]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - block/blk-core.c
Merge tag 'trace-v5.2-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[mirror_ubuntu-eoan-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58
59 DEFINE_IDA(blk_queue_ida);
60
61 /*
62 * For queue allocation
63 */
64 struct kmem_cache *blk_requestq_cachep;
65
66 /*
67 * Controlling structure to kblockd
68 */
69 static struct workqueue_struct *kblockd_workqueue;
70
71 /**
72 * blk_queue_flag_set - atomically set a queue flag
73 * @flag: flag to be set
74 * @q: request queue
75 */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81
82 /**
83 * blk_queue_flag_clear - atomically clear a queue flag
84 * @flag: flag to be cleared
85 * @q: request queue
86 */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92
93 /**
94 * blk_queue_flag_test_and_set - atomically test and set a queue flag
95 * @flag: flag to be set
96 * @q: request queue
97 *
98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99 * the flag was already set.
100 */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 memset(rq, 0, sizeof(*rq));
110
111 INIT_LIST_HEAD(&rq->queuelist);
112 rq->q = q;
113 rq->__sector = (sector_t) -1;
114 INIT_HLIST_NODE(&rq->hash);
115 RB_CLEAR_NODE(&rq->rb_node);
116 rq->tag = -1;
117 rq->internal_tag = -1;
118 rq->start_time_ns = ktime_get_ns();
119 rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122
123 static const struct {
124 int errno;
125 const char *name;
126 } blk_errors[] = {
127 [BLK_STS_OK] = { 0, "" },
128 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
129 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
130 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
131 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
132 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
133 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
134 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
135 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
136 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
137 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
138 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
139
140 /* device mapper special case, should not leak out: */
141 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
142
143 /* everything else not covered above: */
144 [BLK_STS_IOERR] = { -EIO, "I/O" },
145 };
146
147 blk_status_t errno_to_blk_status(int errno)
148 {
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
152 if (blk_errors[i].errno == errno)
153 return (__force blk_status_t)i;
154 }
155
156 return BLK_STS_IOERR;
157 }
158 EXPORT_SYMBOL_GPL(errno_to_blk_status);
159
160 int blk_status_to_errno(blk_status_t status)
161 {
162 int idx = (__force int)status;
163
164 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
165 return -EIO;
166 return blk_errors[idx].errno;
167 }
168 EXPORT_SYMBOL_GPL(blk_status_to_errno);
169
170 static void print_req_error(struct request *req, blk_status_t status)
171 {
172 int idx = (__force int)status;
173
174 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 return;
176
177 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
178 __func__, blk_errors[idx].name,
179 req->rq_disk ? req->rq_disk->disk_name : "?",
180 (unsigned long long)blk_rq_pos(req),
181 req->cmd_flags);
182 }
183
184 static void req_bio_endio(struct request *rq, struct bio *bio,
185 unsigned int nbytes, blk_status_t error)
186 {
187 if (error)
188 bio->bi_status = error;
189
190 if (unlikely(rq->rq_flags & RQF_QUIET))
191 bio_set_flag(bio, BIO_QUIET);
192
193 bio_advance(bio, nbytes);
194
195 /* don't actually finish bio if it's part of flush sequence */
196 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
197 bio_endio(bio);
198 }
199
200 void blk_dump_rq_flags(struct request *rq, char *msg)
201 {
202 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
203 rq->rq_disk ? rq->rq_disk->disk_name : "?",
204 (unsigned long long) rq->cmd_flags);
205
206 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
207 (unsigned long long)blk_rq_pos(rq),
208 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
209 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
210 rq->bio, rq->biotail, blk_rq_bytes(rq));
211 }
212 EXPORT_SYMBOL(blk_dump_rq_flags);
213
214 /**
215 * blk_sync_queue - cancel any pending callbacks on a queue
216 * @q: the queue
217 *
218 * Description:
219 * The block layer may perform asynchronous callback activity
220 * on a queue, such as calling the unplug function after a timeout.
221 * A block device may call blk_sync_queue to ensure that any
222 * such activity is cancelled, thus allowing it to release resources
223 * that the callbacks might use. The caller must already have made sure
224 * that its ->make_request_fn will not re-add plugging prior to calling
225 * this function.
226 *
227 * This function does not cancel any asynchronous activity arising
228 * out of elevator or throttling code. That would require elevator_exit()
229 * and blkcg_exit_queue() to be called with queue lock initialized.
230 *
231 */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 del_timer_sync(&q->timeout);
235 cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238
239 /**
240 * blk_set_pm_only - increment pm_only counter
241 * @q: request queue pointer
242 */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 int pm_only;
252
253 pm_only = atomic_dec_return(&q->pm_only);
254 WARN_ON_ONCE(pm_only < 0);
255 if (pm_only == 0)
256 wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259
260 void blk_put_queue(struct request_queue *q)
261 {
262 kobject_put(&q->kobj);
263 }
264 EXPORT_SYMBOL(blk_put_queue);
265
266 void blk_set_queue_dying(struct request_queue *q)
267 {
268 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
269
270 /*
271 * When queue DYING flag is set, we need to block new req
272 * entering queue, so we call blk_freeze_queue_start() to
273 * prevent I/O from crossing blk_queue_enter().
274 */
275 blk_freeze_queue_start(q);
276
277 if (queue_is_mq(q))
278 blk_mq_wake_waiters(q);
279
280 /* Make blk_queue_enter() reexamine the DYING flag. */
281 wake_up_all(&q->mq_freeze_wq);
282 }
283 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
284
285 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
286 void blk_exit_queue(struct request_queue *q)
287 {
288 /*
289 * Since the I/O scheduler exit code may access cgroup information,
290 * perform I/O scheduler exit before disassociating from the block
291 * cgroup controller.
292 */
293 if (q->elevator) {
294 ioc_clear_queue(q);
295 elevator_exit(q, q->elevator);
296 q->elevator = NULL;
297 }
298
299 /*
300 * Remove all references to @q from the block cgroup controller before
301 * restoring @q->queue_lock to avoid that restoring this pointer causes
302 * e.g. blkcg_print_blkgs() to crash.
303 */
304 blkcg_exit_queue(q);
305
306 /*
307 * Since the cgroup code may dereference the @q->backing_dev_info
308 * pointer, only decrease its reference count after having removed the
309 * association with the block cgroup controller.
310 */
311 bdi_put(q->backing_dev_info);
312 }
313
314 /**
315 * blk_cleanup_queue - shutdown a request queue
316 * @q: request queue to shutdown
317 *
318 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
319 * put it. All future requests will be failed immediately with -ENODEV.
320 */
321 void blk_cleanup_queue(struct request_queue *q)
322 {
323 /* mark @q DYING, no new request or merges will be allowed afterwards */
324 mutex_lock(&q->sysfs_lock);
325 blk_set_queue_dying(q);
326
327 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
328 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
329 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 mutex_unlock(&q->sysfs_lock);
331
332 /*
333 * Drain all requests queued before DYING marking. Set DEAD flag to
334 * prevent that q->request_fn() gets invoked after draining finished.
335 */
336 blk_freeze_queue(q);
337
338 rq_qos_exit(q);
339
340 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
341
342 /* for synchronous bio-based driver finish in-flight integrity i/o */
343 blk_flush_integrity();
344
345 /* @q won't process any more request, flush async actions */
346 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
347 blk_sync_queue(q);
348
349 /*
350 * I/O scheduler exit is only safe after the sysfs scheduler attribute
351 * has been removed.
352 */
353 WARN_ON_ONCE(q->kobj.state_in_sysfs);
354
355 blk_exit_queue(q);
356
357 if (queue_is_mq(q))
358 blk_mq_exit_queue(q);
359
360 percpu_ref_exit(&q->q_usage_counter);
361
362 /* @q is and will stay empty, shutdown and put */
363 blk_put_queue(q);
364 }
365 EXPORT_SYMBOL(blk_cleanup_queue);
366
367 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
368 {
369 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
370 }
371 EXPORT_SYMBOL(blk_alloc_queue);
372
373 /**
374 * blk_queue_enter() - try to increase q->q_usage_counter
375 * @q: request queue pointer
376 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
377 */
378 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
379 {
380 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
381
382 while (true) {
383 bool success = false;
384
385 rcu_read_lock();
386 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
387 /*
388 * The code that increments the pm_only counter is
389 * responsible for ensuring that that counter is
390 * globally visible before the queue is unfrozen.
391 */
392 if (pm || !blk_queue_pm_only(q)) {
393 success = true;
394 } else {
395 percpu_ref_put(&q->q_usage_counter);
396 }
397 }
398 rcu_read_unlock();
399
400 if (success)
401 return 0;
402
403 if (flags & BLK_MQ_REQ_NOWAIT)
404 return -EBUSY;
405
406 /*
407 * read pair of barrier in blk_freeze_queue_start(),
408 * we need to order reading __PERCPU_REF_DEAD flag of
409 * .q_usage_counter and reading .mq_freeze_depth or
410 * queue dying flag, otherwise the following wait may
411 * never return if the two reads are reordered.
412 */
413 smp_rmb();
414
415 wait_event(q->mq_freeze_wq,
416 (!q->mq_freeze_depth &&
417 (pm || (blk_pm_request_resume(q),
418 !blk_queue_pm_only(q)))) ||
419 blk_queue_dying(q));
420 if (blk_queue_dying(q))
421 return -ENODEV;
422 }
423 }
424
425 void blk_queue_exit(struct request_queue *q)
426 {
427 percpu_ref_put(&q->q_usage_counter);
428 }
429
430 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
431 {
432 struct request_queue *q =
433 container_of(ref, struct request_queue, q_usage_counter);
434
435 wake_up_all(&q->mq_freeze_wq);
436 }
437
438 static void blk_rq_timed_out_timer(struct timer_list *t)
439 {
440 struct request_queue *q = from_timer(q, t, timeout);
441
442 kblockd_schedule_work(&q->timeout_work);
443 }
444
445 static void blk_timeout_work(struct work_struct *work)
446 {
447 }
448
449 /**
450 * blk_alloc_queue_node - allocate a request queue
451 * @gfp_mask: memory allocation flags
452 * @node_id: NUMA node to allocate memory from
453 */
454 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
455 {
456 struct request_queue *q;
457 int ret;
458
459 q = kmem_cache_alloc_node(blk_requestq_cachep,
460 gfp_mask | __GFP_ZERO, node_id);
461 if (!q)
462 return NULL;
463
464 INIT_LIST_HEAD(&q->queue_head);
465 q->last_merge = NULL;
466
467 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
468 if (q->id < 0)
469 goto fail_q;
470
471 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
472 if (ret)
473 goto fail_id;
474
475 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
476 if (!q->backing_dev_info)
477 goto fail_split;
478
479 q->stats = blk_alloc_queue_stats();
480 if (!q->stats)
481 goto fail_stats;
482
483 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
484 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
485 q->backing_dev_info->name = "block";
486 q->node = node_id;
487
488 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
489 laptop_mode_timer_fn, 0);
490 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
491 INIT_WORK(&q->timeout_work, blk_timeout_work);
492 INIT_LIST_HEAD(&q->icq_list);
493 #ifdef CONFIG_BLK_CGROUP
494 INIT_LIST_HEAD(&q->blkg_list);
495 #endif
496
497 kobject_init(&q->kobj, &blk_queue_ktype);
498
499 #ifdef CONFIG_BLK_DEV_IO_TRACE
500 mutex_init(&q->blk_trace_mutex);
501 #endif
502 mutex_init(&q->sysfs_lock);
503 spin_lock_init(&q->queue_lock);
504
505 init_waitqueue_head(&q->mq_freeze_wq);
506 mutex_init(&q->mq_freeze_lock);
507
508 /*
509 * Init percpu_ref in atomic mode so that it's faster to shutdown.
510 * See blk_register_queue() for details.
511 */
512 if (percpu_ref_init(&q->q_usage_counter,
513 blk_queue_usage_counter_release,
514 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
515 goto fail_bdi;
516
517 if (blkcg_init_queue(q))
518 goto fail_ref;
519
520 return q;
521
522 fail_ref:
523 percpu_ref_exit(&q->q_usage_counter);
524 fail_bdi:
525 blk_free_queue_stats(q->stats);
526 fail_stats:
527 bdi_put(q->backing_dev_info);
528 fail_split:
529 bioset_exit(&q->bio_split);
530 fail_id:
531 ida_simple_remove(&blk_queue_ida, q->id);
532 fail_q:
533 kmem_cache_free(blk_requestq_cachep, q);
534 return NULL;
535 }
536 EXPORT_SYMBOL(blk_alloc_queue_node);
537
538 bool blk_get_queue(struct request_queue *q)
539 {
540 if (likely(!blk_queue_dying(q))) {
541 __blk_get_queue(q);
542 return true;
543 }
544
545 return false;
546 }
547 EXPORT_SYMBOL(blk_get_queue);
548
549 /**
550 * blk_get_request - allocate a request
551 * @q: request queue to allocate a request for
552 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
553 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
554 */
555 struct request *blk_get_request(struct request_queue *q, unsigned int op,
556 blk_mq_req_flags_t flags)
557 {
558 struct request *req;
559
560 WARN_ON_ONCE(op & REQ_NOWAIT);
561 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
562
563 req = blk_mq_alloc_request(q, op, flags);
564 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
565 q->mq_ops->initialize_rq_fn(req);
566
567 return req;
568 }
569 EXPORT_SYMBOL(blk_get_request);
570
571 void blk_put_request(struct request *req)
572 {
573 blk_mq_free_request(req);
574 }
575 EXPORT_SYMBOL(blk_put_request);
576
577 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
578 struct bio *bio)
579 {
580 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
581
582 if (!ll_back_merge_fn(q, req, bio))
583 return false;
584
585 trace_block_bio_backmerge(q, req, bio);
586
587 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
588 blk_rq_set_mixed_merge(req);
589
590 req->biotail->bi_next = bio;
591 req->biotail = bio;
592 req->__data_len += bio->bi_iter.bi_size;
593
594 blk_account_io_start(req, false);
595 return true;
596 }
597
598 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
599 struct bio *bio)
600 {
601 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
602
603 if (!ll_front_merge_fn(q, req, bio))
604 return false;
605
606 trace_block_bio_frontmerge(q, req, bio);
607
608 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
609 blk_rq_set_mixed_merge(req);
610
611 bio->bi_next = req->bio;
612 req->bio = bio;
613
614 req->__sector = bio->bi_iter.bi_sector;
615 req->__data_len += bio->bi_iter.bi_size;
616
617 blk_account_io_start(req, false);
618 return true;
619 }
620
621 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
622 struct bio *bio)
623 {
624 unsigned short segments = blk_rq_nr_discard_segments(req);
625
626 if (segments >= queue_max_discard_segments(q))
627 goto no_merge;
628 if (blk_rq_sectors(req) + bio_sectors(bio) >
629 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
630 goto no_merge;
631
632 req->biotail->bi_next = bio;
633 req->biotail = bio;
634 req->__data_len += bio->bi_iter.bi_size;
635 req->nr_phys_segments = segments + 1;
636
637 blk_account_io_start(req, false);
638 return true;
639 no_merge:
640 req_set_nomerge(q, req);
641 return false;
642 }
643
644 /**
645 * blk_attempt_plug_merge - try to merge with %current's plugged list
646 * @q: request_queue new bio is being queued at
647 * @bio: new bio being queued
648 * @same_queue_rq: pointer to &struct request that gets filled in when
649 * another request associated with @q is found on the plug list
650 * (optional, may be %NULL)
651 *
652 * Determine whether @bio being queued on @q can be merged with a request
653 * on %current's plugged list. Returns %true if merge was successful,
654 * otherwise %false.
655 *
656 * Plugging coalesces IOs from the same issuer for the same purpose without
657 * going through @q->queue_lock. As such it's more of an issuing mechanism
658 * than scheduling, and the request, while may have elvpriv data, is not
659 * added on the elevator at this point. In addition, we don't have
660 * reliable access to the elevator outside queue lock. Only check basic
661 * merging parameters without querying the elevator.
662 *
663 * Caller must ensure !blk_queue_nomerges(q) beforehand.
664 */
665 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
666 struct request **same_queue_rq)
667 {
668 struct blk_plug *plug;
669 struct request *rq;
670 struct list_head *plug_list;
671
672 plug = current->plug;
673 if (!plug)
674 return false;
675
676 plug_list = &plug->mq_list;
677
678 list_for_each_entry_reverse(rq, plug_list, queuelist) {
679 bool merged = false;
680
681 if (rq->q == q && same_queue_rq) {
682 /*
683 * Only blk-mq multiple hardware queues case checks the
684 * rq in the same queue, there should be only one such
685 * rq in a queue
686 **/
687 *same_queue_rq = rq;
688 }
689
690 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
691 continue;
692
693 switch (blk_try_merge(rq, bio)) {
694 case ELEVATOR_BACK_MERGE:
695 merged = bio_attempt_back_merge(q, rq, bio);
696 break;
697 case ELEVATOR_FRONT_MERGE:
698 merged = bio_attempt_front_merge(q, rq, bio);
699 break;
700 case ELEVATOR_DISCARD_MERGE:
701 merged = bio_attempt_discard_merge(q, rq, bio);
702 break;
703 default:
704 break;
705 }
706
707 if (merged)
708 return true;
709 }
710
711 return false;
712 }
713
714 void blk_init_request_from_bio(struct request *req, struct bio *bio)
715 {
716 if (bio->bi_opf & REQ_RAHEAD)
717 req->cmd_flags |= REQ_FAILFAST_MASK;
718
719 req->__sector = bio->bi_iter.bi_sector;
720 req->ioprio = bio_prio(bio);
721 req->write_hint = bio->bi_write_hint;
722 blk_rq_bio_prep(req->q, req, bio);
723 }
724 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
725
726 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
727 {
728 char b[BDEVNAME_SIZE];
729
730 printk(KERN_INFO "attempt to access beyond end of device\n");
731 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
732 bio_devname(bio, b), bio->bi_opf,
733 (unsigned long long)bio_end_sector(bio),
734 (long long)maxsector);
735 }
736
737 #ifdef CONFIG_FAIL_MAKE_REQUEST
738
739 static DECLARE_FAULT_ATTR(fail_make_request);
740
741 static int __init setup_fail_make_request(char *str)
742 {
743 return setup_fault_attr(&fail_make_request, str);
744 }
745 __setup("fail_make_request=", setup_fail_make_request);
746
747 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
748 {
749 return part->make_it_fail && should_fail(&fail_make_request, bytes);
750 }
751
752 static int __init fail_make_request_debugfs(void)
753 {
754 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
755 NULL, &fail_make_request);
756
757 return PTR_ERR_OR_ZERO(dir);
758 }
759
760 late_initcall(fail_make_request_debugfs);
761
762 #else /* CONFIG_FAIL_MAKE_REQUEST */
763
764 static inline bool should_fail_request(struct hd_struct *part,
765 unsigned int bytes)
766 {
767 return false;
768 }
769
770 #endif /* CONFIG_FAIL_MAKE_REQUEST */
771
772 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
773 {
774 const int op = bio_op(bio);
775
776 if (part->policy && op_is_write(op)) {
777 char b[BDEVNAME_SIZE];
778
779 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
780 return false;
781
782 WARN_ONCE(1,
783 "generic_make_request: Trying to write "
784 "to read-only block-device %s (partno %d)\n",
785 bio_devname(bio, b), part->partno);
786 /* Older lvm-tools actually trigger this */
787 return false;
788 }
789
790 return false;
791 }
792
793 static noinline int should_fail_bio(struct bio *bio)
794 {
795 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
796 return -EIO;
797 return 0;
798 }
799 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
800
801 /*
802 * Check whether this bio extends beyond the end of the device or partition.
803 * This may well happen - the kernel calls bread() without checking the size of
804 * the device, e.g., when mounting a file system.
805 */
806 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
807 {
808 unsigned int nr_sectors = bio_sectors(bio);
809
810 if (nr_sectors && maxsector &&
811 (nr_sectors > maxsector ||
812 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
813 handle_bad_sector(bio, maxsector);
814 return -EIO;
815 }
816 return 0;
817 }
818
819 /*
820 * Remap block n of partition p to block n+start(p) of the disk.
821 */
822 static inline int blk_partition_remap(struct bio *bio)
823 {
824 struct hd_struct *p;
825 int ret = -EIO;
826
827 rcu_read_lock();
828 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
829 if (unlikely(!p))
830 goto out;
831 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
832 goto out;
833 if (unlikely(bio_check_ro(bio, p)))
834 goto out;
835
836 /*
837 * Zone reset does not include bi_size so bio_sectors() is always 0.
838 * Include a test for the reset op code and perform the remap if needed.
839 */
840 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
841 if (bio_check_eod(bio, part_nr_sects_read(p)))
842 goto out;
843 bio->bi_iter.bi_sector += p->start_sect;
844 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
845 bio->bi_iter.bi_sector - p->start_sect);
846 }
847 bio->bi_partno = 0;
848 ret = 0;
849 out:
850 rcu_read_unlock();
851 return ret;
852 }
853
854 static noinline_for_stack bool
855 generic_make_request_checks(struct bio *bio)
856 {
857 struct request_queue *q;
858 int nr_sectors = bio_sectors(bio);
859 blk_status_t status = BLK_STS_IOERR;
860 char b[BDEVNAME_SIZE];
861
862 might_sleep();
863
864 q = bio->bi_disk->queue;
865 if (unlikely(!q)) {
866 printk(KERN_ERR
867 "generic_make_request: Trying to access "
868 "nonexistent block-device %s (%Lu)\n",
869 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
870 goto end_io;
871 }
872
873 /*
874 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
875 * if queue is not a request based queue.
876 */
877 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
878 goto not_supported;
879
880 if (should_fail_bio(bio))
881 goto end_io;
882
883 if (bio->bi_partno) {
884 if (unlikely(blk_partition_remap(bio)))
885 goto end_io;
886 } else {
887 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
888 goto end_io;
889 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
890 goto end_io;
891 }
892
893 /*
894 * Filter flush bio's early so that make_request based
895 * drivers without flush support don't have to worry
896 * about them.
897 */
898 if (op_is_flush(bio->bi_opf) &&
899 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
900 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
901 if (!nr_sectors) {
902 status = BLK_STS_OK;
903 goto end_io;
904 }
905 }
906
907 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
908 bio->bi_opf &= ~REQ_HIPRI;
909
910 switch (bio_op(bio)) {
911 case REQ_OP_DISCARD:
912 if (!blk_queue_discard(q))
913 goto not_supported;
914 break;
915 case REQ_OP_SECURE_ERASE:
916 if (!blk_queue_secure_erase(q))
917 goto not_supported;
918 break;
919 case REQ_OP_WRITE_SAME:
920 if (!q->limits.max_write_same_sectors)
921 goto not_supported;
922 break;
923 case REQ_OP_ZONE_RESET:
924 if (!blk_queue_is_zoned(q))
925 goto not_supported;
926 break;
927 case REQ_OP_WRITE_ZEROES:
928 if (!q->limits.max_write_zeroes_sectors)
929 goto not_supported;
930 break;
931 default:
932 break;
933 }
934
935 /*
936 * Various block parts want %current->io_context and lazy ioc
937 * allocation ends up trading a lot of pain for a small amount of
938 * memory. Just allocate it upfront. This may fail and block
939 * layer knows how to live with it.
940 */
941 create_io_context(GFP_ATOMIC, q->node);
942
943 if (!blkcg_bio_issue_check(q, bio))
944 return false;
945
946 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
947 trace_block_bio_queue(q, bio);
948 /* Now that enqueuing has been traced, we need to trace
949 * completion as well.
950 */
951 bio_set_flag(bio, BIO_TRACE_COMPLETION);
952 }
953 return true;
954
955 not_supported:
956 status = BLK_STS_NOTSUPP;
957 end_io:
958 bio->bi_status = status;
959 bio_endio(bio);
960 return false;
961 }
962
963 /**
964 * generic_make_request - hand a buffer to its device driver for I/O
965 * @bio: The bio describing the location in memory and on the device.
966 *
967 * generic_make_request() is used to make I/O requests of block
968 * devices. It is passed a &struct bio, which describes the I/O that needs
969 * to be done.
970 *
971 * generic_make_request() does not return any status. The
972 * success/failure status of the request, along with notification of
973 * completion, is delivered asynchronously through the bio->bi_end_io
974 * function described (one day) else where.
975 *
976 * The caller of generic_make_request must make sure that bi_io_vec
977 * are set to describe the memory buffer, and that bi_dev and bi_sector are
978 * set to describe the device address, and the
979 * bi_end_io and optionally bi_private are set to describe how
980 * completion notification should be signaled.
981 *
982 * generic_make_request and the drivers it calls may use bi_next if this
983 * bio happens to be merged with someone else, and may resubmit the bio to
984 * a lower device by calling into generic_make_request recursively, which
985 * means the bio should NOT be touched after the call to ->make_request_fn.
986 */
987 blk_qc_t generic_make_request(struct bio *bio)
988 {
989 /*
990 * bio_list_on_stack[0] contains bios submitted by the current
991 * make_request_fn.
992 * bio_list_on_stack[1] contains bios that were submitted before
993 * the current make_request_fn, but that haven't been processed
994 * yet.
995 */
996 struct bio_list bio_list_on_stack[2];
997 blk_mq_req_flags_t flags = 0;
998 struct request_queue *q = bio->bi_disk->queue;
999 blk_qc_t ret = BLK_QC_T_NONE;
1000
1001 if (bio->bi_opf & REQ_NOWAIT)
1002 flags = BLK_MQ_REQ_NOWAIT;
1003 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1004 blk_queue_enter_live(q);
1005 else if (blk_queue_enter(q, flags) < 0) {
1006 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1007 bio_wouldblock_error(bio);
1008 else
1009 bio_io_error(bio);
1010 return ret;
1011 }
1012
1013 if (!generic_make_request_checks(bio))
1014 goto out;
1015
1016 /*
1017 * We only want one ->make_request_fn to be active at a time, else
1018 * stack usage with stacked devices could be a problem. So use
1019 * current->bio_list to keep a list of requests submited by a
1020 * make_request_fn function. current->bio_list is also used as a
1021 * flag to say if generic_make_request is currently active in this
1022 * task or not. If it is NULL, then no make_request is active. If
1023 * it is non-NULL, then a make_request is active, and new requests
1024 * should be added at the tail
1025 */
1026 if (current->bio_list) {
1027 bio_list_add(&current->bio_list[0], bio);
1028 goto out;
1029 }
1030
1031 /* following loop may be a bit non-obvious, and so deserves some
1032 * explanation.
1033 * Before entering the loop, bio->bi_next is NULL (as all callers
1034 * ensure that) so we have a list with a single bio.
1035 * We pretend that we have just taken it off a longer list, so
1036 * we assign bio_list to a pointer to the bio_list_on_stack,
1037 * thus initialising the bio_list of new bios to be
1038 * added. ->make_request() may indeed add some more bios
1039 * through a recursive call to generic_make_request. If it
1040 * did, we find a non-NULL value in bio_list and re-enter the loop
1041 * from the top. In this case we really did just take the bio
1042 * of the top of the list (no pretending) and so remove it from
1043 * bio_list, and call into ->make_request() again.
1044 */
1045 BUG_ON(bio->bi_next);
1046 bio_list_init(&bio_list_on_stack[0]);
1047 current->bio_list = bio_list_on_stack;
1048 do {
1049 bool enter_succeeded = true;
1050
1051 if (unlikely(q != bio->bi_disk->queue)) {
1052 if (q)
1053 blk_queue_exit(q);
1054 q = bio->bi_disk->queue;
1055 flags = 0;
1056 if (bio->bi_opf & REQ_NOWAIT)
1057 flags = BLK_MQ_REQ_NOWAIT;
1058 if (blk_queue_enter(q, flags) < 0) {
1059 enter_succeeded = false;
1060 q = NULL;
1061 }
1062 }
1063
1064 if (enter_succeeded) {
1065 struct bio_list lower, same;
1066
1067 /* Create a fresh bio_list for all subordinate requests */
1068 bio_list_on_stack[1] = bio_list_on_stack[0];
1069 bio_list_init(&bio_list_on_stack[0]);
1070 ret = q->make_request_fn(q, bio);
1071
1072 /* sort new bios into those for a lower level
1073 * and those for the same level
1074 */
1075 bio_list_init(&lower);
1076 bio_list_init(&same);
1077 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1078 if (q == bio->bi_disk->queue)
1079 bio_list_add(&same, bio);
1080 else
1081 bio_list_add(&lower, bio);
1082 /* now assemble so we handle the lowest level first */
1083 bio_list_merge(&bio_list_on_stack[0], &lower);
1084 bio_list_merge(&bio_list_on_stack[0], &same);
1085 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1086 } else {
1087 if (unlikely(!blk_queue_dying(q) &&
1088 (bio->bi_opf & REQ_NOWAIT)))
1089 bio_wouldblock_error(bio);
1090 else
1091 bio_io_error(bio);
1092 }
1093 bio = bio_list_pop(&bio_list_on_stack[0]);
1094 } while (bio);
1095 current->bio_list = NULL; /* deactivate */
1096
1097 out:
1098 if (q)
1099 blk_queue_exit(q);
1100 return ret;
1101 }
1102 EXPORT_SYMBOL(generic_make_request);
1103
1104 /**
1105 * direct_make_request - hand a buffer directly to its device driver for I/O
1106 * @bio: The bio describing the location in memory and on the device.
1107 *
1108 * This function behaves like generic_make_request(), but does not protect
1109 * against recursion. Must only be used if the called driver is known
1110 * to not call generic_make_request (or direct_make_request) again from
1111 * its make_request function. (Calling direct_make_request again from
1112 * a workqueue is perfectly fine as that doesn't recurse).
1113 */
1114 blk_qc_t direct_make_request(struct bio *bio)
1115 {
1116 struct request_queue *q = bio->bi_disk->queue;
1117 bool nowait = bio->bi_opf & REQ_NOWAIT;
1118 blk_qc_t ret;
1119
1120 if (!generic_make_request_checks(bio))
1121 return BLK_QC_T_NONE;
1122
1123 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1124 if (nowait && !blk_queue_dying(q))
1125 bio->bi_status = BLK_STS_AGAIN;
1126 else
1127 bio->bi_status = BLK_STS_IOERR;
1128 bio_endio(bio);
1129 return BLK_QC_T_NONE;
1130 }
1131
1132 ret = q->make_request_fn(q, bio);
1133 blk_queue_exit(q);
1134 return ret;
1135 }
1136 EXPORT_SYMBOL_GPL(direct_make_request);
1137
1138 /**
1139 * submit_bio - submit a bio to the block device layer for I/O
1140 * @bio: The &struct bio which describes the I/O
1141 *
1142 * submit_bio() is very similar in purpose to generic_make_request(), and
1143 * uses that function to do most of the work. Both are fairly rough
1144 * interfaces; @bio must be presetup and ready for I/O.
1145 *
1146 */
1147 blk_qc_t submit_bio(struct bio *bio)
1148 {
1149 /*
1150 * If it's a regular read/write or a barrier with data attached,
1151 * go through the normal accounting stuff before submission.
1152 */
1153 if (bio_has_data(bio)) {
1154 unsigned int count;
1155
1156 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1157 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1158 else
1159 count = bio_sectors(bio);
1160
1161 if (op_is_write(bio_op(bio))) {
1162 count_vm_events(PGPGOUT, count);
1163 } else {
1164 task_io_account_read(bio->bi_iter.bi_size);
1165 count_vm_events(PGPGIN, count);
1166 }
1167
1168 if (unlikely(block_dump)) {
1169 char b[BDEVNAME_SIZE];
1170 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1171 current->comm, task_pid_nr(current),
1172 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1173 (unsigned long long)bio->bi_iter.bi_sector,
1174 bio_devname(bio, b), count);
1175 }
1176 }
1177
1178 return generic_make_request(bio);
1179 }
1180 EXPORT_SYMBOL(submit_bio);
1181
1182 /**
1183 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1184 * for new the queue limits
1185 * @q: the queue
1186 * @rq: the request being checked
1187 *
1188 * Description:
1189 * @rq may have been made based on weaker limitations of upper-level queues
1190 * in request stacking drivers, and it may violate the limitation of @q.
1191 * Since the block layer and the underlying device driver trust @rq
1192 * after it is inserted to @q, it should be checked against @q before
1193 * the insertion using this generic function.
1194 *
1195 * Request stacking drivers like request-based dm may change the queue
1196 * limits when retrying requests on other queues. Those requests need
1197 * to be checked against the new queue limits again during dispatch.
1198 */
1199 static int blk_cloned_rq_check_limits(struct request_queue *q,
1200 struct request *rq)
1201 {
1202 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1203 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1204 return -EIO;
1205 }
1206
1207 /*
1208 * queue's settings related to segment counting like q->bounce_pfn
1209 * may differ from that of other stacking queues.
1210 * Recalculate it to check the request correctly on this queue's
1211 * limitation.
1212 */
1213 blk_recalc_rq_segments(rq);
1214 if (rq->nr_phys_segments > queue_max_segments(q)) {
1215 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1216 return -EIO;
1217 }
1218
1219 return 0;
1220 }
1221
1222 /**
1223 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1224 * @q: the queue to submit the request
1225 * @rq: the request being queued
1226 */
1227 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1228 {
1229 if (blk_cloned_rq_check_limits(q, rq))
1230 return BLK_STS_IOERR;
1231
1232 if (rq->rq_disk &&
1233 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1234 return BLK_STS_IOERR;
1235
1236 if (blk_queue_io_stat(q))
1237 blk_account_io_start(rq, true);
1238
1239 /*
1240 * Since we have a scheduler attached on the top device,
1241 * bypass a potential scheduler on the bottom device for
1242 * insert.
1243 */
1244 return blk_mq_request_issue_directly(rq, true);
1245 }
1246 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1247
1248 /**
1249 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1250 * @rq: request to examine
1251 *
1252 * Description:
1253 * A request could be merge of IOs which require different failure
1254 * handling. This function determines the number of bytes which
1255 * can be failed from the beginning of the request without
1256 * crossing into area which need to be retried further.
1257 *
1258 * Return:
1259 * The number of bytes to fail.
1260 */
1261 unsigned int blk_rq_err_bytes(const struct request *rq)
1262 {
1263 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1264 unsigned int bytes = 0;
1265 struct bio *bio;
1266
1267 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1268 return blk_rq_bytes(rq);
1269
1270 /*
1271 * Currently the only 'mixing' which can happen is between
1272 * different fastfail types. We can safely fail portions
1273 * which have all the failfast bits that the first one has -
1274 * the ones which are at least as eager to fail as the first
1275 * one.
1276 */
1277 for (bio = rq->bio; bio; bio = bio->bi_next) {
1278 if ((bio->bi_opf & ff) != ff)
1279 break;
1280 bytes += bio->bi_iter.bi_size;
1281 }
1282
1283 /* this could lead to infinite loop */
1284 BUG_ON(blk_rq_bytes(rq) && !bytes);
1285 return bytes;
1286 }
1287 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1288
1289 void blk_account_io_completion(struct request *req, unsigned int bytes)
1290 {
1291 if (blk_do_io_stat(req)) {
1292 const int sgrp = op_stat_group(req_op(req));
1293 struct hd_struct *part;
1294
1295 part_stat_lock();
1296 part = req->part;
1297 part_stat_add(part, sectors[sgrp], bytes >> 9);
1298 part_stat_unlock();
1299 }
1300 }
1301
1302 void blk_account_io_done(struct request *req, u64 now)
1303 {
1304 /*
1305 * Account IO completion. flush_rq isn't accounted as a
1306 * normal IO on queueing nor completion. Accounting the
1307 * containing request is enough.
1308 */
1309 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1310 const int sgrp = op_stat_group(req_op(req));
1311 struct hd_struct *part;
1312
1313 part_stat_lock();
1314 part = req->part;
1315
1316 update_io_ticks(part, jiffies);
1317 part_stat_inc(part, ios[sgrp]);
1318 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1319 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1320 part_dec_in_flight(req->q, part, rq_data_dir(req));
1321
1322 hd_struct_put(part);
1323 part_stat_unlock();
1324 }
1325 }
1326
1327 void blk_account_io_start(struct request *rq, bool new_io)
1328 {
1329 struct hd_struct *part;
1330 int rw = rq_data_dir(rq);
1331
1332 if (!blk_do_io_stat(rq))
1333 return;
1334
1335 part_stat_lock();
1336
1337 if (!new_io) {
1338 part = rq->part;
1339 part_stat_inc(part, merges[rw]);
1340 } else {
1341 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1342 if (!hd_struct_try_get(part)) {
1343 /*
1344 * The partition is already being removed,
1345 * the request will be accounted on the disk only
1346 *
1347 * We take a reference on disk->part0 although that
1348 * partition will never be deleted, so we can treat
1349 * it as any other partition.
1350 */
1351 part = &rq->rq_disk->part0;
1352 hd_struct_get(part);
1353 }
1354 part_inc_in_flight(rq->q, part, rw);
1355 rq->part = part;
1356 }
1357
1358 update_io_ticks(part, jiffies);
1359
1360 part_stat_unlock();
1361 }
1362
1363 /*
1364 * Steal bios from a request and add them to a bio list.
1365 * The request must not have been partially completed before.
1366 */
1367 void blk_steal_bios(struct bio_list *list, struct request *rq)
1368 {
1369 if (rq->bio) {
1370 if (list->tail)
1371 list->tail->bi_next = rq->bio;
1372 else
1373 list->head = rq->bio;
1374 list->tail = rq->biotail;
1375
1376 rq->bio = NULL;
1377 rq->biotail = NULL;
1378 }
1379
1380 rq->__data_len = 0;
1381 }
1382 EXPORT_SYMBOL_GPL(blk_steal_bios);
1383
1384 /**
1385 * blk_update_request - Special helper function for request stacking drivers
1386 * @req: the request being processed
1387 * @error: block status code
1388 * @nr_bytes: number of bytes to complete @req
1389 *
1390 * Description:
1391 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1392 * the request structure even if @req doesn't have leftover.
1393 * If @req has leftover, sets it up for the next range of segments.
1394 *
1395 * This special helper function is only for request stacking drivers
1396 * (e.g. request-based dm) so that they can handle partial completion.
1397 * Actual device drivers should use blk_end_request instead.
1398 *
1399 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1400 * %false return from this function.
1401 *
1402 * Note:
1403 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1404 * blk_rq_bytes() and in blk_update_request().
1405 *
1406 * Return:
1407 * %false - this request doesn't have any more data
1408 * %true - this request has more data
1409 **/
1410 bool blk_update_request(struct request *req, blk_status_t error,
1411 unsigned int nr_bytes)
1412 {
1413 int total_bytes;
1414
1415 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1416
1417 if (!req->bio)
1418 return false;
1419
1420 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1421 !(req->rq_flags & RQF_QUIET)))
1422 print_req_error(req, error);
1423
1424 blk_account_io_completion(req, nr_bytes);
1425
1426 total_bytes = 0;
1427 while (req->bio) {
1428 struct bio *bio = req->bio;
1429 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1430
1431 if (bio_bytes == bio->bi_iter.bi_size)
1432 req->bio = bio->bi_next;
1433
1434 /* Completion has already been traced */
1435 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1436 req_bio_endio(req, bio, bio_bytes, error);
1437
1438 total_bytes += bio_bytes;
1439 nr_bytes -= bio_bytes;
1440
1441 if (!nr_bytes)
1442 break;
1443 }
1444
1445 /*
1446 * completely done
1447 */
1448 if (!req->bio) {
1449 /*
1450 * Reset counters so that the request stacking driver
1451 * can find how many bytes remain in the request
1452 * later.
1453 */
1454 req->__data_len = 0;
1455 return false;
1456 }
1457
1458 req->__data_len -= total_bytes;
1459
1460 /* update sector only for requests with clear definition of sector */
1461 if (!blk_rq_is_passthrough(req))
1462 req->__sector += total_bytes >> 9;
1463
1464 /* mixed attributes always follow the first bio */
1465 if (req->rq_flags & RQF_MIXED_MERGE) {
1466 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1467 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1468 }
1469
1470 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1471 /*
1472 * If total number of sectors is less than the first segment
1473 * size, something has gone terribly wrong.
1474 */
1475 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1476 blk_dump_rq_flags(req, "request botched");
1477 req->__data_len = blk_rq_cur_bytes(req);
1478 }
1479
1480 /* recalculate the number of segments */
1481 blk_recalc_rq_segments(req);
1482 }
1483
1484 return true;
1485 }
1486 EXPORT_SYMBOL_GPL(blk_update_request);
1487
1488 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1489 struct bio *bio)
1490 {
1491 if (bio_has_data(bio))
1492 rq->nr_phys_segments = bio_phys_segments(q, bio);
1493 else if (bio_op(bio) == REQ_OP_DISCARD)
1494 rq->nr_phys_segments = 1;
1495
1496 rq->__data_len = bio->bi_iter.bi_size;
1497 rq->bio = rq->biotail = bio;
1498
1499 if (bio->bi_disk)
1500 rq->rq_disk = bio->bi_disk;
1501 }
1502
1503 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1504 /**
1505 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1506 * @rq: the request to be flushed
1507 *
1508 * Description:
1509 * Flush all pages in @rq.
1510 */
1511 void rq_flush_dcache_pages(struct request *rq)
1512 {
1513 struct req_iterator iter;
1514 struct bio_vec bvec;
1515
1516 rq_for_each_segment(bvec, rq, iter)
1517 flush_dcache_page(bvec.bv_page);
1518 }
1519 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1520 #endif
1521
1522 /**
1523 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1524 * @q : the queue of the device being checked
1525 *
1526 * Description:
1527 * Check if underlying low-level drivers of a device are busy.
1528 * If the drivers want to export their busy state, they must set own
1529 * exporting function using blk_queue_lld_busy() first.
1530 *
1531 * Basically, this function is used only by request stacking drivers
1532 * to stop dispatching requests to underlying devices when underlying
1533 * devices are busy. This behavior helps more I/O merging on the queue
1534 * of the request stacking driver and prevents I/O throughput regression
1535 * on burst I/O load.
1536 *
1537 * Return:
1538 * 0 - Not busy (The request stacking driver should dispatch request)
1539 * 1 - Busy (The request stacking driver should stop dispatching request)
1540 */
1541 int blk_lld_busy(struct request_queue *q)
1542 {
1543 if (queue_is_mq(q) && q->mq_ops->busy)
1544 return q->mq_ops->busy(q);
1545
1546 return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(blk_lld_busy);
1549
1550 /**
1551 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1552 * @rq: the clone request to be cleaned up
1553 *
1554 * Description:
1555 * Free all bios in @rq for a cloned request.
1556 */
1557 void blk_rq_unprep_clone(struct request *rq)
1558 {
1559 struct bio *bio;
1560
1561 while ((bio = rq->bio) != NULL) {
1562 rq->bio = bio->bi_next;
1563
1564 bio_put(bio);
1565 }
1566 }
1567 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1568
1569 /*
1570 * Copy attributes of the original request to the clone request.
1571 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1572 */
1573 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1574 {
1575 dst->__sector = blk_rq_pos(src);
1576 dst->__data_len = blk_rq_bytes(src);
1577 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1578 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1579 dst->special_vec = src->special_vec;
1580 }
1581 dst->nr_phys_segments = src->nr_phys_segments;
1582 dst->ioprio = src->ioprio;
1583 dst->extra_len = src->extra_len;
1584 }
1585
1586 /**
1587 * blk_rq_prep_clone - Helper function to setup clone request
1588 * @rq: the request to be setup
1589 * @rq_src: original request to be cloned
1590 * @bs: bio_set that bios for clone are allocated from
1591 * @gfp_mask: memory allocation mask for bio
1592 * @bio_ctr: setup function to be called for each clone bio.
1593 * Returns %0 for success, non %0 for failure.
1594 * @data: private data to be passed to @bio_ctr
1595 *
1596 * Description:
1597 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1598 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1599 * are not copied, and copying such parts is the caller's responsibility.
1600 * Also, pages which the original bios are pointing to are not copied
1601 * and the cloned bios just point same pages.
1602 * So cloned bios must be completed before original bios, which means
1603 * the caller must complete @rq before @rq_src.
1604 */
1605 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1606 struct bio_set *bs, gfp_t gfp_mask,
1607 int (*bio_ctr)(struct bio *, struct bio *, void *),
1608 void *data)
1609 {
1610 struct bio *bio, *bio_src;
1611
1612 if (!bs)
1613 bs = &fs_bio_set;
1614
1615 __rq_for_each_bio(bio_src, rq_src) {
1616 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1617 if (!bio)
1618 goto free_and_out;
1619
1620 if (bio_ctr && bio_ctr(bio, bio_src, data))
1621 goto free_and_out;
1622
1623 if (rq->bio) {
1624 rq->biotail->bi_next = bio;
1625 rq->biotail = bio;
1626 } else
1627 rq->bio = rq->biotail = bio;
1628 }
1629
1630 __blk_rq_prep_clone(rq, rq_src);
1631
1632 return 0;
1633
1634 free_and_out:
1635 if (bio)
1636 bio_put(bio);
1637 blk_rq_unprep_clone(rq);
1638
1639 return -ENOMEM;
1640 }
1641 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1642
1643 int kblockd_schedule_work(struct work_struct *work)
1644 {
1645 return queue_work(kblockd_workqueue, work);
1646 }
1647 EXPORT_SYMBOL(kblockd_schedule_work);
1648
1649 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1650 {
1651 return queue_work_on(cpu, kblockd_workqueue, work);
1652 }
1653 EXPORT_SYMBOL(kblockd_schedule_work_on);
1654
1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1656 unsigned long delay)
1657 {
1658 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1659 }
1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1661
1662 /**
1663 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1664 * @plug: The &struct blk_plug that needs to be initialized
1665 *
1666 * Description:
1667 * blk_start_plug() indicates to the block layer an intent by the caller
1668 * to submit multiple I/O requests in a batch. The block layer may use
1669 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1670 * is called. However, the block layer may choose to submit requests
1671 * before a call to blk_finish_plug() if the number of queued I/Os
1672 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1673 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1674 * the task schedules (see below).
1675 *
1676 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1677 * pending I/O should the task end up blocking between blk_start_plug() and
1678 * blk_finish_plug(). This is important from a performance perspective, but
1679 * also ensures that we don't deadlock. For instance, if the task is blocking
1680 * for a memory allocation, memory reclaim could end up wanting to free a
1681 * page belonging to that request that is currently residing in our private
1682 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1683 * this kind of deadlock.
1684 */
1685 void blk_start_plug(struct blk_plug *plug)
1686 {
1687 struct task_struct *tsk = current;
1688
1689 /*
1690 * If this is a nested plug, don't actually assign it.
1691 */
1692 if (tsk->plug)
1693 return;
1694
1695 INIT_LIST_HEAD(&plug->mq_list);
1696 INIT_LIST_HEAD(&plug->cb_list);
1697 plug->rq_count = 0;
1698 plug->multiple_queues = false;
1699
1700 /*
1701 * Store ordering should not be needed here, since a potential
1702 * preempt will imply a full memory barrier
1703 */
1704 tsk->plug = plug;
1705 }
1706 EXPORT_SYMBOL(blk_start_plug);
1707
1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1709 {
1710 LIST_HEAD(callbacks);
1711
1712 while (!list_empty(&plug->cb_list)) {
1713 list_splice_init(&plug->cb_list, &callbacks);
1714
1715 while (!list_empty(&callbacks)) {
1716 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1717 struct blk_plug_cb,
1718 list);
1719 list_del(&cb->list);
1720 cb->callback(cb, from_schedule);
1721 }
1722 }
1723 }
1724
1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1726 int size)
1727 {
1728 struct blk_plug *plug = current->plug;
1729 struct blk_plug_cb *cb;
1730
1731 if (!plug)
1732 return NULL;
1733
1734 list_for_each_entry(cb, &plug->cb_list, list)
1735 if (cb->callback == unplug && cb->data == data)
1736 return cb;
1737
1738 /* Not currently on the callback list */
1739 BUG_ON(size < sizeof(*cb));
1740 cb = kzalloc(size, GFP_ATOMIC);
1741 if (cb) {
1742 cb->data = data;
1743 cb->callback = unplug;
1744 list_add(&cb->list, &plug->cb_list);
1745 }
1746 return cb;
1747 }
1748 EXPORT_SYMBOL(blk_check_plugged);
1749
1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1751 {
1752 flush_plug_callbacks(plug, from_schedule);
1753
1754 if (!list_empty(&plug->mq_list))
1755 blk_mq_flush_plug_list(plug, from_schedule);
1756 }
1757
1758 /**
1759 * blk_finish_plug - mark the end of a batch of submitted I/O
1760 * @plug: The &struct blk_plug passed to blk_start_plug()
1761 *
1762 * Description:
1763 * Indicate that a batch of I/O submissions is complete. This function
1764 * must be paired with an initial call to blk_start_plug(). The intent
1765 * is to allow the block layer to optimize I/O submission. See the
1766 * documentation for blk_start_plug() for more information.
1767 */
1768 void blk_finish_plug(struct blk_plug *plug)
1769 {
1770 if (plug != current->plug)
1771 return;
1772 blk_flush_plug_list(plug, false);
1773
1774 current->plug = NULL;
1775 }
1776 EXPORT_SYMBOL(blk_finish_plug);
1777
1778 int __init blk_dev_init(void)
1779 {
1780 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1781 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1782 FIELD_SIZEOF(struct request, cmd_flags));
1783 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1784 FIELD_SIZEOF(struct bio, bi_opf));
1785
1786 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1787 kblockd_workqueue = alloc_workqueue("kblockd",
1788 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1789 if (!kblockd_workqueue)
1790 panic("Failed to create kblockd\n");
1791
1792 blk_requestq_cachep = kmem_cache_create("request_queue",
1793 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1794
1795 #ifdef CONFIG_DEBUG_FS
1796 blk_debugfs_root = debugfs_create_dir("block", NULL);
1797 #endif
1798
1799 return 0;
1800 }