]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
nbd: stop using req->cmd
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info. This function can only be called if @bdev is opened
87 * and the return value is never NULL.
88 */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 struct request_queue *q = bdev_get_queue(bdev);
92
93 return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 memset(rq, 0, sizeof(*rq));
100
101 INIT_LIST_HEAD(&rq->queuelist);
102 INIT_LIST_HEAD(&rq->timeout_list);
103 rq->cpu = -1;
104 rq->q = q;
105 rq->__sector = (sector_t) -1;
106 INIT_HLIST_NODE(&rq->hash);
107 RB_CLEAR_NODE(&rq->rb_node);
108 rq->cmd = rq->__cmd;
109 rq->cmd_len = BLK_MAX_CDB;
110 rq->tag = -1;
111 rq->start_time = jiffies;
112 set_start_time_ns(rq);
113 rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 unsigned int nbytes, int error)
119 {
120 if (error)
121 clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 error = -EIO;
124
125 if (unlikely(rq->cmd_flags & REQ_QUIET))
126 set_bit(BIO_QUIET, &bio->bi_flags);
127
128 bio_advance(bio, nbytes);
129
130 /* don't actually finish bio if it's part of flush sequence */
131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 bio_endio(bio, error);
133 }
134
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 int bit;
138
139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 (unsigned long long) rq->cmd_flags);
142
143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
144 (unsigned long long)blk_rq_pos(rq),
145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
147 rq->bio, rq->biotail, blk_rq_bytes(rq));
148
149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 printk(KERN_INFO " cdb: ");
151 for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 printk("%02x ", rq->cmd[bit]);
153 printk("\n");
154 }
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157
158 static void blk_delay_work(struct work_struct *work)
159 {
160 struct request_queue *q;
161
162 q = container_of(work, struct request_queue, delay_work.work);
163 spin_lock_irq(q->queue_lock);
164 __blk_run_queue(q);
165 spin_unlock_irq(q->queue_lock);
166 }
167
168 /**
169 * blk_delay_queue - restart queueing after defined interval
170 * @q: The &struct request_queue in question
171 * @msecs: Delay in msecs
172 *
173 * Description:
174 * Sometimes queueing needs to be postponed for a little while, to allow
175 * resources to come back. This function will make sure that queueing is
176 * restarted around the specified time. Queue lock must be held.
177 */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 if (likely(!blk_queue_dead(q)))
181 queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185
186 /**
187 * blk_start_queue - restart a previously stopped queue
188 * @q: The &struct request_queue in question
189 *
190 * Description:
191 * blk_start_queue() will clear the stop flag on the queue, and call
192 * the request_fn for the queue if it was in a stopped state when
193 * entered. Also see blk_stop_queue(). Queue lock must be held.
194 **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 WARN_ON(!irqs_disabled());
198
199 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 __blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203
204 /**
205 * blk_stop_queue - stop a queue
206 * @q: The &struct request_queue in question
207 *
208 * Description:
209 * The Linux block layer assumes that a block driver will consume all
210 * entries on the request queue when the request_fn strategy is called.
211 * Often this will not happen, because of hardware limitations (queue
212 * depth settings). If a device driver gets a 'queue full' response,
213 * or if it simply chooses not to queue more I/O at one point, it can
214 * call this function to prevent the request_fn from being called until
215 * the driver has signalled it's ready to go again. This happens by calling
216 * blk_start_queue() to restart queue operations. Queue lock must be held.
217 **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 cancel_delayed_work(&q->delay_work);
221 queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224
225 /**
226 * blk_sync_queue - cancel any pending callbacks on a queue
227 * @q: the queue
228 *
229 * Description:
230 * The block layer may perform asynchronous callback activity
231 * on a queue, such as calling the unplug function after a timeout.
232 * A block device may call blk_sync_queue to ensure that any
233 * such activity is cancelled, thus allowing it to release resources
234 * that the callbacks might use. The caller must already have made sure
235 * that its ->make_request_fn will not re-add plugging prior to calling
236 * this function.
237 *
238 * This function does not cancel any asynchronous activity arising
239 * out of elevator or throttling code. That would require elevator_exit()
240 * and blkcg_exit_queue() to be called with queue lock initialized.
241 *
242 */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 del_timer_sync(&q->timeout);
246
247 if (q->mq_ops) {
248 struct blk_mq_hw_ctx *hctx;
249 int i;
250
251 queue_for_each_hw_ctx(q, hctx, i) {
252 cancel_delayed_work_sync(&hctx->run_work);
253 cancel_delayed_work_sync(&hctx->delay_work);
254 }
255 } else {
256 cancel_delayed_work_sync(&q->delay_work);
257 }
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260
261 /**
262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263 * @q: The queue to run
264 *
265 * Description:
266 * Invoke request handling on a queue if there are any pending requests.
267 * May be used to restart request handling after a request has completed.
268 * This variant runs the queue whether or not the queue has been
269 * stopped. Must be called with the queue lock held and interrupts
270 * disabled. See also @blk_run_queue.
271 */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 if (unlikely(blk_queue_dead(q)))
275 return;
276
277 /*
278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 * the queue lock internally. As a result multiple threads may be
280 * running such a request function concurrently. Keep track of the
281 * number of active request_fn invocations such that blk_drain_queue()
282 * can wait until all these request_fn calls have finished.
283 */
284 q->request_fn_active++;
285 q->request_fn(q);
286 q->request_fn_active--;
287 }
288 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
289
290 /**
291 * __blk_run_queue - run a single device queue
292 * @q: The queue to run
293 *
294 * Description:
295 * See @blk_run_queue. This variant must be called with the queue lock
296 * held and interrupts disabled.
297 */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 if (unlikely(blk_queue_stopped(q)))
301 return;
302
303 __blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306
307 /**
308 * blk_run_queue_async - run a single device queue in workqueue context
309 * @q: The queue to run
310 *
311 * Description:
312 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313 * of us. The caller must hold the queue lock.
314 */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321
322 /**
323 * blk_run_queue - run a single device queue
324 * @q: The queue to run
325 *
326 * Description:
327 * Invoke request handling on this queue, if it has pending work to do.
328 * May be used to restart queueing when a request has completed.
329 */
330 void blk_run_queue(struct request_queue *q)
331 {
332 unsigned long flags;
333
334 spin_lock_irqsave(q->queue_lock, flags);
335 __blk_run_queue(q);
336 spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339
340 void blk_put_queue(struct request_queue *q)
341 {
342 kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345
346 /**
347 * __blk_drain_queue - drain requests from request_queue
348 * @q: queue to drain
349 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350 *
351 * Drain requests from @q. If @drain_all is set, all requests are drained.
352 * If not, only ELVPRIV requests are drained. The caller is responsible
353 * for ensuring that no new requests which need to be drained are queued.
354 */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 __releases(q->queue_lock)
357 __acquires(q->queue_lock)
358 {
359 int i;
360
361 lockdep_assert_held(q->queue_lock);
362
363 while (true) {
364 bool drain = false;
365
366 /*
367 * The caller might be trying to drain @q before its
368 * elevator is initialized.
369 */
370 if (q->elevator)
371 elv_drain_elevator(q);
372
373 blkcg_drain_queue(q);
374
375 /*
376 * This function might be called on a queue which failed
377 * driver init after queue creation or is not yet fully
378 * active yet. Some drivers (e.g. fd and loop) get unhappy
379 * in such cases. Kick queue iff dispatch queue has
380 * something on it and @q has request_fn set.
381 */
382 if (!list_empty(&q->queue_head) && q->request_fn)
383 __blk_run_queue(q);
384
385 drain |= q->nr_rqs_elvpriv;
386 drain |= q->request_fn_active;
387
388 /*
389 * Unfortunately, requests are queued at and tracked from
390 * multiple places and there's no single counter which can
391 * be drained. Check all the queues and counters.
392 */
393 if (drain_all) {
394 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
395 drain |= !list_empty(&q->queue_head);
396 for (i = 0; i < 2; i++) {
397 drain |= q->nr_rqs[i];
398 drain |= q->in_flight[i];
399 if (fq)
400 drain |= !list_empty(&fq->flush_queue[i]);
401 }
402 }
403
404 if (!drain)
405 break;
406
407 spin_unlock_irq(q->queue_lock);
408
409 msleep(10);
410
411 spin_lock_irq(q->queue_lock);
412 }
413
414 /*
415 * With queue marked dead, any woken up waiter will fail the
416 * allocation path, so the wakeup chaining is lost and we're
417 * left with hung waiters. We need to wake up those waiters.
418 */
419 if (q->request_fn) {
420 struct request_list *rl;
421
422 blk_queue_for_each_rl(rl, q)
423 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
424 wake_up_all(&rl->wait[i]);
425 }
426 }
427
428 /**
429 * blk_queue_bypass_start - enter queue bypass mode
430 * @q: queue of interest
431 *
432 * In bypass mode, only the dispatch FIFO queue of @q is used. This
433 * function makes @q enter bypass mode and drains all requests which were
434 * throttled or issued before. On return, it's guaranteed that no request
435 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
436 * inside queue or RCU read lock.
437 */
438 void blk_queue_bypass_start(struct request_queue *q)
439 {
440 spin_lock_irq(q->queue_lock);
441 q->bypass_depth++;
442 queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 spin_unlock_irq(q->queue_lock);
444
445 /*
446 * Queues start drained. Skip actual draining till init is
447 * complete. This avoids lenghty delays during queue init which
448 * can happen many times during boot.
449 */
450 if (blk_queue_init_done(q)) {
451 spin_lock_irq(q->queue_lock);
452 __blk_drain_queue(q, false);
453 spin_unlock_irq(q->queue_lock);
454
455 /* ensure blk_queue_bypass() is %true inside RCU read lock */
456 synchronize_rcu();
457 }
458 }
459 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
460
461 /**
462 * blk_queue_bypass_end - leave queue bypass mode
463 * @q: queue of interest
464 *
465 * Leave bypass mode and restore the normal queueing behavior.
466 */
467 void blk_queue_bypass_end(struct request_queue *q)
468 {
469 spin_lock_irq(q->queue_lock);
470 if (!--q->bypass_depth)
471 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
472 WARN_ON_ONCE(q->bypass_depth < 0);
473 spin_unlock_irq(q->queue_lock);
474 }
475 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
476
477 void blk_set_queue_dying(struct request_queue *q)
478 {
479 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
480
481 if (q->mq_ops)
482 blk_mq_wake_waiters(q);
483 else {
484 struct request_list *rl;
485
486 blk_queue_for_each_rl(rl, q) {
487 if (rl->rq_pool) {
488 wake_up(&rl->wait[BLK_RW_SYNC]);
489 wake_up(&rl->wait[BLK_RW_ASYNC]);
490 }
491 }
492 }
493 }
494 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
495
496 /**
497 * blk_cleanup_queue - shutdown a request queue
498 * @q: request queue to shutdown
499 *
500 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
501 * put it. All future requests will be failed immediately with -ENODEV.
502 */
503 void blk_cleanup_queue(struct request_queue *q)
504 {
505 spinlock_t *lock = q->queue_lock;
506
507 /* mark @q DYING, no new request or merges will be allowed afterwards */
508 mutex_lock(&q->sysfs_lock);
509 blk_set_queue_dying(q);
510 spin_lock_irq(lock);
511
512 /*
513 * A dying queue is permanently in bypass mode till released. Note
514 * that, unlike blk_queue_bypass_start(), we aren't performing
515 * synchronize_rcu() after entering bypass mode to avoid the delay
516 * as some drivers create and destroy a lot of queues while
517 * probing. This is still safe because blk_release_queue() will be
518 * called only after the queue refcnt drops to zero and nothing,
519 * RCU or not, would be traversing the queue by then.
520 */
521 q->bypass_depth++;
522 queue_flag_set(QUEUE_FLAG_BYPASS, q);
523
524 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
525 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
526 queue_flag_set(QUEUE_FLAG_DYING, q);
527 spin_unlock_irq(lock);
528 mutex_unlock(&q->sysfs_lock);
529
530 /*
531 * Drain all requests queued before DYING marking. Set DEAD flag to
532 * prevent that q->request_fn() gets invoked after draining finished.
533 */
534 if (q->mq_ops) {
535 blk_mq_freeze_queue(q);
536 spin_lock_irq(lock);
537 } else {
538 spin_lock_irq(lock);
539 __blk_drain_queue(q, true);
540 }
541 queue_flag_set(QUEUE_FLAG_DEAD, q);
542 spin_unlock_irq(lock);
543
544 /* @q won't process any more request, flush async actions */
545 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
546 blk_sync_queue(q);
547
548 if (q->mq_ops)
549 blk_mq_free_queue(q);
550
551 spin_lock_irq(lock);
552 if (q->queue_lock != &q->__queue_lock)
553 q->queue_lock = &q->__queue_lock;
554 spin_unlock_irq(lock);
555
556 /* @q is and will stay empty, shutdown and put */
557 blk_put_queue(q);
558 }
559 EXPORT_SYMBOL(blk_cleanup_queue);
560
561 /* Allocate memory local to the request queue */
562 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
563 {
564 int nid = (int)(long)data;
565 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
566 }
567
568 static void free_request_struct(void *element, void *unused)
569 {
570 kmem_cache_free(request_cachep, element);
571 }
572
573 int blk_init_rl(struct request_list *rl, struct request_queue *q,
574 gfp_t gfp_mask)
575 {
576 if (unlikely(rl->rq_pool))
577 return 0;
578
579 rl->q = q;
580 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
581 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
582 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
583 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
584
585 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
586 free_request_struct,
587 (void *)(long)q->node, gfp_mask,
588 q->node);
589 if (!rl->rq_pool)
590 return -ENOMEM;
591
592 return 0;
593 }
594
595 void blk_exit_rl(struct request_list *rl)
596 {
597 if (rl->rq_pool)
598 mempool_destroy(rl->rq_pool);
599 }
600
601 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
602 {
603 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
604 }
605 EXPORT_SYMBOL(blk_alloc_queue);
606
607 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
608 {
609 struct request_queue *q;
610 int err;
611
612 q = kmem_cache_alloc_node(blk_requestq_cachep,
613 gfp_mask | __GFP_ZERO, node_id);
614 if (!q)
615 return NULL;
616
617 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
618 if (q->id < 0)
619 goto fail_q;
620
621 q->backing_dev_info.ra_pages =
622 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
623 q->backing_dev_info.state = 0;
624 q->backing_dev_info.capabilities = 0;
625 q->backing_dev_info.name = "block";
626 q->node = node_id;
627
628 err = bdi_init(&q->backing_dev_info);
629 if (err)
630 goto fail_id;
631
632 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
633 laptop_mode_timer_fn, (unsigned long) q);
634 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
635 INIT_LIST_HEAD(&q->queue_head);
636 INIT_LIST_HEAD(&q->timeout_list);
637 INIT_LIST_HEAD(&q->icq_list);
638 #ifdef CONFIG_BLK_CGROUP
639 INIT_LIST_HEAD(&q->blkg_list);
640 #endif
641 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
642
643 kobject_init(&q->kobj, &blk_queue_ktype);
644
645 mutex_init(&q->sysfs_lock);
646 spin_lock_init(&q->__queue_lock);
647
648 /*
649 * By default initialize queue_lock to internal lock and driver can
650 * override it later if need be.
651 */
652 q->queue_lock = &q->__queue_lock;
653
654 /*
655 * A queue starts its life with bypass turned on to avoid
656 * unnecessary bypass on/off overhead and nasty surprises during
657 * init. The initial bypass will be finished when the queue is
658 * registered by blk_register_queue().
659 */
660 q->bypass_depth = 1;
661 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
662
663 init_waitqueue_head(&q->mq_freeze_wq);
664
665 if (blkcg_init_queue(q))
666 goto fail_bdi;
667
668 return q;
669
670 fail_bdi:
671 bdi_destroy(&q->backing_dev_info);
672 fail_id:
673 ida_simple_remove(&blk_queue_ida, q->id);
674 fail_q:
675 kmem_cache_free(blk_requestq_cachep, q);
676 return NULL;
677 }
678 EXPORT_SYMBOL(blk_alloc_queue_node);
679
680 /**
681 * blk_init_queue - prepare a request queue for use with a block device
682 * @rfn: The function to be called to process requests that have been
683 * placed on the queue.
684 * @lock: Request queue spin lock
685 *
686 * Description:
687 * If a block device wishes to use the standard request handling procedures,
688 * which sorts requests and coalesces adjacent requests, then it must
689 * call blk_init_queue(). The function @rfn will be called when there
690 * are requests on the queue that need to be processed. If the device
691 * supports plugging, then @rfn may not be called immediately when requests
692 * are available on the queue, but may be called at some time later instead.
693 * Plugged queues are generally unplugged when a buffer belonging to one
694 * of the requests on the queue is needed, or due to memory pressure.
695 *
696 * @rfn is not required, or even expected, to remove all requests off the
697 * queue, but only as many as it can handle at a time. If it does leave
698 * requests on the queue, it is responsible for arranging that the requests
699 * get dealt with eventually.
700 *
701 * The queue spin lock must be held while manipulating the requests on the
702 * request queue; this lock will be taken also from interrupt context, so irq
703 * disabling is needed for it.
704 *
705 * Function returns a pointer to the initialized request queue, or %NULL if
706 * it didn't succeed.
707 *
708 * Note:
709 * blk_init_queue() must be paired with a blk_cleanup_queue() call
710 * when the block device is deactivated (such as at module unload).
711 **/
712
713 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
714 {
715 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
716 }
717 EXPORT_SYMBOL(blk_init_queue);
718
719 struct request_queue *
720 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
721 {
722 struct request_queue *uninit_q, *q;
723
724 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
725 if (!uninit_q)
726 return NULL;
727
728 q = blk_init_allocated_queue(uninit_q, rfn, lock);
729 if (!q)
730 blk_cleanup_queue(uninit_q);
731
732 return q;
733 }
734 EXPORT_SYMBOL(blk_init_queue_node);
735
736 struct request_queue *
737 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
738 spinlock_t *lock)
739 {
740 if (!q)
741 return NULL;
742
743 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
744 if (!q->fq)
745 return NULL;
746
747 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
748 goto fail;
749
750 q->request_fn = rfn;
751 q->prep_rq_fn = NULL;
752 q->unprep_rq_fn = NULL;
753 q->queue_flags |= QUEUE_FLAG_DEFAULT;
754
755 /* Override internal queue lock with supplied lock pointer */
756 if (lock)
757 q->queue_lock = lock;
758
759 /*
760 * This also sets hw/phys segments, boundary and size
761 */
762 blk_queue_make_request(q, blk_queue_bio);
763
764 q->sg_reserved_size = INT_MAX;
765
766 /* Protect q->elevator from elevator_change */
767 mutex_lock(&q->sysfs_lock);
768
769 /* init elevator */
770 if (elevator_init(q, NULL)) {
771 mutex_unlock(&q->sysfs_lock);
772 goto fail;
773 }
774
775 mutex_unlock(&q->sysfs_lock);
776
777 return q;
778
779 fail:
780 blk_free_flush_queue(q->fq);
781 return NULL;
782 }
783 EXPORT_SYMBOL(blk_init_allocated_queue);
784
785 bool blk_get_queue(struct request_queue *q)
786 {
787 if (likely(!blk_queue_dying(q))) {
788 __blk_get_queue(q);
789 return true;
790 }
791
792 return false;
793 }
794 EXPORT_SYMBOL(blk_get_queue);
795
796 static inline void blk_free_request(struct request_list *rl, struct request *rq)
797 {
798 if (rq->cmd_flags & REQ_ELVPRIV) {
799 elv_put_request(rl->q, rq);
800 if (rq->elv.icq)
801 put_io_context(rq->elv.icq->ioc);
802 }
803
804 mempool_free(rq, rl->rq_pool);
805 }
806
807 /*
808 * ioc_batching returns true if the ioc is a valid batching request and
809 * should be given priority access to a request.
810 */
811 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
812 {
813 if (!ioc)
814 return 0;
815
816 /*
817 * Make sure the process is able to allocate at least 1 request
818 * even if the batch times out, otherwise we could theoretically
819 * lose wakeups.
820 */
821 return ioc->nr_batch_requests == q->nr_batching ||
822 (ioc->nr_batch_requests > 0
823 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
824 }
825
826 /*
827 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
828 * will cause the process to be a "batcher" on all queues in the system. This
829 * is the behaviour we want though - once it gets a wakeup it should be given
830 * a nice run.
831 */
832 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
833 {
834 if (!ioc || ioc_batching(q, ioc))
835 return;
836
837 ioc->nr_batch_requests = q->nr_batching;
838 ioc->last_waited = jiffies;
839 }
840
841 static void __freed_request(struct request_list *rl, int sync)
842 {
843 struct request_queue *q = rl->q;
844
845 /*
846 * bdi isn't aware of blkcg yet. As all async IOs end up root
847 * blkcg anyway, just use root blkcg state.
848 */
849 if (rl == &q->root_rl &&
850 rl->count[sync] < queue_congestion_off_threshold(q))
851 blk_clear_queue_congested(q, sync);
852
853 if (rl->count[sync] + 1 <= q->nr_requests) {
854 if (waitqueue_active(&rl->wait[sync]))
855 wake_up(&rl->wait[sync]);
856
857 blk_clear_rl_full(rl, sync);
858 }
859 }
860
861 /*
862 * A request has just been released. Account for it, update the full and
863 * congestion status, wake up any waiters. Called under q->queue_lock.
864 */
865 static void freed_request(struct request_list *rl, unsigned int flags)
866 {
867 struct request_queue *q = rl->q;
868 int sync = rw_is_sync(flags);
869
870 q->nr_rqs[sync]--;
871 rl->count[sync]--;
872 if (flags & REQ_ELVPRIV)
873 q->nr_rqs_elvpriv--;
874
875 __freed_request(rl, sync);
876
877 if (unlikely(rl->starved[sync ^ 1]))
878 __freed_request(rl, sync ^ 1);
879 }
880
881 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
882 {
883 struct request_list *rl;
884
885 spin_lock_irq(q->queue_lock);
886 q->nr_requests = nr;
887 blk_queue_congestion_threshold(q);
888
889 /* congestion isn't cgroup aware and follows root blkcg for now */
890 rl = &q->root_rl;
891
892 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
893 blk_set_queue_congested(q, BLK_RW_SYNC);
894 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
895 blk_clear_queue_congested(q, BLK_RW_SYNC);
896
897 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
898 blk_set_queue_congested(q, BLK_RW_ASYNC);
899 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
900 blk_clear_queue_congested(q, BLK_RW_ASYNC);
901
902 blk_queue_for_each_rl(rl, q) {
903 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
904 blk_set_rl_full(rl, BLK_RW_SYNC);
905 } else {
906 blk_clear_rl_full(rl, BLK_RW_SYNC);
907 wake_up(&rl->wait[BLK_RW_SYNC]);
908 }
909
910 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
911 blk_set_rl_full(rl, BLK_RW_ASYNC);
912 } else {
913 blk_clear_rl_full(rl, BLK_RW_ASYNC);
914 wake_up(&rl->wait[BLK_RW_ASYNC]);
915 }
916 }
917
918 spin_unlock_irq(q->queue_lock);
919 return 0;
920 }
921
922 /*
923 * Determine if elevator data should be initialized when allocating the
924 * request associated with @bio.
925 */
926 static bool blk_rq_should_init_elevator(struct bio *bio)
927 {
928 if (!bio)
929 return true;
930
931 /*
932 * Flush requests do not use the elevator so skip initialization.
933 * This allows a request to share the flush and elevator data.
934 */
935 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
936 return false;
937
938 return true;
939 }
940
941 /**
942 * rq_ioc - determine io_context for request allocation
943 * @bio: request being allocated is for this bio (can be %NULL)
944 *
945 * Determine io_context to use for request allocation for @bio. May return
946 * %NULL if %current->io_context doesn't exist.
947 */
948 static struct io_context *rq_ioc(struct bio *bio)
949 {
950 #ifdef CONFIG_BLK_CGROUP
951 if (bio && bio->bi_ioc)
952 return bio->bi_ioc;
953 #endif
954 return current->io_context;
955 }
956
957 /**
958 * __get_request - get a free request
959 * @rl: request list to allocate from
960 * @rw_flags: RW and SYNC flags
961 * @bio: bio to allocate request for (can be %NULL)
962 * @gfp_mask: allocation mask
963 *
964 * Get a free request from @q. This function may fail under memory
965 * pressure or if @q is dead.
966 *
967 * Must be called with @q->queue_lock held and,
968 * Returns ERR_PTR on failure, with @q->queue_lock held.
969 * Returns request pointer on success, with @q->queue_lock *not held*.
970 */
971 static struct request *__get_request(struct request_list *rl, int rw_flags,
972 struct bio *bio, gfp_t gfp_mask)
973 {
974 struct request_queue *q = rl->q;
975 struct request *rq;
976 struct elevator_type *et = q->elevator->type;
977 struct io_context *ioc = rq_ioc(bio);
978 struct io_cq *icq = NULL;
979 const bool is_sync = rw_is_sync(rw_flags) != 0;
980 int may_queue;
981
982 if (unlikely(blk_queue_dying(q)))
983 return ERR_PTR(-ENODEV);
984
985 may_queue = elv_may_queue(q, rw_flags);
986 if (may_queue == ELV_MQUEUE_NO)
987 goto rq_starved;
988
989 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
990 if (rl->count[is_sync]+1 >= q->nr_requests) {
991 /*
992 * The queue will fill after this allocation, so set
993 * it as full, and mark this process as "batching".
994 * This process will be allowed to complete a batch of
995 * requests, others will be blocked.
996 */
997 if (!blk_rl_full(rl, is_sync)) {
998 ioc_set_batching(q, ioc);
999 blk_set_rl_full(rl, is_sync);
1000 } else {
1001 if (may_queue != ELV_MQUEUE_MUST
1002 && !ioc_batching(q, ioc)) {
1003 /*
1004 * The queue is full and the allocating
1005 * process is not a "batcher", and not
1006 * exempted by the IO scheduler
1007 */
1008 return ERR_PTR(-ENOMEM);
1009 }
1010 }
1011 }
1012 /*
1013 * bdi isn't aware of blkcg yet. As all async IOs end up
1014 * root blkcg anyway, just use root blkcg state.
1015 */
1016 if (rl == &q->root_rl)
1017 blk_set_queue_congested(q, is_sync);
1018 }
1019
1020 /*
1021 * Only allow batching queuers to allocate up to 50% over the defined
1022 * limit of requests, otherwise we could have thousands of requests
1023 * allocated with any setting of ->nr_requests
1024 */
1025 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1026 return ERR_PTR(-ENOMEM);
1027
1028 q->nr_rqs[is_sync]++;
1029 rl->count[is_sync]++;
1030 rl->starved[is_sync] = 0;
1031
1032 /*
1033 * Decide whether the new request will be managed by elevator. If
1034 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1035 * prevent the current elevator from being destroyed until the new
1036 * request is freed. This guarantees icq's won't be destroyed and
1037 * makes creating new ones safe.
1038 *
1039 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1040 * it will be created after releasing queue_lock.
1041 */
1042 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1043 rw_flags |= REQ_ELVPRIV;
1044 q->nr_rqs_elvpriv++;
1045 if (et->icq_cache && ioc)
1046 icq = ioc_lookup_icq(ioc, q);
1047 }
1048
1049 if (blk_queue_io_stat(q))
1050 rw_flags |= REQ_IO_STAT;
1051 spin_unlock_irq(q->queue_lock);
1052
1053 /* allocate and init request */
1054 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1055 if (!rq)
1056 goto fail_alloc;
1057
1058 blk_rq_init(q, rq);
1059 blk_rq_set_rl(rq, rl);
1060 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1061
1062 /* init elvpriv */
1063 if (rw_flags & REQ_ELVPRIV) {
1064 if (unlikely(et->icq_cache && !icq)) {
1065 if (ioc)
1066 icq = ioc_create_icq(ioc, q, gfp_mask);
1067 if (!icq)
1068 goto fail_elvpriv;
1069 }
1070
1071 rq->elv.icq = icq;
1072 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1073 goto fail_elvpriv;
1074
1075 /* @rq->elv.icq holds io_context until @rq is freed */
1076 if (icq)
1077 get_io_context(icq->ioc);
1078 }
1079 out:
1080 /*
1081 * ioc may be NULL here, and ioc_batching will be false. That's
1082 * OK, if the queue is under the request limit then requests need
1083 * not count toward the nr_batch_requests limit. There will always
1084 * be some limit enforced by BLK_BATCH_TIME.
1085 */
1086 if (ioc_batching(q, ioc))
1087 ioc->nr_batch_requests--;
1088
1089 trace_block_getrq(q, bio, rw_flags & 1);
1090 return rq;
1091
1092 fail_elvpriv:
1093 /*
1094 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1095 * and may fail indefinitely under memory pressure and thus
1096 * shouldn't stall IO. Treat this request as !elvpriv. This will
1097 * disturb iosched and blkcg but weird is bettern than dead.
1098 */
1099 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1100 __func__, dev_name(q->backing_dev_info.dev));
1101
1102 rq->cmd_flags &= ~REQ_ELVPRIV;
1103 rq->elv.icq = NULL;
1104
1105 spin_lock_irq(q->queue_lock);
1106 q->nr_rqs_elvpriv--;
1107 spin_unlock_irq(q->queue_lock);
1108 goto out;
1109
1110 fail_alloc:
1111 /*
1112 * Allocation failed presumably due to memory. Undo anything we
1113 * might have messed up.
1114 *
1115 * Allocating task should really be put onto the front of the wait
1116 * queue, but this is pretty rare.
1117 */
1118 spin_lock_irq(q->queue_lock);
1119 freed_request(rl, rw_flags);
1120
1121 /*
1122 * in the very unlikely event that allocation failed and no
1123 * requests for this direction was pending, mark us starved so that
1124 * freeing of a request in the other direction will notice
1125 * us. another possible fix would be to split the rq mempool into
1126 * READ and WRITE
1127 */
1128 rq_starved:
1129 if (unlikely(rl->count[is_sync] == 0))
1130 rl->starved[is_sync] = 1;
1131 return ERR_PTR(-ENOMEM);
1132 }
1133
1134 /**
1135 * get_request - get a free request
1136 * @q: request_queue to allocate request from
1137 * @rw_flags: RW and SYNC flags
1138 * @bio: bio to allocate request for (can be %NULL)
1139 * @gfp_mask: allocation mask
1140 *
1141 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1142 * function keeps retrying under memory pressure and fails iff @q is dead.
1143 *
1144 * Must be called with @q->queue_lock held and,
1145 * Returns ERR_PTR on failure, with @q->queue_lock held.
1146 * Returns request pointer on success, with @q->queue_lock *not held*.
1147 */
1148 static struct request *get_request(struct request_queue *q, int rw_flags,
1149 struct bio *bio, gfp_t gfp_mask)
1150 {
1151 const bool is_sync = rw_is_sync(rw_flags) != 0;
1152 DEFINE_WAIT(wait);
1153 struct request_list *rl;
1154 struct request *rq;
1155
1156 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1157 retry:
1158 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1159 if (!IS_ERR(rq))
1160 return rq;
1161
1162 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1163 blk_put_rl(rl);
1164 return rq;
1165 }
1166
1167 /* wait on @rl and retry */
1168 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1169 TASK_UNINTERRUPTIBLE);
1170
1171 trace_block_sleeprq(q, bio, rw_flags & 1);
1172
1173 spin_unlock_irq(q->queue_lock);
1174 io_schedule();
1175
1176 /*
1177 * After sleeping, we become a "batching" process and will be able
1178 * to allocate at least one request, and up to a big batch of them
1179 * for a small period time. See ioc_batching, ioc_set_batching
1180 */
1181 ioc_set_batching(q, current->io_context);
1182
1183 spin_lock_irq(q->queue_lock);
1184 finish_wait(&rl->wait[is_sync], &wait);
1185
1186 goto retry;
1187 }
1188
1189 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1190 gfp_t gfp_mask)
1191 {
1192 struct request *rq;
1193
1194 BUG_ON(rw != READ && rw != WRITE);
1195
1196 /* create ioc upfront */
1197 create_io_context(gfp_mask, q->node);
1198
1199 spin_lock_irq(q->queue_lock);
1200 rq = get_request(q, rw, NULL, gfp_mask);
1201 if (IS_ERR(rq))
1202 spin_unlock_irq(q->queue_lock);
1203 /* q->queue_lock is unlocked at this point */
1204
1205 return rq;
1206 }
1207
1208 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1209 {
1210 if (q->mq_ops)
1211 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1212 else
1213 return blk_old_get_request(q, rw, gfp_mask);
1214 }
1215 EXPORT_SYMBOL(blk_get_request);
1216
1217 /**
1218 * blk_make_request - given a bio, allocate a corresponding struct request.
1219 * @q: target request queue
1220 * @bio: The bio describing the memory mappings that will be submitted for IO.
1221 * It may be a chained-bio properly constructed by block/bio layer.
1222 * @gfp_mask: gfp flags to be used for memory allocation
1223 *
1224 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1225 * type commands. Where the struct request needs to be farther initialized by
1226 * the caller. It is passed a &struct bio, which describes the memory info of
1227 * the I/O transfer.
1228 *
1229 * The caller of blk_make_request must make sure that bi_io_vec
1230 * are set to describe the memory buffers. That bio_data_dir() will return
1231 * the needed direction of the request. (And all bio's in the passed bio-chain
1232 * are properly set accordingly)
1233 *
1234 * If called under none-sleepable conditions, mapped bio buffers must not
1235 * need bouncing, by calling the appropriate masked or flagged allocator,
1236 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1237 * BUG.
1238 *
1239 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1240 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1241 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1242 * completion of a bio that hasn't been submitted yet, thus resulting in a
1243 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1244 * of bio_alloc(), as that avoids the mempool deadlock.
1245 * If possible a big IO should be split into smaller parts when allocation
1246 * fails. Partial allocation should not be an error, or you risk a live-lock.
1247 */
1248 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1249 gfp_t gfp_mask)
1250 {
1251 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1252
1253 if (IS_ERR(rq))
1254 return rq;
1255
1256 blk_rq_set_block_pc(rq);
1257
1258 for_each_bio(bio) {
1259 struct bio *bounce_bio = bio;
1260 int ret;
1261
1262 blk_queue_bounce(q, &bounce_bio);
1263 ret = blk_rq_append_bio(q, rq, bounce_bio);
1264 if (unlikely(ret)) {
1265 blk_put_request(rq);
1266 return ERR_PTR(ret);
1267 }
1268 }
1269
1270 return rq;
1271 }
1272 EXPORT_SYMBOL(blk_make_request);
1273
1274 /**
1275 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1276 * @rq: request to be initialized
1277 *
1278 */
1279 void blk_rq_set_block_pc(struct request *rq)
1280 {
1281 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1282 rq->__data_len = 0;
1283 rq->__sector = (sector_t) -1;
1284 rq->bio = rq->biotail = NULL;
1285 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1286 }
1287 EXPORT_SYMBOL(blk_rq_set_block_pc);
1288
1289 /**
1290 * blk_requeue_request - put a request back on queue
1291 * @q: request queue where request should be inserted
1292 * @rq: request to be inserted
1293 *
1294 * Description:
1295 * Drivers often keep queueing requests until the hardware cannot accept
1296 * more, when that condition happens we need to put the request back
1297 * on the queue. Must be called with queue lock held.
1298 */
1299 void blk_requeue_request(struct request_queue *q, struct request *rq)
1300 {
1301 blk_delete_timer(rq);
1302 blk_clear_rq_complete(rq);
1303 trace_block_rq_requeue(q, rq);
1304
1305 if (rq->cmd_flags & REQ_QUEUED)
1306 blk_queue_end_tag(q, rq);
1307
1308 BUG_ON(blk_queued_rq(rq));
1309
1310 elv_requeue_request(q, rq);
1311 }
1312 EXPORT_SYMBOL(blk_requeue_request);
1313
1314 static void add_acct_request(struct request_queue *q, struct request *rq,
1315 int where)
1316 {
1317 blk_account_io_start(rq, true);
1318 __elv_add_request(q, rq, where);
1319 }
1320
1321 static void part_round_stats_single(int cpu, struct hd_struct *part,
1322 unsigned long now)
1323 {
1324 int inflight;
1325
1326 if (now == part->stamp)
1327 return;
1328
1329 inflight = part_in_flight(part);
1330 if (inflight) {
1331 __part_stat_add(cpu, part, time_in_queue,
1332 inflight * (now - part->stamp));
1333 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1334 }
1335 part->stamp = now;
1336 }
1337
1338 /**
1339 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1340 * @cpu: cpu number for stats access
1341 * @part: target partition
1342 *
1343 * The average IO queue length and utilisation statistics are maintained
1344 * by observing the current state of the queue length and the amount of
1345 * time it has been in this state for.
1346 *
1347 * Normally, that accounting is done on IO completion, but that can result
1348 * in more than a second's worth of IO being accounted for within any one
1349 * second, leading to >100% utilisation. To deal with that, we call this
1350 * function to do a round-off before returning the results when reading
1351 * /proc/diskstats. This accounts immediately for all queue usage up to
1352 * the current jiffies and restarts the counters again.
1353 */
1354 void part_round_stats(int cpu, struct hd_struct *part)
1355 {
1356 unsigned long now = jiffies;
1357
1358 if (part->partno)
1359 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1360 part_round_stats_single(cpu, part, now);
1361 }
1362 EXPORT_SYMBOL_GPL(part_round_stats);
1363
1364 #ifdef CONFIG_PM
1365 static void blk_pm_put_request(struct request *rq)
1366 {
1367 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1368 pm_runtime_mark_last_busy(rq->q->dev);
1369 }
1370 #else
1371 static inline void blk_pm_put_request(struct request *rq) {}
1372 #endif
1373
1374 /*
1375 * queue lock must be held
1376 */
1377 void __blk_put_request(struct request_queue *q, struct request *req)
1378 {
1379 if (unlikely(!q))
1380 return;
1381
1382 if (q->mq_ops) {
1383 blk_mq_free_request(req);
1384 return;
1385 }
1386
1387 blk_pm_put_request(req);
1388
1389 elv_completed_request(q, req);
1390
1391 /* this is a bio leak */
1392 WARN_ON(req->bio != NULL);
1393
1394 /*
1395 * Request may not have originated from ll_rw_blk. if not,
1396 * it didn't come out of our reserved rq pools
1397 */
1398 if (req->cmd_flags & REQ_ALLOCED) {
1399 unsigned int flags = req->cmd_flags;
1400 struct request_list *rl = blk_rq_rl(req);
1401
1402 BUG_ON(!list_empty(&req->queuelist));
1403 BUG_ON(ELV_ON_HASH(req));
1404
1405 blk_free_request(rl, req);
1406 freed_request(rl, flags);
1407 blk_put_rl(rl);
1408 }
1409 }
1410 EXPORT_SYMBOL_GPL(__blk_put_request);
1411
1412 void blk_put_request(struct request *req)
1413 {
1414 struct request_queue *q = req->q;
1415
1416 if (q->mq_ops)
1417 blk_mq_free_request(req);
1418 else {
1419 unsigned long flags;
1420
1421 spin_lock_irqsave(q->queue_lock, flags);
1422 __blk_put_request(q, req);
1423 spin_unlock_irqrestore(q->queue_lock, flags);
1424 }
1425 }
1426 EXPORT_SYMBOL(blk_put_request);
1427
1428 /**
1429 * blk_add_request_payload - add a payload to a request
1430 * @rq: request to update
1431 * @page: page backing the payload
1432 * @len: length of the payload.
1433 *
1434 * This allows to later add a payload to an already submitted request by
1435 * a block driver. The driver needs to take care of freeing the payload
1436 * itself.
1437 *
1438 * Note that this is a quite horrible hack and nothing but handling of
1439 * discard requests should ever use it.
1440 */
1441 void blk_add_request_payload(struct request *rq, struct page *page,
1442 unsigned int len)
1443 {
1444 struct bio *bio = rq->bio;
1445
1446 bio->bi_io_vec->bv_page = page;
1447 bio->bi_io_vec->bv_offset = 0;
1448 bio->bi_io_vec->bv_len = len;
1449
1450 bio->bi_iter.bi_size = len;
1451 bio->bi_vcnt = 1;
1452 bio->bi_phys_segments = 1;
1453
1454 rq->__data_len = rq->resid_len = len;
1455 rq->nr_phys_segments = 1;
1456 }
1457 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1458
1459 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1460 struct bio *bio)
1461 {
1462 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1463
1464 if (!ll_back_merge_fn(q, req, bio))
1465 return false;
1466
1467 trace_block_bio_backmerge(q, req, bio);
1468
1469 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1470 blk_rq_set_mixed_merge(req);
1471
1472 req->biotail->bi_next = bio;
1473 req->biotail = bio;
1474 req->__data_len += bio->bi_iter.bi_size;
1475 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1476
1477 blk_account_io_start(req, false);
1478 return true;
1479 }
1480
1481 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1482 struct bio *bio)
1483 {
1484 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1485
1486 if (!ll_front_merge_fn(q, req, bio))
1487 return false;
1488
1489 trace_block_bio_frontmerge(q, req, bio);
1490
1491 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1492 blk_rq_set_mixed_merge(req);
1493
1494 bio->bi_next = req->bio;
1495 req->bio = bio;
1496
1497 req->__sector = bio->bi_iter.bi_sector;
1498 req->__data_len += bio->bi_iter.bi_size;
1499 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1500
1501 blk_account_io_start(req, false);
1502 return true;
1503 }
1504
1505 /**
1506 * blk_attempt_plug_merge - try to merge with %current's plugged list
1507 * @q: request_queue new bio is being queued at
1508 * @bio: new bio being queued
1509 * @request_count: out parameter for number of traversed plugged requests
1510 *
1511 * Determine whether @bio being queued on @q can be merged with a request
1512 * on %current's plugged list. Returns %true if merge was successful,
1513 * otherwise %false.
1514 *
1515 * Plugging coalesces IOs from the same issuer for the same purpose without
1516 * going through @q->queue_lock. As such it's more of an issuing mechanism
1517 * than scheduling, and the request, while may have elvpriv data, is not
1518 * added on the elevator at this point. In addition, we don't have
1519 * reliable access to the elevator outside queue lock. Only check basic
1520 * merging parameters without querying the elevator.
1521 *
1522 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1523 */
1524 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1525 unsigned int *request_count)
1526 {
1527 struct blk_plug *plug;
1528 struct request *rq;
1529 bool ret = false;
1530 struct list_head *plug_list;
1531
1532 plug = current->plug;
1533 if (!plug)
1534 goto out;
1535 *request_count = 0;
1536
1537 if (q->mq_ops)
1538 plug_list = &plug->mq_list;
1539 else
1540 plug_list = &plug->list;
1541
1542 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1543 int el_ret;
1544
1545 if (rq->q == q)
1546 (*request_count)++;
1547
1548 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1549 continue;
1550
1551 el_ret = blk_try_merge(rq, bio);
1552 if (el_ret == ELEVATOR_BACK_MERGE) {
1553 ret = bio_attempt_back_merge(q, rq, bio);
1554 if (ret)
1555 break;
1556 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1557 ret = bio_attempt_front_merge(q, rq, bio);
1558 if (ret)
1559 break;
1560 }
1561 }
1562 out:
1563 return ret;
1564 }
1565
1566 void init_request_from_bio(struct request *req, struct bio *bio)
1567 {
1568 req->cmd_type = REQ_TYPE_FS;
1569
1570 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1571 if (bio->bi_rw & REQ_RAHEAD)
1572 req->cmd_flags |= REQ_FAILFAST_MASK;
1573
1574 req->errors = 0;
1575 req->__sector = bio->bi_iter.bi_sector;
1576 req->ioprio = bio_prio(bio);
1577 blk_rq_bio_prep(req->q, req, bio);
1578 }
1579
1580 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1581 {
1582 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1583 struct blk_plug *plug;
1584 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1585 struct request *req;
1586 unsigned int request_count = 0;
1587
1588 /*
1589 * low level driver can indicate that it wants pages above a
1590 * certain limit bounced to low memory (ie for highmem, or even
1591 * ISA dma in theory)
1592 */
1593 blk_queue_bounce(q, &bio);
1594
1595 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1596 bio_endio(bio, -EIO);
1597 return;
1598 }
1599
1600 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1601 spin_lock_irq(q->queue_lock);
1602 where = ELEVATOR_INSERT_FLUSH;
1603 goto get_rq;
1604 }
1605
1606 /*
1607 * Check if we can merge with the plugged list before grabbing
1608 * any locks.
1609 */
1610 if (!blk_queue_nomerges(q) &&
1611 blk_attempt_plug_merge(q, bio, &request_count))
1612 return;
1613
1614 spin_lock_irq(q->queue_lock);
1615
1616 el_ret = elv_merge(q, &req, bio);
1617 if (el_ret == ELEVATOR_BACK_MERGE) {
1618 if (bio_attempt_back_merge(q, req, bio)) {
1619 elv_bio_merged(q, req, bio);
1620 if (!attempt_back_merge(q, req))
1621 elv_merged_request(q, req, el_ret);
1622 goto out_unlock;
1623 }
1624 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1625 if (bio_attempt_front_merge(q, req, bio)) {
1626 elv_bio_merged(q, req, bio);
1627 if (!attempt_front_merge(q, req))
1628 elv_merged_request(q, req, el_ret);
1629 goto out_unlock;
1630 }
1631 }
1632
1633 get_rq:
1634 /*
1635 * This sync check and mask will be re-done in init_request_from_bio(),
1636 * but we need to set it earlier to expose the sync flag to the
1637 * rq allocator and io schedulers.
1638 */
1639 rw_flags = bio_data_dir(bio);
1640 if (sync)
1641 rw_flags |= REQ_SYNC;
1642
1643 /*
1644 * Grab a free request. This is might sleep but can not fail.
1645 * Returns with the queue unlocked.
1646 */
1647 req = get_request(q, rw_flags, bio, GFP_NOIO);
1648 if (IS_ERR(req)) {
1649 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1650 goto out_unlock;
1651 }
1652
1653 /*
1654 * After dropping the lock and possibly sleeping here, our request
1655 * may now be mergeable after it had proven unmergeable (above).
1656 * We don't worry about that case for efficiency. It won't happen
1657 * often, and the elevators are able to handle it.
1658 */
1659 init_request_from_bio(req, bio);
1660
1661 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1662 req->cpu = raw_smp_processor_id();
1663
1664 plug = current->plug;
1665 if (plug) {
1666 /*
1667 * If this is the first request added after a plug, fire
1668 * of a plug trace.
1669 */
1670 if (!request_count)
1671 trace_block_plug(q);
1672 else {
1673 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1674 blk_flush_plug_list(plug, false);
1675 trace_block_plug(q);
1676 }
1677 }
1678 list_add_tail(&req->queuelist, &plug->list);
1679 blk_account_io_start(req, true);
1680 } else {
1681 spin_lock_irq(q->queue_lock);
1682 add_acct_request(q, req, where);
1683 __blk_run_queue(q);
1684 out_unlock:
1685 spin_unlock_irq(q->queue_lock);
1686 }
1687 }
1688 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1689
1690 /*
1691 * If bio->bi_dev is a partition, remap the location
1692 */
1693 static inline void blk_partition_remap(struct bio *bio)
1694 {
1695 struct block_device *bdev = bio->bi_bdev;
1696
1697 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1698 struct hd_struct *p = bdev->bd_part;
1699
1700 bio->bi_iter.bi_sector += p->start_sect;
1701 bio->bi_bdev = bdev->bd_contains;
1702
1703 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1704 bdev->bd_dev,
1705 bio->bi_iter.bi_sector - p->start_sect);
1706 }
1707 }
1708
1709 static void handle_bad_sector(struct bio *bio)
1710 {
1711 char b[BDEVNAME_SIZE];
1712
1713 printk(KERN_INFO "attempt to access beyond end of device\n");
1714 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1715 bdevname(bio->bi_bdev, b),
1716 bio->bi_rw,
1717 (unsigned long long)bio_end_sector(bio),
1718 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1719
1720 set_bit(BIO_EOF, &bio->bi_flags);
1721 }
1722
1723 #ifdef CONFIG_FAIL_MAKE_REQUEST
1724
1725 static DECLARE_FAULT_ATTR(fail_make_request);
1726
1727 static int __init setup_fail_make_request(char *str)
1728 {
1729 return setup_fault_attr(&fail_make_request, str);
1730 }
1731 __setup("fail_make_request=", setup_fail_make_request);
1732
1733 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1734 {
1735 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1736 }
1737
1738 static int __init fail_make_request_debugfs(void)
1739 {
1740 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1741 NULL, &fail_make_request);
1742
1743 return PTR_ERR_OR_ZERO(dir);
1744 }
1745
1746 late_initcall(fail_make_request_debugfs);
1747
1748 #else /* CONFIG_FAIL_MAKE_REQUEST */
1749
1750 static inline bool should_fail_request(struct hd_struct *part,
1751 unsigned int bytes)
1752 {
1753 return false;
1754 }
1755
1756 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1757
1758 /*
1759 * Check whether this bio extends beyond the end of the device.
1760 */
1761 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1762 {
1763 sector_t maxsector;
1764
1765 if (!nr_sectors)
1766 return 0;
1767
1768 /* Test device or partition size, when known. */
1769 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1770 if (maxsector) {
1771 sector_t sector = bio->bi_iter.bi_sector;
1772
1773 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1774 /*
1775 * This may well happen - the kernel calls bread()
1776 * without checking the size of the device, e.g., when
1777 * mounting a device.
1778 */
1779 handle_bad_sector(bio);
1780 return 1;
1781 }
1782 }
1783
1784 return 0;
1785 }
1786
1787 static noinline_for_stack bool
1788 generic_make_request_checks(struct bio *bio)
1789 {
1790 struct request_queue *q;
1791 int nr_sectors = bio_sectors(bio);
1792 int err = -EIO;
1793 char b[BDEVNAME_SIZE];
1794 struct hd_struct *part;
1795
1796 might_sleep();
1797
1798 if (bio_check_eod(bio, nr_sectors))
1799 goto end_io;
1800
1801 q = bdev_get_queue(bio->bi_bdev);
1802 if (unlikely(!q)) {
1803 printk(KERN_ERR
1804 "generic_make_request: Trying to access "
1805 "nonexistent block-device %s (%Lu)\n",
1806 bdevname(bio->bi_bdev, b),
1807 (long long) bio->bi_iter.bi_sector);
1808 goto end_io;
1809 }
1810
1811 if (likely(bio_is_rw(bio) &&
1812 nr_sectors > queue_max_hw_sectors(q))) {
1813 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1814 bdevname(bio->bi_bdev, b),
1815 bio_sectors(bio),
1816 queue_max_hw_sectors(q));
1817 goto end_io;
1818 }
1819
1820 part = bio->bi_bdev->bd_part;
1821 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1822 should_fail_request(&part_to_disk(part)->part0,
1823 bio->bi_iter.bi_size))
1824 goto end_io;
1825
1826 /*
1827 * If this device has partitions, remap block n
1828 * of partition p to block n+start(p) of the disk.
1829 */
1830 blk_partition_remap(bio);
1831
1832 if (bio_check_eod(bio, nr_sectors))
1833 goto end_io;
1834
1835 /*
1836 * Filter flush bio's early so that make_request based
1837 * drivers without flush support don't have to worry
1838 * about them.
1839 */
1840 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1841 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1842 if (!nr_sectors) {
1843 err = 0;
1844 goto end_io;
1845 }
1846 }
1847
1848 if ((bio->bi_rw & REQ_DISCARD) &&
1849 (!blk_queue_discard(q) ||
1850 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1851 err = -EOPNOTSUPP;
1852 goto end_io;
1853 }
1854
1855 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1856 err = -EOPNOTSUPP;
1857 goto end_io;
1858 }
1859
1860 /*
1861 * Various block parts want %current->io_context and lazy ioc
1862 * allocation ends up trading a lot of pain for a small amount of
1863 * memory. Just allocate it upfront. This may fail and block
1864 * layer knows how to live with it.
1865 */
1866 create_io_context(GFP_ATOMIC, q->node);
1867
1868 if (blk_throtl_bio(q, bio))
1869 return false; /* throttled, will be resubmitted later */
1870
1871 trace_block_bio_queue(q, bio);
1872 return true;
1873
1874 end_io:
1875 bio_endio(bio, err);
1876 return false;
1877 }
1878
1879 /**
1880 * generic_make_request - hand a buffer to its device driver for I/O
1881 * @bio: The bio describing the location in memory and on the device.
1882 *
1883 * generic_make_request() is used to make I/O requests of block
1884 * devices. It is passed a &struct bio, which describes the I/O that needs
1885 * to be done.
1886 *
1887 * generic_make_request() does not return any status. The
1888 * success/failure status of the request, along with notification of
1889 * completion, is delivered asynchronously through the bio->bi_end_io
1890 * function described (one day) else where.
1891 *
1892 * The caller of generic_make_request must make sure that bi_io_vec
1893 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1894 * set to describe the device address, and the
1895 * bi_end_io and optionally bi_private are set to describe how
1896 * completion notification should be signaled.
1897 *
1898 * generic_make_request and the drivers it calls may use bi_next if this
1899 * bio happens to be merged with someone else, and may resubmit the bio to
1900 * a lower device by calling into generic_make_request recursively, which
1901 * means the bio should NOT be touched after the call to ->make_request_fn.
1902 */
1903 void generic_make_request(struct bio *bio)
1904 {
1905 struct bio_list bio_list_on_stack;
1906
1907 if (!generic_make_request_checks(bio))
1908 return;
1909
1910 /*
1911 * We only want one ->make_request_fn to be active at a time, else
1912 * stack usage with stacked devices could be a problem. So use
1913 * current->bio_list to keep a list of requests submited by a
1914 * make_request_fn function. current->bio_list is also used as a
1915 * flag to say if generic_make_request is currently active in this
1916 * task or not. If it is NULL, then no make_request is active. If
1917 * it is non-NULL, then a make_request is active, and new requests
1918 * should be added at the tail
1919 */
1920 if (current->bio_list) {
1921 bio_list_add(current->bio_list, bio);
1922 return;
1923 }
1924
1925 /* following loop may be a bit non-obvious, and so deserves some
1926 * explanation.
1927 * Before entering the loop, bio->bi_next is NULL (as all callers
1928 * ensure that) so we have a list with a single bio.
1929 * We pretend that we have just taken it off a longer list, so
1930 * we assign bio_list to a pointer to the bio_list_on_stack,
1931 * thus initialising the bio_list of new bios to be
1932 * added. ->make_request() may indeed add some more bios
1933 * through a recursive call to generic_make_request. If it
1934 * did, we find a non-NULL value in bio_list and re-enter the loop
1935 * from the top. In this case we really did just take the bio
1936 * of the top of the list (no pretending) and so remove it from
1937 * bio_list, and call into ->make_request() again.
1938 */
1939 BUG_ON(bio->bi_next);
1940 bio_list_init(&bio_list_on_stack);
1941 current->bio_list = &bio_list_on_stack;
1942 do {
1943 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1944
1945 q->make_request_fn(q, bio);
1946
1947 bio = bio_list_pop(current->bio_list);
1948 } while (bio);
1949 current->bio_list = NULL; /* deactivate */
1950 }
1951 EXPORT_SYMBOL(generic_make_request);
1952
1953 /**
1954 * submit_bio - submit a bio to the block device layer for I/O
1955 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1956 * @bio: The &struct bio which describes the I/O
1957 *
1958 * submit_bio() is very similar in purpose to generic_make_request(), and
1959 * uses that function to do most of the work. Both are fairly rough
1960 * interfaces; @bio must be presetup and ready for I/O.
1961 *
1962 */
1963 void submit_bio(int rw, struct bio *bio)
1964 {
1965 bio->bi_rw |= rw;
1966
1967 /*
1968 * If it's a regular read/write or a barrier with data attached,
1969 * go through the normal accounting stuff before submission.
1970 */
1971 if (bio_has_data(bio)) {
1972 unsigned int count;
1973
1974 if (unlikely(rw & REQ_WRITE_SAME))
1975 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1976 else
1977 count = bio_sectors(bio);
1978
1979 if (rw & WRITE) {
1980 count_vm_events(PGPGOUT, count);
1981 } else {
1982 task_io_account_read(bio->bi_iter.bi_size);
1983 count_vm_events(PGPGIN, count);
1984 }
1985
1986 if (unlikely(block_dump)) {
1987 char b[BDEVNAME_SIZE];
1988 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1989 current->comm, task_pid_nr(current),
1990 (rw & WRITE) ? "WRITE" : "READ",
1991 (unsigned long long)bio->bi_iter.bi_sector,
1992 bdevname(bio->bi_bdev, b),
1993 count);
1994 }
1995 }
1996
1997 generic_make_request(bio);
1998 }
1999 EXPORT_SYMBOL(submit_bio);
2000
2001 /**
2002 * blk_rq_check_limits - Helper function to check a request for the queue limit
2003 * @q: the queue
2004 * @rq: the request being checked
2005 *
2006 * Description:
2007 * @rq may have been made based on weaker limitations of upper-level queues
2008 * in request stacking drivers, and it may violate the limitation of @q.
2009 * Since the block layer and the underlying device driver trust @rq
2010 * after it is inserted to @q, it should be checked against @q before
2011 * the insertion using this generic function.
2012 *
2013 * This function should also be useful for request stacking drivers
2014 * in some cases below, so export this function.
2015 * Request stacking drivers like request-based dm may change the queue
2016 * limits while requests are in the queue (e.g. dm's table swapping).
2017 * Such request stacking drivers should check those requests against
2018 * the new queue limits again when they dispatch those requests,
2019 * although such checkings are also done against the old queue limits
2020 * when submitting requests.
2021 */
2022 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2023 {
2024 if (!rq_mergeable(rq))
2025 return 0;
2026
2027 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2028 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2029 return -EIO;
2030 }
2031
2032 /*
2033 * queue's settings related to segment counting like q->bounce_pfn
2034 * may differ from that of other stacking queues.
2035 * Recalculate it to check the request correctly on this queue's
2036 * limitation.
2037 */
2038 blk_recalc_rq_segments(rq);
2039 if (rq->nr_phys_segments > queue_max_segments(q)) {
2040 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2041 return -EIO;
2042 }
2043
2044 return 0;
2045 }
2046 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2047
2048 /**
2049 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2050 * @q: the queue to submit the request
2051 * @rq: the request being queued
2052 */
2053 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2054 {
2055 unsigned long flags;
2056 int where = ELEVATOR_INSERT_BACK;
2057
2058 if (blk_rq_check_limits(q, rq))
2059 return -EIO;
2060
2061 if (rq->rq_disk &&
2062 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2063 return -EIO;
2064
2065 if (q->mq_ops) {
2066 if (blk_queue_io_stat(q))
2067 blk_account_io_start(rq, true);
2068 blk_mq_insert_request(rq, false, true, true);
2069 return 0;
2070 }
2071
2072 spin_lock_irqsave(q->queue_lock, flags);
2073 if (unlikely(blk_queue_dying(q))) {
2074 spin_unlock_irqrestore(q->queue_lock, flags);
2075 return -ENODEV;
2076 }
2077
2078 /*
2079 * Submitting request must be dequeued before calling this function
2080 * because it will be linked to another request_queue
2081 */
2082 BUG_ON(blk_queued_rq(rq));
2083
2084 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2085 where = ELEVATOR_INSERT_FLUSH;
2086
2087 add_acct_request(q, rq, where);
2088 if (where == ELEVATOR_INSERT_FLUSH)
2089 __blk_run_queue(q);
2090 spin_unlock_irqrestore(q->queue_lock, flags);
2091
2092 return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2095
2096 /**
2097 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2098 * @rq: request to examine
2099 *
2100 * Description:
2101 * A request could be merge of IOs which require different failure
2102 * handling. This function determines the number of bytes which
2103 * can be failed from the beginning of the request without
2104 * crossing into area which need to be retried further.
2105 *
2106 * Return:
2107 * The number of bytes to fail.
2108 *
2109 * Context:
2110 * queue_lock must be held.
2111 */
2112 unsigned int blk_rq_err_bytes(const struct request *rq)
2113 {
2114 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2115 unsigned int bytes = 0;
2116 struct bio *bio;
2117
2118 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2119 return blk_rq_bytes(rq);
2120
2121 /*
2122 * Currently the only 'mixing' which can happen is between
2123 * different fastfail types. We can safely fail portions
2124 * which have all the failfast bits that the first one has -
2125 * the ones which are at least as eager to fail as the first
2126 * one.
2127 */
2128 for (bio = rq->bio; bio; bio = bio->bi_next) {
2129 if ((bio->bi_rw & ff) != ff)
2130 break;
2131 bytes += bio->bi_iter.bi_size;
2132 }
2133
2134 /* this could lead to infinite loop */
2135 BUG_ON(blk_rq_bytes(rq) && !bytes);
2136 return bytes;
2137 }
2138 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2139
2140 void blk_account_io_completion(struct request *req, unsigned int bytes)
2141 {
2142 if (blk_do_io_stat(req)) {
2143 const int rw = rq_data_dir(req);
2144 struct hd_struct *part;
2145 int cpu;
2146
2147 cpu = part_stat_lock();
2148 part = req->part;
2149 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2150 part_stat_unlock();
2151 }
2152 }
2153
2154 void blk_account_io_done(struct request *req)
2155 {
2156 /*
2157 * Account IO completion. flush_rq isn't accounted as a
2158 * normal IO on queueing nor completion. Accounting the
2159 * containing request is enough.
2160 */
2161 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2162 unsigned long duration = jiffies - req->start_time;
2163 const int rw = rq_data_dir(req);
2164 struct hd_struct *part;
2165 int cpu;
2166
2167 cpu = part_stat_lock();
2168 part = req->part;
2169
2170 part_stat_inc(cpu, part, ios[rw]);
2171 part_stat_add(cpu, part, ticks[rw], duration);
2172 part_round_stats(cpu, part);
2173 part_dec_in_flight(part, rw);
2174
2175 hd_struct_put(part);
2176 part_stat_unlock();
2177 }
2178 }
2179
2180 #ifdef CONFIG_PM
2181 /*
2182 * Don't process normal requests when queue is suspended
2183 * or in the process of suspending/resuming
2184 */
2185 static struct request *blk_pm_peek_request(struct request_queue *q,
2186 struct request *rq)
2187 {
2188 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2189 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2190 return NULL;
2191 else
2192 return rq;
2193 }
2194 #else
2195 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2196 struct request *rq)
2197 {
2198 return rq;
2199 }
2200 #endif
2201
2202 void blk_account_io_start(struct request *rq, bool new_io)
2203 {
2204 struct hd_struct *part;
2205 int rw = rq_data_dir(rq);
2206 int cpu;
2207
2208 if (!blk_do_io_stat(rq))
2209 return;
2210
2211 cpu = part_stat_lock();
2212
2213 if (!new_io) {
2214 part = rq->part;
2215 part_stat_inc(cpu, part, merges[rw]);
2216 } else {
2217 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2218 if (!hd_struct_try_get(part)) {
2219 /*
2220 * The partition is already being removed,
2221 * the request will be accounted on the disk only
2222 *
2223 * We take a reference on disk->part0 although that
2224 * partition will never be deleted, so we can treat
2225 * it as any other partition.
2226 */
2227 part = &rq->rq_disk->part0;
2228 hd_struct_get(part);
2229 }
2230 part_round_stats(cpu, part);
2231 part_inc_in_flight(part, rw);
2232 rq->part = part;
2233 }
2234
2235 part_stat_unlock();
2236 }
2237
2238 /**
2239 * blk_peek_request - peek at the top of a request queue
2240 * @q: request queue to peek at
2241 *
2242 * Description:
2243 * Return the request at the top of @q. The returned request
2244 * should be started using blk_start_request() before LLD starts
2245 * processing it.
2246 *
2247 * Return:
2248 * Pointer to the request at the top of @q if available. Null
2249 * otherwise.
2250 *
2251 * Context:
2252 * queue_lock must be held.
2253 */
2254 struct request *blk_peek_request(struct request_queue *q)
2255 {
2256 struct request *rq;
2257 int ret;
2258
2259 while ((rq = __elv_next_request(q)) != NULL) {
2260
2261 rq = blk_pm_peek_request(q, rq);
2262 if (!rq)
2263 break;
2264
2265 if (!(rq->cmd_flags & REQ_STARTED)) {
2266 /*
2267 * This is the first time the device driver
2268 * sees this request (possibly after
2269 * requeueing). Notify IO scheduler.
2270 */
2271 if (rq->cmd_flags & REQ_SORTED)
2272 elv_activate_rq(q, rq);
2273
2274 /*
2275 * just mark as started even if we don't start
2276 * it, a request that has been delayed should
2277 * not be passed by new incoming requests
2278 */
2279 rq->cmd_flags |= REQ_STARTED;
2280 trace_block_rq_issue(q, rq);
2281 }
2282
2283 if (!q->boundary_rq || q->boundary_rq == rq) {
2284 q->end_sector = rq_end_sector(rq);
2285 q->boundary_rq = NULL;
2286 }
2287
2288 if (rq->cmd_flags & REQ_DONTPREP)
2289 break;
2290
2291 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2292 /*
2293 * make sure space for the drain appears we
2294 * know we can do this because max_hw_segments
2295 * has been adjusted to be one fewer than the
2296 * device can handle
2297 */
2298 rq->nr_phys_segments++;
2299 }
2300
2301 if (!q->prep_rq_fn)
2302 break;
2303
2304 ret = q->prep_rq_fn(q, rq);
2305 if (ret == BLKPREP_OK) {
2306 break;
2307 } else if (ret == BLKPREP_DEFER) {
2308 /*
2309 * the request may have been (partially) prepped.
2310 * we need to keep this request in the front to
2311 * avoid resource deadlock. REQ_STARTED will
2312 * prevent other fs requests from passing this one.
2313 */
2314 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2315 !(rq->cmd_flags & REQ_DONTPREP)) {
2316 /*
2317 * remove the space for the drain we added
2318 * so that we don't add it again
2319 */
2320 --rq->nr_phys_segments;
2321 }
2322
2323 rq = NULL;
2324 break;
2325 } else if (ret == BLKPREP_KILL) {
2326 rq->cmd_flags |= REQ_QUIET;
2327 /*
2328 * Mark this request as started so we don't trigger
2329 * any debug logic in the end I/O path.
2330 */
2331 blk_start_request(rq);
2332 __blk_end_request_all(rq, -EIO);
2333 } else {
2334 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2335 break;
2336 }
2337 }
2338
2339 return rq;
2340 }
2341 EXPORT_SYMBOL(blk_peek_request);
2342
2343 void blk_dequeue_request(struct request *rq)
2344 {
2345 struct request_queue *q = rq->q;
2346
2347 BUG_ON(list_empty(&rq->queuelist));
2348 BUG_ON(ELV_ON_HASH(rq));
2349
2350 list_del_init(&rq->queuelist);
2351
2352 /*
2353 * the time frame between a request being removed from the lists
2354 * and to it is freed is accounted as io that is in progress at
2355 * the driver side.
2356 */
2357 if (blk_account_rq(rq)) {
2358 q->in_flight[rq_is_sync(rq)]++;
2359 set_io_start_time_ns(rq);
2360 }
2361 }
2362
2363 /**
2364 * blk_start_request - start request processing on the driver
2365 * @req: request to dequeue
2366 *
2367 * Description:
2368 * Dequeue @req and start timeout timer on it. This hands off the
2369 * request to the driver.
2370 *
2371 * Block internal functions which don't want to start timer should
2372 * call blk_dequeue_request().
2373 *
2374 * Context:
2375 * queue_lock must be held.
2376 */
2377 void blk_start_request(struct request *req)
2378 {
2379 blk_dequeue_request(req);
2380
2381 /*
2382 * We are now handing the request to the hardware, initialize
2383 * resid_len to full count and add the timeout handler.
2384 */
2385 req->resid_len = blk_rq_bytes(req);
2386 if (unlikely(blk_bidi_rq(req)))
2387 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2388
2389 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2390 blk_add_timer(req);
2391 }
2392 EXPORT_SYMBOL(blk_start_request);
2393
2394 /**
2395 * blk_fetch_request - fetch a request from a request queue
2396 * @q: request queue to fetch a request from
2397 *
2398 * Description:
2399 * Return the request at the top of @q. The request is started on
2400 * return and LLD can start processing it immediately.
2401 *
2402 * Return:
2403 * Pointer to the request at the top of @q if available. Null
2404 * otherwise.
2405 *
2406 * Context:
2407 * queue_lock must be held.
2408 */
2409 struct request *blk_fetch_request(struct request_queue *q)
2410 {
2411 struct request *rq;
2412
2413 rq = blk_peek_request(q);
2414 if (rq)
2415 blk_start_request(rq);
2416 return rq;
2417 }
2418 EXPORT_SYMBOL(blk_fetch_request);
2419
2420 /**
2421 * blk_update_request - Special helper function for request stacking drivers
2422 * @req: the request being processed
2423 * @error: %0 for success, < %0 for error
2424 * @nr_bytes: number of bytes to complete @req
2425 *
2426 * Description:
2427 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2428 * the request structure even if @req doesn't have leftover.
2429 * If @req has leftover, sets it up for the next range of segments.
2430 *
2431 * This special helper function is only for request stacking drivers
2432 * (e.g. request-based dm) so that they can handle partial completion.
2433 * Actual device drivers should use blk_end_request instead.
2434 *
2435 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2436 * %false return from this function.
2437 *
2438 * Return:
2439 * %false - this request doesn't have any more data
2440 * %true - this request has more data
2441 **/
2442 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2443 {
2444 int total_bytes;
2445
2446 trace_block_rq_complete(req->q, req, nr_bytes);
2447
2448 if (!req->bio)
2449 return false;
2450
2451 /*
2452 * For fs requests, rq is just carrier of independent bio's
2453 * and each partial completion should be handled separately.
2454 * Reset per-request error on each partial completion.
2455 *
2456 * TODO: tj: This is too subtle. It would be better to let
2457 * low level drivers do what they see fit.
2458 */
2459 if (req->cmd_type == REQ_TYPE_FS)
2460 req->errors = 0;
2461
2462 if (error && req->cmd_type == REQ_TYPE_FS &&
2463 !(req->cmd_flags & REQ_QUIET)) {
2464 char *error_type;
2465
2466 switch (error) {
2467 case -ENOLINK:
2468 error_type = "recoverable transport";
2469 break;
2470 case -EREMOTEIO:
2471 error_type = "critical target";
2472 break;
2473 case -EBADE:
2474 error_type = "critical nexus";
2475 break;
2476 case -ETIMEDOUT:
2477 error_type = "timeout";
2478 break;
2479 case -ENOSPC:
2480 error_type = "critical space allocation";
2481 break;
2482 case -ENODATA:
2483 error_type = "critical medium";
2484 break;
2485 case -EIO:
2486 default:
2487 error_type = "I/O";
2488 break;
2489 }
2490 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2491 __func__, error_type, req->rq_disk ?
2492 req->rq_disk->disk_name : "?",
2493 (unsigned long long)blk_rq_pos(req));
2494
2495 }
2496
2497 blk_account_io_completion(req, nr_bytes);
2498
2499 total_bytes = 0;
2500 while (req->bio) {
2501 struct bio *bio = req->bio;
2502 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2503
2504 if (bio_bytes == bio->bi_iter.bi_size)
2505 req->bio = bio->bi_next;
2506
2507 req_bio_endio(req, bio, bio_bytes, error);
2508
2509 total_bytes += bio_bytes;
2510 nr_bytes -= bio_bytes;
2511
2512 if (!nr_bytes)
2513 break;
2514 }
2515
2516 /*
2517 * completely done
2518 */
2519 if (!req->bio) {
2520 /*
2521 * Reset counters so that the request stacking driver
2522 * can find how many bytes remain in the request
2523 * later.
2524 */
2525 req->__data_len = 0;
2526 return false;
2527 }
2528
2529 req->__data_len -= total_bytes;
2530
2531 /* update sector only for requests with clear definition of sector */
2532 if (req->cmd_type == REQ_TYPE_FS)
2533 req->__sector += total_bytes >> 9;
2534
2535 /* mixed attributes always follow the first bio */
2536 if (req->cmd_flags & REQ_MIXED_MERGE) {
2537 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2538 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2539 }
2540
2541 /*
2542 * If total number of sectors is less than the first segment
2543 * size, something has gone terribly wrong.
2544 */
2545 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2546 blk_dump_rq_flags(req, "request botched");
2547 req->__data_len = blk_rq_cur_bytes(req);
2548 }
2549
2550 /* recalculate the number of segments */
2551 blk_recalc_rq_segments(req);
2552
2553 return true;
2554 }
2555 EXPORT_SYMBOL_GPL(blk_update_request);
2556
2557 static bool blk_update_bidi_request(struct request *rq, int error,
2558 unsigned int nr_bytes,
2559 unsigned int bidi_bytes)
2560 {
2561 if (blk_update_request(rq, error, nr_bytes))
2562 return true;
2563
2564 /* Bidi request must be completed as a whole */
2565 if (unlikely(blk_bidi_rq(rq)) &&
2566 blk_update_request(rq->next_rq, error, bidi_bytes))
2567 return true;
2568
2569 if (blk_queue_add_random(rq->q))
2570 add_disk_randomness(rq->rq_disk);
2571
2572 return false;
2573 }
2574
2575 /**
2576 * blk_unprep_request - unprepare a request
2577 * @req: the request
2578 *
2579 * This function makes a request ready for complete resubmission (or
2580 * completion). It happens only after all error handling is complete,
2581 * so represents the appropriate moment to deallocate any resources
2582 * that were allocated to the request in the prep_rq_fn. The queue
2583 * lock is held when calling this.
2584 */
2585 void blk_unprep_request(struct request *req)
2586 {
2587 struct request_queue *q = req->q;
2588
2589 req->cmd_flags &= ~REQ_DONTPREP;
2590 if (q->unprep_rq_fn)
2591 q->unprep_rq_fn(q, req);
2592 }
2593 EXPORT_SYMBOL_GPL(blk_unprep_request);
2594
2595 /*
2596 * queue lock must be held
2597 */
2598 void blk_finish_request(struct request *req, int error)
2599 {
2600 if (req->cmd_flags & REQ_QUEUED)
2601 blk_queue_end_tag(req->q, req);
2602
2603 BUG_ON(blk_queued_rq(req));
2604
2605 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2606 laptop_io_completion(&req->q->backing_dev_info);
2607
2608 blk_delete_timer(req);
2609
2610 if (req->cmd_flags & REQ_DONTPREP)
2611 blk_unprep_request(req);
2612
2613 blk_account_io_done(req);
2614
2615 if (req->end_io)
2616 req->end_io(req, error);
2617 else {
2618 if (blk_bidi_rq(req))
2619 __blk_put_request(req->next_rq->q, req->next_rq);
2620
2621 __blk_put_request(req->q, req);
2622 }
2623 }
2624 EXPORT_SYMBOL(blk_finish_request);
2625
2626 /**
2627 * blk_end_bidi_request - Complete a bidi request
2628 * @rq: the request to complete
2629 * @error: %0 for success, < %0 for error
2630 * @nr_bytes: number of bytes to complete @rq
2631 * @bidi_bytes: number of bytes to complete @rq->next_rq
2632 *
2633 * Description:
2634 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2635 * Drivers that supports bidi can safely call this member for any
2636 * type of request, bidi or uni. In the later case @bidi_bytes is
2637 * just ignored.
2638 *
2639 * Return:
2640 * %false - we are done with this request
2641 * %true - still buffers pending for this request
2642 **/
2643 static bool blk_end_bidi_request(struct request *rq, int error,
2644 unsigned int nr_bytes, unsigned int bidi_bytes)
2645 {
2646 struct request_queue *q = rq->q;
2647 unsigned long flags;
2648
2649 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2650 return true;
2651
2652 spin_lock_irqsave(q->queue_lock, flags);
2653 blk_finish_request(rq, error);
2654 spin_unlock_irqrestore(q->queue_lock, flags);
2655
2656 return false;
2657 }
2658
2659 /**
2660 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2661 * @rq: the request to complete
2662 * @error: %0 for success, < %0 for error
2663 * @nr_bytes: number of bytes to complete @rq
2664 * @bidi_bytes: number of bytes to complete @rq->next_rq
2665 *
2666 * Description:
2667 * Identical to blk_end_bidi_request() except that queue lock is
2668 * assumed to be locked on entry and remains so on return.
2669 *
2670 * Return:
2671 * %false - we are done with this request
2672 * %true - still buffers pending for this request
2673 **/
2674 bool __blk_end_bidi_request(struct request *rq, int error,
2675 unsigned int nr_bytes, unsigned int bidi_bytes)
2676 {
2677 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2678 return true;
2679
2680 blk_finish_request(rq, error);
2681
2682 return false;
2683 }
2684
2685 /**
2686 * blk_end_request - Helper function for drivers to complete the request.
2687 * @rq: the request being processed
2688 * @error: %0 for success, < %0 for error
2689 * @nr_bytes: number of bytes to complete
2690 *
2691 * Description:
2692 * Ends I/O on a number of bytes attached to @rq.
2693 * If @rq has leftover, sets it up for the next range of segments.
2694 *
2695 * Return:
2696 * %false - we are done with this request
2697 * %true - still buffers pending for this request
2698 **/
2699 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2700 {
2701 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2702 }
2703 EXPORT_SYMBOL(blk_end_request);
2704
2705 /**
2706 * blk_end_request_all - Helper function for drives to finish the request.
2707 * @rq: the request to finish
2708 * @error: %0 for success, < %0 for error
2709 *
2710 * Description:
2711 * Completely finish @rq.
2712 */
2713 void blk_end_request_all(struct request *rq, int error)
2714 {
2715 bool pending;
2716 unsigned int bidi_bytes = 0;
2717
2718 if (unlikely(blk_bidi_rq(rq)))
2719 bidi_bytes = blk_rq_bytes(rq->next_rq);
2720
2721 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2722 BUG_ON(pending);
2723 }
2724 EXPORT_SYMBOL(blk_end_request_all);
2725
2726 /**
2727 * blk_end_request_cur - Helper function to finish the current request chunk.
2728 * @rq: the request to finish the current chunk for
2729 * @error: %0 for success, < %0 for error
2730 *
2731 * Description:
2732 * Complete the current consecutively mapped chunk from @rq.
2733 *
2734 * Return:
2735 * %false - we are done with this request
2736 * %true - still buffers pending for this request
2737 */
2738 bool blk_end_request_cur(struct request *rq, int error)
2739 {
2740 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2741 }
2742 EXPORT_SYMBOL(blk_end_request_cur);
2743
2744 /**
2745 * blk_end_request_err - Finish a request till the next failure boundary.
2746 * @rq: the request to finish till the next failure boundary for
2747 * @error: must be negative errno
2748 *
2749 * Description:
2750 * Complete @rq till the next failure boundary.
2751 *
2752 * Return:
2753 * %false - we are done with this request
2754 * %true - still buffers pending for this request
2755 */
2756 bool blk_end_request_err(struct request *rq, int error)
2757 {
2758 WARN_ON(error >= 0);
2759 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2760 }
2761 EXPORT_SYMBOL_GPL(blk_end_request_err);
2762
2763 /**
2764 * __blk_end_request - Helper function for drivers to complete the request.
2765 * @rq: the request being processed
2766 * @error: %0 for success, < %0 for error
2767 * @nr_bytes: number of bytes to complete
2768 *
2769 * Description:
2770 * Must be called with queue lock held unlike blk_end_request().
2771 *
2772 * Return:
2773 * %false - we are done with this request
2774 * %true - still buffers pending for this request
2775 **/
2776 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2777 {
2778 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2779 }
2780 EXPORT_SYMBOL(__blk_end_request);
2781
2782 /**
2783 * __blk_end_request_all - Helper function for drives to finish the request.
2784 * @rq: the request to finish
2785 * @error: %0 for success, < %0 for error
2786 *
2787 * Description:
2788 * Completely finish @rq. Must be called with queue lock held.
2789 */
2790 void __blk_end_request_all(struct request *rq, int error)
2791 {
2792 bool pending;
2793 unsigned int bidi_bytes = 0;
2794
2795 if (unlikely(blk_bidi_rq(rq)))
2796 bidi_bytes = blk_rq_bytes(rq->next_rq);
2797
2798 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2799 BUG_ON(pending);
2800 }
2801 EXPORT_SYMBOL(__blk_end_request_all);
2802
2803 /**
2804 * __blk_end_request_cur - Helper function to finish the current request chunk.
2805 * @rq: the request to finish the current chunk for
2806 * @error: %0 for success, < %0 for error
2807 *
2808 * Description:
2809 * Complete the current consecutively mapped chunk from @rq. Must
2810 * be called with queue lock held.
2811 *
2812 * Return:
2813 * %false - we are done with this request
2814 * %true - still buffers pending for this request
2815 */
2816 bool __blk_end_request_cur(struct request *rq, int error)
2817 {
2818 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2819 }
2820 EXPORT_SYMBOL(__blk_end_request_cur);
2821
2822 /**
2823 * __blk_end_request_err - Finish a request till the next failure boundary.
2824 * @rq: the request to finish till the next failure boundary for
2825 * @error: must be negative errno
2826 *
2827 * Description:
2828 * Complete @rq till the next failure boundary. Must be called
2829 * with queue lock held.
2830 *
2831 * Return:
2832 * %false - we are done with this request
2833 * %true - still buffers pending for this request
2834 */
2835 bool __blk_end_request_err(struct request *rq, int error)
2836 {
2837 WARN_ON(error >= 0);
2838 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2839 }
2840 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2841
2842 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2843 struct bio *bio)
2844 {
2845 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2846 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2847
2848 if (bio_has_data(bio))
2849 rq->nr_phys_segments = bio_phys_segments(q, bio);
2850
2851 rq->__data_len = bio->bi_iter.bi_size;
2852 rq->bio = rq->biotail = bio;
2853
2854 if (bio->bi_bdev)
2855 rq->rq_disk = bio->bi_bdev->bd_disk;
2856 }
2857
2858 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2859 /**
2860 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2861 * @rq: the request to be flushed
2862 *
2863 * Description:
2864 * Flush all pages in @rq.
2865 */
2866 void rq_flush_dcache_pages(struct request *rq)
2867 {
2868 struct req_iterator iter;
2869 struct bio_vec bvec;
2870
2871 rq_for_each_segment(bvec, rq, iter)
2872 flush_dcache_page(bvec.bv_page);
2873 }
2874 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2875 #endif
2876
2877 /**
2878 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2879 * @q : the queue of the device being checked
2880 *
2881 * Description:
2882 * Check if underlying low-level drivers of a device are busy.
2883 * If the drivers want to export their busy state, they must set own
2884 * exporting function using blk_queue_lld_busy() first.
2885 *
2886 * Basically, this function is used only by request stacking drivers
2887 * to stop dispatching requests to underlying devices when underlying
2888 * devices are busy. This behavior helps more I/O merging on the queue
2889 * of the request stacking driver and prevents I/O throughput regression
2890 * on burst I/O load.
2891 *
2892 * Return:
2893 * 0 - Not busy (The request stacking driver should dispatch request)
2894 * 1 - Busy (The request stacking driver should stop dispatching request)
2895 */
2896 int blk_lld_busy(struct request_queue *q)
2897 {
2898 if (q->lld_busy_fn)
2899 return q->lld_busy_fn(q);
2900
2901 return 0;
2902 }
2903 EXPORT_SYMBOL_GPL(blk_lld_busy);
2904
2905 /**
2906 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2907 * @rq: the clone request to be cleaned up
2908 *
2909 * Description:
2910 * Free all bios in @rq for a cloned request.
2911 */
2912 void blk_rq_unprep_clone(struct request *rq)
2913 {
2914 struct bio *bio;
2915
2916 while ((bio = rq->bio) != NULL) {
2917 rq->bio = bio->bi_next;
2918
2919 bio_put(bio);
2920 }
2921 }
2922 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2923
2924 /*
2925 * Copy attributes of the original request to the clone request.
2926 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2927 */
2928 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2929 {
2930 dst->cpu = src->cpu;
2931 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2932 dst->cmd_type = src->cmd_type;
2933 dst->__sector = blk_rq_pos(src);
2934 dst->__data_len = blk_rq_bytes(src);
2935 dst->nr_phys_segments = src->nr_phys_segments;
2936 dst->ioprio = src->ioprio;
2937 dst->extra_len = src->extra_len;
2938 }
2939
2940 /**
2941 * blk_rq_prep_clone - Helper function to setup clone request
2942 * @rq: the request to be setup
2943 * @rq_src: original request to be cloned
2944 * @bs: bio_set that bios for clone are allocated from
2945 * @gfp_mask: memory allocation mask for bio
2946 * @bio_ctr: setup function to be called for each clone bio.
2947 * Returns %0 for success, non %0 for failure.
2948 * @data: private data to be passed to @bio_ctr
2949 *
2950 * Description:
2951 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2952 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2953 * are not copied, and copying such parts is the caller's responsibility.
2954 * Also, pages which the original bios are pointing to are not copied
2955 * and the cloned bios just point same pages.
2956 * So cloned bios must be completed before original bios, which means
2957 * the caller must complete @rq before @rq_src.
2958 */
2959 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2960 struct bio_set *bs, gfp_t gfp_mask,
2961 int (*bio_ctr)(struct bio *, struct bio *, void *),
2962 void *data)
2963 {
2964 struct bio *bio, *bio_src;
2965
2966 if (!bs)
2967 bs = fs_bio_set;
2968
2969 __rq_for_each_bio(bio_src, rq_src) {
2970 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2971 if (!bio)
2972 goto free_and_out;
2973
2974 if (bio_ctr && bio_ctr(bio, bio_src, data))
2975 goto free_and_out;
2976
2977 if (rq->bio) {
2978 rq->biotail->bi_next = bio;
2979 rq->biotail = bio;
2980 } else
2981 rq->bio = rq->biotail = bio;
2982 }
2983
2984 __blk_rq_prep_clone(rq, rq_src);
2985
2986 return 0;
2987
2988 free_and_out:
2989 if (bio)
2990 bio_put(bio);
2991 blk_rq_unprep_clone(rq);
2992
2993 return -ENOMEM;
2994 }
2995 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2996
2997 int kblockd_schedule_work(struct work_struct *work)
2998 {
2999 return queue_work(kblockd_workqueue, work);
3000 }
3001 EXPORT_SYMBOL(kblockd_schedule_work);
3002
3003 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3004 unsigned long delay)
3005 {
3006 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3007 }
3008 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3009
3010 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3011 unsigned long delay)
3012 {
3013 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3014 }
3015 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3016
3017 /**
3018 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3019 * @plug: The &struct blk_plug that needs to be initialized
3020 *
3021 * Description:
3022 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3023 * pending I/O should the task end up blocking between blk_start_plug() and
3024 * blk_finish_plug(). This is important from a performance perspective, but
3025 * also ensures that we don't deadlock. For instance, if the task is blocking
3026 * for a memory allocation, memory reclaim could end up wanting to free a
3027 * page belonging to that request that is currently residing in our private
3028 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3029 * this kind of deadlock.
3030 */
3031 void blk_start_plug(struct blk_plug *plug)
3032 {
3033 struct task_struct *tsk = current;
3034
3035 INIT_LIST_HEAD(&plug->list);
3036 INIT_LIST_HEAD(&plug->mq_list);
3037 INIT_LIST_HEAD(&plug->cb_list);
3038
3039 /*
3040 * If this is a nested plug, don't actually assign it. It will be
3041 * flushed on its own.
3042 */
3043 if (!tsk->plug) {
3044 /*
3045 * Store ordering should not be needed here, since a potential
3046 * preempt will imply a full memory barrier
3047 */
3048 tsk->plug = plug;
3049 }
3050 }
3051 EXPORT_SYMBOL(blk_start_plug);
3052
3053 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3054 {
3055 struct request *rqa = container_of(a, struct request, queuelist);
3056 struct request *rqb = container_of(b, struct request, queuelist);
3057
3058 return !(rqa->q < rqb->q ||
3059 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3060 }
3061
3062 /*
3063 * If 'from_schedule' is true, then postpone the dispatch of requests
3064 * until a safe kblockd context. We due this to avoid accidental big
3065 * additional stack usage in driver dispatch, in places where the originally
3066 * plugger did not intend it.
3067 */
3068 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3069 bool from_schedule)
3070 __releases(q->queue_lock)
3071 {
3072 trace_block_unplug(q, depth, !from_schedule);
3073
3074 if (from_schedule)
3075 blk_run_queue_async(q);
3076 else
3077 __blk_run_queue(q);
3078 spin_unlock(q->queue_lock);
3079 }
3080
3081 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3082 {
3083 LIST_HEAD(callbacks);
3084
3085 while (!list_empty(&plug->cb_list)) {
3086 list_splice_init(&plug->cb_list, &callbacks);
3087
3088 while (!list_empty(&callbacks)) {
3089 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3090 struct blk_plug_cb,
3091 list);
3092 list_del(&cb->list);
3093 cb->callback(cb, from_schedule);
3094 }
3095 }
3096 }
3097
3098 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3099 int size)
3100 {
3101 struct blk_plug *plug = current->plug;
3102 struct blk_plug_cb *cb;
3103
3104 if (!plug)
3105 return NULL;
3106
3107 list_for_each_entry(cb, &plug->cb_list, list)
3108 if (cb->callback == unplug && cb->data == data)
3109 return cb;
3110
3111 /* Not currently on the callback list */
3112 BUG_ON(size < sizeof(*cb));
3113 cb = kzalloc(size, GFP_ATOMIC);
3114 if (cb) {
3115 cb->data = data;
3116 cb->callback = unplug;
3117 list_add(&cb->list, &plug->cb_list);
3118 }
3119 return cb;
3120 }
3121 EXPORT_SYMBOL(blk_check_plugged);
3122
3123 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3124 {
3125 struct request_queue *q;
3126 unsigned long flags;
3127 struct request *rq;
3128 LIST_HEAD(list);
3129 unsigned int depth;
3130
3131 flush_plug_callbacks(plug, from_schedule);
3132
3133 if (!list_empty(&plug->mq_list))
3134 blk_mq_flush_plug_list(plug, from_schedule);
3135
3136 if (list_empty(&plug->list))
3137 return;
3138
3139 list_splice_init(&plug->list, &list);
3140
3141 list_sort(NULL, &list, plug_rq_cmp);
3142
3143 q = NULL;
3144 depth = 0;
3145
3146 /*
3147 * Save and disable interrupts here, to avoid doing it for every
3148 * queue lock we have to take.
3149 */
3150 local_irq_save(flags);
3151 while (!list_empty(&list)) {
3152 rq = list_entry_rq(list.next);
3153 list_del_init(&rq->queuelist);
3154 BUG_ON(!rq->q);
3155 if (rq->q != q) {
3156 /*
3157 * This drops the queue lock
3158 */
3159 if (q)
3160 queue_unplugged(q, depth, from_schedule);
3161 q = rq->q;
3162 depth = 0;
3163 spin_lock(q->queue_lock);
3164 }
3165
3166 /*
3167 * Short-circuit if @q is dead
3168 */
3169 if (unlikely(blk_queue_dying(q))) {
3170 __blk_end_request_all(rq, -ENODEV);
3171 continue;
3172 }
3173
3174 /*
3175 * rq is already accounted, so use raw insert
3176 */
3177 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3178 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3179 else
3180 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3181
3182 depth++;
3183 }
3184
3185 /*
3186 * This drops the queue lock
3187 */
3188 if (q)
3189 queue_unplugged(q, depth, from_schedule);
3190
3191 local_irq_restore(flags);
3192 }
3193
3194 void blk_finish_plug(struct blk_plug *plug)
3195 {
3196 blk_flush_plug_list(plug, false);
3197
3198 if (plug == current->plug)
3199 current->plug = NULL;
3200 }
3201 EXPORT_SYMBOL(blk_finish_plug);
3202
3203 #ifdef CONFIG_PM
3204 /**
3205 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3206 * @q: the queue of the device
3207 * @dev: the device the queue belongs to
3208 *
3209 * Description:
3210 * Initialize runtime-PM-related fields for @q and start auto suspend for
3211 * @dev. Drivers that want to take advantage of request-based runtime PM
3212 * should call this function after @dev has been initialized, and its
3213 * request queue @q has been allocated, and runtime PM for it can not happen
3214 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3215 * cases, driver should call this function before any I/O has taken place.
3216 *
3217 * This function takes care of setting up using auto suspend for the device,
3218 * the autosuspend delay is set to -1 to make runtime suspend impossible
3219 * until an updated value is either set by user or by driver. Drivers do
3220 * not need to touch other autosuspend settings.
3221 *
3222 * The block layer runtime PM is request based, so only works for drivers
3223 * that use request as their IO unit instead of those directly use bio's.
3224 */
3225 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3226 {
3227 q->dev = dev;
3228 q->rpm_status = RPM_ACTIVE;
3229 pm_runtime_set_autosuspend_delay(q->dev, -1);
3230 pm_runtime_use_autosuspend(q->dev);
3231 }
3232 EXPORT_SYMBOL(blk_pm_runtime_init);
3233
3234 /**
3235 * blk_pre_runtime_suspend - Pre runtime suspend check
3236 * @q: the queue of the device
3237 *
3238 * Description:
3239 * This function will check if runtime suspend is allowed for the device
3240 * by examining if there are any requests pending in the queue. If there
3241 * are requests pending, the device can not be runtime suspended; otherwise,
3242 * the queue's status will be updated to SUSPENDING and the driver can
3243 * proceed to suspend the device.
3244 *
3245 * For the not allowed case, we mark last busy for the device so that
3246 * runtime PM core will try to autosuspend it some time later.
3247 *
3248 * This function should be called near the start of the device's
3249 * runtime_suspend callback.
3250 *
3251 * Return:
3252 * 0 - OK to runtime suspend the device
3253 * -EBUSY - Device should not be runtime suspended
3254 */
3255 int blk_pre_runtime_suspend(struct request_queue *q)
3256 {
3257 int ret = 0;
3258
3259 spin_lock_irq(q->queue_lock);
3260 if (q->nr_pending) {
3261 ret = -EBUSY;
3262 pm_runtime_mark_last_busy(q->dev);
3263 } else {
3264 q->rpm_status = RPM_SUSPENDING;
3265 }
3266 spin_unlock_irq(q->queue_lock);
3267 return ret;
3268 }
3269 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3270
3271 /**
3272 * blk_post_runtime_suspend - Post runtime suspend processing
3273 * @q: the queue of the device
3274 * @err: return value of the device's runtime_suspend function
3275 *
3276 * Description:
3277 * Update the queue's runtime status according to the return value of the
3278 * device's runtime suspend function and mark last busy for the device so
3279 * that PM core will try to auto suspend the device at a later time.
3280 *
3281 * This function should be called near the end of the device's
3282 * runtime_suspend callback.
3283 */
3284 void blk_post_runtime_suspend(struct request_queue *q, int err)
3285 {
3286 spin_lock_irq(q->queue_lock);
3287 if (!err) {
3288 q->rpm_status = RPM_SUSPENDED;
3289 } else {
3290 q->rpm_status = RPM_ACTIVE;
3291 pm_runtime_mark_last_busy(q->dev);
3292 }
3293 spin_unlock_irq(q->queue_lock);
3294 }
3295 EXPORT_SYMBOL(blk_post_runtime_suspend);
3296
3297 /**
3298 * blk_pre_runtime_resume - Pre runtime resume processing
3299 * @q: the queue of the device
3300 *
3301 * Description:
3302 * Update the queue's runtime status to RESUMING in preparation for the
3303 * runtime resume of the device.
3304 *
3305 * This function should be called near the start of the device's
3306 * runtime_resume callback.
3307 */
3308 void blk_pre_runtime_resume(struct request_queue *q)
3309 {
3310 spin_lock_irq(q->queue_lock);
3311 q->rpm_status = RPM_RESUMING;
3312 spin_unlock_irq(q->queue_lock);
3313 }
3314 EXPORT_SYMBOL(blk_pre_runtime_resume);
3315
3316 /**
3317 * blk_post_runtime_resume - Post runtime resume processing
3318 * @q: the queue of the device
3319 * @err: return value of the device's runtime_resume function
3320 *
3321 * Description:
3322 * Update the queue's runtime status according to the return value of the
3323 * device's runtime_resume function. If it is successfully resumed, process
3324 * the requests that are queued into the device's queue when it is resuming
3325 * and then mark last busy and initiate autosuspend for it.
3326 *
3327 * This function should be called near the end of the device's
3328 * runtime_resume callback.
3329 */
3330 void blk_post_runtime_resume(struct request_queue *q, int err)
3331 {
3332 spin_lock_irq(q->queue_lock);
3333 if (!err) {
3334 q->rpm_status = RPM_ACTIVE;
3335 __blk_run_queue(q);
3336 pm_runtime_mark_last_busy(q->dev);
3337 pm_request_autosuspend(q->dev);
3338 } else {
3339 q->rpm_status = RPM_SUSPENDED;
3340 }
3341 spin_unlock_irq(q->queue_lock);
3342 }
3343 EXPORT_SYMBOL(blk_post_runtime_resume);
3344 #endif
3345
3346 int __init blk_dev_init(void)
3347 {
3348 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3349 sizeof(((struct request *)0)->cmd_flags));
3350
3351 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3352 kblockd_workqueue = alloc_workqueue("kblockd",
3353 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3354 if (!kblockd_workqueue)
3355 panic("Failed to create kblockd\n");
3356
3357 request_cachep = kmem_cache_create("blkdev_requests",
3358 sizeof(struct request), 0, SLAB_PANIC, NULL);
3359
3360 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3361 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3362
3363 return 0;
3364 }