]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-core.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58
59 DEFINE_IDA(blk_queue_ida);
60
61 /*
62 * For queue allocation
63 */
64 struct kmem_cache *blk_requestq_cachep;
65
66 /*
67 * Controlling structure to kblockd
68 */
69 static struct workqueue_struct *kblockd_workqueue;
70
71 /**
72 * blk_queue_flag_set - atomically set a queue flag
73 * @flag: flag to be set
74 * @q: request queue
75 */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81
82 /**
83 * blk_queue_flag_clear - atomically clear a queue flag
84 * @flag: flag to be cleared
85 * @q: request queue
86 */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92
93 /**
94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
95 * @flag: flag to be set
96 * @q: request queue
97 *
98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99 * the flag was already set.
100 */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 memset(rq, 0, sizeof(*rq));
110
111 INIT_LIST_HEAD(&rq->queuelist);
112 rq->q = q;
113 rq->__sector = (sector_t) -1;
114 INIT_HLIST_NODE(&rq->hash);
115 RB_CLEAR_NODE(&rq->rb_node);
116 rq->tag = -1;
117 rq->internal_tag = -1;
118 rq->start_time_ns = ktime_get_ns();
119 rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122
123 static const struct {
124 int errno;
125 const char *name;
126 } blk_errors[] = {
127 [BLK_STS_OK] = { 0, "" },
128 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
129 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
130 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
131 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
132 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
133 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
134 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
135 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
136 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
137 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
138 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
139
140 /* device mapper special case, should not leak out: */
141 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
142
143 /* everything else not covered above: */
144 [BLK_STS_IOERR] = { -EIO, "I/O" },
145 };
146
147 blk_status_t errno_to_blk_status(int errno)
148 {
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
152 if (blk_errors[i].errno == errno)
153 return (__force blk_status_t)i;
154 }
155
156 return BLK_STS_IOERR;
157 }
158 EXPORT_SYMBOL_GPL(errno_to_blk_status);
159
160 int blk_status_to_errno(blk_status_t status)
161 {
162 int idx = (__force int)status;
163
164 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
165 return -EIO;
166 return blk_errors[idx].errno;
167 }
168 EXPORT_SYMBOL_GPL(blk_status_to_errno);
169
170 static void print_req_error(struct request *req, blk_status_t status)
171 {
172 int idx = (__force int)status;
173
174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 return;
176
177 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
178 __func__, blk_errors[idx].name,
179 req->rq_disk ? req->rq_disk->disk_name : "?",
180 (unsigned long long)blk_rq_pos(req),
181 req->cmd_flags);
182 }
183
184 static void req_bio_endio(struct request *rq, struct bio *bio,
185 unsigned int nbytes, blk_status_t error)
186 {
187 if (error)
188 bio->bi_status = error;
189
190 if (unlikely(rq->rq_flags & RQF_QUIET))
191 bio_set_flag(bio, BIO_QUIET);
192
193 bio_advance(bio, nbytes);
194
195 /* don't actually finish bio if it's part of flush sequence */
196 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
197 bio_endio(bio);
198 }
199
200 void blk_dump_rq_flags(struct request *rq, char *msg)
201 {
202 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
203 rq->rq_disk ? rq->rq_disk->disk_name : "?",
204 (unsigned long long) rq->cmd_flags);
205
206 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
207 (unsigned long long)blk_rq_pos(rq),
208 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
209 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
210 rq->bio, rq->biotail, blk_rq_bytes(rq));
211 }
212 EXPORT_SYMBOL(blk_dump_rq_flags);
213
214 /**
215 * blk_sync_queue - cancel any pending callbacks on a queue
216 * @q: the queue
217 *
218 * Description:
219 * The block layer may perform asynchronous callback activity
220 * on a queue, such as calling the unplug function after a timeout.
221 * A block device may call blk_sync_queue to ensure that any
222 * such activity is cancelled, thus allowing it to release resources
223 * that the callbacks might use. The caller must already have made sure
224 * that its ->make_request_fn will not re-add plugging prior to calling
225 * this function.
226 *
227 * This function does not cancel any asynchronous activity arising
228 * out of elevator or throttling code. That would require elevator_exit()
229 * and blkcg_exit_queue() to be called with queue lock initialized.
230 *
231 */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 del_timer_sync(&q->timeout);
235 cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238
239 /**
240 * blk_set_pm_only - increment pm_only counter
241 * @q: request queue pointer
242 */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 int pm_only;
252
253 pm_only = atomic_dec_return(&q->pm_only);
254 WARN_ON_ONCE(pm_only < 0);
255 if (pm_only == 0)
256 wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259
260 void blk_put_queue(struct request_queue *q)
261 {
262 kobject_put(&q->kobj);
263 }
264 EXPORT_SYMBOL(blk_put_queue);
265
266 void blk_set_queue_dying(struct request_queue *q)
267 {
268 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
269
270 /*
271 * When queue DYING flag is set, we need to block new req
272 * entering queue, so we call blk_freeze_queue_start() to
273 * prevent I/O from crossing blk_queue_enter().
274 */
275 blk_freeze_queue_start(q);
276
277 if (queue_is_mq(q))
278 blk_mq_wake_waiters(q);
279
280 /* Make blk_queue_enter() reexamine the DYING flag. */
281 wake_up_all(&q->mq_freeze_wq);
282 }
283 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
284
285 /**
286 * blk_cleanup_queue - shutdown a request queue
287 * @q: request queue to shutdown
288 *
289 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
290 * put it. All future requests will be failed immediately with -ENODEV.
291 */
292 void blk_cleanup_queue(struct request_queue *q)
293 {
294 /* mark @q DYING, no new request or merges will be allowed afterwards */
295 mutex_lock(&q->sysfs_lock);
296 blk_set_queue_dying(q);
297
298 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
299 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
300 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
301 mutex_unlock(&q->sysfs_lock);
302
303 /*
304 * Drain all requests queued before DYING marking. Set DEAD flag to
305 * prevent that q->request_fn() gets invoked after draining finished.
306 */
307 blk_freeze_queue(q);
308
309 rq_qos_exit(q);
310
311 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
312
313 /* for synchronous bio-based driver finish in-flight integrity i/o */
314 blk_flush_integrity();
315
316 /* @q won't process any more request, flush async actions */
317 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
318 blk_sync_queue(q);
319
320 if (queue_is_mq(q))
321 blk_mq_exit_queue(q);
322
323 percpu_ref_exit(&q->q_usage_counter);
324
325 /* @q is and will stay empty, shutdown and put */
326 blk_put_queue(q);
327 }
328 EXPORT_SYMBOL(blk_cleanup_queue);
329
330 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
331 {
332 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
333 }
334 EXPORT_SYMBOL(blk_alloc_queue);
335
336 /**
337 * blk_queue_enter() - try to increase q->q_usage_counter
338 * @q: request queue pointer
339 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
340 */
341 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
342 {
343 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
344
345 while (true) {
346 bool success = false;
347
348 rcu_read_lock();
349 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
350 /*
351 * The code that increments the pm_only counter is
352 * responsible for ensuring that that counter is
353 * globally visible before the queue is unfrozen.
354 */
355 if (pm || !blk_queue_pm_only(q)) {
356 success = true;
357 } else {
358 percpu_ref_put(&q->q_usage_counter);
359 }
360 }
361 rcu_read_unlock();
362
363 if (success)
364 return 0;
365
366 if (flags & BLK_MQ_REQ_NOWAIT)
367 return -EBUSY;
368
369 /*
370 * read pair of barrier in blk_freeze_queue_start(),
371 * we need to order reading __PERCPU_REF_DEAD flag of
372 * .q_usage_counter and reading .mq_freeze_depth or
373 * queue dying flag, otherwise the following wait may
374 * never return if the two reads are reordered.
375 */
376 smp_rmb();
377
378 wait_event(q->mq_freeze_wq,
379 (!q->mq_freeze_depth &&
380 (pm || (blk_pm_request_resume(q),
381 !blk_queue_pm_only(q)))) ||
382 blk_queue_dying(q));
383 if (blk_queue_dying(q))
384 return -ENODEV;
385 }
386 }
387
388 void blk_queue_exit(struct request_queue *q)
389 {
390 percpu_ref_put(&q->q_usage_counter);
391 }
392
393 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
394 {
395 struct request_queue *q =
396 container_of(ref, struct request_queue, q_usage_counter);
397
398 wake_up_all(&q->mq_freeze_wq);
399 }
400
401 static void blk_rq_timed_out_timer(struct timer_list *t)
402 {
403 struct request_queue *q = from_timer(q, t, timeout);
404
405 kblockd_schedule_work(&q->timeout_work);
406 }
407
408 static void blk_timeout_work(struct work_struct *work)
409 {
410 }
411
412 /**
413 * blk_alloc_queue_node - allocate a request queue
414 * @gfp_mask: memory allocation flags
415 * @node_id: NUMA node to allocate memory from
416 */
417 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
418 {
419 struct request_queue *q;
420 int ret;
421
422 q = kmem_cache_alloc_node(blk_requestq_cachep,
423 gfp_mask | __GFP_ZERO, node_id);
424 if (!q)
425 return NULL;
426
427 INIT_LIST_HEAD(&q->queue_head);
428 q->last_merge = NULL;
429
430 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
431 if (q->id < 0)
432 goto fail_q;
433
434 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
435 if (ret)
436 goto fail_id;
437
438 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
439 if (!q->backing_dev_info)
440 goto fail_split;
441
442 q->stats = blk_alloc_queue_stats();
443 if (!q->stats)
444 goto fail_stats;
445
446 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
447 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
448 q->backing_dev_info->name = "block";
449 q->node = node_id;
450
451 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
452 laptop_mode_timer_fn, 0);
453 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
454 INIT_WORK(&q->timeout_work, blk_timeout_work);
455 INIT_LIST_HEAD(&q->icq_list);
456 #ifdef CONFIG_BLK_CGROUP
457 INIT_LIST_HEAD(&q->blkg_list);
458 #endif
459
460 kobject_init(&q->kobj, &blk_queue_ktype);
461
462 #ifdef CONFIG_BLK_DEV_IO_TRACE
463 mutex_init(&q->blk_trace_mutex);
464 #endif
465 mutex_init(&q->sysfs_lock);
466 spin_lock_init(&q->queue_lock);
467
468 init_waitqueue_head(&q->mq_freeze_wq);
469 mutex_init(&q->mq_freeze_lock);
470
471 /*
472 * Init percpu_ref in atomic mode so that it's faster to shutdown.
473 * See blk_register_queue() for details.
474 */
475 if (percpu_ref_init(&q->q_usage_counter,
476 blk_queue_usage_counter_release,
477 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
478 goto fail_bdi;
479
480 if (blkcg_init_queue(q))
481 goto fail_ref;
482
483 return q;
484
485 fail_ref:
486 percpu_ref_exit(&q->q_usage_counter);
487 fail_bdi:
488 blk_free_queue_stats(q->stats);
489 fail_stats:
490 bdi_put(q->backing_dev_info);
491 fail_split:
492 bioset_exit(&q->bio_split);
493 fail_id:
494 ida_simple_remove(&blk_queue_ida, q->id);
495 fail_q:
496 kmem_cache_free(blk_requestq_cachep, q);
497 return NULL;
498 }
499 EXPORT_SYMBOL(blk_alloc_queue_node);
500
501 bool blk_get_queue(struct request_queue *q)
502 {
503 if (likely(!blk_queue_dying(q))) {
504 __blk_get_queue(q);
505 return true;
506 }
507
508 return false;
509 }
510 EXPORT_SYMBOL(blk_get_queue);
511
512 /**
513 * blk_get_request - allocate a request
514 * @q: request queue to allocate a request for
515 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
516 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
517 */
518 struct request *blk_get_request(struct request_queue *q, unsigned int op,
519 blk_mq_req_flags_t flags)
520 {
521 struct request *req;
522
523 WARN_ON_ONCE(op & REQ_NOWAIT);
524 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
525
526 req = blk_mq_alloc_request(q, op, flags);
527 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
528 q->mq_ops->initialize_rq_fn(req);
529
530 return req;
531 }
532 EXPORT_SYMBOL(blk_get_request);
533
534 void blk_put_request(struct request *req)
535 {
536 blk_mq_free_request(req);
537 }
538 EXPORT_SYMBOL(blk_put_request);
539
540 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
541 struct bio *bio)
542 {
543 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
544
545 if (!ll_back_merge_fn(q, req, bio))
546 return false;
547
548 trace_block_bio_backmerge(q, req, bio);
549
550 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
551 blk_rq_set_mixed_merge(req);
552
553 req->biotail->bi_next = bio;
554 req->biotail = bio;
555 req->__data_len += bio->bi_iter.bi_size;
556
557 blk_account_io_start(req, false);
558 return true;
559 }
560
561 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
562 struct bio *bio)
563 {
564 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
565
566 if (!ll_front_merge_fn(q, req, bio))
567 return false;
568
569 trace_block_bio_frontmerge(q, req, bio);
570
571 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
572 blk_rq_set_mixed_merge(req);
573
574 bio->bi_next = req->bio;
575 req->bio = bio;
576
577 req->__sector = bio->bi_iter.bi_sector;
578 req->__data_len += bio->bi_iter.bi_size;
579
580 blk_account_io_start(req, false);
581 return true;
582 }
583
584 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
585 struct bio *bio)
586 {
587 unsigned short segments = blk_rq_nr_discard_segments(req);
588
589 if (segments >= queue_max_discard_segments(q))
590 goto no_merge;
591 if (blk_rq_sectors(req) + bio_sectors(bio) >
592 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
593 goto no_merge;
594
595 req->biotail->bi_next = bio;
596 req->biotail = bio;
597 req->__data_len += bio->bi_iter.bi_size;
598 req->nr_phys_segments = segments + 1;
599
600 blk_account_io_start(req, false);
601 return true;
602 no_merge:
603 req_set_nomerge(q, req);
604 return false;
605 }
606
607 /**
608 * blk_attempt_plug_merge - try to merge with %current's plugged list
609 * @q: request_queue new bio is being queued at
610 * @bio: new bio being queued
611 * @same_queue_rq: pointer to &struct request that gets filled in when
612 * another request associated with @q is found on the plug list
613 * (optional, may be %NULL)
614 *
615 * Determine whether @bio being queued on @q can be merged with a request
616 * on %current's plugged list. Returns %true if merge was successful,
617 * otherwise %false.
618 *
619 * Plugging coalesces IOs from the same issuer for the same purpose without
620 * going through @q->queue_lock. As such it's more of an issuing mechanism
621 * than scheduling, and the request, while may have elvpriv data, is not
622 * added on the elevator at this point. In addition, we don't have
623 * reliable access to the elevator outside queue lock. Only check basic
624 * merging parameters without querying the elevator.
625 *
626 * Caller must ensure !blk_queue_nomerges(q) beforehand.
627 */
628 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
629 struct request **same_queue_rq)
630 {
631 struct blk_plug *plug;
632 struct request *rq;
633 struct list_head *plug_list;
634
635 plug = current->plug;
636 if (!plug)
637 return false;
638
639 plug_list = &plug->mq_list;
640
641 list_for_each_entry_reverse(rq, plug_list, queuelist) {
642 bool merged = false;
643
644 if (rq->q == q && same_queue_rq) {
645 /*
646 * Only blk-mq multiple hardware queues case checks the
647 * rq in the same queue, there should be only one such
648 * rq in a queue
649 **/
650 *same_queue_rq = rq;
651 }
652
653 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
654 continue;
655
656 switch (blk_try_merge(rq, bio)) {
657 case ELEVATOR_BACK_MERGE:
658 merged = bio_attempt_back_merge(q, rq, bio);
659 break;
660 case ELEVATOR_FRONT_MERGE:
661 merged = bio_attempt_front_merge(q, rq, bio);
662 break;
663 case ELEVATOR_DISCARD_MERGE:
664 merged = bio_attempt_discard_merge(q, rq, bio);
665 break;
666 default:
667 break;
668 }
669
670 if (merged)
671 return true;
672 }
673
674 return false;
675 }
676
677 void blk_init_request_from_bio(struct request *req, struct bio *bio)
678 {
679 if (bio->bi_opf & REQ_RAHEAD)
680 req->cmd_flags |= REQ_FAILFAST_MASK;
681
682 req->__sector = bio->bi_iter.bi_sector;
683 req->ioprio = bio_prio(bio);
684 req->write_hint = bio->bi_write_hint;
685 blk_rq_bio_prep(req->q, req, bio);
686 }
687 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
688
689 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
690 {
691 char b[BDEVNAME_SIZE];
692
693 printk(KERN_INFO "attempt to access beyond end of device\n");
694 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
695 bio_devname(bio, b), bio->bi_opf,
696 (unsigned long long)bio_end_sector(bio),
697 (long long)maxsector);
698 }
699
700 #ifdef CONFIG_FAIL_MAKE_REQUEST
701
702 static DECLARE_FAULT_ATTR(fail_make_request);
703
704 static int __init setup_fail_make_request(char *str)
705 {
706 return setup_fault_attr(&fail_make_request, str);
707 }
708 __setup("fail_make_request=", setup_fail_make_request);
709
710 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
711 {
712 return part->make_it_fail && should_fail(&fail_make_request, bytes);
713 }
714
715 static int __init fail_make_request_debugfs(void)
716 {
717 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
718 NULL, &fail_make_request);
719
720 return PTR_ERR_OR_ZERO(dir);
721 }
722
723 late_initcall(fail_make_request_debugfs);
724
725 #else /* CONFIG_FAIL_MAKE_REQUEST */
726
727 static inline bool should_fail_request(struct hd_struct *part,
728 unsigned int bytes)
729 {
730 return false;
731 }
732
733 #endif /* CONFIG_FAIL_MAKE_REQUEST */
734
735 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
736 {
737 const int op = bio_op(bio);
738
739 if (part->policy && op_is_write(op)) {
740 char b[BDEVNAME_SIZE];
741
742 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
743 return false;
744
745 WARN_ONCE(1,
746 "generic_make_request: Trying to write "
747 "to read-only block-device %s (partno %d)\n",
748 bio_devname(bio, b), part->partno);
749 /* Older lvm-tools actually trigger this */
750 return false;
751 }
752
753 return false;
754 }
755
756 static noinline int should_fail_bio(struct bio *bio)
757 {
758 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
759 return -EIO;
760 return 0;
761 }
762 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
763
764 /*
765 * Check whether this bio extends beyond the end of the device or partition.
766 * This may well happen - the kernel calls bread() without checking the size of
767 * the device, e.g., when mounting a file system.
768 */
769 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
770 {
771 unsigned int nr_sectors = bio_sectors(bio);
772
773 if (nr_sectors && maxsector &&
774 (nr_sectors > maxsector ||
775 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
776 handle_bad_sector(bio, maxsector);
777 return -EIO;
778 }
779 return 0;
780 }
781
782 /*
783 * Remap block n of partition p to block n+start(p) of the disk.
784 */
785 static inline int blk_partition_remap(struct bio *bio)
786 {
787 struct hd_struct *p;
788 int ret = -EIO;
789
790 rcu_read_lock();
791 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
792 if (unlikely(!p))
793 goto out;
794 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
795 goto out;
796 if (unlikely(bio_check_ro(bio, p)))
797 goto out;
798
799 /*
800 * Zone reset does not include bi_size so bio_sectors() is always 0.
801 * Include a test for the reset op code and perform the remap if needed.
802 */
803 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
804 if (bio_check_eod(bio, part_nr_sects_read(p)))
805 goto out;
806 bio->bi_iter.bi_sector += p->start_sect;
807 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
808 bio->bi_iter.bi_sector - p->start_sect);
809 }
810 bio->bi_partno = 0;
811 ret = 0;
812 out:
813 rcu_read_unlock();
814 return ret;
815 }
816
817 static noinline_for_stack bool
818 generic_make_request_checks(struct bio *bio)
819 {
820 struct request_queue *q;
821 int nr_sectors = bio_sectors(bio);
822 blk_status_t status = BLK_STS_IOERR;
823 char b[BDEVNAME_SIZE];
824
825 might_sleep();
826
827 q = bio->bi_disk->queue;
828 if (unlikely(!q)) {
829 printk(KERN_ERR
830 "generic_make_request: Trying to access "
831 "nonexistent block-device %s (%Lu)\n",
832 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
833 goto end_io;
834 }
835
836 /*
837 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
838 * if queue is not a request based queue.
839 */
840 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
841 goto not_supported;
842
843 if (should_fail_bio(bio))
844 goto end_io;
845
846 if (bio->bi_partno) {
847 if (unlikely(blk_partition_remap(bio)))
848 goto end_io;
849 } else {
850 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
851 goto end_io;
852 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
853 goto end_io;
854 }
855
856 /*
857 * Filter flush bio's early so that make_request based
858 * drivers without flush support don't have to worry
859 * about them.
860 */
861 if (op_is_flush(bio->bi_opf) &&
862 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
863 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
864 if (!nr_sectors) {
865 status = BLK_STS_OK;
866 goto end_io;
867 }
868 }
869
870 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
871 bio->bi_opf &= ~REQ_HIPRI;
872
873 switch (bio_op(bio)) {
874 case REQ_OP_DISCARD:
875 if (!blk_queue_discard(q))
876 goto not_supported;
877 break;
878 case REQ_OP_SECURE_ERASE:
879 if (!blk_queue_secure_erase(q))
880 goto not_supported;
881 break;
882 case REQ_OP_WRITE_SAME:
883 if (!q->limits.max_write_same_sectors)
884 goto not_supported;
885 break;
886 case REQ_OP_ZONE_RESET:
887 if (!blk_queue_is_zoned(q))
888 goto not_supported;
889 break;
890 case REQ_OP_WRITE_ZEROES:
891 if (!q->limits.max_write_zeroes_sectors)
892 goto not_supported;
893 break;
894 default:
895 break;
896 }
897
898 /*
899 * Various block parts want %current->io_context and lazy ioc
900 * allocation ends up trading a lot of pain for a small amount of
901 * memory. Just allocate it upfront. This may fail and block
902 * layer knows how to live with it.
903 */
904 create_io_context(GFP_ATOMIC, q->node);
905
906 if (!blkcg_bio_issue_check(q, bio))
907 return false;
908
909 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
910 trace_block_bio_queue(q, bio);
911 /* Now that enqueuing has been traced, we need to trace
912 * completion as well.
913 */
914 bio_set_flag(bio, BIO_TRACE_COMPLETION);
915 }
916 return true;
917
918 not_supported:
919 status = BLK_STS_NOTSUPP;
920 end_io:
921 bio->bi_status = status;
922 bio_endio(bio);
923 return false;
924 }
925
926 /**
927 * generic_make_request - hand a buffer to its device driver for I/O
928 * @bio: The bio describing the location in memory and on the device.
929 *
930 * generic_make_request() is used to make I/O requests of block
931 * devices. It is passed a &struct bio, which describes the I/O that needs
932 * to be done.
933 *
934 * generic_make_request() does not return any status. The
935 * success/failure status of the request, along with notification of
936 * completion, is delivered asynchronously through the bio->bi_end_io
937 * function described (one day) else where.
938 *
939 * The caller of generic_make_request must make sure that bi_io_vec
940 * are set to describe the memory buffer, and that bi_dev and bi_sector are
941 * set to describe the device address, and the
942 * bi_end_io and optionally bi_private are set to describe how
943 * completion notification should be signaled.
944 *
945 * generic_make_request and the drivers it calls may use bi_next if this
946 * bio happens to be merged with someone else, and may resubmit the bio to
947 * a lower device by calling into generic_make_request recursively, which
948 * means the bio should NOT be touched after the call to ->make_request_fn.
949 */
950 blk_qc_t generic_make_request(struct bio *bio)
951 {
952 /*
953 * bio_list_on_stack[0] contains bios submitted by the current
954 * make_request_fn.
955 * bio_list_on_stack[1] contains bios that were submitted before
956 * the current make_request_fn, but that haven't been processed
957 * yet.
958 */
959 struct bio_list bio_list_on_stack[2];
960 blk_qc_t ret = BLK_QC_T_NONE;
961
962 if (!generic_make_request_checks(bio))
963 goto out;
964
965 /*
966 * We only want one ->make_request_fn to be active at a time, else
967 * stack usage with stacked devices could be a problem. So use
968 * current->bio_list to keep a list of requests submited by a
969 * make_request_fn function. current->bio_list is also used as a
970 * flag to say if generic_make_request is currently active in this
971 * task or not. If it is NULL, then no make_request is active. If
972 * it is non-NULL, then a make_request is active, and new requests
973 * should be added at the tail
974 */
975 if (current->bio_list) {
976 bio_list_add(&current->bio_list[0], bio);
977 goto out;
978 }
979
980 /* following loop may be a bit non-obvious, and so deserves some
981 * explanation.
982 * Before entering the loop, bio->bi_next is NULL (as all callers
983 * ensure that) so we have a list with a single bio.
984 * We pretend that we have just taken it off a longer list, so
985 * we assign bio_list to a pointer to the bio_list_on_stack,
986 * thus initialising the bio_list of new bios to be
987 * added. ->make_request() may indeed add some more bios
988 * through a recursive call to generic_make_request. If it
989 * did, we find a non-NULL value in bio_list and re-enter the loop
990 * from the top. In this case we really did just take the bio
991 * of the top of the list (no pretending) and so remove it from
992 * bio_list, and call into ->make_request() again.
993 */
994 BUG_ON(bio->bi_next);
995 bio_list_init(&bio_list_on_stack[0]);
996 current->bio_list = bio_list_on_stack;
997 do {
998 struct request_queue *q = bio->bi_disk->queue;
999 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1000 BLK_MQ_REQ_NOWAIT : 0;
1001
1002 if (likely(blk_queue_enter(q, flags) == 0)) {
1003 struct bio_list lower, same;
1004
1005 /* Create a fresh bio_list for all subordinate requests */
1006 bio_list_on_stack[1] = bio_list_on_stack[0];
1007 bio_list_init(&bio_list_on_stack[0]);
1008 ret = q->make_request_fn(q, bio);
1009
1010 blk_queue_exit(q);
1011
1012 /* sort new bios into those for a lower level
1013 * and those for the same level
1014 */
1015 bio_list_init(&lower);
1016 bio_list_init(&same);
1017 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1018 if (q == bio->bi_disk->queue)
1019 bio_list_add(&same, bio);
1020 else
1021 bio_list_add(&lower, bio);
1022 /* now assemble so we handle the lowest level first */
1023 bio_list_merge(&bio_list_on_stack[0], &lower);
1024 bio_list_merge(&bio_list_on_stack[0], &same);
1025 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1026 } else {
1027 if (unlikely(!blk_queue_dying(q) &&
1028 (bio->bi_opf & REQ_NOWAIT)))
1029 bio_wouldblock_error(bio);
1030 else
1031 bio_io_error(bio);
1032 }
1033 bio = bio_list_pop(&bio_list_on_stack[0]);
1034 } while (bio);
1035 current->bio_list = NULL; /* deactivate */
1036
1037 out:
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(generic_make_request);
1041
1042 /**
1043 * direct_make_request - hand a buffer directly to its device driver for I/O
1044 * @bio: The bio describing the location in memory and on the device.
1045 *
1046 * This function behaves like generic_make_request(), but does not protect
1047 * against recursion. Must only be used if the called driver is known
1048 * to not call generic_make_request (or direct_make_request) again from
1049 * its make_request function. (Calling direct_make_request again from
1050 * a workqueue is perfectly fine as that doesn't recurse).
1051 */
1052 blk_qc_t direct_make_request(struct bio *bio)
1053 {
1054 struct request_queue *q = bio->bi_disk->queue;
1055 bool nowait = bio->bi_opf & REQ_NOWAIT;
1056 blk_qc_t ret;
1057
1058 if (!generic_make_request_checks(bio))
1059 return BLK_QC_T_NONE;
1060
1061 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1062 if (nowait && !blk_queue_dying(q))
1063 bio->bi_status = BLK_STS_AGAIN;
1064 else
1065 bio->bi_status = BLK_STS_IOERR;
1066 bio_endio(bio);
1067 return BLK_QC_T_NONE;
1068 }
1069
1070 ret = q->make_request_fn(q, bio);
1071 blk_queue_exit(q);
1072 return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(direct_make_request);
1075
1076 /**
1077 * submit_bio - submit a bio to the block device layer for I/O
1078 * @bio: The &struct bio which describes the I/O
1079 *
1080 * submit_bio() is very similar in purpose to generic_make_request(), and
1081 * uses that function to do most of the work. Both are fairly rough
1082 * interfaces; @bio must be presetup and ready for I/O.
1083 *
1084 */
1085 blk_qc_t submit_bio(struct bio *bio)
1086 {
1087 /*
1088 * If it's a regular read/write or a barrier with data attached,
1089 * go through the normal accounting stuff before submission.
1090 */
1091 if (bio_has_data(bio)) {
1092 unsigned int count;
1093
1094 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1095 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1096 else
1097 count = bio_sectors(bio);
1098
1099 if (op_is_write(bio_op(bio))) {
1100 count_vm_events(PGPGOUT, count);
1101 } else {
1102 task_io_account_read(bio->bi_iter.bi_size);
1103 count_vm_events(PGPGIN, count);
1104 }
1105
1106 if (unlikely(block_dump)) {
1107 char b[BDEVNAME_SIZE];
1108 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1109 current->comm, task_pid_nr(current),
1110 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1111 (unsigned long long)bio->bi_iter.bi_sector,
1112 bio_devname(bio, b), count);
1113 }
1114 }
1115
1116 return generic_make_request(bio);
1117 }
1118 EXPORT_SYMBOL(submit_bio);
1119
1120 /**
1121 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1122 * for new the queue limits
1123 * @q: the queue
1124 * @rq: the request being checked
1125 *
1126 * Description:
1127 * @rq may have been made based on weaker limitations of upper-level queues
1128 * in request stacking drivers, and it may violate the limitation of @q.
1129 * Since the block layer and the underlying device driver trust @rq
1130 * after it is inserted to @q, it should be checked against @q before
1131 * the insertion using this generic function.
1132 *
1133 * Request stacking drivers like request-based dm may change the queue
1134 * limits when retrying requests on other queues. Those requests need
1135 * to be checked against the new queue limits again during dispatch.
1136 */
1137 static int blk_cloned_rq_check_limits(struct request_queue *q,
1138 struct request *rq)
1139 {
1140 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1141 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1142 __func__, blk_rq_sectors(rq),
1143 blk_queue_get_max_sectors(q, req_op(rq)));
1144 return -EIO;
1145 }
1146
1147 /*
1148 * queue's settings related to segment counting like q->bounce_pfn
1149 * may differ from that of other stacking queues.
1150 * Recalculate it to check the request correctly on this queue's
1151 * limitation.
1152 */
1153 blk_recalc_rq_segments(rq);
1154 if (rq->nr_phys_segments > queue_max_segments(q)) {
1155 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1156 __func__, rq->nr_phys_segments, queue_max_segments(q));
1157 return -EIO;
1158 }
1159
1160 return 0;
1161 }
1162
1163 /**
1164 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1165 * @q: the queue to submit the request
1166 * @rq: the request being queued
1167 */
1168 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1169 {
1170 if (blk_cloned_rq_check_limits(q, rq))
1171 return BLK_STS_IOERR;
1172
1173 if (rq->rq_disk &&
1174 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1175 return BLK_STS_IOERR;
1176
1177 if (blk_queue_io_stat(q))
1178 blk_account_io_start(rq, true);
1179
1180 /*
1181 * Since we have a scheduler attached on the top device,
1182 * bypass a potential scheduler on the bottom device for
1183 * insert.
1184 */
1185 return blk_mq_request_issue_directly(rq, true);
1186 }
1187 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1188
1189 /**
1190 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1191 * @rq: request to examine
1192 *
1193 * Description:
1194 * A request could be merge of IOs which require different failure
1195 * handling. This function determines the number of bytes which
1196 * can be failed from the beginning of the request without
1197 * crossing into area which need to be retried further.
1198 *
1199 * Return:
1200 * The number of bytes to fail.
1201 */
1202 unsigned int blk_rq_err_bytes(const struct request *rq)
1203 {
1204 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1205 unsigned int bytes = 0;
1206 struct bio *bio;
1207
1208 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1209 return blk_rq_bytes(rq);
1210
1211 /*
1212 * Currently the only 'mixing' which can happen is between
1213 * different fastfail types. We can safely fail portions
1214 * which have all the failfast bits that the first one has -
1215 * the ones which are at least as eager to fail as the first
1216 * one.
1217 */
1218 for (bio = rq->bio; bio; bio = bio->bi_next) {
1219 if ((bio->bi_opf & ff) != ff)
1220 break;
1221 bytes += bio->bi_iter.bi_size;
1222 }
1223
1224 /* this could lead to infinite loop */
1225 BUG_ON(blk_rq_bytes(rq) && !bytes);
1226 return bytes;
1227 }
1228 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1229
1230 void blk_account_io_completion(struct request *req, unsigned int bytes)
1231 {
1232 if (blk_do_io_stat(req)) {
1233 const int sgrp = op_stat_group(req_op(req));
1234 struct hd_struct *part;
1235
1236 part_stat_lock();
1237 part = req->part;
1238 part_stat_add(part, sectors[sgrp], bytes >> 9);
1239 part_stat_unlock();
1240 }
1241 }
1242
1243 void blk_account_io_done(struct request *req, u64 now)
1244 {
1245 /*
1246 * Account IO completion. flush_rq isn't accounted as a
1247 * normal IO on queueing nor completion. Accounting the
1248 * containing request is enough.
1249 */
1250 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1251 const int sgrp = op_stat_group(req_op(req));
1252 struct hd_struct *part;
1253
1254 part_stat_lock();
1255 part = req->part;
1256
1257 update_io_ticks(part, jiffies);
1258 part_stat_inc(part, ios[sgrp]);
1259 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1260 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1261 part_dec_in_flight(req->q, part, rq_data_dir(req));
1262
1263 hd_struct_put(part);
1264 part_stat_unlock();
1265 }
1266 }
1267
1268 void blk_account_io_start(struct request *rq, bool new_io)
1269 {
1270 struct hd_struct *part;
1271 int rw = rq_data_dir(rq);
1272
1273 if (!blk_do_io_stat(rq))
1274 return;
1275
1276 part_stat_lock();
1277
1278 if (!new_io) {
1279 part = rq->part;
1280 part_stat_inc(part, merges[rw]);
1281 } else {
1282 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1283 if (!hd_struct_try_get(part)) {
1284 /*
1285 * The partition is already being removed,
1286 * the request will be accounted on the disk only
1287 *
1288 * We take a reference on disk->part0 although that
1289 * partition will never be deleted, so we can treat
1290 * it as any other partition.
1291 */
1292 part = &rq->rq_disk->part0;
1293 hd_struct_get(part);
1294 }
1295 part_inc_in_flight(rq->q, part, rw);
1296 rq->part = part;
1297 }
1298
1299 update_io_ticks(part, jiffies);
1300
1301 part_stat_unlock();
1302 }
1303
1304 /*
1305 * Steal bios from a request and add them to a bio list.
1306 * The request must not have been partially completed before.
1307 */
1308 void blk_steal_bios(struct bio_list *list, struct request *rq)
1309 {
1310 if (rq->bio) {
1311 if (list->tail)
1312 list->tail->bi_next = rq->bio;
1313 else
1314 list->head = rq->bio;
1315 list->tail = rq->biotail;
1316
1317 rq->bio = NULL;
1318 rq->biotail = NULL;
1319 }
1320
1321 rq->__data_len = 0;
1322 }
1323 EXPORT_SYMBOL_GPL(blk_steal_bios);
1324
1325 /**
1326 * blk_update_request - Special helper function for request stacking drivers
1327 * @req: the request being processed
1328 * @error: block status code
1329 * @nr_bytes: number of bytes to complete @req
1330 *
1331 * Description:
1332 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1333 * the request structure even if @req doesn't have leftover.
1334 * If @req has leftover, sets it up for the next range of segments.
1335 *
1336 * This special helper function is only for request stacking drivers
1337 * (e.g. request-based dm) so that they can handle partial completion.
1338 * Actual device drivers should use blk_end_request instead.
1339 *
1340 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1341 * %false return from this function.
1342 *
1343 * Note:
1344 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1345 * blk_rq_bytes() and in blk_update_request().
1346 *
1347 * Return:
1348 * %false - this request doesn't have any more data
1349 * %true - this request has more data
1350 **/
1351 bool blk_update_request(struct request *req, blk_status_t error,
1352 unsigned int nr_bytes)
1353 {
1354 int total_bytes;
1355
1356 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1357
1358 if (!req->bio)
1359 return false;
1360
1361 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1362 !(req->rq_flags & RQF_QUIET)))
1363 print_req_error(req, error);
1364
1365 blk_account_io_completion(req, nr_bytes);
1366
1367 total_bytes = 0;
1368 while (req->bio) {
1369 struct bio *bio = req->bio;
1370 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1371
1372 if (bio_bytes == bio->bi_iter.bi_size)
1373 req->bio = bio->bi_next;
1374
1375 /* Completion has already been traced */
1376 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1377 req_bio_endio(req, bio, bio_bytes, error);
1378
1379 total_bytes += bio_bytes;
1380 nr_bytes -= bio_bytes;
1381
1382 if (!nr_bytes)
1383 break;
1384 }
1385
1386 /*
1387 * completely done
1388 */
1389 if (!req->bio) {
1390 /*
1391 * Reset counters so that the request stacking driver
1392 * can find how many bytes remain in the request
1393 * later.
1394 */
1395 req->__data_len = 0;
1396 return false;
1397 }
1398
1399 req->__data_len -= total_bytes;
1400
1401 /* update sector only for requests with clear definition of sector */
1402 if (!blk_rq_is_passthrough(req))
1403 req->__sector += total_bytes >> 9;
1404
1405 /* mixed attributes always follow the first bio */
1406 if (req->rq_flags & RQF_MIXED_MERGE) {
1407 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1408 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1409 }
1410
1411 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1412 /*
1413 * If total number of sectors is less than the first segment
1414 * size, something has gone terribly wrong.
1415 */
1416 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1417 blk_dump_rq_flags(req, "request botched");
1418 req->__data_len = blk_rq_cur_bytes(req);
1419 }
1420
1421 /* recalculate the number of segments */
1422 blk_recalc_rq_segments(req);
1423 }
1424
1425 return true;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_update_request);
1428
1429 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1430 struct bio *bio)
1431 {
1432 if (bio_has_data(bio))
1433 rq->nr_phys_segments = bio_phys_segments(q, bio);
1434 else if (bio_op(bio) == REQ_OP_DISCARD)
1435 rq->nr_phys_segments = 1;
1436
1437 rq->__data_len = bio->bi_iter.bi_size;
1438 rq->bio = rq->biotail = bio;
1439
1440 if (bio->bi_disk)
1441 rq->rq_disk = bio->bi_disk;
1442 }
1443
1444 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1445 /**
1446 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1447 * @rq: the request to be flushed
1448 *
1449 * Description:
1450 * Flush all pages in @rq.
1451 */
1452 void rq_flush_dcache_pages(struct request *rq)
1453 {
1454 struct req_iterator iter;
1455 struct bio_vec bvec;
1456
1457 rq_for_each_segment(bvec, rq, iter)
1458 flush_dcache_page(bvec.bv_page);
1459 }
1460 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1461 #endif
1462
1463 /**
1464 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1465 * @q : the queue of the device being checked
1466 *
1467 * Description:
1468 * Check if underlying low-level drivers of a device are busy.
1469 * If the drivers want to export their busy state, they must set own
1470 * exporting function using blk_queue_lld_busy() first.
1471 *
1472 * Basically, this function is used only by request stacking drivers
1473 * to stop dispatching requests to underlying devices when underlying
1474 * devices are busy. This behavior helps more I/O merging on the queue
1475 * of the request stacking driver and prevents I/O throughput regression
1476 * on burst I/O load.
1477 *
1478 * Return:
1479 * 0 - Not busy (The request stacking driver should dispatch request)
1480 * 1 - Busy (The request stacking driver should stop dispatching request)
1481 */
1482 int blk_lld_busy(struct request_queue *q)
1483 {
1484 if (queue_is_mq(q) && q->mq_ops->busy)
1485 return q->mq_ops->busy(q);
1486
1487 return 0;
1488 }
1489 EXPORT_SYMBOL_GPL(blk_lld_busy);
1490
1491 /**
1492 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1493 * @rq: the clone request to be cleaned up
1494 *
1495 * Description:
1496 * Free all bios in @rq for a cloned request.
1497 */
1498 void blk_rq_unprep_clone(struct request *rq)
1499 {
1500 struct bio *bio;
1501
1502 while ((bio = rq->bio) != NULL) {
1503 rq->bio = bio->bi_next;
1504
1505 bio_put(bio);
1506 }
1507 }
1508 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1509
1510 /*
1511 * Copy attributes of the original request to the clone request.
1512 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1513 */
1514 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1515 {
1516 dst->__sector = blk_rq_pos(src);
1517 dst->__data_len = blk_rq_bytes(src);
1518 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1519 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1520 dst->special_vec = src->special_vec;
1521 }
1522 dst->nr_phys_segments = src->nr_phys_segments;
1523 dst->ioprio = src->ioprio;
1524 dst->extra_len = src->extra_len;
1525 }
1526
1527 /**
1528 * blk_rq_prep_clone - Helper function to setup clone request
1529 * @rq: the request to be setup
1530 * @rq_src: original request to be cloned
1531 * @bs: bio_set that bios for clone are allocated from
1532 * @gfp_mask: memory allocation mask for bio
1533 * @bio_ctr: setup function to be called for each clone bio.
1534 * Returns %0 for success, non %0 for failure.
1535 * @data: private data to be passed to @bio_ctr
1536 *
1537 * Description:
1538 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1539 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1540 * are not copied, and copying such parts is the caller's responsibility.
1541 * Also, pages which the original bios are pointing to are not copied
1542 * and the cloned bios just point same pages.
1543 * So cloned bios must be completed before original bios, which means
1544 * the caller must complete @rq before @rq_src.
1545 */
1546 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1547 struct bio_set *bs, gfp_t gfp_mask,
1548 int (*bio_ctr)(struct bio *, struct bio *, void *),
1549 void *data)
1550 {
1551 struct bio *bio, *bio_src;
1552
1553 if (!bs)
1554 bs = &fs_bio_set;
1555
1556 __rq_for_each_bio(bio_src, rq_src) {
1557 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1558 if (!bio)
1559 goto free_and_out;
1560
1561 if (bio_ctr && bio_ctr(bio, bio_src, data))
1562 goto free_and_out;
1563
1564 if (rq->bio) {
1565 rq->biotail->bi_next = bio;
1566 rq->biotail = bio;
1567 } else
1568 rq->bio = rq->biotail = bio;
1569 }
1570
1571 __blk_rq_prep_clone(rq, rq_src);
1572
1573 return 0;
1574
1575 free_and_out:
1576 if (bio)
1577 bio_put(bio);
1578 blk_rq_unprep_clone(rq);
1579
1580 return -ENOMEM;
1581 }
1582 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1583
1584 int kblockd_schedule_work(struct work_struct *work)
1585 {
1586 return queue_work(kblockd_workqueue, work);
1587 }
1588 EXPORT_SYMBOL(kblockd_schedule_work);
1589
1590 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1591 {
1592 return queue_work_on(cpu, kblockd_workqueue, work);
1593 }
1594 EXPORT_SYMBOL(kblockd_schedule_work_on);
1595
1596 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1597 unsigned long delay)
1598 {
1599 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1600 }
1601 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1602
1603 /**
1604 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1605 * @plug: The &struct blk_plug that needs to be initialized
1606 *
1607 * Description:
1608 * blk_start_plug() indicates to the block layer an intent by the caller
1609 * to submit multiple I/O requests in a batch. The block layer may use
1610 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1611 * is called. However, the block layer may choose to submit requests
1612 * before a call to blk_finish_plug() if the number of queued I/Os
1613 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1614 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1615 * the task schedules (see below).
1616 *
1617 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1618 * pending I/O should the task end up blocking between blk_start_plug() and
1619 * blk_finish_plug(). This is important from a performance perspective, but
1620 * also ensures that we don't deadlock. For instance, if the task is blocking
1621 * for a memory allocation, memory reclaim could end up wanting to free a
1622 * page belonging to that request that is currently residing in our private
1623 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1624 * this kind of deadlock.
1625 */
1626 void blk_start_plug(struct blk_plug *plug)
1627 {
1628 struct task_struct *tsk = current;
1629
1630 /*
1631 * If this is a nested plug, don't actually assign it.
1632 */
1633 if (tsk->plug)
1634 return;
1635
1636 INIT_LIST_HEAD(&plug->mq_list);
1637 INIT_LIST_HEAD(&plug->cb_list);
1638 plug->rq_count = 0;
1639 plug->multiple_queues = false;
1640
1641 /*
1642 * Store ordering should not be needed here, since a potential
1643 * preempt will imply a full memory barrier
1644 */
1645 tsk->plug = plug;
1646 }
1647 EXPORT_SYMBOL(blk_start_plug);
1648
1649 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1650 {
1651 LIST_HEAD(callbacks);
1652
1653 while (!list_empty(&plug->cb_list)) {
1654 list_splice_init(&plug->cb_list, &callbacks);
1655
1656 while (!list_empty(&callbacks)) {
1657 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1658 struct blk_plug_cb,
1659 list);
1660 list_del(&cb->list);
1661 cb->callback(cb, from_schedule);
1662 }
1663 }
1664 }
1665
1666 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1667 int size)
1668 {
1669 struct blk_plug *plug = current->plug;
1670 struct blk_plug_cb *cb;
1671
1672 if (!plug)
1673 return NULL;
1674
1675 list_for_each_entry(cb, &plug->cb_list, list)
1676 if (cb->callback == unplug && cb->data == data)
1677 return cb;
1678
1679 /* Not currently on the callback list */
1680 BUG_ON(size < sizeof(*cb));
1681 cb = kzalloc(size, GFP_ATOMIC);
1682 if (cb) {
1683 cb->data = data;
1684 cb->callback = unplug;
1685 list_add(&cb->list, &plug->cb_list);
1686 }
1687 return cb;
1688 }
1689 EXPORT_SYMBOL(blk_check_plugged);
1690
1691 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1692 {
1693 flush_plug_callbacks(plug, from_schedule);
1694
1695 if (!list_empty(&plug->mq_list))
1696 blk_mq_flush_plug_list(plug, from_schedule);
1697 }
1698
1699 /**
1700 * blk_finish_plug - mark the end of a batch of submitted I/O
1701 * @plug: The &struct blk_plug passed to blk_start_plug()
1702 *
1703 * Description:
1704 * Indicate that a batch of I/O submissions is complete. This function
1705 * must be paired with an initial call to blk_start_plug(). The intent
1706 * is to allow the block layer to optimize I/O submission. See the
1707 * documentation for blk_start_plug() for more information.
1708 */
1709 void blk_finish_plug(struct blk_plug *plug)
1710 {
1711 if (plug != current->plug)
1712 return;
1713 blk_flush_plug_list(plug, false);
1714
1715 current->plug = NULL;
1716 }
1717 EXPORT_SYMBOL(blk_finish_plug);
1718
1719 int __init blk_dev_init(void)
1720 {
1721 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1722 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1723 FIELD_SIZEOF(struct request, cmd_flags));
1724 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1725 FIELD_SIZEOF(struct bio, bi_opf));
1726
1727 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1728 kblockd_workqueue = alloc_workqueue("kblockd",
1729 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1730 if (!kblockd_workqueue)
1731 panic("Failed to create kblockd\n");
1732
1733 blk_requestq_cachep = kmem_cache_create("request_queue",
1734 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1735
1736 #ifdef CONFIG_DEBUG_FS
1737 blk_debugfs_root = debugfs_create_dir("block", NULL);
1738 #endif
1739
1740 return 0;
1741 }