]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-core.c
Merge tag 'ti-k3-maintainer-for-v5.12' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62
63 DEFINE_IDA(blk_queue_ida);
64
65 /*
66 * For queue allocation
67 */
68 struct kmem_cache *blk_requestq_cachep;
69
70 /*
71 * Controlling structure to kblockd
72 */
73 static struct workqueue_struct *kblockd_workqueue;
74
75 /**
76 * blk_queue_flag_set - atomically set a queue flag
77 * @flag: flag to be set
78 * @q: request queue
79 */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85
86 /**
87 * blk_queue_flag_clear - atomically clear a queue flag
88 * @flag: flag to be cleared
89 * @q: request queue
90 */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96
97 /**
98 * blk_queue_flag_test_and_set - atomically test and set a queue flag
99 * @flag: flag to be set
100 * @q: request queue
101 *
102 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103 * the flag was already set.
104 */
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 rq->q = q;
117 rq->__sector = (sector_t) -1;
118 INIT_HLIST_NODE(&rq->hash);
119 RB_CLEAR_NODE(&rq->rb_node);
120 rq->tag = BLK_MQ_NO_TAG;
121 rq->internal_tag = BLK_MQ_NO_TAG;
122 rq->start_time_ns = ktime_get_ns();
123 rq->part = NULL;
124 refcount_set(&rq->ref, 1);
125 blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
137 REQ_OP_NAME(ZONE_RESET_ALL),
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
141 REQ_OP_NAME(ZONE_APPEND),
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
144 REQ_OP_NAME(SCSI_IN),
145 REQ_OP_NAME(SCSI_OUT),
146 REQ_OP_NAME(DRV_IN),
147 REQ_OP_NAME(DRV_OUT),
148 };
149 #undef REQ_OP_NAME
150
151 /**
152 * blk_op_str - Return string XXX in the REQ_OP_XXX.
153 * @op: REQ_OP_XXX.
154 *
155 * Description: Centralize block layer function to convert REQ_OP_XXX into
156 * string format. Useful in the debugging and tracing bio or request. For
157 * invalid REQ_OP_XXX it returns string "UNKNOWN".
158 */
159 inline const char *blk_op_str(unsigned int op)
160 {
161 const char *op_str = "UNKNOWN";
162
163 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
164 op_str = blk_op_name[op];
165
166 return op_str;
167 }
168 EXPORT_SYMBOL_GPL(blk_op_str);
169
170 static const struct {
171 int errno;
172 const char *name;
173 } blk_errors[] = {
174 [BLK_STS_OK] = { 0, "" },
175 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
176 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
177 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
178 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
179 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
180 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
181 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
182 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
183 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
184 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
185 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
186
187 /* device mapper special case, should not leak out: */
188 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
189
190 /* zone device specific errors */
191 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
192 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
193
194 /* everything else not covered above: */
195 [BLK_STS_IOERR] = { -EIO, "I/O" },
196 };
197
198 blk_status_t errno_to_blk_status(int errno)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
203 if (blk_errors[i].errno == errno)
204 return (__force blk_status_t)i;
205 }
206
207 return BLK_STS_IOERR;
208 }
209 EXPORT_SYMBOL_GPL(errno_to_blk_status);
210
211 int blk_status_to_errno(blk_status_t status)
212 {
213 int idx = (__force int)status;
214
215 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 return -EIO;
217 return blk_errors[idx].errno;
218 }
219 EXPORT_SYMBOL_GPL(blk_status_to_errno);
220
221 static void print_req_error(struct request *req, blk_status_t status,
222 const char *caller)
223 {
224 int idx = (__force int)status;
225
226 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
227 return;
228
229 printk_ratelimited(KERN_ERR
230 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
231 "phys_seg %u prio class %u\n",
232 caller, blk_errors[idx].name,
233 req->rq_disk ? req->rq_disk->disk_name : "?",
234 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
235 req->cmd_flags & ~REQ_OP_MASK,
236 req->nr_phys_segments,
237 IOPRIO_PRIO_CLASS(req->ioprio));
238 }
239
240 static void req_bio_endio(struct request *rq, struct bio *bio,
241 unsigned int nbytes, blk_status_t error)
242 {
243 if (error)
244 bio->bi_status = error;
245
246 if (unlikely(rq->rq_flags & RQF_QUIET))
247 bio_set_flag(bio, BIO_QUIET);
248
249 bio_advance(bio, nbytes);
250
251 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
252 /*
253 * Partial zone append completions cannot be supported as the
254 * BIO fragments may end up not being written sequentially.
255 */
256 if (bio->bi_iter.bi_size)
257 bio->bi_status = BLK_STS_IOERR;
258 else
259 bio->bi_iter.bi_sector = rq->__sector;
260 }
261
262 /* don't actually finish bio if it's part of flush sequence */
263 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
264 bio_endio(bio);
265 }
266
267 void blk_dump_rq_flags(struct request *rq, char *msg)
268 {
269 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
270 rq->rq_disk ? rq->rq_disk->disk_name : "?",
271 (unsigned long long) rq->cmd_flags);
272
273 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
274 (unsigned long long)blk_rq_pos(rq),
275 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
276 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
277 rq->bio, rq->biotail, blk_rq_bytes(rq));
278 }
279 EXPORT_SYMBOL(blk_dump_rq_flags);
280
281 /**
282 * blk_sync_queue - cancel any pending callbacks on a queue
283 * @q: the queue
284 *
285 * Description:
286 * The block layer may perform asynchronous callback activity
287 * on a queue, such as calling the unplug function after a timeout.
288 * A block device may call blk_sync_queue to ensure that any
289 * such activity is cancelled, thus allowing it to release resources
290 * that the callbacks might use. The caller must already have made sure
291 * that its ->submit_bio will not re-add plugging prior to calling
292 * this function.
293 *
294 * This function does not cancel any asynchronous activity arising
295 * out of elevator or throttling code. That would require elevator_exit()
296 * and blkcg_exit_queue() to be called with queue lock initialized.
297 *
298 */
299 void blk_sync_queue(struct request_queue *q)
300 {
301 del_timer_sync(&q->timeout);
302 cancel_work_sync(&q->timeout_work);
303 }
304 EXPORT_SYMBOL(blk_sync_queue);
305
306 /**
307 * blk_set_pm_only - increment pm_only counter
308 * @q: request queue pointer
309 */
310 void blk_set_pm_only(struct request_queue *q)
311 {
312 atomic_inc(&q->pm_only);
313 }
314 EXPORT_SYMBOL_GPL(blk_set_pm_only);
315
316 void blk_clear_pm_only(struct request_queue *q)
317 {
318 int pm_only;
319
320 pm_only = atomic_dec_return(&q->pm_only);
321 WARN_ON_ONCE(pm_only < 0);
322 if (pm_only == 0)
323 wake_up_all(&q->mq_freeze_wq);
324 }
325 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
326
327 /**
328 * blk_put_queue - decrement the request_queue refcount
329 * @q: the request_queue structure to decrement the refcount for
330 *
331 * Decrements the refcount of the request_queue kobject. When this reaches 0
332 * we'll have blk_release_queue() called.
333 *
334 * Context: Any context, but the last reference must not be dropped from
335 * atomic context.
336 */
337 void blk_put_queue(struct request_queue *q)
338 {
339 kobject_put(&q->kobj);
340 }
341 EXPORT_SYMBOL(blk_put_queue);
342
343 void blk_set_queue_dying(struct request_queue *q)
344 {
345 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346
347 /*
348 * When queue DYING flag is set, we need to block new req
349 * entering queue, so we call blk_freeze_queue_start() to
350 * prevent I/O from crossing blk_queue_enter().
351 */
352 blk_freeze_queue_start(q);
353
354 if (queue_is_mq(q))
355 blk_mq_wake_waiters(q);
356
357 /* Make blk_queue_enter() reexamine the DYING flag. */
358 wake_up_all(&q->mq_freeze_wq);
359 }
360 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361
362 /**
363 * blk_cleanup_queue - shutdown a request queue
364 * @q: request queue to shutdown
365 *
366 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
367 * put it. All future requests will be failed immediately with -ENODEV.
368 *
369 * Context: can sleep
370 */
371 void blk_cleanup_queue(struct request_queue *q)
372 {
373 /* cannot be called from atomic context */
374 might_sleep();
375
376 WARN_ON_ONCE(blk_queue_registered(q));
377
378 /* mark @q DYING, no new request or merges will be allowed afterwards */
379 blk_set_queue_dying(q);
380
381 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
382 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
383
384 /*
385 * Drain all requests queued before DYING marking. Set DEAD flag to
386 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
387 * after draining finished.
388 */
389 blk_freeze_queue(q);
390
391 rq_qos_exit(q);
392
393 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
394
395 /* for synchronous bio-based driver finish in-flight integrity i/o */
396 blk_flush_integrity();
397
398 /* @q won't process any more request, flush async actions */
399 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
400 blk_sync_queue(q);
401
402 if (queue_is_mq(q))
403 blk_mq_exit_queue(q);
404
405 /*
406 * In theory, request pool of sched_tags belongs to request queue.
407 * However, the current implementation requires tag_set for freeing
408 * requests, so free the pool now.
409 *
410 * Queue has become frozen, there can't be any in-queue requests, so
411 * it is safe to free requests now.
412 */
413 mutex_lock(&q->sysfs_lock);
414 if (q->elevator)
415 blk_mq_sched_free_requests(q);
416 mutex_unlock(&q->sysfs_lock);
417
418 percpu_ref_exit(&q->q_usage_counter);
419
420 /* @q is and will stay empty, shutdown and put */
421 blk_put_queue(q);
422 }
423 EXPORT_SYMBOL(blk_cleanup_queue);
424
425 /**
426 * blk_queue_enter() - try to increase q->q_usage_counter
427 * @q: request queue pointer
428 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
429 */
430 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
431 {
432 const bool pm = flags & BLK_MQ_REQ_PM;
433
434 while (true) {
435 bool success = false;
436
437 rcu_read_lock();
438 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
439 /*
440 * The code that increments the pm_only counter is
441 * responsible for ensuring that that counter is
442 * globally visible before the queue is unfrozen.
443 */
444 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
445 !blk_queue_pm_only(q)) {
446 success = true;
447 } else {
448 percpu_ref_put(&q->q_usage_counter);
449 }
450 }
451 rcu_read_unlock();
452
453 if (success)
454 return 0;
455
456 if (flags & BLK_MQ_REQ_NOWAIT)
457 return -EBUSY;
458
459 /*
460 * read pair of barrier in blk_freeze_queue_start(),
461 * we need to order reading __PERCPU_REF_DEAD flag of
462 * .q_usage_counter and reading .mq_freeze_depth or
463 * queue dying flag, otherwise the following wait may
464 * never return if the two reads are reordered.
465 */
466 smp_rmb();
467
468 wait_event(q->mq_freeze_wq,
469 (!q->mq_freeze_depth &&
470 blk_pm_resume_queue(pm, q)) ||
471 blk_queue_dying(q));
472 if (blk_queue_dying(q))
473 return -ENODEV;
474 }
475 }
476
477 static inline int bio_queue_enter(struct bio *bio)
478 {
479 struct request_queue *q = bio->bi_disk->queue;
480 bool nowait = bio->bi_opf & REQ_NOWAIT;
481 int ret;
482
483 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
484 if (unlikely(ret)) {
485 if (nowait && !blk_queue_dying(q))
486 bio_wouldblock_error(bio);
487 else
488 bio_io_error(bio);
489 }
490
491 return ret;
492 }
493
494 void blk_queue_exit(struct request_queue *q)
495 {
496 percpu_ref_put(&q->q_usage_counter);
497 }
498
499 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
500 {
501 struct request_queue *q =
502 container_of(ref, struct request_queue, q_usage_counter);
503
504 wake_up_all(&q->mq_freeze_wq);
505 }
506
507 static void blk_rq_timed_out_timer(struct timer_list *t)
508 {
509 struct request_queue *q = from_timer(q, t, timeout);
510
511 kblockd_schedule_work(&q->timeout_work);
512 }
513
514 static void blk_timeout_work(struct work_struct *work)
515 {
516 }
517
518 struct request_queue *blk_alloc_queue(int node_id)
519 {
520 struct request_queue *q;
521 int ret;
522
523 q = kmem_cache_alloc_node(blk_requestq_cachep,
524 GFP_KERNEL | __GFP_ZERO, node_id);
525 if (!q)
526 return NULL;
527
528 q->last_merge = NULL;
529
530 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
531 if (q->id < 0)
532 goto fail_q;
533
534 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
535 if (ret)
536 goto fail_id;
537
538 q->backing_dev_info = bdi_alloc(node_id);
539 if (!q->backing_dev_info)
540 goto fail_split;
541
542 q->stats = blk_alloc_queue_stats();
543 if (!q->stats)
544 goto fail_stats;
545
546 q->node = node_id;
547
548 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
549
550 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
551 laptop_mode_timer_fn, 0);
552 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
553 INIT_WORK(&q->timeout_work, blk_timeout_work);
554 INIT_LIST_HEAD(&q->icq_list);
555 #ifdef CONFIG_BLK_CGROUP
556 INIT_LIST_HEAD(&q->blkg_list);
557 #endif
558
559 kobject_init(&q->kobj, &blk_queue_ktype);
560
561 mutex_init(&q->debugfs_mutex);
562 mutex_init(&q->sysfs_lock);
563 mutex_init(&q->sysfs_dir_lock);
564 spin_lock_init(&q->queue_lock);
565
566 init_waitqueue_head(&q->mq_freeze_wq);
567 mutex_init(&q->mq_freeze_lock);
568
569 /*
570 * Init percpu_ref in atomic mode so that it's faster to shutdown.
571 * See blk_register_queue() for details.
572 */
573 if (percpu_ref_init(&q->q_usage_counter,
574 blk_queue_usage_counter_release,
575 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
576 goto fail_bdi;
577
578 if (blkcg_init_queue(q))
579 goto fail_ref;
580
581 blk_queue_dma_alignment(q, 511);
582 blk_set_default_limits(&q->limits);
583 q->nr_requests = BLKDEV_MAX_RQ;
584
585 return q;
586
587 fail_ref:
588 percpu_ref_exit(&q->q_usage_counter);
589 fail_bdi:
590 blk_free_queue_stats(q->stats);
591 fail_stats:
592 bdi_put(q->backing_dev_info);
593 fail_split:
594 bioset_exit(&q->bio_split);
595 fail_id:
596 ida_simple_remove(&blk_queue_ida, q->id);
597 fail_q:
598 kmem_cache_free(blk_requestq_cachep, q);
599 return NULL;
600 }
601 EXPORT_SYMBOL(blk_alloc_queue);
602
603 /**
604 * blk_get_queue - increment the request_queue refcount
605 * @q: the request_queue structure to increment the refcount for
606 *
607 * Increment the refcount of the request_queue kobject.
608 *
609 * Context: Any context.
610 */
611 bool blk_get_queue(struct request_queue *q)
612 {
613 if (likely(!blk_queue_dying(q))) {
614 __blk_get_queue(q);
615 return true;
616 }
617
618 return false;
619 }
620 EXPORT_SYMBOL(blk_get_queue);
621
622 /**
623 * blk_get_request - allocate a request
624 * @q: request queue to allocate a request for
625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
627 */
628 struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 blk_mq_req_flags_t flags)
630 {
631 struct request *req;
632
633 WARN_ON_ONCE(op & REQ_NOWAIT);
634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
635
636 req = blk_mq_alloc_request(q, op, flags);
637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 q->mq_ops->initialize_rq_fn(req);
639
640 return req;
641 }
642 EXPORT_SYMBOL(blk_get_request);
643
644 void blk_put_request(struct request *req)
645 {
646 blk_mq_free_request(req);
647 }
648 EXPORT_SYMBOL(blk_put_request);
649
650 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
651 {
652 char b[BDEVNAME_SIZE];
653
654 pr_info_ratelimited("attempt to access beyond end of device\n"
655 "%s: rw=%d, want=%llu, limit=%llu\n",
656 bio_devname(bio, b), bio->bi_opf,
657 bio_end_sector(bio), maxsector);
658 }
659
660 #ifdef CONFIG_FAIL_MAKE_REQUEST
661
662 static DECLARE_FAULT_ATTR(fail_make_request);
663
664 static int __init setup_fail_make_request(char *str)
665 {
666 return setup_fault_attr(&fail_make_request, str);
667 }
668 __setup("fail_make_request=", setup_fail_make_request);
669
670 static bool should_fail_request(struct block_device *part, unsigned int bytes)
671 {
672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
673 }
674
675 static int __init fail_make_request_debugfs(void)
676 {
677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 NULL, &fail_make_request);
679
680 return PTR_ERR_OR_ZERO(dir);
681 }
682
683 late_initcall(fail_make_request_debugfs);
684
685 #else /* CONFIG_FAIL_MAKE_REQUEST */
686
687 static inline bool should_fail_request(struct block_device *part,
688 unsigned int bytes)
689 {
690 return false;
691 }
692
693 #endif /* CONFIG_FAIL_MAKE_REQUEST */
694
695 static inline bool bio_check_ro(struct bio *bio, struct block_device *part)
696 {
697 const int op = bio_op(bio);
698
699 if (part->bd_read_only && op_is_write(op)) {
700 char b[BDEVNAME_SIZE];
701
702 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
703 return false;
704
705 WARN_ONCE(1,
706 "Trying to write to read-only block-device %s (partno %d)\n",
707 bio_devname(bio, b), part->bd_partno);
708 /* Older lvm-tools actually trigger this */
709 return false;
710 }
711
712 return false;
713 }
714
715 static noinline int should_fail_bio(struct bio *bio)
716 {
717 if (should_fail_request(bio->bi_disk->part0, bio->bi_iter.bi_size))
718 return -EIO;
719 return 0;
720 }
721 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
722
723 /*
724 * Check whether this bio extends beyond the end of the device or partition.
725 * This may well happen - the kernel calls bread() without checking the size of
726 * the device, e.g., when mounting a file system.
727 */
728 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
729 {
730 unsigned int nr_sectors = bio_sectors(bio);
731
732 if (nr_sectors && maxsector &&
733 (nr_sectors > maxsector ||
734 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 handle_bad_sector(bio, maxsector);
736 return -EIO;
737 }
738 return 0;
739 }
740
741 /*
742 * Remap block n of partition p to block n+start(p) of the disk.
743 */
744 static inline int blk_partition_remap(struct bio *bio)
745 {
746 struct block_device *p;
747 int ret = -EIO;
748
749 rcu_read_lock();
750 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
751 if (unlikely(!p))
752 goto out;
753 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
754 goto out;
755 if (unlikely(bio_check_ro(bio, p)))
756 goto out;
757
758 if (bio_sectors(bio)) {
759 if (bio_check_eod(bio, bdev_nr_sectors(p)))
760 goto out;
761 bio->bi_iter.bi_sector += p->bd_start_sect;
762 trace_block_bio_remap(bio, p->bd_dev,
763 bio->bi_iter.bi_sector -
764 p->bd_start_sect);
765 }
766 bio->bi_partno = 0;
767 ret = 0;
768 out:
769 rcu_read_unlock();
770 return ret;
771 }
772
773 /*
774 * Check write append to a zoned block device.
775 */
776 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
777 struct bio *bio)
778 {
779 sector_t pos = bio->bi_iter.bi_sector;
780 int nr_sectors = bio_sectors(bio);
781
782 /* Only applicable to zoned block devices */
783 if (!blk_queue_is_zoned(q))
784 return BLK_STS_NOTSUPP;
785
786 /* The bio sector must point to the start of a sequential zone */
787 if (pos & (blk_queue_zone_sectors(q) - 1) ||
788 !blk_queue_zone_is_seq(q, pos))
789 return BLK_STS_IOERR;
790
791 /*
792 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
793 * split and could result in non-contiguous sectors being written in
794 * different zones.
795 */
796 if (nr_sectors > q->limits.chunk_sectors)
797 return BLK_STS_IOERR;
798
799 /* Make sure the BIO is small enough and will not get split */
800 if (nr_sectors > q->limits.max_zone_append_sectors)
801 return BLK_STS_IOERR;
802
803 bio->bi_opf |= REQ_NOMERGE;
804
805 return BLK_STS_OK;
806 }
807
808 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
809 {
810 struct request_queue *q = bio->bi_disk->queue;
811 blk_status_t status = BLK_STS_IOERR;
812 struct blk_plug *plug;
813
814 might_sleep();
815
816 plug = blk_mq_plug(q, bio);
817 if (plug && plug->nowait)
818 bio->bi_opf |= REQ_NOWAIT;
819
820 /*
821 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
822 * if queue does not support NOWAIT.
823 */
824 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
825 goto not_supported;
826
827 if (should_fail_bio(bio))
828 goto end_io;
829
830 if (bio->bi_partno) {
831 if (unlikely(blk_partition_remap(bio)))
832 goto end_io;
833 } else {
834 if (unlikely(bio_check_ro(bio, bio->bi_disk->part0)))
835 goto end_io;
836 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
837 goto end_io;
838 }
839
840 /*
841 * Filter flush bio's early so that bio based drivers without flush
842 * support don't have to worry about them.
843 */
844 if (op_is_flush(bio->bi_opf) &&
845 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
846 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
847 if (!bio_sectors(bio)) {
848 status = BLK_STS_OK;
849 goto end_io;
850 }
851 }
852
853 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
854 bio->bi_opf &= ~REQ_HIPRI;
855
856 switch (bio_op(bio)) {
857 case REQ_OP_DISCARD:
858 if (!blk_queue_discard(q))
859 goto not_supported;
860 break;
861 case REQ_OP_SECURE_ERASE:
862 if (!blk_queue_secure_erase(q))
863 goto not_supported;
864 break;
865 case REQ_OP_WRITE_SAME:
866 if (!q->limits.max_write_same_sectors)
867 goto not_supported;
868 break;
869 case REQ_OP_ZONE_APPEND:
870 status = blk_check_zone_append(q, bio);
871 if (status != BLK_STS_OK)
872 goto end_io;
873 break;
874 case REQ_OP_ZONE_RESET:
875 case REQ_OP_ZONE_OPEN:
876 case REQ_OP_ZONE_CLOSE:
877 case REQ_OP_ZONE_FINISH:
878 if (!blk_queue_is_zoned(q))
879 goto not_supported;
880 break;
881 case REQ_OP_ZONE_RESET_ALL:
882 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
883 goto not_supported;
884 break;
885 case REQ_OP_WRITE_ZEROES:
886 if (!q->limits.max_write_zeroes_sectors)
887 goto not_supported;
888 break;
889 default:
890 break;
891 }
892
893 /*
894 * Various block parts want %current->io_context, so allocate it up
895 * front rather than dealing with lots of pain to allocate it only
896 * where needed. This may fail and the block layer knows how to live
897 * with it.
898 */
899 if (unlikely(!current->io_context))
900 create_task_io_context(current, GFP_ATOMIC, q->node);
901
902 if (blk_throtl_bio(bio)) {
903 blkcg_bio_issue_init(bio);
904 return false;
905 }
906
907 blk_cgroup_bio_start(bio);
908 blkcg_bio_issue_init(bio);
909
910 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
911 trace_block_bio_queue(bio);
912 /* Now that enqueuing has been traced, we need to trace
913 * completion as well.
914 */
915 bio_set_flag(bio, BIO_TRACE_COMPLETION);
916 }
917 return true;
918
919 not_supported:
920 status = BLK_STS_NOTSUPP;
921 end_io:
922 bio->bi_status = status;
923 bio_endio(bio);
924 return false;
925 }
926
927 static blk_qc_t __submit_bio(struct bio *bio)
928 {
929 struct gendisk *disk = bio->bi_disk;
930 blk_qc_t ret = BLK_QC_T_NONE;
931
932 if (blk_crypto_bio_prep(&bio)) {
933 if (!disk->fops->submit_bio)
934 return blk_mq_submit_bio(bio);
935 ret = disk->fops->submit_bio(bio);
936 }
937 blk_queue_exit(disk->queue);
938 return ret;
939 }
940
941 /*
942 * The loop in this function may be a bit non-obvious, and so deserves some
943 * explanation:
944 *
945 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
946 * that), so we have a list with a single bio.
947 * - We pretend that we have just taken it off a longer list, so we assign
948 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
949 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
950 * bios through a recursive call to submit_bio_noacct. If it did, we find a
951 * non-NULL value in bio_list and re-enter the loop from the top.
952 * - In this case we really did just take the bio of the top of the list (no
953 * pretending) and so remove it from bio_list, and call into ->submit_bio()
954 * again.
955 *
956 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
957 * bio_list_on_stack[1] contains bios that were submitted before the current
958 * ->submit_bio_bio, but that haven't been processed yet.
959 */
960 static blk_qc_t __submit_bio_noacct(struct bio *bio)
961 {
962 struct bio_list bio_list_on_stack[2];
963 blk_qc_t ret = BLK_QC_T_NONE;
964
965 BUG_ON(bio->bi_next);
966
967 bio_list_init(&bio_list_on_stack[0]);
968 current->bio_list = bio_list_on_stack;
969
970 do {
971 struct request_queue *q = bio->bi_disk->queue;
972 struct bio_list lower, same;
973
974 if (unlikely(bio_queue_enter(bio) != 0))
975 continue;
976
977 /*
978 * Create a fresh bio_list for all subordinate requests.
979 */
980 bio_list_on_stack[1] = bio_list_on_stack[0];
981 bio_list_init(&bio_list_on_stack[0]);
982
983 ret = __submit_bio(bio);
984
985 /*
986 * Sort new bios into those for a lower level and those for the
987 * same level.
988 */
989 bio_list_init(&lower);
990 bio_list_init(&same);
991 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
992 if (q == bio->bi_disk->queue)
993 bio_list_add(&same, bio);
994 else
995 bio_list_add(&lower, bio);
996
997 /*
998 * Now assemble so we handle the lowest level first.
999 */
1000 bio_list_merge(&bio_list_on_stack[0], &lower);
1001 bio_list_merge(&bio_list_on_stack[0], &same);
1002 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1003 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1004
1005 current->bio_list = NULL;
1006 return ret;
1007 }
1008
1009 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1010 {
1011 struct bio_list bio_list[2] = { };
1012 blk_qc_t ret = BLK_QC_T_NONE;
1013
1014 current->bio_list = bio_list;
1015
1016 do {
1017 struct gendisk *disk = bio->bi_disk;
1018
1019 if (unlikely(bio_queue_enter(bio) != 0))
1020 continue;
1021
1022 if (!blk_crypto_bio_prep(&bio)) {
1023 blk_queue_exit(disk->queue);
1024 ret = BLK_QC_T_NONE;
1025 continue;
1026 }
1027
1028 ret = blk_mq_submit_bio(bio);
1029 } while ((bio = bio_list_pop(&bio_list[0])));
1030
1031 current->bio_list = NULL;
1032 return ret;
1033 }
1034
1035 /**
1036 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1037 * @bio: The bio describing the location in memory and on the device.
1038 *
1039 * This is a version of submit_bio() that shall only be used for I/O that is
1040 * resubmitted to lower level drivers by stacking block drivers. All file
1041 * systems and other upper level users of the block layer should use
1042 * submit_bio() instead.
1043 */
1044 blk_qc_t submit_bio_noacct(struct bio *bio)
1045 {
1046 if (!submit_bio_checks(bio))
1047 return BLK_QC_T_NONE;
1048
1049 /*
1050 * We only want one ->submit_bio to be active at a time, else stack
1051 * usage with stacked devices could be a problem. Use current->bio_list
1052 * to collect a list of requests submited by a ->submit_bio method while
1053 * it is active, and then process them after it returned.
1054 */
1055 if (current->bio_list) {
1056 bio_list_add(&current->bio_list[0], bio);
1057 return BLK_QC_T_NONE;
1058 }
1059
1060 if (!bio->bi_disk->fops->submit_bio)
1061 return __submit_bio_noacct_mq(bio);
1062 return __submit_bio_noacct(bio);
1063 }
1064 EXPORT_SYMBOL(submit_bio_noacct);
1065
1066 /**
1067 * submit_bio - submit a bio to the block device layer for I/O
1068 * @bio: The &struct bio which describes the I/O
1069 *
1070 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1071 * fully set up &struct bio that describes the I/O that needs to be done. The
1072 * bio will be send to the device described by the bi_disk and bi_partno fields.
1073 *
1074 * The success/failure status of the request, along with notification of
1075 * completion, is delivered asynchronously through the ->bi_end_io() callback
1076 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1077 * been called.
1078 */
1079 blk_qc_t submit_bio(struct bio *bio)
1080 {
1081 if (blkcg_punt_bio_submit(bio))
1082 return BLK_QC_T_NONE;
1083
1084 /*
1085 * If it's a regular read/write or a barrier with data attached,
1086 * go through the normal accounting stuff before submission.
1087 */
1088 if (bio_has_data(bio)) {
1089 unsigned int count;
1090
1091 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1092 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1093 else
1094 count = bio_sectors(bio);
1095
1096 if (op_is_write(bio_op(bio))) {
1097 count_vm_events(PGPGOUT, count);
1098 } else {
1099 task_io_account_read(bio->bi_iter.bi_size);
1100 count_vm_events(PGPGIN, count);
1101 }
1102
1103 if (unlikely(block_dump)) {
1104 char b[BDEVNAME_SIZE];
1105 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1106 current->comm, task_pid_nr(current),
1107 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1108 (unsigned long long)bio->bi_iter.bi_sector,
1109 bio_devname(bio, b), count);
1110 }
1111 }
1112
1113 /*
1114 * If we're reading data that is part of the userspace workingset, count
1115 * submission time as memory stall. When the device is congested, or
1116 * the submitting cgroup IO-throttled, submission can be a significant
1117 * part of overall IO time.
1118 */
1119 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1120 bio_flagged(bio, BIO_WORKINGSET))) {
1121 unsigned long pflags;
1122 blk_qc_t ret;
1123
1124 psi_memstall_enter(&pflags);
1125 ret = submit_bio_noacct(bio);
1126 psi_memstall_leave(&pflags);
1127
1128 return ret;
1129 }
1130
1131 return submit_bio_noacct(bio);
1132 }
1133 EXPORT_SYMBOL(submit_bio);
1134
1135 /**
1136 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1137 * for the new queue limits
1138 * @q: the queue
1139 * @rq: the request being checked
1140 *
1141 * Description:
1142 * @rq may have been made based on weaker limitations of upper-level queues
1143 * in request stacking drivers, and it may violate the limitation of @q.
1144 * Since the block layer and the underlying device driver trust @rq
1145 * after it is inserted to @q, it should be checked against @q before
1146 * the insertion using this generic function.
1147 *
1148 * Request stacking drivers like request-based dm may change the queue
1149 * limits when retrying requests on other queues. Those requests need
1150 * to be checked against the new queue limits again during dispatch.
1151 */
1152 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1153 struct request *rq)
1154 {
1155 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1156
1157 if (blk_rq_sectors(rq) > max_sectors) {
1158 /*
1159 * SCSI device does not have a good way to return if
1160 * Write Same/Zero is actually supported. If a device rejects
1161 * a non-read/write command (discard, write same,etc.) the
1162 * low-level device driver will set the relevant queue limit to
1163 * 0 to prevent blk-lib from issuing more of the offending
1164 * operations. Commands queued prior to the queue limit being
1165 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1166 * errors being propagated to upper layers.
1167 */
1168 if (max_sectors == 0)
1169 return BLK_STS_NOTSUPP;
1170
1171 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1172 __func__, blk_rq_sectors(rq), max_sectors);
1173 return BLK_STS_IOERR;
1174 }
1175
1176 /*
1177 * queue's settings related to segment counting like q->bounce_pfn
1178 * may differ from that of other stacking queues.
1179 * Recalculate it to check the request correctly on this queue's
1180 * limitation.
1181 */
1182 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1183 if (rq->nr_phys_segments > queue_max_segments(q)) {
1184 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1185 __func__, rq->nr_phys_segments, queue_max_segments(q));
1186 return BLK_STS_IOERR;
1187 }
1188
1189 return BLK_STS_OK;
1190 }
1191
1192 /**
1193 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1194 * @q: the queue to submit the request
1195 * @rq: the request being queued
1196 */
1197 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1198 {
1199 blk_status_t ret;
1200
1201 ret = blk_cloned_rq_check_limits(q, rq);
1202 if (ret != BLK_STS_OK)
1203 return ret;
1204
1205 if (rq->rq_disk &&
1206 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1207 return BLK_STS_IOERR;
1208
1209 if (blk_crypto_insert_cloned_request(rq))
1210 return BLK_STS_IOERR;
1211
1212 if (blk_queue_io_stat(q))
1213 blk_account_io_start(rq);
1214
1215 /*
1216 * Since we have a scheduler attached on the top device,
1217 * bypass a potential scheduler on the bottom device for
1218 * insert.
1219 */
1220 return blk_mq_request_issue_directly(rq, true);
1221 }
1222 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1223
1224 /**
1225 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1226 * @rq: request to examine
1227 *
1228 * Description:
1229 * A request could be merge of IOs which require different failure
1230 * handling. This function determines the number of bytes which
1231 * can be failed from the beginning of the request without
1232 * crossing into area which need to be retried further.
1233 *
1234 * Return:
1235 * The number of bytes to fail.
1236 */
1237 unsigned int blk_rq_err_bytes(const struct request *rq)
1238 {
1239 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1240 unsigned int bytes = 0;
1241 struct bio *bio;
1242
1243 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1244 return blk_rq_bytes(rq);
1245
1246 /*
1247 * Currently the only 'mixing' which can happen is between
1248 * different fastfail types. We can safely fail portions
1249 * which have all the failfast bits that the first one has -
1250 * the ones which are at least as eager to fail as the first
1251 * one.
1252 */
1253 for (bio = rq->bio; bio; bio = bio->bi_next) {
1254 if ((bio->bi_opf & ff) != ff)
1255 break;
1256 bytes += bio->bi_iter.bi_size;
1257 }
1258
1259 /* this could lead to infinite loop */
1260 BUG_ON(blk_rq_bytes(rq) && !bytes);
1261 return bytes;
1262 }
1263 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1264
1265 static void update_io_ticks(struct block_device *part, unsigned long now,
1266 bool end)
1267 {
1268 unsigned long stamp;
1269 again:
1270 stamp = READ_ONCE(part->bd_stamp);
1271 if (unlikely(stamp != now)) {
1272 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1273 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1274 }
1275 if (part->bd_partno) {
1276 part = bdev_whole(part);
1277 goto again;
1278 }
1279 }
1280
1281 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1282 {
1283 if (req->part && blk_do_io_stat(req)) {
1284 const int sgrp = op_stat_group(req_op(req));
1285
1286 part_stat_lock();
1287 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1288 part_stat_unlock();
1289 }
1290 }
1291
1292 void blk_account_io_done(struct request *req, u64 now)
1293 {
1294 /*
1295 * Account IO completion. flush_rq isn't accounted as a
1296 * normal IO on queueing nor completion. Accounting the
1297 * containing request is enough.
1298 */
1299 if (req->part && blk_do_io_stat(req) &&
1300 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1301 const int sgrp = op_stat_group(req_op(req));
1302
1303 part_stat_lock();
1304 update_io_ticks(req->part, jiffies, true);
1305 part_stat_inc(req->part, ios[sgrp]);
1306 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1307 part_stat_unlock();
1308 }
1309 }
1310
1311 void blk_account_io_start(struct request *rq)
1312 {
1313 if (!blk_do_io_stat(rq))
1314 return;
1315
1316 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1317
1318 part_stat_lock();
1319 update_io_ticks(rq->part, jiffies, false);
1320 part_stat_unlock();
1321 }
1322
1323 static unsigned long __part_start_io_acct(struct block_device *part,
1324 unsigned int sectors, unsigned int op)
1325 {
1326 const int sgrp = op_stat_group(op);
1327 unsigned long now = READ_ONCE(jiffies);
1328
1329 part_stat_lock();
1330 update_io_ticks(part, now, false);
1331 part_stat_inc(part, ios[sgrp]);
1332 part_stat_add(part, sectors[sgrp], sectors);
1333 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1334 part_stat_unlock();
1335
1336 return now;
1337 }
1338
1339 unsigned long part_start_io_acct(struct gendisk *disk, struct block_device **part,
1340 struct bio *bio)
1341 {
1342 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1343
1344 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1345 }
1346 EXPORT_SYMBOL_GPL(part_start_io_acct);
1347
1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1349 unsigned int op)
1350 {
1351 return __part_start_io_acct(disk->part0, sectors, op);
1352 }
1353 EXPORT_SYMBOL(disk_start_io_acct);
1354
1355 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1356 unsigned long start_time)
1357 {
1358 const int sgrp = op_stat_group(op);
1359 unsigned long now = READ_ONCE(jiffies);
1360 unsigned long duration = now - start_time;
1361
1362 part_stat_lock();
1363 update_io_ticks(part, now, true);
1364 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1365 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1366 part_stat_unlock();
1367 }
1368
1369 void part_end_io_acct(struct block_device *part, struct bio *bio,
1370 unsigned long start_time)
1371 {
1372 __part_end_io_acct(part, bio_op(bio), start_time);
1373 }
1374 EXPORT_SYMBOL_GPL(part_end_io_acct);
1375
1376 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1377 unsigned long start_time)
1378 {
1379 __part_end_io_acct(disk->part0, op, start_time);
1380 }
1381 EXPORT_SYMBOL(disk_end_io_acct);
1382
1383 /*
1384 * Steal bios from a request and add them to a bio list.
1385 * The request must not have been partially completed before.
1386 */
1387 void blk_steal_bios(struct bio_list *list, struct request *rq)
1388 {
1389 if (rq->bio) {
1390 if (list->tail)
1391 list->tail->bi_next = rq->bio;
1392 else
1393 list->head = rq->bio;
1394 list->tail = rq->biotail;
1395
1396 rq->bio = NULL;
1397 rq->biotail = NULL;
1398 }
1399
1400 rq->__data_len = 0;
1401 }
1402 EXPORT_SYMBOL_GPL(blk_steal_bios);
1403
1404 /**
1405 * blk_update_request - Special helper function for request stacking drivers
1406 * @req: the request being processed
1407 * @error: block status code
1408 * @nr_bytes: number of bytes to complete @req
1409 *
1410 * Description:
1411 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1412 * the request structure even if @req doesn't have leftover.
1413 * If @req has leftover, sets it up for the next range of segments.
1414 *
1415 * This special helper function is only for request stacking drivers
1416 * (e.g. request-based dm) so that they can handle partial completion.
1417 * Actual device drivers should use blk_mq_end_request instead.
1418 *
1419 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1420 * %false return from this function.
1421 *
1422 * Note:
1423 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1424 * blk_rq_bytes() and in blk_update_request().
1425 *
1426 * Return:
1427 * %false - this request doesn't have any more data
1428 * %true - this request has more data
1429 **/
1430 bool blk_update_request(struct request *req, blk_status_t error,
1431 unsigned int nr_bytes)
1432 {
1433 int total_bytes;
1434
1435 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1436
1437 if (!req->bio)
1438 return false;
1439
1440 #ifdef CONFIG_BLK_DEV_INTEGRITY
1441 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1442 error == BLK_STS_OK)
1443 req->q->integrity.profile->complete_fn(req, nr_bytes);
1444 #endif
1445
1446 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1447 !(req->rq_flags & RQF_QUIET)))
1448 print_req_error(req, error, __func__);
1449
1450 blk_account_io_completion(req, nr_bytes);
1451
1452 total_bytes = 0;
1453 while (req->bio) {
1454 struct bio *bio = req->bio;
1455 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1456
1457 if (bio_bytes == bio->bi_iter.bi_size)
1458 req->bio = bio->bi_next;
1459
1460 /* Completion has already been traced */
1461 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1462 req_bio_endio(req, bio, bio_bytes, error);
1463
1464 total_bytes += bio_bytes;
1465 nr_bytes -= bio_bytes;
1466
1467 if (!nr_bytes)
1468 break;
1469 }
1470
1471 /*
1472 * completely done
1473 */
1474 if (!req->bio) {
1475 /*
1476 * Reset counters so that the request stacking driver
1477 * can find how many bytes remain in the request
1478 * later.
1479 */
1480 req->__data_len = 0;
1481 return false;
1482 }
1483
1484 req->__data_len -= total_bytes;
1485
1486 /* update sector only for requests with clear definition of sector */
1487 if (!blk_rq_is_passthrough(req))
1488 req->__sector += total_bytes >> 9;
1489
1490 /* mixed attributes always follow the first bio */
1491 if (req->rq_flags & RQF_MIXED_MERGE) {
1492 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1493 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1494 }
1495
1496 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1497 /*
1498 * If total number of sectors is less than the first segment
1499 * size, something has gone terribly wrong.
1500 */
1501 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1502 blk_dump_rq_flags(req, "request botched");
1503 req->__data_len = blk_rq_cur_bytes(req);
1504 }
1505
1506 /* recalculate the number of segments */
1507 req->nr_phys_segments = blk_recalc_rq_segments(req);
1508 }
1509
1510 return true;
1511 }
1512 EXPORT_SYMBOL_GPL(blk_update_request);
1513
1514 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1515 /**
1516 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1517 * @rq: the request to be flushed
1518 *
1519 * Description:
1520 * Flush all pages in @rq.
1521 */
1522 void rq_flush_dcache_pages(struct request *rq)
1523 {
1524 struct req_iterator iter;
1525 struct bio_vec bvec;
1526
1527 rq_for_each_segment(bvec, rq, iter)
1528 flush_dcache_page(bvec.bv_page);
1529 }
1530 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1531 #endif
1532
1533 /**
1534 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1535 * @q : the queue of the device being checked
1536 *
1537 * Description:
1538 * Check if underlying low-level drivers of a device are busy.
1539 * If the drivers want to export their busy state, they must set own
1540 * exporting function using blk_queue_lld_busy() first.
1541 *
1542 * Basically, this function is used only by request stacking drivers
1543 * to stop dispatching requests to underlying devices when underlying
1544 * devices are busy. This behavior helps more I/O merging on the queue
1545 * of the request stacking driver and prevents I/O throughput regression
1546 * on burst I/O load.
1547 *
1548 * Return:
1549 * 0 - Not busy (The request stacking driver should dispatch request)
1550 * 1 - Busy (The request stacking driver should stop dispatching request)
1551 */
1552 int blk_lld_busy(struct request_queue *q)
1553 {
1554 if (queue_is_mq(q) && q->mq_ops->busy)
1555 return q->mq_ops->busy(q);
1556
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(blk_lld_busy);
1560
1561 /**
1562 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1563 * @rq: the clone request to be cleaned up
1564 *
1565 * Description:
1566 * Free all bios in @rq for a cloned request.
1567 */
1568 void blk_rq_unprep_clone(struct request *rq)
1569 {
1570 struct bio *bio;
1571
1572 while ((bio = rq->bio) != NULL) {
1573 rq->bio = bio->bi_next;
1574
1575 bio_put(bio);
1576 }
1577 }
1578 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1579
1580 /**
1581 * blk_rq_prep_clone - Helper function to setup clone request
1582 * @rq: the request to be setup
1583 * @rq_src: original request to be cloned
1584 * @bs: bio_set that bios for clone are allocated from
1585 * @gfp_mask: memory allocation mask for bio
1586 * @bio_ctr: setup function to be called for each clone bio.
1587 * Returns %0 for success, non %0 for failure.
1588 * @data: private data to be passed to @bio_ctr
1589 *
1590 * Description:
1591 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1592 * Also, pages which the original bios are pointing to are not copied
1593 * and the cloned bios just point same pages.
1594 * So cloned bios must be completed before original bios, which means
1595 * the caller must complete @rq before @rq_src.
1596 */
1597 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1598 struct bio_set *bs, gfp_t gfp_mask,
1599 int (*bio_ctr)(struct bio *, struct bio *, void *),
1600 void *data)
1601 {
1602 struct bio *bio, *bio_src;
1603
1604 if (!bs)
1605 bs = &fs_bio_set;
1606
1607 __rq_for_each_bio(bio_src, rq_src) {
1608 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1609 if (!bio)
1610 goto free_and_out;
1611
1612 if (bio_ctr && bio_ctr(bio, bio_src, data))
1613 goto free_and_out;
1614
1615 if (rq->bio) {
1616 rq->biotail->bi_next = bio;
1617 rq->biotail = bio;
1618 } else {
1619 rq->bio = rq->biotail = bio;
1620 }
1621 bio = NULL;
1622 }
1623
1624 /* Copy attributes of the original request to the clone request. */
1625 rq->__sector = blk_rq_pos(rq_src);
1626 rq->__data_len = blk_rq_bytes(rq_src);
1627 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1628 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1629 rq->special_vec = rq_src->special_vec;
1630 }
1631 rq->nr_phys_segments = rq_src->nr_phys_segments;
1632 rq->ioprio = rq_src->ioprio;
1633
1634 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1635 goto free_and_out;
1636
1637 return 0;
1638
1639 free_and_out:
1640 if (bio)
1641 bio_put(bio);
1642 blk_rq_unprep_clone(rq);
1643
1644 return -ENOMEM;
1645 }
1646 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1647
1648 int kblockd_schedule_work(struct work_struct *work)
1649 {
1650 return queue_work(kblockd_workqueue, work);
1651 }
1652 EXPORT_SYMBOL(kblockd_schedule_work);
1653
1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1655 unsigned long delay)
1656 {
1657 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1658 }
1659 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1660
1661 /**
1662 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1663 * @plug: The &struct blk_plug that needs to be initialized
1664 *
1665 * Description:
1666 * blk_start_plug() indicates to the block layer an intent by the caller
1667 * to submit multiple I/O requests in a batch. The block layer may use
1668 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1669 * is called. However, the block layer may choose to submit requests
1670 * before a call to blk_finish_plug() if the number of queued I/Os
1671 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1672 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1673 * the task schedules (see below).
1674 *
1675 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1676 * pending I/O should the task end up blocking between blk_start_plug() and
1677 * blk_finish_plug(). This is important from a performance perspective, but
1678 * also ensures that we don't deadlock. For instance, if the task is blocking
1679 * for a memory allocation, memory reclaim could end up wanting to free a
1680 * page belonging to that request that is currently residing in our private
1681 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1682 * this kind of deadlock.
1683 */
1684 void blk_start_plug(struct blk_plug *plug)
1685 {
1686 struct task_struct *tsk = current;
1687
1688 /*
1689 * If this is a nested plug, don't actually assign it.
1690 */
1691 if (tsk->plug)
1692 return;
1693
1694 INIT_LIST_HEAD(&plug->mq_list);
1695 INIT_LIST_HEAD(&plug->cb_list);
1696 plug->rq_count = 0;
1697 plug->multiple_queues = false;
1698 plug->nowait = false;
1699
1700 /*
1701 * Store ordering should not be needed here, since a potential
1702 * preempt will imply a full memory barrier
1703 */
1704 tsk->plug = plug;
1705 }
1706 EXPORT_SYMBOL(blk_start_plug);
1707
1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1709 {
1710 LIST_HEAD(callbacks);
1711
1712 while (!list_empty(&plug->cb_list)) {
1713 list_splice_init(&plug->cb_list, &callbacks);
1714
1715 while (!list_empty(&callbacks)) {
1716 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1717 struct blk_plug_cb,
1718 list);
1719 list_del(&cb->list);
1720 cb->callback(cb, from_schedule);
1721 }
1722 }
1723 }
1724
1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1726 int size)
1727 {
1728 struct blk_plug *plug = current->plug;
1729 struct blk_plug_cb *cb;
1730
1731 if (!plug)
1732 return NULL;
1733
1734 list_for_each_entry(cb, &plug->cb_list, list)
1735 if (cb->callback == unplug && cb->data == data)
1736 return cb;
1737
1738 /* Not currently on the callback list */
1739 BUG_ON(size < sizeof(*cb));
1740 cb = kzalloc(size, GFP_ATOMIC);
1741 if (cb) {
1742 cb->data = data;
1743 cb->callback = unplug;
1744 list_add(&cb->list, &plug->cb_list);
1745 }
1746 return cb;
1747 }
1748 EXPORT_SYMBOL(blk_check_plugged);
1749
1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1751 {
1752 flush_plug_callbacks(plug, from_schedule);
1753
1754 if (!list_empty(&plug->mq_list))
1755 blk_mq_flush_plug_list(plug, from_schedule);
1756 }
1757
1758 /**
1759 * blk_finish_plug - mark the end of a batch of submitted I/O
1760 * @plug: The &struct blk_plug passed to blk_start_plug()
1761 *
1762 * Description:
1763 * Indicate that a batch of I/O submissions is complete. This function
1764 * must be paired with an initial call to blk_start_plug(). The intent
1765 * is to allow the block layer to optimize I/O submission. See the
1766 * documentation for blk_start_plug() for more information.
1767 */
1768 void blk_finish_plug(struct blk_plug *plug)
1769 {
1770 if (plug != current->plug)
1771 return;
1772 blk_flush_plug_list(plug, false);
1773
1774 current->plug = NULL;
1775 }
1776 EXPORT_SYMBOL(blk_finish_plug);
1777
1778 void blk_io_schedule(void)
1779 {
1780 /* Prevent hang_check timer from firing at us during very long I/O */
1781 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1782
1783 if (timeout)
1784 io_schedule_timeout(timeout);
1785 else
1786 io_schedule();
1787 }
1788 EXPORT_SYMBOL_GPL(blk_io_schedule);
1789
1790 int __init blk_dev_init(void)
1791 {
1792 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1793 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1794 sizeof_field(struct request, cmd_flags));
1795 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1796 sizeof_field(struct bio, bi_opf));
1797
1798 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1799 kblockd_workqueue = alloc_workqueue("kblockd",
1800 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1801 if (!kblockd_workqueue)
1802 panic("Failed to create kblockd\n");
1803
1804 blk_requestq_cachep = kmem_cache_create("request_queue",
1805 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1806
1807 blk_debugfs_root = debugfs_create_dir("block", NULL);
1808
1809 return 0;
1810 }