]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
block: simplify and export blk_rq_append_bio
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, bool nowait)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (nowait)
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 static void blk_rq_timed_out_timer(unsigned long data)
684 {
685 struct request_queue *q = (struct request_queue *)data;
686
687 kblockd_schedule_work(&q->timeout_work);
688 }
689
690 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
691 {
692 struct request_queue *q;
693 int err;
694
695 q = kmem_cache_alloc_node(blk_requestq_cachep,
696 gfp_mask | __GFP_ZERO, node_id);
697 if (!q)
698 return NULL;
699
700 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
701 if (q->id < 0)
702 goto fail_q;
703
704 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
705 if (!q->bio_split)
706 goto fail_id;
707
708 q->backing_dev_info.ra_pages =
709 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
710 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
711 q->backing_dev_info.name = "block";
712 q->node = node_id;
713
714 err = bdi_init(&q->backing_dev_info);
715 if (err)
716 goto fail_split;
717
718 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
719 laptop_mode_timer_fn, (unsigned long) q);
720 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
721 INIT_LIST_HEAD(&q->queue_head);
722 INIT_LIST_HEAD(&q->timeout_list);
723 INIT_LIST_HEAD(&q->icq_list);
724 #ifdef CONFIG_BLK_CGROUP
725 INIT_LIST_HEAD(&q->blkg_list);
726 #endif
727 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
728
729 kobject_init(&q->kobj, &blk_queue_ktype);
730
731 mutex_init(&q->sysfs_lock);
732 spin_lock_init(&q->__queue_lock);
733
734 /*
735 * By default initialize queue_lock to internal lock and driver can
736 * override it later if need be.
737 */
738 q->queue_lock = &q->__queue_lock;
739
740 /*
741 * A queue starts its life with bypass turned on to avoid
742 * unnecessary bypass on/off overhead and nasty surprises during
743 * init. The initial bypass will be finished when the queue is
744 * registered by blk_register_queue().
745 */
746 q->bypass_depth = 1;
747 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
748
749 init_waitqueue_head(&q->mq_freeze_wq);
750
751 /*
752 * Init percpu_ref in atomic mode so that it's faster to shutdown.
753 * See blk_register_queue() for details.
754 */
755 if (percpu_ref_init(&q->q_usage_counter,
756 blk_queue_usage_counter_release,
757 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
758 goto fail_bdi;
759
760 if (blkcg_init_queue(q))
761 goto fail_ref;
762
763 return q;
764
765 fail_ref:
766 percpu_ref_exit(&q->q_usage_counter);
767 fail_bdi:
768 bdi_destroy(&q->backing_dev_info);
769 fail_split:
770 bioset_free(q->bio_split);
771 fail_id:
772 ida_simple_remove(&blk_queue_ida, q->id);
773 fail_q:
774 kmem_cache_free(blk_requestq_cachep, q);
775 return NULL;
776 }
777 EXPORT_SYMBOL(blk_alloc_queue_node);
778
779 /**
780 * blk_init_queue - prepare a request queue for use with a block device
781 * @rfn: The function to be called to process requests that have been
782 * placed on the queue.
783 * @lock: Request queue spin lock
784 *
785 * Description:
786 * If a block device wishes to use the standard request handling procedures,
787 * which sorts requests and coalesces adjacent requests, then it must
788 * call blk_init_queue(). The function @rfn will be called when there
789 * are requests on the queue that need to be processed. If the device
790 * supports plugging, then @rfn may not be called immediately when requests
791 * are available on the queue, but may be called at some time later instead.
792 * Plugged queues are generally unplugged when a buffer belonging to one
793 * of the requests on the queue is needed, or due to memory pressure.
794 *
795 * @rfn is not required, or even expected, to remove all requests off the
796 * queue, but only as many as it can handle at a time. If it does leave
797 * requests on the queue, it is responsible for arranging that the requests
798 * get dealt with eventually.
799 *
800 * The queue spin lock must be held while manipulating the requests on the
801 * request queue; this lock will be taken also from interrupt context, so irq
802 * disabling is needed for it.
803 *
804 * Function returns a pointer to the initialized request queue, or %NULL if
805 * it didn't succeed.
806 *
807 * Note:
808 * blk_init_queue() must be paired with a blk_cleanup_queue() call
809 * when the block device is deactivated (such as at module unload).
810 **/
811
812 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
813 {
814 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
815 }
816 EXPORT_SYMBOL(blk_init_queue);
817
818 struct request_queue *
819 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
820 {
821 struct request_queue *uninit_q, *q;
822
823 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
824 if (!uninit_q)
825 return NULL;
826
827 q = blk_init_allocated_queue(uninit_q, rfn, lock);
828 if (!q)
829 blk_cleanup_queue(uninit_q);
830
831 return q;
832 }
833 EXPORT_SYMBOL(blk_init_queue_node);
834
835 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
836
837 struct request_queue *
838 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
839 spinlock_t *lock)
840 {
841 if (!q)
842 return NULL;
843
844 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
845 if (!q->fq)
846 return NULL;
847
848 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
849 goto fail;
850
851 INIT_WORK(&q->timeout_work, blk_timeout_work);
852 q->request_fn = rfn;
853 q->prep_rq_fn = NULL;
854 q->unprep_rq_fn = NULL;
855 q->queue_flags |= QUEUE_FLAG_DEFAULT;
856
857 /* Override internal queue lock with supplied lock pointer */
858 if (lock)
859 q->queue_lock = lock;
860
861 /*
862 * This also sets hw/phys segments, boundary and size
863 */
864 blk_queue_make_request(q, blk_queue_bio);
865
866 q->sg_reserved_size = INT_MAX;
867
868 /* Protect q->elevator from elevator_change */
869 mutex_lock(&q->sysfs_lock);
870
871 /* init elevator */
872 if (elevator_init(q, NULL)) {
873 mutex_unlock(&q->sysfs_lock);
874 goto fail;
875 }
876
877 mutex_unlock(&q->sysfs_lock);
878
879 return q;
880
881 fail:
882 blk_free_flush_queue(q->fq);
883 return NULL;
884 }
885 EXPORT_SYMBOL(blk_init_allocated_queue);
886
887 bool blk_get_queue(struct request_queue *q)
888 {
889 if (likely(!blk_queue_dying(q))) {
890 __blk_get_queue(q);
891 return true;
892 }
893
894 return false;
895 }
896 EXPORT_SYMBOL(blk_get_queue);
897
898 static inline void blk_free_request(struct request_list *rl, struct request *rq)
899 {
900 if (rq->cmd_flags & REQ_ELVPRIV) {
901 elv_put_request(rl->q, rq);
902 if (rq->elv.icq)
903 put_io_context(rq->elv.icq->ioc);
904 }
905
906 mempool_free(rq, rl->rq_pool);
907 }
908
909 /*
910 * ioc_batching returns true if the ioc is a valid batching request and
911 * should be given priority access to a request.
912 */
913 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
914 {
915 if (!ioc)
916 return 0;
917
918 /*
919 * Make sure the process is able to allocate at least 1 request
920 * even if the batch times out, otherwise we could theoretically
921 * lose wakeups.
922 */
923 return ioc->nr_batch_requests == q->nr_batching ||
924 (ioc->nr_batch_requests > 0
925 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
926 }
927
928 /*
929 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
930 * will cause the process to be a "batcher" on all queues in the system. This
931 * is the behaviour we want though - once it gets a wakeup it should be given
932 * a nice run.
933 */
934 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
935 {
936 if (!ioc || ioc_batching(q, ioc))
937 return;
938
939 ioc->nr_batch_requests = q->nr_batching;
940 ioc->last_waited = jiffies;
941 }
942
943 static void __freed_request(struct request_list *rl, int sync)
944 {
945 struct request_queue *q = rl->q;
946
947 if (rl->count[sync] < queue_congestion_off_threshold(q))
948 blk_clear_congested(rl, sync);
949
950 if (rl->count[sync] + 1 <= q->nr_requests) {
951 if (waitqueue_active(&rl->wait[sync]))
952 wake_up(&rl->wait[sync]);
953
954 blk_clear_rl_full(rl, sync);
955 }
956 }
957
958 /*
959 * A request has just been released. Account for it, update the full and
960 * congestion status, wake up any waiters. Called under q->queue_lock.
961 */
962 static void freed_request(struct request_list *rl, int op, unsigned int flags)
963 {
964 struct request_queue *q = rl->q;
965 int sync = rw_is_sync(op, flags);
966
967 q->nr_rqs[sync]--;
968 rl->count[sync]--;
969 if (flags & REQ_ELVPRIV)
970 q->nr_rqs_elvpriv--;
971
972 __freed_request(rl, sync);
973
974 if (unlikely(rl->starved[sync ^ 1]))
975 __freed_request(rl, sync ^ 1);
976 }
977
978 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
979 {
980 struct request_list *rl;
981 int on_thresh, off_thresh;
982
983 spin_lock_irq(q->queue_lock);
984 q->nr_requests = nr;
985 blk_queue_congestion_threshold(q);
986 on_thresh = queue_congestion_on_threshold(q);
987 off_thresh = queue_congestion_off_threshold(q);
988
989 blk_queue_for_each_rl(rl, q) {
990 if (rl->count[BLK_RW_SYNC] >= on_thresh)
991 blk_set_congested(rl, BLK_RW_SYNC);
992 else if (rl->count[BLK_RW_SYNC] < off_thresh)
993 blk_clear_congested(rl, BLK_RW_SYNC);
994
995 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
996 blk_set_congested(rl, BLK_RW_ASYNC);
997 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
998 blk_clear_congested(rl, BLK_RW_ASYNC);
999
1000 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1001 blk_set_rl_full(rl, BLK_RW_SYNC);
1002 } else {
1003 blk_clear_rl_full(rl, BLK_RW_SYNC);
1004 wake_up(&rl->wait[BLK_RW_SYNC]);
1005 }
1006
1007 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1008 blk_set_rl_full(rl, BLK_RW_ASYNC);
1009 } else {
1010 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1011 wake_up(&rl->wait[BLK_RW_ASYNC]);
1012 }
1013 }
1014
1015 spin_unlock_irq(q->queue_lock);
1016 return 0;
1017 }
1018
1019 /*
1020 * Determine if elevator data should be initialized when allocating the
1021 * request associated with @bio.
1022 */
1023 static bool blk_rq_should_init_elevator(struct bio *bio)
1024 {
1025 if (!bio)
1026 return true;
1027
1028 /*
1029 * Flush requests do not use the elevator so skip initialization.
1030 * This allows a request to share the flush and elevator data.
1031 */
1032 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA))
1033 return false;
1034
1035 return true;
1036 }
1037
1038 /**
1039 * rq_ioc - determine io_context for request allocation
1040 * @bio: request being allocated is for this bio (can be %NULL)
1041 *
1042 * Determine io_context to use for request allocation for @bio. May return
1043 * %NULL if %current->io_context doesn't exist.
1044 */
1045 static struct io_context *rq_ioc(struct bio *bio)
1046 {
1047 #ifdef CONFIG_BLK_CGROUP
1048 if (bio && bio->bi_ioc)
1049 return bio->bi_ioc;
1050 #endif
1051 return current->io_context;
1052 }
1053
1054 /**
1055 * __get_request - get a free request
1056 * @rl: request list to allocate from
1057 * @op: REQ_OP_READ/REQ_OP_WRITE
1058 * @op_flags: rq_flag_bits
1059 * @bio: bio to allocate request for (can be %NULL)
1060 * @gfp_mask: allocation mask
1061 *
1062 * Get a free request from @q. This function may fail under memory
1063 * pressure or if @q is dead.
1064 *
1065 * Must be called with @q->queue_lock held and,
1066 * Returns ERR_PTR on failure, with @q->queue_lock held.
1067 * Returns request pointer on success, with @q->queue_lock *not held*.
1068 */
1069 static struct request *__get_request(struct request_list *rl, int op,
1070 int op_flags, struct bio *bio,
1071 gfp_t gfp_mask)
1072 {
1073 struct request_queue *q = rl->q;
1074 struct request *rq;
1075 struct elevator_type *et = q->elevator->type;
1076 struct io_context *ioc = rq_ioc(bio);
1077 struct io_cq *icq = NULL;
1078 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1079 int may_queue;
1080
1081 if (unlikely(blk_queue_dying(q)))
1082 return ERR_PTR(-ENODEV);
1083
1084 may_queue = elv_may_queue(q, op, op_flags);
1085 if (may_queue == ELV_MQUEUE_NO)
1086 goto rq_starved;
1087
1088 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1089 if (rl->count[is_sync]+1 >= q->nr_requests) {
1090 /*
1091 * The queue will fill after this allocation, so set
1092 * it as full, and mark this process as "batching".
1093 * This process will be allowed to complete a batch of
1094 * requests, others will be blocked.
1095 */
1096 if (!blk_rl_full(rl, is_sync)) {
1097 ioc_set_batching(q, ioc);
1098 blk_set_rl_full(rl, is_sync);
1099 } else {
1100 if (may_queue != ELV_MQUEUE_MUST
1101 && !ioc_batching(q, ioc)) {
1102 /*
1103 * The queue is full and the allocating
1104 * process is not a "batcher", and not
1105 * exempted by the IO scheduler
1106 */
1107 return ERR_PTR(-ENOMEM);
1108 }
1109 }
1110 }
1111 blk_set_congested(rl, is_sync);
1112 }
1113
1114 /*
1115 * Only allow batching queuers to allocate up to 50% over the defined
1116 * limit of requests, otherwise we could have thousands of requests
1117 * allocated with any setting of ->nr_requests
1118 */
1119 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1120 return ERR_PTR(-ENOMEM);
1121
1122 q->nr_rqs[is_sync]++;
1123 rl->count[is_sync]++;
1124 rl->starved[is_sync] = 0;
1125
1126 /*
1127 * Decide whether the new request will be managed by elevator. If
1128 * so, mark @op_flags and increment elvpriv. Non-zero elvpriv will
1129 * prevent the current elevator from being destroyed until the new
1130 * request is freed. This guarantees icq's won't be destroyed and
1131 * makes creating new ones safe.
1132 *
1133 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1134 * it will be created after releasing queue_lock.
1135 */
1136 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1137 op_flags |= REQ_ELVPRIV;
1138 q->nr_rqs_elvpriv++;
1139 if (et->icq_cache && ioc)
1140 icq = ioc_lookup_icq(ioc, q);
1141 }
1142
1143 if (blk_queue_io_stat(q))
1144 op_flags |= REQ_IO_STAT;
1145 spin_unlock_irq(q->queue_lock);
1146
1147 /* allocate and init request */
1148 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1149 if (!rq)
1150 goto fail_alloc;
1151
1152 blk_rq_init(q, rq);
1153 blk_rq_set_rl(rq, rl);
1154 req_set_op_attrs(rq, op, op_flags | REQ_ALLOCED);
1155
1156 /* init elvpriv */
1157 if (op_flags & REQ_ELVPRIV) {
1158 if (unlikely(et->icq_cache && !icq)) {
1159 if (ioc)
1160 icq = ioc_create_icq(ioc, q, gfp_mask);
1161 if (!icq)
1162 goto fail_elvpriv;
1163 }
1164
1165 rq->elv.icq = icq;
1166 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1167 goto fail_elvpriv;
1168
1169 /* @rq->elv.icq holds io_context until @rq is freed */
1170 if (icq)
1171 get_io_context(icq->ioc);
1172 }
1173 out:
1174 /*
1175 * ioc may be NULL here, and ioc_batching will be false. That's
1176 * OK, if the queue is under the request limit then requests need
1177 * not count toward the nr_batch_requests limit. There will always
1178 * be some limit enforced by BLK_BATCH_TIME.
1179 */
1180 if (ioc_batching(q, ioc))
1181 ioc->nr_batch_requests--;
1182
1183 trace_block_getrq(q, bio, op);
1184 return rq;
1185
1186 fail_elvpriv:
1187 /*
1188 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1189 * and may fail indefinitely under memory pressure and thus
1190 * shouldn't stall IO. Treat this request as !elvpriv. This will
1191 * disturb iosched and blkcg but weird is bettern than dead.
1192 */
1193 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1194 __func__, dev_name(q->backing_dev_info.dev));
1195
1196 rq->cmd_flags &= ~REQ_ELVPRIV;
1197 rq->elv.icq = NULL;
1198
1199 spin_lock_irq(q->queue_lock);
1200 q->nr_rqs_elvpriv--;
1201 spin_unlock_irq(q->queue_lock);
1202 goto out;
1203
1204 fail_alloc:
1205 /*
1206 * Allocation failed presumably due to memory. Undo anything we
1207 * might have messed up.
1208 *
1209 * Allocating task should really be put onto the front of the wait
1210 * queue, but this is pretty rare.
1211 */
1212 spin_lock_irq(q->queue_lock);
1213 freed_request(rl, op, op_flags);
1214
1215 /*
1216 * in the very unlikely event that allocation failed and no
1217 * requests for this direction was pending, mark us starved so that
1218 * freeing of a request in the other direction will notice
1219 * us. another possible fix would be to split the rq mempool into
1220 * READ and WRITE
1221 */
1222 rq_starved:
1223 if (unlikely(rl->count[is_sync] == 0))
1224 rl->starved[is_sync] = 1;
1225 return ERR_PTR(-ENOMEM);
1226 }
1227
1228 /**
1229 * get_request - get a free request
1230 * @q: request_queue to allocate request from
1231 * @op: REQ_OP_READ/REQ_OP_WRITE
1232 * @op_flags: rq_flag_bits
1233 * @bio: bio to allocate request for (can be %NULL)
1234 * @gfp_mask: allocation mask
1235 *
1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237 * this function keeps retrying under memory pressure and fails iff @q is dead.
1238 *
1239 * Must be called with @q->queue_lock held and,
1240 * Returns ERR_PTR on failure, with @q->queue_lock held.
1241 * Returns request pointer on success, with @q->queue_lock *not held*.
1242 */
1243 static struct request *get_request(struct request_queue *q, int op,
1244 int op_flags, struct bio *bio,
1245 gfp_t gfp_mask)
1246 {
1247 const bool is_sync = rw_is_sync(op, op_flags) != 0;
1248 DEFINE_WAIT(wait);
1249 struct request_list *rl;
1250 struct request *rq;
1251
1252 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1253 retry:
1254 rq = __get_request(rl, op, op_flags, bio, gfp_mask);
1255 if (!IS_ERR(rq))
1256 return rq;
1257
1258 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1259 blk_put_rl(rl);
1260 return rq;
1261 }
1262
1263 /* wait on @rl and retry */
1264 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1265 TASK_UNINTERRUPTIBLE);
1266
1267 trace_block_sleeprq(q, bio, op);
1268
1269 spin_unlock_irq(q->queue_lock);
1270 io_schedule();
1271
1272 /*
1273 * After sleeping, we become a "batching" process and will be able
1274 * to allocate at least one request, and up to a big batch of them
1275 * for a small period time. See ioc_batching, ioc_set_batching
1276 */
1277 ioc_set_batching(q, current->io_context);
1278
1279 spin_lock_irq(q->queue_lock);
1280 finish_wait(&rl->wait[is_sync], &wait);
1281
1282 goto retry;
1283 }
1284
1285 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1286 gfp_t gfp_mask)
1287 {
1288 struct request *rq;
1289
1290 BUG_ON(rw != READ && rw != WRITE);
1291
1292 /* create ioc upfront */
1293 create_io_context(gfp_mask, q->node);
1294
1295 spin_lock_irq(q->queue_lock);
1296 rq = get_request(q, rw, 0, NULL, gfp_mask);
1297 if (IS_ERR(rq)) {
1298 spin_unlock_irq(q->queue_lock);
1299 return rq;
1300 }
1301
1302 /* q->queue_lock is unlocked at this point */
1303 rq->__data_len = 0;
1304 rq->__sector = (sector_t) -1;
1305 rq->bio = rq->biotail = NULL;
1306 return rq;
1307 }
1308
1309 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1310 {
1311 if (q->mq_ops)
1312 return blk_mq_alloc_request(q, rw,
1313 (gfp_mask & __GFP_DIRECT_RECLAIM) ?
1314 0 : BLK_MQ_REQ_NOWAIT);
1315 else
1316 return blk_old_get_request(q, rw, gfp_mask);
1317 }
1318 EXPORT_SYMBOL(blk_get_request);
1319
1320 /**
1321 * blk_make_request - given a bio, allocate a corresponding struct request.
1322 * @q: target request queue
1323 * @bio: The bio describing the memory mappings that will be submitted for IO.
1324 * It may be a chained-bio properly constructed by block/bio layer.
1325 * @gfp_mask: gfp flags to be used for memory allocation
1326 *
1327 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1328 * type commands. Where the struct request needs to be farther initialized by
1329 * the caller. It is passed a &struct bio, which describes the memory info of
1330 * the I/O transfer.
1331 *
1332 * The caller of blk_make_request must make sure that bi_io_vec
1333 * are set to describe the memory buffers. That bio_data_dir() will return
1334 * the needed direction of the request. (And all bio's in the passed bio-chain
1335 * are properly set accordingly)
1336 *
1337 * If called under none-sleepable conditions, mapped bio buffers must not
1338 * need bouncing, by calling the appropriate masked or flagged allocator,
1339 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1340 * BUG.
1341 *
1342 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1343 * given to how you allocate bios. In particular, you cannot use
1344 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1345 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1346 * thus resulting in a deadlock. Alternatively bios should be allocated using
1347 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1348 * If possible a big IO should be split into smaller parts when allocation
1349 * fails. Partial allocation should not be an error, or you risk a live-lock.
1350 */
1351 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1352 gfp_t gfp_mask)
1353 {
1354 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1355
1356 if (IS_ERR(rq))
1357 return rq;
1358
1359 blk_rq_set_block_pc(rq);
1360
1361 for_each_bio(bio) {
1362 struct bio *bounce_bio = bio;
1363 int ret;
1364
1365 blk_queue_bounce(q, &bounce_bio);
1366 ret = blk_rq_append_bio(rq, bounce_bio);
1367 if (unlikely(ret)) {
1368 blk_put_request(rq);
1369 return ERR_PTR(ret);
1370 }
1371 }
1372
1373 return rq;
1374 }
1375 EXPORT_SYMBOL(blk_make_request);
1376
1377 /**
1378 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1379 * @rq: request to be initialized
1380 *
1381 */
1382 void blk_rq_set_block_pc(struct request *rq)
1383 {
1384 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1385 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1386 }
1387 EXPORT_SYMBOL(blk_rq_set_block_pc);
1388
1389 /**
1390 * blk_requeue_request - put a request back on queue
1391 * @q: request queue where request should be inserted
1392 * @rq: request to be inserted
1393 *
1394 * Description:
1395 * Drivers often keep queueing requests until the hardware cannot accept
1396 * more, when that condition happens we need to put the request back
1397 * on the queue. Must be called with queue lock held.
1398 */
1399 void blk_requeue_request(struct request_queue *q, struct request *rq)
1400 {
1401 blk_delete_timer(rq);
1402 blk_clear_rq_complete(rq);
1403 trace_block_rq_requeue(q, rq);
1404
1405 if (rq->cmd_flags & REQ_QUEUED)
1406 blk_queue_end_tag(q, rq);
1407
1408 BUG_ON(blk_queued_rq(rq));
1409
1410 elv_requeue_request(q, rq);
1411 }
1412 EXPORT_SYMBOL(blk_requeue_request);
1413
1414 static void add_acct_request(struct request_queue *q, struct request *rq,
1415 int where)
1416 {
1417 blk_account_io_start(rq, true);
1418 __elv_add_request(q, rq, where);
1419 }
1420
1421 static void part_round_stats_single(int cpu, struct hd_struct *part,
1422 unsigned long now)
1423 {
1424 int inflight;
1425
1426 if (now == part->stamp)
1427 return;
1428
1429 inflight = part_in_flight(part);
1430 if (inflight) {
1431 __part_stat_add(cpu, part, time_in_queue,
1432 inflight * (now - part->stamp));
1433 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1434 }
1435 part->stamp = now;
1436 }
1437
1438 /**
1439 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1440 * @cpu: cpu number for stats access
1441 * @part: target partition
1442 *
1443 * The average IO queue length and utilisation statistics are maintained
1444 * by observing the current state of the queue length and the amount of
1445 * time it has been in this state for.
1446 *
1447 * Normally, that accounting is done on IO completion, but that can result
1448 * in more than a second's worth of IO being accounted for within any one
1449 * second, leading to >100% utilisation. To deal with that, we call this
1450 * function to do a round-off before returning the results when reading
1451 * /proc/diskstats. This accounts immediately for all queue usage up to
1452 * the current jiffies and restarts the counters again.
1453 */
1454 void part_round_stats(int cpu, struct hd_struct *part)
1455 {
1456 unsigned long now = jiffies;
1457
1458 if (part->partno)
1459 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1460 part_round_stats_single(cpu, part, now);
1461 }
1462 EXPORT_SYMBOL_GPL(part_round_stats);
1463
1464 #ifdef CONFIG_PM
1465 static void blk_pm_put_request(struct request *rq)
1466 {
1467 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1468 pm_runtime_mark_last_busy(rq->q->dev);
1469 }
1470 #else
1471 static inline void blk_pm_put_request(struct request *rq) {}
1472 #endif
1473
1474 /*
1475 * queue lock must be held
1476 */
1477 void __blk_put_request(struct request_queue *q, struct request *req)
1478 {
1479 if (unlikely(!q))
1480 return;
1481
1482 if (q->mq_ops) {
1483 blk_mq_free_request(req);
1484 return;
1485 }
1486
1487 blk_pm_put_request(req);
1488
1489 elv_completed_request(q, req);
1490
1491 /* this is a bio leak */
1492 WARN_ON(req->bio != NULL);
1493
1494 /*
1495 * Request may not have originated from ll_rw_blk. if not,
1496 * it didn't come out of our reserved rq pools
1497 */
1498 if (req->cmd_flags & REQ_ALLOCED) {
1499 unsigned int flags = req->cmd_flags;
1500 int op = req_op(req);
1501 struct request_list *rl = blk_rq_rl(req);
1502
1503 BUG_ON(!list_empty(&req->queuelist));
1504 BUG_ON(ELV_ON_HASH(req));
1505
1506 blk_free_request(rl, req);
1507 freed_request(rl, op, flags);
1508 blk_put_rl(rl);
1509 }
1510 }
1511 EXPORT_SYMBOL_GPL(__blk_put_request);
1512
1513 void blk_put_request(struct request *req)
1514 {
1515 struct request_queue *q = req->q;
1516
1517 if (q->mq_ops)
1518 blk_mq_free_request(req);
1519 else {
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(q->queue_lock, flags);
1523 __blk_put_request(q, req);
1524 spin_unlock_irqrestore(q->queue_lock, flags);
1525 }
1526 }
1527 EXPORT_SYMBOL(blk_put_request);
1528
1529 /**
1530 * blk_add_request_payload - add a payload to a request
1531 * @rq: request to update
1532 * @page: page backing the payload
1533 * @offset: offset in page
1534 * @len: length of the payload.
1535 *
1536 * This allows to later add a payload to an already submitted request by
1537 * a block driver. The driver needs to take care of freeing the payload
1538 * itself.
1539 *
1540 * Note that this is a quite horrible hack and nothing but handling of
1541 * discard requests should ever use it.
1542 */
1543 void blk_add_request_payload(struct request *rq, struct page *page,
1544 int offset, unsigned int len)
1545 {
1546 struct bio *bio = rq->bio;
1547
1548 bio->bi_io_vec->bv_page = page;
1549 bio->bi_io_vec->bv_offset = offset;
1550 bio->bi_io_vec->bv_len = len;
1551
1552 bio->bi_iter.bi_size = len;
1553 bio->bi_vcnt = 1;
1554 bio->bi_phys_segments = 1;
1555
1556 rq->__data_len = rq->resid_len = len;
1557 rq->nr_phys_segments = 1;
1558 }
1559 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1560
1561 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1562 struct bio *bio)
1563 {
1564 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1565
1566 if (!ll_back_merge_fn(q, req, bio))
1567 return false;
1568
1569 trace_block_bio_backmerge(q, req, bio);
1570
1571 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1572 blk_rq_set_mixed_merge(req);
1573
1574 req->biotail->bi_next = bio;
1575 req->biotail = bio;
1576 req->__data_len += bio->bi_iter.bi_size;
1577 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1578
1579 blk_account_io_start(req, false);
1580 return true;
1581 }
1582
1583 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1584 struct bio *bio)
1585 {
1586 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1587
1588 if (!ll_front_merge_fn(q, req, bio))
1589 return false;
1590
1591 trace_block_bio_frontmerge(q, req, bio);
1592
1593 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1594 blk_rq_set_mixed_merge(req);
1595
1596 bio->bi_next = req->bio;
1597 req->bio = bio;
1598
1599 req->__sector = bio->bi_iter.bi_sector;
1600 req->__data_len += bio->bi_iter.bi_size;
1601 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1602
1603 blk_account_io_start(req, false);
1604 return true;
1605 }
1606
1607 /**
1608 * blk_attempt_plug_merge - try to merge with %current's plugged list
1609 * @q: request_queue new bio is being queued at
1610 * @bio: new bio being queued
1611 * @request_count: out parameter for number of traversed plugged requests
1612 * @same_queue_rq: pointer to &struct request that gets filled in when
1613 * another request associated with @q is found on the plug list
1614 * (optional, may be %NULL)
1615 *
1616 * Determine whether @bio being queued on @q can be merged with a request
1617 * on %current's plugged list. Returns %true if merge was successful,
1618 * otherwise %false.
1619 *
1620 * Plugging coalesces IOs from the same issuer for the same purpose without
1621 * going through @q->queue_lock. As such it's more of an issuing mechanism
1622 * than scheduling, and the request, while may have elvpriv data, is not
1623 * added on the elevator at this point. In addition, we don't have
1624 * reliable access to the elevator outside queue lock. Only check basic
1625 * merging parameters without querying the elevator.
1626 *
1627 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1628 */
1629 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1630 unsigned int *request_count,
1631 struct request **same_queue_rq)
1632 {
1633 struct blk_plug *plug;
1634 struct request *rq;
1635 bool ret = false;
1636 struct list_head *plug_list;
1637
1638 plug = current->plug;
1639 if (!plug)
1640 goto out;
1641 *request_count = 0;
1642
1643 if (q->mq_ops)
1644 plug_list = &plug->mq_list;
1645 else
1646 plug_list = &plug->list;
1647
1648 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1649 int el_ret;
1650
1651 if (rq->q == q) {
1652 (*request_count)++;
1653 /*
1654 * Only blk-mq multiple hardware queues case checks the
1655 * rq in the same queue, there should be only one such
1656 * rq in a queue
1657 **/
1658 if (same_queue_rq)
1659 *same_queue_rq = rq;
1660 }
1661
1662 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1663 continue;
1664
1665 el_ret = blk_try_merge(rq, bio);
1666 if (el_ret == ELEVATOR_BACK_MERGE) {
1667 ret = bio_attempt_back_merge(q, rq, bio);
1668 if (ret)
1669 break;
1670 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1671 ret = bio_attempt_front_merge(q, rq, bio);
1672 if (ret)
1673 break;
1674 }
1675 }
1676 out:
1677 return ret;
1678 }
1679
1680 unsigned int blk_plug_queued_count(struct request_queue *q)
1681 {
1682 struct blk_plug *plug;
1683 struct request *rq;
1684 struct list_head *plug_list;
1685 unsigned int ret = 0;
1686
1687 plug = current->plug;
1688 if (!plug)
1689 goto out;
1690
1691 if (q->mq_ops)
1692 plug_list = &plug->mq_list;
1693 else
1694 plug_list = &plug->list;
1695
1696 list_for_each_entry(rq, plug_list, queuelist) {
1697 if (rq->q == q)
1698 ret++;
1699 }
1700 out:
1701 return ret;
1702 }
1703
1704 void init_request_from_bio(struct request *req, struct bio *bio)
1705 {
1706 req->cmd_type = REQ_TYPE_FS;
1707
1708 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1709 if (bio->bi_rw & REQ_RAHEAD)
1710 req->cmd_flags |= REQ_FAILFAST_MASK;
1711
1712 req->errors = 0;
1713 req->__sector = bio->bi_iter.bi_sector;
1714 req->ioprio = bio_prio(bio);
1715 blk_rq_bio_prep(req->q, req, bio);
1716 }
1717
1718 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1719 {
1720 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1721 struct blk_plug *plug;
1722 int el_ret, rw_flags = 0, where = ELEVATOR_INSERT_SORT;
1723 struct request *req;
1724 unsigned int request_count = 0;
1725
1726 /*
1727 * low level driver can indicate that it wants pages above a
1728 * certain limit bounced to low memory (ie for highmem, or even
1729 * ISA dma in theory)
1730 */
1731 blk_queue_bounce(q, &bio);
1732
1733 blk_queue_split(q, &bio, q->bio_split);
1734
1735 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1736 bio->bi_error = -EIO;
1737 bio_endio(bio);
1738 return BLK_QC_T_NONE;
1739 }
1740
1741 if (bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) {
1742 spin_lock_irq(q->queue_lock);
1743 where = ELEVATOR_INSERT_FLUSH;
1744 goto get_rq;
1745 }
1746
1747 /*
1748 * Check if we can merge with the plugged list before grabbing
1749 * any locks.
1750 */
1751 if (!blk_queue_nomerges(q)) {
1752 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1753 return BLK_QC_T_NONE;
1754 } else
1755 request_count = blk_plug_queued_count(q);
1756
1757 spin_lock_irq(q->queue_lock);
1758
1759 el_ret = elv_merge(q, &req, bio);
1760 if (el_ret == ELEVATOR_BACK_MERGE) {
1761 if (bio_attempt_back_merge(q, req, bio)) {
1762 elv_bio_merged(q, req, bio);
1763 if (!attempt_back_merge(q, req))
1764 elv_merged_request(q, req, el_ret);
1765 goto out_unlock;
1766 }
1767 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1768 if (bio_attempt_front_merge(q, req, bio)) {
1769 elv_bio_merged(q, req, bio);
1770 if (!attempt_front_merge(q, req))
1771 elv_merged_request(q, req, el_ret);
1772 goto out_unlock;
1773 }
1774 }
1775
1776 get_rq:
1777 /*
1778 * This sync check and mask will be re-done in init_request_from_bio(),
1779 * but we need to set it earlier to expose the sync flag to the
1780 * rq allocator and io schedulers.
1781 */
1782 if (sync)
1783 rw_flags |= REQ_SYNC;
1784
1785 /*
1786 * Grab a free request. This is might sleep but can not fail.
1787 * Returns with the queue unlocked.
1788 */
1789 req = get_request(q, bio_data_dir(bio), rw_flags, bio, GFP_NOIO);
1790 if (IS_ERR(req)) {
1791 bio->bi_error = PTR_ERR(req);
1792 bio_endio(bio);
1793 goto out_unlock;
1794 }
1795
1796 /*
1797 * After dropping the lock and possibly sleeping here, our request
1798 * may now be mergeable after it had proven unmergeable (above).
1799 * We don't worry about that case for efficiency. It won't happen
1800 * often, and the elevators are able to handle it.
1801 */
1802 init_request_from_bio(req, bio);
1803
1804 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1805 req->cpu = raw_smp_processor_id();
1806
1807 plug = current->plug;
1808 if (plug) {
1809 /*
1810 * If this is the first request added after a plug, fire
1811 * of a plug trace.
1812 */
1813 if (!request_count)
1814 trace_block_plug(q);
1815 else {
1816 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1817 blk_flush_plug_list(plug, false);
1818 trace_block_plug(q);
1819 }
1820 }
1821 list_add_tail(&req->queuelist, &plug->list);
1822 blk_account_io_start(req, true);
1823 } else {
1824 spin_lock_irq(q->queue_lock);
1825 add_acct_request(q, req, where);
1826 __blk_run_queue(q);
1827 out_unlock:
1828 spin_unlock_irq(q->queue_lock);
1829 }
1830
1831 return BLK_QC_T_NONE;
1832 }
1833
1834 /*
1835 * If bio->bi_dev is a partition, remap the location
1836 */
1837 static inline void blk_partition_remap(struct bio *bio)
1838 {
1839 struct block_device *bdev = bio->bi_bdev;
1840
1841 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1842 struct hd_struct *p = bdev->bd_part;
1843
1844 bio->bi_iter.bi_sector += p->start_sect;
1845 bio->bi_bdev = bdev->bd_contains;
1846
1847 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1848 bdev->bd_dev,
1849 bio->bi_iter.bi_sector - p->start_sect);
1850 }
1851 }
1852
1853 static void handle_bad_sector(struct bio *bio)
1854 {
1855 char b[BDEVNAME_SIZE];
1856
1857 printk(KERN_INFO "attempt to access beyond end of device\n");
1858 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1859 bdevname(bio->bi_bdev, b),
1860 bio->bi_rw,
1861 (unsigned long long)bio_end_sector(bio),
1862 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1863 }
1864
1865 #ifdef CONFIG_FAIL_MAKE_REQUEST
1866
1867 static DECLARE_FAULT_ATTR(fail_make_request);
1868
1869 static int __init setup_fail_make_request(char *str)
1870 {
1871 return setup_fault_attr(&fail_make_request, str);
1872 }
1873 __setup("fail_make_request=", setup_fail_make_request);
1874
1875 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1876 {
1877 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1878 }
1879
1880 static int __init fail_make_request_debugfs(void)
1881 {
1882 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1883 NULL, &fail_make_request);
1884
1885 return PTR_ERR_OR_ZERO(dir);
1886 }
1887
1888 late_initcall(fail_make_request_debugfs);
1889
1890 #else /* CONFIG_FAIL_MAKE_REQUEST */
1891
1892 static inline bool should_fail_request(struct hd_struct *part,
1893 unsigned int bytes)
1894 {
1895 return false;
1896 }
1897
1898 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1899
1900 /*
1901 * Check whether this bio extends beyond the end of the device.
1902 */
1903 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1904 {
1905 sector_t maxsector;
1906
1907 if (!nr_sectors)
1908 return 0;
1909
1910 /* Test device or partition size, when known. */
1911 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1912 if (maxsector) {
1913 sector_t sector = bio->bi_iter.bi_sector;
1914
1915 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1916 /*
1917 * This may well happen - the kernel calls bread()
1918 * without checking the size of the device, e.g., when
1919 * mounting a device.
1920 */
1921 handle_bad_sector(bio);
1922 return 1;
1923 }
1924 }
1925
1926 return 0;
1927 }
1928
1929 static noinline_for_stack bool
1930 generic_make_request_checks(struct bio *bio)
1931 {
1932 struct request_queue *q;
1933 int nr_sectors = bio_sectors(bio);
1934 int err = -EIO;
1935 char b[BDEVNAME_SIZE];
1936 struct hd_struct *part;
1937
1938 might_sleep();
1939
1940 if (bio_check_eod(bio, nr_sectors))
1941 goto end_io;
1942
1943 q = bdev_get_queue(bio->bi_bdev);
1944 if (unlikely(!q)) {
1945 printk(KERN_ERR
1946 "generic_make_request: Trying to access "
1947 "nonexistent block-device %s (%Lu)\n",
1948 bdevname(bio->bi_bdev, b),
1949 (long long) bio->bi_iter.bi_sector);
1950 goto end_io;
1951 }
1952
1953 part = bio->bi_bdev->bd_part;
1954 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1955 should_fail_request(&part_to_disk(part)->part0,
1956 bio->bi_iter.bi_size))
1957 goto end_io;
1958
1959 /*
1960 * If this device has partitions, remap block n
1961 * of partition p to block n+start(p) of the disk.
1962 */
1963 blk_partition_remap(bio);
1964
1965 if (bio_check_eod(bio, nr_sectors))
1966 goto end_io;
1967
1968 /*
1969 * Filter flush bio's early so that make_request based
1970 * drivers without flush support don't have to worry
1971 * about them.
1972 */
1973 if ((bio->bi_rw & (REQ_PREFLUSH | REQ_FUA)) &&
1974 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1975 bio->bi_rw &= ~(REQ_PREFLUSH | REQ_FUA);
1976 if (!nr_sectors) {
1977 err = 0;
1978 goto end_io;
1979 }
1980 }
1981
1982 switch (bio_op(bio)) {
1983 case REQ_OP_DISCARD:
1984 if (!blk_queue_discard(q))
1985 goto not_supported;
1986 break;
1987 case REQ_OP_SECURE_ERASE:
1988 if (!blk_queue_secure_erase(q))
1989 goto not_supported;
1990 break;
1991 case REQ_OP_WRITE_SAME:
1992 if (!bdev_write_same(bio->bi_bdev))
1993 goto not_supported;
1994 break;
1995 default:
1996 break;
1997 }
1998
1999 /*
2000 * Various block parts want %current->io_context and lazy ioc
2001 * allocation ends up trading a lot of pain for a small amount of
2002 * memory. Just allocate it upfront. This may fail and block
2003 * layer knows how to live with it.
2004 */
2005 create_io_context(GFP_ATOMIC, q->node);
2006
2007 if (!blkcg_bio_issue_check(q, bio))
2008 return false;
2009
2010 trace_block_bio_queue(q, bio);
2011 return true;
2012
2013 not_supported:
2014 err = -EOPNOTSUPP;
2015 end_io:
2016 bio->bi_error = err;
2017 bio_endio(bio);
2018 return false;
2019 }
2020
2021 /**
2022 * generic_make_request - hand a buffer to its device driver for I/O
2023 * @bio: The bio describing the location in memory and on the device.
2024 *
2025 * generic_make_request() is used to make I/O requests of block
2026 * devices. It is passed a &struct bio, which describes the I/O that needs
2027 * to be done.
2028 *
2029 * generic_make_request() does not return any status. The
2030 * success/failure status of the request, along with notification of
2031 * completion, is delivered asynchronously through the bio->bi_end_io
2032 * function described (one day) else where.
2033 *
2034 * The caller of generic_make_request must make sure that bi_io_vec
2035 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2036 * set to describe the device address, and the
2037 * bi_end_io and optionally bi_private are set to describe how
2038 * completion notification should be signaled.
2039 *
2040 * generic_make_request and the drivers it calls may use bi_next if this
2041 * bio happens to be merged with someone else, and may resubmit the bio to
2042 * a lower device by calling into generic_make_request recursively, which
2043 * means the bio should NOT be touched after the call to ->make_request_fn.
2044 */
2045 blk_qc_t generic_make_request(struct bio *bio)
2046 {
2047 struct bio_list bio_list_on_stack;
2048 blk_qc_t ret = BLK_QC_T_NONE;
2049
2050 if (!generic_make_request_checks(bio))
2051 goto out;
2052
2053 /*
2054 * We only want one ->make_request_fn to be active at a time, else
2055 * stack usage with stacked devices could be a problem. So use
2056 * current->bio_list to keep a list of requests submited by a
2057 * make_request_fn function. current->bio_list is also used as a
2058 * flag to say if generic_make_request is currently active in this
2059 * task or not. If it is NULL, then no make_request is active. If
2060 * it is non-NULL, then a make_request is active, and new requests
2061 * should be added at the tail
2062 */
2063 if (current->bio_list) {
2064 bio_list_add(current->bio_list, bio);
2065 goto out;
2066 }
2067
2068 /* following loop may be a bit non-obvious, and so deserves some
2069 * explanation.
2070 * Before entering the loop, bio->bi_next is NULL (as all callers
2071 * ensure that) so we have a list with a single bio.
2072 * We pretend that we have just taken it off a longer list, so
2073 * we assign bio_list to a pointer to the bio_list_on_stack,
2074 * thus initialising the bio_list of new bios to be
2075 * added. ->make_request() may indeed add some more bios
2076 * through a recursive call to generic_make_request. If it
2077 * did, we find a non-NULL value in bio_list and re-enter the loop
2078 * from the top. In this case we really did just take the bio
2079 * of the top of the list (no pretending) and so remove it from
2080 * bio_list, and call into ->make_request() again.
2081 */
2082 BUG_ON(bio->bi_next);
2083 bio_list_init(&bio_list_on_stack);
2084 current->bio_list = &bio_list_on_stack;
2085 do {
2086 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2087
2088 if (likely(blk_queue_enter(q, false) == 0)) {
2089 ret = q->make_request_fn(q, bio);
2090
2091 blk_queue_exit(q);
2092
2093 bio = bio_list_pop(current->bio_list);
2094 } else {
2095 struct bio *bio_next = bio_list_pop(current->bio_list);
2096
2097 bio_io_error(bio);
2098 bio = bio_next;
2099 }
2100 } while (bio);
2101 current->bio_list = NULL; /* deactivate */
2102
2103 out:
2104 return ret;
2105 }
2106 EXPORT_SYMBOL(generic_make_request);
2107
2108 /**
2109 * submit_bio - submit a bio to the block device layer for I/O
2110 * @bio: The &struct bio which describes the I/O
2111 *
2112 * submit_bio() is very similar in purpose to generic_make_request(), and
2113 * uses that function to do most of the work. Both are fairly rough
2114 * interfaces; @bio must be presetup and ready for I/O.
2115 *
2116 */
2117 blk_qc_t submit_bio(struct bio *bio)
2118 {
2119 /*
2120 * If it's a regular read/write or a barrier with data attached,
2121 * go through the normal accounting stuff before submission.
2122 */
2123 if (bio_has_data(bio)) {
2124 unsigned int count;
2125
2126 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2127 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2128 else
2129 count = bio_sectors(bio);
2130
2131 if (op_is_write(bio_op(bio))) {
2132 count_vm_events(PGPGOUT, count);
2133 } else {
2134 task_io_account_read(bio->bi_iter.bi_size);
2135 count_vm_events(PGPGIN, count);
2136 }
2137
2138 if (unlikely(block_dump)) {
2139 char b[BDEVNAME_SIZE];
2140 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2141 current->comm, task_pid_nr(current),
2142 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2143 (unsigned long long)bio->bi_iter.bi_sector,
2144 bdevname(bio->bi_bdev, b),
2145 count);
2146 }
2147 }
2148
2149 return generic_make_request(bio);
2150 }
2151 EXPORT_SYMBOL(submit_bio);
2152
2153 /**
2154 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2155 * for new the queue limits
2156 * @q: the queue
2157 * @rq: the request being checked
2158 *
2159 * Description:
2160 * @rq may have been made based on weaker limitations of upper-level queues
2161 * in request stacking drivers, and it may violate the limitation of @q.
2162 * Since the block layer and the underlying device driver trust @rq
2163 * after it is inserted to @q, it should be checked against @q before
2164 * the insertion using this generic function.
2165 *
2166 * Request stacking drivers like request-based dm may change the queue
2167 * limits when retrying requests on other queues. Those requests need
2168 * to be checked against the new queue limits again during dispatch.
2169 */
2170 static int blk_cloned_rq_check_limits(struct request_queue *q,
2171 struct request *rq)
2172 {
2173 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2174 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2175 return -EIO;
2176 }
2177
2178 /*
2179 * queue's settings related to segment counting like q->bounce_pfn
2180 * may differ from that of other stacking queues.
2181 * Recalculate it to check the request correctly on this queue's
2182 * limitation.
2183 */
2184 blk_recalc_rq_segments(rq);
2185 if (rq->nr_phys_segments > queue_max_segments(q)) {
2186 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2187 return -EIO;
2188 }
2189
2190 return 0;
2191 }
2192
2193 /**
2194 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2195 * @q: the queue to submit the request
2196 * @rq: the request being queued
2197 */
2198 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2199 {
2200 unsigned long flags;
2201 int where = ELEVATOR_INSERT_BACK;
2202
2203 if (blk_cloned_rq_check_limits(q, rq))
2204 return -EIO;
2205
2206 if (rq->rq_disk &&
2207 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2208 return -EIO;
2209
2210 if (q->mq_ops) {
2211 if (blk_queue_io_stat(q))
2212 blk_account_io_start(rq, true);
2213 blk_mq_insert_request(rq, false, true, false);
2214 return 0;
2215 }
2216
2217 spin_lock_irqsave(q->queue_lock, flags);
2218 if (unlikely(blk_queue_dying(q))) {
2219 spin_unlock_irqrestore(q->queue_lock, flags);
2220 return -ENODEV;
2221 }
2222
2223 /*
2224 * Submitting request must be dequeued before calling this function
2225 * because it will be linked to another request_queue
2226 */
2227 BUG_ON(blk_queued_rq(rq));
2228
2229 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
2230 where = ELEVATOR_INSERT_FLUSH;
2231
2232 add_acct_request(q, rq, where);
2233 if (where == ELEVATOR_INSERT_FLUSH)
2234 __blk_run_queue(q);
2235 spin_unlock_irqrestore(q->queue_lock, flags);
2236
2237 return 0;
2238 }
2239 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2240
2241 /**
2242 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2243 * @rq: request to examine
2244 *
2245 * Description:
2246 * A request could be merge of IOs which require different failure
2247 * handling. This function determines the number of bytes which
2248 * can be failed from the beginning of the request without
2249 * crossing into area which need to be retried further.
2250 *
2251 * Return:
2252 * The number of bytes to fail.
2253 *
2254 * Context:
2255 * queue_lock must be held.
2256 */
2257 unsigned int blk_rq_err_bytes(const struct request *rq)
2258 {
2259 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2260 unsigned int bytes = 0;
2261 struct bio *bio;
2262
2263 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2264 return blk_rq_bytes(rq);
2265
2266 /*
2267 * Currently the only 'mixing' which can happen is between
2268 * different fastfail types. We can safely fail portions
2269 * which have all the failfast bits that the first one has -
2270 * the ones which are at least as eager to fail as the first
2271 * one.
2272 */
2273 for (bio = rq->bio; bio; bio = bio->bi_next) {
2274 if ((bio->bi_rw & ff) != ff)
2275 break;
2276 bytes += bio->bi_iter.bi_size;
2277 }
2278
2279 /* this could lead to infinite loop */
2280 BUG_ON(blk_rq_bytes(rq) && !bytes);
2281 return bytes;
2282 }
2283 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2284
2285 void blk_account_io_completion(struct request *req, unsigned int bytes)
2286 {
2287 if (blk_do_io_stat(req)) {
2288 const int rw = rq_data_dir(req);
2289 struct hd_struct *part;
2290 int cpu;
2291
2292 cpu = part_stat_lock();
2293 part = req->part;
2294 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2295 part_stat_unlock();
2296 }
2297 }
2298
2299 void blk_account_io_done(struct request *req)
2300 {
2301 /*
2302 * Account IO completion. flush_rq isn't accounted as a
2303 * normal IO on queueing nor completion. Accounting the
2304 * containing request is enough.
2305 */
2306 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2307 unsigned long duration = jiffies - req->start_time;
2308 const int rw = rq_data_dir(req);
2309 struct hd_struct *part;
2310 int cpu;
2311
2312 cpu = part_stat_lock();
2313 part = req->part;
2314
2315 part_stat_inc(cpu, part, ios[rw]);
2316 part_stat_add(cpu, part, ticks[rw], duration);
2317 part_round_stats(cpu, part);
2318 part_dec_in_flight(part, rw);
2319
2320 hd_struct_put(part);
2321 part_stat_unlock();
2322 }
2323 }
2324
2325 #ifdef CONFIG_PM
2326 /*
2327 * Don't process normal requests when queue is suspended
2328 * or in the process of suspending/resuming
2329 */
2330 static struct request *blk_pm_peek_request(struct request_queue *q,
2331 struct request *rq)
2332 {
2333 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2334 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2335 return NULL;
2336 else
2337 return rq;
2338 }
2339 #else
2340 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2341 struct request *rq)
2342 {
2343 return rq;
2344 }
2345 #endif
2346
2347 void blk_account_io_start(struct request *rq, bool new_io)
2348 {
2349 struct hd_struct *part;
2350 int rw = rq_data_dir(rq);
2351 int cpu;
2352
2353 if (!blk_do_io_stat(rq))
2354 return;
2355
2356 cpu = part_stat_lock();
2357
2358 if (!new_io) {
2359 part = rq->part;
2360 part_stat_inc(cpu, part, merges[rw]);
2361 } else {
2362 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2363 if (!hd_struct_try_get(part)) {
2364 /*
2365 * The partition is already being removed,
2366 * the request will be accounted on the disk only
2367 *
2368 * We take a reference on disk->part0 although that
2369 * partition will never be deleted, so we can treat
2370 * it as any other partition.
2371 */
2372 part = &rq->rq_disk->part0;
2373 hd_struct_get(part);
2374 }
2375 part_round_stats(cpu, part);
2376 part_inc_in_flight(part, rw);
2377 rq->part = part;
2378 }
2379
2380 part_stat_unlock();
2381 }
2382
2383 /**
2384 * blk_peek_request - peek at the top of a request queue
2385 * @q: request queue to peek at
2386 *
2387 * Description:
2388 * Return the request at the top of @q. The returned request
2389 * should be started using blk_start_request() before LLD starts
2390 * processing it.
2391 *
2392 * Return:
2393 * Pointer to the request at the top of @q if available. Null
2394 * otherwise.
2395 *
2396 * Context:
2397 * queue_lock must be held.
2398 */
2399 struct request *blk_peek_request(struct request_queue *q)
2400 {
2401 struct request *rq;
2402 int ret;
2403
2404 while ((rq = __elv_next_request(q)) != NULL) {
2405
2406 rq = blk_pm_peek_request(q, rq);
2407 if (!rq)
2408 break;
2409
2410 if (!(rq->cmd_flags & REQ_STARTED)) {
2411 /*
2412 * This is the first time the device driver
2413 * sees this request (possibly after
2414 * requeueing). Notify IO scheduler.
2415 */
2416 if (rq->cmd_flags & REQ_SORTED)
2417 elv_activate_rq(q, rq);
2418
2419 /*
2420 * just mark as started even if we don't start
2421 * it, a request that has been delayed should
2422 * not be passed by new incoming requests
2423 */
2424 rq->cmd_flags |= REQ_STARTED;
2425 trace_block_rq_issue(q, rq);
2426 }
2427
2428 if (!q->boundary_rq || q->boundary_rq == rq) {
2429 q->end_sector = rq_end_sector(rq);
2430 q->boundary_rq = NULL;
2431 }
2432
2433 if (rq->cmd_flags & REQ_DONTPREP)
2434 break;
2435
2436 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2437 /*
2438 * make sure space for the drain appears we
2439 * know we can do this because max_hw_segments
2440 * has been adjusted to be one fewer than the
2441 * device can handle
2442 */
2443 rq->nr_phys_segments++;
2444 }
2445
2446 if (!q->prep_rq_fn)
2447 break;
2448
2449 ret = q->prep_rq_fn(q, rq);
2450 if (ret == BLKPREP_OK) {
2451 break;
2452 } else if (ret == BLKPREP_DEFER) {
2453 /*
2454 * the request may have been (partially) prepped.
2455 * we need to keep this request in the front to
2456 * avoid resource deadlock. REQ_STARTED will
2457 * prevent other fs requests from passing this one.
2458 */
2459 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2460 !(rq->cmd_flags & REQ_DONTPREP)) {
2461 /*
2462 * remove the space for the drain we added
2463 * so that we don't add it again
2464 */
2465 --rq->nr_phys_segments;
2466 }
2467
2468 rq = NULL;
2469 break;
2470 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2471 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2472
2473 rq->cmd_flags |= REQ_QUIET;
2474 /*
2475 * Mark this request as started so we don't trigger
2476 * any debug logic in the end I/O path.
2477 */
2478 blk_start_request(rq);
2479 __blk_end_request_all(rq, err);
2480 } else {
2481 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2482 break;
2483 }
2484 }
2485
2486 return rq;
2487 }
2488 EXPORT_SYMBOL(blk_peek_request);
2489
2490 void blk_dequeue_request(struct request *rq)
2491 {
2492 struct request_queue *q = rq->q;
2493
2494 BUG_ON(list_empty(&rq->queuelist));
2495 BUG_ON(ELV_ON_HASH(rq));
2496
2497 list_del_init(&rq->queuelist);
2498
2499 /*
2500 * the time frame between a request being removed from the lists
2501 * and to it is freed is accounted as io that is in progress at
2502 * the driver side.
2503 */
2504 if (blk_account_rq(rq)) {
2505 q->in_flight[rq_is_sync(rq)]++;
2506 set_io_start_time_ns(rq);
2507 }
2508 }
2509
2510 /**
2511 * blk_start_request - start request processing on the driver
2512 * @req: request to dequeue
2513 *
2514 * Description:
2515 * Dequeue @req and start timeout timer on it. This hands off the
2516 * request to the driver.
2517 *
2518 * Block internal functions which don't want to start timer should
2519 * call blk_dequeue_request().
2520 *
2521 * Context:
2522 * queue_lock must be held.
2523 */
2524 void blk_start_request(struct request *req)
2525 {
2526 blk_dequeue_request(req);
2527
2528 /*
2529 * We are now handing the request to the hardware, initialize
2530 * resid_len to full count and add the timeout handler.
2531 */
2532 req->resid_len = blk_rq_bytes(req);
2533 if (unlikely(blk_bidi_rq(req)))
2534 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2535
2536 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2537 blk_add_timer(req);
2538 }
2539 EXPORT_SYMBOL(blk_start_request);
2540
2541 /**
2542 * blk_fetch_request - fetch a request from a request queue
2543 * @q: request queue to fetch a request from
2544 *
2545 * Description:
2546 * Return the request at the top of @q. The request is started on
2547 * return and LLD can start processing it immediately.
2548 *
2549 * Return:
2550 * Pointer to the request at the top of @q if available. Null
2551 * otherwise.
2552 *
2553 * Context:
2554 * queue_lock must be held.
2555 */
2556 struct request *blk_fetch_request(struct request_queue *q)
2557 {
2558 struct request *rq;
2559
2560 rq = blk_peek_request(q);
2561 if (rq)
2562 blk_start_request(rq);
2563 return rq;
2564 }
2565 EXPORT_SYMBOL(blk_fetch_request);
2566
2567 /**
2568 * blk_update_request - Special helper function for request stacking drivers
2569 * @req: the request being processed
2570 * @error: %0 for success, < %0 for error
2571 * @nr_bytes: number of bytes to complete @req
2572 *
2573 * Description:
2574 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2575 * the request structure even if @req doesn't have leftover.
2576 * If @req has leftover, sets it up for the next range of segments.
2577 *
2578 * This special helper function is only for request stacking drivers
2579 * (e.g. request-based dm) so that they can handle partial completion.
2580 * Actual device drivers should use blk_end_request instead.
2581 *
2582 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2583 * %false return from this function.
2584 *
2585 * Return:
2586 * %false - this request doesn't have any more data
2587 * %true - this request has more data
2588 **/
2589 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2590 {
2591 int total_bytes;
2592
2593 trace_block_rq_complete(req->q, req, nr_bytes);
2594
2595 if (!req->bio)
2596 return false;
2597
2598 /*
2599 * For fs requests, rq is just carrier of independent bio's
2600 * and each partial completion should be handled separately.
2601 * Reset per-request error on each partial completion.
2602 *
2603 * TODO: tj: This is too subtle. It would be better to let
2604 * low level drivers do what they see fit.
2605 */
2606 if (req->cmd_type == REQ_TYPE_FS)
2607 req->errors = 0;
2608
2609 if (error && req->cmd_type == REQ_TYPE_FS &&
2610 !(req->cmd_flags & REQ_QUIET)) {
2611 char *error_type;
2612
2613 switch (error) {
2614 case -ENOLINK:
2615 error_type = "recoverable transport";
2616 break;
2617 case -EREMOTEIO:
2618 error_type = "critical target";
2619 break;
2620 case -EBADE:
2621 error_type = "critical nexus";
2622 break;
2623 case -ETIMEDOUT:
2624 error_type = "timeout";
2625 break;
2626 case -ENOSPC:
2627 error_type = "critical space allocation";
2628 break;
2629 case -ENODATA:
2630 error_type = "critical medium";
2631 break;
2632 case -EIO:
2633 default:
2634 error_type = "I/O";
2635 break;
2636 }
2637 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2638 __func__, error_type, req->rq_disk ?
2639 req->rq_disk->disk_name : "?",
2640 (unsigned long long)blk_rq_pos(req));
2641
2642 }
2643
2644 blk_account_io_completion(req, nr_bytes);
2645
2646 total_bytes = 0;
2647 while (req->bio) {
2648 struct bio *bio = req->bio;
2649 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2650
2651 if (bio_bytes == bio->bi_iter.bi_size)
2652 req->bio = bio->bi_next;
2653
2654 req_bio_endio(req, bio, bio_bytes, error);
2655
2656 total_bytes += bio_bytes;
2657 nr_bytes -= bio_bytes;
2658
2659 if (!nr_bytes)
2660 break;
2661 }
2662
2663 /*
2664 * completely done
2665 */
2666 if (!req->bio) {
2667 /*
2668 * Reset counters so that the request stacking driver
2669 * can find how many bytes remain in the request
2670 * later.
2671 */
2672 req->__data_len = 0;
2673 return false;
2674 }
2675
2676 req->__data_len -= total_bytes;
2677
2678 /* update sector only for requests with clear definition of sector */
2679 if (req->cmd_type == REQ_TYPE_FS)
2680 req->__sector += total_bytes >> 9;
2681
2682 /* mixed attributes always follow the first bio */
2683 if (req->cmd_flags & REQ_MIXED_MERGE) {
2684 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2685 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2686 }
2687
2688 /*
2689 * If total number of sectors is less than the first segment
2690 * size, something has gone terribly wrong.
2691 */
2692 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2693 blk_dump_rq_flags(req, "request botched");
2694 req->__data_len = blk_rq_cur_bytes(req);
2695 }
2696
2697 /* recalculate the number of segments */
2698 blk_recalc_rq_segments(req);
2699
2700 return true;
2701 }
2702 EXPORT_SYMBOL_GPL(blk_update_request);
2703
2704 static bool blk_update_bidi_request(struct request *rq, int error,
2705 unsigned int nr_bytes,
2706 unsigned int bidi_bytes)
2707 {
2708 if (blk_update_request(rq, error, nr_bytes))
2709 return true;
2710
2711 /* Bidi request must be completed as a whole */
2712 if (unlikely(blk_bidi_rq(rq)) &&
2713 blk_update_request(rq->next_rq, error, bidi_bytes))
2714 return true;
2715
2716 if (blk_queue_add_random(rq->q))
2717 add_disk_randomness(rq->rq_disk);
2718
2719 return false;
2720 }
2721
2722 /**
2723 * blk_unprep_request - unprepare a request
2724 * @req: the request
2725 *
2726 * This function makes a request ready for complete resubmission (or
2727 * completion). It happens only after all error handling is complete,
2728 * so represents the appropriate moment to deallocate any resources
2729 * that were allocated to the request in the prep_rq_fn. The queue
2730 * lock is held when calling this.
2731 */
2732 void blk_unprep_request(struct request *req)
2733 {
2734 struct request_queue *q = req->q;
2735
2736 req->cmd_flags &= ~REQ_DONTPREP;
2737 if (q->unprep_rq_fn)
2738 q->unprep_rq_fn(q, req);
2739 }
2740 EXPORT_SYMBOL_GPL(blk_unprep_request);
2741
2742 /*
2743 * queue lock must be held
2744 */
2745 void blk_finish_request(struct request *req, int error)
2746 {
2747 if (req->cmd_flags & REQ_QUEUED)
2748 blk_queue_end_tag(req->q, req);
2749
2750 BUG_ON(blk_queued_rq(req));
2751
2752 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2753 laptop_io_completion(&req->q->backing_dev_info);
2754
2755 blk_delete_timer(req);
2756
2757 if (req->cmd_flags & REQ_DONTPREP)
2758 blk_unprep_request(req);
2759
2760 blk_account_io_done(req);
2761
2762 if (req->end_io)
2763 req->end_io(req, error);
2764 else {
2765 if (blk_bidi_rq(req))
2766 __blk_put_request(req->next_rq->q, req->next_rq);
2767
2768 __blk_put_request(req->q, req);
2769 }
2770 }
2771 EXPORT_SYMBOL(blk_finish_request);
2772
2773 /**
2774 * blk_end_bidi_request - Complete a bidi request
2775 * @rq: the request to complete
2776 * @error: %0 for success, < %0 for error
2777 * @nr_bytes: number of bytes to complete @rq
2778 * @bidi_bytes: number of bytes to complete @rq->next_rq
2779 *
2780 * Description:
2781 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2782 * Drivers that supports bidi can safely call this member for any
2783 * type of request, bidi or uni. In the later case @bidi_bytes is
2784 * just ignored.
2785 *
2786 * Return:
2787 * %false - we are done with this request
2788 * %true - still buffers pending for this request
2789 **/
2790 static bool blk_end_bidi_request(struct request *rq, int error,
2791 unsigned int nr_bytes, unsigned int bidi_bytes)
2792 {
2793 struct request_queue *q = rq->q;
2794 unsigned long flags;
2795
2796 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2797 return true;
2798
2799 spin_lock_irqsave(q->queue_lock, flags);
2800 blk_finish_request(rq, error);
2801 spin_unlock_irqrestore(q->queue_lock, flags);
2802
2803 return false;
2804 }
2805
2806 /**
2807 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2808 * @rq: the request to complete
2809 * @error: %0 for success, < %0 for error
2810 * @nr_bytes: number of bytes to complete @rq
2811 * @bidi_bytes: number of bytes to complete @rq->next_rq
2812 *
2813 * Description:
2814 * Identical to blk_end_bidi_request() except that queue lock is
2815 * assumed to be locked on entry and remains so on return.
2816 *
2817 * Return:
2818 * %false - we are done with this request
2819 * %true - still buffers pending for this request
2820 **/
2821 bool __blk_end_bidi_request(struct request *rq, int error,
2822 unsigned int nr_bytes, unsigned int bidi_bytes)
2823 {
2824 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2825 return true;
2826
2827 blk_finish_request(rq, error);
2828
2829 return false;
2830 }
2831
2832 /**
2833 * blk_end_request - Helper function for drivers to complete the request.
2834 * @rq: the request being processed
2835 * @error: %0 for success, < %0 for error
2836 * @nr_bytes: number of bytes to complete
2837 *
2838 * Description:
2839 * Ends I/O on a number of bytes attached to @rq.
2840 * If @rq has leftover, sets it up for the next range of segments.
2841 *
2842 * Return:
2843 * %false - we are done with this request
2844 * %true - still buffers pending for this request
2845 **/
2846 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2847 {
2848 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2849 }
2850 EXPORT_SYMBOL(blk_end_request);
2851
2852 /**
2853 * blk_end_request_all - Helper function for drives to finish the request.
2854 * @rq: the request to finish
2855 * @error: %0 for success, < %0 for error
2856 *
2857 * Description:
2858 * Completely finish @rq.
2859 */
2860 void blk_end_request_all(struct request *rq, int error)
2861 {
2862 bool pending;
2863 unsigned int bidi_bytes = 0;
2864
2865 if (unlikely(blk_bidi_rq(rq)))
2866 bidi_bytes = blk_rq_bytes(rq->next_rq);
2867
2868 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2869 BUG_ON(pending);
2870 }
2871 EXPORT_SYMBOL(blk_end_request_all);
2872
2873 /**
2874 * blk_end_request_cur - Helper function to finish the current request chunk.
2875 * @rq: the request to finish the current chunk for
2876 * @error: %0 for success, < %0 for error
2877 *
2878 * Description:
2879 * Complete the current consecutively mapped chunk from @rq.
2880 *
2881 * Return:
2882 * %false - we are done with this request
2883 * %true - still buffers pending for this request
2884 */
2885 bool blk_end_request_cur(struct request *rq, int error)
2886 {
2887 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2888 }
2889 EXPORT_SYMBOL(blk_end_request_cur);
2890
2891 /**
2892 * blk_end_request_err - Finish a request till the next failure boundary.
2893 * @rq: the request to finish till the next failure boundary for
2894 * @error: must be negative errno
2895 *
2896 * Description:
2897 * Complete @rq till the next failure boundary.
2898 *
2899 * Return:
2900 * %false - we are done with this request
2901 * %true - still buffers pending for this request
2902 */
2903 bool blk_end_request_err(struct request *rq, int error)
2904 {
2905 WARN_ON(error >= 0);
2906 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2907 }
2908 EXPORT_SYMBOL_GPL(blk_end_request_err);
2909
2910 /**
2911 * __blk_end_request - Helper function for drivers to complete the request.
2912 * @rq: the request being processed
2913 * @error: %0 for success, < %0 for error
2914 * @nr_bytes: number of bytes to complete
2915 *
2916 * Description:
2917 * Must be called with queue lock held unlike blk_end_request().
2918 *
2919 * Return:
2920 * %false - we are done with this request
2921 * %true - still buffers pending for this request
2922 **/
2923 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2924 {
2925 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2926 }
2927 EXPORT_SYMBOL(__blk_end_request);
2928
2929 /**
2930 * __blk_end_request_all - Helper function for drives to finish the request.
2931 * @rq: the request to finish
2932 * @error: %0 for success, < %0 for error
2933 *
2934 * Description:
2935 * Completely finish @rq. Must be called with queue lock held.
2936 */
2937 void __blk_end_request_all(struct request *rq, int error)
2938 {
2939 bool pending;
2940 unsigned int bidi_bytes = 0;
2941
2942 if (unlikely(blk_bidi_rq(rq)))
2943 bidi_bytes = blk_rq_bytes(rq->next_rq);
2944
2945 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2946 BUG_ON(pending);
2947 }
2948 EXPORT_SYMBOL(__blk_end_request_all);
2949
2950 /**
2951 * __blk_end_request_cur - Helper function to finish the current request chunk.
2952 * @rq: the request to finish the current chunk for
2953 * @error: %0 for success, < %0 for error
2954 *
2955 * Description:
2956 * Complete the current consecutively mapped chunk from @rq. Must
2957 * be called with queue lock held.
2958 *
2959 * Return:
2960 * %false - we are done with this request
2961 * %true - still buffers pending for this request
2962 */
2963 bool __blk_end_request_cur(struct request *rq, int error)
2964 {
2965 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2966 }
2967 EXPORT_SYMBOL(__blk_end_request_cur);
2968
2969 /**
2970 * __blk_end_request_err - Finish a request till the next failure boundary.
2971 * @rq: the request to finish till the next failure boundary for
2972 * @error: must be negative errno
2973 *
2974 * Description:
2975 * Complete @rq till the next failure boundary. Must be called
2976 * with queue lock held.
2977 *
2978 * Return:
2979 * %false - we are done with this request
2980 * %true - still buffers pending for this request
2981 */
2982 bool __blk_end_request_err(struct request *rq, int error)
2983 {
2984 WARN_ON(error >= 0);
2985 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2986 }
2987 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2988
2989 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2990 struct bio *bio)
2991 {
2992 req_set_op(rq, bio_op(bio));
2993
2994 if (bio_has_data(bio))
2995 rq->nr_phys_segments = bio_phys_segments(q, bio);
2996
2997 rq->__data_len = bio->bi_iter.bi_size;
2998 rq->bio = rq->biotail = bio;
2999
3000 if (bio->bi_bdev)
3001 rq->rq_disk = bio->bi_bdev->bd_disk;
3002 }
3003
3004 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3005 /**
3006 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3007 * @rq: the request to be flushed
3008 *
3009 * Description:
3010 * Flush all pages in @rq.
3011 */
3012 void rq_flush_dcache_pages(struct request *rq)
3013 {
3014 struct req_iterator iter;
3015 struct bio_vec bvec;
3016
3017 rq_for_each_segment(bvec, rq, iter)
3018 flush_dcache_page(bvec.bv_page);
3019 }
3020 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3021 #endif
3022
3023 /**
3024 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3025 * @q : the queue of the device being checked
3026 *
3027 * Description:
3028 * Check if underlying low-level drivers of a device are busy.
3029 * If the drivers want to export their busy state, they must set own
3030 * exporting function using blk_queue_lld_busy() first.
3031 *
3032 * Basically, this function is used only by request stacking drivers
3033 * to stop dispatching requests to underlying devices when underlying
3034 * devices are busy. This behavior helps more I/O merging on the queue
3035 * of the request stacking driver and prevents I/O throughput regression
3036 * on burst I/O load.
3037 *
3038 * Return:
3039 * 0 - Not busy (The request stacking driver should dispatch request)
3040 * 1 - Busy (The request stacking driver should stop dispatching request)
3041 */
3042 int blk_lld_busy(struct request_queue *q)
3043 {
3044 if (q->lld_busy_fn)
3045 return q->lld_busy_fn(q);
3046
3047 return 0;
3048 }
3049 EXPORT_SYMBOL_GPL(blk_lld_busy);
3050
3051 /**
3052 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3053 * @rq: the clone request to be cleaned up
3054 *
3055 * Description:
3056 * Free all bios in @rq for a cloned request.
3057 */
3058 void blk_rq_unprep_clone(struct request *rq)
3059 {
3060 struct bio *bio;
3061
3062 while ((bio = rq->bio) != NULL) {
3063 rq->bio = bio->bi_next;
3064
3065 bio_put(bio);
3066 }
3067 }
3068 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3069
3070 /*
3071 * Copy attributes of the original request to the clone request.
3072 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3073 */
3074 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3075 {
3076 dst->cpu = src->cpu;
3077 req_set_op_attrs(dst, req_op(src),
3078 (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE);
3079 dst->cmd_type = src->cmd_type;
3080 dst->__sector = blk_rq_pos(src);
3081 dst->__data_len = blk_rq_bytes(src);
3082 dst->nr_phys_segments = src->nr_phys_segments;
3083 dst->ioprio = src->ioprio;
3084 dst->extra_len = src->extra_len;
3085 }
3086
3087 /**
3088 * blk_rq_prep_clone - Helper function to setup clone request
3089 * @rq: the request to be setup
3090 * @rq_src: original request to be cloned
3091 * @bs: bio_set that bios for clone are allocated from
3092 * @gfp_mask: memory allocation mask for bio
3093 * @bio_ctr: setup function to be called for each clone bio.
3094 * Returns %0 for success, non %0 for failure.
3095 * @data: private data to be passed to @bio_ctr
3096 *
3097 * Description:
3098 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3099 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3100 * are not copied, and copying such parts is the caller's responsibility.
3101 * Also, pages which the original bios are pointing to are not copied
3102 * and the cloned bios just point same pages.
3103 * So cloned bios must be completed before original bios, which means
3104 * the caller must complete @rq before @rq_src.
3105 */
3106 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3107 struct bio_set *bs, gfp_t gfp_mask,
3108 int (*bio_ctr)(struct bio *, struct bio *, void *),
3109 void *data)
3110 {
3111 struct bio *bio, *bio_src;
3112
3113 if (!bs)
3114 bs = fs_bio_set;
3115
3116 __rq_for_each_bio(bio_src, rq_src) {
3117 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3118 if (!bio)
3119 goto free_and_out;
3120
3121 if (bio_ctr && bio_ctr(bio, bio_src, data))
3122 goto free_and_out;
3123
3124 if (rq->bio) {
3125 rq->biotail->bi_next = bio;
3126 rq->biotail = bio;
3127 } else
3128 rq->bio = rq->biotail = bio;
3129 }
3130
3131 __blk_rq_prep_clone(rq, rq_src);
3132
3133 return 0;
3134
3135 free_and_out:
3136 if (bio)
3137 bio_put(bio);
3138 blk_rq_unprep_clone(rq);
3139
3140 return -ENOMEM;
3141 }
3142 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3143
3144 int kblockd_schedule_work(struct work_struct *work)
3145 {
3146 return queue_work(kblockd_workqueue, work);
3147 }
3148 EXPORT_SYMBOL(kblockd_schedule_work);
3149
3150 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3151 unsigned long delay)
3152 {
3153 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3154 }
3155 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3156
3157 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3158 unsigned long delay)
3159 {
3160 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3161 }
3162 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3163
3164 /**
3165 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3166 * @plug: The &struct blk_plug that needs to be initialized
3167 *
3168 * Description:
3169 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3170 * pending I/O should the task end up blocking between blk_start_plug() and
3171 * blk_finish_plug(). This is important from a performance perspective, but
3172 * also ensures that we don't deadlock. For instance, if the task is blocking
3173 * for a memory allocation, memory reclaim could end up wanting to free a
3174 * page belonging to that request that is currently residing in our private
3175 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3176 * this kind of deadlock.
3177 */
3178 void blk_start_plug(struct blk_plug *plug)
3179 {
3180 struct task_struct *tsk = current;
3181
3182 /*
3183 * If this is a nested plug, don't actually assign it.
3184 */
3185 if (tsk->plug)
3186 return;
3187
3188 INIT_LIST_HEAD(&plug->list);
3189 INIT_LIST_HEAD(&plug->mq_list);
3190 INIT_LIST_HEAD(&plug->cb_list);
3191 /*
3192 * Store ordering should not be needed here, since a potential
3193 * preempt will imply a full memory barrier
3194 */
3195 tsk->plug = plug;
3196 }
3197 EXPORT_SYMBOL(blk_start_plug);
3198
3199 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3200 {
3201 struct request *rqa = container_of(a, struct request, queuelist);
3202 struct request *rqb = container_of(b, struct request, queuelist);
3203
3204 return !(rqa->q < rqb->q ||
3205 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3206 }
3207
3208 /*
3209 * If 'from_schedule' is true, then postpone the dispatch of requests
3210 * until a safe kblockd context. We due this to avoid accidental big
3211 * additional stack usage in driver dispatch, in places where the originally
3212 * plugger did not intend it.
3213 */
3214 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3215 bool from_schedule)
3216 __releases(q->queue_lock)
3217 {
3218 trace_block_unplug(q, depth, !from_schedule);
3219
3220 if (from_schedule)
3221 blk_run_queue_async(q);
3222 else
3223 __blk_run_queue(q);
3224 spin_unlock(q->queue_lock);
3225 }
3226
3227 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3228 {
3229 LIST_HEAD(callbacks);
3230
3231 while (!list_empty(&plug->cb_list)) {
3232 list_splice_init(&plug->cb_list, &callbacks);
3233
3234 while (!list_empty(&callbacks)) {
3235 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3236 struct blk_plug_cb,
3237 list);
3238 list_del(&cb->list);
3239 cb->callback(cb, from_schedule);
3240 }
3241 }
3242 }
3243
3244 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3245 int size)
3246 {
3247 struct blk_plug *plug = current->plug;
3248 struct blk_plug_cb *cb;
3249
3250 if (!plug)
3251 return NULL;
3252
3253 list_for_each_entry(cb, &plug->cb_list, list)
3254 if (cb->callback == unplug && cb->data == data)
3255 return cb;
3256
3257 /* Not currently on the callback list */
3258 BUG_ON(size < sizeof(*cb));
3259 cb = kzalloc(size, GFP_ATOMIC);
3260 if (cb) {
3261 cb->data = data;
3262 cb->callback = unplug;
3263 list_add(&cb->list, &plug->cb_list);
3264 }
3265 return cb;
3266 }
3267 EXPORT_SYMBOL(blk_check_plugged);
3268
3269 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3270 {
3271 struct request_queue *q;
3272 unsigned long flags;
3273 struct request *rq;
3274 LIST_HEAD(list);
3275 unsigned int depth;
3276
3277 flush_plug_callbacks(plug, from_schedule);
3278
3279 if (!list_empty(&plug->mq_list))
3280 blk_mq_flush_plug_list(plug, from_schedule);
3281
3282 if (list_empty(&plug->list))
3283 return;
3284
3285 list_splice_init(&plug->list, &list);
3286
3287 list_sort(NULL, &list, plug_rq_cmp);
3288
3289 q = NULL;
3290 depth = 0;
3291
3292 /*
3293 * Save and disable interrupts here, to avoid doing it for every
3294 * queue lock we have to take.
3295 */
3296 local_irq_save(flags);
3297 while (!list_empty(&list)) {
3298 rq = list_entry_rq(list.next);
3299 list_del_init(&rq->queuelist);
3300 BUG_ON(!rq->q);
3301 if (rq->q != q) {
3302 /*
3303 * This drops the queue lock
3304 */
3305 if (q)
3306 queue_unplugged(q, depth, from_schedule);
3307 q = rq->q;
3308 depth = 0;
3309 spin_lock(q->queue_lock);
3310 }
3311
3312 /*
3313 * Short-circuit if @q is dead
3314 */
3315 if (unlikely(blk_queue_dying(q))) {
3316 __blk_end_request_all(rq, -ENODEV);
3317 continue;
3318 }
3319
3320 /*
3321 * rq is already accounted, so use raw insert
3322 */
3323 if (rq->cmd_flags & (REQ_PREFLUSH | REQ_FUA))
3324 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3325 else
3326 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3327
3328 depth++;
3329 }
3330
3331 /*
3332 * This drops the queue lock
3333 */
3334 if (q)
3335 queue_unplugged(q, depth, from_schedule);
3336
3337 local_irq_restore(flags);
3338 }
3339
3340 void blk_finish_plug(struct blk_plug *plug)
3341 {
3342 if (plug != current->plug)
3343 return;
3344 blk_flush_plug_list(plug, false);
3345
3346 current->plug = NULL;
3347 }
3348 EXPORT_SYMBOL(blk_finish_plug);
3349
3350 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3351 {
3352 struct blk_plug *plug;
3353 long state;
3354
3355 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3356 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3357 return false;
3358
3359 plug = current->plug;
3360 if (plug)
3361 blk_flush_plug_list(plug, false);
3362
3363 state = current->state;
3364 while (!need_resched()) {
3365 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3366 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3367 int ret;
3368
3369 hctx->poll_invoked++;
3370
3371 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3372 if (ret > 0) {
3373 hctx->poll_success++;
3374 set_current_state(TASK_RUNNING);
3375 return true;
3376 }
3377
3378 if (signal_pending_state(state, current))
3379 set_current_state(TASK_RUNNING);
3380
3381 if (current->state == TASK_RUNNING)
3382 return true;
3383 if (ret < 0)
3384 break;
3385 cpu_relax();
3386 }
3387
3388 return false;
3389 }
3390 EXPORT_SYMBOL_GPL(blk_poll);
3391
3392 #ifdef CONFIG_PM
3393 /**
3394 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3395 * @q: the queue of the device
3396 * @dev: the device the queue belongs to
3397 *
3398 * Description:
3399 * Initialize runtime-PM-related fields for @q and start auto suspend for
3400 * @dev. Drivers that want to take advantage of request-based runtime PM
3401 * should call this function after @dev has been initialized, and its
3402 * request queue @q has been allocated, and runtime PM for it can not happen
3403 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3404 * cases, driver should call this function before any I/O has taken place.
3405 *
3406 * This function takes care of setting up using auto suspend for the device,
3407 * the autosuspend delay is set to -1 to make runtime suspend impossible
3408 * until an updated value is either set by user or by driver. Drivers do
3409 * not need to touch other autosuspend settings.
3410 *
3411 * The block layer runtime PM is request based, so only works for drivers
3412 * that use request as their IO unit instead of those directly use bio's.
3413 */
3414 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3415 {
3416 q->dev = dev;
3417 q->rpm_status = RPM_ACTIVE;
3418 pm_runtime_set_autosuspend_delay(q->dev, -1);
3419 pm_runtime_use_autosuspend(q->dev);
3420 }
3421 EXPORT_SYMBOL(blk_pm_runtime_init);
3422
3423 /**
3424 * blk_pre_runtime_suspend - Pre runtime suspend check
3425 * @q: the queue of the device
3426 *
3427 * Description:
3428 * This function will check if runtime suspend is allowed for the device
3429 * by examining if there are any requests pending in the queue. If there
3430 * are requests pending, the device can not be runtime suspended; otherwise,
3431 * the queue's status will be updated to SUSPENDING and the driver can
3432 * proceed to suspend the device.
3433 *
3434 * For the not allowed case, we mark last busy for the device so that
3435 * runtime PM core will try to autosuspend it some time later.
3436 *
3437 * This function should be called near the start of the device's
3438 * runtime_suspend callback.
3439 *
3440 * Return:
3441 * 0 - OK to runtime suspend the device
3442 * -EBUSY - Device should not be runtime suspended
3443 */
3444 int blk_pre_runtime_suspend(struct request_queue *q)
3445 {
3446 int ret = 0;
3447
3448 if (!q->dev)
3449 return ret;
3450
3451 spin_lock_irq(q->queue_lock);
3452 if (q->nr_pending) {
3453 ret = -EBUSY;
3454 pm_runtime_mark_last_busy(q->dev);
3455 } else {
3456 q->rpm_status = RPM_SUSPENDING;
3457 }
3458 spin_unlock_irq(q->queue_lock);
3459 return ret;
3460 }
3461 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3462
3463 /**
3464 * blk_post_runtime_suspend - Post runtime suspend processing
3465 * @q: the queue of the device
3466 * @err: return value of the device's runtime_suspend function
3467 *
3468 * Description:
3469 * Update the queue's runtime status according to the return value of the
3470 * device's runtime suspend function and mark last busy for the device so
3471 * that PM core will try to auto suspend the device at a later time.
3472 *
3473 * This function should be called near the end of the device's
3474 * runtime_suspend callback.
3475 */
3476 void blk_post_runtime_suspend(struct request_queue *q, int err)
3477 {
3478 if (!q->dev)
3479 return;
3480
3481 spin_lock_irq(q->queue_lock);
3482 if (!err) {
3483 q->rpm_status = RPM_SUSPENDED;
3484 } else {
3485 q->rpm_status = RPM_ACTIVE;
3486 pm_runtime_mark_last_busy(q->dev);
3487 }
3488 spin_unlock_irq(q->queue_lock);
3489 }
3490 EXPORT_SYMBOL(blk_post_runtime_suspend);
3491
3492 /**
3493 * blk_pre_runtime_resume - Pre runtime resume processing
3494 * @q: the queue of the device
3495 *
3496 * Description:
3497 * Update the queue's runtime status to RESUMING in preparation for the
3498 * runtime resume of the device.
3499 *
3500 * This function should be called near the start of the device's
3501 * runtime_resume callback.
3502 */
3503 void blk_pre_runtime_resume(struct request_queue *q)
3504 {
3505 if (!q->dev)
3506 return;
3507
3508 spin_lock_irq(q->queue_lock);
3509 q->rpm_status = RPM_RESUMING;
3510 spin_unlock_irq(q->queue_lock);
3511 }
3512 EXPORT_SYMBOL(blk_pre_runtime_resume);
3513
3514 /**
3515 * blk_post_runtime_resume - Post runtime resume processing
3516 * @q: the queue of the device
3517 * @err: return value of the device's runtime_resume function
3518 *
3519 * Description:
3520 * Update the queue's runtime status according to the return value of the
3521 * device's runtime_resume function. If it is successfully resumed, process
3522 * the requests that are queued into the device's queue when it is resuming
3523 * and then mark last busy and initiate autosuspend for it.
3524 *
3525 * This function should be called near the end of the device's
3526 * runtime_resume callback.
3527 */
3528 void blk_post_runtime_resume(struct request_queue *q, int err)
3529 {
3530 if (!q->dev)
3531 return;
3532
3533 spin_lock_irq(q->queue_lock);
3534 if (!err) {
3535 q->rpm_status = RPM_ACTIVE;
3536 __blk_run_queue(q);
3537 pm_runtime_mark_last_busy(q->dev);
3538 pm_request_autosuspend(q->dev);
3539 } else {
3540 q->rpm_status = RPM_SUSPENDED;
3541 }
3542 spin_unlock_irq(q->queue_lock);
3543 }
3544 EXPORT_SYMBOL(blk_post_runtime_resume);
3545
3546 /**
3547 * blk_set_runtime_active - Force runtime status of the queue to be active
3548 * @q: the queue of the device
3549 *
3550 * If the device is left runtime suspended during system suspend the resume
3551 * hook typically resumes the device and corrects runtime status
3552 * accordingly. However, that does not affect the queue runtime PM status
3553 * which is still "suspended". This prevents processing requests from the
3554 * queue.
3555 *
3556 * This function can be used in driver's resume hook to correct queue
3557 * runtime PM status and re-enable peeking requests from the queue. It
3558 * should be called before first request is added to the queue.
3559 */
3560 void blk_set_runtime_active(struct request_queue *q)
3561 {
3562 spin_lock_irq(q->queue_lock);
3563 q->rpm_status = RPM_ACTIVE;
3564 pm_runtime_mark_last_busy(q->dev);
3565 pm_request_autosuspend(q->dev);
3566 spin_unlock_irq(q->queue_lock);
3567 }
3568 EXPORT_SYMBOL(blk_set_runtime_active);
3569 #endif
3570
3571 int __init blk_dev_init(void)
3572 {
3573 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3574 FIELD_SIZEOF(struct request, cmd_flags));
3575
3576 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3577 kblockd_workqueue = alloc_workqueue("kblockd",
3578 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3579 if (!kblockd_workqueue)
3580 panic("Failed to create kblockd\n");
3581
3582 request_cachep = kmem_cache_create("blkdev_requests",
3583 sizeof(struct request), 0, SLAB_PANIC, NULL);
3584
3585 blk_requestq_cachep = kmem_cache_create("request_queue",
3586 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3587
3588 return 0;
3589 }