]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - block/blk-core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-hirsute-kernel.git] / block / blk-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53
54 struct dentry *blk_debugfs_root;
55
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61
62 DEFINE_IDA(blk_queue_ida);
63
64 /*
65 * For queue allocation
66 */
67 struct kmem_cache *blk_requestq_cachep;
68
69 /*
70 * Controlling structure to kblockd
71 */
72 static struct workqueue_struct *kblockd_workqueue;
73
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
78 */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84
85 /**
86 * blk_queue_flag_clear - atomically clear a queue flag
87 * @flag: flag to be cleared
88 * @q: request queue
89 */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95
96 /**
97 * blk_queue_flag_test_and_set - atomically test and set a queue flag
98 * @flag: flag to be set
99 * @q: request queue
100 *
101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102 * the flag was already set.
103 */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 memset(rq, 0, sizeof(*rq));
113
114 INIT_LIST_HEAD(&rq->queuelist);
115 rq->q = q;
116 rq->__sector = (sector_t) -1;
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
119 rq->tag = BLK_MQ_NO_TAG;
120 rq->internal_tag = BLK_MQ_NO_TAG;
121 rq->start_time_ns = ktime_get_ns();
122 rq->part = NULL;
123 refcount_set(&rq->ref, 1);
124 blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 REQ_OP_NAME(READ),
131 REQ_OP_NAME(WRITE),
132 REQ_OP_NAME(FLUSH),
133 REQ_OP_NAME(DISCARD),
134 REQ_OP_NAME(SECURE_ERASE),
135 REQ_OP_NAME(ZONE_RESET),
136 REQ_OP_NAME(ZONE_RESET_ALL),
137 REQ_OP_NAME(ZONE_OPEN),
138 REQ_OP_NAME(ZONE_CLOSE),
139 REQ_OP_NAME(ZONE_FINISH),
140 REQ_OP_NAME(ZONE_APPEND),
141 REQ_OP_NAME(WRITE_SAME),
142 REQ_OP_NAME(WRITE_ZEROES),
143 REQ_OP_NAME(SCSI_IN),
144 REQ_OP_NAME(SCSI_OUT),
145 REQ_OP_NAME(DRV_IN),
146 REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149
150 /**
151 * blk_op_str - Return string XXX in the REQ_OP_XXX.
152 * @op: REQ_OP_XXX.
153 *
154 * Description: Centralize block layer function to convert REQ_OP_XXX into
155 * string format. Useful in the debugging and tracing bio or request. For
156 * invalid REQ_OP_XXX it returns string "UNKNOWN".
157 */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 const char *op_str = "UNKNOWN";
161
162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 op_str = blk_op_name[op];
164
165 return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168
169 static const struct {
170 int errno;
171 const char *name;
172 } blk_errors[] = {
173 [BLK_STS_OK] = { 0, "" },
174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
185
186 /* device mapper special case, should not leak out: */
187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
188
189 /* everything else not covered above: */
190 [BLK_STS_IOERR] = { -EIO, "I/O" },
191 };
192
193 blk_status_t errno_to_blk_status(int errno)
194 {
195 int i;
196
197 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
198 if (blk_errors[i].errno == errno)
199 return (__force blk_status_t)i;
200 }
201
202 return BLK_STS_IOERR;
203 }
204 EXPORT_SYMBOL_GPL(errno_to_blk_status);
205
206 int blk_status_to_errno(blk_status_t status)
207 {
208 int idx = (__force int)status;
209
210 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
211 return -EIO;
212 return blk_errors[idx].errno;
213 }
214 EXPORT_SYMBOL_GPL(blk_status_to_errno);
215
216 static void print_req_error(struct request *req, blk_status_t status,
217 const char *caller)
218 {
219 int idx = (__force int)status;
220
221 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
222 return;
223
224 printk_ratelimited(KERN_ERR
225 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
226 "phys_seg %u prio class %u\n",
227 caller, blk_errors[idx].name,
228 req->rq_disk ? req->rq_disk->disk_name : "?",
229 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
230 req->cmd_flags & ~REQ_OP_MASK,
231 req->nr_phys_segments,
232 IOPRIO_PRIO_CLASS(req->ioprio));
233 }
234
235 static void req_bio_endio(struct request *rq, struct bio *bio,
236 unsigned int nbytes, blk_status_t error)
237 {
238 if (error)
239 bio->bi_status = error;
240
241 if (unlikely(rq->rq_flags & RQF_QUIET))
242 bio_set_flag(bio, BIO_QUIET);
243
244 bio_advance(bio, nbytes);
245
246 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
247 /*
248 * Partial zone append completions cannot be supported as the
249 * BIO fragments may end up not being written sequentially.
250 */
251 if (bio->bi_iter.bi_size)
252 bio->bi_status = BLK_STS_IOERR;
253 else
254 bio->bi_iter.bi_sector = rq->__sector;
255 }
256
257 /* don't actually finish bio if it's part of flush sequence */
258 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
259 bio_endio(bio);
260 }
261
262 void blk_dump_rq_flags(struct request *rq, char *msg)
263 {
264 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
265 rq->rq_disk ? rq->rq_disk->disk_name : "?",
266 (unsigned long long) rq->cmd_flags);
267
268 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
269 (unsigned long long)blk_rq_pos(rq),
270 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
271 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
272 rq->bio, rq->biotail, blk_rq_bytes(rq));
273 }
274 EXPORT_SYMBOL(blk_dump_rq_flags);
275
276 /**
277 * blk_sync_queue - cancel any pending callbacks on a queue
278 * @q: the queue
279 *
280 * Description:
281 * The block layer may perform asynchronous callback activity
282 * on a queue, such as calling the unplug function after a timeout.
283 * A block device may call blk_sync_queue to ensure that any
284 * such activity is cancelled, thus allowing it to release resources
285 * that the callbacks might use. The caller must already have made sure
286 * that its ->submit_bio will not re-add plugging prior to calling
287 * this function.
288 *
289 * This function does not cancel any asynchronous activity arising
290 * out of elevator or throttling code. That would require elevator_exit()
291 * and blkcg_exit_queue() to be called with queue lock initialized.
292 *
293 */
294 void blk_sync_queue(struct request_queue *q)
295 {
296 del_timer_sync(&q->timeout);
297 cancel_work_sync(&q->timeout_work);
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300
301 /**
302 * blk_set_pm_only - increment pm_only counter
303 * @q: request queue pointer
304 */
305 void blk_set_pm_only(struct request_queue *q)
306 {
307 atomic_inc(&q->pm_only);
308 }
309 EXPORT_SYMBOL_GPL(blk_set_pm_only);
310
311 void blk_clear_pm_only(struct request_queue *q)
312 {
313 int pm_only;
314
315 pm_only = atomic_dec_return(&q->pm_only);
316 WARN_ON_ONCE(pm_only < 0);
317 if (pm_only == 0)
318 wake_up_all(&q->mq_freeze_wq);
319 }
320 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
321
322 /**
323 * blk_put_queue - decrement the request_queue refcount
324 * @q: the request_queue structure to decrement the refcount for
325 *
326 * Decrements the refcount of the request_queue kobject. When this reaches 0
327 * we'll have blk_release_queue() called.
328 *
329 * Context: Any context, but the last reference must not be dropped from
330 * atomic context.
331 */
332 void blk_put_queue(struct request_queue *q)
333 {
334 kobject_put(&q->kobj);
335 }
336 EXPORT_SYMBOL(blk_put_queue);
337
338 void blk_set_queue_dying(struct request_queue *q)
339 {
340 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
341
342 /*
343 * When queue DYING flag is set, we need to block new req
344 * entering queue, so we call blk_freeze_queue_start() to
345 * prevent I/O from crossing blk_queue_enter().
346 */
347 blk_freeze_queue_start(q);
348
349 if (queue_is_mq(q))
350 blk_mq_wake_waiters(q);
351
352 /* Make blk_queue_enter() reexamine the DYING flag. */
353 wake_up_all(&q->mq_freeze_wq);
354 }
355 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
356
357 /**
358 * blk_cleanup_queue - shutdown a request queue
359 * @q: request queue to shutdown
360 *
361 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
362 * put it. All future requests will be failed immediately with -ENODEV.
363 *
364 * Context: can sleep
365 */
366 void blk_cleanup_queue(struct request_queue *q)
367 {
368 /* cannot be called from atomic context */
369 might_sleep();
370
371 WARN_ON_ONCE(blk_queue_registered(q));
372
373 /* mark @q DYING, no new request or merges will be allowed afterwards */
374 blk_set_queue_dying(q);
375
376 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
377 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
378
379 /*
380 * Drain all requests queued before DYING marking. Set DEAD flag to
381 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
382 * after draining finished.
383 */
384 blk_freeze_queue(q);
385
386 rq_qos_exit(q);
387
388 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
389
390 /* for synchronous bio-based driver finish in-flight integrity i/o */
391 blk_flush_integrity();
392
393 /* @q won't process any more request, flush async actions */
394 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
395 blk_sync_queue(q);
396
397 if (queue_is_mq(q))
398 blk_mq_exit_queue(q);
399
400 /*
401 * In theory, request pool of sched_tags belongs to request queue.
402 * However, the current implementation requires tag_set for freeing
403 * requests, so free the pool now.
404 *
405 * Queue has become frozen, there can't be any in-queue requests, so
406 * it is safe to free requests now.
407 */
408 mutex_lock(&q->sysfs_lock);
409 if (q->elevator)
410 blk_mq_sched_free_requests(q);
411 mutex_unlock(&q->sysfs_lock);
412
413 percpu_ref_exit(&q->q_usage_counter);
414
415 /* @q is and will stay empty, shutdown and put */
416 blk_put_queue(q);
417 }
418 EXPORT_SYMBOL(blk_cleanup_queue);
419
420 /**
421 * blk_queue_enter() - try to increase q->q_usage_counter
422 * @q: request queue pointer
423 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
424 */
425 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
426 {
427 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
428
429 while (true) {
430 bool success = false;
431
432 rcu_read_lock();
433 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
434 /*
435 * The code that increments the pm_only counter is
436 * responsible for ensuring that that counter is
437 * globally visible before the queue is unfrozen.
438 */
439 if (pm || !blk_queue_pm_only(q)) {
440 success = true;
441 } else {
442 percpu_ref_put(&q->q_usage_counter);
443 }
444 }
445 rcu_read_unlock();
446
447 if (success)
448 return 0;
449
450 if (flags & BLK_MQ_REQ_NOWAIT)
451 return -EBUSY;
452
453 /*
454 * read pair of barrier in blk_freeze_queue_start(),
455 * we need to order reading __PERCPU_REF_DEAD flag of
456 * .q_usage_counter and reading .mq_freeze_depth or
457 * queue dying flag, otherwise the following wait may
458 * never return if the two reads are reordered.
459 */
460 smp_rmb();
461
462 wait_event(q->mq_freeze_wq,
463 (!q->mq_freeze_depth &&
464 (pm || (blk_pm_request_resume(q),
465 !blk_queue_pm_only(q)))) ||
466 blk_queue_dying(q));
467 if (blk_queue_dying(q))
468 return -ENODEV;
469 }
470 }
471
472 static inline int bio_queue_enter(struct bio *bio)
473 {
474 struct request_queue *q = bio->bi_disk->queue;
475 bool nowait = bio->bi_opf & REQ_NOWAIT;
476 int ret;
477
478 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
479 if (unlikely(ret)) {
480 if (nowait && !blk_queue_dying(q))
481 bio_wouldblock_error(bio);
482 else
483 bio_io_error(bio);
484 }
485
486 return ret;
487 }
488
489 void blk_queue_exit(struct request_queue *q)
490 {
491 percpu_ref_put(&q->q_usage_counter);
492 }
493
494 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
495 {
496 struct request_queue *q =
497 container_of(ref, struct request_queue, q_usage_counter);
498
499 wake_up_all(&q->mq_freeze_wq);
500 }
501
502 static void blk_rq_timed_out_timer(struct timer_list *t)
503 {
504 struct request_queue *q = from_timer(q, t, timeout);
505
506 kblockd_schedule_work(&q->timeout_work);
507 }
508
509 static void blk_timeout_work(struct work_struct *work)
510 {
511 }
512
513 struct request_queue *blk_alloc_queue(int node_id)
514 {
515 struct request_queue *q;
516 int ret;
517
518 q = kmem_cache_alloc_node(blk_requestq_cachep,
519 GFP_KERNEL | __GFP_ZERO, node_id);
520 if (!q)
521 return NULL;
522
523 q->last_merge = NULL;
524
525 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
526 if (q->id < 0)
527 goto fail_q;
528
529 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
530 if (ret)
531 goto fail_id;
532
533 q->backing_dev_info = bdi_alloc(node_id);
534 if (!q->backing_dev_info)
535 goto fail_split;
536
537 q->stats = blk_alloc_queue_stats();
538 if (!q->stats)
539 goto fail_stats;
540
541 q->node = node_id;
542
543 atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
544
545 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
546 laptop_mode_timer_fn, 0);
547 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
548 INIT_WORK(&q->timeout_work, blk_timeout_work);
549 INIT_LIST_HEAD(&q->icq_list);
550 #ifdef CONFIG_BLK_CGROUP
551 INIT_LIST_HEAD(&q->blkg_list);
552 #endif
553
554 kobject_init(&q->kobj, &blk_queue_ktype);
555
556 mutex_init(&q->debugfs_mutex);
557 mutex_init(&q->sysfs_lock);
558 mutex_init(&q->sysfs_dir_lock);
559 spin_lock_init(&q->queue_lock);
560
561 init_waitqueue_head(&q->mq_freeze_wq);
562 mutex_init(&q->mq_freeze_lock);
563
564 /*
565 * Init percpu_ref in atomic mode so that it's faster to shutdown.
566 * See blk_register_queue() for details.
567 */
568 if (percpu_ref_init(&q->q_usage_counter,
569 blk_queue_usage_counter_release,
570 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
571 goto fail_bdi;
572
573 if (blkcg_init_queue(q))
574 goto fail_ref;
575
576 blk_queue_dma_alignment(q, 511);
577 blk_set_default_limits(&q->limits);
578 q->nr_requests = BLKDEV_MAX_RQ;
579
580 return q;
581
582 fail_ref:
583 percpu_ref_exit(&q->q_usage_counter);
584 fail_bdi:
585 blk_free_queue_stats(q->stats);
586 fail_stats:
587 bdi_put(q->backing_dev_info);
588 fail_split:
589 bioset_exit(&q->bio_split);
590 fail_id:
591 ida_simple_remove(&blk_queue_ida, q->id);
592 fail_q:
593 kmem_cache_free(blk_requestq_cachep, q);
594 return NULL;
595 }
596 EXPORT_SYMBOL(blk_alloc_queue);
597
598 /**
599 * blk_get_queue - increment the request_queue refcount
600 * @q: the request_queue structure to increment the refcount for
601 *
602 * Increment the refcount of the request_queue kobject.
603 *
604 * Context: Any context.
605 */
606 bool blk_get_queue(struct request_queue *q)
607 {
608 if (likely(!blk_queue_dying(q))) {
609 __blk_get_queue(q);
610 return true;
611 }
612
613 return false;
614 }
615 EXPORT_SYMBOL(blk_get_queue);
616
617 /**
618 * blk_get_request - allocate a request
619 * @q: request queue to allocate a request for
620 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
621 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
622 */
623 struct request *blk_get_request(struct request_queue *q, unsigned int op,
624 blk_mq_req_flags_t flags)
625 {
626 struct request *req;
627
628 WARN_ON_ONCE(op & REQ_NOWAIT);
629 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
630
631 req = blk_mq_alloc_request(q, op, flags);
632 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
633 q->mq_ops->initialize_rq_fn(req);
634
635 return req;
636 }
637 EXPORT_SYMBOL(blk_get_request);
638
639 void blk_put_request(struct request *req)
640 {
641 blk_mq_free_request(req);
642 }
643 EXPORT_SYMBOL(blk_put_request);
644
645 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
646 {
647 char b[BDEVNAME_SIZE];
648
649 pr_info_ratelimited("attempt to access beyond end of device\n"
650 "%s: rw=%d, want=%llu, limit=%llu\n",
651 bio_devname(bio, b), bio->bi_opf,
652 bio_end_sector(bio), maxsector);
653 }
654
655 #ifdef CONFIG_FAIL_MAKE_REQUEST
656
657 static DECLARE_FAULT_ATTR(fail_make_request);
658
659 static int __init setup_fail_make_request(char *str)
660 {
661 return setup_fault_attr(&fail_make_request, str);
662 }
663 __setup("fail_make_request=", setup_fail_make_request);
664
665 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
666 {
667 return part->make_it_fail && should_fail(&fail_make_request, bytes);
668 }
669
670 static int __init fail_make_request_debugfs(void)
671 {
672 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
673 NULL, &fail_make_request);
674
675 return PTR_ERR_OR_ZERO(dir);
676 }
677
678 late_initcall(fail_make_request_debugfs);
679
680 #else /* CONFIG_FAIL_MAKE_REQUEST */
681
682 static inline bool should_fail_request(struct hd_struct *part,
683 unsigned int bytes)
684 {
685 return false;
686 }
687
688 #endif /* CONFIG_FAIL_MAKE_REQUEST */
689
690 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
691 {
692 const int op = bio_op(bio);
693
694 if (part->policy && op_is_write(op)) {
695 char b[BDEVNAME_SIZE];
696
697 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
698 return false;
699
700 WARN_ONCE(1,
701 "Trying to write to read-only block-device %s (partno %d)\n",
702 bio_devname(bio, b), part->partno);
703 /* Older lvm-tools actually trigger this */
704 return false;
705 }
706
707 return false;
708 }
709
710 static noinline int should_fail_bio(struct bio *bio)
711 {
712 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
713 return -EIO;
714 return 0;
715 }
716 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
717
718 /*
719 * Check whether this bio extends beyond the end of the device or partition.
720 * This may well happen - the kernel calls bread() without checking the size of
721 * the device, e.g., when mounting a file system.
722 */
723 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
724 {
725 unsigned int nr_sectors = bio_sectors(bio);
726
727 if (nr_sectors && maxsector &&
728 (nr_sectors > maxsector ||
729 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
730 handle_bad_sector(bio, maxsector);
731 return -EIO;
732 }
733 return 0;
734 }
735
736 /*
737 * Remap block n of partition p to block n+start(p) of the disk.
738 */
739 static inline int blk_partition_remap(struct bio *bio)
740 {
741 struct hd_struct *p;
742 int ret = -EIO;
743
744 rcu_read_lock();
745 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
746 if (unlikely(!p))
747 goto out;
748 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
749 goto out;
750 if (unlikely(bio_check_ro(bio, p)))
751 goto out;
752
753 if (bio_sectors(bio)) {
754 if (bio_check_eod(bio, part_nr_sects_read(p)))
755 goto out;
756 bio->bi_iter.bi_sector += p->start_sect;
757 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
758 bio->bi_iter.bi_sector - p->start_sect);
759 }
760 bio->bi_partno = 0;
761 ret = 0;
762 out:
763 rcu_read_unlock();
764 return ret;
765 }
766
767 /*
768 * Check write append to a zoned block device.
769 */
770 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
771 struct bio *bio)
772 {
773 sector_t pos = bio->bi_iter.bi_sector;
774 int nr_sectors = bio_sectors(bio);
775
776 /* Only applicable to zoned block devices */
777 if (!blk_queue_is_zoned(q))
778 return BLK_STS_NOTSUPP;
779
780 /* The bio sector must point to the start of a sequential zone */
781 if (pos & (blk_queue_zone_sectors(q) - 1) ||
782 !blk_queue_zone_is_seq(q, pos))
783 return BLK_STS_IOERR;
784
785 /*
786 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
787 * split and could result in non-contiguous sectors being written in
788 * different zones.
789 */
790 if (nr_sectors > q->limits.chunk_sectors)
791 return BLK_STS_IOERR;
792
793 /* Make sure the BIO is small enough and will not get split */
794 if (nr_sectors > q->limits.max_zone_append_sectors)
795 return BLK_STS_IOERR;
796
797 bio->bi_opf |= REQ_NOMERGE;
798
799 return BLK_STS_OK;
800 }
801
802 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
803 {
804 struct request_queue *q = bio->bi_disk->queue;
805 blk_status_t status = BLK_STS_IOERR;
806 struct blk_plug *plug;
807
808 might_sleep();
809
810 plug = blk_mq_plug(q, bio);
811 if (plug && plug->nowait)
812 bio->bi_opf |= REQ_NOWAIT;
813
814 /*
815 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
816 * if queue does not support NOWAIT.
817 */
818 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
819 goto not_supported;
820
821 if (should_fail_bio(bio))
822 goto end_io;
823
824 if (bio->bi_partno) {
825 if (unlikely(blk_partition_remap(bio)))
826 goto end_io;
827 } else {
828 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
829 goto end_io;
830 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
831 goto end_io;
832 }
833
834 /*
835 * Filter flush bio's early so that bio based drivers without flush
836 * support don't have to worry about them.
837 */
838 if (op_is_flush(bio->bi_opf) &&
839 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
840 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
841 if (!bio_sectors(bio)) {
842 status = BLK_STS_OK;
843 goto end_io;
844 }
845 }
846
847 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
848 bio->bi_opf &= ~REQ_HIPRI;
849
850 switch (bio_op(bio)) {
851 case REQ_OP_DISCARD:
852 if (!blk_queue_discard(q))
853 goto not_supported;
854 break;
855 case REQ_OP_SECURE_ERASE:
856 if (!blk_queue_secure_erase(q))
857 goto not_supported;
858 break;
859 case REQ_OP_WRITE_SAME:
860 if (!q->limits.max_write_same_sectors)
861 goto not_supported;
862 break;
863 case REQ_OP_ZONE_APPEND:
864 status = blk_check_zone_append(q, bio);
865 if (status != BLK_STS_OK)
866 goto end_io;
867 break;
868 case REQ_OP_ZONE_RESET:
869 case REQ_OP_ZONE_OPEN:
870 case REQ_OP_ZONE_CLOSE:
871 case REQ_OP_ZONE_FINISH:
872 if (!blk_queue_is_zoned(q))
873 goto not_supported;
874 break;
875 case REQ_OP_ZONE_RESET_ALL:
876 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
877 goto not_supported;
878 break;
879 case REQ_OP_WRITE_ZEROES:
880 if (!q->limits.max_write_zeroes_sectors)
881 goto not_supported;
882 break;
883 default:
884 break;
885 }
886
887 /*
888 * Various block parts want %current->io_context, so allocate it up
889 * front rather than dealing with lots of pain to allocate it only
890 * where needed. This may fail and the block layer knows how to live
891 * with it.
892 */
893 if (unlikely(!current->io_context))
894 create_task_io_context(current, GFP_ATOMIC, q->node);
895
896 if (blk_throtl_bio(bio)) {
897 blkcg_bio_issue_init(bio);
898 return false;
899 }
900
901 blk_cgroup_bio_start(bio);
902 blkcg_bio_issue_init(bio);
903
904 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
905 trace_block_bio_queue(q, bio);
906 /* Now that enqueuing has been traced, we need to trace
907 * completion as well.
908 */
909 bio_set_flag(bio, BIO_TRACE_COMPLETION);
910 }
911 return true;
912
913 not_supported:
914 status = BLK_STS_NOTSUPP;
915 end_io:
916 bio->bi_status = status;
917 bio_endio(bio);
918 return false;
919 }
920
921 static blk_qc_t __submit_bio(struct bio *bio)
922 {
923 struct gendisk *disk = bio->bi_disk;
924 blk_qc_t ret = BLK_QC_T_NONE;
925
926 if (blk_crypto_bio_prep(&bio)) {
927 if (!disk->fops->submit_bio)
928 return blk_mq_submit_bio(bio);
929 ret = disk->fops->submit_bio(bio);
930 }
931 blk_queue_exit(disk->queue);
932 return ret;
933 }
934
935 /*
936 * The loop in this function may be a bit non-obvious, and so deserves some
937 * explanation:
938 *
939 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
940 * that), so we have a list with a single bio.
941 * - We pretend that we have just taken it off a longer list, so we assign
942 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
943 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
944 * bios through a recursive call to submit_bio_noacct. If it did, we find a
945 * non-NULL value in bio_list and re-enter the loop from the top.
946 * - In this case we really did just take the bio of the top of the list (no
947 * pretending) and so remove it from bio_list, and call into ->submit_bio()
948 * again.
949 *
950 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
951 * bio_list_on_stack[1] contains bios that were submitted before the current
952 * ->submit_bio_bio, but that haven't been processed yet.
953 */
954 static blk_qc_t __submit_bio_noacct(struct bio *bio)
955 {
956 struct bio_list bio_list_on_stack[2];
957 blk_qc_t ret = BLK_QC_T_NONE;
958
959 BUG_ON(bio->bi_next);
960
961 bio_list_init(&bio_list_on_stack[0]);
962 current->bio_list = bio_list_on_stack;
963
964 do {
965 struct request_queue *q = bio->bi_disk->queue;
966 struct bio_list lower, same;
967
968 if (unlikely(bio_queue_enter(bio) != 0))
969 continue;
970
971 /*
972 * Create a fresh bio_list for all subordinate requests.
973 */
974 bio_list_on_stack[1] = bio_list_on_stack[0];
975 bio_list_init(&bio_list_on_stack[0]);
976
977 ret = __submit_bio(bio);
978
979 /*
980 * Sort new bios into those for a lower level and those for the
981 * same level.
982 */
983 bio_list_init(&lower);
984 bio_list_init(&same);
985 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
986 if (q == bio->bi_disk->queue)
987 bio_list_add(&same, bio);
988 else
989 bio_list_add(&lower, bio);
990
991 /*
992 * Now assemble so we handle the lowest level first.
993 */
994 bio_list_merge(&bio_list_on_stack[0], &lower);
995 bio_list_merge(&bio_list_on_stack[0], &same);
996 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
997 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
998
999 current->bio_list = NULL;
1000 return ret;
1001 }
1002
1003 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1004 {
1005 struct bio_list bio_list[2] = { };
1006 blk_qc_t ret = BLK_QC_T_NONE;
1007
1008 current->bio_list = bio_list;
1009
1010 do {
1011 struct gendisk *disk = bio->bi_disk;
1012
1013 if (unlikely(bio_queue_enter(bio) != 0))
1014 continue;
1015
1016 if (!blk_crypto_bio_prep(&bio)) {
1017 blk_queue_exit(disk->queue);
1018 ret = BLK_QC_T_NONE;
1019 continue;
1020 }
1021
1022 ret = blk_mq_submit_bio(bio);
1023 } while ((bio = bio_list_pop(&bio_list[0])));
1024
1025 current->bio_list = NULL;
1026 return ret;
1027 }
1028
1029 /**
1030 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1031 * @bio: The bio describing the location in memory and on the device.
1032 *
1033 * This is a version of submit_bio() that shall only be used for I/O that is
1034 * resubmitted to lower level drivers by stacking block drivers. All file
1035 * systems and other upper level users of the block layer should use
1036 * submit_bio() instead.
1037 */
1038 blk_qc_t submit_bio_noacct(struct bio *bio)
1039 {
1040 if (!submit_bio_checks(bio))
1041 return BLK_QC_T_NONE;
1042
1043 /*
1044 * We only want one ->submit_bio to be active at a time, else stack
1045 * usage with stacked devices could be a problem. Use current->bio_list
1046 * to collect a list of requests submited by a ->submit_bio method while
1047 * it is active, and then process them after it returned.
1048 */
1049 if (current->bio_list) {
1050 bio_list_add(&current->bio_list[0], bio);
1051 return BLK_QC_T_NONE;
1052 }
1053
1054 if (!bio->bi_disk->fops->submit_bio)
1055 return __submit_bio_noacct_mq(bio);
1056 return __submit_bio_noacct(bio);
1057 }
1058 EXPORT_SYMBOL(submit_bio_noacct);
1059
1060 /**
1061 * submit_bio - submit a bio to the block device layer for I/O
1062 * @bio: The &struct bio which describes the I/O
1063 *
1064 * submit_bio() is used to submit I/O requests to block devices. It is passed a
1065 * fully set up &struct bio that describes the I/O that needs to be done. The
1066 * bio will be send to the device described by the bi_disk and bi_partno fields.
1067 *
1068 * The success/failure status of the request, along with notification of
1069 * completion, is delivered asynchronously through the ->bi_end_io() callback
1070 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
1071 * been called.
1072 */
1073 blk_qc_t submit_bio(struct bio *bio)
1074 {
1075 if (blkcg_punt_bio_submit(bio))
1076 return BLK_QC_T_NONE;
1077
1078 /*
1079 * If it's a regular read/write or a barrier with data attached,
1080 * go through the normal accounting stuff before submission.
1081 */
1082 if (bio_has_data(bio)) {
1083 unsigned int count;
1084
1085 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1086 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1087 else
1088 count = bio_sectors(bio);
1089
1090 if (op_is_write(bio_op(bio))) {
1091 count_vm_events(PGPGOUT, count);
1092 } else {
1093 task_io_account_read(bio->bi_iter.bi_size);
1094 count_vm_events(PGPGIN, count);
1095 }
1096
1097 if (unlikely(block_dump)) {
1098 char b[BDEVNAME_SIZE];
1099 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1100 current->comm, task_pid_nr(current),
1101 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1102 (unsigned long long)bio->bi_iter.bi_sector,
1103 bio_devname(bio, b), count);
1104 }
1105 }
1106
1107 /*
1108 * If we're reading data that is part of the userspace workingset, count
1109 * submission time as memory stall. When the device is congested, or
1110 * the submitting cgroup IO-throttled, submission can be a significant
1111 * part of overall IO time.
1112 */
1113 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1114 bio_flagged(bio, BIO_WORKINGSET))) {
1115 unsigned long pflags;
1116 blk_qc_t ret;
1117
1118 psi_memstall_enter(&pflags);
1119 ret = submit_bio_noacct(bio);
1120 psi_memstall_leave(&pflags);
1121
1122 return ret;
1123 }
1124
1125 return submit_bio_noacct(bio);
1126 }
1127 EXPORT_SYMBOL(submit_bio);
1128
1129 /**
1130 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1131 * for the new queue limits
1132 * @q: the queue
1133 * @rq: the request being checked
1134 *
1135 * Description:
1136 * @rq may have been made based on weaker limitations of upper-level queues
1137 * in request stacking drivers, and it may violate the limitation of @q.
1138 * Since the block layer and the underlying device driver trust @rq
1139 * after it is inserted to @q, it should be checked against @q before
1140 * the insertion using this generic function.
1141 *
1142 * Request stacking drivers like request-based dm may change the queue
1143 * limits when retrying requests on other queues. Those requests need
1144 * to be checked against the new queue limits again during dispatch.
1145 */
1146 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1147 struct request *rq)
1148 {
1149 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1150
1151 if (blk_rq_sectors(rq) > max_sectors) {
1152 /*
1153 * SCSI device does not have a good way to return if
1154 * Write Same/Zero is actually supported. If a device rejects
1155 * a non-read/write command (discard, write same,etc.) the
1156 * low-level device driver will set the relevant queue limit to
1157 * 0 to prevent blk-lib from issuing more of the offending
1158 * operations. Commands queued prior to the queue limit being
1159 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1160 * errors being propagated to upper layers.
1161 */
1162 if (max_sectors == 0)
1163 return BLK_STS_NOTSUPP;
1164
1165 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1166 __func__, blk_rq_sectors(rq), max_sectors);
1167 return BLK_STS_IOERR;
1168 }
1169
1170 /*
1171 * queue's settings related to segment counting like q->bounce_pfn
1172 * may differ from that of other stacking queues.
1173 * Recalculate it to check the request correctly on this queue's
1174 * limitation.
1175 */
1176 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1177 if (rq->nr_phys_segments > queue_max_segments(q)) {
1178 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1179 __func__, rq->nr_phys_segments, queue_max_segments(q));
1180 return BLK_STS_IOERR;
1181 }
1182
1183 return BLK_STS_OK;
1184 }
1185
1186 /**
1187 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1188 * @q: the queue to submit the request
1189 * @rq: the request being queued
1190 */
1191 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1192 {
1193 blk_status_t ret;
1194
1195 ret = blk_cloned_rq_check_limits(q, rq);
1196 if (ret != BLK_STS_OK)
1197 return ret;
1198
1199 if (rq->rq_disk &&
1200 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1201 return BLK_STS_IOERR;
1202
1203 if (blk_crypto_insert_cloned_request(rq))
1204 return BLK_STS_IOERR;
1205
1206 if (blk_queue_io_stat(q))
1207 blk_account_io_start(rq);
1208
1209 /*
1210 * Since we have a scheduler attached on the top device,
1211 * bypass a potential scheduler on the bottom device for
1212 * insert.
1213 */
1214 return blk_mq_request_issue_directly(rq, true);
1215 }
1216 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1217
1218 /**
1219 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1220 * @rq: request to examine
1221 *
1222 * Description:
1223 * A request could be merge of IOs which require different failure
1224 * handling. This function determines the number of bytes which
1225 * can be failed from the beginning of the request without
1226 * crossing into area which need to be retried further.
1227 *
1228 * Return:
1229 * The number of bytes to fail.
1230 */
1231 unsigned int blk_rq_err_bytes(const struct request *rq)
1232 {
1233 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1234 unsigned int bytes = 0;
1235 struct bio *bio;
1236
1237 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1238 return blk_rq_bytes(rq);
1239
1240 /*
1241 * Currently the only 'mixing' which can happen is between
1242 * different fastfail types. We can safely fail portions
1243 * which have all the failfast bits that the first one has -
1244 * the ones which are at least as eager to fail as the first
1245 * one.
1246 */
1247 for (bio = rq->bio; bio; bio = bio->bi_next) {
1248 if ((bio->bi_opf & ff) != ff)
1249 break;
1250 bytes += bio->bi_iter.bi_size;
1251 }
1252
1253 /* this could lead to infinite loop */
1254 BUG_ON(blk_rq_bytes(rq) && !bytes);
1255 return bytes;
1256 }
1257 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1258
1259 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1260 {
1261 unsigned long stamp;
1262 again:
1263 stamp = READ_ONCE(part->stamp);
1264 if (unlikely(stamp != now)) {
1265 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1266 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1267 }
1268 if (part->partno) {
1269 part = &part_to_disk(part)->part0;
1270 goto again;
1271 }
1272 }
1273
1274 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1275 {
1276 if (req->part && blk_do_io_stat(req)) {
1277 const int sgrp = op_stat_group(req_op(req));
1278 struct hd_struct *part;
1279
1280 part_stat_lock();
1281 part = req->part;
1282 part_stat_add(part, sectors[sgrp], bytes >> 9);
1283 part_stat_unlock();
1284 }
1285 }
1286
1287 void blk_account_io_done(struct request *req, u64 now)
1288 {
1289 /*
1290 * Account IO completion. flush_rq isn't accounted as a
1291 * normal IO on queueing nor completion. Accounting the
1292 * containing request is enough.
1293 */
1294 if (req->part && blk_do_io_stat(req) &&
1295 !(req->rq_flags & RQF_FLUSH_SEQ)) {
1296 const int sgrp = op_stat_group(req_op(req));
1297 struct hd_struct *part;
1298
1299 part_stat_lock();
1300 part = req->part;
1301
1302 update_io_ticks(part, jiffies, true);
1303 part_stat_inc(part, ios[sgrp]);
1304 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1305 part_stat_unlock();
1306
1307 hd_struct_put(part);
1308 }
1309 }
1310
1311 void blk_account_io_start(struct request *rq)
1312 {
1313 if (!blk_do_io_stat(rq))
1314 return;
1315
1316 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1317
1318 part_stat_lock();
1319 update_io_ticks(rq->part, jiffies, false);
1320 part_stat_unlock();
1321 }
1322
1323 static unsigned long __part_start_io_acct(struct hd_struct *part,
1324 unsigned int sectors, unsigned int op)
1325 {
1326 const int sgrp = op_stat_group(op);
1327 unsigned long now = READ_ONCE(jiffies);
1328
1329 part_stat_lock();
1330 update_io_ticks(part, now, false);
1331 part_stat_inc(part, ios[sgrp]);
1332 part_stat_add(part, sectors[sgrp], sectors);
1333 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1334 part_stat_unlock();
1335
1336 return now;
1337 }
1338
1339 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1340 struct bio *bio)
1341 {
1342 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1343
1344 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1345 }
1346 EXPORT_SYMBOL_GPL(part_start_io_acct);
1347
1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1349 unsigned int op)
1350 {
1351 return __part_start_io_acct(&disk->part0, sectors, op);
1352 }
1353 EXPORT_SYMBOL(disk_start_io_acct);
1354
1355 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1356 unsigned long start_time)
1357 {
1358 const int sgrp = op_stat_group(op);
1359 unsigned long now = READ_ONCE(jiffies);
1360 unsigned long duration = now - start_time;
1361
1362 part_stat_lock();
1363 update_io_ticks(part, now, true);
1364 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1365 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1366 part_stat_unlock();
1367 }
1368
1369 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1370 unsigned long start_time)
1371 {
1372 __part_end_io_acct(part, bio_op(bio), start_time);
1373 hd_struct_put(part);
1374 }
1375 EXPORT_SYMBOL_GPL(part_end_io_acct);
1376
1377 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1378 unsigned long start_time)
1379 {
1380 __part_end_io_acct(&disk->part0, op, start_time);
1381 }
1382 EXPORT_SYMBOL(disk_end_io_acct);
1383
1384 /*
1385 * Steal bios from a request and add them to a bio list.
1386 * The request must not have been partially completed before.
1387 */
1388 void blk_steal_bios(struct bio_list *list, struct request *rq)
1389 {
1390 if (rq->bio) {
1391 if (list->tail)
1392 list->tail->bi_next = rq->bio;
1393 else
1394 list->head = rq->bio;
1395 list->tail = rq->biotail;
1396
1397 rq->bio = NULL;
1398 rq->biotail = NULL;
1399 }
1400
1401 rq->__data_len = 0;
1402 }
1403 EXPORT_SYMBOL_GPL(blk_steal_bios);
1404
1405 /**
1406 * blk_update_request - Special helper function for request stacking drivers
1407 * @req: the request being processed
1408 * @error: block status code
1409 * @nr_bytes: number of bytes to complete @req
1410 *
1411 * Description:
1412 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1413 * the request structure even if @req doesn't have leftover.
1414 * If @req has leftover, sets it up for the next range of segments.
1415 *
1416 * This special helper function is only for request stacking drivers
1417 * (e.g. request-based dm) so that they can handle partial completion.
1418 * Actual device drivers should use blk_mq_end_request instead.
1419 *
1420 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1421 * %false return from this function.
1422 *
1423 * Note:
1424 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1425 * blk_rq_bytes() and in blk_update_request().
1426 *
1427 * Return:
1428 * %false - this request doesn't have any more data
1429 * %true - this request has more data
1430 **/
1431 bool blk_update_request(struct request *req, blk_status_t error,
1432 unsigned int nr_bytes)
1433 {
1434 int total_bytes;
1435
1436 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1437
1438 if (!req->bio)
1439 return false;
1440
1441 #ifdef CONFIG_BLK_DEV_INTEGRITY
1442 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1443 error == BLK_STS_OK)
1444 req->q->integrity.profile->complete_fn(req, nr_bytes);
1445 #endif
1446
1447 if (unlikely(error && !blk_rq_is_passthrough(req) &&
1448 !(req->rq_flags & RQF_QUIET)))
1449 print_req_error(req, error, __func__);
1450
1451 blk_account_io_completion(req, nr_bytes);
1452
1453 total_bytes = 0;
1454 while (req->bio) {
1455 struct bio *bio = req->bio;
1456 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1457
1458 if (bio_bytes == bio->bi_iter.bi_size)
1459 req->bio = bio->bi_next;
1460
1461 /* Completion has already been traced */
1462 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1463 req_bio_endio(req, bio, bio_bytes, error);
1464
1465 total_bytes += bio_bytes;
1466 nr_bytes -= bio_bytes;
1467
1468 if (!nr_bytes)
1469 break;
1470 }
1471
1472 /*
1473 * completely done
1474 */
1475 if (!req->bio) {
1476 /*
1477 * Reset counters so that the request stacking driver
1478 * can find how many bytes remain in the request
1479 * later.
1480 */
1481 req->__data_len = 0;
1482 return false;
1483 }
1484
1485 req->__data_len -= total_bytes;
1486
1487 /* update sector only for requests with clear definition of sector */
1488 if (!blk_rq_is_passthrough(req))
1489 req->__sector += total_bytes >> 9;
1490
1491 /* mixed attributes always follow the first bio */
1492 if (req->rq_flags & RQF_MIXED_MERGE) {
1493 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1494 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1495 }
1496
1497 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1498 /*
1499 * If total number of sectors is less than the first segment
1500 * size, something has gone terribly wrong.
1501 */
1502 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1503 blk_dump_rq_flags(req, "request botched");
1504 req->__data_len = blk_rq_cur_bytes(req);
1505 }
1506
1507 /* recalculate the number of segments */
1508 req->nr_phys_segments = blk_recalc_rq_segments(req);
1509 }
1510
1511 return true;
1512 }
1513 EXPORT_SYMBOL_GPL(blk_update_request);
1514
1515 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1516 /**
1517 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1518 * @rq: the request to be flushed
1519 *
1520 * Description:
1521 * Flush all pages in @rq.
1522 */
1523 void rq_flush_dcache_pages(struct request *rq)
1524 {
1525 struct req_iterator iter;
1526 struct bio_vec bvec;
1527
1528 rq_for_each_segment(bvec, rq, iter)
1529 flush_dcache_page(bvec.bv_page);
1530 }
1531 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1532 #endif
1533
1534 /**
1535 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1536 * @q : the queue of the device being checked
1537 *
1538 * Description:
1539 * Check if underlying low-level drivers of a device are busy.
1540 * If the drivers want to export their busy state, they must set own
1541 * exporting function using blk_queue_lld_busy() first.
1542 *
1543 * Basically, this function is used only by request stacking drivers
1544 * to stop dispatching requests to underlying devices when underlying
1545 * devices are busy. This behavior helps more I/O merging on the queue
1546 * of the request stacking driver and prevents I/O throughput regression
1547 * on burst I/O load.
1548 *
1549 * Return:
1550 * 0 - Not busy (The request stacking driver should dispatch request)
1551 * 1 - Busy (The request stacking driver should stop dispatching request)
1552 */
1553 int blk_lld_busy(struct request_queue *q)
1554 {
1555 if (queue_is_mq(q) && q->mq_ops->busy)
1556 return q->mq_ops->busy(q);
1557
1558 return 0;
1559 }
1560 EXPORT_SYMBOL_GPL(blk_lld_busy);
1561
1562 /**
1563 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1564 * @rq: the clone request to be cleaned up
1565 *
1566 * Description:
1567 * Free all bios in @rq for a cloned request.
1568 */
1569 void blk_rq_unprep_clone(struct request *rq)
1570 {
1571 struct bio *bio;
1572
1573 while ((bio = rq->bio) != NULL) {
1574 rq->bio = bio->bi_next;
1575
1576 bio_put(bio);
1577 }
1578 }
1579 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1580
1581 /**
1582 * blk_rq_prep_clone - Helper function to setup clone request
1583 * @rq: the request to be setup
1584 * @rq_src: original request to be cloned
1585 * @bs: bio_set that bios for clone are allocated from
1586 * @gfp_mask: memory allocation mask for bio
1587 * @bio_ctr: setup function to be called for each clone bio.
1588 * Returns %0 for success, non %0 for failure.
1589 * @data: private data to be passed to @bio_ctr
1590 *
1591 * Description:
1592 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1593 * Also, pages which the original bios are pointing to are not copied
1594 * and the cloned bios just point same pages.
1595 * So cloned bios must be completed before original bios, which means
1596 * the caller must complete @rq before @rq_src.
1597 */
1598 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1599 struct bio_set *bs, gfp_t gfp_mask,
1600 int (*bio_ctr)(struct bio *, struct bio *, void *),
1601 void *data)
1602 {
1603 struct bio *bio, *bio_src;
1604
1605 if (!bs)
1606 bs = &fs_bio_set;
1607
1608 __rq_for_each_bio(bio_src, rq_src) {
1609 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1610 if (!bio)
1611 goto free_and_out;
1612
1613 if (bio_ctr && bio_ctr(bio, bio_src, data))
1614 goto free_and_out;
1615
1616 if (rq->bio) {
1617 rq->biotail->bi_next = bio;
1618 rq->biotail = bio;
1619 } else {
1620 rq->bio = rq->biotail = bio;
1621 }
1622 bio = NULL;
1623 }
1624
1625 /* Copy attributes of the original request to the clone request. */
1626 rq->__sector = blk_rq_pos(rq_src);
1627 rq->__data_len = blk_rq_bytes(rq_src);
1628 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1629 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1630 rq->special_vec = rq_src->special_vec;
1631 }
1632 rq->nr_phys_segments = rq_src->nr_phys_segments;
1633 rq->ioprio = rq_src->ioprio;
1634
1635 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1636 goto free_and_out;
1637
1638 return 0;
1639
1640 free_and_out:
1641 if (bio)
1642 bio_put(bio);
1643 blk_rq_unprep_clone(rq);
1644
1645 return -ENOMEM;
1646 }
1647 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1648
1649 int kblockd_schedule_work(struct work_struct *work)
1650 {
1651 return queue_work(kblockd_workqueue, work);
1652 }
1653 EXPORT_SYMBOL(kblockd_schedule_work);
1654
1655 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1656 unsigned long delay)
1657 {
1658 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1659 }
1660 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1661
1662 /**
1663 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1664 * @plug: The &struct blk_plug that needs to be initialized
1665 *
1666 * Description:
1667 * blk_start_plug() indicates to the block layer an intent by the caller
1668 * to submit multiple I/O requests in a batch. The block layer may use
1669 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1670 * is called. However, the block layer may choose to submit requests
1671 * before a call to blk_finish_plug() if the number of queued I/Os
1672 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1673 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1674 * the task schedules (see below).
1675 *
1676 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1677 * pending I/O should the task end up blocking between blk_start_plug() and
1678 * blk_finish_plug(). This is important from a performance perspective, but
1679 * also ensures that we don't deadlock. For instance, if the task is blocking
1680 * for a memory allocation, memory reclaim could end up wanting to free a
1681 * page belonging to that request that is currently residing in our private
1682 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1683 * this kind of deadlock.
1684 */
1685 void blk_start_plug(struct blk_plug *plug)
1686 {
1687 struct task_struct *tsk = current;
1688
1689 /*
1690 * If this is a nested plug, don't actually assign it.
1691 */
1692 if (tsk->plug)
1693 return;
1694
1695 INIT_LIST_HEAD(&plug->mq_list);
1696 INIT_LIST_HEAD(&plug->cb_list);
1697 plug->rq_count = 0;
1698 plug->multiple_queues = false;
1699 plug->nowait = false;
1700
1701 /*
1702 * Store ordering should not be needed here, since a potential
1703 * preempt will imply a full memory barrier
1704 */
1705 tsk->plug = plug;
1706 }
1707 EXPORT_SYMBOL(blk_start_plug);
1708
1709 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1710 {
1711 LIST_HEAD(callbacks);
1712
1713 while (!list_empty(&plug->cb_list)) {
1714 list_splice_init(&plug->cb_list, &callbacks);
1715
1716 while (!list_empty(&callbacks)) {
1717 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1718 struct blk_plug_cb,
1719 list);
1720 list_del(&cb->list);
1721 cb->callback(cb, from_schedule);
1722 }
1723 }
1724 }
1725
1726 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1727 int size)
1728 {
1729 struct blk_plug *plug = current->plug;
1730 struct blk_plug_cb *cb;
1731
1732 if (!plug)
1733 return NULL;
1734
1735 list_for_each_entry(cb, &plug->cb_list, list)
1736 if (cb->callback == unplug && cb->data == data)
1737 return cb;
1738
1739 /* Not currently on the callback list */
1740 BUG_ON(size < sizeof(*cb));
1741 cb = kzalloc(size, GFP_ATOMIC);
1742 if (cb) {
1743 cb->data = data;
1744 cb->callback = unplug;
1745 list_add(&cb->list, &plug->cb_list);
1746 }
1747 return cb;
1748 }
1749 EXPORT_SYMBOL(blk_check_plugged);
1750
1751 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1752 {
1753 flush_plug_callbacks(plug, from_schedule);
1754
1755 if (!list_empty(&plug->mq_list))
1756 blk_mq_flush_plug_list(plug, from_schedule);
1757 }
1758
1759 /**
1760 * blk_finish_plug - mark the end of a batch of submitted I/O
1761 * @plug: The &struct blk_plug passed to blk_start_plug()
1762 *
1763 * Description:
1764 * Indicate that a batch of I/O submissions is complete. This function
1765 * must be paired with an initial call to blk_start_plug(). The intent
1766 * is to allow the block layer to optimize I/O submission. See the
1767 * documentation for blk_start_plug() for more information.
1768 */
1769 void blk_finish_plug(struct blk_plug *plug)
1770 {
1771 if (plug != current->plug)
1772 return;
1773 blk_flush_plug_list(plug, false);
1774
1775 current->plug = NULL;
1776 }
1777 EXPORT_SYMBOL(blk_finish_plug);
1778
1779 void blk_io_schedule(void)
1780 {
1781 /* Prevent hang_check timer from firing at us during very long I/O */
1782 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1783
1784 if (timeout)
1785 io_schedule_timeout(timeout);
1786 else
1787 io_schedule();
1788 }
1789 EXPORT_SYMBOL_GPL(blk_io_schedule);
1790
1791 int __init blk_dev_init(void)
1792 {
1793 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1794 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1795 sizeof_field(struct request, cmd_flags));
1796 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1797 sizeof_field(struct bio, bi_opf));
1798
1799 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1800 kblockd_workqueue = alloc_workqueue("kblockd",
1801 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1802 if (!kblockd_workqueue)
1803 panic("Failed to create kblockd\n");
1804
1805 blk_requestq_cachep = kmem_cache_create("request_queue",
1806 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1807
1808 blk_debugfs_root = debugfs_create_dir("block", NULL);
1809
1810 return 0;
1811 }