]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
block: Introduce blk_get_request_flags()
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
353 * @q: The queue to run
354 *
355 * Description:
356 * Invoke request handling on a queue if there are any pending requests.
357 * May be used to restart request handling after a request has completed.
358 * This variant runs the queue whether or not the queue has been
359 * stopped. Must be called with the queue lock held and interrupts
360 * disabled. See also @blk_run_queue.
361 */
362 inline void __blk_run_queue_uncond(struct request_queue *q)
363 {
364 lockdep_assert_held(q->queue_lock);
365 WARN_ON_ONCE(q->mq_ops);
366
367 if (unlikely(blk_queue_dead(q)))
368 return;
369
370 /*
371 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
372 * the queue lock internally. As a result multiple threads may be
373 * running such a request function concurrently. Keep track of the
374 * number of active request_fn invocations such that blk_drain_queue()
375 * can wait until all these request_fn calls have finished.
376 */
377 q->request_fn_active++;
378 q->request_fn(q);
379 q->request_fn_active--;
380 }
381 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
382
383 /**
384 * __blk_run_queue - run a single device queue
385 * @q: The queue to run
386 *
387 * Description:
388 * See @blk_run_queue.
389 */
390 void __blk_run_queue(struct request_queue *q)
391 {
392 lockdep_assert_held(q->queue_lock);
393 WARN_ON_ONCE(q->mq_ops);
394
395 if (unlikely(blk_queue_stopped(q)))
396 return;
397
398 __blk_run_queue_uncond(q);
399 }
400 EXPORT_SYMBOL(__blk_run_queue);
401
402 /**
403 * blk_run_queue_async - run a single device queue in workqueue context
404 * @q: The queue to run
405 *
406 * Description:
407 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
408 * of us.
409 *
410 * Note:
411 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
412 * has canceled q->delay_work, callers must hold the queue lock to avoid
413 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
414 */
415 void blk_run_queue_async(struct request_queue *q)
416 {
417 lockdep_assert_held(q->queue_lock);
418 WARN_ON_ONCE(q->mq_ops);
419
420 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
421 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
422 }
423 EXPORT_SYMBOL(blk_run_queue_async);
424
425 /**
426 * blk_run_queue - run a single device queue
427 * @q: The queue to run
428 *
429 * Description:
430 * Invoke request handling on this queue, if it has pending work to do.
431 * May be used to restart queueing when a request has completed.
432 */
433 void blk_run_queue(struct request_queue *q)
434 {
435 unsigned long flags;
436
437 WARN_ON_ONCE(q->mq_ops);
438
439 spin_lock_irqsave(q->queue_lock, flags);
440 __blk_run_queue(q);
441 spin_unlock_irqrestore(q->queue_lock, flags);
442 }
443 EXPORT_SYMBOL(blk_run_queue);
444
445 void blk_put_queue(struct request_queue *q)
446 {
447 kobject_put(&q->kobj);
448 }
449 EXPORT_SYMBOL(blk_put_queue);
450
451 /**
452 * __blk_drain_queue - drain requests from request_queue
453 * @q: queue to drain
454 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
455 *
456 * Drain requests from @q. If @drain_all is set, all requests are drained.
457 * If not, only ELVPRIV requests are drained. The caller is responsible
458 * for ensuring that no new requests which need to be drained are queued.
459 */
460 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
461 __releases(q->queue_lock)
462 __acquires(q->queue_lock)
463 {
464 int i;
465
466 lockdep_assert_held(q->queue_lock);
467 WARN_ON_ONCE(q->mq_ops);
468
469 while (true) {
470 bool drain = false;
471
472 /*
473 * The caller might be trying to drain @q before its
474 * elevator is initialized.
475 */
476 if (q->elevator)
477 elv_drain_elevator(q);
478
479 blkcg_drain_queue(q);
480
481 /*
482 * This function might be called on a queue which failed
483 * driver init after queue creation or is not yet fully
484 * active yet. Some drivers (e.g. fd and loop) get unhappy
485 * in such cases. Kick queue iff dispatch queue has
486 * something on it and @q has request_fn set.
487 */
488 if (!list_empty(&q->queue_head) && q->request_fn)
489 __blk_run_queue(q);
490
491 drain |= q->nr_rqs_elvpriv;
492 drain |= q->request_fn_active;
493
494 /*
495 * Unfortunately, requests are queued at and tracked from
496 * multiple places and there's no single counter which can
497 * be drained. Check all the queues and counters.
498 */
499 if (drain_all) {
500 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
501 drain |= !list_empty(&q->queue_head);
502 for (i = 0; i < 2; i++) {
503 drain |= q->nr_rqs[i];
504 drain |= q->in_flight[i];
505 if (fq)
506 drain |= !list_empty(&fq->flush_queue[i]);
507 }
508 }
509
510 if (!drain)
511 break;
512
513 spin_unlock_irq(q->queue_lock);
514
515 msleep(10);
516
517 spin_lock_irq(q->queue_lock);
518 }
519
520 /*
521 * With queue marked dead, any woken up waiter will fail the
522 * allocation path, so the wakeup chaining is lost and we're
523 * left with hung waiters. We need to wake up those waiters.
524 */
525 if (q->request_fn) {
526 struct request_list *rl;
527
528 blk_queue_for_each_rl(rl, q)
529 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
530 wake_up_all(&rl->wait[i]);
531 }
532 }
533
534 /**
535 * blk_queue_bypass_start - enter queue bypass mode
536 * @q: queue of interest
537 *
538 * In bypass mode, only the dispatch FIFO queue of @q is used. This
539 * function makes @q enter bypass mode and drains all requests which were
540 * throttled or issued before. On return, it's guaranteed that no request
541 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
542 * inside queue or RCU read lock.
543 */
544 void blk_queue_bypass_start(struct request_queue *q)
545 {
546 WARN_ON_ONCE(q->mq_ops);
547
548 spin_lock_irq(q->queue_lock);
549 q->bypass_depth++;
550 queue_flag_set(QUEUE_FLAG_BYPASS, q);
551 spin_unlock_irq(q->queue_lock);
552
553 /*
554 * Queues start drained. Skip actual draining till init is
555 * complete. This avoids lenghty delays during queue init which
556 * can happen many times during boot.
557 */
558 if (blk_queue_init_done(q)) {
559 spin_lock_irq(q->queue_lock);
560 __blk_drain_queue(q, false);
561 spin_unlock_irq(q->queue_lock);
562
563 /* ensure blk_queue_bypass() is %true inside RCU read lock */
564 synchronize_rcu();
565 }
566 }
567 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
568
569 /**
570 * blk_queue_bypass_end - leave queue bypass mode
571 * @q: queue of interest
572 *
573 * Leave bypass mode and restore the normal queueing behavior.
574 *
575 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
576 * this function is called for both blk-sq and blk-mq queues.
577 */
578 void blk_queue_bypass_end(struct request_queue *q)
579 {
580 spin_lock_irq(q->queue_lock);
581 if (!--q->bypass_depth)
582 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
583 WARN_ON_ONCE(q->bypass_depth < 0);
584 spin_unlock_irq(q->queue_lock);
585 }
586 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
587
588 void blk_set_queue_dying(struct request_queue *q)
589 {
590 spin_lock_irq(q->queue_lock);
591 queue_flag_set(QUEUE_FLAG_DYING, q);
592 spin_unlock_irq(q->queue_lock);
593
594 /*
595 * When queue DYING flag is set, we need to block new req
596 * entering queue, so we call blk_freeze_queue_start() to
597 * prevent I/O from crossing blk_queue_enter().
598 */
599 blk_freeze_queue_start(q);
600
601 if (q->mq_ops)
602 blk_mq_wake_waiters(q);
603 else {
604 struct request_list *rl;
605
606 spin_lock_irq(q->queue_lock);
607 blk_queue_for_each_rl(rl, q) {
608 if (rl->rq_pool) {
609 wake_up(&rl->wait[BLK_RW_SYNC]);
610 wake_up(&rl->wait[BLK_RW_ASYNC]);
611 }
612 }
613 spin_unlock_irq(q->queue_lock);
614 }
615
616 /* Make blk_queue_enter() reexamine the DYING flag. */
617 wake_up_all(&q->mq_freeze_wq);
618 }
619 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
620
621 /**
622 * blk_cleanup_queue - shutdown a request queue
623 * @q: request queue to shutdown
624 *
625 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
626 * put it. All future requests will be failed immediately with -ENODEV.
627 */
628 void blk_cleanup_queue(struct request_queue *q)
629 {
630 spinlock_t *lock = q->queue_lock;
631
632 /* mark @q DYING, no new request or merges will be allowed afterwards */
633 mutex_lock(&q->sysfs_lock);
634 blk_set_queue_dying(q);
635 spin_lock_irq(lock);
636
637 /*
638 * A dying queue is permanently in bypass mode till released. Note
639 * that, unlike blk_queue_bypass_start(), we aren't performing
640 * synchronize_rcu() after entering bypass mode to avoid the delay
641 * as some drivers create and destroy a lot of queues while
642 * probing. This is still safe because blk_release_queue() will be
643 * called only after the queue refcnt drops to zero and nothing,
644 * RCU or not, would be traversing the queue by then.
645 */
646 q->bypass_depth++;
647 queue_flag_set(QUEUE_FLAG_BYPASS, q);
648
649 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
650 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
651 queue_flag_set(QUEUE_FLAG_DYING, q);
652 spin_unlock_irq(lock);
653 mutex_unlock(&q->sysfs_lock);
654
655 /*
656 * Drain all requests queued before DYING marking. Set DEAD flag to
657 * prevent that q->request_fn() gets invoked after draining finished.
658 */
659 blk_freeze_queue(q);
660 spin_lock_irq(lock);
661 if (!q->mq_ops)
662 __blk_drain_queue(q, true);
663 queue_flag_set(QUEUE_FLAG_DEAD, q);
664 spin_unlock_irq(lock);
665
666 /* for synchronous bio-based driver finish in-flight integrity i/o */
667 blk_flush_integrity();
668
669 /* @q won't process any more request, flush async actions */
670 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
671 blk_sync_queue(q);
672
673 if (q->mq_ops)
674 blk_mq_free_queue(q);
675 percpu_ref_exit(&q->q_usage_counter);
676
677 spin_lock_irq(lock);
678 if (q->queue_lock != &q->__queue_lock)
679 q->queue_lock = &q->__queue_lock;
680 spin_unlock_irq(lock);
681
682 /* @q is and will stay empty, shutdown and put */
683 blk_put_queue(q);
684 }
685 EXPORT_SYMBOL(blk_cleanup_queue);
686
687 /* Allocate memory local to the request queue */
688 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
689 {
690 struct request_queue *q = data;
691
692 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
693 }
694
695 static void free_request_simple(void *element, void *data)
696 {
697 kmem_cache_free(request_cachep, element);
698 }
699
700 static void *alloc_request_size(gfp_t gfp_mask, void *data)
701 {
702 struct request_queue *q = data;
703 struct request *rq;
704
705 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
706 q->node);
707 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
708 kfree(rq);
709 rq = NULL;
710 }
711 return rq;
712 }
713
714 static void free_request_size(void *element, void *data)
715 {
716 struct request_queue *q = data;
717
718 if (q->exit_rq_fn)
719 q->exit_rq_fn(q, element);
720 kfree(element);
721 }
722
723 int blk_init_rl(struct request_list *rl, struct request_queue *q,
724 gfp_t gfp_mask)
725 {
726 if (unlikely(rl->rq_pool) || q->mq_ops)
727 return 0;
728
729 rl->q = q;
730 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
731 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
732 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
733 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
734
735 if (q->cmd_size) {
736 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
737 alloc_request_size, free_request_size,
738 q, gfp_mask, q->node);
739 } else {
740 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
741 alloc_request_simple, free_request_simple,
742 q, gfp_mask, q->node);
743 }
744 if (!rl->rq_pool)
745 return -ENOMEM;
746
747 if (rl != &q->root_rl)
748 WARN_ON_ONCE(!blk_get_queue(q));
749
750 return 0;
751 }
752
753 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
754 {
755 if (rl->rq_pool) {
756 mempool_destroy(rl->rq_pool);
757 if (rl != &q->root_rl)
758 blk_put_queue(q);
759 }
760 }
761
762 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
763 {
764 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
765 }
766 EXPORT_SYMBOL(blk_alloc_queue);
767
768 int blk_queue_enter(struct request_queue *q, bool nowait)
769 {
770 while (true) {
771 int ret;
772
773 if (percpu_ref_tryget_live(&q->q_usage_counter))
774 return 0;
775
776 if (nowait)
777 return -EBUSY;
778
779 /*
780 * read pair of barrier in blk_freeze_queue_start(),
781 * we need to order reading __PERCPU_REF_DEAD flag of
782 * .q_usage_counter and reading .mq_freeze_depth or
783 * queue dying flag, otherwise the following wait may
784 * never return if the two reads are reordered.
785 */
786 smp_rmb();
787
788 ret = wait_event_interruptible(q->mq_freeze_wq,
789 !atomic_read(&q->mq_freeze_depth) ||
790 blk_queue_dying(q));
791 if (blk_queue_dying(q))
792 return -ENODEV;
793 if (ret)
794 return ret;
795 }
796 }
797
798 void blk_queue_exit(struct request_queue *q)
799 {
800 percpu_ref_put(&q->q_usage_counter);
801 }
802
803 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
804 {
805 struct request_queue *q =
806 container_of(ref, struct request_queue, q_usage_counter);
807
808 wake_up_all(&q->mq_freeze_wq);
809 }
810
811 static void blk_rq_timed_out_timer(unsigned long data)
812 {
813 struct request_queue *q = (struct request_queue *)data;
814
815 kblockd_schedule_work(&q->timeout_work);
816 }
817
818 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
819 {
820 struct request_queue *q;
821
822 q = kmem_cache_alloc_node(blk_requestq_cachep,
823 gfp_mask | __GFP_ZERO, node_id);
824 if (!q)
825 return NULL;
826
827 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
828 if (q->id < 0)
829 goto fail_q;
830
831 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
832 if (!q->bio_split)
833 goto fail_id;
834
835 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
836 if (!q->backing_dev_info)
837 goto fail_split;
838
839 q->stats = blk_alloc_queue_stats();
840 if (!q->stats)
841 goto fail_stats;
842
843 q->backing_dev_info->ra_pages =
844 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
845 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
846 q->backing_dev_info->name = "block";
847 q->node = node_id;
848
849 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
850 laptop_mode_timer_fn, (unsigned long) q);
851 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
852 INIT_WORK(&q->timeout_work, NULL);
853 INIT_LIST_HEAD(&q->queue_head);
854 INIT_LIST_HEAD(&q->timeout_list);
855 INIT_LIST_HEAD(&q->icq_list);
856 #ifdef CONFIG_BLK_CGROUP
857 INIT_LIST_HEAD(&q->blkg_list);
858 #endif
859 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
860
861 kobject_init(&q->kobj, &blk_queue_ktype);
862
863 #ifdef CONFIG_BLK_DEV_IO_TRACE
864 mutex_init(&q->blk_trace_mutex);
865 #endif
866 mutex_init(&q->sysfs_lock);
867 spin_lock_init(&q->__queue_lock);
868
869 /*
870 * By default initialize queue_lock to internal lock and driver can
871 * override it later if need be.
872 */
873 q->queue_lock = &q->__queue_lock;
874
875 /*
876 * A queue starts its life with bypass turned on to avoid
877 * unnecessary bypass on/off overhead and nasty surprises during
878 * init. The initial bypass will be finished when the queue is
879 * registered by blk_register_queue().
880 */
881 q->bypass_depth = 1;
882 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
883
884 init_waitqueue_head(&q->mq_freeze_wq);
885
886 /*
887 * Init percpu_ref in atomic mode so that it's faster to shutdown.
888 * See blk_register_queue() for details.
889 */
890 if (percpu_ref_init(&q->q_usage_counter,
891 blk_queue_usage_counter_release,
892 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
893 goto fail_bdi;
894
895 if (blkcg_init_queue(q))
896 goto fail_ref;
897
898 return q;
899
900 fail_ref:
901 percpu_ref_exit(&q->q_usage_counter);
902 fail_bdi:
903 blk_free_queue_stats(q->stats);
904 fail_stats:
905 bdi_put(q->backing_dev_info);
906 fail_split:
907 bioset_free(q->bio_split);
908 fail_id:
909 ida_simple_remove(&blk_queue_ida, q->id);
910 fail_q:
911 kmem_cache_free(blk_requestq_cachep, q);
912 return NULL;
913 }
914 EXPORT_SYMBOL(blk_alloc_queue_node);
915
916 /**
917 * blk_init_queue - prepare a request queue for use with a block device
918 * @rfn: The function to be called to process requests that have been
919 * placed on the queue.
920 * @lock: Request queue spin lock
921 *
922 * Description:
923 * If a block device wishes to use the standard request handling procedures,
924 * which sorts requests and coalesces adjacent requests, then it must
925 * call blk_init_queue(). The function @rfn will be called when there
926 * are requests on the queue that need to be processed. If the device
927 * supports plugging, then @rfn may not be called immediately when requests
928 * are available on the queue, but may be called at some time later instead.
929 * Plugged queues are generally unplugged when a buffer belonging to one
930 * of the requests on the queue is needed, or due to memory pressure.
931 *
932 * @rfn is not required, or even expected, to remove all requests off the
933 * queue, but only as many as it can handle at a time. If it does leave
934 * requests on the queue, it is responsible for arranging that the requests
935 * get dealt with eventually.
936 *
937 * The queue spin lock must be held while manipulating the requests on the
938 * request queue; this lock will be taken also from interrupt context, so irq
939 * disabling is needed for it.
940 *
941 * Function returns a pointer to the initialized request queue, or %NULL if
942 * it didn't succeed.
943 *
944 * Note:
945 * blk_init_queue() must be paired with a blk_cleanup_queue() call
946 * when the block device is deactivated (such as at module unload).
947 **/
948
949 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
950 {
951 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
952 }
953 EXPORT_SYMBOL(blk_init_queue);
954
955 struct request_queue *
956 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
957 {
958 struct request_queue *q;
959
960 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
961 if (!q)
962 return NULL;
963
964 q->request_fn = rfn;
965 if (lock)
966 q->queue_lock = lock;
967 if (blk_init_allocated_queue(q) < 0) {
968 blk_cleanup_queue(q);
969 return NULL;
970 }
971
972 return q;
973 }
974 EXPORT_SYMBOL(blk_init_queue_node);
975
976 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
977
978
979 int blk_init_allocated_queue(struct request_queue *q)
980 {
981 WARN_ON_ONCE(q->mq_ops);
982
983 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
984 if (!q->fq)
985 return -ENOMEM;
986
987 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
988 goto out_free_flush_queue;
989
990 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
991 goto out_exit_flush_rq;
992
993 INIT_WORK(&q->timeout_work, blk_timeout_work);
994 q->queue_flags |= QUEUE_FLAG_DEFAULT;
995
996 /*
997 * This also sets hw/phys segments, boundary and size
998 */
999 blk_queue_make_request(q, blk_queue_bio);
1000
1001 q->sg_reserved_size = INT_MAX;
1002
1003 /* Protect q->elevator from elevator_change */
1004 mutex_lock(&q->sysfs_lock);
1005
1006 /* init elevator */
1007 if (elevator_init(q, NULL)) {
1008 mutex_unlock(&q->sysfs_lock);
1009 goto out_exit_flush_rq;
1010 }
1011
1012 mutex_unlock(&q->sysfs_lock);
1013 return 0;
1014
1015 out_exit_flush_rq:
1016 if (q->exit_rq_fn)
1017 q->exit_rq_fn(q, q->fq->flush_rq);
1018 out_free_flush_queue:
1019 blk_free_flush_queue(q->fq);
1020 return -ENOMEM;
1021 }
1022 EXPORT_SYMBOL(blk_init_allocated_queue);
1023
1024 bool blk_get_queue(struct request_queue *q)
1025 {
1026 if (likely(!blk_queue_dying(q))) {
1027 __blk_get_queue(q);
1028 return true;
1029 }
1030
1031 return false;
1032 }
1033 EXPORT_SYMBOL(blk_get_queue);
1034
1035 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1036 {
1037 if (rq->rq_flags & RQF_ELVPRIV) {
1038 elv_put_request(rl->q, rq);
1039 if (rq->elv.icq)
1040 put_io_context(rq->elv.icq->ioc);
1041 }
1042
1043 mempool_free(rq, rl->rq_pool);
1044 }
1045
1046 /*
1047 * ioc_batching returns true if the ioc is a valid batching request and
1048 * should be given priority access to a request.
1049 */
1050 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1051 {
1052 if (!ioc)
1053 return 0;
1054
1055 /*
1056 * Make sure the process is able to allocate at least 1 request
1057 * even if the batch times out, otherwise we could theoretically
1058 * lose wakeups.
1059 */
1060 return ioc->nr_batch_requests == q->nr_batching ||
1061 (ioc->nr_batch_requests > 0
1062 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1063 }
1064
1065 /*
1066 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1067 * will cause the process to be a "batcher" on all queues in the system. This
1068 * is the behaviour we want though - once it gets a wakeup it should be given
1069 * a nice run.
1070 */
1071 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1072 {
1073 if (!ioc || ioc_batching(q, ioc))
1074 return;
1075
1076 ioc->nr_batch_requests = q->nr_batching;
1077 ioc->last_waited = jiffies;
1078 }
1079
1080 static void __freed_request(struct request_list *rl, int sync)
1081 {
1082 struct request_queue *q = rl->q;
1083
1084 if (rl->count[sync] < queue_congestion_off_threshold(q))
1085 blk_clear_congested(rl, sync);
1086
1087 if (rl->count[sync] + 1 <= q->nr_requests) {
1088 if (waitqueue_active(&rl->wait[sync]))
1089 wake_up(&rl->wait[sync]);
1090
1091 blk_clear_rl_full(rl, sync);
1092 }
1093 }
1094
1095 /*
1096 * A request has just been released. Account for it, update the full and
1097 * congestion status, wake up any waiters. Called under q->queue_lock.
1098 */
1099 static void freed_request(struct request_list *rl, bool sync,
1100 req_flags_t rq_flags)
1101 {
1102 struct request_queue *q = rl->q;
1103
1104 q->nr_rqs[sync]--;
1105 rl->count[sync]--;
1106 if (rq_flags & RQF_ELVPRIV)
1107 q->nr_rqs_elvpriv--;
1108
1109 __freed_request(rl, sync);
1110
1111 if (unlikely(rl->starved[sync ^ 1]))
1112 __freed_request(rl, sync ^ 1);
1113 }
1114
1115 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1116 {
1117 struct request_list *rl;
1118 int on_thresh, off_thresh;
1119
1120 WARN_ON_ONCE(q->mq_ops);
1121
1122 spin_lock_irq(q->queue_lock);
1123 q->nr_requests = nr;
1124 blk_queue_congestion_threshold(q);
1125 on_thresh = queue_congestion_on_threshold(q);
1126 off_thresh = queue_congestion_off_threshold(q);
1127
1128 blk_queue_for_each_rl(rl, q) {
1129 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1130 blk_set_congested(rl, BLK_RW_SYNC);
1131 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1132 blk_clear_congested(rl, BLK_RW_SYNC);
1133
1134 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1135 blk_set_congested(rl, BLK_RW_ASYNC);
1136 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1137 blk_clear_congested(rl, BLK_RW_ASYNC);
1138
1139 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1140 blk_set_rl_full(rl, BLK_RW_SYNC);
1141 } else {
1142 blk_clear_rl_full(rl, BLK_RW_SYNC);
1143 wake_up(&rl->wait[BLK_RW_SYNC]);
1144 }
1145
1146 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1147 blk_set_rl_full(rl, BLK_RW_ASYNC);
1148 } else {
1149 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1150 wake_up(&rl->wait[BLK_RW_ASYNC]);
1151 }
1152 }
1153
1154 spin_unlock_irq(q->queue_lock);
1155 return 0;
1156 }
1157
1158 /**
1159 * __get_request - get a free request
1160 * @rl: request list to allocate from
1161 * @op: operation and flags
1162 * @bio: bio to allocate request for (can be %NULL)
1163 * @flags: BLQ_MQ_REQ_* flags
1164 *
1165 * Get a free request from @q. This function may fail under memory
1166 * pressure or if @q is dead.
1167 *
1168 * Must be called with @q->queue_lock held and,
1169 * Returns ERR_PTR on failure, with @q->queue_lock held.
1170 * Returns request pointer on success, with @q->queue_lock *not held*.
1171 */
1172 static struct request *__get_request(struct request_list *rl, unsigned int op,
1173 struct bio *bio, unsigned int flags)
1174 {
1175 struct request_queue *q = rl->q;
1176 struct request *rq;
1177 struct elevator_type *et = q->elevator->type;
1178 struct io_context *ioc = rq_ioc(bio);
1179 struct io_cq *icq = NULL;
1180 const bool is_sync = op_is_sync(op);
1181 int may_queue;
1182 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1183 __GFP_DIRECT_RECLAIM;
1184 req_flags_t rq_flags = RQF_ALLOCED;
1185
1186 lockdep_assert_held(q->queue_lock);
1187
1188 if (unlikely(blk_queue_dying(q)))
1189 return ERR_PTR(-ENODEV);
1190
1191 may_queue = elv_may_queue(q, op);
1192 if (may_queue == ELV_MQUEUE_NO)
1193 goto rq_starved;
1194
1195 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1196 if (rl->count[is_sync]+1 >= q->nr_requests) {
1197 /*
1198 * The queue will fill after this allocation, so set
1199 * it as full, and mark this process as "batching".
1200 * This process will be allowed to complete a batch of
1201 * requests, others will be blocked.
1202 */
1203 if (!blk_rl_full(rl, is_sync)) {
1204 ioc_set_batching(q, ioc);
1205 blk_set_rl_full(rl, is_sync);
1206 } else {
1207 if (may_queue != ELV_MQUEUE_MUST
1208 && !ioc_batching(q, ioc)) {
1209 /*
1210 * The queue is full and the allocating
1211 * process is not a "batcher", and not
1212 * exempted by the IO scheduler
1213 */
1214 return ERR_PTR(-ENOMEM);
1215 }
1216 }
1217 }
1218 blk_set_congested(rl, is_sync);
1219 }
1220
1221 /*
1222 * Only allow batching queuers to allocate up to 50% over the defined
1223 * limit of requests, otherwise we could have thousands of requests
1224 * allocated with any setting of ->nr_requests
1225 */
1226 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1227 return ERR_PTR(-ENOMEM);
1228
1229 q->nr_rqs[is_sync]++;
1230 rl->count[is_sync]++;
1231 rl->starved[is_sync] = 0;
1232
1233 /*
1234 * Decide whether the new request will be managed by elevator. If
1235 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1236 * prevent the current elevator from being destroyed until the new
1237 * request is freed. This guarantees icq's won't be destroyed and
1238 * makes creating new ones safe.
1239 *
1240 * Flush requests do not use the elevator so skip initialization.
1241 * This allows a request to share the flush and elevator data.
1242 *
1243 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1244 * it will be created after releasing queue_lock.
1245 */
1246 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1247 rq_flags |= RQF_ELVPRIV;
1248 q->nr_rqs_elvpriv++;
1249 if (et->icq_cache && ioc)
1250 icq = ioc_lookup_icq(ioc, q);
1251 }
1252
1253 if (blk_queue_io_stat(q))
1254 rq_flags |= RQF_IO_STAT;
1255 spin_unlock_irq(q->queue_lock);
1256
1257 /* allocate and init request */
1258 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1259 if (!rq)
1260 goto fail_alloc;
1261
1262 blk_rq_init(q, rq);
1263 blk_rq_set_rl(rq, rl);
1264 rq->cmd_flags = op;
1265 rq->rq_flags = rq_flags;
1266
1267 /* init elvpriv */
1268 if (rq_flags & RQF_ELVPRIV) {
1269 if (unlikely(et->icq_cache && !icq)) {
1270 if (ioc)
1271 icq = ioc_create_icq(ioc, q, gfp_mask);
1272 if (!icq)
1273 goto fail_elvpriv;
1274 }
1275
1276 rq->elv.icq = icq;
1277 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1278 goto fail_elvpriv;
1279
1280 /* @rq->elv.icq holds io_context until @rq is freed */
1281 if (icq)
1282 get_io_context(icq->ioc);
1283 }
1284 out:
1285 /*
1286 * ioc may be NULL here, and ioc_batching will be false. That's
1287 * OK, if the queue is under the request limit then requests need
1288 * not count toward the nr_batch_requests limit. There will always
1289 * be some limit enforced by BLK_BATCH_TIME.
1290 */
1291 if (ioc_batching(q, ioc))
1292 ioc->nr_batch_requests--;
1293
1294 trace_block_getrq(q, bio, op);
1295 return rq;
1296
1297 fail_elvpriv:
1298 /*
1299 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1300 * and may fail indefinitely under memory pressure and thus
1301 * shouldn't stall IO. Treat this request as !elvpriv. This will
1302 * disturb iosched and blkcg but weird is bettern than dead.
1303 */
1304 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1305 __func__, dev_name(q->backing_dev_info->dev));
1306
1307 rq->rq_flags &= ~RQF_ELVPRIV;
1308 rq->elv.icq = NULL;
1309
1310 spin_lock_irq(q->queue_lock);
1311 q->nr_rqs_elvpriv--;
1312 spin_unlock_irq(q->queue_lock);
1313 goto out;
1314
1315 fail_alloc:
1316 /*
1317 * Allocation failed presumably due to memory. Undo anything we
1318 * might have messed up.
1319 *
1320 * Allocating task should really be put onto the front of the wait
1321 * queue, but this is pretty rare.
1322 */
1323 spin_lock_irq(q->queue_lock);
1324 freed_request(rl, is_sync, rq_flags);
1325
1326 /*
1327 * in the very unlikely event that allocation failed and no
1328 * requests for this direction was pending, mark us starved so that
1329 * freeing of a request in the other direction will notice
1330 * us. another possible fix would be to split the rq mempool into
1331 * READ and WRITE
1332 */
1333 rq_starved:
1334 if (unlikely(rl->count[is_sync] == 0))
1335 rl->starved[is_sync] = 1;
1336 return ERR_PTR(-ENOMEM);
1337 }
1338
1339 /**
1340 * get_request - get a free request
1341 * @q: request_queue to allocate request from
1342 * @op: operation and flags
1343 * @bio: bio to allocate request for (can be %NULL)
1344 * @flags: BLK_MQ_REQ_* flags.
1345 *
1346 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1347 * this function keeps retrying under memory pressure and fails iff @q is dead.
1348 *
1349 * Must be called with @q->queue_lock held and,
1350 * Returns ERR_PTR on failure, with @q->queue_lock held.
1351 * Returns request pointer on success, with @q->queue_lock *not held*.
1352 */
1353 static struct request *get_request(struct request_queue *q, unsigned int op,
1354 struct bio *bio, unsigned int flags)
1355 {
1356 const bool is_sync = op_is_sync(op);
1357 DEFINE_WAIT(wait);
1358 struct request_list *rl;
1359 struct request *rq;
1360
1361 lockdep_assert_held(q->queue_lock);
1362 WARN_ON_ONCE(q->mq_ops);
1363
1364 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1365 retry:
1366 rq = __get_request(rl, op, bio, flags);
1367 if (!IS_ERR(rq))
1368 return rq;
1369
1370 if (op & REQ_NOWAIT) {
1371 blk_put_rl(rl);
1372 return ERR_PTR(-EAGAIN);
1373 }
1374
1375 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1376 blk_put_rl(rl);
1377 return rq;
1378 }
1379
1380 /* wait on @rl and retry */
1381 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1382 TASK_UNINTERRUPTIBLE);
1383
1384 trace_block_sleeprq(q, bio, op);
1385
1386 spin_unlock_irq(q->queue_lock);
1387 io_schedule();
1388
1389 /*
1390 * After sleeping, we become a "batching" process and will be able
1391 * to allocate at least one request, and up to a big batch of them
1392 * for a small period time. See ioc_batching, ioc_set_batching
1393 */
1394 ioc_set_batching(q, current->io_context);
1395
1396 spin_lock_irq(q->queue_lock);
1397 finish_wait(&rl->wait[is_sync], &wait);
1398
1399 goto retry;
1400 }
1401
1402 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1403 static struct request *blk_old_get_request(struct request_queue *q,
1404 unsigned int op, unsigned int flags)
1405 {
1406 struct request *rq;
1407 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1408 __GFP_DIRECT_RECLAIM;
1409 int ret = 0;
1410
1411 WARN_ON_ONCE(q->mq_ops);
1412
1413 /* create ioc upfront */
1414 create_io_context(gfp_mask, q->node);
1415
1416 ret = blk_queue_enter(q, !(gfp_mask & __GFP_DIRECT_RECLAIM) ||
1417 (op & REQ_NOWAIT));
1418 if (ret)
1419 return ERR_PTR(ret);
1420 spin_lock_irq(q->queue_lock);
1421 rq = get_request(q, op, NULL, flags);
1422 if (IS_ERR(rq)) {
1423 spin_unlock_irq(q->queue_lock);
1424 blk_queue_exit(q);
1425 return rq;
1426 }
1427
1428 /* q->queue_lock is unlocked at this point */
1429 rq->__data_len = 0;
1430 rq->__sector = (sector_t) -1;
1431 rq->bio = rq->biotail = NULL;
1432 return rq;
1433 }
1434
1435 /**
1436 * blk_get_request_flags - allocate a request
1437 * @q: request queue to allocate a request for
1438 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1439 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1440 */
1441 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1442 unsigned int flags)
1443 {
1444 struct request *req;
1445
1446 WARN_ON_ONCE(op & REQ_NOWAIT);
1447 WARN_ON_ONCE(flags & ~BLK_MQ_REQ_NOWAIT);
1448
1449 if (q->mq_ops) {
1450 req = blk_mq_alloc_request(q, op, flags);
1451 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1452 q->mq_ops->initialize_rq_fn(req);
1453 } else {
1454 req = blk_old_get_request(q, op, flags);
1455 if (!IS_ERR(req) && q->initialize_rq_fn)
1456 q->initialize_rq_fn(req);
1457 }
1458
1459 return req;
1460 }
1461 EXPORT_SYMBOL(blk_get_request_flags);
1462
1463 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1464 gfp_t gfp_mask)
1465 {
1466 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1467 0 : BLK_MQ_REQ_NOWAIT);
1468 }
1469 EXPORT_SYMBOL(blk_get_request);
1470
1471 /**
1472 * blk_requeue_request - put a request back on queue
1473 * @q: request queue where request should be inserted
1474 * @rq: request to be inserted
1475 *
1476 * Description:
1477 * Drivers often keep queueing requests until the hardware cannot accept
1478 * more, when that condition happens we need to put the request back
1479 * on the queue. Must be called with queue lock held.
1480 */
1481 void blk_requeue_request(struct request_queue *q, struct request *rq)
1482 {
1483 lockdep_assert_held(q->queue_lock);
1484 WARN_ON_ONCE(q->mq_ops);
1485
1486 blk_delete_timer(rq);
1487 blk_clear_rq_complete(rq);
1488 trace_block_rq_requeue(q, rq);
1489 wbt_requeue(q->rq_wb, &rq->issue_stat);
1490
1491 if (rq->rq_flags & RQF_QUEUED)
1492 blk_queue_end_tag(q, rq);
1493
1494 BUG_ON(blk_queued_rq(rq));
1495
1496 elv_requeue_request(q, rq);
1497 }
1498 EXPORT_SYMBOL(blk_requeue_request);
1499
1500 static void add_acct_request(struct request_queue *q, struct request *rq,
1501 int where)
1502 {
1503 blk_account_io_start(rq, true);
1504 __elv_add_request(q, rq, where);
1505 }
1506
1507 static void part_round_stats_single(struct request_queue *q, int cpu,
1508 struct hd_struct *part, unsigned long now,
1509 unsigned int inflight)
1510 {
1511 if (inflight) {
1512 __part_stat_add(cpu, part, time_in_queue,
1513 inflight * (now - part->stamp));
1514 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1515 }
1516 part->stamp = now;
1517 }
1518
1519 /**
1520 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1521 * @q: target block queue
1522 * @cpu: cpu number for stats access
1523 * @part: target partition
1524 *
1525 * The average IO queue length and utilisation statistics are maintained
1526 * by observing the current state of the queue length and the amount of
1527 * time it has been in this state for.
1528 *
1529 * Normally, that accounting is done on IO completion, but that can result
1530 * in more than a second's worth of IO being accounted for within any one
1531 * second, leading to >100% utilisation. To deal with that, we call this
1532 * function to do a round-off before returning the results when reading
1533 * /proc/diskstats. This accounts immediately for all queue usage up to
1534 * the current jiffies and restarts the counters again.
1535 */
1536 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1537 {
1538 struct hd_struct *part2 = NULL;
1539 unsigned long now = jiffies;
1540 unsigned int inflight[2];
1541 int stats = 0;
1542
1543 if (part->stamp != now)
1544 stats |= 1;
1545
1546 if (part->partno) {
1547 part2 = &part_to_disk(part)->part0;
1548 if (part2->stamp != now)
1549 stats |= 2;
1550 }
1551
1552 if (!stats)
1553 return;
1554
1555 part_in_flight(q, part, inflight);
1556
1557 if (stats & 2)
1558 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1559 if (stats & 1)
1560 part_round_stats_single(q, cpu, part, now, inflight[0]);
1561 }
1562 EXPORT_SYMBOL_GPL(part_round_stats);
1563
1564 #ifdef CONFIG_PM
1565 static void blk_pm_put_request(struct request *rq)
1566 {
1567 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1568 pm_runtime_mark_last_busy(rq->q->dev);
1569 }
1570 #else
1571 static inline void blk_pm_put_request(struct request *rq) {}
1572 #endif
1573
1574 void __blk_put_request(struct request_queue *q, struct request *req)
1575 {
1576 req_flags_t rq_flags = req->rq_flags;
1577
1578 if (unlikely(!q))
1579 return;
1580
1581 if (q->mq_ops) {
1582 blk_mq_free_request(req);
1583 return;
1584 }
1585
1586 lockdep_assert_held(q->queue_lock);
1587
1588 blk_pm_put_request(req);
1589
1590 elv_completed_request(q, req);
1591
1592 /* this is a bio leak */
1593 WARN_ON(req->bio != NULL);
1594
1595 wbt_done(q->rq_wb, &req->issue_stat);
1596
1597 /*
1598 * Request may not have originated from ll_rw_blk. if not,
1599 * it didn't come out of our reserved rq pools
1600 */
1601 if (rq_flags & RQF_ALLOCED) {
1602 struct request_list *rl = blk_rq_rl(req);
1603 bool sync = op_is_sync(req->cmd_flags);
1604
1605 BUG_ON(!list_empty(&req->queuelist));
1606 BUG_ON(ELV_ON_HASH(req));
1607
1608 blk_free_request(rl, req);
1609 freed_request(rl, sync, rq_flags);
1610 blk_put_rl(rl);
1611 blk_queue_exit(q);
1612 }
1613 }
1614 EXPORT_SYMBOL_GPL(__blk_put_request);
1615
1616 void blk_put_request(struct request *req)
1617 {
1618 struct request_queue *q = req->q;
1619
1620 if (q->mq_ops)
1621 blk_mq_free_request(req);
1622 else {
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(q->queue_lock, flags);
1626 __blk_put_request(q, req);
1627 spin_unlock_irqrestore(q->queue_lock, flags);
1628 }
1629 }
1630 EXPORT_SYMBOL(blk_put_request);
1631
1632 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1633 struct bio *bio)
1634 {
1635 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1636
1637 if (!ll_back_merge_fn(q, req, bio))
1638 return false;
1639
1640 trace_block_bio_backmerge(q, req, bio);
1641
1642 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1643 blk_rq_set_mixed_merge(req);
1644
1645 req->biotail->bi_next = bio;
1646 req->biotail = bio;
1647 req->__data_len += bio->bi_iter.bi_size;
1648 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1649
1650 blk_account_io_start(req, false);
1651 return true;
1652 }
1653
1654 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1655 struct bio *bio)
1656 {
1657 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1658
1659 if (!ll_front_merge_fn(q, req, bio))
1660 return false;
1661
1662 trace_block_bio_frontmerge(q, req, bio);
1663
1664 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1665 blk_rq_set_mixed_merge(req);
1666
1667 bio->bi_next = req->bio;
1668 req->bio = bio;
1669
1670 req->__sector = bio->bi_iter.bi_sector;
1671 req->__data_len += bio->bi_iter.bi_size;
1672 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1673
1674 blk_account_io_start(req, false);
1675 return true;
1676 }
1677
1678 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1679 struct bio *bio)
1680 {
1681 unsigned short segments = blk_rq_nr_discard_segments(req);
1682
1683 if (segments >= queue_max_discard_segments(q))
1684 goto no_merge;
1685 if (blk_rq_sectors(req) + bio_sectors(bio) >
1686 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1687 goto no_merge;
1688
1689 req->biotail->bi_next = bio;
1690 req->biotail = bio;
1691 req->__data_len += bio->bi_iter.bi_size;
1692 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1693 req->nr_phys_segments = segments + 1;
1694
1695 blk_account_io_start(req, false);
1696 return true;
1697 no_merge:
1698 req_set_nomerge(q, req);
1699 return false;
1700 }
1701
1702 /**
1703 * blk_attempt_plug_merge - try to merge with %current's plugged list
1704 * @q: request_queue new bio is being queued at
1705 * @bio: new bio being queued
1706 * @request_count: out parameter for number of traversed plugged requests
1707 * @same_queue_rq: pointer to &struct request that gets filled in when
1708 * another request associated with @q is found on the plug list
1709 * (optional, may be %NULL)
1710 *
1711 * Determine whether @bio being queued on @q can be merged with a request
1712 * on %current's plugged list. Returns %true if merge was successful,
1713 * otherwise %false.
1714 *
1715 * Plugging coalesces IOs from the same issuer for the same purpose without
1716 * going through @q->queue_lock. As such it's more of an issuing mechanism
1717 * than scheduling, and the request, while may have elvpriv data, is not
1718 * added on the elevator at this point. In addition, we don't have
1719 * reliable access to the elevator outside queue lock. Only check basic
1720 * merging parameters without querying the elevator.
1721 *
1722 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1723 */
1724 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1725 unsigned int *request_count,
1726 struct request **same_queue_rq)
1727 {
1728 struct blk_plug *plug;
1729 struct request *rq;
1730 struct list_head *plug_list;
1731
1732 plug = current->plug;
1733 if (!plug)
1734 return false;
1735 *request_count = 0;
1736
1737 if (q->mq_ops)
1738 plug_list = &plug->mq_list;
1739 else
1740 plug_list = &plug->list;
1741
1742 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1743 bool merged = false;
1744
1745 if (rq->q == q) {
1746 (*request_count)++;
1747 /*
1748 * Only blk-mq multiple hardware queues case checks the
1749 * rq in the same queue, there should be only one such
1750 * rq in a queue
1751 **/
1752 if (same_queue_rq)
1753 *same_queue_rq = rq;
1754 }
1755
1756 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1757 continue;
1758
1759 switch (blk_try_merge(rq, bio)) {
1760 case ELEVATOR_BACK_MERGE:
1761 merged = bio_attempt_back_merge(q, rq, bio);
1762 break;
1763 case ELEVATOR_FRONT_MERGE:
1764 merged = bio_attempt_front_merge(q, rq, bio);
1765 break;
1766 case ELEVATOR_DISCARD_MERGE:
1767 merged = bio_attempt_discard_merge(q, rq, bio);
1768 break;
1769 default:
1770 break;
1771 }
1772
1773 if (merged)
1774 return true;
1775 }
1776
1777 return false;
1778 }
1779
1780 unsigned int blk_plug_queued_count(struct request_queue *q)
1781 {
1782 struct blk_plug *plug;
1783 struct request *rq;
1784 struct list_head *plug_list;
1785 unsigned int ret = 0;
1786
1787 plug = current->plug;
1788 if (!plug)
1789 goto out;
1790
1791 if (q->mq_ops)
1792 plug_list = &plug->mq_list;
1793 else
1794 plug_list = &plug->list;
1795
1796 list_for_each_entry(rq, plug_list, queuelist) {
1797 if (rq->q == q)
1798 ret++;
1799 }
1800 out:
1801 return ret;
1802 }
1803
1804 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1805 {
1806 struct io_context *ioc = rq_ioc(bio);
1807
1808 if (bio->bi_opf & REQ_RAHEAD)
1809 req->cmd_flags |= REQ_FAILFAST_MASK;
1810
1811 req->__sector = bio->bi_iter.bi_sector;
1812 if (ioprio_valid(bio_prio(bio)))
1813 req->ioprio = bio_prio(bio);
1814 else if (ioc)
1815 req->ioprio = ioc->ioprio;
1816 else
1817 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1818 req->write_hint = bio->bi_write_hint;
1819 blk_rq_bio_prep(req->q, req, bio);
1820 }
1821 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1822
1823 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1824 {
1825 struct blk_plug *plug;
1826 int where = ELEVATOR_INSERT_SORT;
1827 struct request *req, *free;
1828 unsigned int request_count = 0;
1829 unsigned int wb_acct;
1830
1831 /*
1832 * low level driver can indicate that it wants pages above a
1833 * certain limit bounced to low memory (ie for highmem, or even
1834 * ISA dma in theory)
1835 */
1836 blk_queue_bounce(q, &bio);
1837
1838 blk_queue_split(q, &bio);
1839
1840 if (!bio_integrity_prep(bio))
1841 return BLK_QC_T_NONE;
1842
1843 if (op_is_flush(bio->bi_opf)) {
1844 spin_lock_irq(q->queue_lock);
1845 where = ELEVATOR_INSERT_FLUSH;
1846 goto get_rq;
1847 }
1848
1849 /*
1850 * Check if we can merge with the plugged list before grabbing
1851 * any locks.
1852 */
1853 if (!blk_queue_nomerges(q)) {
1854 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1855 return BLK_QC_T_NONE;
1856 } else
1857 request_count = blk_plug_queued_count(q);
1858
1859 spin_lock_irq(q->queue_lock);
1860
1861 switch (elv_merge(q, &req, bio)) {
1862 case ELEVATOR_BACK_MERGE:
1863 if (!bio_attempt_back_merge(q, req, bio))
1864 break;
1865 elv_bio_merged(q, req, bio);
1866 free = attempt_back_merge(q, req);
1867 if (free)
1868 __blk_put_request(q, free);
1869 else
1870 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1871 goto out_unlock;
1872 case ELEVATOR_FRONT_MERGE:
1873 if (!bio_attempt_front_merge(q, req, bio))
1874 break;
1875 elv_bio_merged(q, req, bio);
1876 free = attempt_front_merge(q, req);
1877 if (free)
1878 __blk_put_request(q, free);
1879 else
1880 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1881 goto out_unlock;
1882 default:
1883 break;
1884 }
1885
1886 get_rq:
1887 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1888
1889 /*
1890 * Grab a free request. This is might sleep but can not fail.
1891 * Returns with the queue unlocked.
1892 */
1893 blk_queue_enter_live(q);
1894 req = get_request(q, bio->bi_opf, bio, 0);
1895 if (IS_ERR(req)) {
1896 blk_queue_exit(q);
1897 __wbt_done(q->rq_wb, wb_acct);
1898 if (PTR_ERR(req) == -ENOMEM)
1899 bio->bi_status = BLK_STS_RESOURCE;
1900 else
1901 bio->bi_status = BLK_STS_IOERR;
1902 bio_endio(bio);
1903 goto out_unlock;
1904 }
1905
1906 wbt_track(&req->issue_stat, wb_acct);
1907
1908 /*
1909 * After dropping the lock and possibly sleeping here, our request
1910 * may now be mergeable after it had proven unmergeable (above).
1911 * We don't worry about that case for efficiency. It won't happen
1912 * often, and the elevators are able to handle it.
1913 */
1914 blk_init_request_from_bio(req, bio);
1915
1916 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1917 req->cpu = raw_smp_processor_id();
1918
1919 plug = current->plug;
1920 if (plug) {
1921 /*
1922 * If this is the first request added after a plug, fire
1923 * of a plug trace.
1924 *
1925 * @request_count may become stale because of schedule
1926 * out, so check plug list again.
1927 */
1928 if (!request_count || list_empty(&plug->list))
1929 trace_block_plug(q);
1930 else {
1931 struct request *last = list_entry_rq(plug->list.prev);
1932 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1933 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1934 blk_flush_plug_list(plug, false);
1935 trace_block_plug(q);
1936 }
1937 }
1938 list_add_tail(&req->queuelist, &plug->list);
1939 blk_account_io_start(req, true);
1940 } else {
1941 spin_lock_irq(q->queue_lock);
1942 add_acct_request(q, req, where);
1943 __blk_run_queue(q);
1944 out_unlock:
1945 spin_unlock_irq(q->queue_lock);
1946 }
1947
1948 return BLK_QC_T_NONE;
1949 }
1950
1951 static void handle_bad_sector(struct bio *bio)
1952 {
1953 char b[BDEVNAME_SIZE];
1954
1955 printk(KERN_INFO "attempt to access beyond end of device\n");
1956 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1957 bio_devname(bio, b), bio->bi_opf,
1958 (unsigned long long)bio_end_sector(bio),
1959 (long long)get_capacity(bio->bi_disk));
1960 }
1961
1962 #ifdef CONFIG_FAIL_MAKE_REQUEST
1963
1964 static DECLARE_FAULT_ATTR(fail_make_request);
1965
1966 static int __init setup_fail_make_request(char *str)
1967 {
1968 return setup_fault_attr(&fail_make_request, str);
1969 }
1970 __setup("fail_make_request=", setup_fail_make_request);
1971
1972 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1973 {
1974 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1975 }
1976
1977 static int __init fail_make_request_debugfs(void)
1978 {
1979 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1980 NULL, &fail_make_request);
1981
1982 return PTR_ERR_OR_ZERO(dir);
1983 }
1984
1985 late_initcall(fail_make_request_debugfs);
1986
1987 #else /* CONFIG_FAIL_MAKE_REQUEST */
1988
1989 static inline bool should_fail_request(struct hd_struct *part,
1990 unsigned int bytes)
1991 {
1992 return false;
1993 }
1994
1995 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1996
1997 /*
1998 * Remap block n of partition p to block n+start(p) of the disk.
1999 */
2000 static inline int blk_partition_remap(struct bio *bio)
2001 {
2002 struct hd_struct *p;
2003 int ret = 0;
2004
2005 /*
2006 * Zone reset does not include bi_size so bio_sectors() is always 0.
2007 * Include a test for the reset op code and perform the remap if needed.
2008 */
2009 if (!bio->bi_partno ||
2010 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2011 return 0;
2012
2013 rcu_read_lock();
2014 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2015 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2016 bio->bi_iter.bi_sector += p->start_sect;
2017 bio->bi_partno = 0;
2018 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2019 bio->bi_iter.bi_sector - p->start_sect);
2020 } else {
2021 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2022 ret = -EIO;
2023 }
2024 rcu_read_unlock();
2025
2026 return ret;
2027 }
2028
2029 /*
2030 * Check whether this bio extends beyond the end of the device.
2031 */
2032 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2033 {
2034 sector_t maxsector;
2035
2036 if (!nr_sectors)
2037 return 0;
2038
2039 /* Test device or partition size, when known. */
2040 maxsector = get_capacity(bio->bi_disk);
2041 if (maxsector) {
2042 sector_t sector = bio->bi_iter.bi_sector;
2043
2044 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2045 /*
2046 * This may well happen - the kernel calls bread()
2047 * without checking the size of the device, e.g., when
2048 * mounting a device.
2049 */
2050 handle_bad_sector(bio);
2051 return 1;
2052 }
2053 }
2054
2055 return 0;
2056 }
2057
2058 static noinline_for_stack bool
2059 generic_make_request_checks(struct bio *bio)
2060 {
2061 struct request_queue *q;
2062 int nr_sectors = bio_sectors(bio);
2063 blk_status_t status = BLK_STS_IOERR;
2064 char b[BDEVNAME_SIZE];
2065
2066 might_sleep();
2067
2068 if (bio_check_eod(bio, nr_sectors))
2069 goto end_io;
2070
2071 q = bio->bi_disk->queue;
2072 if (unlikely(!q)) {
2073 printk(KERN_ERR
2074 "generic_make_request: Trying to access "
2075 "nonexistent block-device %s (%Lu)\n",
2076 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2077 goto end_io;
2078 }
2079
2080 /*
2081 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2082 * if queue is not a request based queue.
2083 */
2084
2085 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2086 goto not_supported;
2087
2088 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2089 goto end_io;
2090
2091 if (blk_partition_remap(bio))
2092 goto end_io;
2093
2094 if (bio_check_eod(bio, nr_sectors))
2095 goto end_io;
2096
2097 /*
2098 * Filter flush bio's early so that make_request based
2099 * drivers without flush support don't have to worry
2100 * about them.
2101 */
2102 if (op_is_flush(bio->bi_opf) &&
2103 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2104 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2105 if (!nr_sectors) {
2106 status = BLK_STS_OK;
2107 goto end_io;
2108 }
2109 }
2110
2111 switch (bio_op(bio)) {
2112 case REQ_OP_DISCARD:
2113 if (!blk_queue_discard(q))
2114 goto not_supported;
2115 break;
2116 case REQ_OP_SECURE_ERASE:
2117 if (!blk_queue_secure_erase(q))
2118 goto not_supported;
2119 break;
2120 case REQ_OP_WRITE_SAME:
2121 if (!q->limits.max_write_same_sectors)
2122 goto not_supported;
2123 break;
2124 case REQ_OP_ZONE_REPORT:
2125 case REQ_OP_ZONE_RESET:
2126 if (!blk_queue_is_zoned(q))
2127 goto not_supported;
2128 break;
2129 case REQ_OP_WRITE_ZEROES:
2130 if (!q->limits.max_write_zeroes_sectors)
2131 goto not_supported;
2132 break;
2133 default:
2134 break;
2135 }
2136
2137 /*
2138 * Various block parts want %current->io_context and lazy ioc
2139 * allocation ends up trading a lot of pain for a small amount of
2140 * memory. Just allocate it upfront. This may fail and block
2141 * layer knows how to live with it.
2142 */
2143 create_io_context(GFP_ATOMIC, q->node);
2144
2145 if (!blkcg_bio_issue_check(q, bio))
2146 return false;
2147
2148 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2149 trace_block_bio_queue(q, bio);
2150 /* Now that enqueuing has been traced, we need to trace
2151 * completion as well.
2152 */
2153 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2154 }
2155 return true;
2156
2157 not_supported:
2158 status = BLK_STS_NOTSUPP;
2159 end_io:
2160 bio->bi_status = status;
2161 bio_endio(bio);
2162 return false;
2163 }
2164
2165 /**
2166 * generic_make_request - hand a buffer to its device driver for I/O
2167 * @bio: The bio describing the location in memory and on the device.
2168 *
2169 * generic_make_request() is used to make I/O requests of block
2170 * devices. It is passed a &struct bio, which describes the I/O that needs
2171 * to be done.
2172 *
2173 * generic_make_request() does not return any status. The
2174 * success/failure status of the request, along with notification of
2175 * completion, is delivered asynchronously through the bio->bi_end_io
2176 * function described (one day) else where.
2177 *
2178 * The caller of generic_make_request must make sure that bi_io_vec
2179 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2180 * set to describe the device address, and the
2181 * bi_end_io and optionally bi_private are set to describe how
2182 * completion notification should be signaled.
2183 *
2184 * generic_make_request and the drivers it calls may use bi_next if this
2185 * bio happens to be merged with someone else, and may resubmit the bio to
2186 * a lower device by calling into generic_make_request recursively, which
2187 * means the bio should NOT be touched after the call to ->make_request_fn.
2188 */
2189 blk_qc_t generic_make_request(struct bio *bio)
2190 {
2191 /*
2192 * bio_list_on_stack[0] contains bios submitted by the current
2193 * make_request_fn.
2194 * bio_list_on_stack[1] contains bios that were submitted before
2195 * the current make_request_fn, but that haven't been processed
2196 * yet.
2197 */
2198 struct bio_list bio_list_on_stack[2];
2199 blk_qc_t ret = BLK_QC_T_NONE;
2200
2201 if (!generic_make_request_checks(bio))
2202 goto out;
2203
2204 /*
2205 * We only want one ->make_request_fn to be active at a time, else
2206 * stack usage with stacked devices could be a problem. So use
2207 * current->bio_list to keep a list of requests submited by a
2208 * make_request_fn function. current->bio_list is also used as a
2209 * flag to say if generic_make_request is currently active in this
2210 * task or not. If it is NULL, then no make_request is active. If
2211 * it is non-NULL, then a make_request is active, and new requests
2212 * should be added at the tail
2213 */
2214 if (current->bio_list) {
2215 bio_list_add(&current->bio_list[0], bio);
2216 goto out;
2217 }
2218
2219 /* following loop may be a bit non-obvious, and so deserves some
2220 * explanation.
2221 * Before entering the loop, bio->bi_next is NULL (as all callers
2222 * ensure that) so we have a list with a single bio.
2223 * We pretend that we have just taken it off a longer list, so
2224 * we assign bio_list to a pointer to the bio_list_on_stack,
2225 * thus initialising the bio_list of new bios to be
2226 * added. ->make_request() may indeed add some more bios
2227 * through a recursive call to generic_make_request. If it
2228 * did, we find a non-NULL value in bio_list and re-enter the loop
2229 * from the top. In this case we really did just take the bio
2230 * of the top of the list (no pretending) and so remove it from
2231 * bio_list, and call into ->make_request() again.
2232 */
2233 BUG_ON(bio->bi_next);
2234 bio_list_init(&bio_list_on_stack[0]);
2235 current->bio_list = bio_list_on_stack;
2236 do {
2237 struct request_queue *q = bio->bi_disk->queue;
2238
2239 if (likely(blk_queue_enter(q, bio->bi_opf & REQ_NOWAIT) == 0)) {
2240 struct bio_list lower, same;
2241
2242 /* Create a fresh bio_list for all subordinate requests */
2243 bio_list_on_stack[1] = bio_list_on_stack[0];
2244 bio_list_init(&bio_list_on_stack[0]);
2245 ret = q->make_request_fn(q, bio);
2246
2247 blk_queue_exit(q);
2248
2249 /* sort new bios into those for a lower level
2250 * and those for the same level
2251 */
2252 bio_list_init(&lower);
2253 bio_list_init(&same);
2254 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2255 if (q == bio->bi_disk->queue)
2256 bio_list_add(&same, bio);
2257 else
2258 bio_list_add(&lower, bio);
2259 /* now assemble so we handle the lowest level first */
2260 bio_list_merge(&bio_list_on_stack[0], &lower);
2261 bio_list_merge(&bio_list_on_stack[0], &same);
2262 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2263 } else {
2264 if (unlikely(!blk_queue_dying(q) &&
2265 (bio->bi_opf & REQ_NOWAIT)))
2266 bio_wouldblock_error(bio);
2267 else
2268 bio_io_error(bio);
2269 }
2270 bio = bio_list_pop(&bio_list_on_stack[0]);
2271 } while (bio);
2272 current->bio_list = NULL; /* deactivate */
2273
2274 out:
2275 return ret;
2276 }
2277 EXPORT_SYMBOL(generic_make_request);
2278
2279 /**
2280 * direct_make_request - hand a buffer directly to its device driver for I/O
2281 * @bio: The bio describing the location in memory and on the device.
2282 *
2283 * This function behaves like generic_make_request(), but does not protect
2284 * against recursion. Must only be used if the called driver is known
2285 * to not call generic_make_request (or direct_make_request) again from
2286 * its make_request function. (Calling direct_make_request again from
2287 * a workqueue is perfectly fine as that doesn't recurse).
2288 */
2289 blk_qc_t direct_make_request(struct bio *bio)
2290 {
2291 struct request_queue *q = bio->bi_disk->queue;
2292 bool nowait = bio->bi_opf & REQ_NOWAIT;
2293 blk_qc_t ret;
2294
2295 if (!generic_make_request_checks(bio))
2296 return BLK_QC_T_NONE;
2297
2298 if (unlikely(blk_queue_enter(q, nowait))) {
2299 if (nowait && !blk_queue_dying(q))
2300 bio->bi_status = BLK_STS_AGAIN;
2301 else
2302 bio->bi_status = BLK_STS_IOERR;
2303 bio_endio(bio);
2304 return BLK_QC_T_NONE;
2305 }
2306
2307 ret = q->make_request_fn(q, bio);
2308 blk_queue_exit(q);
2309 return ret;
2310 }
2311 EXPORT_SYMBOL_GPL(direct_make_request);
2312
2313 /**
2314 * submit_bio - submit a bio to the block device layer for I/O
2315 * @bio: The &struct bio which describes the I/O
2316 *
2317 * submit_bio() is very similar in purpose to generic_make_request(), and
2318 * uses that function to do most of the work. Both are fairly rough
2319 * interfaces; @bio must be presetup and ready for I/O.
2320 *
2321 */
2322 blk_qc_t submit_bio(struct bio *bio)
2323 {
2324 /*
2325 * If it's a regular read/write or a barrier with data attached,
2326 * go through the normal accounting stuff before submission.
2327 */
2328 if (bio_has_data(bio)) {
2329 unsigned int count;
2330
2331 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2332 count = queue_logical_block_size(bio->bi_disk->queue);
2333 else
2334 count = bio_sectors(bio);
2335
2336 if (op_is_write(bio_op(bio))) {
2337 count_vm_events(PGPGOUT, count);
2338 } else {
2339 task_io_account_read(bio->bi_iter.bi_size);
2340 count_vm_events(PGPGIN, count);
2341 }
2342
2343 if (unlikely(block_dump)) {
2344 char b[BDEVNAME_SIZE];
2345 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2346 current->comm, task_pid_nr(current),
2347 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2348 (unsigned long long)bio->bi_iter.bi_sector,
2349 bio_devname(bio, b), count);
2350 }
2351 }
2352
2353 return generic_make_request(bio);
2354 }
2355 EXPORT_SYMBOL(submit_bio);
2356
2357 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2358 {
2359 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2360 return false;
2361
2362 if (current->plug)
2363 blk_flush_plug_list(current->plug, false);
2364 return q->poll_fn(q, cookie);
2365 }
2366 EXPORT_SYMBOL_GPL(blk_poll);
2367
2368 /**
2369 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2370 * for new the queue limits
2371 * @q: the queue
2372 * @rq: the request being checked
2373 *
2374 * Description:
2375 * @rq may have been made based on weaker limitations of upper-level queues
2376 * in request stacking drivers, and it may violate the limitation of @q.
2377 * Since the block layer and the underlying device driver trust @rq
2378 * after it is inserted to @q, it should be checked against @q before
2379 * the insertion using this generic function.
2380 *
2381 * Request stacking drivers like request-based dm may change the queue
2382 * limits when retrying requests on other queues. Those requests need
2383 * to be checked against the new queue limits again during dispatch.
2384 */
2385 static int blk_cloned_rq_check_limits(struct request_queue *q,
2386 struct request *rq)
2387 {
2388 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2389 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2390 return -EIO;
2391 }
2392
2393 /*
2394 * queue's settings related to segment counting like q->bounce_pfn
2395 * may differ from that of other stacking queues.
2396 * Recalculate it to check the request correctly on this queue's
2397 * limitation.
2398 */
2399 blk_recalc_rq_segments(rq);
2400 if (rq->nr_phys_segments > queue_max_segments(q)) {
2401 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2402 return -EIO;
2403 }
2404
2405 return 0;
2406 }
2407
2408 /**
2409 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2410 * @q: the queue to submit the request
2411 * @rq: the request being queued
2412 */
2413 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2414 {
2415 unsigned long flags;
2416 int where = ELEVATOR_INSERT_BACK;
2417
2418 if (blk_cloned_rq_check_limits(q, rq))
2419 return BLK_STS_IOERR;
2420
2421 if (rq->rq_disk &&
2422 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2423 return BLK_STS_IOERR;
2424
2425 if (q->mq_ops) {
2426 if (blk_queue_io_stat(q))
2427 blk_account_io_start(rq, true);
2428 /*
2429 * Since we have a scheduler attached on the top device,
2430 * bypass a potential scheduler on the bottom device for
2431 * insert.
2432 */
2433 blk_mq_request_bypass_insert(rq, true);
2434 return BLK_STS_OK;
2435 }
2436
2437 spin_lock_irqsave(q->queue_lock, flags);
2438 if (unlikely(blk_queue_dying(q))) {
2439 spin_unlock_irqrestore(q->queue_lock, flags);
2440 return BLK_STS_IOERR;
2441 }
2442
2443 /*
2444 * Submitting request must be dequeued before calling this function
2445 * because it will be linked to another request_queue
2446 */
2447 BUG_ON(blk_queued_rq(rq));
2448
2449 if (op_is_flush(rq->cmd_flags))
2450 where = ELEVATOR_INSERT_FLUSH;
2451
2452 add_acct_request(q, rq, where);
2453 if (where == ELEVATOR_INSERT_FLUSH)
2454 __blk_run_queue(q);
2455 spin_unlock_irqrestore(q->queue_lock, flags);
2456
2457 return BLK_STS_OK;
2458 }
2459 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2460
2461 /**
2462 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2463 * @rq: request to examine
2464 *
2465 * Description:
2466 * A request could be merge of IOs which require different failure
2467 * handling. This function determines the number of bytes which
2468 * can be failed from the beginning of the request without
2469 * crossing into area which need to be retried further.
2470 *
2471 * Return:
2472 * The number of bytes to fail.
2473 */
2474 unsigned int blk_rq_err_bytes(const struct request *rq)
2475 {
2476 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2477 unsigned int bytes = 0;
2478 struct bio *bio;
2479
2480 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2481 return blk_rq_bytes(rq);
2482
2483 /*
2484 * Currently the only 'mixing' which can happen is between
2485 * different fastfail types. We can safely fail portions
2486 * which have all the failfast bits that the first one has -
2487 * the ones which are at least as eager to fail as the first
2488 * one.
2489 */
2490 for (bio = rq->bio; bio; bio = bio->bi_next) {
2491 if ((bio->bi_opf & ff) != ff)
2492 break;
2493 bytes += bio->bi_iter.bi_size;
2494 }
2495
2496 /* this could lead to infinite loop */
2497 BUG_ON(blk_rq_bytes(rq) && !bytes);
2498 return bytes;
2499 }
2500 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2501
2502 void blk_account_io_completion(struct request *req, unsigned int bytes)
2503 {
2504 if (blk_do_io_stat(req)) {
2505 const int rw = rq_data_dir(req);
2506 struct hd_struct *part;
2507 int cpu;
2508
2509 cpu = part_stat_lock();
2510 part = req->part;
2511 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2512 part_stat_unlock();
2513 }
2514 }
2515
2516 void blk_account_io_done(struct request *req)
2517 {
2518 /*
2519 * Account IO completion. flush_rq isn't accounted as a
2520 * normal IO on queueing nor completion. Accounting the
2521 * containing request is enough.
2522 */
2523 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2524 unsigned long duration = jiffies - req->start_time;
2525 const int rw = rq_data_dir(req);
2526 struct hd_struct *part;
2527 int cpu;
2528
2529 cpu = part_stat_lock();
2530 part = req->part;
2531
2532 part_stat_inc(cpu, part, ios[rw]);
2533 part_stat_add(cpu, part, ticks[rw], duration);
2534 part_round_stats(req->q, cpu, part);
2535 part_dec_in_flight(req->q, part, rw);
2536
2537 hd_struct_put(part);
2538 part_stat_unlock();
2539 }
2540 }
2541
2542 #ifdef CONFIG_PM
2543 /*
2544 * Don't process normal requests when queue is suspended
2545 * or in the process of suspending/resuming
2546 */
2547 static bool blk_pm_allow_request(struct request *rq)
2548 {
2549 switch (rq->q->rpm_status) {
2550 case RPM_RESUMING:
2551 case RPM_SUSPENDING:
2552 return rq->rq_flags & RQF_PM;
2553 case RPM_SUSPENDED:
2554 return false;
2555 }
2556
2557 return true;
2558 }
2559 #else
2560 static bool blk_pm_allow_request(struct request *rq)
2561 {
2562 return true;
2563 }
2564 #endif
2565
2566 void blk_account_io_start(struct request *rq, bool new_io)
2567 {
2568 struct hd_struct *part;
2569 int rw = rq_data_dir(rq);
2570 int cpu;
2571
2572 if (!blk_do_io_stat(rq))
2573 return;
2574
2575 cpu = part_stat_lock();
2576
2577 if (!new_io) {
2578 part = rq->part;
2579 part_stat_inc(cpu, part, merges[rw]);
2580 } else {
2581 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2582 if (!hd_struct_try_get(part)) {
2583 /*
2584 * The partition is already being removed,
2585 * the request will be accounted on the disk only
2586 *
2587 * We take a reference on disk->part0 although that
2588 * partition will never be deleted, so we can treat
2589 * it as any other partition.
2590 */
2591 part = &rq->rq_disk->part0;
2592 hd_struct_get(part);
2593 }
2594 part_round_stats(rq->q, cpu, part);
2595 part_inc_in_flight(rq->q, part, rw);
2596 rq->part = part;
2597 }
2598
2599 part_stat_unlock();
2600 }
2601
2602 static struct request *elv_next_request(struct request_queue *q)
2603 {
2604 struct request *rq;
2605 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2606
2607 WARN_ON_ONCE(q->mq_ops);
2608
2609 while (1) {
2610 list_for_each_entry(rq, &q->queue_head, queuelist) {
2611 if (blk_pm_allow_request(rq))
2612 return rq;
2613
2614 if (rq->rq_flags & RQF_SOFTBARRIER)
2615 break;
2616 }
2617
2618 /*
2619 * Flush request is running and flush request isn't queueable
2620 * in the drive, we can hold the queue till flush request is
2621 * finished. Even we don't do this, driver can't dispatch next
2622 * requests and will requeue them. And this can improve
2623 * throughput too. For example, we have request flush1, write1,
2624 * flush 2. flush1 is dispatched, then queue is hold, write1
2625 * isn't inserted to queue. After flush1 is finished, flush2
2626 * will be dispatched. Since disk cache is already clean,
2627 * flush2 will be finished very soon, so looks like flush2 is
2628 * folded to flush1.
2629 * Since the queue is hold, a flag is set to indicate the queue
2630 * should be restarted later. Please see flush_end_io() for
2631 * details.
2632 */
2633 if (fq->flush_pending_idx != fq->flush_running_idx &&
2634 !queue_flush_queueable(q)) {
2635 fq->flush_queue_delayed = 1;
2636 return NULL;
2637 }
2638 if (unlikely(blk_queue_bypass(q)) ||
2639 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2640 return NULL;
2641 }
2642 }
2643
2644 /**
2645 * blk_peek_request - peek at the top of a request queue
2646 * @q: request queue to peek at
2647 *
2648 * Description:
2649 * Return the request at the top of @q. The returned request
2650 * should be started using blk_start_request() before LLD starts
2651 * processing it.
2652 *
2653 * Return:
2654 * Pointer to the request at the top of @q if available. Null
2655 * otherwise.
2656 */
2657 struct request *blk_peek_request(struct request_queue *q)
2658 {
2659 struct request *rq;
2660 int ret;
2661
2662 lockdep_assert_held(q->queue_lock);
2663 WARN_ON_ONCE(q->mq_ops);
2664
2665 while ((rq = elv_next_request(q)) != NULL) {
2666 if (!(rq->rq_flags & RQF_STARTED)) {
2667 /*
2668 * This is the first time the device driver
2669 * sees this request (possibly after
2670 * requeueing). Notify IO scheduler.
2671 */
2672 if (rq->rq_flags & RQF_SORTED)
2673 elv_activate_rq(q, rq);
2674
2675 /*
2676 * just mark as started even if we don't start
2677 * it, a request that has been delayed should
2678 * not be passed by new incoming requests
2679 */
2680 rq->rq_flags |= RQF_STARTED;
2681 trace_block_rq_issue(q, rq);
2682 }
2683
2684 if (!q->boundary_rq || q->boundary_rq == rq) {
2685 q->end_sector = rq_end_sector(rq);
2686 q->boundary_rq = NULL;
2687 }
2688
2689 if (rq->rq_flags & RQF_DONTPREP)
2690 break;
2691
2692 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2693 /*
2694 * make sure space for the drain appears we
2695 * know we can do this because max_hw_segments
2696 * has been adjusted to be one fewer than the
2697 * device can handle
2698 */
2699 rq->nr_phys_segments++;
2700 }
2701
2702 if (!q->prep_rq_fn)
2703 break;
2704
2705 ret = q->prep_rq_fn(q, rq);
2706 if (ret == BLKPREP_OK) {
2707 break;
2708 } else if (ret == BLKPREP_DEFER) {
2709 /*
2710 * the request may have been (partially) prepped.
2711 * we need to keep this request in the front to
2712 * avoid resource deadlock. RQF_STARTED will
2713 * prevent other fs requests from passing this one.
2714 */
2715 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2716 !(rq->rq_flags & RQF_DONTPREP)) {
2717 /*
2718 * remove the space for the drain we added
2719 * so that we don't add it again
2720 */
2721 --rq->nr_phys_segments;
2722 }
2723
2724 rq = NULL;
2725 break;
2726 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2727 rq->rq_flags |= RQF_QUIET;
2728 /*
2729 * Mark this request as started so we don't trigger
2730 * any debug logic in the end I/O path.
2731 */
2732 blk_start_request(rq);
2733 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2734 BLK_STS_TARGET : BLK_STS_IOERR);
2735 } else {
2736 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2737 break;
2738 }
2739 }
2740
2741 return rq;
2742 }
2743 EXPORT_SYMBOL(blk_peek_request);
2744
2745 static void blk_dequeue_request(struct request *rq)
2746 {
2747 struct request_queue *q = rq->q;
2748
2749 BUG_ON(list_empty(&rq->queuelist));
2750 BUG_ON(ELV_ON_HASH(rq));
2751
2752 list_del_init(&rq->queuelist);
2753
2754 /*
2755 * the time frame between a request being removed from the lists
2756 * and to it is freed is accounted as io that is in progress at
2757 * the driver side.
2758 */
2759 if (blk_account_rq(rq)) {
2760 q->in_flight[rq_is_sync(rq)]++;
2761 set_io_start_time_ns(rq);
2762 }
2763 }
2764
2765 /**
2766 * blk_start_request - start request processing on the driver
2767 * @req: request to dequeue
2768 *
2769 * Description:
2770 * Dequeue @req and start timeout timer on it. This hands off the
2771 * request to the driver.
2772 */
2773 void blk_start_request(struct request *req)
2774 {
2775 lockdep_assert_held(req->q->queue_lock);
2776 WARN_ON_ONCE(req->q->mq_ops);
2777
2778 blk_dequeue_request(req);
2779
2780 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2781 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2782 req->rq_flags |= RQF_STATS;
2783 wbt_issue(req->q->rq_wb, &req->issue_stat);
2784 }
2785
2786 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2787 blk_add_timer(req);
2788 }
2789 EXPORT_SYMBOL(blk_start_request);
2790
2791 /**
2792 * blk_fetch_request - fetch a request from a request queue
2793 * @q: request queue to fetch a request from
2794 *
2795 * Description:
2796 * Return the request at the top of @q. The request is started on
2797 * return and LLD can start processing it immediately.
2798 *
2799 * Return:
2800 * Pointer to the request at the top of @q if available. Null
2801 * otherwise.
2802 */
2803 struct request *blk_fetch_request(struct request_queue *q)
2804 {
2805 struct request *rq;
2806
2807 lockdep_assert_held(q->queue_lock);
2808 WARN_ON_ONCE(q->mq_ops);
2809
2810 rq = blk_peek_request(q);
2811 if (rq)
2812 blk_start_request(rq);
2813 return rq;
2814 }
2815 EXPORT_SYMBOL(blk_fetch_request);
2816
2817 /*
2818 * Steal bios from a request and add them to a bio list.
2819 * The request must not have been partially completed before.
2820 */
2821 void blk_steal_bios(struct bio_list *list, struct request *rq)
2822 {
2823 if (rq->bio) {
2824 if (list->tail)
2825 list->tail->bi_next = rq->bio;
2826 else
2827 list->head = rq->bio;
2828 list->tail = rq->biotail;
2829
2830 rq->bio = NULL;
2831 rq->biotail = NULL;
2832 }
2833
2834 rq->__data_len = 0;
2835 }
2836 EXPORT_SYMBOL_GPL(blk_steal_bios);
2837
2838 /**
2839 * blk_update_request - Special helper function for request stacking drivers
2840 * @req: the request being processed
2841 * @error: block status code
2842 * @nr_bytes: number of bytes to complete @req
2843 *
2844 * Description:
2845 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2846 * the request structure even if @req doesn't have leftover.
2847 * If @req has leftover, sets it up for the next range of segments.
2848 *
2849 * This special helper function is only for request stacking drivers
2850 * (e.g. request-based dm) so that they can handle partial completion.
2851 * Actual device drivers should use blk_end_request instead.
2852 *
2853 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2854 * %false return from this function.
2855 *
2856 * Return:
2857 * %false - this request doesn't have any more data
2858 * %true - this request has more data
2859 **/
2860 bool blk_update_request(struct request *req, blk_status_t error,
2861 unsigned int nr_bytes)
2862 {
2863 int total_bytes;
2864
2865 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2866
2867 if (!req->bio)
2868 return false;
2869
2870 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2871 !(req->rq_flags & RQF_QUIET)))
2872 print_req_error(req, error);
2873
2874 blk_account_io_completion(req, nr_bytes);
2875
2876 total_bytes = 0;
2877 while (req->bio) {
2878 struct bio *bio = req->bio;
2879 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2880
2881 if (bio_bytes == bio->bi_iter.bi_size)
2882 req->bio = bio->bi_next;
2883
2884 /* Completion has already been traced */
2885 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2886 req_bio_endio(req, bio, bio_bytes, error);
2887
2888 total_bytes += bio_bytes;
2889 nr_bytes -= bio_bytes;
2890
2891 if (!nr_bytes)
2892 break;
2893 }
2894
2895 /*
2896 * completely done
2897 */
2898 if (!req->bio) {
2899 /*
2900 * Reset counters so that the request stacking driver
2901 * can find how many bytes remain in the request
2902 * later.
2903 */
2904 req->__data_len = 0;
2905 return false;
2906 }
2907
2908 req->__data_len -= total_bytes;
2909
2910 /* update sector only for requests with clear definition of sector */
2911 if (!blk_rq_is_passthrough(req))
2912 req->__sector += total_bytes >> 9;
2913
2914 /* mixed attributes always follow the first bio */
2915 if (req->rq_flags & RQF_MIXED_MERGE) {
2916 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2917 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2918 }
2919
2920 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2921 /*
2922 * If total number of sectors is less than the first segment
2923 * size, something has gone terribly wrong.
2924 */
2925 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2926 blk_dump_rq_flags(req, "request botched");
2927 req->__data_len = blk_rq_cur_bytes(req);
2928 }
2929
2930 /* recalculate the number of segments */
2931 blk_recalc_rq_segments(req);
2932 }
2933
2934 return true;
2935 }
2936 EXPORT_SYMBOL_GPL(blk_update_request);
2937
2938 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
2939 unsigned int nr_bytes,
2940 unsigned int bidi_bytes)
2941 {
2942 if (blk_update_request(rq, error, nr_bytes))
2943 return true;
2944
2945 /* Bidi request must be completed as a whole */
2946 if (unlikely(blk_bidi_rq(rq)) &&
2947 blk_update_request(rq->next_rq, error, bidi_bytes))
2948 return true;
2949
2950 if (blk_queue_add_random(rq->q))
2951 add_disk_randomness(rq->rq_disk);
2952
2953 return false;
2954 }
2955
2956 /**
2957 * blk_unprep_request - unprepare a request
2958 * @req: the request
2959 *
2960 * This function makes a request ready for complete resubmission (or
2961 * completion). It happens only after all error handling is complete,
2962 * so represents the appropriate moment to deallocate any resources
2963 * that were allocated to the request in the prep_rq_fn. The queue
2964 * lock is held when calling this.
2965 */
2966 void blk_unprep_request(struct request *req)
2967 {
2968 struct request_queue *q = req->q;
2969
2970 req->rq_flags &= ~RQF_DONTPREP;
2971 if (q->unprep_rq_fn)
2972 q->unprep_rq_fn(q, req);
2973 }
2974 EXPORT_SYMBOL_GPL(blk_unprep_request);
2975
2976 void blk_finish_request(struct request *req, blk_status_t error)
2977 {
2978 struct request_queue *q = req->q;
2979
2980 lockdep_assert_held(req->q->queue_lock);
2981 WARN_ON_ONCE(q->mq_ops);
2982
2983 if (req->rq_flags & RQF_STATS)
2984 blk_stat_add(req);
2985
2986 if (req->rq_flags & RQF_QUEUED)
2987 blk_queue_end_tag(q, req);
2988
2989 BUG_ON(blk_queued_rq(req));
2990
2991 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2992 laptop_io_completion(req->q->backing_dev_info);
2993
2994 blk_delete_timer(req);
2995
2996 if (req->rq_flags & RQF_DONTPREP)
2997 blk_unprep_request(req);
2998
2999 blk_account_io_done(req);
3000
3001 if (req->end_io) {
3002 wbt_done(req->q->rq_wb, &req->issue_stat);
3003 req->end_io(req, error);
3004 } else {
3005 if (blk_bidi_rq(req))
3006 __blk_put_request(req->next_rq->q, req->next_rq);
3007
3008 __blk_put_request(q, req);
3009 }
3010 }
3011 EXPORT_SYMBOL(blk_finish_request);
3012
3013 /**
3014 * blk_end_bidi_request - Complete a bidi request
3015 * @rq: the request to complete
3016 * @error: block status code
3017 * @nr_bytes: number of bytes to complete @rq
3018 * @bidi_bytes: number of bytes to complete @rq->next_rq
3019 *
3020 * Description:
3021 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3022 * Drivers that supports bidi can safely call this member for any
3023 * type of request, bidi or uni. In the later case @bidi_bytes is
3024 * just ignored.
3025 *
3026 * Return:
3027 * %false - we are done with this request
3028 * %true - still buffers pending for this request
3029 **/
3030 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3031 unsigned int nr_bytes, unsigned int bidi_bytes)
3032 {
3033 struct request_queue *q = rq->q;
3034 unsigned long flags;
3035
3036 WARN_ON_ONCE(q->mq_ops);
3037
3038 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3039 return true;
3040
3041 spin_lock_irqsave(q->queue_lock, flags);
3042 blk_finish_request(rq, error);
3043 spin_unlock_irqrestore(q->queue_lock, flags);
3044
3045 return false;
3046 }
3047
3048 /**
3049 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3050 * @rq: the request to complete
3051 * @error: block status code
3052 * @nr_bytes: number of bytes to complete @rq
3053 * @bidi_bytes: number of bytes to complete @rq->next_rq
3054 *
3055 * Description:
3056 * Identical to blk_end_bidi_request() except that queue lock is
3057 * assumed to be locked on entry and remains so on return.
3058 *
3059 * Return:
3060 * %false - we are done with this request
3061 * %true - still buffers pending for this request
3062 **/
3063 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3064 unsigned int nr_bytes, unsigned int bidi_bytes)
3065 {
3066 lockdep_assert_held(rq->q->queue_lock);
3067 WARN_ON_ONCE(rq->q->mq_ops);
3068
3069 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3070 return true;
3071
3072 blk_finish_request(rq, error);
3073
3074 return false;
3075 }
3076
3077 /**
3078 * blk_end_request - Helper function for drivers to complete the request.
3079 * @rq: the request being processed
3080 * @error: block status code
3081 * @nr_bytes: number of bytes to complete
3082 *
3083 * Description:
3084 * Ends I/O on a number of bytes attached to @rq.
3085 * If @rq has leftover, sets it up for the next range of segments.
3086 *
3087 * Return:
3088 * %false - we are done with this request
3089 * %true - still buffers pending for this request
3090 **/
3091 bool blk_end_request(struct request *rq, blk_status_t error,
3092 unsigned int nr_bytes)
3093 {
3094 WARN_ON_ONCE(rq->q->mq_ops);
3095 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3096 }
3097 EXPORT_SYMBOL(blk_end_request);
3098
3099 /**
3100 * blk_end_request_all - Helper function for drives to finish the request.
3101 * @rq: the request to finish
3102 * @error: block status code
3103 *
3104 * Description:
3105 * Completely finish @rq.
3106 */
3107 void blk_end_request_all(struct request *rq, blk_status_t error)
3108 {
3109 bool pending;
3110 unsigned int bidi_bytes = 0;
3111
3112 if (unlikely(blk_bidi_rq(rq)))
3113 bidi_bytes = blk_rq_bytes(rq->next_rq);
3114
3115 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3116 BUG_ON(pending);
3117 }
3118 EXPORT_SYMBOL(blk_end_request_all);
3119
3120 /**
3121 * __blk_end_request - Helper function for drivers to complete the request.
3122 * @rq: the request being processed
3123 * @error: block status code
3124 * @nr_bytes: number of bytes to complete
3125 *
3126 * Description:
3127 * Must be called with queue lock held unlike blk_end_request().
3128 *
3129 * Return:
3130 * %false - we are done with this request
3131 * %true - still buffers pending for this request
3132 **/
3133 bool __blk_end_request(struct request *rq, blk_status_t error,
3134 unsigned int nr_bytes)
3135 {
3136 lockdep_assert_held(rq->q->queue_lock);
3137 WARN_ON_ONCE(rq->q->mq_ops);
3138
3139 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3140 }
3141 EXPORT_SYMBOL(__blk_end_request);
3142
3143 /**
3144 * __blk_end_request_all - Helper function for drives to finish the request.
3145 * @rq: the request to finish
3146 * @error: block status code
3147 *
3148 * Description:
3149 * Completely finish @rq. Must be called with queue lock held.
3150 */
3151 void __blk_end_request_all(struct request *rq, blk_status_t error)
3152 {
3153 bool pending;
3154 unsigned int bidi_bytes = 0;
3155
3156 lockdep_assert_held(rq->q->queue_lock);
3157 WARN_ON_ONCE(rq->q->mq_ops);
3158
3159 if (unlikely(blk_bidi_rq(rq)))
3160 bidi_bytes = blk_rq_bytes(rq->next_rq);
3161
3162 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3163 BUG_ON(pending);
3164 }
3165 EXPORT_SYMBOL(__blk_end_request_all);
3166
3167 /**
3168 * __blk_end_request_cur - Helper function to finish the current request chunk.
3169 * @rq: the request to finish the current chunk for
3170 * @error: block status code
3171 *
3172 * Description:
3173 * Complete the current consecutively mapped chunk from @rq. Must
3174 * be called with queue lock held.
3175 *
3176 * Return:
3177 * %false - we are done with this request
3178 * %true - still buffers pending for this request
3179 */
3180 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3181 {
3182 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3183 }
3184 EXPORT_SYMBOL(__blk_end_request_cur);
3185
3186 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3187 struct bio *bio)
3188 {
3189 if (bio_has_data(bio))
3190 rq->nr_phys_segments = bio_phys_segments(q, bio);
3191
3192 rq->__data_len = bio->bi_iter.bi_size;
3193 rq->bio = rq->biotail = bio;
3194
3195 if (bio->bi_disk)
3196 rq->rq_disk = bio->bi_disk;
3197 }
3198
3199 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3200 /**
3201 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3202 * @rq: the request to be flushed
3203 *
3204 * Description:
3205 * Flush all pages in @rq.
3206 */
3207 void rq_flush_dcache_pages(struct request *rq)
3208 {
3209 struct req_iterator iter;
3210 struct bio_vec bvec;
3211
3212 rq_for_each_segment(bvec, rq, iter)
3213 flush_dcache_page(bvec.bv_page);
3214 }
3215 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3216 #endif
3217
3218 /**
3219 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3220 * @q : the queue of the device being checked
3221 *
3222 * Description:
3223 * Check if underlying low-level drivers of a device are busy.
3224 * If the drivers want to export their busy state, they must set own
3225 * exporting function using blk_queue_lld_busy() first.
3226 *
3227 * Basically, this function is used only by request stacking drivers
3228 * to stop dispatching requests to underlying devices when underlying
3229 * devices are busy. This behavior helps more I/O merging on the queue
3230 * of the request stacking driver and prevents I/O throughput regression
3231 * on burst I/O load.
3232 *
3233 * Return:
3234 * 0 - Not busy (The request stacking driver should dispatch request)
3235 * 1 - Busy (The request stacking driver should stop dispatching request)
3236 */
3237 int blk_lld_busy(struct request_queue *q)
3238 {
3239 if (q->lld_busy_fn)
3240 return q->lld_busy_fn(q);
3241
3242 return 0;
3243 }
3244 EXPORT_SYMBOL_GPL(blk_lld_busy);
3245
3246 /**
3247 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3248 * @rq: the clone request to be cleaned up
3249 *
3250 * Description:
3251 * Free all bios in @rq for a cloned request.
3252 */
3253 void blk_rq_unprep_clone(struct request *rq)
3254 {
3255 struct bio *bio;
3256
3257 while ((bio = rq->bio) != NULL) {
3258 rq->bio = bio->bi_next;
3259
3260 bio_put(bio);
3261 }
3262 }
3263 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3264
3265 /*
3266 * Copy attributes of the original request to the clone request.
3267 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3268 */
3269 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3270 {
3271 dst->cpu = src->cpu;
3272 dst->__sector = blk_rq_pos(src);
3273 dst->__data_len = blk_rq_bytes(src);
3274 dst->nr_phys_segments = src->nr_phys_segments;
3275 dst->ioprio = src->ioprio;
3276 dst->extra_len = src->extra_len;
3277 }
3278
3279 /**
3280 * blk_rq_prep_clone - Helper function to setup clone request
3281 * @rq: the request to be setup
3282 * @rq_src: original request to be cloned
3283 * @bs: bio_set that bios for clone are allocated from
3284 * @gfp_mask: memory allocation mask for bio
3285 * @bio_ctr: setup function to be called for each clone bio.
3286 * Returns %0 for success, non %0 for failure.
3287 * @data: private data to be passed to @bio_ctr
3288 *
3289 * Description:
3290 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3291 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3292 * are not copied, and copying such parts is the caller's responsibility.
3293 * Also, pages which the original bios are pointing to are not copied
3294 * and the cloned bios just point same pages.
3295 * So cloned bios must be completed before original bios, which means
3296 * the caller must complete @rq before @rq_src.
3297 */
3298 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3299 struct bio_set *bs, gfp_t gfp_mask,
3300 int (*bio_ctr)(struct bio *, struct bio *, void *),
3301 void *data)
3302 {
3303 struct bio *bio, *bio_src;
3304
3305 if (!bs)
3306 bs = fs_bio_set;
3307
3308 __rq_for_each_bio(bio_src, rq_src) {
3309 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3310 if (!bio)
3311 goto free_and_out;
3312
3313 if (bio_ctr && bio_ctr(bio, bio_src, data))
3314 goto free_and_out;
3315
3316 if (rq->bio) {
3317 rq->biotail->bi_next = bio;
3318 rq->biotail = bio;
3319 } else
3320 rq->bio = rq->biotail = bio;
3321 }
3322
3323 __blk_rq_prep_clone(rq, rq_src);
3324
3325 return 0;
3326
3327 free_and_out:
3328 if (bio)
3329 bio_put(bio);
3330 blk_rq_unprep_clone(rq);
3331
3332 return -ENOMEM;
3333 }
3334 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3335
3336 int kblockd_schedule_work(struct work_struct *work)
3337 {
3338 return queue_work(kblockd_workqueue, work);
3339 }
3340 EXPORT_SYMBOL(kblockd_schedule_work);
3341
3342 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3343 {
3344 return queue_work_on(cpu, kblockd_workqueue, work);
3345 }
3346 EXPORT_SYMBOL(kblockd_schedule_work_on);
3347
3348 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3349 unsigned long delay)
3350 {
3351 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3352 }
3353 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3354
3355 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3356 unsigned long delay)
3357 {
3358 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3359 }
3360 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3361
3362 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3363 unsigned long delay)
3364 {
3365 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3366 }
3367 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3368
3369 /**
3370 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3371 * @plug: The &struct blk_plug that needs to be initialized
3372 *
3373 * Description:
3374 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3375 * pending I/O should the task end up blocking between blk_start_plug() and
3376 * blk_finish_plug(). This is important from a performance perspective, but
3377 * also ensures that we don't deadlock. For instance, if the task is blocking
3378 * for a memory allocation, memory reclaim could end up wanting to free a
3379 * page belonging to that request that is currently residing in our private
3380 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3381 * this kind of deadlock.
3382 */
3383 void blk_start_plug(struct blk_plug *plug)
3384 {
3385 struct task_struct *tsk = current;
3386
3387 /*
3388 * If this is a nested plug, don't actually assign it.
3389 */
3390 if (tsk->plug)
3391 return;
3392
3393 INIT_LIST_HEAD(&plug->list);
3394 INIT_LIST_HEAD(&plug->mq_list);
3395 INIT_LIST_HEAD(&plug->cb_list);
3396 /*
3397 * Store ordering should not be needed here, since a potential
3398 * preempt will imply a full memory barrier
3399 */
3400 tsk->plug = plug;
3401 }
3402 EXPORT_SYMBOL(blk_start_plug);
3403
3404 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3405 {
3406 struct request *rqa = container_of(a, struct request, queuelist);
3407 struct request *rqb = container_of(b, struct request, queuelist);
3408
3409 return !(rqa->q < rqb->q ||
3410 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3411 }
3412
3413 /*
3414 * If 'from_schedule' is true, then postpone the dispatch of requests
3415 * until a safe kblockd context. We due this to avoid accidental big
3416 * additional stack usage in driver dispatch, in places where the originally
3417 * plugger did not intend it.
3418 */
3419 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3420 bool from_schedule)
3421 __releases(q->queue_lock)
3422 {
3423 lockdep_assert_held(q->queue_lock);
3424
3425 trace_block_unplug(q, depth, !from_schedule);
3426
3427 if (from_schedule)
3428 blk_run_queue_async(q);
3429 else
3430 __blk_run_queue(q);
3431 spin_unlock(q->queue_lock);
3432 }
3433
3434 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3435 {
3436 LIST_HEAD(callbacks);
3437
3438 while (!list_empty(&plug->cb_list)) {
3439 list_splice_init(&plug->cb_list, &callbacks);
3440
3441 while (!list_empty(&callbacks)) {
3442 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3443 struct blk_plug_cb,
3444 list);
3445 list_del(&cb->list);
3446 cb->callback(cb, from_schedule);
3447 }
3448 }
3449 }
3450
3451 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3452 int size)
3453 {
3454 struct blk_plug *plug = current->plug;
3455 struct blk_plug_cb *cb;
3456
3457 if (!plug)
3458 return NULL;
3459
3460 list_for_each_entry(cb, &plug->cb_list, list)
3461 if (cb->callback == unplug && cb->data == data)
3462 return cb;
3463
3464 /* Not currently on the callback list */
3465 BUG_ON(size < sizeof(*cb));
3466 cb = kzalloc(size, GFP_ATOMIC);
3467 if (cb) {
3468 cb->data = data;
3469 cb->callback = unplug;
3470 list_add(&cb->list, &plug->cb_list);
3471 }
3472 return cb;
3473 }
3474 EXPORT_SYMBOL(blk_check_plugged);
3475
3476 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3477 {
3478 struct request_queue *q;
3479 unsigned long flags;
3480 struct request *rq;
3481 LIST_HEAD(list);
3482 unsigned int depth;
3483
3484 flush_plug_callbacks(plug, from_schedule);
3485
3486 if (!list_empty(&plug->mq_list))
3487 blk_mq_flush_plug_list(plug, from_schedule);
3488
3489 if (list_empty(&plug->list))
3490 return;
3491
3492 list_splice_init(&plug->list, &list);
3493
3494 list_sort(NULL, &list, plug_rq_cmp);
3495
3496 q = NULL;
3497 depth = 0;
3498
3499 /*
3500 * Save and disable interrupts here, to avoid doing it for every
3501 * queue lock we have to take.
3502 */
3503 local_irq_save(flags);
3504 while (!list_empty(&list)) {
3505 rq = list_entry_rq(list.next);
3506 list_del_init(&rq->queuelist);
3507 BUG_ON(!rq->q);
3508 if (rq->q != q) {
3509 /*
3510 * This drops the queue lock
3511 */
3512 if (q)
3513 queue_unplugged(q, depth, from_schedule);
3514 q = rq->q;
3515 depth = 0;
3516 spin_lock(q->queue_lock);
3517 }
3518
3519 /*
3520 * Short-circuit if @q is dead
3521 */
3522 if (unlikely(blk_queue_dying(q))) {
3523 __blk_end_request_all(rq, BLK_STS_IOERR);
3524 continue;
3525 }
3526
3527 /*
3528 * rq is already accounted, so use raw insert
3529 */
3530 if (op_is_flush(rq->cmd_flags))
3531 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3532 else
3533 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3534
3535 depth++;
3536 }
3537
3538 /*
3539 * This drops the queue lock
3540 */
3541 if (q)
3542 queue_unplugged(q, depth, from_schedule);
3543
3544 local_irq_restore(flags);
3545 }
3546
3547 void blk_finish_plug(struct blk_plug *plug)
3548 {
3549 if (plug != current->plug)
3550 return;
3551 blk_flush_plug_list(plug, false);
3552
3553 current->plug = NULL;
3554 }
3555 EXPORT_SYMBOL(blk_finish_plug);
3556
3557 #ifdef CONFIG_PM
3558 /**
3559 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3560 * @q: the queue of the device
3561 * @dev: the device the queue belongs to
3562 *
3563 * Description:
3564 * Initialize runtime-PM-related fields for @q and start auto suspend for
3565 * @dev. Drivers that want to take advantage of request-based runtime PM
3566 * should call this function after @dev has been initialized, and its
3567 * request queue @q has been allocated, and runtime PM for it can not happen
3568 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3569 * cases, driver should call this function before any I/O has taken place.
3570 *
3571 * This function takes care of setting up using auto suspend for the device,
3572 * the autosuspend delay is set to -1 to make runtime suspend impossible
3573 * until an updated value is either set by user or by driver. Drivers do
3574 * not need to touch other autosuspend settings.
3575 *
3576 * The block layer runtime PM is request based, so only works for drivers
3577 * that use request as their IO unit instead of those directly use bio's.
3578 */
3579 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3580 {
3581 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3582 if (q->mq_ops)
3583 return;
3584
3585 q->dev = dev;
3586 q->rpm_status = RPM_ACTIVE;
3587 pm_runtime_set_autosuspend_delay(q->dev, -1);
3588 pm_runtime_use_autosuspend(q->dev);
3589 }
3590 EXPORT_SYMBOL(blk_pm_runtime_init);
3591
3592 /**
3593 * blk_pre_runtime_suspend - Pre runtime suspend check
3594 * @q: the queue of the device
3595 *
3596 * Description:
3597 * This function will check if runtime suspend is allowed for the device
3598 * by examining if there are any requests pending in the queue. If there
3599 * are requests pending, the device can not be runtime suspended; otherwise,
3600 * the queue's status will be updated to SUSPENDING and the driver can
3601 * proceed to suspend the device.
3602 *
3603 * For the not allowed case, we mark last busy for the device so that
3604 * runtime PM core will try to autosuspend it some time later.
3605 *
3606 * This function should be called near the start of the device's
3607 * runtime_suspend callback.
3608 *
3609 * Return:
3610 * 0 - OK to runtime suspend the device
3611 * -EBUSY - Device should not be runtime suspended
3612 */
3613 int blk_pre_runtime_suspend(struct request_queue *q)
3614 {
3615 int ret = 0;
3616
3617 if (!q->dev)
3618 return ret;
3619
3620 spin_lock_irq(q->queue_lock);
3621 if (q->nr_pending) {
3622 ret = -EBUSY;
3623 pm_runtime_mark_last_busy(q->dev);
3624 } else {
3625 q->rpm_status = RPM_SUSPENDING;
3626 }
3627 spin_unlock_irq(q->queue_lock);
3628 return ret;
3629 }
3630 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3631
3632 /**
3633 * blk_post_runtime_suspend - Post runtime suspend processing
3634 * @q: the queue of the device
3635 * @err: return value of the device's runtime_suspend function
3636 *
3637 * Description:
3638 * Update the queue's runtime status according to the return value of the
3639 * device's runtime suspend function and mark last busy for the device so
3640 * that PM core will try to auto suspend the device at a later time.
3641 *
3642 * This function should be called near the end of the device's
3643 * runtime_suspend callback.
3644 */
3645 void blk_post_runtime_suspend(struct request_queue *q, int err)
3646 {
3647 if (!q->dev)
3648 return;
3649
3650 spin_lock_irq(q->queue_lock);
3651 if (!err) {
3652 q->rpm_status = RPM_SUSPENDED;
3653 } else {
3654 q->rpm_status = RPM_ACTIVE;
3655 pm_runtime_mark_last_busy(q->dev);
3656 }
3657 spin_unlock_irq(q->queue_lock);
3658 }
3659 EXPORT_SYMBOL(blk_post_runtime_suspend);
3660
3661 /**
3662 * blk_pre_runtime_resume - Pre runtime resume processing
3663 * @q: the queue of the device
3664 *
3665 * Description:
3666 * Update the queue's runtime status to RESUMING in preparation for the
3667 * runtime resume of the device.
3668 *
3669 * This function should be called near the start of the device's
3670 * runtime_resume callback.
3671 */
3672 void blk_pre_runtime_resume(struct request_queue *q)
3673 {
3674 if (!q->dev)
3675 return;
3676
3677 spin_lock_irq(q->queue_lock);
3678 q->rpm_status = RPM_RESUMING;
3679 spin_unlock_irq(q->queue_lock);
3680 }
3681 EXPORT_SYMBOL(blk_pre_runtime_resume);
3682
3683 /**
3684 * blk_post_runtime_resume - Post runtime resume processing
3685 * @q: the queue of the device
3686 * @err: return value of the device's runtime_resume function
3687 *
3688 * Description:
3689 * Update the queue's runtime status according to the return value of the
3690 * device's runtime_resume function. If it is successfully resumed, process
3691 * the requests that are queued into the device's queue when it is resuming
3692 * and then mark last busy and initiate autosuspend for it.
3693 *
3694 * This function should be called near the end of the device's
3695 * runtime_resume callback.
3696 */
3697 void blk_post_runtime_resume(struct request_queue *q, int err)
3698 {
3699 if (!q->dev)
3700 return;
3701
3702 spin_lock_irq(q->queue_lock);
3703 if (!err) {
3704 q->rpm_status = RPM_ACTIVE;
3705 __blk_run_queue(q);
3706 pm_runtime_mark_last_busy(q->dev);
3707 pm_request_autosuspend(q->dev);
3708 } else {
3709 q->rpm_status = RPM_SUSPENDED;
3710 }
3711 spin_unlock_irq(q->queue_lock);
3712 }
3713 EXPORT_SYMBOL(blk_post_runtime_resume);
3714
3715 /**
3716 * blk_set_runtime_active - Force runtime status of the queue to be active
3717 * @q: the queue of the device
3718 *
3719 * If the device is left runtime suspended during system suspend the resume
3720 * hook typically resumes the device and corrects runtime status
3721 * accordingly. However, that does not affect the queue runtime PM status
3722 * which is still "suspended". This prevents processing requests from the
3723 * queue.
3724 *
3725 * This function can be used in driver's resume hook to correct queue
3726 * runtime PM status and re-enable peeking requests from the queue. It
3727 * should be called before first request is added to the queue.
3728 */
3729 void blk_set_runtime_active(struct request_queue *q)
3730 {
3731 spin_lock_irq(q->queue_lock);
3732 q->rpm_status = RPM_ACTIVE;
3733 pm_runtime_mark_last_busy(q->dev);
3734 pm_request_autosuspend(q->dev);
3735 spin_unlock_irq(q->queue_lock);
3736 }
3737 EXPORT_SYMBOL(blk_set_runtime_active);
3738 #endif
3739
3740 int __init blk_dev_init(void)
3741 {
3742 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3743 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3744 FIELD_SIZEOF(struct request, cmd_flags));
3745 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3746 FIELD_SIZEOF(struct bio, bi_opf));
3747
3748 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3749 kblockd_workqueue = alloc_workqueue("kblockd",
3750 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3751 if (!kblockd_workqueue)
3752 panic("Failed to create kblockd\n");
3753
3754 request_cachep = kmem_cache_create("blkdev_requests",
3755 sizeof(struct request), 0, SLAB_PANIC, NULL);
3756
3757 blk_requestq_cachep = kmem_cache_create("request_queue",
3758 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3759
3760 #ifdef CONFIG_DEBUG_FS
3761 blk_debugfs_root = debugfs_create_dir("block", NULL);
3762 #endif
3763
3764 return 0;
3765 }