]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - block/blk-core.c
Merge branches 'acpi-apei', 'acpi-prm' and 'acpi-docs'
[mirror_ubuntu-kernels.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52
53 struct dentry *blk_debugfs_root;
54
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61
62 DEFINE_IDA(blk_queue_ida);
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84
85 /**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95
96 /**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 memset(rq, 0, sizeof(*rq));
113
114 INIT_LIST_HEAD(&rq->queuelist);
115 rq->q = q;
116 rq->__sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->tag = BLK_MQ_NO_TAG;
120 rq->internal_tag = BLK_MQ_NO_TAG;
121 rq->start_time_ns = ktime_get_ns();
122 rq->part = NULL;
123 blk_crypto_rq_set_defaults(rq);
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126
127 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
128 static const char *const blk_op_name[] = {
129 REQ_OP_NAME(READ),
130 REQ_OP_NAME(WRITE),
131 REQ_OP_NAME(FLUSH),
132 REQ_OP_NAME(DISCARD),
133 REQ_OP_NAME(SECURE_ERASE),
134 REQ_OP_NAME(ZONE_RESET),
135 REQ_OP_NAME(ZONE_RESET_ALL),
136 REQ_OP_NAME(ZONE_OPEN),
137 REQ_OP_NAME(ZONE_CLOSE),
138 REQ_OP_NAME(ZONE_FINISH),
139 REQ_OP_NAME(ZONE_APPEND),
140 REQ_OP_NAME(WRITE_SAME),
141 REQ_OP_NAME(WRITE_ZEROES),
142 REQ_OP_NAME(DRV_IN),
143 REQ_OP_NAME(DRV_OUT),
144 };
145 #undef REQ_OP_NAME
146
147 /**
148 * blk_op_str - Return string XXX in the REQ_OP_XXX.
149 * @op: REQ_OP_XXX.
150 *
151 * Description: Centralize block layer function to convert REQ_OP_XXX into
152 * string format. Useful in the debugging and tracing bio or request. For
153 * invalid REQ_OP_XXX it returns string "UNKNOWN".
154 */
155 inline const char *blk_op_str(unsigned int op)
156 {
157 const char *op_str = "UNKNOWN";
158
159 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 op_str = blk_op_name[op];
161
162 return op_str;
163 }
164 EXPORT_SYMBOL_GPL(blk_op_str);
165
166 static const struct {
167 int errno;
168 const char *name;
169 } blk_errors[] = {
170 [BLK_STS_OK] = { 0, "" },
171 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
172 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
173 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
174 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
175 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
176 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
177 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
178 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
179 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
180 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
181 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
182
183 /* device mapper special case, should not leak out: */
184 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
185
186 /* zone device specific errors */
187 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
188 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
189
190 /* everything else not covered above: */
191 [BLK_STS_IOERR] = { -EIO, "I/O" },
192 };
193
194 blk_status_t errno_to_blk_status(int errno)
195 {
196 int i;
197
198 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
199 if (blk_errors[i].errno == errno)
200 return (__force blk_status_t)i;
201 }
202
203 return BLK_STS_IOERR;
204 }
205 EXPORT_SYMBOL_GPL(errno_to_blk_status);
206
207 int blk_status_to_errno(blk_status_t status)
208 {
209 int idx = (__force int)status;
210
211 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
212 return -EIO;
213 return blk_errors[idx].errno;
214 }
215 EXPORT_SYMBOL_GPL(blk_status_to_errno);
216
217 static void print_req_error(struct request *req, blk_status_t status,
218 const char *caller)
219 {
220 int idx = (__force int)status;
221
222 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
223 return;
224
225 printk_ratelimited(KERN_ERR
226 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
227 "phys_seg %u prio class %u\n",
228 caller, blk_errors[idx].name,
229 req->rq_disk ? req->rq_disk->disk_name : "?",
230 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
231 req->cmd_flags & ~REQ_OP_MASK,
232 req->nr_phys_segments,
233 IOPRIO_PRIO_CLASS(req->ioprio));
234 }
235
236 static void req_bio_endio(struct request *rq, struct bio *bio,
237 unsigned int nbytes, blk_status_t error)
238 {
239 if (error)
240 bio->bi_status = error;
241
242 if (unlikely(rq->rq_flags & RQF_QUIET))
243 bio_set_flag(bio, BIO_QUIET);
244
245 bio_advance(bio, nbytes);
246
247 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
248 /*
249 * Partial zone append completions cannot be supported as the
250 * BIO fragments may end up not being written sequentially.
251 */
252 if (bio->bi_iter.bi_size)
253 bio->bi_status = BLK_STS_IOERR;
254 else
255 bio->bi_iter.bi_sector = rq->__sector;
256 }
257
258 /* don't actually finish bio if it's part of flush sequence */
259 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
260 bio_endio(bio);
261 }
262
263 void blk_dump_rq_flags(struct request *rq, char *msg)
264 {
265 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
266 rq->rq_disk ? rq->rq_disk->disk_name : "?",
267 (unsigned long long) rq->cmd_flags);
268
269 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
270 (unsigned long long)blk_rq_pos(rq),
271 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
272 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
273 rq->bio, rq->biotail, blk_rq_bytes(rq));
274 }
275 EXPORT_SYMBOL(blk_dump_rq_flags);
276
277 /**
278 * blk_sync_queue - cancel any pending callbacks on a queue
279 * @q: the queue
280 *
281 * Description:
282 * The block layer may perform asynchronous callback activity
283 * on a queue, such as calling the unplug function after a timeout.
284 * A block device may call blk_sync_queue to ensure that any
285 * such activity is cancelled, thus allowing it to release resources
286 * that the callbacks might use. The caller must already have made sure
287 * that its ->submit_bio will not re-add plugging prior to calling
288 * this function.
289 *
290 * This function does not cancel any asynchronous activity arising
291 * out of elevator or throttling code. That would require elevator_exit()
292 * and blkcg_exit_queue() to be called with queue lock initialized.
293 *
294 */
295 void blk_sync_queue(struct request_queue *q)
296 {
297 del_timer_sync(&q->timeout);
298 cancel_work_sync(&q->timeout_work);
299 }
300 EXPORT_SYMBOL(blk_sync_queue);
301
302 /**
303 * blk_set_pm_only - increment pm_only counter
304 * @q: request queue pointer
305 */
306 void blk_set_pm_only(struct request_queue *q)
307 {
308 atomic_inc(&q->pm_only);
309 }
310 EXPORT_SYMBOL_GPL(blk_set_pm_only);
311
312 void blk_clear_pm_only(struct request_queue *q)
313 {
314 int pm_only;
315
316 pm_only = atomic_dec_return(&q->pm_only);
317 WARN_ON_ONCE(pm_only < 0);
318 if (pm_only == 0)
319 wake_up_all(&q->mq_freeze_wq);
320 }
321 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
322
323 /**
324 * blk_put_queue - decrement the request_queue refcount
325 * @q: the request_queue structure to decrement the refcount for
326 *
327 * Decrements the refcount of the request_queue kobject. When this reaches 0
328 * we'll have blk_release_queue() called.
329 *
330 * Context: Any context, but the last reference must not be dropped from
331 * atomic context.
332 */
333 void blk_put_queue(struct request_queue *q)
334 {
335 kobject_put(&q->kobj);
336 }
337 EXPORT_SYMBOL(blk_put_queue);
338
339 void blk_queue_start_drain(struct request_queue *q)
340 {
341 /*
342 * When queue DYING flag is set, we need to block new req
343 * entering queue, so we call blk_freeze_queue_start() to
344 * prevent I/O from crossing blk_queue_enter().
345 */
346 blk_freeze_queue_start(q);
347 if (queue_is_mq(q))
348 blk_mq_wake_waiters(q);
349 /* Make blk_queue_enter() reexamine the DYING flag. */
350 wake_up_all(&q->mq_freeze_wq);
351 }
352
353 void blk_set_queue_dying(struct request_queue *q)
354 {
355 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
356 blk_queue_start_drain(q);
357 }
358 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
359
360 /**
361 * blk_cleanup_queue - shutdown a request queue
362 * @q: request queue to shutdown
363 *
364 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
365 * put it. All future requests will be failed immediately with -ENODEV.
366 *
367 * Context: can sleep
368 */
369 void blk_cleanup_queue(struct request_queue *q)
370 {
371 /* cannot be called from atomic context */
372 might_sleep();
373
374 WARN_ON_ONCE(blk_queue_registered(q));
375
376 /* mark @q DYING, no new request or merges will be allowed afterwards */
377 blk_set_queue_dying(q);
378
379 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
380 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
381
382 /*
383 * Drain all requests queued before DYING marking. Set DEAD flag to
384 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
385 * after draining finished.
386 */
387 blk_freeze_queue(q);
388
389 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
390
391 blk_sync_queue(q);
392 if (queue_is_mq(q))
393 blk_mq_exit_queue(q);
394
395 /*
396 * In theory, request pool of sched_tags belongs to request queue.
397 * However, the current implementation requires tag_set for freeing
398 * requests, so free the pool now.
399 *
400 * Queue has become frozen, there can't be any in-queue requests, so
401 * it is safe to free requests now.
402 */
403 mutex_lock(&q->sysfs_lock);
404 if (q->elevator)
405 blk_mq_sched_free_requests(q);
406 mutex_unlock(&q->sysfs_lock);
407
408 percpu_ref_exit(&q->q_usage_counter);
409
410 /* @q is and will stay empty, shutdown and put */
411 blk_put_queue(q);
412 }
413 EXPORT_SYMBOL(blk_cleanup_queue);
414
415 static bool blk_try_enter_queue(struct request_queue *q, bool pm)
416 {
417 rcu_read_lock();
418 if (!percpu_ref_tryget_live(&q->q_usage_counter))
419 goto fail;
420
421 /*
422 * The code that increments the pm_only counter must ensure that the
423 * counter is globally visible before the queue is unfrozen.
424 */
425 if (blk_queue_pm_only(q) &&
426 (!pm || queue_rpm_status(q) == RPM_SUSPENDED))
427 goto fail_put;
428
429 rcu_read_unlock();
430 return true;
431
432 fail_put:
433 percpu_ref_put(&q->q_usage_counter);
434 fail:
435 rcu_read_unlock();
436 return false;
437 }
438
439 /**
440 * blk_queue_enter() - try to increase q->q_usage_counter
441 * @q: request queue pointer
442 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
443 */
444 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
445 {
446 const bool pm = flags & BLK_MQ_REQ_PM;
447
448 while (!blk_try_enter_queue(q, pm)) {
449 if (flags & BLK_MQ_REQ_NOWAIT)
450 return -EBUSY;
451
452 /*
453 * read pair of barrier in blk_freeze_queue_start(), we need to
454 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
455 * reading .mq_freeze_depth or queue dying flag, otherwise the
456 * following wait may never return if the two reads are
457 * reordered.
458 */
459 smp_rmb();
460 wait_event(q->mq_freeze_wq,
461 (!q->mq_freeze_depth &&
462 blk_pm_resume_queue(pm, q)) ||
463 blk_queue_dying(q));
464 if (blk_queue_dying(q))
465 return -ENODEV;
466 }
467
468 return 0;
469 }
470
471 static inline int bio_queue_enter(struct bio *bio)
472 {
473 struct gendisk *disk = bio->bi_bdev->bd_disk;
474 struct request_queue *q = disk->queue;
475
476 while (!blk_try_enter_queue(q, false)) {
477 if (bio->bi_opf & REQ_NOWAIT) {
478 if (test_bit(GD_DEAD, &disk->state))
479 goto dead;
480 bio_wouldblock_error(bio);
481 return -EBUSY;
482 }
483
484 /*
485 * read pair of barrier in blk_freeze_queue_start(), we need to
486 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
487 * reading .mq_freeze_depth or queue dying flag, otherwise the
488 * following wait may never return if the two reads are
489 * reordered.
490 */
491 smp_rmb();
492 wait_event(q->mq_freeze_wq,
493 (!q->mq_freeze_depth &&
494 blk_pm_resume_queue(false, q)) ||
495 test_bit(GD_DEAD, &disk->state));
496 if (test_bit(GD_DEAD, &disk->state))
497 goto dead;
498 }
499
500 return 0;
501 dead:
502 bio_io_error(bio);
503 return -ENODEV;
504 }
505
506 void blk_queue_exit(struct request_queue *q)
507 {
508 percpu_ref_put(&q->q_usage_counter);
509 }
510
511 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
512 {
513 struct request_queue *q =
514 container_of(ref, struct request_queue, q_usage_counter);
515
516 wake_up_all(&q->mq_freeze_wq);
517 }
518
519 static void blk_rq_timed_out_timer(struct timer_list *t)
520 {
521 struct request_queue *q = from_timer(q, t, timeout);
522
523 kblockd_schedule_work(&q->timeout_work);
524 }
525
526 static void blk_timeout_work(struct work_struct *work)
527 {
528 }
529
530 struct request_queue *blk_alloc_queue(int node_id)
531 {
532 struct request_queue *q;
533 int ret;
534
535 q = kmem_cache_alloc_node(blk_requestq_cachep,
536 GFP_KERNEL | __GFP_ZERO, node_id);
537 if (!q)
538 return NULL;
539
540 q->last_merge = NULL;
541
542 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
543 if (q->id < 0)
544 goto fail_q;
545
546 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
547 if (ret)
548 goto fail_id;
549
550 q->stats = blk_alloc_queue_stats();
551 if (!q->stats)
552 goto fail_split;
553
554 q->node = node_id;
555
556 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
557
558 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
559 INIT_WORK(&q->timeout_work, blk_timeout_work);
560 INIT_LIST_HEAD(&q->icq_list);
561 #ifdef CONFIG_BLK_CGROUP
562 INIT_LIST_HEAD(&q->blkg_list);
563 #endif
564
565 kobject_init(&q->kobj, &blk_queue_ktype);
566
567 mutex_init(&q->debugfs_mutex);
568 mutex_init(&q->sysfs_lock);
569 mutex_init(&q->sysfs_dir_lock);
570 spin_lock_init(&q->queue_lock);
571
572 init_waitqueue_head(&q->mq_freeze_wq);
573 mutex_init(&q->mq_freeze_lock);
574
575 /*
576 * Init percpu_ref in atomic mode so that it's faster to shutdown.
577 * See blk_register_queue() for details.
578 */
579 if (percpu_ref_init(&q->q_usage_counter,
580 blk_queue_usage_counter_release,
581 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
582 goto fail_stats;
583
584 if (blkcg_init_queue(q))
585 goto fail_ref;
586
587 blk_queue_dma_alignment(q, 511);
588 blk_set_default_limits(&q->limits);
589 q->nr_requests = BLKDEV_MAX_RQ;
590
591 return q;
592
593 fail_ref:
594 percpu_ref_exit(&q->q_usage_counter);
595 fail_stats:
596 blk_free_queue_stats(q->stats);
597 fail_split:
598 bioset_exit(&q->bio_split);
599 fail_id:
600 ida_simple_remove(&blk_queue_ida, q->id);
601 fail_q:
602 kmem_cache_free(blk_requestq_cachep, q);
603 return NULL;
604 }
605
606 /**
607 * blk_get_queue - increment the request_queue refcount
608 * @q: the request_queue structure to increment the refcount for
609 *
610 * Increment the refcount of the request_queue kobject.
611 *
612 * Context: Any context.
613 */
614 bool blk_get_queue(struct request_queue *q)
615 {
616 if (likely(!blk_queue_dying(q))) {
617 __blk_get_queue(q);
618 return true;
619 }
620
621 return false;
622 }
623 EXPORT_SYMBOL(blk_get_queue);
624
625 /**
626 * blk_get_request - allocate a request
627 * @q: request queue to allocate a request for
628 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
629 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
630 */
631 struct request *blk_get_request(struct request_queue *q, unsigned int op,
632 blk_mq_req_flags_t flags)
633 {
634 struct request *req;
635
636 WARN_ON_ONCE(op & REQ_NOWAIT);
637 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
638
639 req = blk_mq_alloc_request(q, op, flags);
640 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
641 q->mq_ops->initialize_rq_fn(req);
642
643 return req;
644 }
645 EXPORT_SYMBOL(blk_get_request);
646
647 void blk_put_request(struct request *req)
648 {
649 blk_mq_free_request(req);
650 }
651 EXPORT_SYMBOL(blk_put_request);
652
653 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
654 {
655 char b[BDEVNAME_SIZE];
656
657 pr_info_ratelimited("attempt to access beyond end of device\n"
658 "%s: rw=%d, want=%llu, limit=%llu\n",
659 bio_devname(bio, b), bio->bi_opf,
660 bio_end_sector(bio), maxsector);
661 }
662
663 #ifdef CONFIG_FAIL_MAKE_REQUEST
664
665 static DECLARE_FAULT_ATTR(fail_make_request);
666
667 static int __init setup_fail_make_request(char *str)
668 {
669 return setup_fault_attr(&fail_make_request, str);
670 }
671 __setup("fail_make_request=", setup_fail_make_request);
672
673 static bool should_fail_request(struct block_device *part, unsigned int bytes)
674 {
675 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
676 }
677
678 static int __init fail_make_request_debugfs(void)
679 {
680 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
681 NULL, &fail_make_request);
682
683 return PTR_ERR_OR_ZERO(dir);
684 }
685
686 late_initcall(fail_make_request_debugfs);
687
688 #else /* CONFIG_FAIL_MAKE_REQUEST */
689
690 static inline bool should_fail_request(struct block_device *part,
691 unsigned int bytes)
692 {
693 return false;
694 }
695
696 #endif /* CONFIG_FAIL_MAKE_REQUEST */
697
698 static inline bool bio_check_ro(struct bio *bio)
699 {
700 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
701 char b[BDEVNAME_SIZE];
702
703 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
704 return false;
705
706 WARN_ONCE(1,
707 "Trying to write to read-only block-device %s (partno %d)\n",
708 bio_devname(bio, b), bio->bi_bdev->bd_partno);
709 /* Older lvm-tools actually trigger this */
710 return false;
711 }
712
713 return false;
714 }
715
716 static noinline int should_fail_bio(struct bio *bio)
717 {
718 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
719 return -EIO;
720 return 0;
721 }
722 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
723
724 /*
725 * Check whether this bio extends beyond the end of the device or partition.
726 * This may well happen - the kernel calls bread() without checking the size of
727 * the device, e.g., when mounting a file system.
728 */
729 static inline int bio_check_eod(struct bio *bio)
730 {
731 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
732 unsigned int nr_sectors = bio_sectors(bio);
733
734 if (nr_sectors && maxsector &&
735 (nr_sectors > maxsector ||
736 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
737 handle_bad_sector(bio, maxsector);
738 return -EIO;
739 }
740 return 0;
741 }
742
743 /*
744 * Remap block n of partition p to block n+start(p) of the disk.
745 */
746 static int blk_partition_remap(struct bio *bio)
747 {
748 struct block_device *p = bio->bi_bdev;
749
750 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
751 return -EIO;
752 if (bio_sectors(bio)) {
753 bio->bi_iter.bi_sector += p->bd_start_sect;
754 trace_block_bio_remap(bio, p->bd_dev,
755 bio->bi_iter.bi_sector -
756 p->bd_start_sect);
757 }
758 bio_set_flag(bio, BIO_REMAPPED);
759 return 0;
760 }
761
762 /*
763 * Check write append to a zoned block device.
764 */
765 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
766 struct bio *bio)
767 {
768 sector_t pos = bio->bi_iter.bi_sector;
769 int nr_sectors = bio_sectors(bio);
770
771 /* Only applicable to zoned block devices */
772 if (!blk_queue_is_zoned(q))
773 return BLK_STS_NOTSUPP;
774
775 /* The bio sector must point to the start of a sequential zone */
776 if (pos & (blk_queue_zone_sectors(q) - 1) ||
777 !blk_queue_zone_is_seq(q, pos))
778 return BLK_STS_IOERR;
779
780 /*
781 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
782 * split and could result in non-contiguous sectors being written in
783 * different zones.
784 */
785 if (nr_sectors > q->limits.chunk_sectors)
786 return BLK_STS_IOERR;
787
788 /* Make sure the BIO is small enough and will not get split */
789 if (nr_sectors > q->limits.max_zone_append_sectors)
790 return BLK_STS_IOERR;
791
792 bio->bi_opf |= REQ_NOMERGE;
793
794 return BLK_STS_OK;
795 }
796
797 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
798 {
799 struct block_device *bdev = bio->bi_bdev;
800 struct request_queue *q = bdev->bd_disk->queue;
801 blk_status_t status = BLK_STS_IOERR;
802 struct blk_plug *plug;
803
804 might_sleep();
805
806 plug = blk_mq_plug(q, bio);
807 if (plug && plug->nowait)
808 bio->bi_opf |= REQ_NOWAIT;
809
810 /*
811 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
812 * if queue does not support NOWAIT.
813 */
814 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
815 goto not_supported;
816
817 if (should_fail_bio(bio))
818 goto end_io;
819 if (unlikely(bio_check_ro(bio)))
820 goto end_io;
821 if (!bio_flagged(bio, BIO_REMAPPED)) {
822 if (unlikely(bio_check_eod(bio)))
823 goto end_io;
824 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
825 goto end_io;
826 }
827
828 /*
829 * Filter flush bio's early so that bio based drivers without flush
830 * support don't have to worry about them.
831 */
832 if (op_is_flush(bio->bi_opf) &&
833 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
834 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
835 if (!bio_sectors(bio)) {
836 status = BLK_STS_OK;
837 goto end_io;
838 }
839 }
840
841 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
842 bio_clear_hipri(bio);
843
844 switch (bio_op(bio)) {
845 case REQ_OP_DISCARD:
846 if (!blk_queue_discard(q))
847 goto not_supported;
848 break;
849 case REQ_OP_SECURE_ERASE:
850 if (!blk_queue_secure_erase(q))
851 goto not_supported;
852 break;
853 case REQ_OP_WRITE_SAME:
854 if (!q->limits.max_write_same_sectors)
855 goto not_supported;
856 break;
857 case REQ_OP_ZONE_APPEND:
858 status = blk_check_zone_append(q, bio);
859 if (status != BLK_STS_OK)
860 goto end_io;
861 break;
862 case REQ_OP_ZONE_RESET:
863 case REQ_OP_ZONE_OPEN:
864 case REQ_OP_ZONE_CLOSE:
865 case REQ_OP_ZONE_FINISH:
866 if (!blk_queue_is_zoned(q))
867 goto not_supported;
868 break;
869 case REQ_OP_ZONE_RESET_ALL:
870 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
871 goto not_supported;
872 break;
873 case REQ_OP_WRITE_ZEROES:
874 if (!q->limits.max_write_zeroes_sectors)
875 goto not_supported;
876 break;
877 default:
878 break;
879 }
880
881 /*
882 * Various block parts want %current->io_context, so allocate it up
883 * front rather than dealing with lots of pain to allocate it only
884 * where needed. This may fail and the block layer knows how to live
885 * with it.
886 */
887 if (unlikely(!current->io_context))
888 create_task_io_context(current, GFP_ATOMIC, q->node);
889
890 if (blk_throtl_bio(bio)) {
891 blkcg_bio_issue_init(bio);
892 return false;
893 }
894
895 blk_cgroup_bio_start(bio);
896 blkcg_bio_issue_init(bio);
897
898 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
899 trace_block_bio_queue(bio);
900 /* Now that enqueuing has been traced, we need to trace
901 * completion as well.
902 */
903 bio_set_flag(bio, BIO_TRACE_COMPLETION);
904 }
905 return true;
906
907 not_supported:
908 status = BLK_STS_NOTSUPP;
909 end_io:
910 bio->bi_status = status;
911 bio_endio(bio);
912 return false;
913 }
914
915 static blk_qc_t __submit_bio(struct bio *bio)
916 {
917 struct gendisk *disk = bio->bi_bdev->bd_disk;
918 blk_qc_t ret = BLK_QC_T_NONE;
919
920 if (unlikely(bio_queue_enter(bio) != 0))
921 return BLK_QC_T_NONE;
922
923 if (!submit_bio_checks(bio) || !blk_crypto_bio_prep(&bio))
924 goto queue_exit;
925 if (disk->fops->submit_bio) {
926 ret = disk->fops->submit_bio(bio);
927 goto queue_exit;
928 }
929 return blk_mq_submit_bio(bio);
930
931 queue_exit:
932 blk_queue_exit(disk->queue);
933 return ret;
934 }
935
936 /*
937 * The loop in this function may be a bit non-obvious, and so deserves some
938 * explanation:
939 *
940 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
941 * that), so we have a list with a single bio.
942 * - We pretend that we have just taken it off a longer list, so we assign
943 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
944 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
945 * bios through a recursive call to submit_bio_noacct. If it did, we find a
946 * non-NULL value in bio_list and re-enter the loop from the top.
947 * - In this case we really did just take the bio of the top of the list (no
948 * pretending) and so remove it from bio_list, and call into ->submit_bio()
949 * again.
950 *
951 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
952 * bio_list_on_stack[1] contains bios that were submitted before the current
953 * ->submit_bio_bio, but that haven't been processed yet.
954 */
955 static blk_qc_t __submit_bio_noacct(struct bio *bio)
956 {
957 struct bio_list bio_list_on_stack[2];
958 blk_qc_t ret = BLK_QC_T_NONE;
959
960 BUG_ON(bio->bi_next);
961
962 bio_list_init(&bio_list_on_stack[0]);
963 current->bio_list = bio_list_on_stack;
964
965 do {
966 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
967 struct bio_list lower, same;
968
969 /*
970 * Create a fresh bio_list for all subordinate requests.
971 */
972 bio_list_on_stack[1] = bio_list_on_stack[0];
973 bio_list_init(&bio_list_on_stack[0]);
974
975 ret = __submit_bio(bio);
976
977 /*
978 * Sort new bios into those for a lower level and those for the
979 * same level.
980 */
981 bio_list_init(&lower);
982 bio_list_init(&same);
983 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
984 if (q == bio->bi_bdev->bd_disk->queue)
985 bio_list_add(&same, bio);
986 else
987 bio_list_add(&lower, bio);
988
989 /*
990 * Now assemble so we handle the lowest level first.
991 */
992 bio_list_merge(&bio_list_on_stack[0], &lower);
993 bio_list_merge(&bio_list_on_stack[0], &same);
994 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
995 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
996
997 current->bio_list = NULL;
998 return ret;
999 }
1000
1001 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1002 {
1003 struct bio_list bio_list[2] = { };
1004 blk_qc_t ret;
1005
1006 current->bio_list = bio_list;
1007
1008 do {
1009 ret = __submit_bio(bio);
1010 } while ((bio = bio_list_pop(&bio_list[0])));
1011
1012 current->bio_list = NULL;
1013 return ret;
1014 }
1015
1016 /**
1017 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1018 * @bio: The bio describing the location in memory and on the device.
1019 *
1020 * This is a version of submit_bio() that shall only be used for I/O that is
1021 * resubmitted to lower level drivers by stacking block drivers. All file
1022 * systems and other upper level users of the block layer should use
1023 * submit_bio() instead.
1024 */
1025 blk_qc_t submit_bio_noacct(struct bio *bio)
1026 {
1027 /*
1028 * We only want one ->submit_bio to be active at a time, else stack
1029 * usage with stacked devices could be a problem. Use current->bio_list
1030 * to collect a list of requests submited by a ->submit_bio method while
1031 * it is active, and then process them after it returned.
1032 */
1033 if (current->bio_list) {
1034 bio_list_add(&current->bio_list[0], bio);
1035 return BLK_QC_T_NONE;
1036 }
1037
1038 if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1039 return __submit_bio_noacct_mq(bio);
1040 return __submit_bio_noacct(bio);
1041 }
1042 EXPORT_SYMBOL(submit_bio_noacct);
1043
1044 /**
1045 * submit_bio - submit a bio to the block device layer for I/O
1046 * @bio: The &struct bio which describes the I/O
1047 *
1048 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1049 * fully set up &struct bio that describes the I/O that needs to be done. The
1050 * bio will be send to the device described by the bi_bdev field.
1051 *
1052 * The success/failure status of the request, along with notification of
1053 * completion, is delivered asynchronously through the ->bi_end_io() callback
1054 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1055 * been called.
1056 */
1057 blk_qc_t submit_bio(struct bio *bio)
1058 {
1059 if (blkcg_punt_bio_submit(bio))
1060 return BLK_QC_T_NONE;
1061
1062 /*
1063 * If it's a regular read/write or a barrier with data attached,
1064 * go through the normal accounting stuff before submission.
1065 */
1066 if (bio_has_data(bio)) {
1067 unsigned int count;
1068
1069 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1070 count = queue_logical_block_size(
1071 bio->bi_bdev->bd_disk->queue) >> 9;
1072 else
1073 count = bio_sectors(bio);
1074
1075 if (op_is_write(bio_op(bio))) {
1076 count_vm_events(PGPGOUT, count);
1077 } else {
1078 task_io_account_read(bio->bi_iter.bi_size);
1079 count_vm_events(PGPGIN, count);
1080 }
1081 }
1082
1083 /*
1084 * If we're reading data that is part of the userspace workingset, count
1085 * submission time as memory stall. When the device is congested, or
1086 * the submitting cgroup IO-throttled, submission can be a significant
1087 * part of overall IO time.
1088 */
1089 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1090 bio_flagged(bio, BIO_WORKINGSET))) {
1091 unsigned long pflags;
1092 blk_qc_t ret;
1093
1094 psi_memstall_enter(&pflags);
1095 ret = submit_bio_noacct(bio);
1096 psi_memstall_leave(&pflags);
1097
1098 return ret;
1099 }
1100
1101 return submit_bio_noacct(bio);
1102 }
1103 EXPORT_SYMBOL(submit_bio);
1104
1105 /**
1106 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1107 * for the new queue limits
1108 * @q: the queue
1109 * @rq: the request being checked
1110 *
1111 * Description:
1112 * @rq may have been made based on weaker limitations of upper-level queues
1113 * in request stacking drivers, and it may violate the limitation of @q.
1114 * Since the block layer and the underlying device driver trust @rq
1115 * after it is inserted to @q, it should be checked against @q before
1116 * the insertion using this generic function.
1117 *
1118 * Request stacking drivers like request-based dm may change the queue
1119 * limits when retrying requests on other queues. Those requests need
1120 * to be checked against the new queue limits again during dispatch.
1121 */
1122 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1123 struct request *rq)
1124 {
1125 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1126
1127 if (blk_rq_sectors(rq) > max_sectors) {
1128 /*
1129 * SCSI device does not have a good way to return if
1130 * Write Same/Zero is actually supported. If a device rejects
1131 * a non-read/write command (discard, write same,etc.) the
1132 * low-level device driver will set the relevant queue limit to
1133 * 0 to prevent blk-lib from issuing more of the offending
1134 * operations. Commands queued prior to the queue limit being
1135 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1136 * errors being propagated to upper layers.
1137 */
1138 if (max_sectors == 0)
1139 return BLK_STS_NOTSUPP;
1140
1141 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1142 __func__, blk_rq_sectors(rq), max_sectors);
1143 return BLK_STS_IOERR;
1144 }
1145
1146 /*
1147 * The queue settings related to segment counting may differ from the
1148 * original queue.
1149 */
1150 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1151 if (rq->nr_phys_segments > queue_max_segments(q)) {
1152 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1153 __func__, rq->nr_phys_segments, queue_max_segments(q));
1154 return BLK_STS_IOERR;
1155 }
1156
1157 return BLK_STS_OK;
1158 }
1159
1160 /**
1161 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1162 * @q: the queue to submit the request
1163 * @rq: the request being queued
1164 */
1165 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1166 {
1167 blk_status_t ret;
1168
1169 ret = blk_cloned_rq_check_limits(q, rq);
1170 if (ret != BLK_STS_OK)
1171 return ret;
1172
1173 if (rq->rq_disk &&
1174 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1175 return BLK_STS_IOERR;
1176
1177 if (blk_crypto_insert_cloned_request(rq))
1178 return BLK_STS_IOERR;
1179
1180 if (blk_queue_io_stat(q))
1181 blk_account_io_start(rq);
1182
1183 /*
1184 * Since we have a scheduler attached on the top device,
1185 * bypass a potential scheduler on the bottom device for
1186 * insert.
1187 */
1188 return blk_mq_request_issue_directly(rq, true);
1189 }
1190 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1191
1192 /**
1193 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1194 * @rq: request to examine
1195 *
1196 * Description:
1197 * A request could be merge of IOs which require different failure
1198 * handling. This function determines the number of bytes which
1199 * can be failed from the beginning of the request without
1200 * crossing into area which need to be retried further.
1201 *
1202 * Return:
1203 * The number of bytes to fail.
1204 */
1205 unsigned int blk_rq_err_bytes(const struct request *rq)
1206 {
1207 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1208 unsigned int bytes = 0;
1209 struct bio *bio;
1210
1211 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1212 return blk_rq_bytes(rq);
1213
1214 /*
1215 * Currently the only 'mixing' which can happen is between
1216 * different fastfail types. We can safely fail portions
1217 * which have all the failfast bits that the first one has -
1218 * the ones which are at least as eager to fail as the first
1219 * one.
1220 */
1221 for (bio = rq->bio; bio; bio = bio->bi_next) {
1222 if ((bio->bi_opf & ff) != ff)
1223 break;
1224 bytes += bio->bi_iter.bi_size;
1225 }
1226
1227 /* this could lead to infinite loop */
1228 BUG_ON(blk_rq_bytes(rq) && !bytes);
1229 return bytes;
1230 }
1231 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1232
1233 static void update_io_ticks(struct block_device *part, unsigned long now,
1234 bool end)
1235 {
1236 unsigned long stamp;
1237 again:
1238 stamp = READ_ONCE(part->bd_stamp);
1239 if (unlikely(time_after(now, stamp))) {
1240 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1241 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1242 }
1243 if (part->bd_partno) {
1244 part = bdev_whole(part);
1245 goto again;
1246 }
1247 }
1248
1249 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1250 {
1251 if (req->part && blk_do_io_stat(req)) {
1252 const int sgrp = op_stat_group(req_op(req));
1253
1254 part_stat_lock();
1255 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1256 part_stat_unlock();
1257 }
1258 }
1259
1260 void blk_account_io_done(struct request *req, u64 now)
1261 {
1262 /*
1263 * Account IO completion. flush_rq isn't accounted as a
1264 * normal IO on queueing nor completion. Accounting the
1265 * containing request is enough.
1266 */
1267 if (req->part && blk_do_io_stat(req) &&
1268 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1269 const int sgrp = op_stat_group(req_op(req));
1270
1271 part_stat_lock();
1272 update_io_ticks(req->part, jiffies, true);
1273 part_stat_inc(req->part, ios[sgrp]);
1274 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1275 part_stat_unlock();
1276 }
1277 }
1278
1279 void blk_account_io_start(struct request *rq)
1280 {
1281 if (!blk_do_io_stat(rq))
1282 return;
1283
1284 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1285 if (rq->bio && rq->bio->bi_bdev)
1286 rq->part = rq->bio->bi_bdev;
1287 else
1288 rq->part = rq->rq_disk->part0;
1289
1290 part_stat_lock();
1291 update_io_ticks(rq->part, jiffies, false);
1292 part_stat_unlock();
1293 }
1294
1295 static unsigned long __part_start_io_acct(struct block_device *part,
1296 unsigned int sectors, unsigned int op)
1297 {
1298 const int sgrp = op_stat_group(op);
1299 unsigned long now = READ_ONCE(jiffies);
1300
1301 part_stat_lock();
1302 update_io_ticks(part, now, false);
1303 part_stat_inc(part, ios[sgrp]);
1304 part_stat_add(part, sectors[sgrp], sectors);
1305 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1306 part_stat_unlock();
1307
1308 return now;
1309 }
1310
1311 /**
1312 * bio_start_io_acct - start I/O accounting for bio based drivers
1313 * @bio: bio to start account for
1314 *
1315 * Returns the start time that should be passed back to bio_end_io_acct().
1316 */
1317 unsigned long bio_start_io_acct(struct bio *bio)
1318 {
1319 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1320 }
1321 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1322
1323 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1324 unsigned int op)
1325 {
1326 return __part_start_io_acct(disk->part0, sectors, op);
1327 }
1328 EXPORT_SYMBOL(disk_start_io_acct);
1329
1330 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1331 unsigned long start_time)
1332 {
1333 const int sgrp = op_stat_group(op);
1334 unsigned long now = READ_ONCE(jiffies);
1335 unsigned long duration = now - start_time;
1336
1337 part_stat_lock();
1338 update_io_ticks(part, now, true);
1339 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1340 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1341 part_stat_unlock();
1342 }
1343
1344 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1345 struct block_device *orig_bdev)
1346 {
1347 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1348 }
1349 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1350
1351 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1352 unsigned long start_time)
1353 {
1354 __part_end_io_acct(disk->part0, op, start_time);
1355 }
1356 EXPORT_SYMBOL(disk_end_io_acct);
1357
1358 /*
1359 * Steal bios from a request and add them to a bio list.
1360 * The request must not have been partially completed before.
1361 */
1362 void blk_steal_bios(struct bio_list *list, struct request *rq)
1363 {
1364 if (rq->bio) {
1365 if (list->tail)
1366 list->tail->bi_next = rq->bio;
1367 else
1368 list->head = rq->bio;
1369 list->tail = rq->biotail;
1370
1371 rq->bio = NULL;
1372 rq->biotail = NULL;
1373 }
1374
1375 rq->__data_len = 0;
1376 }
1377 EXPORT_SYMBOL_GPL(blk_steal_bios);
1378
1379 /**
1380 * blk_update_request - Complete multiple bytes without completing the request
1381 * @req: the request being processed
1382 * @error: block status code
1383 * @nr_bytes: number of bytes to complete for @req
1384 *
1385 * Description:
1386 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1387 * the request structure even if @req doesn't have leftover.
1388 * If @req has leftover, sets it up for the next range of segments.
1389 *
1390 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1391 * %false return from this function.
1392 *
1393 * Note:
1394 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1395 * except in the consistency check at the end of this function.
1396 *
1397 * Return:
1398 * %false - this request doesn't have any more data
1399 * %true - this request has more data
1400 **/
1401 bool blk_update_request(struct request *req, blk_status_t error,
1402 unsigned int nr_bytes)
1403 {
1404 int total_bytes;
1405
1406 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1407
1408 if (!req->bio)
1409 return false;
1410
1411 #ifdef CONFIG_BLK_DEV_INTEGRITY
1412 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1413 error == BLK_STS_OK)
1414 req->q->integrity.profile->complete_fn(req, nr_bytes);
1415 #endif
1416
1417 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1418 !(req->rq_flags & RQF_QUIET)))
1419 print_req_error(req, error, __func__);
1420
1421 blk_account_io_completion(req, nr_bytes);
1422
1423 total_bytes = 0;
1424 while (req->bio) {
1425 struct bio *bio = req->bio;
1426 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1427
1428 if (bio_bytes == bio->bi_iter.bi_size)
1429 req->bio = bio->bi_next;
1430
1431 /* Completion has already been traced */
1432 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1433 req_bio_endio(req, bio, bio_bytes, error);
1434
1435 total_bytes += bio_bytes;
1436 nr_bytes -= bio_bytes;
1437
1438 if (!nr_bytes)
1439 break;
1440 }
1441
1442 /*
1443 * completely done
1444 */
1445 if (!req->bio) {
1446 /*
1447 * Reset counters so that the request stacking driver
1448 * can find how many bytes remain in the request
1449 * later.
1450 */
1451 req->__data_len = 0;
1452 return false;
1453 }
1454
1455 req->__data_len -= total_bytes;
1456
1457 /* update sector only for requests with clear definition of sector */
1458 if (!blk_rq_is_passthrough(req))
1459 req->__sector += total_bytes >> 9;
1460
1461 /* mixed attributes always follow the first bio */
1462 if (req->rq_flags & RQF_MIXED_MERGE) {
1463 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1464 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1465 }
1466
1467 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1468 /*
1469 * If total number of sectors is less than the first segment
1470 * size, something has gone terribly wrong.
1471 */
1472 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1473 blk_dump_rq_flags(req, "request botched");
1474 req->__data_len = blk_rq_cur_bytes(req);
1475 }
1476
1477 /* recalculate the number of segments */
1478 req->nr_phys_segments = blk_recalc_rq_segments(req);
1479 }
1480
1481 return true;
1482 }
1483 EXPORT_SYMBOL_GPL(blk_update_request);
1484
1485 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1486 /**
1487 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1488 * @rq: the request to be flushed
1489 *
1490 * Description:
1491 * Flush all pages in @rq.
1492 */
1493 void rq_flush_dcache_pages(struct request *rq)
1494 {
1495 struct req_iterator iter;
1496 struct bio_vec bvec;
1497
1498 rq_for_each_segment(bvec, rq, iter)
1499 flush_dcache_page(bvec.bv_page);
1500 }
1501 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1502 #endif
1503
1504 /**
1505 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1506 * @q : the queue of the device being checked
1507 *
1508 * Description:
1509 * Check if underlying low-level drivers of a device are busy.
1510 * If the drivers want to export their busy state, they must set own
1511 * exporting function using blk_queue_lld_busy() first.
1512 *
1513 * Basically, this function is used only by request stacking drivers
1514 * to stop dispatching requests to underlying devices when underlying
1515 * devices are busy. This behavior helps more I/O merging on the queue
1516 * of the request stacking driver and prevents I/O throughput regression
1517 * on burst I/O load.
1518 *
1519 * Return:
1520 * 0 - Not busy (The request stacking driver should dispatch request)
1521 * 1 - Busy (The request stacking driver should stop dispatching request)
1522 */
1523 int blk_lld_busy(struct request_queue *q)
1524 {
1525 if (queue_is_mq(q) && q->mq_ops->busy)
1526 return q->mq_ops->busy(q);
1527
1528 return 0;
1529 }
1530 EXPORT_SYMBOL_GPL(blk_lld_busy);
1531
1532 /**
1533 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1534 * @rq: the clone request to be cleaned up
1535 *
1536 * Description:
1537 * Free all bios in @rq for a cloned request.
1538 */
1539 void blk_rq_unprep_clone(struct request *rq)
1540 {
1541 struct bio *bio;
1542
1543 while ((bio = rq->bio) != NULL) {
1544 rq->bio = bio->bi_next;
1545
1546 bio_put(bio);
1547 }
1548 }
1549 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1550
1551 /**
1552 * blk_rq_prep_clone - Helper function to setup clone request
1553 * @rq: the request to be setup
1554 * @rq_src: original request to be cloned
1555 * @bs: bio_set that bios for clone are allocated from
1556 * @gfp_mask: memory allocation mask for bio
1557 * @bio_ctr: setup function to be called for each clone bio.
1558 * Returns %0 for success, non %0 for failure.
1559 * @data: private data to be passed to @bio_ctr
1560 *
1561 * Description:
1562 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1563 * Also, pages which the original bios are pointing to are not copied
1564 * and the cloned bios just point same pages.
1565 * So cloned bios must be completed before original bios, which means
1566 * the caller must complete @rq before @rq_src.
1567 */
1568 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1569 struct bio_set *bs, gfp_t gfp_mask,
1570 int (*bio_ctr)(struct bio *, struct bio *, void *),
1571 void *data)
1572 {
1573 struct bio *bio, *bio_src;
1574
1575 if (!bs)
1576 bs = &fs_bio_set;
1577
1578 __rq_for_each_bio(bio_src, rq_src) {
1579 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1580 if (!bio)
1581 goto free_and_out;
1582
1583 if (bio_ctr && bio_ctr(bio, bio_src, data))
1584 goto free_and_out;
1585
1586 if (rq->bio) {
1587 rq->biotail->bi_next = bio;
1588 rq->biotail = bio;
1589 } else {
1590 rq->bio = rq->biotail = bio;
1591 }
1592 bio = NULL;
1593 }
1594
1595 /* Copy attributes of the original request to the clone request. */
1596 rq->__sector = blk_rq_pos(rq_src);
1597 rq->__data_len = blk_rq_bytes(rq_src);
1598 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1599 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1600 rq->special_vec = rq_src->special_vec;
1601 }
1602 rq->nr_phys_segments = rq_src->nr_phys_segments;
1603 rq->ioprio = rq_src->ioprio;
1604
1605 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1606 goto free_and_out;
1607
1608 return 0;
1609
1610 free_and_out:
1611 if (bio)
1612 bio_put(bio);
1613 blk_rq_unprep_clone(rq);
1614
1615 return -ENOMEM;
1616 }
1617 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1618
1619 int kblockd_schedule_work(struct work_struct *work)
1620 {
1621 return queue_work(kblockd_workqueue, work);
1622 }
1623 EXPORT_SYMBOL(kblockd_schedule_work);
1624
1625 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1626 unsigned long delay)
1627 {
1628 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1629 }
1630 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1631
1632 /**
1633 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1634 * @plug: The &struct blk_plug that needs to be initialized
1635 *
1636 * Description:
1637 * blk_start_plug() indicates to the block layer an intent by the caller
1638 * to submit multiple I/O requests in a batch. The block layer may use
1639 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1640 * is called. However, the block layer may choose to submit requests
1641 * before a call to blk_finish_plug() if the number of queued I/Os
1642 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1643 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1644 * the task schedules (see below).
1645 *
1646 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1647 * pending I/O should the task end up blocking between blk_start_plug() and
1648 * blk_finish_plug(). This is important from a performance perspective, but
1649 * also ensures that we don't deadlock. For instance, if the task is blocking
1650 * for a memory allocation, memory reclaim could end up wanting to free a
1651 * page belonging to that request that is currently residing in our private
1652 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1653 * this kind of deadlock.
1654 */
1655 void blk_start_plug(struct blk_plug *plug)
1656 {
1657 struct task_struct *tsk = current;
1658
1659 /*
1660 * If this is a nested plug, don't actually assign it.
1661 */
1662 if (tsk->plug)
1663 return;
1664
1665 INIT_LIST_HEAD(&plug->mq_list);
1666 INIT_LIST_HEAD(&plug->cb_list);
1667 plug->rq_count = 0;
1668 plug->multiple_queues = false;
1669 plug->nowait = false;
1670
1671 /*
1672 * Store ordering should not be needed here, since a potential
1673 * preempt will imply a full memory barrier
1674 */
1675 tsk->plug = plug;
1676 }
1677 EXPORT_SYMBOL(blk_start_plug);
1678
1679 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1680 {
1681 LIST_HEAD(callbacks);
1682
1683 while (!list_empty(&plug->cb_list)) {
1684 list_splice_init(&plug->cb_list, &callbacks);
1685
1686 while (!list_empty(&callbacks)) {
1687 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1688 struct blk_plug_cb,
1689 list);
1690 list_del(&cb->list);
1691 cb->callback(cb, from_schedule);
1692 }
1693 }
1694 }
1695
1696 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1697 int size)
1698 {
1699 struct blk_plug *plug = current->plug;
1700 struct blk_plug_cb *cb;
1701
1702 if (!plug)
1703 return NULL;
1704
1705 list_for_each_entry(cb, &plug->cb_list, list)
1706 if (cb->callback == unplug && cb->data == data)
1707 return cb;
1708
1709 /* Not currently on the callback list */
1710 BUG_ON(size < sizeof(*cb));
1711 cb = kzalloc(size, GFP_ATOMIC);
1712 if (cb) {
1713 cb->data = data;
1714 cb->callback = unplug;
1715 list_add(&cb->list, &plug->cb_list);
1716 }
1717 return cb;
1718 }
1719 EXPORT_SYMBOL(blk_check_plugged);
1720
1721 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1722 {
1723 flush_plug_callbacks(plug, from_schedule);
1724
1725 if (!list_empty(&plug->mq_list))
1726 blk_mq_flush_plug_list(plug, from_schedule);
1727 }
1728
1729 /**
1730 * blk_finish_plug - mark the end of a batch of submitted I/O
1731 * @plug: The &struct blk_plug passed to blk_start_plug()
1732 *
1733 * Description:
1734 * Indicate that a batch of I/O submissions is complete. This function
1735 * must be paired with an initial call to blk_start_plug(). The intent
1736 * is to allow the block layer to optimize I/O submission. See the
1737 * documentation for blk_start_plug() for more information.
1738 */
1739 void blk_finish_plug(struct blk_plug *plug)
1740 {
1741 if (plug != current->plug)
1742 return;
1743 blk_flush_plug_list(plug, false);
1744
1745 current->plug = NULL;
1746 }
1747 EXPORT_SYMBOL(blk_finish_plug);
1748
1749 void blk_io_schedule(void)
1750 {
1751 /* Prevent hang_check timer from firing at us during very long I/O */
1752 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1753
1754 if (timeout)
1755 io_schedule_timeout(timeout);
1756 else
1757 io_schedule();
1758 }
1759 EXPORT_SYMBOL_GPL(blk_io_schedule);
1760
1761 int __init blk_dev_init(void)
1762 {
1763 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1764 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1765 sizeof_field(struct request, cmd_flags));
1766 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1767 sizeof_field(struct bio, bi_opf));
1768
1769 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1770 kblockd_workqueue = alloc_workqueue("kblockd",
1771 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1772 if (!kblockd_workqueue)
1773 panic("Failed to create kblockd\n");
1774
1775 blk_requestq_cachep = kmem_cache_create("request_queue",
1776 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1777
1778 blk_debugfs_root = debugfs_create_dir("block", NULL);
1779
1780 return 0;
1781 }