]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-core.c
Merge remote-tracking branches 'asoc/topic/rt5645', 'asoc/topic/rt5651', 'asoc/topic...
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-wbt.h"
46
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56
57 DEFINE_IDA(blk_queue_ida);
58
59 /*
60 * For the allocated request tables
61 */
62 struct kmem_cache *request_cachep;
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 static void blk_clear_congested(struct request_list *rl, int sync)
75 {
76 #ifdef CONFIG_CGROUP_WRITEBACK
77 clear_wb_congested(rl->blkg->wb_congested, sync);
78 #else
79 /*
80 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
81 * flip its congestion state for events on other blkcgs.
82 */
83 if (rl == &rl->q->root_rl)
84 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
85 #endif
86 }
87
88 static void blk_set_congested(struct request_list *rl, int sync)
89 {
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 set_wb_congested(rl->blkg->wb_congested, sync);
92 #else
93 /* see blk_clear_congested() */
94 if (rl == &rl->q->root_rl)
95 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
96 #endif
97 }
98
99 void blk_queue_congestion_threshold(struct request_queue *q)
100 {
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112 }
113
114 void blk_rq_init(struct request_queue *q, struct request *rq)
115 {
116 memset(rq, 0, sizeof(*rq));
117
118 INIT_LIST_HEAD(&rq->queuelist);
119 INIT_LIST_HEAD(&rq->timeout_list);
120 rq->cpu = -1;
121 rq->q = q;
122 rq->__sector = (sector_t) -1;
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
125 rq->tag = -1;
126 rq->internal_tag = -1;
127 rq->start_time = jiffies;
128 set_start_time_ns(rq);
129 rq->part = NULL;
130 seqcount_init(&rq->gstate_seq);
131 u64_stats_init(&rq->aborted_gstate_sync);
132 }
133 EXPORT_SYMBOL(blk_rq_init);
134
135 static const struct {
136 int errno;
137 const char *name;
138 } blk_errors[] = {
139 [BLK_STS_OK] = { 0, "" },
140 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
141 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
142 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
143 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
144 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
145 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
146 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
147 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
148 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
149 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
150 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
151
152 /* device mapper special case, should not leak out: */
153 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
154
155 /* everything else not covered above: */
156 [BLK_STS_IOERR] = { -EIO, "I/O" },
157 };
158
159 blk_status_t errno_to_blk_status(int errno)
160 {
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
164 if (blk_errors[i].errno == errno)
165 return (__force blk_status_t)i;
166 }
167
168 return BLK_STS_IOERR;
169 }
170 EXPORT_SYMBOL_GPL(errno_to_blk_status);
171
172 int blk_status_to_errno(blk_status_t status)
173 {
174 int idx = (__force int)status;
175
176 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
177 return -EIO;
178 return blk_errors[idx].errno;
179 }
180 EXPORT_SYMBOL_GPL(blk_status_to_errno);
181
182 static void print_req_error(struct request *req, blk_status_t status)
183 {
184 int idx = (__force int)status;
185
186 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
187 return;
188
189 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
190 __func__, blk_errors[idx].name, req->rq_disk ?
191 req->rq_disk->disk_name : "?",
192 (unsigned long long)blk_rq_pos(req));
193 }
194
195 static void req_bio_endio(struct request *rq, struct bio *bio,
196 unsigned int nbytes, blk_status_t error)
197 {
198 if (error)
199 bio->bi_status = error;
200
201 if (unlikely(rq->rq_flags & RQF_QUIET))
202 bio_set_flag(bio, BIO_QUIET);
203
204 bio_advance(bio, nbytes);
205
206 /* don't actually finish bio if it's part of flush sequence */
207 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
208 bio_endio(bio);
209 }
210
211 void blk_dump_rq_flags(struct request *rq, char *msg)
212 {
213 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
214 rq->rq_disk ? rq->rq_disk->disk_name : "?",
215 (unsigned long long) rq->cmd_flags);
216
217 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
218 (unsigned long long)blk_rq_pos(rq),
219 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
220 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
221 rq->bio, rq->biotail, blk_rq_bytes(rq));
222 }
223 EXPORT_SYMBOL(blk_dump_rq_flags);
224
225 static void blk_delay_work(struct work_struct *work)
226 {
227 struct request_queue *q;
228
229 q = container_of(work, struct request_queue, delay_work.work);
230 spin_lock_irq(q->queue_lock);
231 __blk_run_queue(q);
232 spin_unlock_irq(q->queue_lock);
233 }
234
235 /**
236 * blk_delay_queue - restart queueing after defined interval
237 * @q: The &struct request_queue in question
238 * @msecs: Delay in msecs
239 *
240 * Description:
241 * Sometimes queueing needs to be postponed for a little while, to allow
242 * resources to come back. This function will make sure that queueing is
243 * restarted around the specified time.
244 */
245 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
246 {
247 lockdep_assert_held(q->queue_lock);
248 WARN_ON_ONCE(q->mq_ops);
249
250 if (likely(!blk_queue_dead(q)))
251 queue_delayed_work(kblockd_workqueue, &q->delay_work,
252 msecs_to_jiffies(msecs));
253 }
254 EXPORT_SYMBOL(blk_delay_queue);
255
256 /**
257 * blk_start_queue_async - asynchronously restart a previously stopped queue
258 * @q: The &struct request_queue in question
259 *
260 * Description:
261 * blk_start_queue_async() will clear the stop flag on the queue, and
262 * ensure that the request_fn for the queue is run from an async
263 * context.
264 **/
265 void blk_start_queue_async(struct request_queue *q)
266 {
267 lockdep_assert_held(q->queue_lock);
268 WARN_ON_ONCE(q->mq_ops);
269
270 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
271 blk_run_queue_async(q);
272 }
273 EXPORT_SYMBOL(blk_start_queue_async);
274
275 /**
276 * blk_start_queue - restart a previously stopped queue
277 * @q: The &struct request_queue in question
278 *
279 * Description:
280 * blk_start_queue() will clear the stop flag on the queue, and call
281 * the request_fn for the queue if it was in a stopped state when
282 * entered. Also see blk_stop_queue().
283 **/
284 void blk_start_queue(struct request_queue *q)
285 {
286 lockdep_assert_held(q->queue_lock);
287 WARN_ON(!in_interrupt() && !irqs_disabled());
288 WARN_ON_ONCE(q->mq_ops);
289
290 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
291 __blk_run_queue(q);
292 }
293 EXPORT_SYMBOL(blk_start_queue);
294
295 /**
296 * blk_stop_queue - stop a queue
297 * @q: The &struct request_queue in question
298 *
299 * Description:
300 * The Linux block layer assumes that a block driver will consume all
301 * entries on the request queue when the request_fn strategy is called.
302 * Often this will not happen, because of hardware limitations (queue
303 * depth settings). If a device driver gets a 'queue full' response,
304 * or if it simply chooses not to queue more I/O at one point, it can
305 * call this function to prevent the request_fn from being called until
306 * the driver has signalled it's ready to go again. This happens by calling
307 * blk_start_queue() to restart queue operations.
308 **/
309 void blk_stop_queue(struct request_queue *q)
310 {
311 lockdep_assert_held(q->queue_lock);
312 WARN_ON_ONCE(q->mq_ops);
313
314 cancel_delayed_work(&q->delay_work);
315 queue_flag_set(QUEUE_FLAG_STOPPED, q);
316 }
317 EXPORT_SYMBOL(blk_stop_queue);
318
319 /**
320 * blk_sync_queue - cancel any pending callbacks on a queue
321 * @q: the queue
322 *
323 * Description:
324 * The block layer may perform asynchronous callback activity
325 * on a queue, such as calling the unplug function after a timeout.
326 * A block device may call blk_sync_queue to ensure that any
327 * such activity is cancelled, thus allowing it to release resources
328 * that the callbacks might use. The caller must already have made sure
329 * that its ->make_request_fn will not re-add plugging prior to calling
330 * this function.
331 *
332 * This function does not cancel any asynchronous activity arising
333 * out of elevator or throttling code. That would require elevator_exit()
334 * and blkcg_exit_queue() to be called with queue lock initialized.
335 *
336 */
337 void blk_sync_queue(struct request_queue *q)
338 {
339 del_timer_sync(&q->timeout);
340 cancel_work_sync(&q->timeout_work);
341
342 if (q->mq_ops) {
343 struct blk_mq_hw_ctx *hctx;
344 int i;
345
346 cancel_delayed_work_sync(&q->requeue_work);
347 queue_for_each_hw_ctx(q, hctx, i)
348 cancel_delayed_work_sync(&hctx->run_work);
349 } else {
350 cancel_delayed_work_sync(&q->delay_work);
351 }
352 }
353 EXPORT_SYMBOL(blk_sync_queue);
354
355 /**
356 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
357 * @q: request queue pointer
358 *
359 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
360 * set and 1 if the flag was already set.
361 */
362 int blk_set_preempt_only(struct request_queue *q)
363 {
364 unsigned long flags;
365 int res;
366
367 spin_lock_irqsave(q->queue_lock, flags);
368 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
369 spin_unlock_irqrestore(q->queue_lock, flags);
370
371 return res;
372 }
373 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
374
375 void blk_clear_preempt_only(struct request_queue *q)
376 {
377 unsigned long flags;
378
379 spin_lock_irqsave(q->queue_lock, flags);
380 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
381 wake_up_all(&q->mq_freeze_wq);
382 spin_unlock_irqrestore(q->queue_lock, flags);
383 }
384 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
385
386 /**
387 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
388 * @q: The queue to run
389 *
390 * Description:
391 * Invoke request handling on a queue if there are any pending requests.
392 * May be used to restart request handling after a request has completed.
393 * This variant runs the queue whether or not the queue has been
394 * stopped. Must be called with the queue lock held and interrupts
395 * disabled. See also @blk_run_queue.
396 */
397 inline void __blk_run_queue_uncond(struct request_queue *q)
398 {
399 lockdep_assert_held(q->queue_lock);
400 WARN_ON_ONCE(q->mq_ops);
401
402 if (unlikely(blk_queue_dead(q)))
403 return;
404
405 /*
406 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
407 * the queue lock internally. As a result multiple threads may be
408 * running such a request function concurrently. Keep track of the
409 * number of active request_fn invocations such that blk_drain_queue()
410 * can wait until all these request_fn calls have finished.
411 */
412 q->request_fn_active++;
413 q->request_fn(q);
414 q->request_fn_active--;
415 }
416 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
417
418 /**
419 * __blk_run_queue - run a single device queue
420 * @q: The queue to run
421 *
422 * Description:
423 * See @blk_run_queue.
424 */
425 void __blk_run_queue(struct request_queue *q)
426 {
427 lockdep_assert_held(q->queue_lock);
428 WARN_ON_ONCE(q->mq_ops);
429
430 if (unlikely(blk_queue_stopped(q)))
431 return;
432
433 __blk_run_queue_uncond(q);
434 }
435 EXPORT_SYMBOL(__blk_run_queue);
436
437 /**
438 * blk_run_queue_async - run a single device queue in workqueue context
439 * @q: The queue to run
440 *
441 * Description:
442 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
443 * of us.
444 *
445 * Note:
446 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
447 * has canceled q->delay_work, callers must hold the queue lock to avoid
448 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
449 */
450 void blk_run_queue_async(struct request_queue *q)
451 {
452 lockdep_assert_held(q->queue_lock);
453 WARN_ON_ONCE(q->mq_ops);
454
455 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
456 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
457 }
458 EXPORT_SYMBOL(blk_run_queue_async);
459
460 /**
461 * blk_run_queue - run a single device queue
462 * @q: The queue to run
463 *
464 * Description:
465 * Invoke request handling on this queue, if it has pending work to do.
466 * May be used to restart queueing when a request has completed.
467 */
468 void blk_run_queue(struct request_queue *q)
469 {
470 unsigned long flags;
471
472 WARN_ON_ONCE(q->mq_ops);
473
474 spin_lock_irqsave(q->queue_lock, flags);
475 __blk_run_queue(q);
476 spin_unlock_irqrestore(q->queue_lock, flags);
477 }
478 EXPORT_SYMBOL(blk_run_queue);
479
480 void blk_put_queue(struct request_queue *q)
481 {
482 kobject_put(&q->kobj);
483 }
484 EXPORT_SYMBOL(blk_put_queue);
485
486 /**
487 * __blk_drain_queue - drain requests from request_queue
488 * @q: queue to drain
489 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
490 *
491 * Drain requests from @q. If @drain_all is set, all requests are drained.
492 * If not, only ELVPRIV requests are drained. The caller is responsible
493 * for ensuring that no new requests which need to be drained are queued.
494 */
495 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
496 __releases(q->queue_lock)
497 __acquires(q->queue_lock)
498 {
499 int i;
500
501 lockdep_assert_held(q->queue_lock);
502 WARN_ON_ONCE(q->mq_ops);
503
504 while (true) {
505 bool drain = false;
506
507 /*
508 * The caller might be trying to drain @q before its
509 * elevator is initialized.
510 */
511 if (q->elevator)
512 elv_drain_elevator(q);
513
514 blkcg_drain_queue(q);
515
516 /*
517 * This function might be called on a queue which failed
518 * driver init after queue creation or is not yet fully
519 * active yet. Some drivers (e.g. fd and loop) get unhappy
520 * in such cases. Kick queue iff dispatch queue has
521 * something on it and @q has request_fn set.
522 */
523 if (!list_empty(&q->queue_head) && q->request_fn)
524 __blk_run_queue(q);
525
526 drain |= q->nr_rqs_elvpriv;
527 drain |= q->request_fn_active;
528
529 /*
530 * Unfortunately, requests are queued at and tracked from
531 * multiple places and there's no single counter which can
532 * be drained. Check all the queues and counters.
533 */
534 if (drain_all) {
535 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
536 drain |= !list_empty(&q->queue_head);
537 for (i = 0; i < 2; i++) {
538 drain |= q->nr_rqs[i];
539 drain |= q->in_flight[i];
540 if (fq)
541 drain |= !list_empty(&fq->flush_queue[i]);
542 }
543 }
544
545 if (!drain)
546 break;
547
548 spin_unlock_irq(q->queue_lock);
549
550 msleep(10);
551
552 spin_lock_irq(q->queue_lock);
553 }
554
555 /*
556 * With queue marked dead, any woken up waiter will fail the
557 * allocation path, so the wakeup chaining is lost and we're
558 * left with hung waiters. We need to wake up those waiters.
559 */
560 if (q->request_fn) {
561 struct request_list *rl;
562
563 blk_queue_for_each_rl(rl, q)
564 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
565 wake_up_all(&rl->wait[i]);
566 }
567 }
568
569 void blk_drain_queue(struct request_queue *q)
570 {
571 spin_lock_irq(q->queue_lock);
572 __blk_drain_queue(q, true);
573 spin_unlock_irq(q->queue_lock);
574 }
575
576 /**
577 * blk_queue_bypass_start - enter queue bypass mode
578 * @q: queue of interest
579 *
580 * In bypass mode, only the dispatch FIFO queue of @q is used. This
581 * function makes @q enter bypass mode and drains all requests which were
582 * throttled or issued before. On return, it's guaranteed that no request
583 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
584 * inside queue or RCU read lock.
585 */
586 void blk_queue_bypass_start(struct request_queue *q)
587 {
588 WARN_ON_ONCE(q->mq_ops);
589
590 spin_lock_irq(q->queue_lock);
591 q->bypass_depth++;
592 queue_flag_set(QUEUE_FLAG_BYPASS, q);
593 spin_unlock_irq(q->queue_lock);
594
595 /*
596 * Queues start drained. Skip actual draining till init is
597 * complete. This avoids lenghty delays during queue init which
598 * can happen many times during boot.
599 */
600 if (blk_queue_init_done(q)) {
601 spin_lock_irq(q->queue_lock);
602 __blk_drain_queue(q, false);
603 spin_unlock_irq(q->queue_lock);
604
605 /* ensure blk_queue_bypass() is %true inside RCU read lock */
606 synchronize_rcu();
607 }
608 }
609 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
610
611 /**
612 * blk_queue_bypass_end - leave queue bypass mode
613 * @q: queue of interest
614 *
615 * Leave bypass mode and restore the normal queueing behavior.
616 *
617 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
618 * this function is called for both blk-sq and blk-mq queues.
619 */
620 void blk_queue_bypass_end(struct request_queue *q)
621 {
622 spin_lock_irq(q->queue_lock);
623 if (!--q->bypass_depth)
624 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
625 WARN_ON_ONCE(q->bypass_depth < 0);
626 spin_unlock_irq(q->queue_lock);
627 }
628 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
629
630 void blk_set_queue_dying(struct request_queue *q)
631 {
632 spin_lock_irq(q->queue_lock);
633 queue_flag_set(QUEUE_FLAG_DYING, q);
634 spin_unlock_irq(q->queue_lock);
635
636 /*
637 * When queue DYING flag is set, we need to block new req
638 * entering queue, so we call blk_freeze_queue_start() to
639 * prevent I/O from crossing blk_queue_enter().
640 */
641 blk_freeze_queue_start(q);
642
643 if (q->mq_ops)
644 blk_mq_wake_waiters(q);
645 else {
646 struct request_list *rl;
647
648 spin_lock_irq(q->queue_lock);
649 blk_queue_for_each_rl(rl, q) {
650 if (rl->rq_pool) {
651 wake_up_all(&rl->wait[BLK_RW_SYNC]);
652 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
653 }
654 }
655 spin_unlock_irq(q->queue_lock);
656 }
657
658 /* Make blk_queue_enter() reexamine the DYING flag. */
659 wake_up_all(&q->mq_freeze_wq);
660 }
661 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
662
663 /**
664 * blk_cleanup_queue - shutdown a request queue
665 * @q: request queue to shutdown
666 *
667 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
668 * put it. All future requests will be failed immediately with -ENODEV.
669 */
670 void blk_cleanup_queue(struct request_queue *q)
671 {
672 spinlock_t *lock = q->queue_lock;
673
674 /* mark @q DYING, no new request or merges will be allowed afterwards */
675 mutex_lock(&q->sysfs_lock);
676 blk_set_queue_dying(q);
677 spin_lock_irq(lock);
678
679 /*
680 * A dying queue is permanently in bypass mode till released. Note
681 * that, unlike blk_queue_bypass_start(), we aren't performing
682 * synchronize_rcu() after entering bypass mode to avoid the delay
683 * as some drivers create and destroy a lot of queues while
684 * probing. This is still safe because blk_release_queue() will be
685 * called only after the queue refcnt drops to zero and nothing,
686 * RCU or not, would be traversing the queue by then.
687 */
688 q->bypass_depth++;
689 queue_flag_set(QUEUE_FLAG_BYPASS, q);
690
691 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
692 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
693 queue_flag_set(QUEUE_FLAG_DYING, q);
694 spin_unlock_irq(lock);
695 mutex_unlock(&q->sysfs_lock);
696
697 /*
698 * Drain all requests queued before DYING marking. Set DEAD flag to
699 * prevent that q->request_fn() gets invoked after draining finished.
700 */
701 blk_freeze_queue(q);
702 spin_lock_irq(lock);
703 queue_flag_set(QUEUE_FLAG_DEAD, q);
704 spin_unlock_irq(lock);
705
706 /*
707 * make sure all in-progress dispatch are completed because
708 * blk_freeze_queue() can only complete all requests, and
709 * dispatch may still be in-progress since we dispatch requests
710 * from more than one contexts
711 */
712 if (q->mq_ops)
713 blk_mq_quiesce_queue(q);
714
715 /* for synchronous bio-based driver finish in-flight integrity i/o */
716 blk_flush_integrity();
717
718 /* @q won't process any more request, flush async actions */
719 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
720 blk_sync_queue(q);
721
722 if (q->mq_ops)
723 blk_mq_free_queue(q);
724 percpu_ref_exit(&q->q_usage_counter);
725
726 spin_lock_irq(lock);
727 if (q->queue_lock != &q->__queue_lock)
728 q->queue_lock = &q->__queue_lock;
729 spin_unlock_irq(lock);
730
731 /* @q is and will stay empty, shutdown and put */
732 blk_put_queue(q);
733 }
734 EXPORT_SYMBOL(blk_cleanup_queue);
735
736 /* Allocate memory local to the request queue */
737 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
738 {
739 struct request_queue *q = data;
740
741 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
742 }
743
744 static void free_request_simple(void *element, void *data)
745 {
746 kmem_cache_free(request_cachep, element);
747 }
748
749 static void *alloc_request_size(gfp_t gfp_mask, void *data)
750 {
751 struct request_queue *q = data;
752 struct request *rq;
753
754 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
755 q->node);
756 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
757 kfree(rq);
758 rq = NULL;
759 }
760 return rq;
761 }
762
763 static void free_request_size(void *element, void *data)
764 {
765 struct request_queue *q = data;
766
767 if (q->exit_rq_fn)
768 q->exit_rq_fn(q, element);
769 kfree(element);
770 }
771
772 int blk_init_rl(struct request_list *rl, struct request_queue *q,
773 gfp_t gfp_mask)
774 {
775 if (unlikely(rl->rq_pool) || q->mq_ops)
776 return 0;
777
778 rl->q = q;
779 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
780 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
781 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
782 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
783
784 if (q->cmd_size) {
785 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
786 alloc_request_size, free_request_size,
787 q, gfp_mask, q->node);
788 } else {
789 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
790 alloc_request_simple, free_request_simple,
791 q, gfp_mask, q->node);
792 }
793 if (!rl->rq_pool)
794 return -ENOMEM;
795
796 if (rl != &q->root_rl)
797 WARN_ON_ONCE(!blk_get_queue(q));
798
799 return 0;
800 }
801
802 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
803 {
804 if (rl->rq_pool) {
805 mempool_destroy(rl->rq_pool);
806 if (rl != &q->root_rl)
807 blk_put_queue(q);
808 }
809 }
810
811 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
812 {
813 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
814 }
815 EXPORT_SYMBOL(blk_alloc_queue);
816
817 /**
818 * blk_queue_enter() - try to increase q->q_usage_counter
819 * @q: request queue pointer
820 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
821 */
822 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
823 {
824 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
825
826 while (true) {
827 bool success = false;
828 int ret;
829
830 rcu_read_lock_sched();
831 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
832 /*
833 * The code that sets the PREEMPT_ONLY flag is
834 * responsible for ensuring that that flag is globally
835 * visible before the queue is unfrozen.
836 */
837 if (preempt || !blk_queue_preempt_only(q)) {
838 success = true;
839 } else {
840 percpu_ref_put(&q->q_usage_counter);
841 }
842 }
843 rcu_read_unlock_sched();
844
845 if (success)
846 return 0;
847
848 if (flags & BLK_MQ_REQ_NOWAIT)
849 return -EBUSY;
850
851 /*
852 * read pair of barrier in blk_freeze_queue_start(),
853 * we need to order reading __PERCPU_REF_DEAD flag of
854 * .q_usage_counter and reading .mq_freeze_depth or
855 * queue dying flag, otherwise the following wait may
856 * never return if the two reads are reordered.
857 */
858 smp_rmb();
859
860 ret = wait_event_interruptible(q->mq_freeze_wq,
861 (atomic_read(&q->mq_freeze_depth) == 0 &&
862 (preempt || !blk_queue_preempt_only(q))) ||
863 blk_queue_dying(q));
864 if (blk_queue_dying(q))
865 return -ENODEV;
866 if (ret)
867 return ret;
868 }
869 }
870
871 void blk_queue_exit(struct request_queue *q)
872 {
873 percpu_ref_put(&q->q_usage_counter);
874 }
875
876 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
877 {
878 struct request_queue *q =
879 container_of(ref, struct request_queue, q_usage_counter);
880
881 wake_up_all(&q->mq_freeze_wq);
882 }
883
884 static void blk_rq_timed_out_timer(struct timer_list *t)
885 {
886 struct request_queue *q = from_timer(q, t, timeout);
887
888 kblockd_schedule_work(&q->timeout_work);
889 }
890
891 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
892 {
893 struct request_queue *q;
894
895 q = kmem_cache_alloc_node(blk_requestq_cachep,
896 gfp_mask | __GFP_ZERO, node_id);
897 if (!q)
898 return NULL;
899
900 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
901 if (q->id < 0)
902 goto fail_q;
903
904 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
905 if (!q->bio_split)
906 goto fail_id;
907
908 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
909 if (!q->backing_dev_info)
910 goto fail_split;
911
912 q->stats = blk_alloc_queue_stats();
913 if (!q->stats)
914 goto fail_stats;
915
916 q->backing_dev_info->ra_pages =
917 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
918 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
919 q->backing_dev_info->name = "block";
920 q->node = node_id;
921
922 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
923 laptop_mode_timer_fn, 0);
924 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
925 INIT_WORK(&q->timeout_work, NULL);
926 INIT_LIST_HEAD(&q->queue_head);
927 INIT_LIST_HEAD(&q->timeout_list);
928 INIT_LIST_HEAD(&q->icq_list);
929 #ifdef CONFIG_BLK_CGROUP
930 INIT_LIST_HEAD(&q->blkg_list);
931 #endif
932 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
933
934 kobject_init(&q->kobj, &blk_queue_ktype);
935
936 #ifdef CONFIG_BLK_DEV_IO_TRACE
937 mutex_init(&q->blk_trace_mutex);
938 #endif
939 mutex_init(&q->sysfs_lock);
940 spin_lock_init(&q->__queue_lock);
941
942 /*
943 * By default initialize queue_lock to internal lock and driver can
944 * override it later if need be.
945 */
946 q->queue_lock = &q->__queue_lock;
947
948 /*
949 * A queue starts its life with bypass turned on to avoid
950 * unnecessary bypass on/off overhead and nasty surprises during
951 * init. The initial bypass will be finished when the queue is
952 * registered by blk_register_queue().
953 */
954 q->bypass_depth = 1;
955 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
956
957 init_waitqueue_head(&q->mq_freeze_wq);
958
959 /*
960 * Init percpu_ref in atomic mode so that it's faster to shutdown.
961 * See blk_register_queue() for details.
962 */
963 if (percpu_ref_init(&q->q_usage_counter,
964 blk_queue_usage_counter_release,
965 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
966 goto fail_bdi;
967
968 if (blkcg_init_queue(q))
969 goto fail_ref;
970
971 return q;
972
973 fail_ref:
974 percpu_ref_exit(&q->q_usage_counter);
975 fail_bdi:
976 blk_free_queue_stats(q->stats);
977 fail_stats:
978 bdi_put(q->backing_dev_info);
979 fail_split:
980 bioset_free(q->bio_split);
981 fail_id:
982 ida_simple_remove(&blk_queue_ida, q->id);
983 fail_q:
984 kmem_cache_free(blk_requestq_cachep, q);
985 return NULL;
986 }
987 EXPORT_SYMBOL(blk_alloc_queue_node);
988
989 /**
990 * blk_init_queue - prepare a request queue for use with a block device
991 * @rfn: The function to be called to process requests that have been
992 * placed on the queue.
993 * @lock: Request queue spin lock
994 *
995 * Description:
996 * If a block device wishes to use the standard request handling procedures,
997 * which sorts requests and coalesces adjacent requests, then it must
998 * call blk_init_queue(). The function @rfn will be called when there
999 * are requests on the queue that need to be processed. If the device
1000 * supports plugging, then @rfn may not be called immediately when requests
1001 * are available on the queue, but may be called at some time later instead.
1002 * Plugged queues are generally unplugged when a buffer belonging to one
1003 * of the requests on the queue is needed, or due to memory pressure.
1004 *
1005 * @rfn is not required, or even expected, to remove all requests off the
1006 * queue, but only as many as it can handle at a time. If it does leave
1007 * requests on the queue, it is responsible for arranging that the requests
1008 * get dealt with eventually.
1009 *
1010 * The queue spin lock must be held while manipulating the requests on the
1011 * request queue; this lock will be taken also from interrupt context, so irq
1012 * disabling is needed for it.
1013 *
1014 * Function returns a pointer to the initialized request queue, or %NULL if
1015 * it didn't succeed.
1016 *
1017 * Note:
1018 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1019 * when the block device is deactivated (such as at module unload).
1020 **/
1021
1022 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1023 {
1024 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1025 }
1026 EXPORT_SYMBOL(blk_init_queue);
1027
1028 struct request_queue *
1029 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1030 {
1031 struct request_queue *q;
1032
1033 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1034 if (!q)
1035 return NULL;
1036
1037 q->request_fn = rfn;
1038 if (lock)
1039 q->queue_lock = lock;
1040 if (blk_init_allocated_queue(q) < 0) {
1041 blk_cleanup_queue(q);
1042 return NULL;
1043 }
1044
1045 return q;
1046 }
1047 EXPORT_SYMBOL(blk_init_queue_node);
1048
1049 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1050
1051
1052 int blk_init_allocated_queue(struct request_queue *q)
1053 {
1054 WARN_ON_ONCE(q->mq_ops);
1055
1056 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1057 if (!q->fq)
1058 return -ENOMEM;
1059
1060 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1061 goto out_free_flush_queue;
1062
1063 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1064 goto out_exit_flush_rq;
1065
1066 INIT_WORK(&q->timeout_work, blk_timeout_work);
1067 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1068
1069 /*
1070 * This also sets hw/phys segments, boundary and size
1071 */
1072 blk_queue_make_request(q, blk_queue_bio);
1073
1074 q->sg_reserved_size = INT_MAX;
1075
1076 /* Protect q->elevator from elevator_change */
1077 mutex_lock(&q->sysfs_lock);
1078
1079 /* init elevator */
1080 if (elevator_init(q, NULL)) {
1081 mutex_unlock(&q->sysfs_lock);
1082 goto out_exit_flush_rq;
1083 }
1084
1085 mutex_unlock(&q->sysfs_lock);
1086 return 0;
1087
1088 out_exit_flush_rq:
1089 if (q->exit_rq_fn)
1090 q->exit_rq_fn(q, q->fq->flush_rq);
1091 out_free_flush_queue:
1092 blk_free_flush_queue(q->fq);
1093 return -ENOMEM;
1094 }
1095 EXPORT_SYMBOL(blk_init_allocated_queue);
1096
1097 bool blk_get_queue(struct request_queue *q)
1098 {
1099 if (likely(!blk_queue_dying(q))) {
1100 __blk_get_queue(q);
1101 return true;
1102 }
1103
1104 return false;
1105 }
1106 EXPORT_SYMBOL(blk_get_queue);
1107
1108 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1109 {
1110 if (rq->rq_flags & RQF_ELVPRIV) {
1111 elv_put_request(rl->q, rq);
1112 if (rq->elv.icq)
1113 put_io_context(rq->elv.icq->ioc);
1114 }
1115
1116 mempool_free(rq, rl->rq_pool);
1117 }
1118
1119 /*
1120 * ioc_batching returns true if the ioc is a valid batching request and
1121 * should be given priority access to a request.
1122 */
1123 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1124 {
1125 if (!ioc)
1126 return 0;
1127
1128 /*
1129 * Make sure the process is able to allocate at least 1 request
1130 * even if the batch times out, otherwise we could theoretically
1131 * lose wakeups.
1132 */
1133 return ioc->nr_batch_requests == q->nr_batching ||
1134 (ioc->nr_batch_requests > 0
1135 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1136 }
1137
1138 /*
1139 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1140 * will cause the process to be a "batcher" on all queues in the system. This
1141 * is the behaviour we want though - once it gets a wakeup it should be given
1142 * a nice run.
1143 */
1144 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1145 {
1146 if (!ioc || ioc_batching(q, ioc))
1147 return;
1148
1149 ioc->nr_batch_requests = q->nr_batching;
1150 ioc->last_waited = jiffies;
1151 }
1152
1153 static void __freed_request(struct request_list *rl, int sync)
1154 {
1155 struct request_queue *q = rl->q;
1156
1157 if (rl->count[sync] < queue_congestion_off_threshold(q))
1158 blk_clear_congested(rl, sync);
1159
1160 if (rl->count[sync] + 1 <= q->nr_requests) {
1161 if (waitqueue_active(&rl->wait[sync]))
1162 wake_up(&rl->wait[sync]);
1163
1164 blk_clear_rl_full(rl, sync);
1165 }
1166 }
1167
1168 /*
1169 * A request has just been released. Account for it, update the full and
1170 * congestion status, wake up any waiters. Called under q->queue_lock.
1171 */
1172 static void freed_request(struct request_list *rl, bool sync,
1173 req_flags_t rq_flags)
1174 {
1175 struct request_queue *q = rl->q;
1176
1177 q->nr_rqs[sync]--;
1178 rl->count[sync]--;
1179 if (rq_flags & RQF_ELVPRIV)
1180 q->nr_rqs_elvpriv--;
1181
1182 __freed_request(rl, sync);
1183
1184 if (unlikely(rl->starved[sync ^ 1]))
1185 __freed_request(rl, sync ^ 1);
1186 }
1187
1188 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1189 {
1190 struct request_list *rl;
1191 int on_thresh, off_thresh;
1192
1193 WARN_ON_ONCE(q->mq_ops);
1194
1195 spin_lock_irq(q->queue_lock);
1196 q->nr_requests = nr;
1197 blk_queue_congestion_threshold(q);
1198 on_thresh = queue_congestion_on_threshold(q);
1199 off_thresh = queue_congestion_off_threshold(q);
1200
1201 blk_queue_for_each_rl(rl, q) {
1202 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1203 blk_set_congested(rl, BLK_RW_SYNC);
1204 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1205 blk_clear_congested(rl, BLK_RW_SYNC);
1206
1207 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1208 blk_set_congested(rl, BLK_RW_ASYNC);
1209 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1210 blk_clear_congested(rl, BLK_RW_ASYNC);
1211
1212 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1213 blk_set_rl_full(rl, BLK_RW_SYNC);
1214 } else {
1215 blk_clear_rl_full(rl, BLK_RW_SYNC);
1216 wake_up(&rl->wait[BLK_RW_SYNC]);
1217 }
1218
1219 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1220 blk_set_rl_full(rl, BLK_RW_ASYNC);
1221 } else {
1222 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1223 wake_up(&rl->wait[BLK_RW_ASYNC]);
1224 }
1225 }
1226
1227 spin_unlock_irq(q->queue_lock);
1228 return 0;
1229 }
1230
1231 /**
1232 * __get_request - get a free request
1233 * @rl: request list to allocate from
1234 * @op: operation and flags
1235 * @bio: bio to allocate request for (can be %NULL)
1236 * @flags: BLQ_MQ_REQ_* flags
1237 *
1238 * Get a free request from @q. This function may fail under memory
1239 * pressure or if @q is dead.
1240 *
1241 * Must be called with @q->queue_lock held and,
1242 * Returns ERR_PTR on failure, with @q->queue_lock held.
1243 * Returns request pointer on success, with @q->queue_lock *not held*.
1244 */
1245 static struct request *__get_request(struct request_list *rl, unsigned int op,
1246 struct bio *bio, blk_mq_req_flags_t flags)
1247 {
1248 struct request_queue *q = rl->q;
1249 struct request *rq;
1250 struct elevator_type *et = q->elevator->type;
1251 struct io_context *ioc = rq_ioc(bio);
1252 struct io_cq *icq = NULL;
1253 const bool is_sync = op_is_sync(op);
1254 int may_queue;
1255 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1256 __GFP_DIRECT_RECLAIM;
1257 req_flags_t rq_flags = RQF_ALLOCED;
1258
1259 lockdep_assert_held(q->queue_lock);
1260
1261 if (unlikely(blk_queue_dying(q)))
1262 return ERR_PTR(-ENODEV);
1263
1264 may_queue = elv_may_queue(q, op);
1265 if (may_queue == ELV_MQUEUE_NO)
1266 goto rq_starved;
1267
1268 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1269 if (rl->count[is_sync]+1 >= q->nr_requests) {
1270 /*
1271 * The queue will fill after this allocation, so set
1272 * it as full, and mark this process as "batching".
1273 * This process will be allowed to complete a batch of
1274 * requests, others will be blocked.
1275 */
1276 if (!blk_rl_full(rl, is_sync)) {
1277 ioc_set_batching(q, ioc);
1278 blk_set_rl_full(rl, is_sync);
1279 } else {
1280 if (may_queue != ELV_MQUEUE_MUST
1281 && !ioc_batching(q, ioc)) {
1282 /*
1283 * The queue is full and the allocating
1284 * process is not a "batcher", and not
1285 * exempted by the IO scheduler
1286 */
1287 return ERR_PTR(-ENOMEM);
1288 }
1289 }
1290 }
1291 blk_set_congested(rl, is_sync);
1292 }
1293
1294 /*
1295 * Only allow batching queuers to allocate up to 50% over the defined
1296 * limit of requests, otherwise we could have thousands of requests
1297 * allocated with any setting of ->nr_requests
1298 */
1299 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1300 return ERR_PTR(-ENOMEM);
1301
1302 q->nr_rqs[is_sync]++;
1303 rl->count[is_sync]++;
1304 rl->starved[is_sync] = 0;
1305
1306 /*
1307 * Decide whether the new request will be managed by elevator. If
1308 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1309 * prevent the current elevator from being destroyed until the new
1310 * request is freed. This guarantees icq's won't be destroyed and
1311 * makes creating new ones safe.
1312 *
1313 * Flush requests do not use the elevator so skip initialization.
1314 * This allows a request to share the flush and elevator data.
1315 *
1316 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1317 * it will be created after releasing queue_lock.
1318 */
1319 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1320 rq_flags |= RQF_ELVPRIV;
1321 q->nr_rqs_elvpriv++;
1322 if (et->icq_cache && ioc)
1323 icq = ioc_lookup_icq(ioc, q);
1324 }
1325
1326 if (blk_queue_io_stat(q))
1327 rq_flags |= RQF_IO_STAT;
1328 spin_unlock_irq(q->queue_lock);
1329
1330 /* allocate and init request */
1331 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1332 if (!rq)
1333 goto fail_alloc;
1334
1335 blk_rq_init(q, rq);
1336 blk_rq_set_rl(rq, rl);
1337 rq->cmd_flags = op;
1338 rq->rq_flags = rq_flags;
1339 if (flags & BLK_MQ_REQ_PREEMPT)
1340 rq->rq_flags |= RQF_PREEMPT;
1341
1342 /* init elvpriv */
1343 if (rq_flags & RQF_ELVPRIV) {
1344 if (unlikely(et->icq_cache && !icq)) {
1345 if (ioc)
1346 icq = ioc_create_icq(ioc, q, gfp_mask);
1347 if (!icq)
1348 goto fail_elvpriv;
1349 }
1350
1351 rq->elv.icq = icq;
1352 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1353 goto fail_elvpriv;
1354
1355 /* @rq->elv.icq holds io_context until @rq is freed */
1356 if (icq)
1357 get_io_context(icq->ioc);
1358 }
1359 out:
1360 /*
1361 * ioc may be NULL here, and ioc_batching will be false. That's
1362 * OK, if the queue is under the request limit then requests need
1363 * not count toward the nr_batch_requests limit. There will always
1364 * be some limit enforced by BLK_BATCH_TIME.
1365 */
1366 if (ioc_batching(q, ioc))
1367 ioc->nr_batch_requests--;
1368
1369 trace_block_getrq(q, bio, op);
1370 return rq;
1371
1372 fail_elvpriv:
1373 /*
1374 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1375 * and may fail indefinitely under memory pressure and thus
1376 * shouldn't stall IO. Treat this request as !elvpriv. This will
1377 * disturb iosched and blkcg but weird is bettern than dead.
1378 */
1379 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1380 __func__, dev_name(q->backing_dev_info->dev));
1381
1382 rq->rq_flags &= ~RQF_ELVPRIV;
1383 rq->elv.icq = NULL;
1384
1385 spin_lock_irq(q->queue_lock);
1386 q->nr_rqs_elvpriv--;
1387 spin_unlock_irq(q->queue_lock);
1388 goto out;
1389
1390 fail_alloc:
1391 /*
1392 * Allocation failed presumably due to memory. Undo anything we
1393 * might have messed up.
1394 *
1395 * Allocating task should really be put onto the front of the wait
1396 * queue, but this is pretty rare.
1397 */
1398 spin_lock_irq(q->queue_lock);
1399 freed_request(rl, is_sync, rq_flags);
1400
1401 /*
1402 * in the very unlikely event that allocation failed and no
1403 * requests for this direction was pending, mark us starved so that
1404 * freeing of a request in the other direction will notice
1405 * us. another possible fix would be to split the rq mempool into
1406 * READ and WRITE
1407 */
1408 rq_starved:
1409 if (unlikely(rl->count[is_sync] == 0))
1410 rl->starved[is_sync] = 1;
1411 return ERR_PTR(-ENOMEM);
1412 }
1413
1414 /**
1415 * get_request - get a free request
1416 * @q: request_queue to allocate request from
1417 * @op: operation and flags
1418 * @bio: bio to allocate request for (can be %NULL)
1419 * @flags: BLK_MQ_REQ_* flags.
1420 *
1421 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1422 * this function keeps retrying under memory pressure and fails iff @q is dead.
1423 *
1424 * Must be called with @q->queue_lock held and,
1425 * Returns ERR_PTR on failure, with @q->queue_lock held.
1426 * Returns request pointer on success, with @q->queue_lock *not held*.
1427 */
1428 static struct request *get_request(struct request_queue *q, unsigned int op,
1429 struct bio *bio, blk_mq_req_flags_t flags)
1430 {
1431 const bool is_sync = op_is_sync(op);
1432 DEFINE_WAIT(wait);
1433 struct request_list *rl;
1434 struct request *rq;
1435
1436 lockdep_assert_held(q->queue_lock);
1437 WARN_ON_ONCE(q->mq_ops);
1438
1439 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1440 retry:
1441 rq = __get_request(rl, op, bio, flags);
1442 if (!IS_ERR(rq))
1443 return rq;
1444
1445 if (op & REQ_NOWAIT) {
1446 blk_put_rl(rl);
1447 return ERR_PTR(-EAGAIN);
1448 }
1449
1450 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1451 blk_put_rl(rl);
1452 return rq;
1453 }
1454
1455 /* wait on @rl and retry */
1456 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1457 TASK_UNINTERRUPTIBLE);
1458
1459 trace_block_sleeprq(q, bio, op);
1460
1461 spin_unlock_irq(q->queue_lock);
1462 io_schedule();
1463
1464 /*
1465 * After sleeping, we become a "batching" process and will be able
1466 * to allocate at least one request, and up to a big batch of them
1467 * for a small period time. See ioc_batching, ioc_set_batching
1468 */
1469 ioc_set_batching(q, current->io_context);
1470
1471 spin_lock_irq(q->queue_lock);
1472 finish_wait(&rl->wait[is_sync], &wait);
1473
1474 goto retry;
1475 }
1476
1477 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1478 static struct request *blk_old_get_request(struct request_queue *q,
1479 unsigned int op, blk_mq_req_flags_t flags)
1480 {
1481 struct request *rq;
1482 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1483 __GFP_DIRECT_RECLAIM;
1484 int ret = 0;
1485
1486 WARN_ON_ONCE(q->mq_ops);
1487
1488 /* create ioc upfront */
1489 create_io_context(gfp_mask, q->node);
1490
1491 ret = blk_queue_enter(q, flags);
1492 if (ret)
1493 return ERR_PTR(ret);
1494 spin_lock_irq(q->queue_lock);
1495 rq = get_request(q, op, NULL, flags);
1496 if (IS_ERR(rq)) {
1497 spin_unlock_irq(q->queue_lock);
1498 blk_queue_exit(q);
1499 return rq;
1500 }
1501
1502 /* q->queue_lock is unlocked at this point */
1503 rq->__data_len = 0;
1504 rq->__sector = (sector_t) -1;
1505 rq->bio = rq->biotail = NULL;
1506 return rq;
1507 }
1508
1509 /**
1510 * blk_get_request_flags - allocate a request
1511 * @q: request queue to allocate a request for
1512 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1513 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1514 */
1515 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1516 blk_mq_req_flags_t flags)
1517 {
1518 struct request *req;
1519
1520 WARN_ON_ONCE(op & REQ_NOWAIT);
1521 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1522
1523 if (q->mq_ops) {
1524 req = blk_mq_alloc_request(q, op, flags);
1525 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1526 q->mq_ops->initialize_rq_fn(req);
1527 } else {
1528 req = blk_old_get_request(q, op, flags);
1529 if (!IS_ERR(req) && q->initialize_rq_fn)
1530 q->initialize_rq_fn(req);
1531 }
1532
1533 return req;
1534 }
1535 EXPORT_SYMBOL(blk_get_request_flags);
1536
1537 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1538 gfp_t gfp_mask)
1539 {
1540 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1541 0 : BLK_MQ_REQ_NOWAIT);
1542 }
1543 EXPORT_SYMBOL(blk_get_request);
1544
1545 /**
1546 * blk_requeue_request - put a request back on queue
1547 * @q: request queue where request should be inserted
1548 * @rq: request to be inserted
1549 *
1550 * Description:
1551 * Drivers often keep queueing requests until the hardware cannot accept
1552 * more, when that condition happens we need to put the request back
1553 * on the queue. Must be called with queue lock held.
1554 */
1555 void blk_requeue_request(struct request_queue *q, struct request *rq)
1556 {
1557 lockdep_assert_held(q->queue_lock);
1558 WARN_ON_ONCE(q->mq_ops);
1559
1560 blk_delete_timer(rq);
1561 blk_clear_rq_complete(rq);
1562 trace_block_rq_requeue(q, rq);
1563 wbt_requeue(q->rq_wb, &rq->issue_stat);
1564
1565 if (rq->rq_flags & RQF_QUEUED)
1566 blk_queue_end_tag(q, rq);
1567
1568 BUG_ON(blk_queued_rq(rq));
1569
1570 elv_requeue_request(q, rq);
1571 }
1572 EXPORT_SYMBOL(blk_requeue_request);
1573
1574 static void add_acct_request(struct request_queue *q, struct request *rq,
1575 int where)
1576 {
1577 blk_account_io_start(rq, true);
1578 __elv_add_request(q, rq, where);
1579 }
1580
1581 static void part_round_stats_single(struct request_queue *q, int cpu,
1582 struct hd_struct *part, unsigned long now,
1583 unsigned int inflight)
1584 {
1585 if (inflight) {
1586 __part_stat_add(cpu, part, time_in_queue,
1587 inflight * (now - part->stamp));
1588 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1589 }
1590 part->stamp = now;
1591 }
1592
1593 /**
1594 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1595 * @q: target block queue
1596 * @cpu: cpu number for stats access
1597 * @part: target partition
1598 *
1599 * The average IO queue length and utilisation statistics are maintained
1600 * by observing the current state of the queue length and the amount of
1601 * time it has been in this state for.
1602 *
1603 * Normally, that accounting is done on IO completion, but that can result
1604 * in more than a second's worth of IO being accounted for within any one
1605 * second, leading to >100% utilisation. To deal with that, we call this
1606 * function to do a round-off before returning the results when reading
1607 * /proc/diskstats. This accounts immediately for all queue usage up to
1608 * the current jiffies and restarts the counters again.
1609 */
1610 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1611 {
1612 struct hd_struct *part2 = NULL;
1613 unsigned long now = jiffies;
1614 unsigned int inflight[2];
1615 int stats = 0;
1616
1617 if (part->stamp != now)
1618 stats |= 1;
1619
1620 if (part->partno) {
1621 part2 = &part_to_disk(part)->part0;
1622 if (part2->stamp != now)
1623 stats |= 2;
1624 }
1625
1626 if (!stats)
1627 return;
1628
1629 part_in_flight(q, part, inflight);
1630
1631 if (stats & 2)
1632 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1633 if (stats & 1)
1634 part_round_stats_single(q, cpu, part, now, inflight[0]);
1635 }
1636 EXPORT_SYMBOL_GPL(part_round_stats);
1637
1638 #ifdef CONFIG_PM
1639 static void blk_pm_put_request(struct request *rq)
1640 {
1641 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1642 pm_runtime_mark_last_busy(rq->q->dev);
1643 }
1644 #else
1645 static inline void blk_pm_put_request(struct request *rq) {}
1646 #endif
1647
1648 void __blk_put_request(struct request_queue *q, struct request *req)
1649 {
1650 req_flags_t rq_flags = req->rq_flags;
1651
1652 if (unlikely(!q))
1653 return;
1654
1655 if (q->mq_ops) {
1656 blk_mq_free_request(req);
1657 return;
1658 }
1659
1660 lockdep_assert_held(q->queue_lock);
1661
1662 blk_req_zone_write_unlock(req);
1663 blk_pm_put_request(req);
1664
1665 elv_completed_request(q, req);
1666
1667 /* this is a bio leak */
1668 WARN_ON(req->bio != NULL);
1669
1670 wbt_done(q->rq_wb, &req->issue_stat);
1671
1672 /*
1673 * Request may not have originated from ll_rw_blk. if not,
1674 * it didn't come out of our reserved rq pools
1675 */
1676 if (rq_flags & RQF_ALLOCED) {
1677 struct request_list *rl = blk_rq_rl(req);
1678 bool sync = op_is_sync(req->cmd_flags);
1679
1680 BUG_ON(!list_empty(&req->queuelist));
1681 BUG_ON(ELV_ON_HASH(req));
1682
1683 blk_free_request(rl, req);
1684 freed_request(rl, sync, rq_flags);
1685 blk_put_rl(rl);
1686 blk_queue_exit(q);
1687 }
1688 }
1689 EXPORT_SYMBOL_GPL(__blk_put_request);
1690
1691 void blk_put_request(struct request *req)
1692 {
1693 struct request_queue *q = req->q;
1694
1695 if (q->mq_ops)
1696 blk_mq_free_request(req);
1697 else {
1698 unsigned long flags;
1699
1700 spin_lock_irqsave(q->queue_lock, flags);
1701 __blk_put_request(q, req);
1702 spin_unlock_irqrestore(q->queue_lock, flags);
1703 }
1704 }
1705 EXPORT_SYMBOL(blk_put_request);
1706
1707 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1708 struct bio *bio)
1709 {
1710 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1711
1712 if (!ll_back_merge_fn(q, req, bio))
1713 return false;
1714
1715 trace_block_bio_backmerge(q, req, bio);
1716
1717 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1718 blk_rq_set_mixed_merge(req);
1719
1720 req->biotail->bi_next = bio;
1721 req->biotail = bio;
1722 req->__data_len += bio->bi_iter.bi_size;
1723 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1724
1725 blk_account_io_start(req, false);
1726 return true;
1727 }
1728
1729 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1730 struct bio *bio)
1731 {
1732 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1733
1734 if (!ll_front_merge_fn(q, req, bio))
1735 return false;
1736
1737 trace_block_bio_frontmerge(q, req, bio);
1738
1739 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1740 blk_rq_set_mixed_merge(req);
1741
1742 bio->bi_next = req->bio;
1743 req->bio = bio;
1744
1745 req->__sector = bio->bi_iter.bi_sector;
1746 req->__data_len += bio->bi_iter.bi_size;
1747 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1748
1749 blk_account_io_start(req, false);
1750 return true;
1751 }
1752
1753 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1754 struct bio *bio)
1755 {
1756 unsigned short segments = blk_rq_nr_discard_segments(req);
1757
1758 if (segments >= queue_max_discard_segments(q))
1759 goto no_merge;
1760 if (blk_rq_sectors(req) + bio_sectors(bio) >
1761 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1762 goto no_merge;
1763
1764 req->biotail->bi_next = bio;
1765 req->biotail = bio;
1766 req->__data_len += bio->bi_iter.bi_size;
1767 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1768 req->nr_phys_segments = segments + 1;
1769
1770 blk_account_io_start(req, false);
1771 return true;
1772 no_merge:
1773 req_set_nomerge(q, req);
1774 return false;
1775 }
1776
1777 /**
1778 * blk_attempt_plug_merge - try to merge with %current's plugged list
1779 * @q: request_queue new bio is being queued at
1780 * @bio: new bio being queued
1781 * @request_count: out parameter for number of traversed plugged requests
1782 * @same_queue_rq: pointer to &struct request that gets filled in when
1783 * another request associated with @q is found on the plug list
1784 * (optional, may be %NULL)
1785 *
1786 * Determine whether @bio being queued on @q can be merged with a request
1787 * on %current's plugged list. Returns %true if merge was successful,
1788 * otherwise %false.
1789 *
1790 * Plugging coalesces IOs from the same issuer for the same purpose without
1791 * going through @q->queue_lock. As such it's more of an issuing mechanism
1792 * than scheduling, and the request, while may have elvpriv data, is not
1793 * added on the elevator at this point. In addition, we don't have
1794 * reliable access to the elevator outside queue lock. Only check basic
1795 * merging parameters without querying the elevator.
1796 *
1797 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1798 */
1799 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1800 unsigned int *request_count,
1801 struct request **same_queue_rq)
1802 {
1803 struct blk_plug *plug;
1804 struct request *rq;
1805 struct list_head *plug_list;
1806
1807 plug = current->plug;
1808 if (!plug)
1809 return false;
1810 *request_count = 0;
1811
1812 if (q->mq_ops)
1813 plug_list = &plug->mq_list;
1814 else
1815 plug_list = &plug->list;
1816
1817 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1818 bool merged = false;
1819
1820 if (rq->q == q) {
1821 (*request_count)++;
1822 /*
1823 * Only blk-mq multiple hardware queues case checks the
1824 * rq in the same queue, there should be only one such
1825 * rq in a queue
1826 **/
1827 if (same_queue_rq)
1828 *same_queue_rq = rq;
1829 }
1830
1831 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1832 continue;
1833
1834 switch (blk_try_merge(rq, bio)) {
1835 case ELEVATOR_BACK_MERGE:
1836 merged = bio_attempt_back_merge(q, rq, bio);
1837 break;
1838 case ELEVATOR_FRONT_MERGE:
1839 merged = bio_attempt_front_merge(q, rq, bio);
1840 break;
1841 case ELEVATOR_DISCARD_MERGE:
1842 merged = bio_attempt_discard_merge(q, rq, bio);
1843 break;
1844 default:
1845 break;
1846 }
1847
1848 if (merged)
1849 return true;
1850 }
1851
1852 return false;
1853 }
1854
1855 unsigned int blk_plug_queued_count(struct request_queue *q)
1856 {
1857 struct blk_plug *plug;
1858 struct request *rq;
1859 struct list_head *plug_list;
1860 unsigned int ret = 0;
1861
1862 plug = current->plug;
1863 if (!plug)
1864 goto out;
1865
1866 if (q->mq_ops)
1867 plug_list = &plug->mq_list;
1868 else
1869 plug_list = &plug->list;
1870
1871 list_for_each_entry(rq, plug_list, queuelist) {
1872 if (rq->q == q)
1873 ret++;
1874 }
1875 out:
1876 return ret;
1877 }
1878
1879 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1880 {
1881 struct io_context *ioc = rq_ioc(bio);
1882
1883 if (bio->bi_opf & REQ_RAHEAD)
1884 req->cmd_flags |= REQ_FAILFAST_MASK;
1885
1886 req->__sector = bio->bi_iter.bi_sector;
1887 if (ioprio_valid(bio_prio(bio)))
1888 req->ioprio = bio_prio(bio);
1889 else if (ioc)
1890 req->ioprio = ioc->ioprio;
1891 else
1892 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1893 req->write_hint = bio->bi_write_hint;
1894 blk_rq_bio_prep(req->q, req, bio);
1895 }
1896 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1897
1898 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1899 {
1900 struct blk_plug *plug;
1901 int where = ELEVATOR_INSERT_SORT;
1902 struct request *req, *free;
1903 unsigned int request_count = 0;
1904 unsigned int wb_acct;
1905
1906 /*
1907 * low level driver can indicate that it wants pages above a
1908 * certain limit bounced to low memory (ie for highmem, or even
1909 * ISA dma in theory)
1910 */
1911 blk_queue_bounce(q, &bio);
1912
1913 blk_queue_split(q, &bio);
1914
1915 if (!bio_integrity_prep(bio))
1916 return BLK_QC_T_NONE;
1917
1918 if (op_is_flush(bio->bi_opf)) {
1919 spin_lock_irq(q->queue_lock);
1920 where = ELEVATOR_INSERT_FLUSH;
1921 goto get_rq;
1922 }
1923
1924 /*
1925 * Check if we can merge with the plugged list before grabbing
1926 * any locks.
1927 */
1928 if (!blk_queue_nomerges(q)) {
1929 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1930 return BLK_QC_T_NONE;
1931 } else
1932 request_count = blk_plug_queued_count(q);
1933
1934 spin_lock_irq(q->queue_lock);
1935
1936 switch (elv_merge(q, &req, bio)) {
1937 case ELEVATOR_BACK_MERGE:
1938 if (!bio_attempt_back_merge(q, req, bio))
1939 break;
1940 elv_bio_merged(q, req, bio);
1941 free = attempt_back_merge(q, req);
1942 if (free)
1943 __blk_put_request(q, free);
1944 else
1945 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1946 goto out_unlock;
1947 case ELEVATOR_FRONT_MERGE:
1948 if (!bio_attempt_front_merge(q, req, bio))
1949 break;
1950 elv_bio_merged(q, req, bio);
1951 free = attempt_front_merge(q, req);
1952 if (free)
1953 __blk_put_request(q, free);
1954 else
1955 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1956 goto out_unlock;
1957 default:
1958 break;
1959 }
1960
1961 get_rq:
1962 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1963
1964 /*
1965 * Grab a free request. This is might sleep but can not fail.
1966 * Returns with the queue unlocked.
1967 */
1968 blk_queue_enter_live(q);
1969 req = get_request(q, bio->bi_opf, bio, 0);
1970 if (IS_ERR(req)) {
1971 blk_queue_exit(q);
1972 __wbt_done(q->rq_wb, wb_acct);
1973 if (PTR_ERR(req) == -ENOMEM)
1974 bio->bi_status = BLK_STS_RESOURCE;
1975 else
1976 bio->bi_status = BLK_STS_IOERR;
1977 bio_endio(bio);
1978 goto out_unlock;
1979 }
1980
1981 wbt_track(&req->issue_stat, wb_acct);
1982
1983 /*
1984 * After dropping the lock and possibly sleeping here, our request
1985 * may now be mergeable after it had proven unmergeable (above).
1986 * We don't worry about that case for efficiency. It won't happen
1987 * often, and the elevators are able to handle it.
1988 */
1989 blk_init_request_from_bio(req, bio);
1990
1991 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1992 req->cpu = raw_smp_processor_id();
1993
1994 plug = current->plug;
1995 if (plug) {
1996 /*
1997 * If this is the first request added after a plug, fire
1998 * of a plug trace.
1999 *
2000 * @request_count may become stale because of schedule
2001 * out, so check plug list again.
2002 */
2003 if (!request_count || list_empty(&plug->list))
2004 trace_block_plug(q);
2005 else {
2006 struct request *last = list_entry_rq(plug->list.prev);
2007 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2008 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2009 blk_flush_plug_list(plug, false);
2010 trace_block_plug(q);
2011 }
2012 }
2013 list_add_tail(&req->queuelist, &plug->list);
2014 blk_account_io_start(req, true);
2015 } else {
2016 spin_lock_irq(q->queue_lock);
2017 add_acct_request(q, req, where);
2018 __blk_run_queue(q);
2019 out_unlock:
2020 spin_unlock_irq(q->queue_lock);
2021 }
2022
2023 return BLK_QC_T_NONE;
2024 }
2025
2026 static void handle_bad_sector(struct bio *bio)
2027 {
2028 char b[BDEVNAME_SIZE];
2029
2030 printk(KERN_INFO "attempt to access beyond end of device\n");
2031 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2032 bio_devname(bio, b), bio->bi_opf,
2033 (unsigned long long)bio_end_sector(bio),
2034 (long long)get_capacity(bio->bi_disk));
2035 }
2036
2037 #ifdef CONFIG_FAIL_MAKE_REQUEST
2038
2039 static DECLARE_FAULT_ATTR(fail_make_request);
2040
2041 static int __init setup_fail_make_request(char *str)
2042 {
2043 return setup_fault_attr(&fail_make_request, str);
2044 }
2045 __setup("fail_make_request=", setup_fail_make_request);
2046
2047 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2048 {
2049 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2050 }
2051
2052 static int __init fail_make_request_debugfs(void)
2053 {
2054 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2055 NULL, &fail_make_request);
2056
2057 return PTR_ERR_OR_ZERO(dir);
2058 }
2059
2060 late_initcall(fail_make_request_debugfs);
2061
2062 #else /* CONFIG_FAIL_MAKE_REQUEST */
2063
2064 static inline bool should_fail_request(struct hd_struct *part,
2065 unsigned int bytes)
2066 {
2067 return false;
2068 }
2069
2070 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2071
2072 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2073 {
2074 if (part->policy && op_is_write(bio_op(bio))) {
2075 char b[BDEVNAME_SIZE];
2076
2077 printk(KERN_ERR
2078 "generic_make_request: Trying to write "
2079 "to read-only block-device %s (partno %d)\n",
2080 bio_devname(bio, b), part->partno);
2081 return true;
2082 }
2083
2084 return false;
2085 }
2086
2087 static noinline int should_fail_bio(struct bio *bio)
2088 {
2089 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2090 return -EIO;
2091 return 0;
2092 }
2093 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2094
2095 /*
2096 * Remap block n of partition p to block n+start(p) of the disk.
2097 */
2098 static inline int blk_partition_remap(struct bio *bio)
2099 {
2100 struct hd_struct *p;
2101 int ret = 0;
2102
2103 rcu_read_lock();
2104 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2105 if (unlikely(!p || should_fail_request(p, bio->bi_iter.bi_size) ||
2106 bio_check_ro(bio, p))) {
2107 ret = -EIO;
2108 goto out;
2109 }
2110
2111 /*
2112 * Zone reset does not include bi_size so bio_sectors() is always 0.
2113 * Include a test for the reset op code and perform the remap if needed.
2114 */
2115 if (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET)
2116 goto out;
2117
2118 bio->bi_iter.bi_sector += p->start_sect;
2119 bio->bi_partno = 0;
2120 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2121 bio->bi_iter.bi_sector - p->start_sect);
2122
2123 out:
2124 rcu_read_unlock();
2125 return ret;
2126 }
2127
2128 /*
2129 * Check whether this bio extends beyond the end of the device.
2130 */
2131 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2132 {
2133 sector_t maxsector;
2134
2135 if (!nr_sectors)
2136 return 0;
2137
2138 /* Test device or partition size, when known. */
2139 maxsector = get_capacity(bio->bi_disk);
2140 if (maxsector) {
2141 sector_t sector = bio->bi_iter.bi_sector;
2142
2143 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2144 /*
2145 * This may well happen - the kernel calls bread()
2146 * without checking the size of the device, e.g., when
2147 * mounting a device.
2148 */
2149 handle_bad_sector(bio);
2150 return 1;
2151 }
2152 }
2153
2154 return 0;
2155 }
2156
2157 static noinline_for_stack bool
2158 generic_make_request_checks(struct bio *bio)
2159 {
2160 struct request_queue *q;
2161 int nr_sectors = bio_sectors(bio);
2162 blk_status_t status = BLK_STS_IOERR;
2163 char b[BDEVNAME_SIZE];
2164
2165 might_sleep();
2166
2167 if (bio_check_eod(bio, nr_sectors))
2168 goto end_io;
2169
2170 q = bio->bi_disk->queue;
2171 if (unlikely(!q)) {
2172 printk(KERN_ERR
2173 "generic_make_request: Trying to access "
2174 "nonexistent block-device %s (%Lu)\n",
2175 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2176 goto end_io;
2177 }
2178
2179 /*
2180 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2181 * if queue is not a request based queue.
2182 */
2183 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2184 goto not_supported;
2185
2186 if (should_fail_bio(bio))
2187 goto end_io;
2188
2189 if (!bio->bi_partno) {
2190 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2191 goto end_io;
2192 } else {
2193 if (blk_partition_remap(bio))
2194 goto end_io;
2195 }
2196
2197 if (bio_check_eod(bio, nr_sectors))
2198 goto end_io;
2199
2200 /*
2201 * Filter flush bio's early so that make_request based
2202 * drivers without flush support don't have to worry
2203 * about them.
2204 */
2205 if (op_is_flush(bio->bi_opf) &&
2206 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2207 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2208 if (!nr_sectors) {
2209 status = BLK_STS_OK;
2210 goto end_io;
2211 }
2212 }
2213
2214 switch (bio_op(bio)) {
2215 case REQ_OP_DISCARD:
2216 if (!blk_queue_discard(q))
2217 goto not_supported;
2218 break;
2219 case REQ_OP_SECURE_ERASE:
2220 if (!blk_queue_secure_erase(q))
2221 goto not_supported;
2222 break;
2223 case REQ_OP_WRITE_SAME:
2224 if (!q->limits.max_write_same_sectors)
2225 goto not_supported;
2226 break;
2227 case REQ_OP_ZONE_REPORT:
2228 case REQ_OP_ZONE_RESET:
2229 if (!blk_queue_is_zoned(q))
2230 goto not_supported;
2231 break;
2232 case REQ_OP_WRITE_ZEROES:
2233 if (!q->limits.max_write_zeroes_sectors)
2234 goto not_supported;
2235 break;
2236 default:
2237 break;
2238 }
2239
2240 /*
2241 * Various block parts want %current->io_context and lazy ioc
2242 * allocation ends up trading a lot of pain for a small amount of
2243 * memory. Just allocate it upfront. This may fail and block
2244 * layer knows how to live with it.
2245 */
2246 create_io_context(GFP_ATOMIC, q->node);
2247
2248 if (!blkcg_bio_issue_check(q, bio))
2249 return false;
2250
2251 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2252 trace_block_bio_queue(q, bio);
2253 /* Now that enqueuing has been traced, we need to trace
2254 * completion as well.
2255 */
2256 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2257 }
2258 return true;
2259
2260 not_supported:
2261 status = BLK_STS_NOTSUPP;
2262 end_io:
2263 bio->bi_status = status;
2264 bio_endio(bio);
2265 return false;
2266 }
2267
2268 /**
2269 * generic_make_request - hand a buffer to its device driver for I/O
2270 * @bio: The bio describing the location in memory and on the device.
2271 *
2272 * generic_make_request() is used to make I/O requests of block
2273 * devices. It is passed a &struct bio, which describes the I/O that needs
2274 * to be done.
2275 *
2276 * generic_make_request() does not return any status. The
2277 * success/failure status of the request, along with notification of
2278 * completion, is delivered asynchronously through the bio->bi_end_io
2279 * function described (one day) else where.
2280 *
2281 * The caller of generic_make_request must make sure that bi_io_vec
2282 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2283 * set to describe the device address, and the
2284 * bi_end_io and optionally bi_private are set to describe how
2285 * completion notification should be signaled.
2286 *
2287 * generic_make_request and the drivers it calls may use bi_next if this
2288 * bio happens to be merged with someone else, and may resubmit the bio to
2289 * a lower device by calling into generic_make_request recursively, which
2290 * means the bio should NOT be touched after the call to ->make_request_fn.
2291 */
2292 blk_qc_t generic_make_request(struct bio *bio)
2293 {
2294 /*
2295 * bio_list_on_stack[0] contains bios submitted by the current
2296 * make_request_fn.
2297 * bio_list_on_stack[1] contains bios that were submitted before
2298 * the current make_request_fn, but that haven't been processed
2299 * yet.
2300 */
2301 struct bio_list bio_list_on_stack[2];
2302 blk_qc_t ret = BLK_QC_T_NONE;
2303
2304 if (!generic_make_request_checks(bio))
2305 goto out;
2306
2307 /*
2308 * We only want one ->make_request_fn to be active at a time, else
2309 * stack usage with stacked devices could be a problem. So use
2310 * current->bio_list to keep a list of requests submited by a
2311 * make_request_fn function. current->bio_list is also used as a
2312 * flag to say if generic_make_request is currently active in this
2313 * task or not. If it is NULL, then no make_request is active. If
2314 * it is non-NULL, then a make_request is active, and new requests
2315 * should be added at the tail
2316 */
2317 if (current->bio_list) {
2318 bio_list_add(&current->bio_list[0], bio);
2319 goto out;
2320 }
2321
2322 /* following loop may be a bit non-obvious, and so deserves some
2323 * explanation.
2324 * Before entering the loop, bio->bi_next is NULL (as all callers
2325 * ensure that) so we have a list with a single bio.
2326 * We pretend that we have just taken it off a longer list, so
2327 * we assign bio_list to a pointer to the bio_list_on_stack,
2328 * thus initialising the bio_list of new bios to be
2329 * added. ->make_request() may indeed add some more bios
2330 * through a recursive call to generic_make_request. If it
2331 * did, we find a non-NULL value in bio_list and re-enter the loop
2332 * from the top. In this case we really did just take the bio
2333 * of the top of the list (no pretending) and so remove it from
2334 * bio_list, and call into ->make_request() again.
2335 */
2336 BUG_ON(bio->bi_next);
2337 bio_list_init(&bio_list_on_stack[0]);
2338 current->bio_list = bio_list_on_stack;
2339 do {
2340 struct request_queue *q = bio->bi_disk->queue;
2341 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2342 BLK_MQ_REQ_NOWAIT : 0;
2343
2344 if (likely(blk_queue_enter(q, flags) == 0)) {
2345 struct bio_list lower, same;
2346
2347 /* Create a fresh bio_list for all subordinate requests */
2348 bio_list_on_stack[1] = bio_list_on_stack[0];
2349 bio_list_init(&bio_list_on_stack[0]);
2350 ret = q->make_request_fn(q, bio);
2351
2352 blk_queue_exit(q);
2353
2354 /* sort new bios into those for a lower level
2355 * and those for the same level
2356 */
2357 bio_list_init(&lower);
2358 bio_list_init(&same);
2359 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2360 if (q == bio->bi_disk->queue)
2361 bio_list_add(&same, bio);
2362 else
2363 bio_list_add(&lower, bio);
2364 /* now assemble so we handle the lowest level first */
2365 bio_list_merge(&bio_list_on_stack[0], &lower);
2366 bio_list_merge(&bio_list_on_stack[0], &same);
2367 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2368 } else {
2369 if (unlikely(!blk_queue_dying(q) &&
2370 (bio->bi_opf & REQ_NOWAIT)))
2371 bio_wouldblock_error(bio);
2372 else
2373 bio_io_error(bio);
2374 }
2375 bio = bio_list_pop(&bio_list_on_stack[0]);
2376 } while (bio);
2377 current->bio_list = NULL; /* deactivate */
2378
2379 out:
2380 return ret;
2381 }
2382 EXPORT_SYMBOL(generic_make_request);
2383
2384 /**
2385 * direct_make_request - hand a buffer directly to its device driver for I/O
2386 * @bio: The bio describing the location in memory and on the device.
2387 *
2388 * This function behaves like generic_make_request(), but does not protect
2389 * against recursion. Must only be used if the called driver is known
2390 * to not call generic_make_request (or direct_make_request) again from
2391 * its make_request function. (Calling direct_make_request again from
2392 * a workqueue is perfectly fine as that doesn't recurse).
2393 */
2394 blk_qc_t direct_make_request(struct bio *bio)
2395 {
2396 struct request_queue *q = bio->bi_disk->queue;
2397 bool nowait = bio->bi_opf & REQ_NOWAIT;
2398 blk_qc_t ret;
2399
2400 if (!generic_make_request_checks(bio))
2401 return BLK_QC_T_NONE;
2402
2403 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2404 if (nowait && !blk_queue_dying(q))
2405 bio->bi_status = BLK_STS_AGAIN;
2406 else
2407 bio->bi_status = BLK_STS_IOERR;
2408 bio_endio(bio);
2409 return BLK_QC_T_NONE;
2410 }
2411
2412 ret = q->make_request_fn(q, bio);
2413 blk_queue_exit(q);
2414 return ret;
2415 }
2416 EXPORT_SYMBOL_GPL(direct_make_request);
2417
2418 /**
2419 * submit_bio - submit a bio to the block device layer for I/O
2420 * @bio: The &struct bio which describes the I/O
2421 *
2422 * submit_bio() is very similar in purpose to generic_make_request(), and
2423 * uses that function to do most of the work. Both are fairly rough
2424 * interfaces; @bio must be presetup and ready for I/O.
2425 *
2426 */
2427 blk_qc_t submit_bio(struct bio *bio)
2428 {
2429 /*
2430 * If it's a regular read/write or a barrier with data attached,
2431 * go through the normal accounting stuff before submission.
2432 */
2433 if (bio_has_data(bio)) {
2434 unsigned int count;
2435
2436 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2437 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2438 else
2439 count = bio_sectors(bio);
2440
2441 if (op_is_write(bio_op(bio))) {
2442 count_vm_events(PGPGOUT, count);
2443 } else {
2444 task_io_account_read(bio->bi_iter.bi_size);
2445 count_vm_events(PGPGIN, count);
2446 }
2447
2448 if (unlikely(block_dump)) {
2449 char b[BDEVNAME_SIZE];
2450 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2451 current->comm, task_pid_nr(current),
2452 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2453 (unsigned long long)bio->bi_iter.bi_sector,
2454 bio_devname(bio, b), count);
2455 }
2456 }
2457
2458 return generic_make_request(bio);
2459 }
2460 EXPORT_SYMBOL(submit_bio);
2461
2462 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2463 {
2464 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2465 return false;
2466
2467 if (current->plug)
2468 blk_flush_plug_list(current->plug, false);
2469 return q->poll_fn(q, cookie);
2470 }
2471 EXPORT_SYMBOL_GPL(blk_poll);
2472
2473 /**
2474 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2475 * for new the queue limits
2476 * @q: the queue
2477 * @rq: the request being checked
2478 *
2479 * Description:
2480 * @rq may have been made based on weaker limitations of upper-level queues
2481 * in request stacking drivers, and it may violate the limitation of @q.
2482 * Since the block layer and the underlying device driver trust @rq
2483 * after it is inserted to @q, it should be checked against @q before
2484 * the insertion using this generic function.
2485 *
2486 * Request stacking drivers like request-based dm may change the queue
2487 * limits when retrying requests on other queues. Those requests need
2488 * to be checked against the new queue limits again during dispatch.
2489 */
2490 static int blk_cloned_rq_check_limits(struct request_queue *q,
2491 struct request *rq)
2492 {
2493 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2494 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2495 return -EIO;
2496 }
2497
2498 /*
2499 * queue's settings related to segment counting like q->bounce_pfn
2500 * may differ from that of other stacking queues.
2501 * Recalculate it to check the request correctly on this queue's
2502 * limitation.
2503 */
2504 blk_recalc_rq_segments(rq);
2505 if (rq->nr_phys_segments > queue_max_segments(q)) {
2506 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2507 return -EIO;
2508 }
2509
2510 return 0;
2511 }
2512
2513 /**
2514 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2515 * @q: the queue to submit the request
2516 * @rq: the request being queued
2517 */
2518 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2519 {
2520 unsigned long flags;
2521 int where = ELEVATOR_INSERT_BACK;
2522
2523 if (blk_cloned_rq_check_limits(q, rq))
2524 return BLK_STS_IOERR;
2525
2526 if (rq->rq_disk &&
2527 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2528 return BLK_STS_IOERR;
2529
2530 if (q->mq_ops) {
2531 if (blk_queue_io_stat(q))
2532 blk_account_io_start(rq, true);
2533 /*
2534 * Since we have a scheduler attached on the top device,
2535 * bypass a potential scheduler on the bottom device for
2536 * insert.
2537 */
2538 return blk_mq_request_issue_directly(rq);
2539 }
2540
2541 spin_lock_irqsave(q->queue_lock, flags);
2542 if (unlikely(blk_queue_dying(q))) {
2543 spin_unlock_irqrestore(q->queue_lock, flags);
2544 return BLK_STS_IOERR;
2545 }
2546
2547 /*
2548 * Submitting request must be dequeued before calling this function
2549 * because it will be linked to another request_queue
2550 */
2551 BUG_ON(blk_queued_rq(rq));
2552
2553 if (op_is_flush(rq->cmd_flags))
2554 where = ELEVATOR_INSERT_FLUSH;
2555
2556 add_acct_request(q, rq, where);
2557 if (where == ELEVATOR_INSERT_FLUSH)
2558 __blk_run_queue(q);
2559 spin_unlock_irqrestore(q->queue_lock, flags);
2560
2561 return BLK_STS_OK;
2562 }
2563 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2564
2565 /**
2566 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2567 * @rq: request to examine
2568 *
2569 * Description:
2570 * A request could be merge of IOs which require different failure
2571 * handling. This function determines the number of bytes which
2572 * can be failed from the beginning of the request without
2573 * crossing into area which need to be retried further.
2574 *
2575 * Return:
2576 * The number of bytes to fail.
2577 */
2578 unsigned int blk_rq_err_bytes(const struct request *rq)
2579 {
2580 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2581 unsigned int bytes = 0;
2582 struct bio *bio;
2583
2584 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2585 return blk_rq_bytes(rq);
2586
2587 /*
2588 * Currently the only 'mixing' which can happen is between
2589 * different fastfail types. We can safely fail portions
2590 * which have all the failfast bits that the first one has -
2591 * the ones which are at least as eager to fail as the first
2592 * one.
2593 */
2594 for (bio = rq->bio; bio; bio = bio->bi_next) {
2595 if ((bio->bi_opf & ff) != ff)
2596 break;
2597 bytes += bio->bi_iter.bi_size;
2598 }
2599
2600 /* this could lead to infinite loop */
2601 BUG_ON(blk_rq_bytes(rq) && !bytes);
2602 return bytes;
2603 }
2604 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2605
2606 void blk_account_io_completion(struct request *req, unsigned int bytes)
2607 {
2608 if (blk_do_io_stat(req)) {
2609 const int rw = rq_data_dir(req);
2610 struct hd_struct *part;
2611 int cpu;
2612
2613 cpu = part_stat_lock();
2614 part = req->part;
2615 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2616 part_stat_unlock();
2617 }
2618 }
2619
2620 void blk_account_io_done(struct request *req)
2621 {
2622 /*
2623 * Account IO completion. flush_rq isn't accounted as a
2624 * normal IO on queueing nor completion. Accounting the
2625 * containing request is enough.
2626 */
2627 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2628 unsigned long duration = jiffies - req->start_time;
2629 const int rw = rq_data_dir(req);
2630 struct hd_struct *part;
2631 int cpu;
2632
2633 cpu = part_stat_lock();
2634 part = req->part;
2635
2636 part_stat_inc(cpu, part, ios[rw]);
2637 part_stat_add(cpu, part, ticks[rw], duration);
2638 part_round_stats(req->q, cpu, part);
2639 part_dec_in_flight(req->q, part, rw);
2640
2641 hd_struct_put(part);
2642 part_stat_unlock();
2643 }
2644 }
2645
2646 #ifdef CONFIG_PM
2647 /*
2648 * Don't process normal requests when queue is suspended
2649 * or in the process of suspending/resuming
2650 */
2651 static bool blk_pm_allow_request(struct request *rq)
2652 {
2653 switch (rq->q->rpm_status) {
2654 case RPM_RESUMING:
2655 case RPM_SUSPENDING:
2656 return rq->rq_flags & RQF_PM;
2657 case RPM_SUSPENDED:
2658 return false;
2659 }
2660
2661 return true;
2662 }
2663 #else
2664 static bool blk_pm_allow_request(struct request *rq)
2665 {
2666 return true;
2667 }
2668 #endif
2669
2670 void blk_account_io_start(struct request *rq, bool new_io)
2671 {
2672 struct hd_struct *part;
2673 int rw = rq_data_dir(rq);
2674 int cpu;
2675
2676 if (!blk_do_io_stat(rq))
2677 return;
2678
2679 cpu = part_stat_lock();
2680
2681 if (!new_io) {
2682 part = rq->part;
2683 part_stat_inc(cpu, part, merges[rw]);
2684 } else {
2685 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2686 if (!hd_struct_try_get(part)) {
2687 /*
2688 * The partition is already being removed,
2689 * the request will be accounted on the disk only
2690 *
2691 * We take a reference on disk->part0 although that
2692 * partition will never be deleted, so we can treat
2693 * it as any other partition.
2694 */
2695 part = &rq->rq_disk->part0;
2696 hd_struct_get(part);
2697 }
2698 part_round_stats(rq->q, cpu, part);
2699 part_inc_in_flight(rq->q, part, rw);
2700 rq->part = part;
2701 }
2702
2703 part_stat_unlock();
2704 }
2705
2706 static struct request *elv_next_request(struct request_queue *q)
2707 {
2708 struct request *rq;
2709 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2710
2711 WARN_ON_ONCE(q->mq_ops);
2712
2713 while (1) {
2714 list_for_each_entry(rq, &q->queue_head, queuelist) {
2715 if (blk_pm_allow_request(rq))
2716 return rq;
2717
2718 if (rq->rq_flags & RQF_SOFTBARRIER)
2719 break;
2720 }
2721
2722 /*
2723 * Flush request is running and flush request isn't queueable
2724 * in the drive, we can hold the queue till flush request is
2725 * finished. Even we don't do this, driver can't dispatch next
2726 * requests and will requeue them. And this can improve
2727 * throughput too. For example, we have request flush1, write1,
2728 * flush 2. flush1 is dispatched, then queue is hold, write1
2729 * isn't inserted to queue. After flush1 is finished, flush2
2730 * will be dispatched. Since disk cache is already clean,
2731 * flush2 will be finished very soon, so looks like flush2 is
2732 * folded to flush1.
2733 * Since the queue is hold, a flag is set to indicate the queue
2734 * should be restarted later. Please see flush_end_io() for
2735 * details.
2736 */
2737 if (fq->flush_pending_idx != fq->flush_running_idx &&
2738 !queue_flush_queueable(q)) {
2739 fq->flush_queue_delayed = 1;
2740 return NULL;
2741 }
2742 if (unlikely(blk_queue_bypass(q)) ||
2743 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2744 return NULL;
2745 }
2746 }
2747
2748 /**
2749 * blk_peek_request - peek at the top of a request queue
2750 * @q: request queue to peek at
2751 *
2752 * Description:
2753 * Return the request at the top of @q. The returned request
2754 * should be started using blk_start_request() before LLD starts
2755 * processing it.
2756 *
2757 * Return:
2758 * Pointer to the request at the top of @q if available. Null
2759 * otherwise.
2760 */
2761 struct request *blk_peek_request(struct request_queue *q)
2762 {
2763 struct request *rq;
2764 int ret;
2765
2766 lockdep_assert_held(q->queue_lock);
2767 WARN_ON_ONCE(q->mq_ops);
2768
2769 while ((rq = elv_next_request(q)) != NULL) {
2770 if (!(rq->rq_flags & RQF_STARTED)) {
2771 /*
2772 * This is the first time the device driver
2773 * sees this request (possibly after
2774 * requeueing). Notify IO scheduler.
2775 */
2776 if (rq->rq_flags & RQF_SORTED)
2777 elv_activate_rq(q, rq);
2778
2779 /*
2780 * just mark as started even if we don't start
2781 * it, a request that has been delayed should
2782 * not be passed by new incoming requests
2783 */
2784 rq->rq_flags |= RQF_STARTED;
2785 trace_block_rq_issue(q, rq);
2786 }
2787
2788 if (!q->boundary_rq || q->boundary_rq == rq) {
2789 q->end_sector = rq_end_sector(rq);
2790 q->boundary_rq = NULL;
2791 }
2792
2793 if (rq->rq_flags & RQF_DONTPREP)
2794 break;
2795
2796 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2797 /*
2798 * make sure space for the drain appears we
2799 * know we can do this because max_hw_segments
2800 * has been adjusted to be one fewer than the
2801 * device can handle
2802 */
2803 rq->nr_phys_segments++;
2804 }
2805
2806 if (!q->prep_rq_fn)
2807 break;
2808
2809 ret = q->prep_rq_fn(q, rq);
2810 if (ret == BLKPREP_OK) {
2811 break;
2812 } else if (ret == BLKPREP_DEFER) {
2813 /*
2814 * the request may have been (partially) prepped.
2815 * we need to keep this request in the front to
2816 * avoid resource deadlock. RQF_STARTED will
2817 * prevent other fs requests from passing this one.
2818 */
2819 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2820 !(rq->rq_flags & RQF_DONTPREP)) {
2821 /*
2822 * remove the space for the drain we added
2823 * so that we don't add it again
2824 */
2825 --rq->nr_phys_segments;
2826 }
2827
2828 rq = NULL;
2829 break;
2830 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2831 rq->rq_flags |= RQF_QUIET;
2832 /*
2833 * Mark this request as started so we don't trigger
2834 * any debug logic in the end I/O path.
2835 */
2836 blk_start_request(rq);
2837 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2838 BLK_STS_TARGET : BLK_STS_IOERR);
2839 } else {
2840 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2841 break;
2842 }
2843 }
2844
2845 return rq;
2846 }
2847 EXPORT_SYMBOL(blk_peek_request);
2848
2849 static void blk_dequeue_request(struct request *rq)
2850 {
2851 struct request_queue *q = rq->q;
2852
2853 BUG_ON(list_empty(&rq->queuelist));
2854 BUG_ON(ELV_ON_HASH(rq));
2855
2856 list_del_init(&rq->queuelist);
2857
2858 /*
2859 * the time frame between a request being removed from the lists
2860 * and to it is freed is accounted as io that is in progress at
2861 * the driver side.
2862 */
2863 if (blk_account_rq(rq)) {
2864 q->in_flight[rq_is_sync(rq)]++;
2865 set_io_start_time_ns(rq);
2866 }
2867 }
2868
2869 /**
2870 * blk_start_request - start request processing on the driver
2871 * @req: request to dequeue
2872 *
2873 * Description:
2874 * Dequeue @req and start timeout timer on it. This hands off the
2875 * request to the driver.
2876 */
2877 void blk_start_request(struct request *req)
2878 {
2879 lockdep_assert_held(req->q->queue_lock);
2880 WARN_ON_ONCE(req->q->mq_ops);
2881
2882 blk_dequeue_request(req);
2883
2884 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2885 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2886 req->rq_flags |= RQF_STATS;
2887 wbt_issue(req->q->rq_wb, &req->issue_stat);
2888 }
2889
2890 BUG_ON(blk_rq_is_complete(req));
2891 blk_add_timer(req);
2892 }
2893 EXPORT_SYMBOL(blk_start_request);
2894
2895 /**
2896 * blk_fetch_request - fetch a request from a request queue
2897 * @q: request queue to fetch a request from
2898 *
2899 * Description:
2900 * Return the request at the top of @q. The request is started on
2901 * return and LLD can start processing it immediately.
2902 *
2903 * Return:
2904 * Pointer to the request at the top of @q if available. Null
2905 * otherwise.
2906 */
2907 struct request *blk_fetch_request(struct request_queue *q)
2908 {
2909 struct request *rq;
2910
2911 lockdep_assert_held(q->queue_lock);
2912 WARN_ON_ONCE(q->mq_ops);
2913
2914 rq = blk_peek_request(q);
2915 if (rq)
2916 blk_start_request(rq);
2917 return rq;
2918 }
2919 EXPORT_SYMBOL(blk_fetch_request);
2920
2921 /*
2922 * Steal bios from a request and add them to a bio list.
2923 * The request must not have been partially completed before.
2924 */
2925 void blk_steal_bios(struct bio_list *list, struct request *rq)
2926 {
2927 if (rq->bio) {
2928 if (list->tail)
2929 list->tail->bi_next = rq->bio;
2930 else
2931 list->head = rq->bio;
2932 list->tail = rq->biotail;
2933
2934 rq->bio = NULL;
2935 rq->biotail = NULL;
2936 }
2937
2938 rq->__data_len = 0;
2939 }
2940 EXPORT_SYMBOL_GPL(blk_steal_bios);
2941
2942 /**
2943 * blk_update_request - Special helper function for request stacking drivers
2944 * @req: the request being processed
2945 * @error: block status code
2946 * @nr_bytes: number of bytes to complete @req
2947 *
2948 * Description:
2949 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2950 * the request structure even if @req doesn't have leftover.
2951 * If @req has leftover, sets it up for the next range of segments.
2952 *
2953 * This special helper function is only for request stacking drivers
2954 * (e.g. request-based dm) so that they can handle partial completion.
2955 * Actual device drivers should use blk_end_request instead.
2956 *
2957 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2958 * %false return from this function.
2959 *
2960 * Return:
2961 * %false - this request doesn't have any more data
2962 * %true - this request has more data
2963 **/
2964 bool blk_update_request(struct request *req, blk_status_t error,
2965 unsigned int nr_bytes)
2966 {
2967 int total_bytes;
2968
2969 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2970
2971 if (!req->bio)
2972 return false;
2973
2974 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2975 !(req->rq_flags & RQF_QUIET)))
2976 print_req_error(req, error);
2977
2978 blk_account_io_completion(req, nr_bytes);
2979
2980 total_bytes = 0;
2981 while (req->bio) {
2982 struct bio *bio = req->bio;
2983 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2984
2985 if (bio_bytes == bio->bi_iter.bi_size)
2986 req->bio = bio->bi_next;
2987
2988 /* Completion has already been traced */
2989 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2990 req_bio_endio(req, bio, bio_bytes, error);
2991
2992 total_bytes += bio_bytes;
2993 nr_bytes -= bio_bytes;
2994
2995 if (!nr_bytes)
2996 break;
2997 }
2998
2999 /*
3000 * completely done
3001 */
3002 if (!req->bio) {
3003 /*
3004 * Reset counters so that the request stacking driver
3005 * can find how many bytes remain in the request
3006 * later.
3007 */
3008 req->__data_len = 0;
3009 return false;
3010 }
3011
3012 req->__data_len -= total_bytes;
3013
3014 /* update sector only for requests with clear definition of sector */
3015 if (!blk_rq_is_passthrough(req))
3016 req->__sector += total_bytes >> 9;
3017
3018 /* mixed attributes always follow the first bio */
3019 if (req->rq_flags & RQF_MIXED_MERGE) {
3020 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3021 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3022 }
3023
3024 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3025 /*
3026 * If total number of sectors is less than the first segment
3027 * size, something has gone terribly wrong.
3028 */
3029 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3030 blk_dump_rq_flags(req, "request botched");
3031 req->__data_len = blk_rq_cur_bytes(req);
3032 }
3033
3034 /* recalculate the number of segments */
3035 blk_recalc_rq_segments(req);
3036 }
3037
3038 return true;
3039 }
3040 EXPORT_SYMBOL_GPL(blk_update_request);
3041
3042 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3043 unsigned int nr_bytes,
3044 unsigned int bidi_bytes)
3045 {
3046 if (blk_update_request(rq, error, nr_bytes))
3047 return true;
3048
3049 /* Bidi request must be completed as a whole */
3050 if (unlikely(blk_bidi_rq(rq)) &&
3051 blk_update_request(rq->next_rq, error, bidi_bytes))
3052 return true;
3053
3054 if (blk_queue_add_random(rq->q))
3055 add_disk_randomness(rq->rq_disk);
3056
3057 return false;
3058 }
3059
3060 /**
3061 * blk_unprep_request - unprepare a request
3062 * @req: the request
3063 *
3064 * This function makes a request ready for complete resubmission (or
3065 * completion). It happens only after all error handling is complete,
3066 * so represents the appropriate moment to deallocate any resources
3067 * that were allocated to the request in the prep_rq_fn. The queue
3068 * lock is held when calling this.
3069 */
3070 void blk_unprep_request(struct request *req)
3071 {
3072 struct request_queue *q = req->q;
3073
3074 req->rq_flags &= ~RQF_DONTPREP;
3075 if (q->unprep_rq_fn)
3076 q->unprep_rq_fn(q, req);
3077 }
3078 EXPORT_SYMBOL_GPL(blk_unprep_request);
3079
3080 void blk_finish_request(struct request *req, blk_status_t error)
3081 {
3082 struct request_queue *q = req->q;
3083
3084 lockdep_assert_held(req->q->queue_lock);
3085 WARN_ON_ONCE(q->mq_ops);
3086
3087 if (req->rq_flags & RQF_STATS)
3088 blk_stat_add(req);
3089
3090 if (req->rq_flags & RQF_QUEUED)
3091 blk_queue_end_tag(q, req);
3092
3093 BUG_ON(blk_queued_rq(req));
3094
3095 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3096 laptop_io_completion(req->q->backing_dev_info);
3097
3098 blk_delete_timer(req);
3099
3100 if (req->rq_flags & RQF_DONTPREP)
3101 blk_unprep_request(req);
3102
3103 blk_account_io_done(req);
3104
3105 if (req->end_io) {
3106 wbt_done(req->q->rq_wb, &req->issue_stat);
3107 req->end_io(req, error);
3108 } else {
3109 if (blk_bidi_rq(req))
3110 __blk_put_request(req->next_rq->q, req->next_rq);
3111
3112 __blk_put_request(q, req);
3113 }
3114 }
3115 EXPORT_SYMBOL(blk_finish_request);
3116
3117 /**
3118 * blk_end_bidi_request - Complete a bidi request
3119 * @rq: the request to complete
3120 * @error: block status code
3121 * @nr_bytes: number of bytes to complete @rq
3122 * @bidi_bytes: number of bytes to complete @rq->next_rq
3123 *
3124 * Description:
3125 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3126 * Drivers that supports bidi can safely call this member for any
3127 * type of request, bidi or uni. In the later case @bidi_bytes is
3128 * just ignored.
3129 *
3130 * Return:
3131 * %false - we are done with this request
3132 * %true - still buffers pending for this request
3133 **/
3134 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3135 unsigned int nr_bytes, unsigned int bidi_bytes)
3136 {
3137 struct request_queue *q = rq->q;
3138 unsigned long flags;
3139
3140 WARN_ON_ONCE(q->mq_ops);
3141
3142 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3143 return true;
3144
3145 spin_lock_irqsave(q->queue_lock, flags);
3146 blk_finish_request(rq, error);
3147 spin_unlock_irqrestore(q->queue_lock, flags);
3148
3149 return false;
3150 }
3151
3152 /**
3153 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3154 * @rq: the request to complete
3155 * @error: block status code
3156 * @nr_bytes: number of bytes to complete @rq
3157 * @bidi_bytes: number of bytes to complete @rq->next_rq
3158 *
3159 * Description:
3160 * Identical to blk_end_bidi_request() except that queue lock is
3161 * assumed to be locked on entry and remains so on return.
3162 *
3163 * Return:
3164 * %false - we are done with this request
3165 * %true - still buffers pending for this request
3166 **/
3167 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3168 unsigned int nr_bytes, unsigned int bidi_bytes)
3169 {
3170 lockdep_assert_held(rq->q->queue_lock);
3171 WARN_ON_ONCE(rq->q->mq_ops);
3172
3173 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3174 return true;
3175
3176 blk_finish_request(rq, error);
3177
3178 return false;
3179 }
3180
3181 /**
3182 * blk_end_request - Helper function for drivers to complete the request.
3183 * @rq: the request being processed
3184 * @error: block status code
3185 * @nr_bytes: number of bytes to complete
3186 *
3187 * Description:
3188 * Ends I/O on a number of bytes attached to @rq.
3189 * If @rq has leftover, sets it up for the next range of segments.
3190 *
3191 * Return:
3192 * %false - we are done with this request
3193 * %true - still buffers pending for this request
3194 **/
3195 bool blk_end_request(struct request *rq, blk_status_t error,
3196 unsigned int nr_bytes)
3197 {
3198 WARN_ON_ONCE(rq->q->mq_ops);
3199 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3200 }
3201 EXPORT_SYMBOL(blk_end_request);
3202
3203 /**
3204 * blk_end_request_all - Helper function for drives to finish the request.
3205 * @rq: the request to finish
3206 * @error: block status code
3207 *
3208 * Description:
3209 * Completely finish @rq.
3210 */
3211 void blk_end_request_all(struct request *rq, blk_status_t error)
3212 {
3213 bool pending;
3214 unsigned int bidi_bytes = 0;
3215
3216 if (unlikely(blk_bidi_rq(rq)))
3217 bidi_bytes = blk_rq_bytes(rq->next_rq);
3218
3219 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3220 BUG_ON(pending);
3221 }
3222 EXPORT_SYMBOL(blk_end_request_all);
3223
3224 /**
3225 * __blk_end_request - Helper function for drivers to complete the request.
3226 * @rq: the request being processed
3227 * @error: block status code
3228 * @nr_bytes: number of bytes to complete
3229 *
3230 * Description:
3231 * Must be called with queue lock held unlike blk_end_request().
3232 *
3233 * Return:
3234 * %false - we are done with this request
3235 * %true - still buffers pending for this request
3236 **/
3237 bool __blk_end_request(struct request *rq, blk_status_t error,
3238 unsigned int nr_bytes)
3239 {
3240 lockdep_assert_held(rq->q->queue_lock);
3241 WARN_ON_ONCE(rq->q->mq_ops);
3242
3243 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3244 }
3245 EXPORT_SYMBOL(__blk_end_request);
3246
3247 /**
3248 * __blk_end_request_all - Helper function for drives to finish the request.
3249 * @rq: the request to finish
3250 * @error: block status code
3251 *
3252 * Description:
3253 * Completely finish @rq. Must be called with queue lock held.
3254 */
3255 void __blk_end_request_all(struct request *rq, blk_status_t error)
3256 {
3257 bool pending;
3258 unsigned int bidi_bytes = 0;
3259
3260 lockdep_assert_held(rq->q->queue_lock);
3261 WARN_ON_ONCE(rq->q->mq_ops);
3262
3263 if (unlikely(blk_bidi_rq(rq)))
3264 bidi_bytes = blk_rq_bytes(rq->next_rq);
3265
3266 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3267 BUG_ON(pending);
3268 }
3269 EXPORT_SYMBOL(__blk_end_request_all);
3270
3271 /**
3272 * __blk_end_request_cur - Helper function to finish the current request chunk.
3273 * @rq: the request to finish the current chunk for
3274 * @error: block status code
3275 *
3276 * Description:
3277 * Complete the current consecutively mapped chunk from @rq. Must
3278 * be called with queue lock held.
3279 *
3280 * Return:
3281 * %false - we are done with this request
3282 * %true - still buffers pending for this request
3283 */
3284 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3285 {
3286 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3287 }
3288 EXPORT_SYMBOL(__blk_end_request_cur);
3289
3290 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3291 struct bio *bio)
3292 {
3293 if (bio_has_data(bio))
3294 rq->nr_phys_segments = bio_phys_segments(q, bio);
3295 else if (bio_op(bio) == REQ_OP_DISCARD)
3296 rq->nr_phys_segments = 1;
3297
3298 rq->__data_len = bio->bi_iter.bi_size;
3299 rq->bio = rq->biotail = bio;
3300
3301 if (bio->bi_disk)
3302 rq->rq_disk = bio->bi_disk;
3303 }
3304
3305 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3306 /**
3307 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3308 * @rq: the request to be flushed
3309 *
3310 * Description:
3311 * Flush all pages in @rq.
3312 */
3313 void rq_flush_dcache_pages(struct request *rq)
3314 {
3315 struct req_iterator iter;
3316 struct bio_vec bvec;
3317
3318 rq_for_each_segment(bvec, rq, iter)
3319 flush_dcache_page(bvec.bv_page);
3320 }
3321 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3322 #endif
3323
3324 /**
3325 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3326 * @q : the queue of the device being checked
3327 *
3328 * Description:
3329 * Check if underlying low-level drivers of a device are busy.
3330 * If the drivers want to export their busy state, they must set own
3331 * exporting function using blk_queue_lld_busy() first.
3332 *
3333 * Basically, this function is used only by request stacking drivers
3334 * to stop dispatching requests to underlying devices when underlying
3335 * devices are busy. This behavior helps more I/O merging on the queue
3336 * of the request stacking driver and prevents I/O throughput regression
3337 * on burst I/O load.
3338 *
3339 * Return:
3340 * 0 - Not busy (The request stacking driver should dispatch request)
3341 * 1 - Busy (The request stacking driver should stop dispatching request)
3342 */
3343 int blk_lld_busy(struct request_queue *q)
3344 {
3345 if (q->lld_busy_fn)
3346 return q->lld_busy_fn(q);
3347
3348 return 0;
3349 }
3350 EXPORT_SYMBOL_GPL(blk_lld_busy);
3351
3352 /**
3353 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3354 * @rq: the clone request to be cleaned up
3355 *
3356 * Description:
3357 * Free all bios in @rq for a cloned request.
3358 */
3359 void blk_rq_unprep_clone(struct request *rq)
3360 {
3361 struct bio *bio;
3362
3363 while ((bio = rq->bio) != NULL) {
3364 rq->bio = bio->bi_next;
3365
3366 bio_put(bio);
3367 }
3368 }
3369 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3370
3371 /*
3372 * Copy attributes of the original request to the clone request.
3373 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3374 */
3375 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3376 {
3377 dst->cpu = src->cpu;
3378 dst->__sector = blk_rq_pos(src);
3379 dst->__data_len = blk_rq_bytes(src);
3380 dst->nr_phys_segments = src->nr_phys_segments;
3381 dst->ioprio = src->ioprio;
3382 dst->extra_len = src->extra_len;
3383 }
3384
3385 /**
3386 * blk_rq_prep_clone - Helper function to setup clone request
3387 * @rq: the request to be setup
3388 * @rq_src: original request to be cloned
3389 * @bs: bio_set that bios for clone are allocated from
3390 * @gfp_mask: memory allocation mask for bio
3391 * @bio_ctr: setup function to be called for each clone bio.
3392 * Returns %0 for success, non %0 for failure.
3393 * @data: private data to be passed to @bio_ctr
3394 *
3395 * Description:
3396 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3397 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3398 * are not copied, and copying such parts is the caller's responsibility.
3399 * Also, pages which the original bios are pointing to are not copied
3400 * and the cloned bios just point same pages.
3401 * So cloned bios must be completed before original bios, which means
3402 * the caller must complete @rq before @rq_src.
3403 */
3404 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3405 struct bio_set *bs, gfp_t gfp_mask,
3406 int (*bio_ctr)(struct bio *, struct bio *, void *),
3407 void *data)
3408 {
3409 struct bio *bio, *bio_src;
3410
3411 if (!bs)
3412 bs = fs_bio_set;
3413
3414 __rq_for_each_bio(bio_src, rq_src) {
3415 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3416 if (!bio)
3417 goto free_and_out;
3418
3419 if (bio_ctr && bio_ctr(bio, bio_src, data))
3420 goto free_and_out;
3421
3422 if (rq->bio) {
3423 rq->biotail->bi_next = bio;
3424 rq->biotail = bio;
3425 } else
3426 rq->bio = rq->biotail = bio;
3427 }
3428
3429 __blk_rq_prep_clone(rq, rq_src);
3430
3431 return 0;
3432
3433 free_and_out:
3434 if (bio)
3435 bio_put(bio);
3436 blk_rq_unprep_clone(rq);
3437
3438 return -ENOMEM;
3439 }
3440 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3441
3442 int kblockd_schedule_work(struct work_struct *work)
3443 {
3444 return queue_work(kblockd_workqueue, work);
3445 }
3446 EXPORT_SYMBOL(kblockd_schedule_work);
3447
3448 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3449 {
3450 return queue_work_on(cpu, kblockd_workqueue, work);
3451 }
3452 EXPORT_SYMBOL(kblockd_schedule_work_on);
3453
3454 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3455 unsigned long delay)
3456 {
3457 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3458 }
3459 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3460
3461 /**
3462 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3463 * @plug: The &struct blk_plug that needs to be initialized
3464 *
3465 * Description:
3466 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3467 * pending I/O should the task end up blocking between blk_start_plug() and
3468 * blk_finish_plug(). This is important from a performance perspective, but
3469 * also ensures that we don't deadlock. For instance, if the task is blocking
3470 * for a memory allocation, memory reclaim could end up wanting to free a
3471 * page belonging to that request that is currently residing in our private
3472 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3473 * this kind of deadlock.
3474 */
3475 void blk_start_plug(struct blk_plug *plug)
3476 {
3477 struct task_struct *tsk = current;
3478
3479 /*
3480 * If this is a nested plug, don't actually assign it.
3481 */
3482 if (tsk->plug)
3483 return;
3484
3485 INIT_LIST_HEAD(&plug->list);
3486 INIT_LIST_HEAD(&plug->mq_list);
3487 INIT_LIST_HEAD(&plug->cb_list);
3488 /*
3489 * Store ordering should not be needed here, since a potential
3490 * preempt will imply a full memory barrier
3491 */
3492 tsk->plug = plug;
3493 }
3494 EXPORT_SYMBOL(blk_start_plug);
3495
3496 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3497 {
3498 struct request *rqa = container_of(a, struct request, queuelist);
3499 struct request *rqb = container_of(b, struct request, queuelist);
3500
3501 return !(rqa->q < rqb->q ||
3502 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3503 }
3504
3505 /*
3506 * If 'from_schedule' is true, then postpone the dispatch of requests
3507 * until a safe kblockd context. We due this to avoid accidental big
3508 * additional stack usage in driver dispatch, in places where the originally
3509 * plugger did not intend it.
3510 */
3511 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3512 bool from_schedule)
3513 __releases(q->queue_lock)
3514 {
3515 lockdep_assert_held(q->queue_lock);
3516
3517 trace_block_unplug(q, depth, !from_schedule);
3518
3519 if (from_schedule)
3520 blk_run_queue_async(q);
3521 else
3522 __blk_run_queue(q);
3523 spin_unlock(q->queue_lock);
3524 }
3525
3526 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3527 {
3528 LIST_HEAD(callbacks);
3529
3530 while (!list_empty(&plug->cb_list)) {
3531 list_splice_init(&plug->cb_list, &callbacks);
3532
3533 while (!list_empty(&callbacks)) {
3534 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3535 struct blk_plug_cb,
3536 list);
3537 list_del(&cb->list);
3538 cb->callback(cb, from_schedule);
3539 }
3540 }
3541 }
3542
3543 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3544 int size)
3545 {
3546 struct blk_plug *plug = current->plug;
3547 struct blk_plug_cb *cb;
3548
3549 if (!plug)
3550 return NULL;
3551
3552 list_for_each_entry(cb, &plug->cb_list, list)
3553 if (cb->callback == unplug && cb->data == data)
3554 return cb;
3555
3556 /* Not currently on the callback list */
3557 BUG_ON(size < sizeof(*cb));
3558 cb = kzalloc(size, GFP_ATOMIC);
3559 if (cb) {
3560 cb->data = data;
3561 cb->callback = unplug;
3562 list_add(&cb->list, &plug->cb_list);
3563 }
3564 return cb;
3565 }
3566 EXPORT_SYMBOL(blk_check_plugged);
3567
3568 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3569 {
3570 struct request_queue *q;
3571 unsigned long flags;
3572 struct request *rq;
3573 LIST_HEAD(list);
3574 unsigned int depth;
3575
3576 flush_plug_callbacks(plug, from_schedule);
3577
3578 if (!list_empty(&plug->mq_list))
3579 blk_mq_flush_plug_list(plug, from_schedule);
3580
3581 if (list_empty(&plug->list))
3582 return;
3583
3584 list_splice_init(&plug->list, &list);
3585
3586 list_sort(NULL, &list, plug_rq_cmp);
3587
3588 q = NULL;
3589 depth = 0;
3590
3591 /*
3592 * Save and disable interrupts here, to avoid doing it for every
3593 * queue lock we have to take.
3594 */
3595 local_irq_save(flags);
3596 while (!list_empty(&list)) {
3597 rq = list_entry_rq(list.next);
3598 list_del_init(&rq->queuelist);
3599 BUG_ON(!rq->q);
3600 if (rq->q != q) {
3601 /*
3602 * This drops the queue lock
3603 */
3604 if (q)
3605 queue_unplugged(q, depth, from_schedule);
3606 q = rq->q;
3607 depth = 0;
3608 spin_lock(q->queue_lock);
3609 }
3610
3611 /*
3612 * Short-circuit if @q is dead
3613 */
3614 if (unlikely(blk_queue_dying(q))) {
3615 __blk_end_request_all(rq, BLK_STS_IOERR);
3616 continue;
3617 }
3618
3619 /*
3620 * rq is already accounted, so use raw insert
3621 */
3622 if (op_is_flush(rq->cmd_flags))
3623 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3624 else
3625 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3626
3627 depth++;
3628 }
3629
3630 /*
3631 * This drops the queue lock
3632 */
3633 if (q)
3634 queue_unplugged(q, depth, from_schedule);
3635
3636 local_irq_restore(flags);
3637 }
3638
3639 void blk_finish_plug(struct blk_plug *plug)
3640 {
3641 if (plug != current->plug)
3642 return;
3643 blk_flush_plug_list(plug, false);
3644
3645 current->plug = NULL;
3646 }
3647 EXPORT_SYMBOL(blk_finish_plug);
3648
3649 #ifdef CONFIG_PM
3650 /**
3651 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3652 * @q: the queue of the device
3653 * @dev: the device the queue belongs to
3654 *
3655 * Description:
3656 * Initialize runtime-PM-related fields for @q and start auto suspend for
3657 * @dev. Drivers that want to take advantage of request-based runtime PM
3658 * should call this function after @dev has been initialized, and its
3659 * request queue @q has been allocated, and runtime PM for it can not happen
3660 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3661 * cases, driver should call this function before any I/O has taken place.
3662 *
3663 * This function takes care of setting up using auto suspend for the device,
3664 * the autosuspend delay is set to -1 to make runtime suspend impossible
3665 * until an updated value is either set by user or by driver. Drivers do
3666 * not need to touch other autosuspend settings.
3667 *
3668 * The block layer runtime PM is request based, so only works for drivers
3669 * that use request as their IO unit instead of those directly use bio's.
3670 */
3671 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3672 {
3673 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3674 if (q->mq_ops)
3675 return;
3676
3677 q->dev = dev;
3678 q->rpm_status = RPM_ACTIVE;
3679 pm_runtime_set_autosuspend_delay(q->dev, -1);
3680 pm_runtime_use_autosuspend(q->dev);
3681 }
3682 EXPORT_SYMBOL(blk_pm_runtime_init);
3683
3684 /**
3685 * blk_pre_runtime_suspend - Pre runtime suspend check
3686 * @q: the queue of the device
3687 *
3688 * Description:
3689 * This function will check if runtime suspend is allowed for the device
3690 * by examining if there are any requests pending in the queue. If there
3691 * are requests pending, the device can not be runtime suspended; otherwise,
3692 * the queue's status will be updated to SUSPENDING and the driver can
3693 * proceed to suspend the device.
3694 *
3695 * For the not allowed case, we mark last busy for the device so that
3696 * runtime PM core will try to autosuspend it some time later.
3697 *
3698 * This function should be called near the start of the device's
3699 * runtime_suspend callback.
3700 *
3701 * Return:
3702 * 0 - OK to runtime suspend the device
3703 * -EBUSY - Device should not be runtime suspended
3704 */
3705 int blk_pre_runtime_suspend(struct request_queue *q)
3706 {
3707 int ret = 0;
3708
3709 if (!q->dev)
3710 return ret;
3711
3712 spin_lock_irq(q->queue_lock);
3713 if (q->nr_pending) {
3714 ret = -EBUSY;
3715 pm_runtime_mark_last_busy(q->dev);
3716 } else {
3717 q->rpm_status = RPM_SUSPENDING;
3718 }
3719 spin_unlock_irq(q->queue_lock);
3720 return ret;
3721 }
3722 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3723
3724 /**
3725 * blk_post_runtime_suspend - Post runtime suspend processing
3726 * @q: the queue of the device
3727 * @err: return value of the device's runtime_suspend function
3728 *
3729 * Description:
3730 * Update the queue's runtime status according to the return value of the
3731 * device's runtime suspend function and mark last busy for the device so
3732 * that PM core will try to auto suspend the device at a later time.
3733 *
3734 * This function should be called near the end of the device's
3735 * runtime_suspend callback.
3736 */
3737 void blk_post_runtime_suspend(struct request_queue *q, int err)
3738 {
3739 if (!q->dev)
3740 return;
3741
3742 spin_lock_irq(q->queue_lock);
3743 if (!err) {
3744 q->rpm_status = RPM_SUSPENDED;
3745 } else {
3746 q->rpm_status = RPM_ACTIVE;
3747 pm_runtime_mark_last_busy(q->dev);
3748 }
3749 spin_unlock_irq(q->queue_lock);
3750 }
3751 EXPORT_SYMBOL(blk_post_runtime_suspend);
3752
3753 /**
3754 * blk_pre_runtime_resume - Pre runtime resume processing
3755 * @q: the queue of the device
3756 *
3757 * Description:
3758 * Update the queue's runtime status to RESUMING in preparation for the
3759 * runtime resume of the device.
3760 *
3761 * This function should be called near the start of the device's
3762 * runtime_resume callback.
3763 */
3764 void blk_pre_runtime_resume(struct request_queue *q)
3765 {
3766 if (!q->dev)
3767 return;
3768
3769 spin_lock_irq(q->queue_lock);
3770 q->rpm_status = RPM_RESUMING;
3771 spin_unlock_irq(q->queue_lock);
3772 }
3773 EXPORT_SYMBOL(blk_pre_runtime_resume);
3774
3775 /**
3776 * blk_post_runtime_resume - Post runtime resume processing
3777 * @q: the queue of the device
3778 * @err: return value of the device's runtime_resume function
3779 *
3780 * Description:
3781 * Update the queue's runtime status according to the return value of the
3782 * device's runtime_resume function. If it is successfully resumed, process
3783 * the requests that are queued into the device's queue when it is resuming
3784 * and then mark last busy and initiate autosuspend for it.
3785 *
3786 * This function should be called near the end of the device's
3787 * runtime_resume callback.
3788 */
3789 void blk_post_runtime_resume(struct request_queue *q, int err)
3790 {
3791 if (!q->dev)
3792 return;
3793
3794 spin_lock_irq(q->queue_lock);
3795 if (!err) {
3796 q->rpm_status = RPM_ACTIVE;
3797 __blk_run_queue(q);
3798 pm_runtime_mark_last_busy(q->dev);
3799 pm_request_autosuspend(q->dev);
3800 } else {
3801 q->rpm_status = RPM_SUSPENDED;
3802 }
3803 spin_unlock_irq(q->queue_lock);
3804 }
3805 EXPORT_SYMBOL(blk_post_runtime_resume);
3806
3807 /**
3808 * blk_set_runtime_active - Force runtime status of the queue to be active
3809 * @q: the queue of the device
3810 *
3811 * If the device is left runtime suspended during system suspend the resume
3812 * hook typically resumes the device and corrects runtime status
3813 * accordingly. However, that does not affect the queue runtime PM status
3814 * which is still "suspended". This prevents processing requests from the
3815 * queue.
3816 *
3817 * This function can be used in driver's resume hook to correct queue
3818 * runtime PM status and re-enable peeking requests from the queue. It
3819 * should be called before first request is added to the queue.
3820 */
3821 void blk_set_runtime_active(struct request_queue *q)
3822 {
3823 spin_lock_irq(q->queue_lock);
3824 q->rpm_status = RPM_ACTIVE;
3825 pm_runtime_mark_last_busy(q->dev);
3826 pm_request_autosuspend(q->dev);
3827 spin_unlock_irq(q->queue_lock);
3828 }
3829 EXPORT_SYMBOL(blk_set_runtime_active);
3830 #endif
3831
3832 int __init blk_dev_init(void)
3833 {
3834 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3835 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3836 FIELD_SIZEOF(struct request, cmd_flags));
3837 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3838 FIELD_SIZEOF(struct bio, bi_opf));
3839
3840 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3841 kblockd_workqueue = alloc_workqueue("kblockd",
3842 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3843 if (!kblockd_workqueue)
3844 panic("Failed to create kblockd\n");
3845
3846 request_cachep = kmem_cache_create("blkdev_requests",
3847 sizeof(struct request), 0, SLAB_PANIC, NULL);
3848
3849 blk_requestq_cachep = kmem_cache_create("request_queue",
3850 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3851
3852 #ifdef CONFIG_DEBUG_FS
3853 blk_debugfs_root = debugfs_create_dir("block", NULL);
3854 #endif
3855
3856 return 0;
3857 }