]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Merge tag 'upstream-3.18-rc1-v2' of git://git.infradead.org/linux-ubifs
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 int nr;
69
70 nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 if (nr > q->nr_requests)
72 nr = q->nr_requests;
73 q->nr_congestion_on = nr;
74
75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 if (nr < 1)
77 nr = 1;
78 q->nr_congestion_off = nr;
79 }
80
81 /**
82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83 * @bdev: device
84 *
85 * Locates the passed device's request queue and returns the address of its
86 * backing_dev_info
87 *
88 * Will return NULL if the request queue cannot be located.
89 */
90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 {
92 struct backing_dev_info *ret = NULL;
93 struct request_queue *q = bdev_get_queue(bdev);
94
95 if (q)
96 ret = &q->backing_dev_info;
97 return ret;
98 }
99 EXPORT_SYMBOL(blk_get_backing_dev_info);
100
101 void blk_rq_init(struct request_queue *q, struct request *rq)
102 {
103 memset(rq, 0, sizeof(*rq));
104
105 INIT_LIST_HEAD(&rq->queuelist);
106 INIT_LIST_HEAD(&rq->timeout_list);
107 rq->cpu = -1;
108 rq->q = q;
109 rq->__sector = (sector_t) -1;
110 INIT_HLIST_NODE(&rq->hash);
111 RB_CLEAR_NODE(&rq->rb_node);
112 rq->cmd = rq->__cmd;
113 rq->cmd_len = BLK_MAX_CDB;
114 rq->tag = -1;
115 rq->start_time = jiffies;
116 set_start_time_ns(rq);
117 rq->part = NULL;
118 }
119 EXPORT_SYMBOL(blk_rq_init);
120
121 static void req_bio_endio(struct request *rq, struct bio *bio,
122 unsigned int nbytes, int error)
123 {
124 if (error)
125 clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 error = -EIO;
128
129 if (unlikely(rq->cmd_flags & REQ_QUIET))
130 set_bit(BIO_QUIET, &bio->bi_flags);
131
132 bio_advance(bio, nbytes);
133
134 /* don't actually finish bio if it's part of flush sequence */
135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
136 bio_endio(bio, error);
137 }
138
139 void blk_dump_rq_flags(struct request *rq, char *msg)
140 {
141 int bit;
142
143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
145 (unsigned long long) rq->cmd_flags);
146
147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
148 (unsigned long long)blk_rq_pos(rq),
149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
150 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
151 rq->bio, rq->biotail, blk_rq_bytes(rq));
152
153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
154 printk(KERN_INFO " cdb: ");
155 for (bit = 0; bit < BLK_MAX_CDB; bit++)
156 printk("%02x ", rq->cmd[bit]);
157 printk("\n");
158 }
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161
162 static void blk_delay_work(struct work_struct *work)
163 {
164 struct request_queue *q;
165
166 q = container_of(work, struct request_queue, delay_work.work);
167 spin_lock_irq(q->queue_lock);
168 __blk_run_queue(q);
169 spin_unlock_irq(q->queue_lock);
170 }
171
172 /**
173 * blk_delay_queue - restart queueing after defined interval
174 * @q: The &struct request_queue in question
175 * @msecs: Delay in msecs
176 *
177 * Description:
178 * Sometimes queueing needs to be postponed for a little while, to allow
179 * resources to come back. This function will make sure that queueing is
180 * restarted around the specified time. Queue lock must be held.
181 */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 if (likely(!blk_queue_dead(q)))
185 queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189
190 /**
191 * blk_start_queue - restart a previously stopped queue
192 * @q: The &struct request_queue in question
193 *
194 * Description:
195 * blk_start_queue() will clear the stop flag on the queue, and call
196 * the request_fn for the queue if it was in a stopped state when
197 * entered. Also see blk_stop_queue(). Queue lock must be held.
198 **/
199 void blk_start_queue(struct request_queue *q)
200 {
201 WARN_ON(!irqs_disabled());
202
203 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
204 __blk_run_queue(q);
205 }
206 EXPORT_SYMBOL(blk_start_queue);
207
208 /**
209 * blk_stop_queue - stop a queue
210 * @q: The &struct request_queue in question
211 *
212 * Description:
213 * The Linux block layer assumes that a block driver will consume all
214 * entries on the request queue when the request_fn strategy is called.
215 * Often this will not happen, because of hardware limitations (queue
216 * depth settings). If a device driver gets a 'queue full' response,
217 * or if it simply chooses not to queue more I/O at one point, it can
218 * call this function to prevent the request_fn from being called until
219 * the driver has signalled it's ready to go again. This happens by calling
220 * blk_start_queue() to restart queue operations. Queue lock must be held.
221 **/
222 void blk_stop_queue(struct request_queue *q)
223 {
224 cancel_delayed_work(&q->delay_work);
225 queue_flag_set(QUEUE_FLAG_STOPPED, q);
226 }
227 EXPORT_SYMBOL(blk_stop_queue);
228
229 /**
230 * blk_sync_queue - cancel any pending callbacks on a queue
231 * @q: the queue
232 *
233 * Description:
234 * The block layer may perform asynchronous callback activity
235 * on a queue, such as calling the unplug function after a timeout.
236 * A block device may call blk_sync_queue to ensure that any
237 * such activity is cancelled, thus allowing it to release resources
238 * that the callbacks might use. The caller must already have made sure
239 * that its ->make_request_fn will not re-add plugging prior to calling
240 * this function.
241 *
242 * This function does not cancel any asynchronous activity arising
243 * out of elevator or throttling code. That would require elevator_exit()
244 * and blkcg_exit_queue() to be called with queue lock initialized.
245 *
246 */
247 void blk_sync_queue(struct request_queue *q)
248 {
249 del_timer_sync(&q->timeout);
250
251 if (q->mq_ops) {
252 struct blk_mq_hw_ctx *hctx;
253 int i;
254
255 queue_for_each_hw_ctx(q, hctx, i) {
256 cancel_delayed_work_sync(&hctx->run_work);
257 cancel_delayed_work_sync(&hctx->delay_work);
258 }
259 } else {
260 cancel_delayed_work_sync(&q->delay_work);
261 }
262 }
263 EXPORT_SYMBOL(blk_sync_queue);
264
265 /**
266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267 * @q: The queue to run
268 *
269 * Description:
270 * Invoke request handling on a queue if there are any pending requests.
271 * May be used to restart request handling after a request has completed.
272 * This variant runs the queue whether or not the queue has been
273 * stopped. Must be called with the queue lock held and interrupts
274 * disabled. See also @blk_run_queue.
275 */
276 inline void __blk_run_queue_uncond(struct request_queue *q)
277 {
278 if (unlikely(blk_queue_dead(q)))
279 return;
280
281 /*
282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 * the queue lock internally. As a result multiple threads may be
284 * running such a request function concurrently. Keep track of the
285 * number of active request_fn invocations such that blk_drain_queue()
286 * can wait until all these request_fn calls have finished.
287 */
288 q->request_fn_active++;
289 q->request_fn(q);
290 q->request_fn_active--;
291 }
292
293 /**
294 * __blk_run_queue - run a single device queue
295 * @q: The queue to run
296 *
297 * Description:
298 * See @blk_run_queue. This variant must be called with the queue lock
299 * held and interrupts disabled.
300 */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 if (unlikely(blk_queue_stopped(q)))
304 return;
305
306 __blk_run_queue_uncond(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309
310 /**
311 * blk_run_queue_async - run a single device queue in workqueue context
312 * @q: The queue to run
313 *
314 * Description:
315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316 * of us. The caller must hold the queue lock.
317 */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324
325 /**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
332 */
333 void blk_run_queue(struct request_queue *q)
334 {
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342
343 void blk_put_queue(struct request_queue *q)
344 {
345 kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348
349 /**
350 * __blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353 *
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
357 */
358 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 __releases(q->queue_lock)
360 __acquires(q->queue_lock)
361 {
362 int i;
363
364 lockdep_assert_held(q->queue_lock);
365
366 while (true) {
367 bool drain = false;
368
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
376 blkcg_drain_queue(q);
377
378 /*
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
384 */
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
387
388 drain |= q->nr_rqs_elvpriv;
389 drain |= q->request_fn_active;
390
391 /*
392 * Unfortunately, requests are queued at and tracked from
393 * multiple places and there's no single counter which can
394 * be drained. Check all the queues and counters.
395 */
396 if (drain_all) {
397 drain |= !list_empty(&q->queue_head);
398 for (i = 0; i < 2; i++) {
399 drain |= q->nr_rqs[i];
400 drain |= q->in_flight[i];
401 drain |= !list_empty(&q->flush_queue[i]);
402 }
403 }
404
405 if (!drain)
406 break;
407
408 spin_unlock_irq(q->queue_lock);
409
410 msleep(10);
411
412 spin_lock_irq(q->queue_lock);
413 }
414
415 /*
416 * With queue marked dead, any woken up waiter will fail the
417 * allocation path, so the wakeup chaining is lost and we're
418 * left with hung waiters. We need to wake up those waiters.
419 */
420 if (q->request_fn) {
421 struct request_list *rl;
422
423 blk_queue_for_each_rl(rl, q)
424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 wake_up_all(&rl->wait[i]);
426 }
427 }
428
429 /**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 spin_lock_irq(q->queue_lock);
442 q->bypass_depth++;
443 queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 spin_unlock_irq(q->queue_lock);
445
446 /*
447 * Queues start drained. Skip actual draining till init is
448 * complete. This avoids lenghty delays during queue init which
449 * can happen many times during boot.
450 */
451 if (blk_queue_init_done(q)) {
452 spin_lock_irq(q->queue_lock);
453 __blk_drain_queue(q, false);
454 spin_unlock_irq(q->queue_lock);
455
456 /* ensure blk_queue_bypass() is %true inside RCU read lock */
457 synchronize_rcu();
458 }
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461
462 /**
463 * blk_queue_bypass_end - leave queue bypass mode
464 * @q: queue of interest
465 *
466 * Leave bypass mode and restore the normal queueing behavior.
467 */
468 void blk_queue_bypass_end(struct request_queue *q)
469 {
470 spin_lock_irq(q->queue_lock);
471 if (!--q->bypass_depth)
472 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 WARN_ON_ONCE(q->bypass_depth < 0);
474 spin_unlock_irq(q->queue_lock);
475 }
476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477
478 /**
479 * blk_cleanup_queue - shutdown a request queue
480 * @q: request queue to shutdown
481 *
482 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
483 * put it. All future requests will be failed immediately with -ENODEV.
484 */
485 void blk_cleanup_queue(struct request_queue *q)
486 {
487 spinlock_t *lock = q->queue_lock;
488
489 /* mark @q DYING, no new request or merges will be allowed afterwards */
490 mutex_lock(&q->sysfs_lock);
491 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
492 spin_lock_irq(lock);
493
494 /*
495 * A dying queue is permanently in bypass mode till released. Note
496 * that, unlike blk_queue_bypass_start(), we aren't performing
497 * synchronize_rcu() after entering bypass mode to avoid the delay
498 * as some drivers create and destroy a lot of queues while
499 * probing. This is still safe because blk_release_queue() will be
500 * called only after the queue refcnt drops to zero and nothing,
501 * RCU or not, would be traversing the queue by then.
502 */
503 q->bypass_depth++;
504 queue_flag_set(QUEUE_FLAG_BYPASS, q);
505
506 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
507 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
508 queue_flag_set(QUEUE_FLAG_DYING, q);
509 spin_unlock_irq(lock);
510 mutex_unlock(&q->sysfs_lock);
511
512 /*
513 * Drain all requests queued before DYING marking. Set DEAD flag to
514 * prevent that q->request_fn() gets invoked after draining finished.
515 */
516 if (q->mq_ops) {
517 blk_mq_freeze_queue(q);
518 spin_lock_irq(lock);
519 } else {
520 spin_lock_irq(lock);
521 __blk_drain_queue(q, true);
522 }
523 queue_flag_set(QUEUE_FLAG_DEAD, q);
524 spin_unlock_irq(lock);
525
526 /* @q won't process any more request, flush async actions */
527 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
528 blk_sync_queue(q);
529
530 spin_lock_irq(lock);
531 if (q->queue_lock != &q->__queue_lock)
532 q->queue_lock = &q->__queue_lock;
533 spin_unlock_irq(lock);
534
535 /* @q is and will stay empty, shutdown and put */
536 blk_put_queue(q);
537 }
538 EXPORT_SYMBOL(blk_cleanup_queue);
539
540 int blk_init_rl(struct request_list *rl, struct request_queue *q,
541 gfp_t gfp_mask)
542 {
543 if (unlikely(rl->rq_pool))
544 return 0;
545
546 rl->q = q;
547 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
548 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
549 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
550 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
551
552 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
553 mempool_free_slab, request_cachep,
554 gfp_mask, q->node);
555 if (!rl->rq_pool)
556 return -ENOMEM;
557
558 return 0;
559 }
560
561 void blk_exit_rl(struct request_list *rl)
562 {
563 if (rl->rq_pool)
564 mempool_destroy(rl->rq_pool);
565 }
566
567 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
568 {
569 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
570 }
571 EXPORT_SYMBOL(blk_alloc_queue);
572
573 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
574 {
575 struct request_queue *q;
576 int err;
577
578 q = kmem_cache_alloc_node(blk_requestq_cachep,
579 gfp_mask | __GFP_ZERO, node_id);
580 if (!q)
581 return NULL;
582
583 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
584 if (q->id < 0)
585 goto fail_q;
586
587 q->backing_dev_info.ra_pages =
588 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
589 q->backing_dev_info.state = 0;
590 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
591 q->backing_dev_info.name = "block";
592 q->node = node_id;
593
594 err = bdi_init(&q->backing_dev_info);
595 if (err)
596 goto fail_id;
597
598 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
599 laptop_mode_timer_fn, (unsigned long) q);
600 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
601 INIT_LIST_HEAD(&q->queue_head);
602 INIT_LIST_HEAD(&q->timeout_list);
603 INIT_LIST_HEAD(&q->icq_list);
604 #ifdef CONFIG_BLK_CGROUP
605 INIT_LIST_HEAD(&q->blkg_list);
606 #endif
607 INIT_LIST_HEAD(&q->flush_queue[0]);
608 INIT_LIST_HEAD(&q->flush_queue[1]);
609 INIT_LIST_HEAD(&q->flush_data_in_flight);
610 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
611
612 kobject_init(&q->kobj, &blk_queue_ktype);
613
614 mutex_init(&q->sysfs_lock);
615 spin_lock_init(&q->__queue_lock);
616
617 /*
618 * By default initialize queue_lock to internal lock and driver can
619 * override it later if need be.
620 */
621 q->queue_lock = &q->__queue_lock;
622
623 /*
624 * A queue starts its life with bypass turned on to avoid
625 * unnecessary bypass on/off overhead and nasty surprises during
626 * init. The initial bypass will be finished when the queue is
627 * registered by blk_register_queue().
628 */
629 q->bypass_depth = 1;
630 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
631
632 init_waitqueue_head(&q->mq_freeze_wq);
633
634 if (blkcg_init_queue(q))
635 goto fail_bdi;
636
637 return q;
638
639 fail_bdi:
640 bdi_destroy(&q->backing_dev_info);
641 fail_id:
642 ida_simple_remove(&blk_queue_ida, q->id);
643 fail_q:
644 kmem_cache_free(blk_requestq_cachep, q);
645 return NULL;
646 }
647 EXPORT_SYMBOL(blk_alloc_queue_node);
648
649 /**
650 * blk_init_queue - prepare a request queue for use with a block device
651 * @rfn: The function to be called to process requests that have been
652 * placed on the queue.
653 * @lock: Request queue spin lock
654 *
655 * Description:
656 * If a block device wishes to use the standard request handling procedures,
657 * which sorts requests and coalesces adjacent requests, then it must
658 * call blk_init_queue(). The function @rfn will be called when there
659 * are requests on the queue that need to be processed. If the device
660 * supports plugging, then @rfn may not be called immediately when requests
661 * are available on the queue, but may be called at some time later instead.
662 * Plugged queues are generally unplugged when a buffer belonging to one
663 * of the requests on the queue is needed, or due to memory pressure.
664 *
665 * @rfn is not required, or even expected, to remove all requests off the
666 * queue, but only as many as it can handle at a time. If it does leave
667 * requests on the queue, it is responsible for arranging that the requests
668 * get dealt with eventually.
669 *
670 * The queue spin lock must be held while manipulating the requests on the
671 * request queue; this lock will be taken also from interrupt context, so irq
672 * disabling is needed for it.
673 *
674 * Function returns a pointer to the initialized request queue, or %NULL if
675 * it didn't succeed.
676 *
677 * Note:
678 * blk_init_queue() must be paired with a blk_cleanup_queue() call
679 * when the block device is deactivated (such as at module unload).
680 **/
681
682 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
683 {
684 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
685 }
686 EXPORT_SYMBOL(blk_init_queue);
687
688 struct request_queue *
689 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
690 {
691 struct request_queue *uninit_q, *q;
692
693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
694 if (!uninit_q)
695 return NULL;
696
697 q = blk_init_allocated_queue(uninit_q, rfn, lock);
698 if (!q)
699 blk_cleanup_queue(uninit_q);
700
701 return q;
702 }
703 EXPORT_SYMBOL(blk_init_queue_node);
704
705 struct request_queue *
706 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
707 spinlock_t *lock)
708 {
709 if (!q)
710 return NULL;
711
712 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
713 if (!q->flush_rq)
714 return NULL;
715
716 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
717 goto fail;
718
719 q->request_fn = rfn;
720 q->prep_rq_fn = NULL;
721 q->unprep_rq_fn = NULL;
722 q->queue_flags |= QUEUE_FLAG_DEFAULT;
723
724 /* Override internal queue lock with supplied lock pointer */
725 if (lock)
726 q->queue_lock = lock;
727
728 /*
729 * This also sets hw/phys segments, boundary and size
730 */
731 blk_queue_make_request(q, blk_queue_bio);
732
733 q->sg_reserved_size = INT_MAX;
734
735 /* Protect q->elevator from elevator_change */
736 mutex_lock(&q->sysfs_lock);
737
738 /* init elevator */
739 if (elevator_init(q, NULL)) {
740 mutex_unlock(&q->sysfs_lock);
741 goto fail;
742 }
743
744 mutex_unlock(&q->sysfs_lock);
745
746 return q;
747
748 fail:
749 kfree(q->flush_rq);
750 return NULL;
751 }
752 EXPORT_SYMBOL(blk_init_allocated_queue);
753
754 bool blk_get_queue(struct request_queue *q)
755 {
756 if (likely(!blk_queue_dying(q))) {
757 __blk_get_queue(q);
758 return true;
759 }
760
761 return false;
762 }
763 EXPORT_SYMBOL(blk_get_queue);
764
765 static inline void blk_free_request(struct request_list *rl, struct request *rq)
766 {
767 if (rq->cmd_flags & REQ_ELVPRIV) {
768 elv_put_request(rl->q, rq);
769 if (rq->elv.icq)
770 put_io_context(rq->elv.icq->ioc);
771 }
772
773 mempool_free(rq, rl->rq_pool);
774 }
775
776 /*
777 * ioc_batching returns true if the ioc is a valid batching request and
778 * should be given priority access to a request.
779 */
780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
781 {
782 if (!ioc)
783 return 0;
784
785 /*
786 * Make sure the process is able to allocate at least 1 request
787 * even if the batch times out, otherwise we could theoretically
788 * lose wakeups.
789 */
790 return ioc->nr_batch_requests == q->nr_batching ||
791 (ioc->nr_batch_requests > 0
792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
793 }
794
795 /*
796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797 * will cause the process to be a "batcher" on all queues in the system. This
798 * is the behaviour we want though - once it gets a wakeup it should be given
799 * a nice run.
800 */
801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
802 {
803 if (!ioc || ioc_batching(q, ioc))
804 return;
805
806 ioc->nr_batch_requests = q->nr_batching;
807 ioc->last_waited = jiffies;
808 }
809
810 static void __freed_request(struct request_list *rl, int sync)
811 {
812 struct request_queue *q = rl->q;
813
814 /*
815 * bdi isn't aware of blkcg yet. As all async IOs end up root
816 * blkcg anyway, just use root blkcg state.
817 */
818 if (rl == &q->root_rl &&
819 rl->count[sync] < queue_congestion_off_threshold(q))
820 blk_clear_queue_congested(q, sync);
821
822 if (rl->count[sync] + 1 <= q->nr_requests) {
823 if (waitqueue_active(&rl->wait[sync]))
824 wake_up(&rl->wait[sync]);
825
826 blk_clear_rl_full(rl, sync);
827 }
828 }
829
830 /*
831 * A request has just been released. Account for it, update the full and
832 * congestion status, wake up any waiters. Called under q->queue_lock.
833 */
834 static void freed_request(struct request_list *rl, unsigned int flags)
835 {
836 struct request_queue *q = rl->q;
837 int sync = rw_is_sync(flags);
838
839 q->nr_rqs[sync]--;
840 rl->count[sync]--;
841 if (flags & REQ_ELVPRIV)
842 q->nr_rqs_elvpriv--;
843
844 __freed_request(rl, sync);
845
846 if (unlikely(rl->starved[sync ^ 1]))
847 __freed_request(rl, sync ^ 1);
848 }
849
850 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
851 {
852 struct request_list *rl;
853
854 spin_lock_irq(q->queue_lock);
855 q->nr_requests = nr;
856 blk_queue_congestion_threshold(q);
857
858 /* congestion isn't cgroup aware and follows root blkcg for now */
859 rl = &q->root_rl;
860
861 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
862 blk_set_queue_congested(q, BLK_RW_SYNC);
863 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
864 blk_clear_queue_congested(q, BLK_RW_SYNC);
865
866 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
867 blk_set_queue_congested(q, BLK_RW_ASYNC);
868 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
869 blk_clear_queue_congested(q, BLK_RW_ASYNC);
870
871 blk_queue_for_each_rl(rl, q) {
872 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
873 blk_set_rl_full(rl, BLK_RW_SYNC);
874 } else {
875 blk_clear_rl_full(rl, BLK_RW_SYNC);
876 wake_up(&rl->wait[BLK_RW_SYNC]);
877 }
878
879 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
880 blk_set_rl_full(rl, BLK_RW_ASYNC);
881 } else {
882 blk_clear_rl_full(rl, BLK_RW_ASYNC);
883 wake_up(&rl->wait[BLK_RW_ASYNC]);
884 }
885 }
886
887 spin_unlock_irq(q->queue_lock);
888 return 0;
889 }
890
891 /*
892 * Determine if elevator data should be initialized when allocating the
893 * request associated with @bio.
894 */
895 static bool blk_rq_should_init_elevator(struct bio *bio)
896 {
897 if (!bio)
898 return true;
899
900 /*
901 * Flush requests do not use the elevator so skip initialization.
902 * This allows a request to share the flush and elevator data.
903 */
904 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
905 return false;
906
907 return true;
908 }
909
910 /**
911 * rq_ioc - determine io_context for request allocation
912 * @bio: request being allocated is for this bio (can be %NULL)
913 *
914 * Determine io_context to use for request allocation for @bio. May return
915 * %NULL if %current->io_context doesn't exist.
916 */
917 static struct io_context *rq_ioc(struct bio *bio)
918 {
919 #ifdef CONFIG_BLK_CGROUP
920 if (bio && bio->bi_ioc)
921 return bio->bi_ioc;
922 #endif
923 return current->io_context;
924 }
925
926 /**
927 * __get_request - get a free request
928 * @rl: request list to allocate from
929 * @rw_flags: RW and SYNC flags
930 * @bio: bio to allocate request for (can be %NULL)
931 * @gfp_mask: allocation mask
932 *
933 * Get a free request from @q. This function may fail under memory
934 * pressure or if @q is dead.
935 *
936 * Must be called with @q->queue_lock held and,
937 * Returns %NULL on failure, with @q->queue_lock held.
938 * Returns !%NULL on success, with @q->queue_lock *not held*.
939 */
940 static struct request *__get_request(struct request_list *rl, int rw_flags,
941 struct bio *bio, gfp_t gfp_mask)
942 {
943 struct request_queue *q = rl->q;
944 struct request *rq;
945 struct elevator_type *et = q->elevator->type;
946 struct io_context *ioc = rq_ioc(bio);
947 struct io_cq *icq = NULL;
948 const bool is_sync = rw_is_sync(rw_flags) != 0;
949 int may_queue;
950
951 if (unlikely(blk_queue_dying(q)))
952 return NULL;
953
954 may_queue = elv_may_queue(q, rw_flags);
955 if (may_queue == ELV_MQUEUE_NO)
956 goto rq_starved;
957
958 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
959 if (rl->count[is_sync]+1 >= q->nr_requests) {
960 /*
961 * The queue will fill after this allocation, so set
962 * it as full, and mark this process as "batching".
963 * This process will be allowed to complete a batch of
964 * requests, others will be blocked.
965 */
966 if (!blk_rl_full(rl, is_sync)) {
967 ioc_set_batching(q, ioc);
968 blk_set_rl_full(rl, is_sync);
969 } else {
970 if (may_queue != ELV_MQUEUE_MUST
971 && !ioc_batching(q, ioc)) {
972 /*
973 * The queue is full and the allocating
974 * process is not a "batcher", and not
975 * exempted by the IO scheduler
976 */
977 return NULL;
978 }
979 }
980 }
981 /*
982 * bdi isn't aware of blkcg yet. As all async IOs end up
983 * root blkcg anyway, just use root blkcg state.
984 */
985 if (rl == &q->root_rl)
986 blk_set_queue_congested(q, is_sync);
987 }
988
989 /*
990 * Only allow batching queuers to allocate up to 50% over the defined
991 * limit of requests, otherwise we could have thousands of requests
992 * allocated with any setting of ->nr_requests
993 */
994 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
995 return NULL;
996
997 q->nr_rqs[is_sync]++;
998 rl->count[is_sync]++;
999 rl->starved[is_sync] = 0;
1000
1001 /*
1002 * Decide whether the new request will be managed by elevator. If
1003 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1004 * prevent the current elevator from being destroyed until the new
1005 * request is freed. This guarantees icq's won't be destroyed and
1006 * makes creating new ones safe.
1007 *
1008 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1009 * it will be created after releasing queue_lock.
1010 */
1011 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1012 rw_flags |= REQ_ELVPRIV;
1013 q->nr_rqs_elvpriv++;
1014 if (et->icq_cache && ioc)
1015 icq = ioc_lookup_icq(ioc, q);
1016 }
1017
1018 if (blk_queue_io_stat(q))
1019 rw_flags |= REQ_IO_STAT;
1020 spin_unlock_irq(q->queue_lock);
1021
1022 /* allocate and init request */
1023 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1024 if (!rq)
1025 goto fail_alloc;
1026
1027 blk_rq_init(q, rq);
1028 blk_rq_set_rl(rq, rl);
1029 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1030
1031 /* init elvpriv */
1032 if (rw_flags & REQ_ELVPRIV) {
1033 if (unlikely(et->icq_cache && !icq)) {
1034 if (ioc)
1035 icq = ioc_create_icq(ioc, q, gfp_mask);
1036 if (!icq)
1037 goto fail_elvpriv;
1038 }
1039
1040 rq->elv.icq = icq;
1041 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1042 goto fail_elvpriv;
1043
1044 /* @rq->elv.icq holds io_context until @rq is freed */
1045 if (icq)
1046 get_io_context(icq->ioc);
1047 }
1048 out:
1049 /*
1050 * ioc may be NULL here, and ioc_batching will be false. That's
1051 * OK, if the queue is under the request limit then requests need
1052 * not count toward the nr_batch_requests limit. There will always
1053 * be some limit enforced by BLK_BATCH_TIME.
1054 */
1055 if (ioc_batching(q, ioc))
1056 ioc->nr_batch_requests--;
1057
1058 trace_block_getrq(q, bio, rw_flags & 1);
1059 return rq;
1060
1061 fail_elvpriv:
1062 /*
1063 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1064 * and may fail indefinitely under memory pressure and thus
1065 * shouldn't stall IO. Treat this request as !elvpriv. This will
1066 * disturb iosched and blkcg but weird is bettern than dead.
1067 */
1068 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1069 dev_name(q->backing_dev_info.dev));
1070
1071 rq->cmd_flags &= ~REQ_ELVPRIV;
1072 rq->elv.icq = NULL;
1073
1074 spin_lock_irq(q->queue_lock);
1075 q->nr_rqs_elvpriv--;
1076 spin_unlock_irq(q->queue_lock);
1077 goto out;
1078
1079 fail_alloc:
1080 /*
1081 * Allocation failed presumably due to memory. Undo anything we
1082 * might have messed up.
1083 *
1084 * Allocating task should really be put onto the front of the wait
1085 * queue, but this is pretty rare.
1086 */
1087 spin_lock_irq(q->queue_lock);
1088 freed_request(rl, rw_flags);
1089
1090 /*
1091 * in the very unlikely event that allocation failed and no
1092 * requests for this direction was pending, mark us starved so that
1093 * freeing of a request in the other direction will notice
1094 * us. another possible fix would be to split the rq mempool into
1095 * READ and WRITE
1096 */
1097 rq_starved:
1098 if (unlikely(rl->count[is_sync] == 0))
1099 rl->starved[is_sync] = 1;
1100 return NULL;
1101 }
1102
1103 /**
1104 * get_request - get a free request
1105 * @q: request_queue to allocate request from
1106 * @rw_flags: RW and SYNC flags
1107 * @bio: bio to allocate request for (can be %NULL)
1108 * @gfp_mask: allocation mask
1109 *
1110 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1111 * function keeps retrying under memory pressure and fails iff @q is dead.
1112 *
1113 * Must be called with @q->queue_lock held and,
1114 * Returns %NULL on failure, with @q->queue_lock held.
1115 * Returns !%NULL on success, with @q->queue_lock *not held*.
1116 */
1117 static struct request *get_request(struct request_queue *q, int rw_flags,
1118 struct bio *bio, gfp_t gfp_mask)
1119 {
1120 const bool is_sync = rw_is_sync(rw_flags) != 0;
1121 DEFINE_WAIT(wait);
1122 struct request_list *rl;
1123 struct request *rq;
1124
1125 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1126 retry:
1127 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1128 if (rq)
1129 return rq;
1130
1131 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1132 blk_put_rl(rl);
1133 return NULL;
1134 }
1135
1136 /* wait on @rl and retry */
1137 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1138 TASK_UNINTERRUPTIBLE);
1139
1140 trace_block_sleeprq(q, bio, rw_flags & 1);
1141
1142 spin_unlock_irq(q->queue_lock);
1143 io_schedule();
1144
1145 /*
1146 * After sleeping, we become a "batching" process and will be able
1147 * to allocate at least one request, and up to a big batch of them
1148 * for a small period time. See ioc_batching, ioc_set_batching
1149 */
1150 ioc_set_batching(q, current->io_context);
1151
1152 spin_lock_irq(q->queue_lock);
1153 finish_wait(&rl->wait[is_sync], &wait);
1154
1155 goto retry;
1156 }
1157
1158 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1159 gfp_t gfp_mask)
1160 {
1161 struct request *rq;
1162
1163 BUG_ON(rw != READ && rw != WRITE);
1164
1165 /* create ioc upfront */
1166 create_io_context(gfp_mask, q->node);
1167
1168 spin_lock_irq(q->queue_lock);
1169 rq = get_request(q, rw, NULL, gfp_mask);
1170 if (!rq)
1171 spin_unlock_irq(q->queue_lock);
1172 /* q->queue_lock is unlocked at this point */
1173
1174 return rq;
1175 }
1176
1177 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1178 {
1179 if (q->mq_ops)
1180 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1181 else
1182 return blk_old_get_request(q, rw, gfp_mask);
1183 }
1184 EXPORT_SYMBOL(blk_get_request);
1185
1186 /**
1187 * blk_make_request - given a bio, allocate a corresponding struct request.
1188 * @q: target request queue
1189 * @bio: The bio describing the memory mappings that will be submitted for IO.
1190 * It may be a chained-bio properly constructed by block/bio layer.
1191 * @gfp_mask: gfp flags to be used for memory allocation
1192 *
1193 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1194 * type commands. Where the struct request needs to be farther initialized by
1195 * the caller. It is passed a &struct bio, which describes the memory info of
1196 * the I/O transfer.
1197 *
1198 * The caller of blk_make_request must make sure that bi_io_vec
1199 * are set to describe the memory buffers. That bio_data_dir() will return
1200 * the needed direction of the request. (And all bio's in the passed bio-chain
1201 * are properly set accordingly)
1202 *
1203 * If called under none-sleepable conditions, mapped bio buffers must not
1204 * need bouncing, by calling the appropriate masked or flagged allocator,
1205 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1206 * BUG.
1207 *
1208 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1209 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1210 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1211 * completion of a bio that hasn't been submitted yet, thus resulting in a
1212 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1213 * of bio_alloc(), as that avoids the mempool deadlock.
1214 * If possible a big IO should be split into smaller parts when allocation
1215 * fails. Partial allocation should not be an error, or you risk a live-lock.
1216 */
1217 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1218 gfp_t gfp_mask)
1219 {
1220 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1221
1222 if (unlikely(!rq))
1223 return ERR_PTR(-ENOMEM);
1224
1225 blk_rq_set_block_pc(rq);
1226
1227 for_each_bio(bio) {
1228 struct bio *bounce_bio = bio;
1229 int ret;
1230
1231 blk_queue_bounce(q, &bounce_bio);
1232 ret = blk_rq_append_bio(q, rq, bounce_bio);
1233 if (unlikely(ret)) {
1234 blk_put_request(rq);
1235 return ERR_PTR(ret);
1236 }
1237 }
1238
1239 return rq;
1240 }
1241 EXPORT_SYMBOL(blk_make_request);
1242
1243 /**
1244 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1245 * @rq: request to be initialized
1246 *
1247 */
1248 void blk_rq_set_block_pc(struct request *rq)
1249 {
1250 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1251 rq->__data_len = 0;
1252 rq->__sector = (sector_t) -1;
1253 rq->bio = rq->biotail = NULL;
1254 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1255 }
1256 EXPORT_SYMBOL(blk_rq_set_block_pc);
1257
1258 /**
1259 * blk_requeue_request - put a request back on queue
1260 * @q: request queue where request should be inserted
1261 * @rq: request to be inserted
1262 *
1263 * Description:
1264 * Drivers often keep queueing requests until the hardware cannot accept
1265 * more, when that condition happens we need to put the request back
1266 * on the queue. Must be called with queue lock held.
1267 */
1268 void blk_requeue_request(struct request_queue *q, struct request *rq)
1269 {
1270 blk_delete_timer(rq);
1271 blk_clear_rq_complete(rq);
1272 trace_block_rq_requeue(q, rq);
1273
1274 if (blk_rq_tagged(rq))
1275 blk_queue_end_tag(q, rq);
1276
1277 BUG_ON(blk_queued_rq(rq));
1278
1279 elv_requeue_request(q, rq);
1280 }
1281 EXPORT_SYMBOL(blk_requeue_request);
1282
1283 static void add_acct_request(struct request_queue *q, struct request *rq,
1284 int where)
1285 {
1286 blk_account_io_start(rq, true);
1287 __elv_add_request(q, rq, where);
1288 }
1289
1290 static void part_round_stats_single(int cpu, struct hd_struct *part,
1291 unsigned long now)
1292 {
1293 int inflight;
1294
1295 if (now == part->stamp)
1296 return;
1297
1298 inflight = part_in_flight(part);
1299 if (inflight) {
1300 __part_stat_add(cpu, part, time_in_queue,
1301 inflight * (now - part->stamp));
1302 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1303 }
1304 part->stamp = now;
1305 }
1306
1307 /**
1308 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1309 * @cpu: cpu number for stats access
1310 * @part: target partition
1311 *
1312 * The average IO queue length and utilisation statistics are maintained
1313 * by observing the current state of the queue length and the amount of
1314 * time it has been in this state for.
1315 *
1316 * Normally, that accounting is done on IO completion, but that can result
1317 * in more than a second's worth of IO being accounted for within any one
1318 * second, leading to >100% utilisation. To deal with that, we call this
1319 * function to do a round-off before returning the results when reading
1320 * /proc/diskstats. This accounts immediately for all queue usage up to
1321 * the current jiffies and restarts the counters again.
1322 */
1323 void part_round_stats(int cpu, struct hd_struct *part)
1324 {
1325 unsigned long now = jiffies;
1326
1327 if (part->partno)
1328 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1329 part_round_stats_single(cpu, part, now);
1330 }
1331 EXPORT_SYMBOL_GPL(part_round_stats);
1332
1333 #ifdef CONFIG_PM_RUNTIME
1334 static void blk_pm_put_request(struct request *rq)
1335 {
1336 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1337 pm_runtime_mark_last_busy(rq->q->dev);
1338 }
1339 #else
1340 static inline void blk_pm_put_request(struct request *rq) {}
1341 #endif
1342
1343 /*
1344 * queue lock must be held
1345 */
1346 void __blk_put_request(struct request_queue *q, struct request *req)
1347 {
1348 if (unlikely(!q))
1349 return;
1350
1351 if (q->mq_ops) {
1352 blk_mq_free_request(req);
1353 return;
1354 }
1355
1356 blk_pm_put_request(req);
1357
1358 elv_completed_request(q, req);
1359
1360 /* this is a bio leak */
1361 WARN_ON(req->bio != NULL);
1362
1363 /*
1364 * Request may not have originated from ll_rw_blk. if not,
1365 * it didn't come out of our reserved rq pools
1366 */
1367 if (req->cmd_flags & REQ_ALLOCED) {
1368 unsigned int flags = req->cmd_flags;
1369 struct request_list *rl = blk_rq_rl(req);
1370
1371 BUG_ON(!list_empty(&req->queuelist));
1372 BUG_ON(ELV_ON_HASH(req));
1373
1374 blk_free_request(rl, req);
1375 freed_request(rl, flags);
1376 blk_put_rl(rl);
1377 }
1378 }
1379 EXPORT_SYMBOL_GPL(__blk_put_request);
1380
1381 void blk_put_request(struct request *req)
1382 {
1383 struct request_queue *q = req->q;
1384
1385 if (q->mq_ops)
1386 blk_mq_free_request(req);
1387 else {
1388 unsigned long flags;
1389
1390 spin_lock_irqsave(q->queue_lock, flags);
1391 __blk_put_request(q, req);
1392 spin_unlock_irqrestore(q->queue_lock, flags);
1393 }
1394 }
1395 EXPORT_SYMBOL(blk_put_request);
1396
1397 /**
1398 * blk_add_request_payload - add a payload to a request
1399 * @rq: request to update
1400 * @page: page backing the payload
1401 * @len: length of the payload.
1402 *
1403 * This allows to later add a payload to an already submitted request by
1404 * a block driver. The driver needs to take care of freeing the payload
1405 * itself.
1406 *
1407 * Note that this is a quite horrible hack and nothing but handling of
1408 * discard requests should ever use it.
1409 */
1410 void blk_add_request_payload(struct request *rq, struct page *page,
1411 unsigned int len)
1412 {
1413 struct bio *bio = rq->bio;
1414
1415 bio->bi_io_vec->bv_page = page;
1416 bio->bi_io_vec->bv_offset = 0;
1417 bio->bi_io_vec->bv_len = len;
1418
1419 bio->bi_iter.bi_size = len;
1420 bio->bi_vcnt = 1;
1421 bio->bi_phys_segments = 1;
1422
1423 rq->__data_len = rq->resid_len = len;
1424 rq->nr_phys_segments = 1;
1425 }
1426 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1427
1428 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1429 struct bio *bio)
1430 {
1431 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1432
1433 if (!ll_back_merge_fn(q, req, bio))
1434 return false;
1435
1436 trace_block_bio_backmerge(q, req, bio);
1437
1438 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1439 blk_rq_set_mixed_merge(req);
1440
1441 req->biotail->bi_next = bio;
1442 req->biotail = bio;
1443 req->__data_len += bio->bi_iter.bi_size;
1444 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1445
1446 blk_account_io_start(req, false);
1447 return true;
1448 }
1449
1450 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1451 struct bio *bio)
1452 {
1453 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1454
1455 if (!ll_front_merge_fn(q, req, bio))
1456 return false;
1457
1458 trace_block_bio_frontmerge(q, req, bio);
1459
1460 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1461 blk_rq_set_mixed_merge(req);
1462
1463 bio->bi_next = req->bio;
1464 req->bio = bio;
1465
1466 req->__sector = bio->bi_iter.bi_sector;
1467 req->__data_len += bio->bi_iter.bi_size;
1468 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1469
1470 blk_account_io_start(req, false);
1471 return true;
1472 }
1473
1474 /**
1475 * blk_attempt_plug_merge - try to merge with %current's plugged list
1476 * @q: request_queue new bio is being queued at
1477 * @bio: new bio being queued
1478 * @request_count: out parameter for number of traversed plugged requests
1479 *
1480 * Determine whether @bio being queued on @q can be merged with a request
1481 * on %current's plugged list. Returns %true if merge was successful,
1482 * otherwise %false.
1483 *
1484 * Plugging coalesces IOs from the same issuer for the same purpose without
1485 * going through @q->queue_lock. As such it's more of an issuing mechanism
1486 * than scheduling, and the request, while may have elvpriv data, is not
1487 * added on the elevator at this point. In addition, we don't have
1488 * reliable access to the elevator outside queue lock. Only check basic
1489 * merging parameters without querying the elevator.
1490 *
1491 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1492 */
1493 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1494 unsigned int *request_count)
1495 {
1496 struct blk_plug *plug;
1497 struct request *rq;
1498 bool ret = false;
1499 struct list_head *plug_list;
1500
1501 plug = current->plug;
1502 if (!plug)
1503 goto out;
1504 *request_count = 0;
1505
1506 if (q->mq_ops)
1507 plug_list = &plug->mq_list;
1508 else
1509 plug_list = &plug->list;
1510
1511 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1512 int el_ret;
1513
1514 if (rq->q == q)
1515 (*request_count)++;
1516
1517 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1518 continue;
1519
1520 el_ret = blk_try_merge(rq, bio);
1521 if (el_ret == ELEVATOR_BACK_MERGE) {
1522 ret = bio_attempt_back_merge(q, rq, bio);
1523 if (ret)
1524 break;
1525 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1526 ret = bio_attempt_front_merge(q, rq, bio);
1527 if (ret)
1528 break;
1529 }
1530 }
1531 out:
1532 return ret;
1533 }
1534
1535 void init_request_from_bio(struct request *req, struct bio *bio)
1536 {
1537 req->cmd_type = REQ_TYPE_FS;
1538
1539 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1540 if (bio->bi_rw & REQ_RAHEAD)
1541 req->cmd_flags |= REQ_FAILFAST_MASK;
1542
1543 req->errors = 0;
1544 req->__sector = bio->bi_iter.bi_sector;
1545 req->ioprio = bio_prio(bio);
1546 blk_rq_bio_prep(req->q, req, bio);
1547 }
1548
1549 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1550 {
1551 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1552 struct blk_plug *plug;
1553 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1554 struct request *req;
1555 unsigned int request_count = 0;
1556
1557 /*
1558 * low level driver can indicate that it wants pages above a
1559 * certain limit bounced to low memory (ie for highmem, or even
1560 * ISA dma in theory)
1561 */
1562 blk_queue_bounce(q, &bio);
1563
1564 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1565 bio_endio(bio, -EIO);
1566 return;
1567 }
1568
1569 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1570 spin_lock_irq(q->queue_lock);
1571 where = ELEVATOR_INSERT_FLUSH;
1572 goto get_rq;
1573 }
1574
1575 /*
1576 * Check if we can merge with the plugged list before grabbing
1577 * any locks.
1578 */
1579 if (!blk_queue_nomerges(q) &&
1580 blk_attempt_plug_merge(q, bio, &request_count))
1581 return;
1582
1583 spin_lock_irq(q->queue_lock);
1584
1585 el_ret = elv_merge(q, &req, bio);
1586 if (el_ret == ELEVATOR_BACK_MERGE) {
1587 if (bio_attempt_back_merge(q, req, bio)) {
1588 elv_bio_merged(q, req, bio);
1589 if (!attempt_back_merge(q, req))
1590 elv_merged_request(q, req, el_ret);
1591 goto out_unlock;
1592 }
1593 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1594 if (bio_attempt_front_merge(q, req, bio)) {
1595 elv_bio_merged(q, req, bio);
1596 if (!attempt_front_merge(q, req))
1597 elv_merged_request(q, req, el_ret);
1598 goto out_unlock;
1599 }
1600 }
1601
1602 get_rq:
1603 /*
1604 * This sync check and mask will be re-done in init_request_from_bio(),
1605 * but we need to set it earlier to expose the sync flag to the
1606 * rq allocator and io schedulers.
1607 */
1608 rw_flags = bio_data_dir(bio);
1609 if (sync)
1610 rw_flags |= REQ_SYNC;
1611
1612 /*
1613 * Grab a free request. This is might sleep but can not fail.
1614 * Returns with the queue unlocked.
1615 */
1616 req = get_request(q, rw_flags, bio, GFP_NOIO);
1617 if (unlikely(!req)) {
1618 bio_endio(bio, -ENODEV); /* @q is dead */
1619 goto out_unlock;
1620 }
1621
1622 /*
1623 * After dropping the lock and possibly sleeping here, our request
1624 * may now be mergeable after it had proven unmergeable (above).
1625 * We don't worry about that case for efficiency. It won't happen
1626 * often, and the elevators are able to handle it.
1627 */
1628 init_request_from_bio(req, bio);
1629
1630 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1631 req->cpu = raw_smp_processor_id();
1632
1633 plug = current->plug;
1634 if (plug) {
1635 /*
1636 * If this is the first request added after a plug, fire
1637 * of a plug trace.
1638 */
1639 if (!request_count)
1640 trace_block_plug(q);
1641 else {
1642 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1643 blk_flush_plug_list(plug, false);
1644 trace_block_plug(q);
1645 }
1646 }
1647 list_add_tail(&req->queuelist, &plug->list);
1648 blk_account_io_start(req, true);
1649 } else {
1650 spin_lock_irq(q->queue_lock);
1651 add_acct_request(q, req, where);
1652 __blk_run_queue(q);
1653 out_unlock:
1654 spin_unlock_irq(q->queue_lock);
1655 }
1656 }
1657 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1658
1659 /*
1660 * If bio->bi_dev is a partition, remap the location
1661 */
1662 static inline void blk_partition_remap(struct bio *bio)
1663 {
1664 struct block_device *bdev = bio->bi_bdev;
1665
1666 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1667 struct hd_struct *p = bdev->bd_part;
1668
1669 bio->bi_iter.bi_sector += p->start_sect;
1670 bio->bi_bdev = bdev->bd_contains;
1671
1672 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1673 bdev->bd_dev,
1674 bio->bi_iter.bi_sector - p->start_sect);
1675 }
1676 }
1677
1678 static void handle_bad_sector(struct bio *bio)
1679 {
1680 char b[BDEVNAME_SIZE];
1681
1682 printk(KERN_INFO "attempt to access beyond end of device\n");
1683 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1684 bdevname(bio->bi_bdev, b),
1685 bio->bi_rw,
1686 (unsigned long long)bio_end_sector(bio),
1687 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1688
1689 set_bit(BIO_EOF, &bio->bi_flags);
1690 }
1691
1692 #ifdef CONFIG_FAIL_MAKE_REQUEST
1693
1694 static DECLARE_FAULT_ATTR(fail_make_request);
1695
1696 static int __init setup_fail_make_request(char *str)
1697 {
1698 return setup_fault_attr(&fail_make_request, str);
1699 }
1700 __setup("fail_make_request=", setup_fail_make_request);
1701
1702 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1703 {
1704 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1705 }
1706
1707 static int __init fail_make_request_debugfs(void)
1708 {
1709 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1710 NULL, &fail_make_request);
1711
1712 return PTR_ERR_OR_ZERO(dir);
1713 }
1714
1715 late_initcall(fail_make_request_debugfs);
1716
1717 #else /* CONFIG_FAIL_MAKE_REQUEST */
1718
1719 static inline bool should_fail_request(struct hd_struct *part,
1720 unsigned int bytes)
1721 {
1722 return false;
1723 }
1724
1725 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1726
1727 /*
1728 * Check whether this bio extends beyond the end of the device.
1729 */
1730 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1731 {
1732 sector_t maxsector;
1733
1734 if (!nr_sectors)
1735 return 0;
1736
1737 /* Test device or partition size, when known. */
1738 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1739 if (maxsector) {
1740 sector_t sector = bio->bi_iter.bi_sector;
1741
1742 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1743 /*
1744 * This may well happen - the kernel calls bread()
1745 * without checking the size of the device, e.g., when
1746 * mounting a device.
1747 */
1748 handle_bad_sector(bio);
1749 return 1;
1750 }
1751 }
1752
1753 return 0;
1754 }
1755
1756 static noinline_for_stack bool
1757 generic_make_request_checks(struct bio *bio)
1758 {
1759 struct request_queue *q;
1760 int nr_sectors = bio_sectors(bio);
1761 int err = -EIO;
1762 char b[BDEVNAME_SIZE];
1763 struct hd_struct *part;
1764
1765 might_sleep();
1766
1767 if (bio_check_eod(bio, nr_sectors))
1768 goto end_io;
1769
1770 q = bdev_get_queue(bio->bi_bdev);
1771 if (unlikely(!q)) {
1772 printk(KERN_ERR
1773 "generic_make_request: Trying to access "
1774 "nonexistent block-device %s (%Lu)\n",
1775 bdevname(bio->bi_bdev, b),
1776 (long long) bio->bi_iter.bi_sector);
1777 goto end_io;
1778 }
1779
1780 if (likely(bio_is_rw(bio) &&
1781 nr_sectors > queue_max_hw_sectors(q))) {
1782 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1783 bdevname(bio->bi_bdev, b),
1784 bio_sectors(bio),
1785 queue_max_hw_sectors(q));
1786 goto end_io;
1787 }
1788
1789 part = bio->bi_bdev->bd_part;
1790 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1791 should_fail_request(&part_to_disk(part)->part0,
1792 bio->bi_iter.bi_size))
1793 goto end_io;
1794
1795 /*
1796 * If this device has partitions, remap block n
1797 * of partition p to block n+start(p) of the disk.
1798 */
1799 blk_partition_remap(bio);
1800
1801 if (bio_check_eod(bio, nr_sectors))
1802 goto end_io;
1803
1804 /*
1805 * Filter flush bio's early so that make_request based
1806 * drivers without flush support don't have to worry
1807 * about them.
1808 */
1809 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1810 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1811 if (!nr_sectors) {
1812 err = 0;
1813 goto end_io;
1814 }
1815 }
1816
1817 if ((bio->bi_rw & REQ_DISCARD) &&
1818 (!blk_queue_discard(q) ||
1819 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1820 err = -EOPNOTSUPP;
1821 goto end_io;
1822 }
1823
1824 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1825 err = -EOPNOTSUPP;
1826 goto end_io;
1827 }
1828
1829 /*
1830 * Various block parts want %current->io_context and lazy ioc
1831 * allocation ends up trading a lot of pain for a small amount of
1832 * memory. Just allocate it upfront. This may fail and block
1833 * layer knows how to live with it.
1834 */
1835 create_io_context(GFP_ATOMIC, q->node);
1836
1837 if (blk_throtl_bio(q, bio))
1838 return false; /* throttled, will be resubmitted later */
1839
1840 trace_block_bio_queue(q, bio);
1841 return true;
1842
1843 end_io:
1844 bio_endio(bio, err);
1845 return false;
1846 }
1847
1848 /**
1849 * generic_make_request - hand a buffer to its device driver for I/O
1850 * @bio: The bio describing the location in memory and on the device.
1851 *
1852 * generic_make_request() is used to make I/O requests of block
1853 * devices. It is passed a &struct bio, which describes the I/O that needs
1854 * to be done.
1855 *
1856 * generic_make_request() does not return any status. The
1857 * success/failure status of the request, along with notification of
1858 * completion, is delivered asynchronously through the bio->bi_end_io
1859 * function described (one day) else where.
1860 *
1861 * The caller of generic_make_request must make sure that bi_io_vec
1862 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1863 * set to describe the device address, and the
1864 * bi_end_io and optionally bi_private are set to describe how
1865 * completion notification should be signaled.
1866 *
1867 * generic_make_request and the drivers it calls may use bi_next if this
1868 * bio happens to be merged with someone else, and may resubmit the bio to
1869 * a lower device by calling into generic_make_request recursively, which
1870 * means the bio should NOT be touched after the call to ->make_request_fn.
1871 */
1872 void generic_make_request(struct bio *bio)
1873 {
1874 struct bio_list bio_list_on_stack;
1875
1876 if (!generic_make_request_checks(bio))
1877 return;
1878
1879 /*
1880 * We only want one ->make_request_fn to be active at a time, else
1881 * stack usage with stacked devices could be a problem. So use
1882 * current->bio_list to keep a list of requests submited by a
1883 * make_request_fn function. current->bio_list is also used as a
1884 * flag to say if generic_make_request is currently active in this
1885 * task or not. If it is NULL, then no make_request is active. If
1886 * it is non-NULL, then a make_request is active, and new requests
1887 * should be added at the tail
1888 */
1889 if (current->bio_list) {
1890 bio_list_add(current->bio_list, bio);
1891 return;
1892 }
1893
1894 /* following loop may be a bit non-obvious, and so deserves some
1895 * explanation.
1896 * Before entering the loop, bio->bi_next is NULL (as all callers
1897 * ensure that) so we have a list with a single bio.
1898 * We pretend that we have just taken it off a longer list, so
1899 * we assign bio_list to a pointer to the bio_list_on_stack,
1900 * thus initialising the bio_list of new bios to be
1901 * added. ->make_request() may indeed add some more bios
1902 * through a recursive call to generic_make_request. If it
1903 * did, we find a non-NULL value in bio_list and re-enter the loop
1904 * from the top. In this case we really did just take the bio
1905 * of the top of the list (no pretending) and so remove it from
1906 * bio_list, and call into ->make_request() again.
1907 */
1908 BUG_ON(bio->bi_next);
1909 bio_list_init(&bio_list_on_stack);
1910 current->bio_list = &bio_list_on_stack;
1911 do {
1912 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1913
1914 q->make_request_fn(q, bio);
1915
1916 bio = bio_list_pop(current->bio_list);
1917 } while (bio);
1918 current->bio_list = NULL; /* deactivate */
1919 }
1920 EXPORT_SYMBOL(generic_make_request);
1921
1922 /**
1923 * submit_bio - submit a bio to the block device layer for I/O
1924 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1925 * @bio: The &struct bio which describes the I/O
1926 *
1927 * submit_bio() is very similar in purpose to generic_make_request(), and
1928 * uses that function to do most of the work. Both are fairly rough
1929 * interfaces; @bio must be presetup and ready for I/O.
1930 *
1931 */
1932 void submit_bio(int rw, struct bio *bio)
1933 {
1934 bio->bi_rw |= rw;
1935
1936 /*
1937 * If it's a regular read/write or a barrier with data attached,
1938 * go through the normal accounting stuff before submission.
1939 */
1940 if (bio_has_data(bio)) {
1941 unsigned int count;
1942
1943 if (unlikely(rw & REQ_WRITE_SAME))
1944 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1945 else
1946 count = bio_sectors(bio);
1947
1948 if (rw & WRITE) {
1949 count_vm_events(PGPGOUT, count);
1950 } else {
1951 task_io_account_read(bio->bi_iter.bi_size);
1952 count_vm_events(PGPGIN, count);
1953 }
1954
1955 if (unlikely(block_dump)) {
1956 char b[BDEVNAME_SIZE];
1957 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1958 current->comm, task_pid_nr(current),
1959 (rw & WRITE) ? "WRITE" : "READ",
1960 (unsigned long long)bio->bi_iter.bi_sector,
1961 bdevname(bio->bi_bdev, b),
1962 count);
1963 }
1964 }
1965
1966 generic_make_request(bio);
1967 }
1968 EXPORT_SYMBOL(submit_bio);
1969
1970 /**
1971 * blk_rq_check_limits - Helper function to check a request for the queue limit
1972 * @q: the queue
1973 * @rq: the request being checked
1974 *
1975 * Description:
1976 * @rq may have been made based on weaker limitations of upper-level queues
1977 * in request stacking drivers, and it may violate the limitation of @q.
1978 * Since the block layer and the underlying device driver trust @rq
1979 * after it is inserted to @q, it should be checked against @q before
1980 * the insertion using this generic function.
1981 *
1982 * This function should also be useful for request stacking drivers
1983 * in some cases below, so export this function.
1984 * Request stacking drivers like request-based dm may change the queue
1985 * limits while requests are in the queue (e.g. dm's table swapping).
1986 * Such request stacking drivers should check those requests against
1987 * the new queue limits again when they dispatch those requests,
1988 * although such checkings are also done against the old queue limits
1989 * when submitting requests.
1990 */
1991 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1992 {
1993 if (!rq_mergeable(rq))
1994 return 0;
1995
1996 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1997 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1998 return -EIO;
1999 }
2000
2001 /*
2002 * queue's settings related to segment counting like q->bounce_pfn
2003 * may differ from that of other stacking queues.
2004 * Recalculate it to check the request correctly on this queue's
2005 * limitation.
2006 */
2007 blk_recalc_rq_segments(rq);
2008 if (rq->nr_phys_segments > queue_max_segments(q)) {
2009 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2010 return -EIO;
2011 }
2012
2013 return 0;
2014 }
2015 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2016
2017 /**
2018 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2019 * @q: the queue to submit the request
2020 * @rq: the request being queued
2021 */
2022 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2023 {
2024 unsigned long flags;
2025 int where = ELEVATOR_INSERT_BACK;
2026
2027 if (blk_rq_check_limits(q, rq))
2028 return -EIO;
2029
2030 if (rq->rq_disk &&
2031 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2032 return -EIO;
2033
2034 spin_lock_irqsave(q->queue_lock, flags);
2035 if (unlikely(blk_queue_dying(q))) {
2036 spin_unlock_irqrestore(q->queue_lock, flags);
2037 return -ENODEV;
2038 }
2039
2040 /*
2041 * Submitting request must be dequeued before calling this function
2042 * because it will be linked to another request_queue
2043 */
2044 BUG_ON(blk_queued_rq(rq));
2045
2046 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2047 where = ELEVATOR_INSERT_FLUSH;
2048
2049 add_acct_request(q, rq, where);
2050 if (where == ELEVATOR_INSERT_FLUSH)
2051 __blk_run_queue(q);
2052 spin_unlock_irqrestore(q->queue_lock, flags);
2053
2054 return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2057
2058 /**
2059 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2060 * @rq: request to examine
2061 *
2062 * Description:
2063 * A request could be merge of IOs which require different failure
2064 * handling. This function determines the number of bytes which
2065 * can be failed from the beginning of the request without
2066 * crossing into area which need to be retried further.
2067 *
2068 * Return:
2069 * The number of bytes to fail.
2070 *
2071 * Context:
2072 * queue_lock must be held.
2073 */
2074 unsigned int blk_rq_err_bytes(const struct request *rq)
2075 {
2076 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2077 unsigned int bytes = 0;
2078 struct bio *bio;
2079
2080 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2081 return blk_rq_bytes(rq);
2082
2083 /*
2084 * Currently the only 'mixing' which can happen is between
2085 * different fastfail types. We can safely fail portions
2086 * which have all the failfast bits that the first one has -
2087 * the ones which are at least as eager to fail as the first
2088 * one.
2089 */
2090 for (bio = rq->bio; bio; bio = bio->bi_next) {
2091 if ((bio->bi_rw & ff) != ff)
2092 break;
2093 bytes += bio->bi_iter.bi_size;
2094 }
2095
2096 /* this could lead to infinite loop */
2097 BUG_ON(blk_rq_bytes(rq) && !bytes);
2098 return bytes;
2099 }
2100 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2101
2102 void blk_account_io_completion(struct request *req, unsigned int bytes)
2103 {
2104 if (blk_do_io_stat(req)) {
2105 const int rw = rq_data_dir(req);
2106 struct hd_struct *part;
2107 int cpu;
2108
2109 cpu = part_stat_lock();
2110 part = req->part;
2111 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2112 part_stat_unlock();
2113 }
2114 }
2115
2116 void blk_account_io_done(struct request *req)
2117 {
2118 /*
2119 * Account IO completion. flush_rq isn't accounted as a
2120 * normal IO on queueing nor completion. Accounting the
2121 * containing request is enough.
2122 */
2123 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2124 unsigned long duration = jiffies - req->start_time;
2125 const int rw = rq_data_dir(req);
2126 struct hd_struct *part;
2127 int cpu;
2128
2129 cpu = part_stat_lock();
2130 part = req->part;
2131
2132 part_stat_inc(cpu, part, ios[rw]);
2133 part_stat_add(cpu, part, ticks[rw], duration);
2134 part_round_stats(cpu, part);
2135 part_dec_in_flight(part, rw);
2136
2137 hd_struct_put(part);
2138 part_stat_unlock();
2139 }
2140 }
2141
2142 #ifdef CONFIG_PM_RUNTIME
2143 /*
2144 * Don't process normal requests when queue is suspended
2145 * or in the process of suspending/resuming
2146 */
2147 static struct request *blk_pm_peek_request(struct request_queue *q,
2148 struct request *rq)
2149 {
2150 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2151 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2152 return NULL;
2153 else
2154 return rq;
2155 }
2156 #else
2157 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2158 struct request *rq)
2159 {
2160 return rq;
2161 }
2162 #endif
2163
2164 void blk_account_io_start(struct request *rq, bool new_io)
2165 {
2166 struct hd_struct *part;
2167 int rw = rq_data_dir(rq);
2168 int cpu;
2169
2170 if (!blk_do_io_stat(rq))
2171 return;
2172
2173 cpu = part_stat_lock();
2174
2175 if (!new_io) {
2176 part = rq->part;
2177 part_stat_inc(cpu, part, merges[rw]);
2178 } else {
2179 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2180 if (!hd_struct_try_get(part)) {
2181 /*
2182 * The partition is already being removed,
2183 * the request will be accounted on the disk only
2184 *
2185 * We take a reference on disk->part0 although that
2186 * partition will never be deleted, so we can treat
2187 * it as any other partition.
2188 */
2189 part = &rq->rq_disk->part0;
2190 hd_struct_get(part);
2191 }
2192 part_round_stats(cpu, part);
2193 part_inc_in_flight(part, rw);
2194 rq->part = part;
2195 }
2196
2197 part_stat_unlock();
2198 }
2199
2200 /**
2201 * blk_peek_request - peek at the top of a request queue
2202 * @q: request queue to peek at
2203 *
2204 * Description:
2205 * Return the request at the top of @q. The returned request
2206 * should be started using blk_start_request() before LLD starts
2207 * processing it.
2208 *
2209 * Return:
2210 * Pointer to the request at the top of @q if available. Null
2211 * otherwise.
2212 *
2213 * Context:
2214 * queue_lock must be held.
2215 */
2216 struct request *blk_peek_request(struct request_queue *q)
2217 {
2218 struct request *rq;
2219 int ret;
2220
2221 while ((rq = __elv_next_request(q)) != NULL) {
2222
2223 rq = blk_pm_peek_request(q, rq);
2224 if (!rq)
2225 break;
2226
2227 if (!(rq->cmd_flags & REQ_STARTED)) {
2228 /*
2229 * This is the first time the device driver
2230 * sees this request (possibly after
2231 * requeueing). Notify IO scheduler.
2232 */
2233 if (rq->cmd_flags & REQ_SORTED)
2234 elv_activate_rq(q, rq);
2235
2236 /*
2237 * just mark as started even if we don't start
2238 * it, a request that has been delayed should
2239 * not be passed by new incoming requests
2240 */
2241 rq->cmd_flags |= REQ_STARTED;
2242 trace_block_rq_issue(q, rq);
2243 }
2244
2245 if (!q->boundary_rq || q->boundary_rq == rq) {
2246 q->end_sector = rq_end_sector(rq);
2247 q->boundary_rq = NULL;
2248 }
2249
2250 if (rq->cmd_flags & REQ_DONTPREP)
2251 break;
2252
2253 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2254 /*
2255 * make sure space for the drain appears we
2256 * know we can do this because max_hw_segments
2257 * has been adjusted to be one fewer than the
2258 * device can handle
2259 */
2260 rq->nr_phys_segments++;
2261 }
2262
2263 if (!q->prep_rq_fn)
2264 break;
2265
2266 ret = q->prep_rq_fn(q, rq);
2267 if (ret == BLKPREP_OK) {
2268 break;
2269 } else if (ret == BLKPREP_DEFER) {
2270 /*
2271 * the request may have been (partially) prepped.
2272 * we need to keep this request in the front to
2273 * avoid resource deadlock. REQ_STARTED will
2274 * prevent other fs requests from passing this one.
2275 */
2276 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2277 !(rq->cmd_flags & REQ_DONTPREP)) {
2278 /*
2279 * remove the space for the drain we added
2280 * so that we don't add it again
2281 */
2282 --rq->nr_phys_segments;
2283 }
2284
2285 rq = NULL;
2286 break;
2287 } else if (ret == BLKPREP_KILL) {
2288 rq->cmd_flags |= REQ_QUIET;
2289 /*
2290 * Mark this request as started so we don't trigger
2291 * any debug logic in the end I/O path.
2292 */
2293 blk_start_request(rq);
2294 __blk_end_request_all(rq, -EIO);
2295 } else {
2296 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2297 break;
2298 }
2299 }
2300
2301 return rq;
2302 }
2303 EXPORT_SYMBOL(blk_peek_request);
2304
2305 void blk_dequeue_request(struct request *rq)
2306 {
2307 struct request_queue *q = rq->q;
2308
2309 BUG_ON(list_empty(&rq->queuelist));
2310 BUG_ON(ELV_ON_HASH(rq));
2311
2312 list_del_init(&rq->queuelist);
2313
2314 /*
2315 * the time frame between a request being removed from the lists
2316 * and to it is freed is accounted as io that is in progress at
2317 * the driver side.
2318 */
2319 if (blk_account_rq(rq)) {
2320 q->in_flight[rq_is_sync(rq)]++;
2321 set_io_start_time_ns(rq);
2322 }
2323 }
2324
2325 /**
2326 * blk_start_request - start request processing on the driver
2327 * @req: request to dequeue
2328 *
2329 * Description:
2330 * Dequeue @req and start timeout timer on it. This hands off the
2331 * request to the driver.
2332 *
2333 * Block internal functions which don't want to start timer should
2334 * call blk_dequeue_request().
2335 *
2336 * Context:
2337 * queue_lock must be held.
2338 */
2339 void blk_start_request(struct request *req)
2340 {
2341 blk_dequeue_request(req);
2342
2343 /*
2344 * We are now handing the request to the hardware, initialize
2345 * resid_len to full count and add the timeout handler.
2346 */
2347 req->resid_len = blk_rq_bytes(req);
2348 if (unlikely(blk_bidi_rq(req)))
2349 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2350
2351 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2352 blk_add_timer(req);
2353 }
2354 EXPORT_SYMBOL(blk_start_request);
2355
2356 /**
2357 * blk_fetch_request - fetch a request from a request queue
2358 * @q: request queue to fetch a request from
2359 *
2360 * Description:
2361 * Return the request at the top of @q. The request is started on
2362 * return and LLD can start processing it immediately.
2363 *
2364 * Return:
2365 * Pointer to the request at the top of @q if available. Null
2366 * otherwise.
2367 *
2368 * Context:
2369 * queue_lock must be held.
2370 */
2371 struct request *blk_fetch_request(struct request_queue *q)
2372 {
2373 struct request *rq;
2374
2375 rq = blk_peek_request(q);
2376 if (rq)
2377 blk_start_request(rq);
2378 return rq;
2379 }
2380 EXPORT_SYMBOL(blk_fetch_request);
2381
2382 /**
2383 * blk_update_request - Special helper function for request stacking drivers
2384 * @req: the request being processed
2385 * @error: %0 for success, < %0 for error
2386 * @nr_bytes: number of bytes to complete @req
2387 *
2388 * Description:
2389 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2390 * the request structure even if @req doesn't have leftover.
2391 * If @req has leftover, sets it up for the next range of segments.
2392 *
2393 * This special helper function is only for request stacking drivers
2394 * (e.g. request-based dm) so that they can handle partial completion.
2395 * Actual device drivers should use blk_end_request instead.
2396 *
2397 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2398 * %false return from this function.
2399 *
2400 * Return:
2401 * %false - this request doesn't have any more data
2402 * %true - this request has more data
2403 **/
2404 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2405 {
2406 int total_bytes;
2407
2408 if (!req->bio)
2409 return false;
2410
2411 trace_block_rq_complete(req->q, req, nr_bytes);
2412
2413 /*
2414 * For fs requests, rq is just carrier of independent bio's
2415 * and each partial completion should be handled separately.
2416 * Reset per-request error on each partial completion.
2417 *
2418 * TODO: tj: This is too subtle. It would be better to let
2419 * low level drivers do what they see fit.
2420 */
2421 if (req->cmd_type == REQ_TYPE_FS)
2422 req->errors = 0;
2423
2424 if (error && req->cmd_type == REQ_TYPE_FS &&
2425 !(req->cmd_flags & REQ_QUIET)) {
2426 char *error_type;
2427
2428 switch (error) {
2429 case -ENOLINK:
2430 error_type = "recoverable transport";
2431 break;
2432 case -EREMOTEIO:
2433 error_type = "critical target";
2434 break;
2435 case -EBADE:
2436 error_type = "critical nexus";
2437 break;
2438 case -ETIMEDOUT:
2439 error_type = "timeout";
2440 break;
2441 case -ENOSPC:
2442 error_type = "critical space allocation";
2443 break;
2444 case -ENODATA:
2445 error_type = "critical medium";
2446 break;
2447 case -EIO:
2448 default:
2449 error_type = "I/O";
2450 break;
2451 }
2452 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2453 error_type, req->rq_disk ?
2454 req->rq_disk->disk_name : "?",
2455 (unsigned long long)blk_rq_pos(req));
2456
2457 }
2458
2459 blk_account_io_completion(req, nr_bytes);
2460
2461 total_bytes = 0;
2462 while (req->bio) {
2463 struct bio *bio = req->bio;
2464 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2465
2466 if (bio_bytes == bio->bi_iter.bi_size)
2467 req->bio = bio->bi_next;
2468
2469 req_bio_endio(req, bio, bio_bytes, error);
2470
2471 total_bytes += bio_bytes;
2472 nr_bytes -= bio_bytes;
2473
2474 if (!nr_bytes)
2475 break;
2476 }
2477
2478 /*
2479 * completely done
2480 */
2481 if (!req->bio) {
2482 /*
2483 * Reset counters so that the request stacking driver
2484 * can find how many bytes remain in the request
2485 * later.
2486 */
2487 req->__data_len = 0;
2488 return false;
2489 }
2490
2491 req->__data_len -= total_bytes;
2492
2493 /* update sector only for requests with clear definition of sector */
2494 if (req->cmd_type == REQ_TYPE_FS)
2495 req->__sector += total_bytes >> 9;
2496
2497 /* mixed attributes always follow the first bio */
2498 if (req->cmd_flags & REQ_MIXED_MERGE) {
2499 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2500 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2501 }
2502
2503 /*
2504 * If total number of sectors is less than the first segment
2505 * size, something has gone terribly wrong.
2506 */
2507 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2508 blk_dump_rq_flags(req, "request botched");
2509 req->__data_len = blk_rq_cur_bytes(req);
2510 }
2511
2512 /* recalculate the number of segments */
2513 blk_recalc_rq_segments(req);
2514
2515 return true;
2516 }
2517 EXPORT_SYMBOL_GPL(blk_update_request);
2518
2519 static bool blk_update_bidi_request(struct request *rq, int error,
2520 unsigned int nr_bytes,
2521 unsigned int bidi_bytes)
2522 {
2523 if (blk_update_request(rq, error, nr_bytes))
2524 return true;
2525
2526 /* Bidi request must be completed as a whole */
2527 if (unlikely(blk_bidi_rq(rq)) &&
2528 blk_update_request(rq->next_rq, error, bidi_bytes))
2529 return true;
2530
2531 if (blk_queue_add_random(rq->q))
2532 add_disk_randomness(rq->rq_disk);
2533
2534 return false;
2535 }
2536
2537 /**
2538 * blk_unprep_request - unprepare a request
2539 * @req: the request
2540 *
2541 * This function makes a request ready for complete resubmission (or
2542 * completion). It happens only after all error handling is complete,
2543 * so represents the appropriate moment to deallocate any resources
2544 * that were allocated to the request in the prep_rq_fn. The queue
2545 * lock is held when calling this.
2546 */
2547 void blk_unprep_request(struct request *req)
2548 {
2549 struct request_queue *q = req->q;
2550
2551 req->cmd_flags &= ~REQ_DONTPREP;
2552 if (q->unprep_rq_fn)
2553 q->unprep_rq_fn(q, req);
2554 }
2555 EXPORT_SYMBOL_GPL(blk_unprep_request);
2556
2557 /*
2558 * queue lock must be held
2559 */
2560 void blk_finish_request(struct request *req, int error)
2561 {
2562 if (blk_rq_tagged(req))
2563 blk_queue_end_tag(req->q, req);
2564
2565 BUG_ON(blk_queued_rq(req));
2566
2567 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2568 laptop_io_completion(&req->q->backing_dev_info);
2569
2570 blk_delete_timer(req);
2571
2572 if (req->cmd_flags & REQ_DONTPREP)
2573 blk_unprep_request(req);
2574
2575 blk_account_io_done(req);
2576
2577 if (req->end_io)
2578 req->end_io(req, error);
2579 else {
2580 if (blk_bidi_rq(req))
2581 __blk_put_request(req->next_rq->q, req->next_rq);
2582
2583 __blk_put_request(req->q, req);
2584 }
2585 }
2586 EXPORT_SYMBOL(blk_finish_request);
2587
2588 /**
2589 * blk_end_bidi_request - Complete a bidi request
2590 * @rq: the request to complete
2591 * @error: %0 for success, < %0 for error
2592 * @nr_bytes: number of bytes to complete @rq
2593 * @bidi_bytes: number of bytes to complete @rq->next_rq
2594 *
2595 * Description:
2596 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2597 * Drivers that supports bidi can safely call this member for any
2598 * type of request, bidi or uni. In the later case @bidi_bytes is
2599 * just ignored.
2600 *
2601 * Return:
2602 * %false - we are done with this request
2603 * %true - still buffers pending for this request
2604 **/
2605 static bool blk_end_bidi_request(struct request *rq, int error,
2606 unsigned int nr_bytes, unsigned int bidi_bytes)
2607 {
2608 struct request_queue *q = rq->q;
2609 unsigned long flags;
2610
2611 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2612 return true;
2613
2614 spin_lock_irqsave(q->queue_lock, flags);
2615 blk_finish_request(rq, error);
2616 spin_unlock_irqrestore(q->queue_lock, flags);
2617
2618 return false;
2619 }
2620
2621 /**
2622 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2623 * @rq: the request to complete
2624 * @error: %0 for success, < %0 for error
2625 * @nr_bytes: number of bytes to complete @rq
2626 * @bidi_bytes: number of bytes to complete @rq->next_rq
2627 *
2628 * Description:
2629 * Identical to blk_end_bidi_request() except that queue lock is
2630 * assumed to be locked on entry and remains so on return.
2631 *
2632 * Return:
2633 * %false - we are done with this request
2634 * %true - still buffers pending for this request
2635 **/
2636 bool __blk_end_bidi_request(struct request *rq, int error,
2637 unsigned int nr_bytes, unsigned int bidi_bytes)
2638 {
2639 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2640 return true;
2641
2642 blk_finish_request(rq, error);
2643
2644 return false;
2645 }
2646
2647 /**
2648 * blk_end_request - Helper function for drivers to complete the request.
2649 * @rq: the request being processed
2650 * @error: %0 for success, < %0 for error
2651 * @nr_bytes: number of bytes to complete
2652 *
2653 * Description:
2654 * Ends I/O on a number of bytes attached to @rq.
2655 * If @rq has leftover, sets it up for the next range of segments.
2656 *
2657 * Return:
2658 * %false - we are done with this request
2659 * %true - still buffers pending for this request
2660 **/
2661 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2662 {
2663 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2664 }
2665 EXPORT_SYMBOL(blk_end_request);
2666
2667 /**
2668 * blk_end_request_all - Helper function for drives to finish the request.
2669 * @rq: the request to finish
2670 * @error: %0 for success, < %0 for error
2671 *
2672 * Description:
2673 * Completely finish @rq.
2674 */
2675 void blk_end_request_all(struct request *rq, int error)
2676 {
2677 bool pending;
2678 unsigned int bidi_bytes = 0;
2679
2680 if (unlikely(blk_bidi_rq(rq)))
2681 bidi_bytes = blk_rq_bytes(rq->next_rq);
2682
2683 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2684 BUG_ON(pending);
2685 }
2686 EXPORT_SYMBOL(blk_end_request_all);
2687
2688 /**
2689 * blk_end_request_cur - Helper function to finish the current request chunk.
2690 * @rq: the request to finish the current chunk for
2691 * @error: %0 for success, < %0 for error
2692 *
2693 * Description:
2694 * Complete the current consecutively mapped chunk from @rq.
2695 *
2696 * Return:
2697 * %false - we are done with this request
2698 * %true - still buffers pending for this request
2699 */
2700 bool blk_end_request_cur(struct request *rq, int error)
2701 {
2702 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2703 }
2704 EXPORT_SYMBOL(blk_end_request_cur);
2705
2706 /**
2707 * blk_end_request_err - Finish a request till the next failure boundary.
2708 * @rq: the request to finish till the next failure boundary for
2709 * @error: must be negative errno
2710 *
2711 * Description:
2712 * Complete @rq till the next failure boundary.
2713 *
2714 * Return:
2715 * %false - we are done with this request
2716 * %true - still buffers pending for this request
2717 */
2718 bool blk_end_request_err(struct request *rq, int error)
2719 {
2720 WARN_ON(error >= 0);
2721 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2722 }
2723 EXPORT_SYMBOL_GPL(blk_end_request_err);
2724
2725 /**
2726 * __blk_end_request - Helper function for drivers to complete the request.
2727 * @rq: the request being processed
2728 * @error: %0 for success, < %0 for error
2729 * @nr_bytes: number of bytes to complete
2730 *
2731 * Description:
2732 * Must be called with queue lock held unlike blk_end_request().
2733 *
2734 * Return:
2735 * %false - we are done with this request
2736 * %true - still buffers pending for this request
2737 **/
2738 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2739 {
2740 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2741 }
2742 EXPORT_SYMBOL(__blk_end_request);
2743
2744 /**
2745 * __blk_end_request_all - Helper function for drives to finish the request.
2746 * @rq: the request to finish
2747 * @error: %0 for success, < %0 for error
2748 *
2749 * Description:
2750 * Completely finish @rq. Must be called with queue lock held.
2751 */
2752 void __blk_end_request_all(struct request *rq, int error)
2753 {
2754 bool pending;
2755 unsigned int bidi_bytes = 0;
2756
2757 if (unlikely(blk_bidi_rq(rq)))
2758 bidi_bytes = blk_rq_bytes(rq->next_rq);
2759
2760 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2761 BUG_ON(pending);
2762 }
2763 EXPORT_SYMBOL(__blk_end_request_all);
2764
2765 /**
2766 * __blk_end_request_cur - Helper function to finish the current request chunk.
2767 * @rq: the request to finish the current chunk for
2768 * @error: %0 for success, < %0 for error
2769 *
2770 * Description:
2771 * Complete the current consecutively mapped chunk from @rq. Must
2772 * be called with queue lock held.
2773 *
2774 * Return:
2775 * %false - we are done with this request
2776 * %true - still buffers pending for this request
2777 */
2778 bool __blk_end_request_cur(struct request *rq, int error)
2779 {
2780 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2781 }
2782 EXPORT_SYMBOL(__blk_end_request_cur);
2783
2784 /**
2785 * __blk_end_request_err - Finish a request till the next failure boundary.
2786 * @rq: the request to finish till the next failure boundary for
2787 * @error: must be negative errno
2788 *
2789 * Description:
2790 * Complete @rq till the next failure boundary. Must be called
2791 * with queue lock held.
2792 *
2793 * Return:
2794 * %false - we are done with this request
2795 * %true - still buffers pending for this request
2796 */
2797 bool __blk_end_request_err(struct request *rq, int error)
2798 {
2799 WARN_ON(error >= 0);
2800 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2801 }
2802 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2803
2804 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2805 struct bio *bio)
2806 {
2807 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2808 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2809
2810 if (bio_has_data(bio))
2811 rq->nr_phys_segments = bio_phys_segments(q, bio);
2812
2813 rq->__data_len = bio->bi_iter.bi_size;
2814 rq->bio = rq->biotail = bio;
2815
2816 if (bio->bi_bdev)
2817 rq->rq_disk = bio->bi_bdev->bd_disk;
2818 }
2819
2820 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2821 /**
2822 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2823 * @rq: the request to be flushed
2824 *
2825 * Description:
2826 * Flush all pages in @rq.
2827 */
2828 void rq_flush_dcache_pages(struct request *rq)
2829 {
2830 struct req_iterator iter;
2831 struct bio_vec bvec;
2832
2833 rq_for_each_segment(bvec, rq, iter)
2834 flush_dcache_page(bvec.bv_page);
2835 }
2836 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2837 #endif
2838
2839 /**
2840 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2841 * @q : the queue of the device being checked
2842 *
2843 * Description:
2844 * Check if underlying low-level drivers of a device are busy.
2845 * If the drivers want to export their busy state, they must set own
2846 * exporting function using blk_queue_lld_busy() first.
2847 *
2848 * Basically, this function is used only by request stacking drivers
2849 * to stop dispatching requests to underlying devices when underlying
2850 * devices are busy. This behavior helps more I/O merging on the queue
2851 * of the request stacking driver and prevents I/O throughput regression
2852 * on burst I/O load.
2853 *
2854 * Return:
2855 * 0 - Not busy (The request stacking driver should dispatch request)
2856 * 1 - Busy (The request stacking driver should stop dispatching request)
2857 */
2858 int blk_lld_busy(struct request_queue *q)
2859 {
2860 if (q->lld_busy_fn)
2861 return q->lld_busy_fn(q);
2862
2863 return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(blk_lld_busy);
2866
2867 /**
2868 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2869 * @rq: the clone request to be cleaned up
2870 *
2871 * Description:
2872 * Free all bios in @rq for a cloned request.
2873 */
2874 void blk_rq_unprep_clone(struct request *rq)
2875 {
2876 struct bio *bio;
2877
2878 while ((bio = rq->bio) != NULL) {
2879 rq->bio = bio->bi_next;
2880
2881 bio_put(bio);
2882 }
2883 }
2884 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2885
2886 /*
2887 * Copy attributes of the original request to the clone request.
2888 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2889 */
2890 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2891 {
2892 dst->cpu = src->cpu;
2893 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2894 dst->cmd_type = src->cmd_type;
2895 dst->__sector = blk_rq_pos(src);
2896 dst->__data_len = blk_rq_bytes(src);
2897 dst->nr_phys_segments = src->nr_phys_segments;
2898 dst->ioprio = src->ioprio;
2899 dst->extra_len = src->extra_len;
2900 }
2901
2902 /**
2903 * blk_rq_prep_clone - Helper function to setup clone request
2904 * @rq: the request to be setup
2905 * @rq_src: original request to be cloned
2906 * @bs: bio_set that bios for clone are allocated from
2907 * @gfp_mask: memory allocation mask for bio
2908 * @bio_ctr: setup function to be called for each clone bio.
2909 * Returns %0 for success, non %0 for failure.
2910 * @data: private data to be passed to @bio_ctr
2911 *
2912 * Description:
2913 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2914 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2915 * are not copied, and copying such parts is the caller's responsibility.
2916 * Also, pages which the original bios are pointing to are not copied
2917 * and the cloned bios just point same pages.
2918 * So cloned bios must be completed before original bios, which means
2919 * the caller must complete @rq before @rq_src.
2920 */
2921 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2922 struct bio_set *bs, gfp_t gfp_mask,
2923 int (*bio_ctr)(struct bio *, struct bio *, void *),
2924 void *data)
2925 {
2926 struct bio *bio, *bio_src;
2927
2928 if (!bs)
2929 bs = fs_bio_set;
2930
2931 blk_rq_init(NULL, rq);
2932
2933 __rq_for_each_bio(bio_src, rq_src) {
2934 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2935 if (!bio)
2936 goto free_and_out;
2937
2938 if (bio_ctr && bio_ctr(bio, bio_src, data))
2939 goto free_and_out;
2940
2941 if (rq->bio) {
2942 rq->biotail->bi_next = bio;
2943 rq->biotail = bio;
2944 } else
2945 rq->bio = rq->biotail = bio;
2946 }
2947
2948 __blk_rq_prep_clone(rq, rq_src);
2949
2950 return 0;
2951
2952 free_and_out:
2953 if (bio)
2954 bio_put(bio);
2955 blk_rq_unprep_clone(rq);
2956
2957 return -ENOMEM;
2958 }
2959 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2960
2961 int kblockd_schedule_work(struct work_struct *work)
2962 {
2963 return queue_work(kblockd_workqueue, work);
2964 }
2965 EXPORT_SYMBOL(kblockd_schedule_work);
2966
2967 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2968 unsigned long delay)
2969 {
2970 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2971 }
2972 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2973
2974 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2975 unsigned long delay)
2976 {
2977 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2978 }
2979 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2980
2981 /**
2982 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2983 * @plug: The &struct blk_plug that needs to be initialized
2984 *
2985 * Description:
2986 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2987 * pending I/O should the task end up blocking between blk_start_plug() and
2988 * blk_finish_plug(). This is important from a performance perspective, but
2989 * also ensures that we don't deadlock. For instance, if the task is blocking
2990 * for a memory allocation, memory reclaim could end up wanting to free a
2991 * page belonging to that request that is currently residing in our private
2992 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2993 * this kind of deadlock.
2994 */
2995 void blk_start_plug(struct blk_plug *plug)
2996 {
2997 struct task_struct *tsk = current;
2998
2999 INIT_LIST_HEAD(&plug->list);
3000 INIT_LIST_HEAD(&plug->mq_list);
3001 INIT_LIST_HEAD(&plug->cb_list);
3002
3003 /*
3004 * If this is a nested plug, don't actually assign it. It will be
3005 * flushed on its own.
3006 */
3007 if (!tsk->plug) {
3008 /*
3009 * Store ordering should not be needed here, since a potential
3010 * preempt will imply a full memory barrier
3011 */
3012 tsk->plug = plug;
3013 }
3014 }
3015 EXPORT_SYMBOL(blk_start_plug);
3016
3017 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3018 {
3019 struct request *rqa = container_of(a, struct request, queuelist);
3020 struct request *rqb = container_of(b, struct request, queuelist);
3021
3022 return !(rqa->q < rqb->q ||
3023 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3024 }
3025
3026 /*
3027 * If 'from_schedule' is true, then postpone the dispatch of requests
3028 * until a safe kblockd context. We due this to avoid accidental big
3029 * additional stack usage in driver dispatch, in places where the originally
3030 * plugger did not intend it.
3031 */
3032 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3033 bool from_schedule)
3034 __releases(q->queue_lock)
3035 {
3036 trace_block_unplug(q, depth, !from_schedule);
3037
3038 if (from_schedule)
3039 blk_run_queue_async(q);
3040 else
3041 __blk_run_queue(q);
3042 spin_unlock(q->queue_lock);
3043 }
3044
3045 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3046 {
3047 LIST_HEAD(callbacks);
3048
3049 while (!list_empty(&plug->cb_list)) {
3050 list_splice_init(&plug->cb_list, &callbacks);
3051
3052 while (!list_empty(&callbacks)) {
3053 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3054 struct blk_plug_cb,
3055 list);
3056 list_del(&cb->list);
3057 cb->callback(cb, from_schedule);
3058 }
3059 }
3060 }
3061
3062 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3063 int size)
3064 {
3065 struct blk_plug *plug = current->plug;
3066 struct blk_plug_cb *cb;
3067
3068 if (!plug)
3069 return NULL;
3070
3071 list_for_each_entry(cb, &plug->cb_list, list)
3072 if (cb->callback == unplug && cb->data == data)
3073 return cb;
3074
3075 /* Not currently on the callback list */
3076 BUG_ON(size < sizeof(*cb));
3077 cb = kzalloc(size, GFP_ATOMIC);
3078 if (cb) {
3079 cb->data = data;
3080 cb->callback = unplug;
3081 list_add(&cb->list, &plug->cb_list);
3082 }
3083 return cb;
3084 }
3085 EXPORT_SYMBOL(blk_check_plugged);
3086
3087 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3088 {
3089 struct request_queue *q;
3090 unsigned long flags;
3091 struct request *rq;
3092 LIST_HEAD(list);
3093 unsigned int depth;
3094
3095 flush_plug_callbacks(plug, from_schedule);
3096
3097 if (!list_empty(&plug->mq_list))
3098 blk_mq_flush_plug_list(plug, from_schedule);
3099
3100 if (list_empty(&plug->list))
3101 return;
3102
3103 list_splice_init(&plug->list, &list);
3104
3105 list_sort(NULL, &list, plug_rq_cmp);
3106
3107 q = NULL;
3108 depth = 0;
3109
3110 /*
3111 * Save and disable interrupts here, to avoid doing it for every
3112 * queue lock we have to take.
3113 */
3114 local_irq_save(flags);
3115 while (!list_empty(&list)) {
3116 rq = list_entry_rq(list.next);
3117 list_del_init(&rq->queuelist);
3118 BUG_ON(!rq->q);
3119 if (rq->q != q) {
3120 /*
3121 * This drops the queue lock
3122 */
3123 if (q)
3124 queue_unplugged(q, depth, from_schedule);
3125 q = rq->q;
3126 depth = 0;
3127 spin_lock(q->queue_lock);
3128 }
3129
3130 /*
3131 * Short-circuit if @q is dead
3132 */
3133 if (unlikely(blk_queue_dying(q))) {
3134 __blk_end_request_all(rq, -ENODEV);
3135 continue;
3136 }
3137
3138 /*
3139 * rq is already accounted, so use raw insert
3140 */
3141 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3142 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3143 else
3144 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3145
3146 depth++;
3147 }
3148
3149 /*
3150 * This drops the queue lock
3151 */
3152 if (q)
3153 queue_unplugged(q, depth, from_schedule);
3154
3155 local_irq_restore(flags);
3156 }
3157
3158 void blk_finish_plug(struct blk_plug *plug)
3159 {
3160 blk_flush_plug_list(plug, false);
3161
3162 if (plug == current->plug)
3163 current->plug = NULL;
3164 }
3165 EXPORT_SYMBOL(blk_finish_plug);
3166
3167 #ifdef CONFIG_PM_RUNTIME
3168 /**
3169 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3170 * @q: the queue of the device
3171 * @dev: the device the queue belongs to
3172 *
3173 * Description:
3174 * Initialize runtime-PM-related fields for @q and start auto suspend for
3175 * @dev. Drivers that want to take advantage of request-based runtime PM
3176 * should call this function after @dev has been initialized, and its
3177 * request queue @q has been allocated, and runtime PM for it can not happen
3178 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3179 * cases, driver should call this function before any I/O has taken place.
3180 *
3181 * This function takes care of setting up using auto suspend for the device,
3182 * the autosuspend delay is set to -1 to make runtime suspend impossible
3183 * until an updated value is either set by user or by driver. Drivers do
3184 * not need to touch other autosuspend settings.
3185 *
3186 * The block layer runtime PM is request based, so only works for drivers
3187 * that use request as their IO unit instead of those directly use bio's.
3188 */
3189 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3190 {
3191 q->dev = dev;
3192 q->rpm_status = RPM_ACTIVE;
3193 pm_runtime_set_autosuspend_delay(q->dev, -1);
3194 pm_runtime_use_autosuspend(q->dev);
3195 }
3196 EXPORT_SYMBOL(blk_pm_runtime_init);
3197
3198 /**
3199 * blk_pre_runtime_suspend - Pre runtime suspend check
3200 * @q: the queue of the device
3201 *
3202 * Description:
3203 * This function will check if runtime suspend is allowed for the device
3204 * by examining if there are any requests pending in the queue. If there
3205 * are requests pending, the device can not be runtime suspended; otherwise,
3206 * the queue's status will be updated to SUSPENDING and the driver can
3207 * proceed to suspend the device.
3208 *
3209 * For the not allowed case, we mark last busy for the device so that
3210 * runtime PM core will try to autosuspend it some time later.
3211 *
3212 * This function should be called near the start of the device's
3213 * runtime_suspend callback.
3214 *
3215 * Return:
3216 * 0 - OK to runtime suspend the device
3217 * -EBUSY - Device should not be runtime suspended
3218 */
3219 int blk_pre_runtime_suspend(struct request_queue *q)
3220 {
3221 int ret = 0;
3222
3223 spin_lock_irq(q->queue_lock);
3224 if (q->nr_pending) {
3225 ret = -EBUSY;
3226 pm_runtime_mark_last_busy(q->dev);
3227 } else {
3228 q->rpm_status = RPM_SUSPENDING;
3229 }
3230 spin_unlock_irq(q->queue_lock);
3231 return ret;
3232 }
3233 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3234
3235 /**
3236 * blk_post_runtime_suspend - Post runtime suspend processing
3237 * @q: the queue of the device
3238 * @err: return value of the device's runtime_suspend function
3239 *
3240 * Description:
3241 * Update the queue's runtime status according to the return value of the
3242 * device's runtime suspend function and mark last busy for the device so
3243 * that PM core will try to auto suspend the device at a later time.
3244 *
3245 * This function should be called near the end of the device's
3246 * runtime_suspend callback.
3247 */
3248 void blk_post_runtime_suspend(struct request_queue *q, int err)
3249 {
3250 spin_lock_irq(q->queue_lock);
3251 if (!err) {
3252 q->rpm_status = RPM_SUSPENDED;
3253 } else {
3254 q->rpm_status = RPM_ACTIVE;
3255 pm_runtime_mark_last_busy(q->dev);
3256 }
3257 spin_unlock_irq(q->queue_lock);
3258 }
3259 EXPORT_SYMBOL(blk_post_runtime_suspend);
3260
3261 /**
3262 * blk_pre_runtime_resume - Pre runtime resume processing
3263 * @q: the queue of the device
3264 *
3265 * Description:
3266 * Update the queue's runtime status to RESUMING in preparation for the
3267 * runtime resume of the device.
3268 *
3269 * This function should be called near the start of the device's
3270 * runtime_resume callback.
3271 */
3272 void blk_pre_runtime_resume(struct request_queue *q)
3273 {
3274 spin_lock_irq(q->queue_lock);
3275 q->rpm_status = RPM_RESUMING;
3276 spin_unlock_irq(q->queue_lock);
3277 }
3278 EXPORT_SYMBOL(blk_pre_runtime_resume);
3279
3280 /**
3281 * blk_post_runtime_resume - Post runtime resume processing
3282 * @q: the queue of the device
3283 * @err: return value of the device's runtime_resume function
3284 *
3285 * Description:
3286 * Update the queue's runtime status according to the return value of the
3287 * device's runtime_resume function. If it is successfully resumed, process
3288 * the requests that are queued into the device's queue when it is resuming
3289 * and then mark last busy and initiate autosuspend for it.
3290 *
3291 * This function should be called near the end of the device's
3292 * runtime_resume callback.
3293 */
3294 void blk_post_runtime_resume(struct request_queue *q, int err)
3295 {
3296 spin_lock_irq(q->queue_lock);
3297 if (!err) {
3298 q->rpm_status = RPM_ACTIVE;
3299 __blk_run_queue(q);
3300 pm_runtime_mark_last_busy(q->dev);
3301 pm_request_autosuspend(q->dev);
3302 } else {
3303 q->rpm_status = RPM_SUSPENDED;
3304 }
3305 spin_unlock_irq(q->queue_lock);
3306 }
3307 EXPORT_SYMBOL(blk_post_runtime_resume);
3308 #endif
3309
3310 int __init blk_dev_init(void)
3311 {
3312 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3313 sizeof(((struct request *)0)->cmd_flags));
3314
3315 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3316 kblockd_workqueue = alloc_workqueue("kblockd",
3317 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3318 if (!kblockd_workqueue)
3319 panic("Failed to create kblockd\n");
3320
3321 request_cachep = kmem_cache_create("blkdev_requests",
3322 sizeof(struct request), 0, SLAB_PANIC, NULL);
3323
3324 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3325 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3326
3327 return 0;
3328 }