_init_allocated_queue
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42 #include "blk-mq-sched.h"
43 #include "blk-wbt.h"
44
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
50
51 DEFINE_IDA(blk_queue_ida);
52
53 /*
54 * For the allocated request tables
55 */
56 struct kmem_cache *request_cachep;
57
58 /*
59 * For queue allocation
60 */
61 struct kmem_cache *blk_requestq_cachep;
62
63 /*
64 * Controlling structure to kblockd
65 */
66 static struct workqueue_struct *kblockd_workqueue;
67
68 static void blk_clear_congested(struct request_list *rl, int sync)
69 {
70 #ifdef CONFIG_CGROUP_WRITEBACK
71 clear_wb_congested(rl->blkg->wb_congested, sync);
72 #else
73 /*
74 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
75 * flip its congestion state for events on other blkcgs.
76 */
77 if (rl == &rl->q->root_rl)
78 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
79 #endif
80 }
81
82 static void blk_set_congested(struct request_list *rl, int sync)
83 {
84 #ifdef CONFIG_CGROUP_WRITEBACK
85 set_wb_congested(rl->blkg->wb_congested, sync);
86 #else
87 /* see blk_clear_congested() */
88 if (rl == &rl->q->root_rl)
89 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
90 #endif
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info. This function can only be called if @bdev is opened
114 * and the return value is never NULL.
115 */
116 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
117 {
118 struct request_queue *q = bdev_get_queue(bdev);
119
120 return &q->backing_dev_info;
121 }
122 EXPORT_SYMBOL(blk_get_backing_dev_info);
123
124 void blk_rq_init(struct request_queue *q, struct request *rq)
125 {
126 memset(rq, 0, sizeof(*rq));
127
128 INIT_LIST_HEAD(&rq->queuelist);
129 INIT_LIST_HEAD(&rq->timeout_list);
130 rq->cpu = -1;
131 rq->q = q;
132 rq->__sector = (sector_t) -1;
133 INIT_HLIST_NODE(&rq->hash);
134 RB_CLEAR_NODE(&rq->rb_node);
135 rq->cmd = rq->__cmd;
136 rq->cmd_len = BLK_MAX_CDB;
137 rq->tag = -1;
138 rq->internal_tag = -1;
139 rq->start_time = jiffies;
140 set_start_time_ns(rq);
141 rq->part = NULL;
142 }
143 EXPORT_SYMBOL(blk_rq_init);
144
145 static void req_bio_endio(struct request *rq, struct bio *bio,
146 unsigned int nbytes, int error)
147 {
148 if (error)
149 bio->bi_error = error;
150
151 if (unlikely(rq->rq_flags & RQF_QUIET))
152 bio_set_flag(bio, BIO_QUIET);
153
154 bio_advance(bio, nbytes);
155
156 /* don't actually finish bio if it's part of flush sequence */
157 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
158 bio_endio(bio);
159 }
160
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 int bit;
164
165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 (unsigned long long) rq->cmd_flags);
168
169 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
170 (unsigned long long)blk_rq_pos(rq),
171 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
172 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
173 rq->bio, rq->biotail, blk_rq_bytes(rq));
174
175 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
176 printk(KERN_INFO " cdb: ");
177 for (bit = 0; bit < BLK_MAX_CDB; bit++)
178 printk("%02x ", rq->cmd[bit]);
179 printk("\n");
180 }
181 }
182 EXPORT_SYMBOL(blk_dump_rq_flags);
183
184 static void blk_delay_work(struct work_struct *work)
185 {
186 struct request_queue *q;
187
188 q = container_of(work, struct request_queue, delay_work.work);
189 spin_lock_irq(q->queue_lock);
190 __blk_run_queue(q);
191 spin_unlock_irq(q->queue_lock);
192 }
193
194 /**
195 * blk_delay_queue - restart queueing after defined interval
196 * @q: The &struct request_queue in question
197 * @msecs: Delay in msecs
198 *
199 * Description:
200 * Sometimes queueing needs to be postponed for a little while, to allow
201 * resources to come back. This function will make sure that queueing is
202 * restarted around the specified time. Queue lock must be held.
203 */
204 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
205 {
206 if (likely(!blk_queue_dead(q)))
207 queue_delayed_work(kblockd_workqueue, &q->delay_work,
208 msecs_to_jiffies(msecs));
209 }
210 EXPORT_SYMBOL(blk_delay_queue);
211
212 /**
213 * blk_start_queue_async - asynchronously restart a previously stopped queue
214 * @q: The &struct request_queue in question
215 *
216 * Description:
217 * blk_start_queue_async() will clear the stop flag on the queue, and
218 * ensure that the request_fn for the queue is run from an async
219 * context.
220 **/
221 void blk_start_queue_async(struct request_queue *q)
222 {
223 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
224 blk_run_queue_async(q);
225 }
226 EXPORT_SYMBOL(blk_start_queue_async);
227
228 /**
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
231 *
232 * Description:
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
236 **/
237 void blk_start_queue(struct request_queue *q)
238 {
239 WARN_ON(!irqs_disabled());
240
241 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
242 __blk_run_queue(q);
243 }
244 EXPORT_SYMBOL(blk_start_queue);
245
246 /**
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
249 *
250 * Description:
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
259 **/
260 void blk_stop_queue(struct request_queue *q)
261 {
262 cancel_delayed_work(&q->delay_work);
263 queue_flag_set(QUEUE_FLAG_STOPPED, q);
264 }
265 EXPORT_SYMBOL(blk_stop_queue);
266
267 /**
268 * blk_sync_queue - cancel any pending callbacks on a queue
269 * @q: the queue
270 *
271 * Description:
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
278 * this function.
279 *
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevator_exit()
282 * and blkcg_exit_queue() to be called with queue lock initialized.
283 *
284 */
285 void blk_sync_queue(struct request_queue *q)
286 {
287 del_timer_sync(&q->timeout);
288
289 if (q->mq_ops) {
290 struct blk_mq_hw_ctx *hctx;
291 int i;
292
293 queue_for_each_hw_ctx(q, hctx, i) {
294 cancel_work_sync(&hctx->run_work);
295 cancel_delayed_work_sync(&hctx->delay_work);
296 }
297 } else {
298 cancel_delayed_work_sync(&q->delay_work);
299 }
300 }
301 EXPORT_SYMBOL(blk_sync_queue);
302
303 /**
304 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
305 * @q: The queue to run
306 *
307 * Description:
308 * Invoke request handling on a queue if there are any pending requests.
309 * May be used to restart request handling after a request has completed.
310 * This variant runs the queue whether or not the queue has been
311 * stopped. Must be called with the queue lock held and interrupts
312 * disabled. See also @blk_run_queue.
313 */
314 inline void __blk_run_queue_uncond(struct request_queue *q)
315 {
316 if (unlikely(blk_queue_dead(q)))
317 return;
318
319 /*
320 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
321 * the queue lock internally. As a result multiple threads may be
322 * running such a request function concurrently. Keep track of the
323 * number of active request_fn invocations such that blk_drain_queue()
324 * can wait until all these request_fn calls have finished.
325 */
326 q->request_fn_active++;
327 q->request_fn(q);
328 q->request_fn_active--;
329 }
330 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
331
332 /**
333 * __blk_run_queue - run a single device queue
334 * @q: The queue to run
335 *
336 * Description:
337 * See @blk_run_queue. This variant must be called with the queue lock
338 * held and interrupts disabled.
339 */
340 void __blk_run_queue(struct request_queue *q)
341 {
342 if (unlikely(blk_queue_stopped(q)))
343 return;
344
345 __blk_run_queue_uncond(q);
346 }
347 EXPORT_SYMBOL(__blk_run_queue);
348
349 /**
350 * blk_run_queue_async - run a single device queue in workqueue context
351 * @q: The queue to run
352 *
353 * Description:
354 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
355 * of us. The caller must hold the queue lock.
356 */
357 void blk_run_queue_async(struct request_queue *q)
358 {
359 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
360 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
361 }
362 EXPORT_SYMBOL(blk_run_queue_async);
363
364 /**
365 * blk_run_queue - run a single device queue
366 * @q: The queue to run
367 *
368 * Description:
369 * Invoke request handling on this queue, if it has pending work to do.
370 * May be used to restart queueing when a request has completed.
371 */
372 void blk_run_queue(struct request_queue *q)
373 {
374 unsigned long flags;
375
376 spin_lock_irqsave(q->queue_lock, flags);
377 __blk_run_queue(q);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL(blk_run_queue);
381
382 void blk_put_queue(struct request_queue *q)
383 {
384 kobject_put(&q->kobj);
385 }
386 EXPORT_SYMBOL(blk_put_queue);
387
388 /**
389 * __blk_drain_queue - drain requests from request_queue
390 * @q: queue to drain
391 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
392 *
393 * Drain requests from @q. If @drain_all is set, all requests are drained.
394 * If not, only ELVPRIV requests are drained. The caller is responsible
395 * for ensuring that no new requests which need to be drained are queued.
396 */
397 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
398 __releases(q->queue_lock)
399 __acquires(q->queue_lock)
400 {
401 int i;
402
403 lockdep_assert_held(q->queue_lock);
404
405 while (true) {
406 bool drain = false;
407
408 /*
409 * The caller might be trying to drain @q before its
410 * elevator is initialized.
411 */
412 if (q->elevator)
413 elv_drain_elevator(q);
414
415 blkcg_drain_queue(q);
416
417 /*
418 * This function might be called on a queue which failed
419 * driver init after queue creation or is not yet fully
420 * active yet. Some drivers (e.g. fd and loop) get unhappy
421 * in such cases. Kick queue iff dispatch queue has
422 * something on it and @q has request_fn set.
423 */
424 if (!list_empty(&q->queue_head) && q->request_fn)
425 __blk_run_queue(q);
426
427 drain |= q->nr_rqs_elvpriv;
428 drain |= q->request_fn_active;
429
430 /*
431 * Unfortunately, requests are queued at and tracked from
432 * multiple places and there's no single counter which can
433 * be drained. Check all the queues and counters.
434 */
435 if (drain_all) {
436 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
437 drain |= !list_empty(&q->queue_head);
438 for (i = 0; i < 2; i++) {
439 drain |= q->nr_rqs[i];
440 drain |= q->in_flight[i];
441 if (fq)
442 drain |= !list_empty(&fq->flush_queue[i]);
443 }
444 }
445
446 if (!drain)
447 break;
448
449 spin_unlock_irq(q->queue_lock);
450
451 msleep(10);
452
453 spin_lock_irq(q->queue_lock);
454 }
455
456 /*
457 * With queue marked dead, any woken up waiter will fail the
458 * allocation path, so the wakeup chaining is lost and we're
459 * left with hung waiters. We need to wake up those waiters.
460 */
461 if (q->request_fn) {
462 struct request_list *rl;
463
464 blk_queue_for_each_rl(rl, q)
465 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
466 wake_up_all(&rl->wait[i]);
467 }
468 }
469
470 /**
471 * blk_queue_bypass_start - enter queue bypass mode
472 * @q: queue of interest
473 *
474 * In bypass mode, only the dispatch FIFO queue of @q is used. This
475 * function makes @q enter bypass mode and drains all requests which were
476 * throttled or issued before. On return, it's guaranteed that no request
477 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
478 * inside queue or RCU read lock.
479 */
480 void blk_queue_bypass_start(struct request_queue *q)
481 {
482 spin_lock_irq(q->queue_lock);
483 q->bypass_depth++;
484 queue_flag_set(QUEUE_FLAG_BYPASS, q);
485 spin_unlock_irq(q->queue_lock);
486
487 /*
488 * Queues start drained. Skip actual draining till init is
489 * complete. This avoids lenghty delays during queue init which
490 * can happen many times during boot.
491 */
492 if (blk_queue_init_done(q)) {
493 spin_lock_irq(q->queue_lock);
494 __blk_drain_queue(q, false);
495 spin_unlock_irq(q->queue_lock);
496
497 /* ensure blk_queue_bypass() is %true inside RCU read lock */
498 synchronize_rcu();
499 }
500 }
501 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
502
503 /**
504 * blk_queue_bypass_end - leave queue bypass mode
505 * @q: queue of interest
506 *
507 * Leave bypass mode and restore the normal queueing behavior.
508 */
509 void blk_queue_bypass_end(struct request_queue *q)
510 {
511 spin_lock_irq(q->queue_lock);
512 if (!--q->bypass_depth)
513 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
514 WARN_ON_ONCE(q->bypass_depth < 0);
515 spin_unlock_irq(q->queue_lock);
516 }
517 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
518
519 void blk_set_queue_dying(struct request_queue *q)
520 {
521 spin_lock_irq(q->queue_lock);
522 queue_flag_set(QUEUE_FLAG_DYING, q);
523 spin_unlock_irq(q->queue_lock);
524
525 if (q->mq_ops)
526 blk_mq_wake_waiters(q);
527 else {
528 struct request_list *rl;
529
530 blk_queue_for_each_rl(rl, q) {
531 if (rl->rq_pool) {
532 wake_up(&rl->wait[BLK_RW_SYNC]);
533 wake_up(&rl->wait[BLK_RW_ASYNC]);
534 }
535 }
536 }
537 }
538 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
539
540 /**
541 * blk_cleanup_queue - shutdown a request queue
542 * @q: request queue to shutdown
543 *
544 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
545 * put it. All future requests will be failed immediately with -ENODEV.
546 */
547 void blk_cleanup_queue(struct request_queue *q)
548 {
549 spinlock_t *lock = q->queue_lock;
550
551 /* mark @q DYING, no new request or merges will be allowed afterwards */
552 mutex_lock(&q->sysfs_lock);
553 blk_set_queue_dying(q);
554 spin_lock_irq(lock);
555
556 /*
557 * A dying queue is permanently in bypass mode till released. Note
558 * that, unlike blk_queue_bypass_start(), we aren't performing
559 * synchronize_rcu() after entering bypass mode to avoid the delay
560 * as some drivers create and destroy a lot of queues while
561 * probing. This is still safe because blk_release_queue() will be
562 * called only after the queue refcnt drops to zero and nothing,
563 * RCU or not, would be traversing the queue by then.
564 */
565 q->bypass_depth++;
566 queue_flag_set(QUEUE_FLAG_BYPASS, q);
567
568 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
569 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
570 queue_flag_set(QUEUE_FLAG_DYING, q);
571 spin_unlock_irq(lock);
572 mutex_unlock(&q->sysfs_lock);
573
574 /*
575 * Drain all requests queued before DYING marking. Set DEAD flag to
576 * prevent that q->request_fn() gets invoked after draining finished.
577 */
578 blk_freeze_queue(q);
579 spin_lock_irq(lock);
580 if (!q->mq_ops)
581 __blk_drain_queue(q, true);
582 queue_flag_set(QUEUE_FLAG_DEAD, q);
583 spin_unlock_irq(lock);
584
585 /* for synchronous bio-based driver finish in-flight integrity i/o */
586 blk_flush_integrity();
587
588 /* @q won't process any more request, flush async actions */
589 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
590 blk_sync_queue(q);
591
592 if (q->mq_ops)
593 blk_mq_free_queue(q);
594 percpu_ref_exit(&q->q_usage_counter);
595
596 spin_lock_irq(lock);
597 if (q->queue_lock != &q->__queue_lock)
598 q->queue_lock = &q->__queue_lock;
599 spin_unlock_irq(lock);
600
601 bdi_unregister(&q->backing_dev_info);
602
603 /* @q is and will stay empty, shutdown and put */
604 blk_put_queue(q);
605 }
606 EXPORT_SYMBOL(blk_cleanup_queue);
607
608 /* Allocate memory local to the request queue */
609 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
610 {
611 int nid = (int)(long)data;
612 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
613 }
614
615 static void free_request_struct(void *element, void *unused)
616 {
617 kmem_cache_free(request_cachep, element);
618 }
619
620 int blk_init_rl(struct request_list *rl, struct request_queue *q,
621 gfp_t gfp_mask)
622 {
623 if (unlikely(rl->rq_pool))
624 return 0;
625
626 rl->q = q;
627 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
628 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
629 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
630 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
631
632 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
633 free_request_struct,
634 (void *)(long)q->node, gfp_mask,
635 q->node);
636 if (!rl->rq_pool)
637 return -ENOMEM;
638
639 return 0;
640 }
641
642 void blk_exit_rl(struct request_list *rl)
643 {
644 if (rl->rq_pool)
645 mempool_destroy(rl->rq_pool);
646 }
647
648 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
649 {
650 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
651 }
652 EXPORT_SYMBOL(blk_alloc_queue);
653
654 int blk_queue_enter(struct request_queue *q, bool nowait)
655 {
656 while (true) {
657 int ret;
658
659 if (percpu_ref_tryget_live(&q->q_usage_counter))
660 return 0;
661
662 if (nowait)
663 return -EBUSY;
664
665 ret = wait_event_interruptible(q->mq_freeze_wq,
666 !atomic_read(&q->mq_freeze_depth) ||
667 blk_queue_dying(q));
668 if (blk_queue_dying(q))
669 return -ENODEV;
670 if (ret)
671 return ret;
672 }
673 }
674
675 void blk_queue_exit(struct request_queue *q)
676 {
677 percpu_ref_put(&q->q_usage_counter);
678 }
679
680 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
681 {
682 struct request_queue *q =
683 container_of(ref, struct request_queue, q_usage_counter);
684
685 wake_up_all(&q->mq_freeze_wq);
686 }
687
688 static void blk_rq_timed_out_timer(unsigned long data)
689 {
690 struct request_queue *q = (struct request_queue *)data;
691
692 kblockd_schedule_work(&q->timeout_work);
693 }
694
695 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
696 {
697 struct request_queue *q;
698 int err;
699
700 q = kmem_cache_alloc_node(blk_requestq_cachep,
701 gfp_mask | __GFP_ZERO, node_id);
702 if (!q)
703 return NULL;
704
705 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
706 if (q->id < 0)
707 goto fail_q;
708
709 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
710 if (!q->bio_split)
711 goto fail_id;
712
713 q->backing_dev_info.ra_pages =
714 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
715 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
716 q->backing_dev_info.name = "block";
717 q->node = node_id;
718
719 err = bdi_init(&q->backing_dev_info);
720 if (err)
721 goto fail_split;
722
723 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
724 laptop_mode_timer_fn, (unsigned long) q);
725 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
726 INIT_LIST_HEAD(&q->queue_head);
727 INIT_LIST_HEAD(&q->timeout_list);
728 INIT_LIST_HEAD(&q->icq_list);
729 #ifdef CONFIG_BLK_CGROUP
730 INIT_LIST_HEAD(&q->blkg_list);
731 #endif
732 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
733
734 kobject_init(&q->kobj, &blk_queue_ktype);
735
736 mutex_init(&q->sysfs_lock);
737 spin_lock_init(&q->__queue_lock);
738
739 /*
740 * By default initialize queue_lock to internal lock and driver can
741 * override it later if need be.
742 */
743 q->queue_lock = &q->__queue_lock;
744
745 /*
746 * A queue starts its life with bypass turned on to avoid
747 * unnecessary bypass on/off overhead and nasty surprises during
748 * init. The initial bypass will be finished when the queue is
749 * registered by blk_register_queue().
750 */
751 q->bypass_depth = 1;
752 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
753
754 init_waitqueue_head(&q->mq_freeze_wq);
755
756 /*
757 * Init percpu_ref in atomic mode so that it's faster to shutdown.
758 * See blk_register_queue() for details.
759 */
760 if (percpu_ref_init(&q->q_usage_counter,
761 blk_queue_usage_counter_release,
762 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
763 goto fail_bdi;
764
765 if (blkcg_init_queue(q))
766 goto fail_ref;
767
768 return q;
769
770 fail_ref:
771 percpu_ref_exit(&q->q_usage_counter);
772 fail_bdi:
773 bdi_destroy(&q->backing_dev_info);
774 fail_split:
775 bioset_free(q->bio_split);
776 fail_id:
777 ida_simple_remove(&blk_queue_ida, q->id);
778 fail_q:
779 kmem_cache_free(blk_requestq_cachep, q);
780 return NULL;
781 }
782 EXPORT_SYMBOL(blk_alloc_queue_node);
783
784 /**
785 * blk_init_queue - prepare a request queue for use with a block device
786 * @rfn: The function to be called to process requests that have been
787 * placed on the queue.
788 * @lock: Request queue spin lock
789 *
790 * Description:
791 * If a block device wishes to use the standard request handling procedures,
792 * which sorts requests and coalesces adjacent requests, then it must
793 * call blk_init_queue(). The function @rfn will be called when there
794 * are requests on the queue that need to be processed. If the device
795 * supports plugging, then @rfn may not be called immediately when requests
796 * are available on the queue, but may be called at some time later instead.
797 * Plugged queues are generally unplugged when a buffer belonging to one
798 * of the requests on the queue is needed, or due to memory pressure.
799 *
800 * @rfn is not required, or even expected, to remove all requests off the
801 * queue, but only as many as it can handle at a time. If it does leave
802 * requests on the queue, it is responsible for arranging that the requests
803 * get dealt with eventually.
804 *
805 * The queue spin lock must be held while manipulating the requests on the
806 * request queue; this lock will be taken also from interrupt context, so irq
807 * disabling is needed for it.
808 *
809 * Function returns a pointer to the initialized request queue, or %NULL if
810 * it didn't succeed.
811 *
812 * Note:
813 * blk_init_queue() must be paired with a blk_cleanup_queue() call
814 * when the block device is deactivated (such as at module unload).
815 **/
816
817 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
818 {
819 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
820 }
821 EXPORT_SYMBOL(blk_init_queue);
822
823 struct request_queue *
824 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
825 {
826 struct request_queue *q;
827
828 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
829 if (!q)
830 return NULL;
831
832 q->request_fn = rfn;
833 if (lock)
834 q->queue_lock = lock;
835 if (blk_init_allocated_queue(q) < 0) {
836 blk_cleanup_queue(q);
837 return NULL;
838 }
839
840 return q;
841 }
842 EXPORT_SYMBOL(blk_init_queue_node);
843
844 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
845
846
847 int blk_init_allocated_queue(struct request_queue *q)
848 {
849 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
850 if (!q->fq)
851 return -ENOMEM;
852
853 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
854 goto fail;
855
856 INIT_WORK(&q->timeout_work, blk_timeout_work);
857 q->queue_flags |= QUEUE_FLAG_DEFAULT;
858
859 /*
860 * This also sets hw/phys segments, boundary and size
861 */
862 blk_queue_make_request(q, blk_queue_bio);
863
864 q->sg_reserved_size = INT_MAX;
865
866 /* Protect q->elevator from elevator_change */
867 mutex_lock(&q->sysfs_lock);
868
869 /* init elevator */
870 if (elevator_init(q, NULL)) {
871 mutex_unlock(&q->sysfs_lock);
872 goto fail;
873 }
874
875 mutex_unlock(&q->sysfs_lock);
876 return 0;
877
878 fail:
879 blk_free_flush_queue(q->fq);
880 wbt_exit(q);
881 return -ENOMEM;
882 }
883 EXPORT_SYMBOL(blk_init_allocated_queue);
884
885 bool blk_get_queue(struct request_queue *q)
886 {
887 if (likely(!blk_queue_dying(q))) {
888 __blk_get_queue(q);
889 return true;
890 }
891
892 return false;
893 }
894 EXPORT_SYMBOL(blk_get_queue);
895
896 static inline void blk_free_request(struct request_list *rl, struct request *rq)
897 {
898 if (rq->rq_flags & RQF_ELVPRIV) {
899 elv_put_request(rl->q, rq);
900 if (rq->elv.icq)
901 put_io_context(rq->elv.icq->ioc);
902 }
903
904 mempool_free(rq, rl->rq_pool);
905 }
906
907 /*
908 * ioc_batching returns true if the ioc is a valid batching request and
909 * should be given priority access to a request.
910 */
911 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
912 {
913 if (!ioc)
914 return 0;
915
916 /*
917 * Make sure the process is able to allocate at least 1 request
918 * even if the batch times out, otherwise we could theoretically
919 * lose wakeups.
920 */
921 return ioc->nr_batch_requests == q->nr_batching ||
922 (ioc->nr_batch_requests > 0
923 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
924 }
925
926 /*
927 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
928 * will cause the process to be a "batcher" on all queues in the system. This
929 * is the behaviour we want though - once it gets a wakeup it should be given
930 * a nice run.
931 */
932 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
933 {
934 if (!ioc || ioc_batching(q, ioc))
935 return;
936
937 ioc->nr_batch_requests = q->nr_batching;
938 ioc->last_waited = jiffies;
939 }
940
941 static void __freed_request(struct request_list *rl, int sync)
942 {
943 struct request_queue *q = rl->q;
944
945 if (rl->count[sync] < queue_congestion_off_threshold(q))
946 blk_clear_congested(rl, sync);
947
948 if (rl->count[sync] + 1 <= q->nr_requests) {
949 if (waitqueue_active(&rl->wait[sync]))
950 wake_up(&rl->wait[sync]);
951
952 blk_clear_rl_full(rl, sync);
953 }
954 }
955
956 /*
957 * A request has just been released. Account for it, update the full and
958 * congestion status, wake up any waiters. Called under q->queue_lock.
959 */
960 static void freed_request(struct request_list *rl, bool sync,
961 req_flags_t rq_flags)
962 {
963 struct request_queue *q = rl->q;
964
965 q->nr_rqs[sync]--;
966 rl->count[sync]--;
967 if (rq_flags & RQF_ELVPRIV)
968 q->nr_rqs_elvpriv--;
969
970 __freed_request(rl, sync);
971
972 if (unlikely(rl->starved[sync ^ 1]))
973 __freed_request(rl, sync ^ 1);
974 }
975
976 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
977 {
978 struct request_list *rl;
979 int on_thresh, off_thresh;
980
981 spin_lock_irq(q->queue_lock);
982 q->nr_requests = nr;
983 blk_queue_congestion_threshold(q);
984 on_thresh = queue_congestion_on_threshold(q);
985 off_thresh = queue_congestion_off_threshold(q);
986
987 blk_queue_for_each_rl(rl, q) {
988 if (rl->count[BLK_RW_SYNC] >= on_thresh)
989 blk_set_congested(rl, BLK_RW_SYNC);
990 else if (rl->count[BLK_RW_SYNC] < off_thresh)
991 blk_clear_congested(rl, BLK_RW_SYNC);
992
993 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
994 blk_set_congested(rl, BLK_RW_ASYNC);
995 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
996 blk_clear_congested(rl, BLK_RW_ASYNC);
997
998 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
999 blk_set_rl_full(rl, BLK_RW_SYNC);
1000 } else {
1001 blk_clear_rl_full(rl, BLK_RW_SYNC);
1002 wake_up(&rl->wait[BLK_RW_SYNC]);
1003 }
1004
1005 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1006 blk_set_rl_full(rl, BLK_RW_ASYNC);
1007 } else {
1008 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1009 wake_up(&rl->wait[BLK_RW_ASYNC]);
1010 }
1011 }
1012
1013 spin_unlock_irq(q->queue_lock);
1014 return 0;
1015 }
1016
1017 /**
1018 * __get_request - get a free request
1019 * @rl: request list to allocate from
1020 * @op: operation and flags
1021 * @bio: bio to allocate request for (can be %NULL)
1022 * @gfp_mask: allocation mask
1023 *
1024 * Get a free request from @q. This function may fail under memory
1025 * pressure or if @q is dead.
1026 *
1027 * Must be called with @q->queue_lock held and,
1028 * Returns ERR_PTR on failure, with @q->queue_lock held.
1029 * Returns request pointer on success, with @q->queue_lock *not held*.
1030 */
1031 static struct request *__get_request(struct request_list *rl, unsigned int op,
1032 struct bio *bio, gfp_t gfp_mask)
1033 {
1034 struct request_queue *q = rl->q;
1035 struct request *rq;
1036 struct elevator_type *et = q->elevator->type;
1037 struct io_context *ioc = rq_ioc(bio);
1038 struct io_cq *icq = NULL;
1039 const bool is_sync = op_is_sync(op);
1040 int may_queue;
1041 req_flags_t rq_flags = RQF_ALLOCED;
1042
1043 if (unlikely(blk_queue_dying(q)))
1044 return ERR_PTR(-ENODEV);
1045
1046 may_queue = elv_may_queue(q, op);
1047 if (may_queue == ELV_MQUEUE_NO)
1048 goto rq_starved;
1049
1050 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1051 if (rl->count[is_sync]+1 >= q->nr_requests) {
1052 /*
1053 * The queue will fill after this allocation, so set
1054 * it as full, and mark this process as "batching".
1055 * This process will be allowed to complete a batch of
1056 * requests, others will be blocked.
1057 */
1058 if (!blk_rl_full(rl, is_sync)) {
1059 ioc_set_batching(q, ioc);
1060 blk_set_rl_full(rl, is_sync);
1061 } else {
1062 if (may_queue != ELV_MQUEUE_MUST
1063 && !ioc_batching(q, ioc)) {
1064 /*
1065 * The queue is full and the allocating
1066 * process is not a "batcher", and not
1067 * exempted by the IO scheduler
1068 */
1069 return ERR_PTR(-ENOMEM);
1070 }
1071 }
1072 }
1073 blk_set_congested(rl, is_sync);
1074 }
1075
1076 /*
1077 * Only allow batching queuers to allocate up to 50% over the defined
1078 * limit of requests, otherwise we could have thousands of requests
1079 * allocated with any setting of ->nr_requests
1080 */
1081 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1082 return ERR_PTR(-ENOMEM);
1083
1084 q->nr_rqs[is_sync]++;
1085 rl->count[is_sync]++;
1086 rl->starved[is_sync] = 0;
1087
1088 /*
1089 * Decide whether the new request will be managed by elevator. If
1090 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1091 * prevent the current elevator from being destroyed until the new
1092 * request is freed. This guarantees icq's won't be destroyed and
1093 * makes creating new ones safe.
1094 *
1095 * Flush requests do not use the elevator so skip initialization.
1096 * This allows a request to share the flush and elevator data.
1097 *
1098 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1099 * it will be created after releasing queue_lock.
1100 */
1101 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1102 rq_flags |= RQF_ELVPRIV;
1103 q->nr_rqs_elvpriv++;
1104 if (et->icq_cache && ioc)
1105 icq = ioc_lookup_icq(ioc, q);
1106 }
1107
1108 if (blk_queue_io_stat(q))
1109 rq_flags |= RQF_IO_STAT;
1110 spin_unlock_irq(q->queue_lock);
1111
1112 /* allocate and init request */
1113 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1114 if (!rq)
1115 goto fail_alloc;
1116
1117 blk_rq_init(q, rq);
1118 blk_rq_set_rl(rq, rl);
1119 blk_rq_set_prio(rq, ioc);
1120 rq->cmd_flags = op;
1121 rq->rq_flags = rq_flags;
1122
1123 /* init elvpriv */
1124 if (rq_flags & RQF_ELVPRIV) {
1125 if (unlikely(et->icq_cache && !icq)) {
1126 if (ioc)
1127 icq = ioc_create_icq(ioc, q, gfp_mask);
1128 if (!icq)
1129 goto fail_elvpriv;
1130 }
1131
1132 rq->elv.icq = icq;
1133 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1134 goto fail_elvpriv;
1135
1136 /* @rq->elv.icq holds io_context until @rq is freed */
1137 if (icq)
1138 get_io_context(icq->ioc);
1139 }
1140 out:
1141 /*
1142 * ioc may be NULL here, and ioc_batching will be false. That's
1143 * OK, if the queue is under the request limit then requests need
1144 * not count toward the nr_batch_requests limit. There will always
1145 * be some limit enforced by BLK_BATCH_TIME.
1146 */
1147 if (ioc_batching(q, ioc))
1148 ioc->nr_batch_requests--;
1149
1150 trace_block_getrq(q, bio, op);
1151 return rq;
1152
1153 fail_elvpriv:
1154 /*
1155 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1156 * and may fail indefinitely under memory pressure and thus
1157 * shouldn't stall IO. Treat this request as !elvpriv. This will
1158 * disturb iosched and blkcg but weird is bettern than dead.
1159 */
1160 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1161 __func__, dev_name(q->backing_dev_info.dev));
1162
1163 rq->rq_flags &= ~RQF_ELVPRIV;
1164 rq->elv.icq = NULL;
1165
1166 spin_lock_irq(q->queue_lock);
1167 q->nr_rqs_elvpriv--;
1168 spin_unlock_irq(q->queue_lock);
1169 goto out;
1170
1171 fail_alloc:
1172 /*
1173 * Allocation failed presumably due to memory. Undo anything we
1174 * might have messed up.
1175 *
1176 * Allocating task should really be put onto the front of the wait
1177 * queue, but this is pretty rare.
1178 */
1179 spin_lock_irq(q->queue_lock);
1180 freed_request(rl, is_sync, rq_flags);
1181
1182 /*
1183 * in the very unlikely event that allocation failed and no
1184 * requests for this direction was pending, mark us starved so that
1185 * freeing of a request in the other direction will notice
1186 * us. another possible fix would be to split the rq mempool into
1187 * READ and WRITE
1188 */
1189 rq_starved:
1190 if (unlikely(rl->count[is_sync] == 0))
1191 rl->starved[is_sync] = 1;
1192 return ERR_PTR(-ENOMEM);
1193 }
1194
1195 /**
1196 * get_request - get a free request
1197 * @q: request_queue to allocate request from
1198 * @op: operation and flags
1199 * @bio: bio to allocate request for (can be %NULL)
1200 * @gfp_mask: allocation mask
1201 *
1202 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1203 * this function keeps retrying under memory pressure and fails iff @q is dead.
1204 *
1205 * Must be called with @q->queue_lock held and,
1206 * Returns ERR_PTR on failure, with @q->queue_lock held.
1207 * Returns request pointer on success, with @q->queue_lock *not held*.
1208 */
1209 static struct request *get_request(struct request_queue *q, unsigned int op,
1210 struct bio *bio, gfp_t gfp_mask)
1211 {
1212 const bool is_sync = op_is_sync(op);
1213 DEFINE_WAIT(wait);
1214 struct request_list *rl;
1215 struct request *rq;
1216
1217 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1218 retry:
1219 rq = __get_request(rl, op, bio, gfp_mask);
1220 if (!IS_ERR(rq))
1221 return rq;
1222
1223 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1224 blk_put_rl(rl);
1225 return rq;
1226 }
1227
1228 /* wait on @rl and retry */
1229 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1230 TASK_UNINTERRUPTIBLE);
1231
1232 trace_block_sleeprq(q, bio, op);
1233
1234 spin_unlock_irq(q->queue_lock);
1235 io_schedule();
1236
1237 /*
1238 * After sleeping, we become a "batching" process and will be able
1239 * to allocate at least one request, and up to a big batch of them
1240 * for a small period time. See ioc_batching, ioc_set_batching
1241 */
1242 ioc_set_batching(q, current->io_context);
1243
1244 spin_lock_irq(q->queue_lock);
1245 finish_wait(&rl->wait[is_sync], &wait);
1246
1247 goto retry;
1248 }
1249
1250 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1251 gfp_t gfp_mask)
1252 {
1253 struct request *rq;
1254
1255 /* create ioc upfront */
1256 create_io_context(gfp_mask, q->node);
1257
1258 spin_lock_irq(q->queue_lock);
1259 rq = get_request(q, rw, NULL, gfp_mask);
1260 if (IS_ERR(rq)) {
1261 spin_unlock_irq(q->queue_lock);
1262 return rq;
1263 }
1264
1265 /* q->queue_lock is unlocked at this point */
1266 rq->__data_len = 0;
1267 rq->__sector = (sector_t) -1;
1268 rq->bio = rq->biotail = NULL;
1269 return rq;
1270 }
1271
1272 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1273 {
1274 if (q->mq_ops)
1275 return blk_mq_alloc_request(q, rw,
1276 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1277 0 : BLK_MQ_REQ_NOWAIT);
1278 else
1279 return blk_old_get_request(q, rw, gfp_mask);
1280 }
1281 EXPORT_SYMBOL(blk_get_request);
1282
1283 /**
1284 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1285 * @rq: request to be initialized
1286 *
1287 */
1288 void blk_rq_set_block_pc(struct request *rq)
1289 {
1290 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1291 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1292 }
1293 EXPORT_SYMBOL(blk_rq_set_block_pc);
1294
1295 /**
1296 * blk_requeue_request - put a request back on queue
1297 * @q: request queue where request should be inserted
1298 * @rq: request to be inserted
1299 *
1300 * Description:
1301 * Drivers often keep queueing requests until the hardware cannot accept
1302 * more, when that condition happens we need to put the request back
1303 * on the queue. Must be called with queue lock held.
1304 */
1305 void blk_requeue_request(struct request_queue *q, struct request *rq)
1306 {
1307 blk_delete_timer(rq);
1308 blk_clear_rq_complete(rq);
1309 trace_block_rq_requeue(q, rq);
1310 wbt_requeue(q->rq_wb, &rq->issue_stat);
1311
1312 if (rq->rq_flags & RQF_QUEUED)
1313 blk_queue_end_tag(q, rq);
1314
1315 BUG_ON(blk_queued_rq(rq));
1316
1317 elv_requeue_request(q, rq);
1318 }
1319 EXPORT_SYMBOL(blk_requeue_request);
1320
1321 static void add_acct_request(struct request_queue *q, struct request *rq,
1322 int where)
1323 {
1324 blk_account_io_start(rq, true);
1325 __elv_add_request(q, rq, where);
1326 }
1327
1328 static void part_round_stats_single(int cpu, struct hd_struct *part,
1329 unsigned long now)
1330 {
1331 int inflight;
1332
1333 if (now == part->stamp)
1334 return;
1335
1336 inflight = part_in_flight(part);
1337 if (inflight) {
1338 __part_stat_add(cpu, part, time_in_queue,
1339 inflight * (now - part->stamp));
1340 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1341 }
1342 part->stamp = now;
1343 }
1344
1345 /**
1346 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1347 * @cpu: cpu number for stats access
1348 * @part: target partition
1349 *
1350 * The average IO queue length and utilisation statistics are maintained
1351 * by observing the current state of the queue length and the amount of
1352 * time it has been in this state for.
1353 *
1354 * Normally, that accounting is done on IO completion, but that can result
1355 * in more than a second's worth of IO being accounted for within any one
1356 * second, leading to >100% utilisation. To deal with that, we call this
1357 * function to do a round-off before returning the results when reading
1358 * /proc/diskstats. This accounts immediately for all queue usage up to
1359 * the current jiffies and restarts the counters again.
1360 */
1361 void part_round_stats(int cpu, struct hd_struct *part)
1362 {
1363 unsigned long now = jiffies;
1364
1365 if (part->partno)
1366 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1367 part_round_stats_single(cpu, part, now);
1368 }
1369 EXPORT_SYMBOL_GPL(part_round_stats);
1370
1371 #ifdef CONFIG_PM
1372 static void blk_pm_put_request(struct request *rq)
1373 {
1374 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1375 pm_runtime_mark_last_busy(rq->q->dev);
1376 }
1377 #else
1378 static inline void blk_pm_put_request(struct request *rq) {}
1379 #endif
1380
1381 /*
1382 * queue lock must be held
1383 */
1384 void __blk_put_request(struct request_queue *q, struct request *req)
1385 {
1386 req_flags_t rq_flags = req->rq_flags;
1387
1388 if (unlikely(!q))
1389 return;
1390
1391 if (q->mq_ops) {
1392 blk_mq_free_request(req);
1393 return;
1394 }
1395
1396 blk_pm_put_request(req);
1397
1398 elv_completed_request(q, req);
1399
1400 /* this is a bio leak */
1401 WARN_ON(req->bio != NULL);
1402
1403 wbt_done(q->rq_wb, &req->issue_stat);
1404
1405 /*
1406 * Request may not have originated from ll_rw_blk. if not,
1407 * it didn't come out of our reserved rq pools
1408 */
1409 if (rq_flags & RQF_ALLOCED) {
1410 struct request_list *rl = blk_rq_rl(req);
1411 bool sync = op_is_sync(req->cmd_flags);
1412
1413 BUG_ON(!list_empty(&req->queuelist));
1414 BUG_ON(ELV_ON_HASH(req));
1415
1416 blk_free_request(rl, req);
1417 freed_request(rl, sync, rq_flags);
1418 blk_put_rl(rl);
1419 }
1420 }
1421 EXPORT_SYMBOL_GPL(__blk_put_request);
1422
1423 void blk_put_request(struct request *req)
1424 {
1425 struct request_queue *q = req->q;
1426
1427 if (q->mq_ops)
1428 blk_mq_free_request(req);
1429 else {
1430 unsigned long flags;
1431
1432 spin_lock_irqsave(q->queue_lock, flags);
1433 __blk_put_request(q, req);
1434 spin_unlock_irqrestore(q->queue_lock, flags);
1435 }
1436 }
1437 EXPORT_SYMBOL(blk_put_request);
1438
1439 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1440 struct bio *bio)
1441 {
1442 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1443
1444 if (!ll_back_merge_fn(q, req, bio))
1445 return false;
1446
1447 trace_block_bio_backmerge(q, req, bio);
1448
1449 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1450 blk_rq_set_mixed_merge(req);
1451
1452 req->biotail->bi_next = bio;
1453 req->biotail = bio;
1454 req->__data_len += bio->bi_iter.bi_size;
1455 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1456
1457 blk_account_io_start(req, false);
1458 return true;
1459 }
1460
1461 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1462 struct bio *bio)
1463 {
1464 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1465
1466 if (!ll_front_merge_fn(q, req, bio))
1467 return false;
1468
1469 trace_block_bio_frontmerge(q, req, bio);
1470
1471 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1472 blk_rq_set_mixed_merge(req);
1473
1474 bio->bi_next = req->bio;
1475 req->bio = bio;
1476
1477 req->__sector = bio->bi_iter.bi_sector;
1478 req->__data_len += bio->bi_iter.bi_size;
1479 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1480
1481 blk_account_io_start(req, false);
1482 return true;
1483 }
1484
1485 /**
1486 * blk_attempt_plug_merge - try to merge with %current's plugged list
1487 * @q: request_queue new bio is being queued at
1488 * @bio: new bio being queued
1489 * @request_count: out parameter for number of traversed plugged requests
1490 * @same_queue_rq: pointer to &struct request that gets filled in when
1491 * another request associated with @q is found on the plug list
1492 * (optional, may be %NULL)
1493 *
1494 * Determine whether @bio being queued on @q can be merged with a request
1495 * on %current's plugged list. Returns %true if merge was successful,
1496 * otherwise %false.
1497 *
1498 * Plugging coalesces IOs from the same issuer for the same purpose without
1499 * going through @q->queue_lock. As such it's more of an issuing mechanism
1500 * than scheduling, and the request, while may have elvpriv data, is not
1501 * added on the elevator at this point. In addition, we don't have
1502 * reliable access to the elevator outside queue lock. Only check basic
1503 * merging parameters without querying the elevator.
1504 *
1505 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1506 */
1507 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1508 unsigned int *request_count,
1509 struct request **same_queue_rq)
1510 {
1511 struct blk_plug *plug;
1512 struct request *rq;
1513 bool ret = false;
1514 struct list_head *plug_list;
1515
1516 plug = current->plug;
1517 if (!plug)
1518 goto out;
1519 *request_count = 0;
1520
1521 if (q->mq_ops)
1522 plug_list = &plug->mq_list;
1523 else
1524 plug_list = &plug->list;
1525
1526 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1527 int el_ret;
1528
1529 if (rq->q == q) {
1530 (*request_count)++;
1531 /*
1532 * Only blk-mq multiple hardware queues case checks the
1533 * rq in the same queue, there should be only one such
1534 * rq in a queue
1535 **/
1536 if (same_queue_rq)
1537 *same_queue_rq = rq;
1538 }
1539
1540 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1541 continue;
1542
1543 el_ret = blk_try_merge(rq, bio);
1544 if (el_ret == ELEVATOR_BACK_MERGE) {
1545 ret = bio_attempt_back_merge(q, rq, bio);
1546 if (ret)
1547 break;
1548 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1549 ret = bio_attempt_front_merge(q, rq, bio);
1550 if (ret)
1551 break;
1552 }
1553 }
1554 out:
1555 return ret;
1556 }
1557
1558 unsigned int blk_plug_queued_count(struct request_queue *q)
1559 {
1560 struct blk_plug *plug;
1561 struct request *rq;
1562 struct list_head *plug_list;
1563 unsigned int ret = 0;
1564
1565 plug = current->plug;
1566 if (!plug)
1567 goto out;
1568
1569 if (q->mq_ops)
1570 plug_list = &plug->mq_list;
1571 else
1572 plug_list = &plug->list;
1573
1574 list_for_each_entry(rq, plug_list, queuelist) {
1575 if (rq->q == q)
1576 ret++;
1577 }
1578 out:
1579 return ret;
1580 }
1581
1582 void init_request_from_bio(struct request *req, struct bio *bio)
1583 {
1584 req->cmd_type = REQ_TYPE_FS;
1585 if (bio->bi_opf & REQ_RAHEAD)
1586 req->cmd_flags |= REQ_FAILFAST_MASK;
1587
1588 req->errors = 0;
1589 req->__sector = bio->bi_iter.bi_sector;
1590 if (ioprio_valid(bio_prio(bio)))
1591 req->ioprio = bio_prio(bio);
1592 blk_rq_bio_prep(req->q, req, bio);
1593 }
1594
1595 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1596 {
1597 struct blk_plug *plug;
1598 int el_ret, where = ELEVATOR_INSERT_SORT;
1599 struct request *req;
1600 unsigned int request_count = 0;
1601 unsigned int wb_acct;
1602
1603 /*
1604 * low level driver can indicate that it wants pages above a
1605 * certain limit bounced to low memory (ie for highmem, or even
1606 * ISA dma in theory)
1607 */
1608 blk_queue_bounce(q, &bio);
1609
1610 blk_queue_split(q, &bio, q->bio_split);
1611
1612 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1613 bio->bi_error = -EIO;
1614 bio_endio(bio);
1615 return BLK_QC_T_NONE;
1616 }
1617
1618 if (op_is_flush(bio->bi_opf)) {
1619 spin_lock_irq(q->queue_lock);
1620 where = ELEVATOR_INSERT_FLUSH;
1621 goto get_rq;
1622 }
1623
1624 /*
1625 * Check if we can merge with the plugged list before grabbing
1626 * any locks.
1627 */
1628 if (!blk_queue_nomerges(q)) {
1629 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1630 return BLK_QC_T_NONE;
1631 } else
1632 request_count = blk_plug_queued_count(q);
1633
1634 spin_lock_irq(q->queue_lock);
1635
1636 el_ret = elv_merge(q, &req, bio);
1637 if (el_ret == ELEVATOR_BACK_MERGE) {
1638 if (bio_attempt_back_merge(q, req, bio)) {
1639 elv_bio_merged(q, req, bio);
1640 if (!attempt_back_merge(q, req))
1641 elv_merged_request(q, req, el_ret);
1642 goto out_unlock;
1643 }
1644 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1645 if (bio_attempt_front_merge(q, req, bio)) {
1646 elv_bio_merged(q, req, bio);
1647 if (!attempt_front_merge(q, req))
1648 elv_merged_request(q, req, el_ret);
1649 goto out_unlock;
1650 }
1651 }
1652
1653 get_rq:
1654 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1655
1656 /*
1657 * Grab a free request. This is might sleep but can not fail.
1658 * Returns with the queue unlocked.
1659 */
1660 req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1661 if (IS_ERR(req)) {
1662 __wbt_done(q->rq_wb, wb_acct);
1663 bio->bi_error = PTR_ERR(req);
1664 bio_endio(bio);
1665 goto out_unlock;
1666 }
1667
1668 wbt_track(&req->issue_stat, wb_acct);
1669
1670 /*
1671 * After dropping the lock and possibly sleeping here, our request
1672 * may now be mergeable after it had proven unmergeable (above).
1673 * We don't worry about that case for efficiency. It won't happen
1674 * often, and the elevators are able to handle it.
1675 */
1676 init_request_from_bio(req, bio);
1677
1678 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1679 req->cpu = raw_smp_processor_id();
1680
1681 plug = current->plug;
1682 if (plug) {
1683 /*
1684 * If this is the first request added after a plug, fire
1685 * of a plug trace.
1686 *
1687 * @request_count may become stale because of schedule
1688 * out, so check plug list again.
1689 */
1690 if (!request_count || list_empty(&plug->list))
1691 trace_block_plug(q);
1692 else {
1693 struct request *last = list_entry_rq(plug->list.prev);
1694 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1695 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1696 blk_flush_plug_list(plug, false);
1697 trace_block_plug(q);
1698 }
1699 }
1700 list_add_tail(&req->queuelist, &plug->list);
1701 blk_account_io_start(req, true);
1702 } else {
1703 spin_lock_irq(q->queue_lock);
1704 add_acct_request(q, req, where);
1705 __blk_run_queue(q);
1706 out_unlock:
1707 spin_unlock_irq(q->queue_lock);
1708 }
1709
1710 return BLK_QC_T_NONE;
1711 }
1712
1713 /*
1714 * If bio->bi_dev is a partition, remap the location
1715 */
1716 static inline void blk_partition_remap(struct bio *bio)
1717 {
1718 struct block_device *bdev = bio->bi_bdev;
1719
1720 /*
1721 * Zone reset does not include bi_size so bio_sectors() is always 0.
1722 * Include a test for the reset op code and perform the remap if needed.
1723 */
1724 if (bdev != bdev->bd_contains &&
1725 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1726 struct hd_struct *p = bdev->bd_part;
1727
1728 bio->bi_iter.bi_sector += p->start_sect;
1729 bio->bi_bdev = bdev->bd_contains;
1730
1731 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1732 bdev->bd_dev,
1733 bio->bi_iter.bi_sector - p->start_sect);
1734 }
1735 }
1736
1737 static void handle_bad_sector(struct bio *bio)
1738 {
1739 char b[BDEVNAME_SIZE];
1740
1741 printk(KERN_INFO "attempt to access beyond end of device\n");
1742 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1743 bdevname(bio->bi_bdev, b),
1744 bio->bi_opf,
1745 (unsigned long long)bio_end_sector(bio),
1746 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1747 }
1748
1749 #ifdef CONFIG_FAIL_MAKE_REQUEST
1750
1751 static DECLARE_FAULT_ATTR(fail_make_request);
1752
1753 static int __init setup_fail_make_request(char *str)
1754 {
1755 return setup_fault_attr(&fail_make_request, str);
1756 }
1757 __setup("fail_make_request=", setup_fail_make_request);
1758
1759 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1760 {
1761 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1762 }
1763
1764 static int __init fail_make_request_debugfs(void)
1765 {
1766 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1767 NULL, &fail_make_request);
1768
1769 return PTR_ERR_OR_ZERO(dir);
1770 }
1771
1772 late_initcall(fail_make_request_debugfs);
1773
1774 #else /* CONFIG_FAIL_MAKE_REQUEST */
1775
1776 static inline bool should_fail_request(struct hd_struct *part,
1777 unsigned int bytes)
1778 {
1779 return false;
1780 }
1781
1782 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1783
1784 /*
1785 * Check whether this bio extends beyond the end of the device.
1786 */
1787 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1788 {
1789 sector_t maxsector;
1790
1791 if (!nr_sectors)
1792 return 0;
1793
1794 /* Test device or partition size, when known. */
1795 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1796 if (maxsector) {
1797 sector_t sector = bio->bi_iter.bi_sector;
1798
1799 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1800 /*
1801 * This may well happen - the kernel calls bread()
1802 * without checking the size of the device, e.g., when
1803 * mounting a device.
1804 */
1805 handle_bad_sector(bio);
1806 return 1;
1807 }
1808 }
1809
1810 return 0;
1811 }
1812
1813 static noinline_for_stack bool
1814 generic_make_request_checks(struct bio *bio)
1815 {
1816 struct request_queue *q;
1817 int nr_sectors = bio_sectors(bio);
1818 int err = -EIO;
1819 char b[BDEVNAME_SIZE];
1820 struct hd_struct *part;
1821
1822 might_sleep();
1823
1824 if (bio_check_eod(bio, nr_sectors))
1825 goto end_io;
1826
1827 q = bdev_get_queue(bio->bi_bdev);
1828 if (unlikely(!q)) {
1829 printk(KERN_ERR
1830 "generic_make_request: Trying to access "
1831 "nonexistent block-device %s (%Lu)\n",
1832 bdevname(bio->bi_bdev, b),
1833 (long long) bio->bi_iter.bi_sector);
1834 goto end_io;
1835 }
1836
1837 part = bio->bi_bdev->bd_part;
1838 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1839 should_fail_request(&part_to_disk(part)->part0,
1840 bio->bi_iter.bi_size))
1841 goto end_io;
1842
1843 /*
1844 * If this device has partitions, remap block n
1845 * of partition p to block n+start(p) of the disk.
1846 */
1847 blk_partition_remap(bio);
1848
1849 if (bio_check_eod(bio, nr_sectors))
1850 goto end_io;
1851
1852 /*
1853 * Filter flush bio's early so that make_request based
1854 * drivers without flush support don't have to worry
1855 * about them.
1856 */
1857 if (op_is_flush(bio->bi_opf) &&
1858 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1859 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1860 if (!nr_sectors) {
1861 err = 0;
1862 goto end_io;
1863 }
1864 }
1865
1866 switch (bio_op(bio)) {
1867 case REQ_OP_DISCARD:
1868 if (!blk_queue_discard(q))
1869 goto not_supported;
1870 break;
1871 case REQ_OP_SECURE_ERASE:
1872 if (!blk_queue_secure_erase(q))
1873 goto not_supported;
1874 break;
1875 case REQ_OP_WRITE_SAME:
1876 if (!bdev_write_same(bio->bi_bdev))
1877 goto not_supported;
1878 break;
1879 case REQ_OP_ZONE_REPORT:
1880 case REQ_OP_ZONE_RESET:
1881 if (!bdev_is_zoned(bio->bi_bdev))
1882 goto not_supported;
1883 break;
1884 case REQ_OP_WRITE_ZEROES:
1885 if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1886 goto not_supported;
1887 break;
1888 default:
1889 break;
1890 }
1891
1892 /*
1893 * Various block parts want %current->io_context and lazy ioc
1894 * allocation ends up trading a lot of pain for a small amount of
1895 * memory. Just allocate it upfront. This may fail and block
1896 * layer knows how to live with it.
1897 */
1898 create_io_context(GFP_ATOMIC, q->node);
1899
1900 if (!blkcg_bio_issue_check(q, bio))
1901 return false;
1902
1903 trace_block_bio_queue(q, bio);
1904 return true;
1905
1906 not_supported:
1907 err = -EOPNOTSUPP;
1908 end_io:
1909 bio->bi_error = err;
1910 bio_endio(bio);
1911 return false;
1912 }
1913
1914 /**
1915 * generic_make_request - hand a buffer to its device driver for I/O
1916 * @bio: The bio describing the location in memory and on the device.
1917 *
1918 * generic_make_request() is used to make I/O requests of block
1919 * devices. It is passed a &struct bio, which describes the I/O that needs
1920 * to be done.
1921 *
1922 * generic_make_request() does not return any status. The
1923 * success/failure status of the request, along with notification of
1924 * completion, is delivered asynchronously through the bio->bi_end_io
1925 * function described (one day) else where.
1926 *
1927 * The caller of generic_make_request must make sure that bi_io_vec
1928 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1929 * set to describe the device address, and the
1930 * bi_end_io and optionally bi_private are set to describe how
1931 * completion notification should be signaled.
1932 *
1933 * generic_make_request and the drivers it calls may use bi_next if this
1934 * bio happens to be merged with someone else, and may resubmit the bio to
1935 * a lower device by calling into generic_make_request recursively, which
1936 * means the bio should NOT be touched after the call to ->make_request_fn.
1937 */
1938 blk_qc_t generic_make_request(struct bio *bio)
1939 {
1940 struct bio_list bio_list_on_stack;
1941 blk_qc_t ret = BLK_QC_T_NONE;
1942
1943 if (!generic_make_request_checks(bio))
1944 goto out;
1945
1946 /*
1947 * We only want one ->make_request_fn to be active at a time, else
1948 * stack usage with stacked devices could be a problem. So use
1949 * current->bio_list to keep a list of requests submited by a
1950 * make_request_fn function. current->bio_list is also used as a
1951 * flag to say if generic_make_request is currently active in this
1952 * task or not. If it is NULL, then no make_request is active. If
1953 * it is non-NULL, then a make_request is active, and new requests
1954 * should be added at the tail
1955 */
1956 if (current->bio_list) {
1957 bio_list_add(current->bio_list, bio);
1958 goto out;
1959 }
1960
1961 /* following loop may be a bit non-obvious, and so deserves some
1962 * explanation.
1963 * Before entering the loop, bio->bi_next is NULL (as all callers
1964 * ensure that) so we have a list with a single bio.
1965 * We pretend that we have just taken it off a longer list, so
1966 * we assign bio_list to a pointer to the bio_list_on_stack,
1967 * thus initialising the bio_list of new bios to be
1968 * added. ->make_request() may indeed add some more bios
1969 * through a recursive call to generic_make_request. If it
1970 * did, we find a non-NULL value in bio_list and re-enter the loop
1971 * from the top. In this case we really did just take the bio
1972 * of the top of the list (no pretending) and so remove it from
1973 * bio_list, and call into ->make_request() again.
1974 */
1975 BUG_ON(bio->bi_next);
1976 bio_list_init(&bio_list_on_stack);
1977 current->bio_list = &bio_list_on_stack;
1978 do {
1979 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1980
1981 if (likely(blk_queue_enter(q, false) == 0)) {
1982 ret = q->make_request_fn(q, bio);
1983
1984 blk_queue_exit(q);
1985
1986 bio = bio_list_pop(current->bio_list);
1987 } else {
1988 struct bio *bio_next = bio_list_pop(current->bio_list);
1989
1990 bio_io_error(bio);
1991 bio = bio_next;
1992 }
1993 } while (bio);
1994 current->bio_list = NULL; /* deactivate */
1995
1996 out:
1997 return ret;
1998 }
1999 EXPORT_SYMBOL(generic_make_request);
2000
2001 /**
2002 * submit_bio - submit a bio to the block device layer for I/O
2003 * @bio: The &struct bio which describes the I/O
2004 *
2005 * submit_bio() is very similar in purpose to generic_make_request(), and
2006 * uses that function to do most of the work. Both are fairly rough
2007 * interfaces; @bio must be presetup and ready for I/O.
2008 *
2009 */
2010 blk_qc_t submit_bio(struct bio *bio)
2011 {
2012 /*
2013 * If it's a regular read/write or a barrier with data attached,
2014 * go through the normal accounting stuff before submission.
2015 */
2016 if (bio_has_data(bio)) {
2017 unsigned int count;
2018
2019 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2020 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2021 else
2022 count = bio_sectors(bio);
2023
2024 if (op_is_write(bio_op(bio))) {
2025 count_vm_events(PGPGOUT, count);
2026 } else {
2027 task_io_account_read(bio->bi_iter.bi_size);
2028 count_vm_events(PGPGIN, count);
2029 }
2030
2031 if (unlikely(block_dump)) {
2032 char b[BDEVNAME_SIZE];
2033 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2034 current->comm, task_pid_nr(current),
2035 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2036 (unsigned long long)bio->bi_iter.bi_sector,
2037 bdevname(bio->bi_bdev, b),
2038 count);
2039 }
2040 }
2041
2042 return generic_make_request(bio);
2043 }
2044 EXPORT_SYMBOL(submit_bio);
2045
2046 /**
2047 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2048 * for new the queue limits
2049 * @q: the queue
2050 * @rq: the request being checked
2051 *
2052 * Description:
2053 * @rq may have been made based on weaker limitations of upper-level queues
2054 * in request stacking drivers, and it may violate the limitation of @q.
2055 * Since the block layer and the underlying device driver trust @rq
2056 * after it is inserted to @q, it should be checked against @q before
2057 * the insertion using this generic function.
2058 *
2059 * Request stacking drivers like request-based dm may change the queue
2060 * limits when retrying requests on other queues. Those requests need
2061 * to be checked against the new queue limits again during dispatch.
2062 */
2063 static int blk_cloned_rq_check_limits(struct request_queue *q,
2064 struct request *rq)
2065 {
2066 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2067 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2068 return -EIO;
2069 }
2070
2071 /*
2072 * queue's settings related to segment counting like q->bounce_pfn
2073 * may differ from that of other stacking queues.
2074 * Recalculate it to check the request correctly on this queue's
2075 * limitation.
2076 */
2077 blk_recalc_rq_segments(rq);
2078 if (rq->nr_phys_segments > queue_max_segments(q)) {
2079 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2080 return -EIO;
2081 }
2082
2083 return 0;
2084 }
2085
2086 /**
2087 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2088 * @q: the queue to submit the request
2089 * @rq: the request being queued
2090 */
2091 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2092 {
2093 unsigned long flags;
2094 int where = ELEVATOR_INSERT_BACK;
2095
2096 if (blk_cloned_rq_check_limits(q, rq))
2097 return -EIO;
2098
2099 if (rq->rq_disk &&
2100 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2101 return -EIO;
2102
2103 if (q->mq_ops) {
2104 if (blk_queue_io_stat(q))
2105 blk_account_io_start(rq, true);
2106 blk_mq_sched_insert_request(rq, false, true, false, false);
2107 return 0;
2108 }
2109
2110 spin_lock_irqsave(q->queue_lock, flags);
2111 if (unlikely(blk_queue_dying(q))) {
2112 spin_unlock_irqrestore(q->queue_lock, flags);
2113 return -ENODEV;
2114 }
2115
2116 /*
2117 * Submitting request must be dequeued before calling this function
2118 * because it will be linked to another request_queue
2119 */
2120 BUG_ON(blk_queued_rq(rq));
2121
2122 if (op_is_flush(rq->cmd_flags))
2123 where = ELEVATOR_INSERT_FLUSH;
2124
2125 add_acct_request(q, rq, where);
2126 if (where == ELEVATOR_INSERT_FLUSH)
2127 __blk_run_queue(q);
2128 spin_unlock_irqrestore(q->queue_lock, flags);
2129
2130 return 0;
2131 }
2132 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2133
2134 /**
2135 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2136 * @rq: request to examine
2137 *
2138 * Description:
2139 * A request could be merge of IOs which require different failure
2140 * handling. This function determines the number of bytes which
2141 * can be failed from the beginning of the request without
2142 * crossing into area which need to be retried further.
2143 *
2144 * Return:
2145 * The number of bytes to fail.
2146 *
2147 * Context:
2148 * queue_lock must be held.
2149 */
2150 unsigned int blk_rq_err_bytes(const struct request *rq)
2151 {
2152 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2153 unsigned int bytes = 0;
2154 struct bio *bio;
2155
2156 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2157 return blk_rq_bytes(rq);
2158
2159 /*
2160 * Currently the only 'mixing' which can happen is between
2161 * different fastfail types. We can safely fail portions
2162 * which have all the failfast bits that the first one has -
2163 * the ones which are at least as eager to fail as the first
2164 * one.
2165 */
2166 for (bio = rq->bio; bio; bio = bio->bi_next) {
2167 if ((bio->bi_opf & ff) != ff)
2168 break;
2169 bytes += bio->bi_iter.bi_size;
2170 }
2171
2172 /* this could lead to infinite loop */
2173 BUG_ON(blk_rq_bytes(rq) && !bytes);
2174 return bytes;
2175 }
2176 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2177
2178 void blk_account_io_completion(struct request *req, unsigned int bytes)
2179 {
2180 if (blk_do_io_stat(req)) {
2181 const int rw = rq_data_dir(req);
2182 struct hd_struct *part;
2183 int cpu;
2184
2185 cpu = part_stat_lock();
2186 part = req->part;
2187 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2188 part_stat_unlock();
2189 }
2190 }
2191
2192 void blk_account_io_done(struct request *req)
2193 {
2194 /*
2195 * Account IO completion. flush_rq isn't accounted as a
2196 * normal IO on queueing nor completion. Accounting the
2197 * containing request is enough.
2198 */
2199 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2200 unsigned long duration = jiffies - req->start_time;
2201 const int rw = rq_data_dir(req);
2202 struct hd_struct *part;
2203 int cpu;
2204
2205 cpu = part_stat_lock();
2206 part = req->part;
2207
2208 part_stat_inc(cpu, part, ios[rw]);
2209 part_stat_add(cpu, part, ticks[rw], duration);
2210 part_round_stats(cpu, part);
2211 part_dec_in_flight(part, rw);
2212
2213 hd_struct_put(part);
2214 part_stat_unlock();
2215 }
2216 }
2217
2218 #ifdef CONFIG_PM
2219 /*
2220 * Don't process normal requests when queue is suspended
2221 * or in the process of suspending/resuming
2222 */
2223 static struct request *blk_pm_peek_request(struct request_queue *q,
2224 struct request *rq)
2225 {
2226 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2227 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2228 return NULL;
2229 else
2230 return rq;
2231 }
2232 #else
2233 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2234 struct request *rq)
2235 {
2236 return rq;
2237 }
2238 #endif
2239
2240 void blk_account_io_start(struct request *rq, bool new_io)
2241 {
2242 struct hd_struct *part;
2243 int rw = rq_data_dir(rq);
2244 int cpu;
2245
2246 if (!blk_do_io_stat(rq))
2247 return;
2248
2249 cpu = part_stat_lock();
2250
2251 if (!new_io) {
2252 part = rq->part;
2253 part_stat_inc(cpu, part, merges[rw]);
2254 } else {
2255 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2256 if (!hd_struct_try_get(part)) {
2257 /*
2258 * The partition is already being removed,
2259 * the request will be accounted on the disk only
2260 *
2261 * We take a reference on disk->part0 although that
2262 * partition will never be deleted, so we can treat
2263 * it as any other partition.
2264 */
2265 part = &rq->rq_disk->part0;
2266 hd_struct_get(part);
2267 }
2268 part_round_stats(cpu, part);
2269 part_inc_in_flight(part, rw);
2270 rq->part = part;
2271 }
2272
2273 part_stat_unlock();
2274 }
2275
2276 /**
2277 * blk_peek_request - peek at the top of a request queue
2278 * @q: request queue to peek at
2279 *
2280 * Description:
2281 * Return the request at the top of @q. The returned request
2282 * should be started using blk_start_request() before LLD starts
2283 * processing it.
2284 *
2285 * Return:
2286 * Pointer to the request at the top of @q if available. Null
2287 * otherwise.
2288 *
2289 * Context:
2290 * queue_lock must be held.
2291 */
2292 struct request *blk_peek_request(struct request_queue *q)
2293 {
2294 struct request *rq;
2295 int ret;
2296
2297 while ((rq = __elv_next_request(q)) != NULL) {
2298
2299 rq = blk_pm_peek_request(q, rq);
2300 if (!rq)
2301 break;
2302
2303 if (!(rq->rq_flags & RQF_STARTED)) {
2304 /*
2305 * This is the first time the device driver
2306 * sees this request (possibly after
2307 * requeueing). Notify IO scheduler.
2308 */
2309 if (rq->rq_flags & RQF_SORTED)
2310 elv_activate_rq(q, rq);
2311
2312 /*
2313 * just mark as started even if we don't start
2314 * it, a request that has been delayed should
2315 * not be passed by new incoming requests
2316 */
2317 rq->rq_flags |= RQF_STARTED;
2318 trace_block_rq_issue(q, rq);
2319 }
2320
2321 if (!q->boundary_rq || q->boundary_rq == rq) {
2322 q->end_sector = rq_end_sector(rq);
2323 q->boundary_rq = NULL;
2324 }
2325
2326 if (rq->rq_flags & RQF_DONTPREP)
2327 break;
2328
2329 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2330 /*
2331 * make sure space for the drain appears we
2332 * know we can do this because max_hw_segments
2333 * has been adjusted to be one fewer than the
2334 * device can handle
2335 */
2336 rq->nr_phys_segments++;
2337 }
2338
2339 if (!q->prep_rq_fn)
2340 break;
2341
2342 ret = q->prep_rq_fn(q, rq);
2343 if (ret == BLKPREP_OK) {
2344 break;
2345 } else if (ret == BLKPREP_DEFER) {
2346 /*
2347 * the request may have been (partially) prepped.
2348 * we need to keep this request in the front to
2349 * avoid resource deadlock. RQF_STARTED will
2350 * prevent other fs requests from passing this one.
2351 */
2352 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2353 !(rq->rq_flags & RQF_DONTPREP)) {
2354 /*
2355 * remove the space for the drain we added
2356 * so that we don't add it again
2357 */
2358 --rq->nr_phys_segments;
2359 }
2360
2361 rq = NULL;
2362 break;
2363 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2364 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2365
2366 rq->rq_flags |= RQF_QUIET;
2367 /*
2368 * Mark this request as started so we don't trigger
2369 * any debug logic in the end I/O path.
2370 */
2371 blk_start_request(rq);
2372 __blk_end_request_all(rq, err);
2373 } else {
2374 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2375 break;
2376 }
2377 }
2378
2379 return rq;
2380 }
2381 EXPORT_SYMBOL(blk_peek_request);
2382
2383 void blk_dequeue_request(struct request *rq)
2384 {
2385 struct request_queue *q = rq->q;
2386
2387 BUG_ON(list_empty(&rq->queuelist));
2388 BUG_ON(ELV_ON_HASH(rq));
2389
2390 list_del_init(&rq->queuelist);
2391
2392 /*
2393 * the time frame between a request being removed from the lists
2394 * and to it is freed is accounted as io that is in progress at
2395 * the driver side.
2396 */
2397 if (blk_account_rq(rq)) {
2398 q->in_flight[rq_is_sync(rq)]++;
2399 set_io_start_time_ns(rq);
2400 }
2401 }
2402
2403 /**
2404 * blk_start_request - start request processing on the driver
2405 * @req: request to dequeue
2406 *
2407 * Description:
2408 * Dequeue @req and start timeout timer on it. This hands off the
2409 * request to the driver.
2410 *
2411 * Block internal functions which don't want to start timer should
2412 * call blk_dequeue_request().
2413 *
2414 * Context:
2415 * queue_lock must be held.
2416 */
2417 void blk_start_request(struct request *req)
2418 {
2419 blk_dequeue_request(req);
2420
2421 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2422 blk_stat_set_issue_time(&req->issue_stat);
2423 req->rq_flags |= RQF_STATS;
2424 wbt_issue(req->q->rq_wb, &req->issue_stat);
2425 }
2426
2427 /*
2428 * We are now handing the request to the hardware, initialize
2429 * resid_len to full count and add the timeout handler.
2430 */
2431 req->resid_len = blk_rq_bytes(req);
2432 if (unlikely(blk_bidi_rq(req)))
2433 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2434
2435 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2436 blk_add_timer(req);
2437 }
2438 EXPORT_SYMBOL(blk_start_request);
2439
2440 /**
2441 * blk_fetch_request - fetch a request from a request queue
2442 * @q: request queue to fetch a request from
2443 *
2444 * Description:
2445 * Return the request at the top of @q. The request is started on
2446 * return and LLD can start processing it immediately.
2447 *
2448 * Return:
2449 * Pointer to the request at the top of @q if available. Null
2450 * otherwise.
2451 *
2452 * Context:
2453 * queue_lock must be held.
2454 */
2455 struct request *blk_fetch_request(struct request_queue *q)
2456 {
2457 struct request *rq;
2458
2459 rq = blk_peek_request(q);
2460 if (rq)
2461 blk_start_request(rq);
2462 return rq;
2463 }
2464 EXPORT_SYMBOL(blk_fetch_request);
2465
2466 /**
2467 * blk_update_request - Special helper function for request stacking drivers
2468 * @req: the request being processed
2469 * @error: %0 for success, < %0 for error
2470 * @nr_bytes: number of bytes to complete @req
2471 *
2472 * Description:
2473 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2474 * the request structure even if @req doesn't have leftover.
2475 * If @req has leftover, sets it up for the next range of segments.
2476 *
2477 * This special helper function is only for request stacking drivers
2478 * (e.g. request-based dm) so that they can handle partial completion.
2479 * Actual device drivers should use blk_end_request instead.
2480 *
2481 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2482 * %false return from this function.
2483 *
2484 * Return:
2485 * %false - this request doesn't have any more data
2486 * %true - this request has more data
2487 **/
2488 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2489 {
2490 int total_bytes;
2491
2492 trace_block_rq_complete(req->q, req, nr_bytes);
2493
2494 if (!req->bio)
2495 return false;
2496
2497 /*
2498 * For fs requests, rq is just carrier of independent bio's
2499 * and each partial completion should be handled separately.
2500 * Reset per-request error on each partial completion.
2501 *
2502 * TODO: tj: This is too subtle. It would be better to let
2503 * low level drivers do what they see fit.
2504 */
2505 if (req->cmd_type == REQ_TYPE_FS)
2506 req->errors = 0;
2507
2508 if (error && req->cmd_type == REQ_TYPE_FS &&
2509 !(req->rq_flags & RQF_QUIET)) {
2510 char *error_type;
2511
2512 switch (error) {
2513 case -ENOLINK:
2514 error_type = "recoverable transport";
2515 break;
2516 case -EREMOTEIO:
2517 error_type = "critical target";
2518 break;
2519 case -EBADE:
2520 error_type = "critical nexus";
2521 break;
2522 case -ETIMEDOUT:
2523 error_type = "timeout";
2524 break;
2525 case -ENOSPC:
2526 error_type = "critical space allocation";
2527 break;
2528 case -ENODATA:
2529 error_type = "critical medium";
2530 break;
2531 case -EIO:
2532 default:
2533 error_type = "I/O";
2534 break;
2535 }
2536 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2537 __func__, error_type, req->rq_disk ?
2538 req->rq_disk->disk_name : "?",
2539 (unsigned long long)blk_rq_pos(req));
2540
2541 }
2542
2543 blk_account_io_completion(req, nr_bytes);
2544
2545 total_bytes = 0;
2546 while (req->bio) {
2547 struct bio *bio = req->bio;
2548 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2549
2550 if (bio_bytes == bio->bi_iter.bi_size)
2551 req->bio = bio->bi_next;
2552
2553 req_bio_endio(req, bio, bio_bytes, error);
2554
2555 total_bytes += bio_bytes;
2556 nr_bytes -= bio_bytes;
2557
2558 if (!nr_bytes)
2559 break;
2560 }
2561
2562 /*
2563 * completely done
2564 */
2565 if (!req->bio) {
2566 /*
2567 * Reset counters so that the request stacking driver
2568 * can find how many bytes remain in the request
2569 * later.
2570 */
2571 req->__data_len = 0;
2572 return false;
2573 }
2574
2575 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2576
2577 req->__data_len -= total_bytes;
2578
2579 /* update sector only for requests with clear definition of sector */
2580 if (req->cmd_type == REQ_TYPE_FS)
2581 req->__sector += total_bytes >> 9;
2582
2583 /* mixed attributes always follow the first bio */
2584 if (req->rq_flags & RQF_MIXED_MERGE) {
2585 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2586 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2587 }
2588
2589 /*
2590 * If total number of sectors is less than the first segment
2591 * size, something has gone terribly wrong.
2592 */
2593 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2594 blk_dump_rq_flags(req, "request botched");
2595 req->__data_len = blk_rq_cur_bytes(req);
2596 }
2597
2598 /* recalculate the number of segments */
2599 blk_recalc_rq_segments(req);
2600
2601 return true;
2602 }
2603 EXPORT_SYMBOL_GPL(blk_update_request);
2604
2605 static bool blk_update_bidi_request(struct request *rq, int error,
2606 unsigned int nr_bytes,
2607 unsigned int bidi_bytes)
2608 {
2609 if (blk_update_request(rq, error, nr_bytes))
2610 return true;
2611
2612 /* Bidi request must be completed as a whole */
2613 if (unlikely(blk_bidi_rq(rq)) &&
2614 blk_update_request(rq->next_rq, error, bidi_bytes))
2615 return true;
2616
2617 if (blk_queue_add_random(rq->q))
2618 add_disk_randomness(rq->rq_disk);
2619
2620 return false;
2621 }
2622
2623 /**
2624 * blk_unprep_request - unprepare a request
2625 * @req: the request
2626 *
2627 * This function makes a request ready for complete resubmission (or
2628 * completion). It happens only after all error handling is complete,
2629 * so represents the appropriate moment to deallocate any resources
2630 * that were allocated to the request in the prep_rq_fn. The queue
2631 * lock is held when calling this.
2632 */
2633 void blk_unprep_request(struct request *req)
2634 {
2635 struct request_queue *q = req->q;
2636
2637 req->rq_flags &= ~RQF_DONTPREP;
2638 if (q->unprep_rq_fn)
2639 q->unprep_rq_fn(q, req);
2640 }
2641 EXPORT_SYMBOL_GPL(blk_unprep_request);
2642
2643 /*
2644 * queue lock must be held
2645 */
2646 void blk_finish_request(struct request *req, int error)
2647 {
2648 struct request_queue *q = req->q;
2649
2650 if (req->rq_flags & RQF_STATS)
2651 blk_stat_add(&q->rq_stats[rq_data_dir(req)], req);
2652
2653 if (req->rq_flags & RQF_QUEUED)
2654 blk_queue_end_tag(q, req);
2655
2656 BUG_ON(blk_queued_rq(req));
2657
2658 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2659 laptop_io_completion(&req->q->backing_dev_info);
2660
2661 blk_delete_timer(req);
2662
2663 if (req->rq_flags & RQF_DONTPREP)
2664 blk_unprep_request(req);
2665
2666 blk_account_io_done(req);
2667
2668 if (req->end_io) {
2669 wbt_done(req->q->rq_wb, &req->issue_stat);
2670 req->end_io(req, error);
2671 } else {
2672 if (blk_bidi_rq(req))
2673 __blk_put_request(req->next_rq->q, req->next_rq);
2674
2675 __blk_put_request(q, req);
2676 }
2677 }
2678 EXPORT_SYMBOL(blk_finish_request);
2679
2680 /**
2681 * blk_end_bidi_request - Complete a bidi request
2682 * @rq: the request to complete
2683 * @error: %0 for success, < %0 for error
2684 * @nr_bytes: number of bytes to complete @rq
2685 * @bidi_bytes: number of bytes to complete @rq->next_rq
2686 *
2687 * Description:
2688 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2689 * Drivers that supports bidi can safely call this member for any
2690 * type of request, bidi or uni. In the later case @bidi_bytes is
2691 * just ignored.
2692 *
2693 * Return:
2694 * %false - we are done with this request
2695 * %true - still buffers pending for this request
2696 **/
2697 static bool blk_end_bidi_request(struct request *rq, int error,
2698 unsigned int nr_bytes, unsigned int bidi_bytes)
2699 {
2700 struct request_queue *q = rq->q;
2701 unsigned long flags;
2702
2703 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2704 return true;
2705
2706 spin_lock_irqsave(q->queue_lock, flags);
2707 blk_finish_request(rq, error);
2708 spin_unlock_irqrestore(q->queue_lock, flags);
2709
2710 return false;
2711 }
2712
2713 /**
2714 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2715 * @rq: the request to complete
2716 * @error: %0 for success, < %0 for error
2717 * @nr_bytes: number of bytes to complete @rq
2718 * @bidi_bytes: number of bytes to complete @rq->next_rq
2719 *
2720 * Description:
2721 * Identical to blk_end_bidi_request() except that queue lock is
2722 * assumed to be locked on entry and remains so on return.
2723 *
2724 * Return:
2725 * %false - we are done with this request
2726 * %true - still buffers pending for this request
2727 **/
2728 bool __blk_end_bidi_request(struct request *rq, int error,
2729 unsigned int nr_bytes, unsigned int bidi_bytes)
2730 {
2731 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2732 return true;
2733
2734 blk_finish_request(rq, error);
2735
2736 return false;
2737 }
2738
2739 /**
2740 * blk_end_request - Helper function for drivers to complete the request.
2741 * @rq: the request being processed
2742 * @error: %0 for success, < %0 for error
2743 * @nr_bytes: number of bytes to complete
2744 *
2745 * Description:
2746 * Ends I/O on a number of bytes attached to @rq.
2747 * If @rq has leftover, sets it up for the next range of segments.
2748 *
2749 * Return:
2750 * %false - we are done with this request
2751 * %true - still buffers pending for this request
2752 **/
2753 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2754 {
2755 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2756 }
2757 EXPORT_SYMBOL(blk_end_request);
2758
2759 /**
2760 * blk_end_request_all - Helper function for drives to finish the request.
2761 * @rq: the request to finish
2762 * @error: %0 for success, < %0 for error
2763 *
2764 * Description:
2765 * Completely finish @rq.
2766 */
2767 void blk_end_request_all(struct request *rq, int error)
2768 {
2769 bool pending;
2770 unsigned int bidi_bytes = 0;
2771
2772 if (unlikely(blk_bidi_rq(rq)))
2773 bidi_bytes = blk_rq_bytes(rq->next_rq);
2774
2775 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2776 BUG_ON(pending);
2777 }
2778 EXPORT_SYMBOL(blk_end_request_all);
2779
2780 /**
2781 * blk_end_request_cur - Helper function to finish the current request chunk.
2782 * @rq: the request to finish the current chunk for
2783 * @error: %0 for success, < %0 for error
2784 *
2785 * Description:
2786 * Complete the current consecutively mapped chunk from @rq.
2787 *
2788 * Return:
2789 * %false - we are done with this request
2790 * %true - still buffers pending for this request
2791 */
2792 bool blk_end_request_cur(struct request *rq, int error)
2793 {
2794 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2795 }
2796 EXPORT_SYMBOL(blk_end_request_cur);
2797
2798 /**
2799 * blk_end_request_err - Finish a request till the next failure boundary.
2800 * @rq: the request to finish till the next failure boundary for
2801 * @error: must be negative errno
2802 *
2803 * Description:
2804 * Complete @rq till the next failure boundary.
2805 *
2806 * Return:
2807 * %false - we are done with this request
2808 * %true - still buffers pending for this request
2809 */
2810 bool blk_end_request_err(struct request *rq, int error)
2811 {
2812 WARN_ON(error >= 0);
2813 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2814 }
2815 EXPORT_SYMBOL_GPL(blk_end_request_err);
2816
2817 /**
2818 * __blk_end_request - Helper function for drivers to complete the request.
2819 * @rq: the request being processed
2820 * @error: %0 for success, < %0 for error
2821 * @nr_bytes: number of bytes to complete
2822 *
2823 * Description:
2824 * Must be called with queue lock held unlike blk_end_request().
2825 *
2826 * Return:
2827 * %false - we are done with this request
2828 * %true - still buffers pending for this request
2829 **/
2830 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2831 {
2832 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2833 }
2834 EXPORT_SYMBOL(__blk_end_request);
2835
2836 /**
2837 * __blk_end_request_all - Helper function for drives to finish the request.
2838 * @rq: the request to finish
2839 * @error: %0 for success, < %0 for error
2840 *
2841 * Description:
2842 * Completely finish @rq. Must be called with queue lock held.
2843 */
2844 void __blk_end_request_all(struct request *rq, int error)
2845 {
2846 bool pending;
2847 unsigned int bidi_bytes = 0;
2848
2849 if (unlikely(blk_bidi_rq(rq)))
2850 bidi_bytes = blk_rq_bytes(rq->next_rq);
2851
2852 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2853 BUG_ON(pending);
2854 }
2855 EXPORT_SYMBOL(__blk_end_request_all);
2856
2857 /**
2858 * __blk_end_request_cur - Helper function to finish the current request chunk.
2859 * @rq: the request to finish the current chunk for
2860 * @error: %0 for success, < %0 for error
2861 *
2862 * Description:
2863 * Complete the current consecutively mapped chunk from @rq. Must
2864 * be called with queue lock held.
2865 *
2866 * Return:
2867 * %false - we are done with this request
2868 * %true - still buffers pending for this request
2869 */
2870 bool __blk_end_request_cur(struct request *rq, int error)
2871 {
2872 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2873 }
2874 EXPORT_SYMBOL(__blk_end_request_cur);
2875
2876 /**
2877 * __blk_end_request_err - Finish a request till the next failure boundary.
2878 * @rq: the request to finish till the next failure boundary for
2879 * @error: must be negative errno
2880 *
2881 * Description:
2882 * Complete @rq till the next failure boundary. Must be called
2883 * with queue lock held.
2884 *
2885 * Return:
2886 * %false - we are done with this request
2887 * %true - still buffers pending for this request
2888 */
2889 bool __blk_end_request_err(struct request *rq, int error)
2890 {
2891 WARN_ON(error >= 0);
2892 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2893 }
2894 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2895
2896 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2897 struct bio *bio)
2898 {
2899 if (bio_has_data(bio))
2900 rq->nr_phys_segments = bio_phys_segments(q, bio);
2901
2902 rq->__data_len = bio->bi_iter.bi_size;
2903 rq->bio = rq->biotail = bio;
2904
2905 if (bio->bi_bdev)
2906 rq->rq_disk = bio->bi_bdev->bd_disk;
2907 }
2908
2909 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2910 /**
2911 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2912 * @rq: the request to be flushed
2913 *
2914 * Description:
2915 * Flush all pages in @rq.
2916 */
2917 void rq_flush_dcache_pages(struct request *rq)
2918 {
2919 struct req_iterator iter;
2920 struct bio_vec bvec;
2921
2922 rq_for_each_segment(bvec, rq, iter)
2923 flush_dcache_page(bvec.bv_page);
2924 }
2925 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2926 #endif
2927
2928 /**
2929 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2930 * @q : the queue of the device being checked
2931 *
2932 * Description:
2933 * Check if underlying low-level drivers of a device are busy.
2934 * If the drivers want to export their busy state, they must set own
2935 * exporting function using blk_queue_lld_busy() first.
2936 *
2937 * Basically, this function is used only by request stacking drivers
2938 * to stop dispatching requests to underlying devices when underlying
2939 * devices are busy. This behavior helps more I/O merging on the queue
2940 * of the request stacking driver and prevents I/O throughput regression
2941 * on burst I/O load.
2942 *
2943 * Return:
2944 * 0 - Not busy (The request stacking driver should dispatch request)
2945 * 1 - Busy (The request stacking driver should stop dispatching request)
2946 */
2947 int blk_lld_busy(struct request_queue *q)
2948 {
2949 if (q->lld_busy_fn)
2950 return q->lld_busy_fn(q);
2951
2952 return 0;
2953 }
2954 EXPORT_SYMBOL_GPL(blk_lld_busy);
2955
2956 /**
2957 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2958 * @rq: the clone request to be cleaned up
2959 *
2960 * Description:
2961 * Free all bios in @rq for a cloned request.
2962 */
2963 void blk_rq_unprep_clone(struct request *rq)
2964 {
2965 struct bio *bio;
2966
2967 while ((bio = rq->bio) != NULL) {
2968 rq->bio = bio->bi_next;
2969
2970 bio_put(bio);
2971 }
2972 }
2973 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2974
2975 /*
2976 * Copy attributes of the original request to the clone request.
2977 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2978 */
2979 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2980 {
2981 dst->cpu = src->cpu;
2982 dst->cmd_flags = src->cmd_flags | REQ_NOMERGE;
2983 dst->cmd_type = src->cmd_type;
2984 dst->__sector = blk_rq_pos(src);
2985 dst->__data_len = blk_rq_bytes(src);
2986 dst->nr_phys_segments = src->nr_phys_segments;
2987 dst->ioprio = src->ioprio;
2988 dst->extra_len = src->extra_len;
2989 }
2990
2991 /**
2992 * blk_rq_prep_clone - Helper function to setup clone request
2993 * @rq: the request to be setup
2994 * @rq_src: original request to be cloned
2995 * @bs: bio_set that bios for clone are allocated from
2996 * @gfp_mask: memory allocation mask for bio
2997 * @bio_ctr: setup function to be called for each clone bio.
2998 * Returns %0 for success, non %0 for failure.
2999 * @data: private data to be passed to @bio_ctr
3000 *
3001 * Description:
3002 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3003 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3004 * are not copied, and copying such parts is the caller's responsibility.
3005 * Also, pages which the original bios are pointing to are not copied
3006 * and the cloned bios just point same pages.
3007 * So cloned bios must be completed before original bios, which means
3008 * the caller must complete @rq before @rq_src.
3009 */
3010 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3011 struct bio_set *bs, gfp_t gfp_mask,
3012 int (*bio_ctr)(struct bio *, struct bio *, void *),
3013 void *data)
3014 {
3015 struct bio *bio, *bio_src;
3016
3017 if (!bs)
3018 bs = fs_bio_set;
3019
3020 __rq_for_each_bio(bio_src, rq_src) {
3021 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3022 if (!bio)
3023 goto free_and_out;
3024
3025 if (bio_ctr && bio_ctr(bio, bio_src, data))
3026 goto free_and_out;
3027
3028 if (rq->bio) {
3029 rq->biotail->bi_next = bio;
3030 rq->biotail = bio;
3031 } else
3032 rq->bio = rq->biotail = bio;
3033 }
3034
3035 __blk_rq_prep_clone(rq, rq_src);
3036
3037 return 0;
3038
3039 free_and_out:
3040 if (bio)
3041 bio_put(bio);
3042 blk_rq_unprep_clone(rq);
3043
3044 return -ENOMEM;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3047
3048 int kblockd_schedule_work(struct work_struct *work)
3049 {
3050 return queue_work(kblockd_workqueue, work);
3051 }
3052 EXPORT_SYMBOL(kblockd_schedule_work);
3053
3054 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3055 {
3056 return queue_work_on(cpu, kblockd_workqueue, work);
3057 }
3058 EXPORT_SYMBOL(kblockd_schedule_work_on);
3059
3060 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3061 unsigned long delay)
3062 {
3063 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3064 }
3065 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3066
3067 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3068 unsigned long delay)
3069 {
3070 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3071 }
3072 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3073
3074 /**
3075 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3076 * @plug: The &struct blk_plug that needs to be initialized
3077 *
3078 * Description:
3079 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3080 * pending I/O should the task end up blocking between blk_start_plug() and
3081 * blk_finish_plug(). This is important from a performance perspective, but
3082 * also ensures that we don't deadlock. For instance, if the task is blocking
3083 * for a memory allocation, memory reclaim could end up wanting to free a
3084 * page belonging to that request that is currently residing in our private
3085 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3086 * this kind of deadlock.
3087 */
3088 void blk_start_plug(struct blk_plug *plug)
3089 {
3090 struct task_struct *tsk = current;
3091
3092 /*
3093 * If this is a nested plug, don't actually assign it.
3094 */
3095 if (tsk->plug)
3096 return;
3097
3098 INIT_LIST_HEAD(&plug->list);
3099 INIT_LIST_HEAD(&plug->mq_list);
3100 INIT_LIST_HEAD(&plug->cb_list);
3101 /*
3102 * Store ordering should not be needed here, since a potential
3103 * preempt will imply a full memory barrier
3104 */
3105 tsk->plug = plug;
3106 }
3107 EXPORT_SYMBOL(blk_start_plug);
3108
3109 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3110 {
3111 struct request *rqa = container_of(a, struct request, queuelist);
3112 struct request *rqb = container_of(b, struct request, queuelist);
3113
3114 return !(rqa->q < rqb->q ||
3115 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3116 }
3117
3118 /*
3119 * If 'from_schedule' is true, then postpone the dispatch of requests
3120 * until a safe kblockd context. We due this to avoid accidental big
3121 * additional stack usage in driver dispatch, in places where the originally
3122 * plugger did not intend it.
3123 */
3124 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3125 bool from_schedule)
3126 __releases(q->queue_lock)
3127 {
3128 trace_block_unplug(q, depth, !from_schedule);
3129
3130 if (from_schedule)
3131 blk_run_queue_async(q);
3132 else
3133 __blk_run_queue(q);
3134 spin_unlock(q->queue_lock);
3135 }
3136
3137 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3138 {
3139 LIST_HEAD(callbacks);
3140
3141 while (!list_empty(&plug->cb_list)) {
3142 list_splice_init(&plug->cb_list, &callbacks);
3143
3144 while (!list_empty(&callbacks)) {
3145 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3146 struct blk_plug_cb,
3147 list);
3148 list_del(&cb->list);
3149 cb->callback(cb, from_schedule);
3150 }
3151 }
3152 }
3153
3154 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3155 int size)
3156 {
3157 struct blk_plug *plug = current->plug;
3158 struct blk_plug_cb *cb;
3159
3160 if (!plug)
3161 return NULL;
3162
3163 list_for_each_entry(cb, &plug->cb_list, list)
3164 if (cb->callback == unplug && cb->data == data)
3165 return cb;
3166
3167 /* Not currently on the callback list */
3168 BUG_ON(size < sizeof(*cb));
3169 cb = kzalloc(size, GFP_ATOMIC);
3170 if (cb) {
3171 cb->data = data;
3172 cb->callback = unplug;
3173 list_add(&cb->list, &plug->cb_list);
3174 }
3175 return cb;
3176 }
3177 EXPORT_SYMBOL(blk_check_plugged);
3178
3179 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3180 {
3181 struct request_queue *q;
3182 unsigned long flags;
3183 struct request *rq;
3184 LIST_HEAD(list);
3185 unsigned int depth;
3186
3187 flush_plug_callbacks(plug, from_schedule);
3188
3189 if (!list_empty(&plug->mq_list))
3190 blk_mq_flush_plug_list(plug, from_schedule);
3191
3192 if (list_empty(&plug->list))
3193 return;
3194
3195 list_splice_init(&plug->list, &list);
3196
3197 list_sort(NULL, &list, plug_rq_cmp);
3198
3199 q = NULL;
3200 depth = 0;
3201
3202 /*
3203 * Save and disable interrupts here, to avoid doing it for every
3204 * queue lock we have to take.
3205 */
3206 local_irq_save(flags);
3207 while (!list_empty(&list)) {
3208 rq = list_entry_rq(list.next);
3209 list_del_init(&rq->queuelist);
3210 BUG_ON(!rq->q);
3211 if (rq->q != q) {
3212 /*
3213 * This drops the queue lock
3214 */
3215 if (q)
3216 queue_unplugged(q, depth, from_schedule);
3217 q = rq->q;
3218 depth = 0;
3219 spin_lock(q->queue_lock);
3220 }
3221
3222 /*
3223 * Short-circuit if @q is dead
3224 */
3225 if (unlikely(blk_queue_dying(q))) {
3226 __blk_end_request_all(rq, -ENODEV);
3227 continue;
3228 }
3229
3230 /*
3231 * rq is already accounted, so use raw insert
3232 */
3233 if (op_is_flush(rq->cmd_flags))
3234 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3235 else
3236 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3237
3238 depth++;
3239 }
3240
3241 /*
3242 * This drops the queue lock
3243 */
3244 if (q)
3245 queue_unplugged(q, depth, from_schedule);
3246
3247 local_irq_restore(flags);
3248 }
3249
3250 void blk_finish_plug(struct blk_plug *plug)
3251 {
3252 if (plug != current->plug)
3253 return;
3254 blk_flush_plug_list(plug, false);
3255
3256 current->plug = NULL;
3257 }
3258 EXPORT_SYMBOL(blk_finish_plug);
3259
3260 #ifdef CONFIG_PM
3261 /**
3262 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3263 * @q: the queue of the device
3264 * @dev: the device the queue belongs to
3265 *
3266 * Description:
3267 * Initialize runtime-PM-related fields for @q and start auto suspend for
3268 * @dev. Drivers that want to take advantage of request-based runtime PM
3269 * should call this function after @dev has been initialized, and its
3270 * request queue @q has been allocated, and runtime PM for it can not happen
3271 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3272 * cases, driver should call this function before any I/O has taken place.
3273 *
3274 * This function takes care of setting up using auto suspend for the device,
3275 * the autosuspend delay is set to -1 to make runtime suspend impossible
3276 * until an updated value is either set by user or by driver. Drivers do
3277 * not need to touch other autosuspend settings.
3278 *
3279 * The block layer runtime PM is request based, so only works for drivers
3280 * that use request as their IO unit instead of those directly use bio's.
3281 */
3282 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3283 {
3284 q->dev = dev;
3285 q->rpm_status = RPM_ACTIVE;
3286 pm_runtime_set_autosuspend_delay(q->dev, -1);
3287 pm_runtime_use_autosuspend(q->dev);
3288 }
3289 EXPORT_SYMBOL(blk_pm_runtime_init);
3290
3291 /**
3292 * blk_pre_runtime_suspend - Pre runtime suspend check
3293 * @q: the queue of the device
3294 *
3295 * Description:
3296 * This function will check if runtime suspend is allowed for the device
3297 * by examining if there are any requests pending in the queue. If there
3298 * are requests pending, the device can not be runtime suspended; otherwise,
3299 * the queue's status will be updated to SUSPENDING and the driver can
3300 * proceed to suspend the device.
3301 *
3302 * For the not allowed case, we mark last busy for the device so that
3303 * runtime PM core will try to autosuspend it some time later.
3304 *
3305 * This function should be called near the start of the device's
3306 * runtime_suspend callback.
3307 *
3308 * Return:
3309 * 0 - OK to runtime suspend the device
3310 * -EBUSY - Device should not be runtime suspended
3311 */
3312 int blk_pre_runtime_suspend(struct request_queue *q)
3313 {
3314 int ret = 0;
3315
3316 if (!q->dev)
3317 return ret;
3318
3319 spin_lock_irq(q->queue_lock);
3320 if (q->nr_pending) {
3321 ret = -EBUSY;
3322 pm_runtime_mark_last_busy(q->dev);
3323 } else {
3324 q->rpm_status = RPM_SUSPENDING;
3325 }
3326 spin_unlock_irq(q->queue_lock);
3327 return ret;
3328 }
3329 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3330
3331 /**
3332 * blk_post_runtime_suspend - Post runtime suspend processing
3333 * @q: the queue of the device
3334 * @err: return value of the device's runtime_suspend function
3335 *
3336 * Description:
3337 * Update the queue's runtime status according to the return value of the
3338 * device's runtime suspend function and mark last busy for the device so
3339 * that PM core will try to auto suspend the device at a later time.
3340 *
3341 * This function should be called near the end of the device's
3342 * runtime_suspend callback.
3343 */
3344 void blk_post_runtime_suspend(struct request_queue *q, int err)
3345 {
3346 if (!q->dev)
3347 return;
3348
3349 spin_lock_irq(q->queue_lock);
3350 if (!err) {
3351 q->rpm_status = RPM_SUSPENDED;
3352 } else {
3353 q->rpm_status = RPM_ACTIVE;
3354 pm_runtime_mark_last_busy(q->dev);
3355 }
3356 spin_unlock_irq(q->queue_lock);
3357 }
3358 EXPORT_SYMBOL(blk_post_runtime_suspend);
3359
3360 /**
3361 * blk_pre_runtime_resume - Pre runtime resume processing
3362 * @q: the queue of the device
3363 *
3364 * Description:
3365 * Update the queue's runtime status to RESUMING in preparation for the
3366 * runtime resume of the device.
3367 *
3368 * This function should be called near the start of the device's
3369 * runtime_resume callback.
3370 */
3371 void blk_pre_runtime_resume(struct request_queue *q)
3372 {
3373 if (!q->dev)
3374 return;
3375
3376 spin_lock_irq(q->queue_lock);
3377 q->rpm_status = RPM_RESUMING;
3378 spin_unlock_irq(q->queue_lock);
3379 }
3380 EXPORT_SYMBOL(blk_pre_runtime_resume);
3381
3382 /**
3383 * blk_post_runtime_resume - Post runtime resume processing
3384 * @q: the queue of the device
3385 * @err: return value of the device's runtime_resume function
3386 *
3387 * Description:
3388 * Update the queue's runtime status according to the return value of the
3389 * device's runtime_resume function. If it is successfully resumed, process
3390 * the requests that are queued into the device's queue when it is resuming
3391 * and then mark last busy and initiate autosuspend for it.
3392 *
3393 * This function should be called near the end of the device's
3394 * runtime_resume callback.
3395 */
3396 void blk_post_runtime_resume(struct request_queue *q, int err)
3397 {
3398 if (!q->dev)
3399 return;
3400
3401 spin_lock_irq(q->queue_lock);
3402 if (!err) {
3403 q->rpm_status = RPM_ACTIVE;
3404 __blk_run_queue(q);
3405 pm_runtime_mark_last_busy(q->dev);
3406 pm_request_autosuspend(q->dev);
3407 } else {
3408 q->rpm_status = RPM_SUSPENDED;
3409 }
3410 spin_unlock_irq(q->queue_lock);
3411 }
3412 EXPORT_SYMBOL(blk_post_runtime_resume);
3413
3414 /**
3415 * blk_set_runtime_active - Force runtime status of the queue to be active
3416 * @q: the queue of the device
3417 *
3418 * If the device is left runtime suspended during system suspend the resume
3419 * hook typically resumes the device and corrects runtime status
3420 * accordingly. However, that does not affect the queue runtime PM status
3421 * which is still "suspended". This prevents processing requests from the
3422 * queue.
3423 *
3424 * This function can be used in driver's resume hook to correct queue
3425 * runtime PM status and re-enable peeking requests from the queue. It
3426 * should be called before first request is added to the queue.
3427 */
3428 void blk_set_runtime_active(struct request_queue *q)
3429 {
3430 spin_lock_irq(q->queue_lock);
3431 q->rpm_status = RPM_ACTIVE;
3432 pm_runtime_mark_last_busy(q->dev);
3433 pm_request_autosuspend(q->dev);
3434 spin_unlock_irq(q->queue_lock);
3435 }
3436 EXPORT_SYMBOL(blk_set_runtime_active);
3437 #endif
3438
3439 int __init blk_dev_init(void)
3440 {
3441 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3442 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3443 FIELD_SIZEOF(struct request, cmd_flags));
3444 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3445 FIELD_SIZEOF(struct bio, bi_opf));
3446
3447 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3448 kblockd_workqueue = alloc_workqueue("kblockd",
3449 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3450 if (!kblockd_workqueue)
3451 panic("Failed to create kblockd\n");
3452
3453 request_cachep = kmem_cache_create("blkdev_requests",
3454 sizeof(struct request), 0, SLAB_PANIC, NULL);
3455
3456 blk_requestq_cachep = kmem_cache_create("request_queue",
3457 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3458
3459 return 0;
3460 }