]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
blk-throttle: improve queue bypass handling
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 clear_bit(BIO_UPTODATE, &bio->bi_flags);
147 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
148 error = -EIO;
149
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
152
153 bio_advance(bio, nbytes);
154
155 /* don't actually finish bio if it's part of flush sequence */
156 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
157 bio_endio(bio, error);
158 }
159
160 void blk_dump_rq_flags(struct request *rq, char *msg)
161 {
162 int bit;
163
164 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
165 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
166 (unsigned long long) rq->cmd_flags);
167
168 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
169 (unsigned long long)blk_rq_pos(rq),
170 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
171 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
172 rq->bio, rq->biotail, blk_rq_bytes(rq));
173
174 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
175 printk(KERN_INFO " cdb: ");
176 for (bit = 0; bit < BLK_MAX_CDB; bit++)
177 printk("%02x ", rq->cmd[bit]);
178 printk("\n");
179 }
180 }
181 EXPORT_SYMBOL(blk_dump_rq_flags);
182
183 static void blk_delay_work(struct work_struct *work)
184 {
185 struct request_queue *q;
186
187 q = container_of(work, struct request_queue, delay_work.work);
188 spin_lock_irq(q->queue_lock);
189 __blk_run_queue(q);
190 spin_unlock_irq(q->queue_lock);
191 }
192
193 /**
194 * blk_delay_queue - restart queueing after defined interval
195 * @q: The &struct request_queue in question
196 * @msecs: Delay in msecs
197 *
198 * Description:
199 * Sometimes queueing needs to be postponed for a little while, to allow
200 * resources to come back. This function will make sure that queueing is
201 * restarted around the specified time. Queue lock must be held.
202 */
203 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
204 {
205 if (likely(!blk_queue_dead(q)))
206 queue_delayed_work(kblockd_workqueue, &q->delay_work,
207 msecs_to_jiffies(msecs));
208 }
209 EXPORT_SYMBOL(blk_delay_queue);
210
211 /**
212 * blk_start_queue - restart a previously stopped queue
213 * @q: The &struct request_queue in question
214 *
215 * Description:
216 * blk_start_queue() will clear the stop flag on the queue, and call
217 * the request_fn for the queue if it was in a stopped state when
218 * entered. Also see blk_stop_queue(). Queue lock must be held.
219 **/
220 void blk_start_queue(struct request_queue *q)
221 {
222 WARN_ON(!irqs_disabled());
223
224 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
225 __blk_run_queue(q);
226 }
227 EXPORT_SYMBOL(blk_start_queue);
228
229 /**
230 * blk_stop_queue - stop a queue
231 * @q: The &struct request_queue in question
232 *
233 * Description:
234 * The Linux block layer assumes that a block driver will consume all
235 * entries on the request queue when the request_fn strategy is called.
236 * Often this will not happen, because of hardware limitations (queue
237 * depth settings). If a device driver gets a 'queue full' response,
238 * or if it simply chooses not to queue more I/O at one point, it can
239 * call this function to prevent the request_fn from being called until
240 * the driver has signalled it's ready to go again. This happens by calling
241 * blk_start_queue() to restart queue operations. Queue lock must be held.
242 **/
243 void blk_stop_queue(struct request_queue *q)
244 {
245 cancel_delayed_work(&q->delay_work);
246 queue_flag_set(QUEUE_FLAG_STOPPED, q);
247 }
248 EXPORT_SYMBOL(blk_stop_queue);
249
250 /**
251 * blk_sync_queue - cancel any pending callbacks on a queue
252 * @q: the queue
253 *
254 * Description:
255 * The block layer may perform asynchronous callback activity
256 * on a queue, such as calling the unplug function after a timeout.
257 * A block device may call blk_sync_queue to ensure that any
258 * such activity is cancelled, thus allowing it to release resources
259 * that the callbacks might use. The caller must already have made sure
260 * that its ->make_request_fn will not re-add plugging prior to calling
261 * this function.
262 *
263 * This function does not cancel any asynchronous activity arising
264 * out of elevator or throttling code. That would require elevator_exit()
265 * and blkcg_exit_queue() to be called with queue lock initialized.
266 *
267 */
268 void blk_sync_queue(struct request_queue *q)
269 {
270 del_timer_sync(&q->timeout);
271
272 if (q->mq_ops) {
273 struct blk_mq_hw_ctx *hctx;
274 int i;
275
276 queue_for_each_hw_ctx(q, hctx, i) {
277 cancel_delayed_work_sync(&hctx->run_work);
278 cancel_delayed_work_sync(&hctx->delay_work);
279 }
280 } else {
281 cancel_delayed_work_sync(&q->delay_work);
282 }
283 }
284 EXPORT_SYMBOL(blk_sync_queue);
285
286 /**
287 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
288 * @q: The queue to run
289 *
290 * Description:
291 * Invoke request handling on a queue if there are any pending requests.
292 * May be used to restart request handling after a request has completed.
293 * This variant runs the queue whether or not the queue has been
294 * stopped. Must be called with the queue lock held and interrupts
295 * disabled. See also @blk_run_queue.
296 */
297 inline void __blk_run_queue_uncond(struct request_queue *q)
298 {
299 if (unlikely(blk_queue_dead(q)))
300 return;
301
302 /*
303 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
304 * the queue lock internally. As a result multiple threads may be
305 * running such a request function concurrently. Keep track of the
306 * number of active request_fn invocations such that blk_drain_queue()
307 * can wait until all these request_fn calls have finished.
308 */
309 q->request_fn_active++;
310 q->request_fn(q);
311 q->request_fn_active--;
312 }
313 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
314
315 /**
316 * __blk_run_queue - run a single device queue
317 * @q: The queue to run
318 *
319 * Description:
320 * See @blk_run_queue. This variant must be called with the queue lock
321 * held and interrupts disabled.
322 */
323 void __blk_run_queue(struct request_queue *q)
324 {
325 if (unlikely(blk_queue_stopped(q)))
326 return;
327
328 __blk_run_queue_uncond(q);
329 }
330 EXPORT_SYMBOL(__blk_run_queue);
331
332 /**
333 * blk_run_queue_async - run a single device queue in workqueue context
334 * @q: The queue to run
335 *
336 * Description:
337 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
338 * of us. The caller must hold the queue lock.
339 */
340 void blk_run_queue_async(struct request_queue *q)
341 {
342 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
343 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
344 }
345 EXPORT_SYMBOL(blk_run_queue_async);
346
347 /**
348 * blk_run_queue - run a single device queue
349 * @q: The queue to run
350 *
351 * Description:
352 * Invoke request handling on this queue, if it has pending work to do.
353 * May be used to restart queueing when a request has completed.
354 */
355 void blk_run_queue(struct request_queue *q)
356 {
357 unsigned long flags;
358
359 spin_lock_irqsave(q->queue_lock, flags);
360 __blk_run_queue(q);
361 spin_unlock_irqrestore(q->queue_lock, flags);
362 }
363 EXPORT_SYMBOL(blk_run_queue);
364
365 void blk_put_queue(struct request_queue *q)
366 {
367 kobject_put(&q->kobj);
368 }
369 EXPORT_SYMBOL(blk_put_queue);
370
371 /**
372 * __blk_drain_queue - drain requests from request_queue
373 * @q: queue to drain
374 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
375 *
376 * Drain requests from @q. If @drain_all is set, all requests are drained.
377 * If not, only ELVPRIV requests are drained. The caller is responsible
378 * for ensuring that no new requests which need to be drained are queued.
379 */
380 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
381 __releases(q->queue_lock)
382 __acquires(q->queue_lock)
383 {
384 int i;
385
386 lockdep_assert_held(q->queue_lock);
387
388 while (true) {
389 bool drain = false;
390
391 /*
392 * The caller might be trying to drain @q before its
393 * elevator is initialized.
394 */
395 if (q->elevator)
396 elv_drain_elevator(q);
397
398 blkcg_drain_queue(q);
399
400 /*
401 * This function might be called on a queue which failed
402 * driver init after queue creation or is not yet fully
403 * active yet. Some drivers (e.g. fd and loop) get unhappy
404 * in such cases. Kick queue iff dispatch queue has
405 * something on it and @q has request_fn set.
406 */
407 if (!list_empty(&q->queue_head) && q->request_fn)
408 __blk_run_queue(q);
409
410 drain |= q->nr_rqs_elvpriv;
411 drain |= q->request_fn_active;
412
413 /*
414 * Unfortunately, requests are queued at and tracked from
415 * multiple places and there's no single counter which can
416 * be drained. Check all the queues and counters.
417 */
418 if (drain_all) {
419 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
422 drain |= q->nr_rqs[i];
423 drain |= q->in_flight[i];
424 if (fq)
425 drain |= !list_empty(&fq->flush_queue[i]);
426 }
427 }
428
429 if (!drain)
430 break;
431
432 spin_unlock_irq(q->queue_lock);
433
434 msleep(10);
435
436 spin_lock_irq(q->queue_lock);
437 }
438
439 /*
440 * With queue marked dead, any woken up waiter will fail the
441 * allocation path, so the wakeup chaining is lost and we're
442 * left with hung waiters. We need to wake up those waiters.
443 */
444 if (q->request_fn) {
445 struct request_list *rl;
446
447 blk_queue_for_each_rl(rl, q)
448 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
449 wake_up_all(&rl->wait[i]);
450 }
451 }
452
453 /**
454 * blk_queue_bypass_start - enter queue bypass mode
455 * @q: queue of interest
456 *
457 * In bypass mode, only the dispatch FIFO queue of @q is used. This
458 * function makes @q enter bypass mode and drains all requests which were
459 * throttled or issued before. On return, it's guaranteed that no request
460 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
461 * inside queue or RCU read lock.
462 */
463 void blk_queue_bypass_start(struct request_queue *q)
464 {
465 spin_lock_irq(q->queue_lock);
466 q->bypass_depth++;
467 queue_flag_set(QUEUE_FLAG_BYPASS, q);
468 spin_unlock_irq(q->queue_lock);
469
470 /*
471 * Queues start drained. Skip actual draining till init is
472 * complete. This avoids lenghty delays during queue init which
473 * can happen many times during boot.
474 */
475 if (blk_queue_init_done(q)) {
476 spin_lock_irq(q->queue_lock);
477 __blk_drain_queue(q, false);
478 spin_unlock_irq(q->queue_lock);
479
480 /* ensure blk_queue_bypass() is %true inside RCU read lock */
481 synchronize_rcu();
482 }
483 }
484 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
485
486 /**
487 * blk_queue_bypass_end - leave queue bypass mode
488 * @q: queue of interest
489 *
490 * Leave bypass mode and restore the normal queueing behavior.
491 */
492 void blk_queue_bypass_end(struct request_queue *q)
493 {
494 spin_lock_irq(q->queue_lock);
495 if (!--q->bypass_depth)
496 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
497 WARN_ON_ONCE(q->bypass_depth < 0);
498 spin_unlock_irq(q->queue_lock);
499 }
500 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
501
502 void blk_set_queue_dying(struct request_queue *q)
503 {
504 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
505
506 if (q->mq_ops)
507 blk_mq_wake_waiters(q);
508 else {
509 struct request_list *rl;
510
511 blk_queue_for_each_rl(rl, q) {
512 if (rl->rq_pool) {
513 wake_up(&rl->wait[BLK_RW_SYNC]);
514 wake_up(&rl->wait[BLK_RW_ASYNC]);
515 }
516 }
517 }
518 }
519 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
520
521 /**
522 * blk_cleanup_queue - shutdown a request queue
523 * @q: request queue to shutdown
524 *
525 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
526 * put it. All future requests will be failed immediately with -ENODEV.
527 */
528 void blk_cleanup_queue(struct request_queue *q)
529 {
530 spinlock_t *lock = q->queue_lock;
531
532 /* mark @q DYING, no new request or merges will be allowed afterwards */
533 mutex_lock(&q->sysfs_lock);
534 blk_set_queue_dying(q);
535 spin_lock_irq(lock);
536
537 /*
538 * A dying queue is permanently in bypass mode till released. Note
539 * that, unlike blk_queue_bypass_start(), we aren't performing
540 * synchronize_rcu() after entering bypass mode to avoid the delay
541 * as some drivers create and destroy a lot of queues while
542 * probing. This is still safe because blk_release_queue() will be
543 * called only after the queue refcnt drops to zero and nothing,
544 * RCU or not, would be traversing the queue by then.
545 */
546 q->bypass_depth++;
547 queue_flag_set(QUEUE_FLAG_BYPASS, q);
548
549 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
550 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
551 queue_flag_set(QUEUE_FLAG_DYING, q);
552 spin_unlock_irq(lock);
553 mutex_unlock(&q->sysfs_lock);
554
555 /*
556 * Drain all requests queued before DYING marking. Set DEAD flag to
557 * prevent that q->request_fn() gets invoked after draining finished.
558 */
559 if (q->mq_ops) {
560 blk_mq_freeze_queue(q);
561 spin_lock_irq(lock);
562 } else {
563 spin_lock_irq(lock);
564 __blk_drain_queue(q, true);
565 }
566 queue_flag_set(QUEUE_FLAG_DEAD, q);
567 spin_unlock_irq(lock);
568
569 /* @q won't process any more request, flush async actions */
570 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
571 blk_sync_queue(q);
572
573 if (q->mq_ops)
574 blk_mq_free_queue(q);
575
576 spin_lock_irq(lock);
577 if (q->queue_lock != &q->__queue_lock)
578 q->queue_lock = &q->__queue_lock;
579 spin_unlock_irq(lock);
580
581 bdi_destroy(&q->backing_dev_info);
582
583 /* @q is and will stay empty, shutdown and put */
584 blk_put_queue(q);
585 }
586 EXPORT_SYMBOL(blk_cleanup_queue);
587
588 /* Allocate memory local to the request queue */
589 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
590 {
591 int nid = (int)(long)data;
592 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
593 }
594
595 static void free_request_struct(void *element, void *unused)
596 {
597 kmem_cache_free(request_cachep, element);
598 }
599
600 int blk_init_rl(struct request_list *rl, struct request_queue *q,
601 gfp_t gfp_mask)
602 {
603 if (unlikely(rl->rq_pool))
604 return 0;
605
606 rl->q = q;
607 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
608 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
609 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
610 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
611
612 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
613 free_request_struct,
614 (void *)(long)q->node, gfp_mask,
615 q->node);
616 if (!rl->rq_pool)
617 return -ENOMEM;
618
619 return 0;
620 }
621
622 void blk_exit_rl(struct request_list *rl)
623 {
624 if (rl->rq_pool)
625 mempool_destroy(rl->rq_pool);
626 }
627
628 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
629 {
630 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
631 }
632 EXPORT_SYMBOL(blk_alloc_queue);
633
634 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
635 {
636 struct request_queue *q;
637 int err;
638
639 q = kmem_cache_alloc_node(blk_requestq_cachep,
640 gfp_mask | __GFP_ZERO, node_id);
641 if (!q)
642 return NULL;
643
644 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
645 if (q->id < 0)
646 goto fail_q;
647
648 q->backing_dev_info.ra_pages =
649 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
650 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
651 q->backing_dev_info.name = "block";
652 q->node = node_id;
653
654 err = bdi_init(&q->backing_dev_info);
655 if (err)
656 goto fail_id;
657
658 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
659 laptop_mode_timer_fn, (unsigned long) q);
660 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
661 INIT_LIST_HEAD(&q->queue_head);
662 INIT_LIST_HEAD(&q->timeout_list);
663 INIT_LIST_HEAD(&q->icq_list);
664 #ifdef CONFIG_BLK_CGROUP
665 INIT_LIST_HEAD(&q->blkg_list);
666 #endif
667 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
668
669 kobject_init(&q->kobj, &blk_queue_ktype);
670
671 mutex_init(&q->sysfs_lock);
672 spin_lock_init(&q->__queue_lock);
673
674 /*
675 * By default initialize queue_lock to internal lock and driver can
676 * override it later if need be.
677 */
678 q->queue_lock = &q->__queue_lock;
679
680 /*
681 * A queue starts its life with bypass turned on to avoid
682 * unnecessary bypass on/off overhead and nasty surprises during
683 * init. The initial bypass will be finished when the queue is
684 * registered by blk_register_queue().
685 */
686 q->bypass_depth = 1;
687 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
688
689 init_waitqueue_head(&q->mq_freeze_wq);
690
691 if (blkcg_init_queue(q))
692 goto fail_bdi;
693
694 return q;
695
696 fail_bdi:
697 bdi_destroy(&q->backing_dev_info);
698 fail_id:
699 ida_simple_remove(&blk_queue_ida, q->id);
700 fail_q:
701 kmem_cache_free(blk_requestq_cachep, q);
702 return NULL;
703 }
704 EXPORT_SYMBOL(blk_alloc_queue_node);
705
706 /**
707 * blk_init_queue - prepare a request queue for use with a block device
708 * @rfn: The function to be called to process requests that have been
709 * placed on the queue.
710 * @lock: Request queue spin lock
711 *
712 * Description:
713 * If a block device wishes to use the standard request handling procedures,
714 * which sorts requests and coalesces adjacent requests, then it must
715 * call blk_init_queue(). The function @rfn will be called when there
716 * are requests on the queue that need to be processed. If the device
717 * supports plugging, then @rfn may not be called immediately when requests
718 * are available on the queue, but may be called at some time later instead.
719 * Plugged queues are generally unplugged when a buffer belonging to one
720 * of the requests on the queue is needed, or due to memory pressure.
721 *
722 * @rfn is not required, or even expected, to remove all requests off the
723 * queue, but only as many as it can handle at a time. If it does leave
724 * requests on the queue, it is responsible for arranging that the requests
725 * get dealt with eventually.
726 *
727 * The queue spin lock must be held while manipulating the requests on the
728 * request queue; this lock will be taken also from interrupt context, so irq
729 * disabling is needed for it.
730 *
731 * Function returns a pointer to the initialized request queue, or %NULL if
732 * it didn't succeed.
733 *
734 * Note:
735 * blk_init_queue() must be paired with a blk_cleanup_queue() call
736 * when the block device is deactivated (such as at module unload).
737 **/
738
739 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
740 {
741 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
742 }
743 EXPORT_SYMBOL(blk_init_queue);
744
745 struct request_queue *
746 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
747 {
748 struct request_queue *uninit_q, *q;
749
750 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
751 if (!uninit_q)
752 return NULL;
753
754 q = blk_init_allocated_queue(uninit_q, rfn, lock);
755 if (!q)
756 blk_cleanup_queue(uninit_q);
757
758 return q;
759 }
760 EXPORT_SYMBOL(blk_init_queue_node);
761
762 static void blk_queue_bio(struct request_queue *q, struct bio *bio);
763
764 struct request_queue *
765 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
766 spinlock_t *lock)
767 {
768 if (!q)
769 return NULL;
770
771 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
772 if (!q->fq)
773 return NULL;
774
775 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
776 goto fail;
777
778 q->request_fn = rfn;
779 q->prep_rq_fn = NULL;
780 q->unprep_rq_fn = NULL;
781 q->queue_flags |= QUEUE_FLAG_DEFAULT;
782
783 /* Override internal queue lock with supplied lock pointer */
784 if (lock)
785 q->queue_lock = lock;
786
787 /*
788 * This also sets hw/phys segments, boundary and size
789 */
790 blk_queue_make_request(q, blk_queue_bio);
791
792 q->sg_reserved_size = INT_MAX;
793
794 /* Protect q->elevator from elevator_change */
795 mutex_lock(&q->sysfs_lock);
796
797 /* init elevator */
798 if (elevator_init(q, NULL)) {
799 mutex_unlock(&q->sysfs_lock);
800 goto fail;
801 }
802
803 mutex_unlock(&q->sysfs_lock);
804
805 return q;
806
807 fail:
808 blk_free_flush_queue(q->fq);
809 return NULL;
810 }
811 EXPORT_SYMBOL(blk_init_allocated_queue);
812
813 bool blk_get_queue(struct request_queue *q)
814 {
815 if (likely(!blk_queue_dying(q))) {
816 __blk_get_queue(q);
817 return true;
818 }
819
820 return false;
821 }
822 EXPORT_SYMBOL(blk_get_queue);
823
824 static inline void blk_free_request(struct request_list *rl, struct request *rq)
825 {
826 if (rq->cmd_flags & REQ_ELVPRIV) {
827 elv_put_request(rl->q, rq);
828 if (rq->elv.icq)
829 put_io_context(rq->elv.icq->ioc);
830 }
831
832 mempool_free(rq, rl->rq_pool);
833 }
834
835 /*
836 * ioc_batching returns true if the ioc is a valid batching request and
837 * should be given priority access to a request.
838 */
839 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
840 {
841 if (!ioc)
842 return 0;
843
844 /*
845 * Make sure the process is able to allocate at least 1 request
846 * even if the batch times out, otherwise we could theoretically
847 * lose wakeups.
848 */
849 return ioc->nr_batch_requests == q->nr_batching ||
850 (ioc->nr_batch_requests > 0
851 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
852 }
853
854 /*
855 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
856 * will cause the process to be a "batcher" on all queues in the system. This
857 * is the behaviour we want though - once it gets a wakeup it should be given
858 * a nice run.
859 */
860 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
861 {
862 if (!ioc || ioc_batching(q, ioc))
863 return;
864
865 ioc->nr_batch_requests = q->nr_batching;
866 ioc->last_waited = jiffies;
867 }
868
869 static void __freed_request(struct request_list *rl, int sync)
870 {
871 struct request_queue *q = rl->q;
872
873 if (rl->count[sync] < queue_congestion_off_threshold(q))
874 blk_clear_congested(rl, sync);
875
876 if (rl->count[sync] + 1 <= q->nr_requests) {
877 if (waitqueue_active(&rl->wait[sync]))
878 wake_up(&rl->wait[sync]);
879
880 blk_clear_rl_full(rl, sync);
881 }
882 }
883
884 /*
885 * A request has just been released. Account for it, update the full and
886 * congestion status, wake up any waiters. Called under q->queue_lock.
887 */
888 static void freed_request(struct request_list *rl, unsigned int flags)
889 {
890 struct request_queue *q = rl->q;
891 int sync = rw_is_sync(flags);
892
893 q->nr_rqs[sync]--;
894 rl->count[sync]--;
895 if (flags & REQ_ELVPRIV)
896 q->nr_rqs_elvpriv--;
897
898 __freed_request(rl, sync);
899
900 if (unlikely(rl->starved[sync ^ 1]))
901 __freed_request(rl, sync ^ 1);
902 }
903
904 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
905 {
906 struct request_list *rl;
907 int on_thresh, off_thresh;
908
909 spin_lock_irq(q->queue_lock);
910 q->nr_requests = nr;
911 blk_queue_congestion_threshold(q);
912 on_thresh = queue_congestion_on_threshold(q);
913 off_thresh = queue_congestion_off_threshold(q);
914
915 blk_queue_for_each_rl(rl, q) {
916 if (rl->count[BLK_RW_SYNC] >= on_thresh)
917 blk_set_congested(rl, BLK_RW_SYNC);
918 else if (rl->count[BLK_RW_SYNC] < off_thresh)
919 blk_clear_congested(rl, BLK_RW_SYNC);
920
921 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
922 blk_set_congested(rl, BLK_RW_ASYNC);
923 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
924 blk_clear_congested(rl, BLK_RW_ASYNC);
925
926 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
927 blk_set_rl_full(rl, BLK_RW_SYNC);
928 } else {
929 blk_clear_rl_full(rl, BLK_RW_SYNC);
930 wake_up(&rl->wait[BLK_RW_SYNC]);
931 }
932
933 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
934 blk_set_rl_full(rl, BLK_RW_ASYNC);
935 } else {
936 blk_clear_rl_full(rl, BLK_RW_ASYNC);
937 wake_up(&rl->wait[BLK_RW_ASYNC]);
938 }
939 }
940
941 spin_unlock_irq(q->queue_lock);
942 return 0;
943 }
944
945 /*
946 * Determine if elevator data should be initialized when allocating the
947 * request associated with @bio.
948 */
949 static bool blk_rq_should_init_elevator(struct bio *bio)
950 {
951 if (!bio)
952 return true;
953
954 /*
955 * Flush requests do not use the elevator so skip initialization.
956 * This allows a request to share the flush and elevator data.
957 */
958 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
959 return false;
960
961 return true;
962 }
963
964 /**
965 * rq_ioc - determine io_context for request allocation
966 * @bio: request being allocated is for this bio (can be %NULL)
967 *
968 * Determine io_context to use for request allocation for @bio. May return
969 * %NULL if %current->io_context doesn't exist.
970 */
971 static struct io_context *rq_ioc(struct bio *bio)
972 {
973 #ifdef CONFIG_BLK_CGROUP
974 if (bio && bio->bi_ioc)
975 return bio->bi_ioc;
976 #endif
977 return current->io_context;
978 }
979
980 /**
981 * __get_request - get a free request
982 * @rl: request list to allocate from
983 * @rw_flags: RW and SYNC flags
984 * @bio: bio to allocate request for (can be %NULL)
985 * @gfp_mask: allocation mask
986 *
987 * Get a free request from @q. This function may fail under memory
988 * pressure or if @q is dead.
989 *
990 * Must be called with @q->queue_lock held and,
991 * Returns ERR_PTR on failure, with @q->queue_lock held.
992 * Returns request pointer on success, with @q->queue_lock *not held*.
993 */
994 static struct request *__get_request(struct request_list *rl, int rw_flags,
995 struct bio *bio, gfp_t gfp_mask)
996 {
997 struct request_queue *q = rl->q;
998 struct request *rq;
999 struct elevator_type *et = q->elevator->type;
1000 struct io_context *ioc = rq_ioc(bio);
1001 struct io_cq *icq = NULL;
1002 const bool is_sync = rw_is_sync(rw_flags) != 0;
1003 int may_queue;
1004
1005 if (unlikely(blk_queue_dying(q)))
1006 return ERR_PTR(-ENODEV);
1007
1008 may_queue = elv_may_queue(q, rw_flags);
1009 if (may_queue == ELV_MQUEUE_NO)
1010 goto rq_starved;
1011
1012 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1013 if (rl->count[is_sync]+1 >= q->nr_requests) {
1014 /*
1015 * The queue will fill after this allocation, so set
1016 * it as full, and mark this process as "batching".
1017 * This process will be allowed to complete a batch of
1018 * requests, others will be blocked.
1019 */
1020 if (!blk_rl_full(rl, is_sync)) {
1021 ioc_set_batching(q, ioc);
1022 blk_set_rl_full(rl, is_sync);
1023 } else {
1024 if (may_queue != ELV_MQUEUE_MUST
1025 && !ioc_batching(q, ioc)) {
1026 /*
1027 * The queue is full and the allocating
1028 * process is not a "batcher", and not
1029 * exempted by the IO scheduler
1030 */
1031 return ERR_PTR(-ENOMEM);
1032 }
1033 }
1034 }
1035 blk_set_congested(rl, is_sync);
1036 }
1037
1038 /*
1039 * Only allow batching queuers to allocate up to 50% over the defined
1040 * limit of requests, otherwise we could have thousands of requests
1041 * allocated with any setting of ->nr_requests
1042 */
1043 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1044 return ERR_PTR(-ENOMEM);
1045
1046 q->nr_rqs[is_sync]++;
1047 rl->count[is_sync]++;
1048 rl->starved[is_sync] = 0;
1049
1050 /*
1051 * Decide whether the new request will be managed by elevator. If
1052 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1053 * prevent the current elevator from being destroyed until the new
1054 * request is freed. This guarantees icq's won't be destroyed and
1055 * makes creating new ones safe.
1056 *
1057 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1058 * it will be created after releasing queue_lock.
1059 */
1060 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1061 rw_flags |= REQ_ELVPRIV;
1062 q->nr_rqs_elvpriv++;
1063 if (et->icq_cache && ioc)
1064 icq = ioc_lookup_icq(ioc, q);
1065 }
1066
1067 if (blk_queue_io_stat(q))
1068 rw_flags |= REQ_IO_STAT;
1069 spin_unlock_irq(q->queue_lock);
1070
1071 /* allocate and init request */
1072 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1073 if (!rq)
1074 goto fail_alloc;
1075
1076 blk_rq_init(q, rq);
1077 blk_rq_set_rl(rq, rl);
1078 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1079
1080 /* init elvpriv */
1081 if (rw_flags & REQ_ELVPRIV) {
1082 if (unlikely(et->icq_cache && !icq)) {
1083 if (ioc)
1084 icq = ioc_create_icq(ioc, q, gfp_mask);
1085 if (!icq)
1086 goto fail_elvpriv;
1087 }
1088
1089 rq->elv.icq = icq;
1090 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1091 goto fail_elvpriv;
1092
1093 /* @rq->elv.icq holds io_context until @rq is freed */
1094 if (icq)
1095 get_io_context(icq->ioc);
1096 }
1097 out:
1098 /*
1099 * ioc may be NULL here, and ioc_batching will be false. That's
1100 * OK, if the queue is under the request limit then requests need
1101 * not count toward the nr_batch_requests limit. There will always
1102 * be some limit enforced by BLK_BATCH_TIME.
1103 */
1104 if (ioc_batching(q, ioc))
1105 ioc->nr_batch_requests--;
1106
1107 trace_block_getrq(q, bio, rw_flags & 1);
1108 return rq;
1109
1110 fail_elvpriv:
1111 /*
1112 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1113 * and may fail indefinitely under memory pressure and thus
1114 * shouldn't stall IO. Treat this request as !elvpriv. This will
1115 * disturb iosched and blkcg but weird is bettern than dead.
1116 */
1117 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1118 __func__, dev_name(q->backing_dev_info.dev));
1119
1120 rq->cmd_flags &= ~REQ_ELVPRIV;
1121 rq->elv.icq = NULL;
1122
1123 spin_lock_irq(q->queue_lock);
1124 q->nr_rqs_elvpriv--;
1125 spin_unlock_irq(q->queue_lock);
1126 goto out;
1127
1128 fail_alloc:
1129 /*
1130 * Allocation failed presumably due to memory. Undo anything we
1131 * might have messed up.
1132 *
1133 * Allocating task should really be put onto the front of the wait
1134 * queue, but this is pretty rare.
1135 */
1136 spin_lock_irq(q->queue_lock);
1137 freed_request(rl, rw_flags);
1138
1139 /*
1140 * in the very unlikely event that allocation failed and no
1141 * requests for this direction was pending, mark us starved so that
1142 * freeing of a request in the other direction will notice
1143 * us. another possible fix would be to split the rq mempool into
1144 * READ and WRITE
1145 */
1146 rq_starved:
1147 if (unlikely(rl->count[is_sync] == 0))
1148 rl->starved[is_sync] = 1;
1149 return ERR_PTR(-ENOMEM);
1150 }
1151
1152 /**
1153 * get_request - get a free request
1154 * @q: request_queue to allocate request from
1155 * @rw_flags: RW and SYNC flags
1156 * @bio: bio to allocate request for (can be %NULL)
1157 * @gfp_mask: allocation mask
1158 *
1159 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1160 * function keeps retrying under memory pressure and fails iff @q is dead.
1161 *
1162 * Must be called with @q->queue_lock held and,
1163 * Returns ERR_PTR on failure, with @q->queue_lock held.
1164 * Returns request pointer on success, with @q->queue_lock *not held*.
1165 */
1166 static struct request *get_request(struct request_queue *q, int rw_flags,
1167 struct bio *bio, gfp_t gfp_mask)
1168 {
1169 const bool is_sync = rw_is_sync(rw_flags) != 0;
1170 DEFINE_WAIT(wait);
1171 struct request_list *rl;
1172 struct request *rq;
1173
1174 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1175 retry:
1176 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1177 if (!IS_ERR(rq))
1178 return rq;
1179
1180 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1181 blk_put_rl(rl);
1182 return rq;
1183 }
1184
1185 /* wait on @rl and retry */
1186 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1187 TASK_UNINTERRUPTIBLE);
1188
1189 trace_block_sleeprq(q, bio, rw_flags & 1);
1190
1191 spin_unlock_irq(q->queue_lock);
1192 io_schedule();
1193
1194 /*
1195 * After sleeping, we become a "batching" process and will be able
1196 * to allocate at least one request, and up to a big batch of them
1197 * for a small period time. See ioc_batching, ioc_set_batching
1198 */
1199 ioc_set_batching(q, current->io_context);
1200
1201 spin_lock_irq(q->queue_lock);
1202 finish_wait(&rl->wait[is_sync], &wait);
1203
1204 goto retry;
1205 }
1206
1207 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1208 gfp_t gfp_mask)
1209 {
1210 struct request *rq;
1211
1212 BUG_ON(rw != READ && rw != WRITE);
1213
1214 /* create ioc upfront */
1215 create_io_context(gfp_mask, q->node);
1216
1217 spin_lock_irq(q->queue_lock);
1218 rq = get_request(q, rw, NULL, gfp_mask);
1219 if (IS_ERR(rq))
1220 spin_unlock_irq(q->queue_lock);
1221 /* q->queue_lock is unlocked at this point */
1222
1223 return rq;
1224 }
1225
1226 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1227 {
1228 if (q->mq_ops)
1229 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1230 else
1231 return blk_old_get_request(q, rw, gfp_mask);
1232 }
1233 EXPORT_SYMBOL(blk_get_request);
1234
1235 /**
1236 * blk_make_request - given a bio, allocate a corresponding struct request.
1237 * @q: target request queue
1238 * @bio: The bio describing the memory mappings that will be submitted for IO.
1239 * It may be a chained-bio properly constructed by block/bio layer.
1240 * @gfp_mask: gfp flags to be used for memory allocation
1241 *
1242 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1243 * type commands. Where the struct request needs to be farther initialized by
1244 * the caller. It is passed a &struct bio, which describes the memory info of
1245 * the I/O transfer.
1246 *
1247 * The caller of blk_make_request must make sure that bi_io_vec
1248 * are set to describe the memory buffers. That bio_data_dir() will return
1249 * the needed direction of the request. (And all bio's in the passed bio-chain
1250 * are properly set accordingly)
1251 *
1252 * If called under none-sleepable conditions, mapped bio buffers must not
1253 * need bouncing, by calling the appropriate masked or flagged allocator,
1254 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1255 * BUG.
1256 *
1257 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1258 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1259 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1260 * completion of a bio that hasn't been submitted yet, thus resulting in a
1261 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1262 * of bio_alloc(), as that avoids the mempool deadlock.
1263 * If possible a big IO should be split into smaller parts when allocation
1264 * fails. Partial allocation should not be an error, or you risk a live-lock.
1265 */
1266 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1267 gfp_t gfp_mask)
1268 {
1269 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1270
1271 if (IS_ERR(rq))
1272 return rq;
1273
1274 blk_rq_set_block_pc(rq);
1275
1276 for_each_bio(bio) {
1277 struct bio *bounce_bio = bio;
1278 int ret;
1279
1280 blk_queue_bounce(q, &bounce_bio);
1281 ret = blk_rq_append_bio(q, rq, bounce_bio);
1282 if (unlikely(ret)) {
1283 blk_put_request(rq);
1284 return ERR_PTR(ret);
1285 }
1286 }
1287
1288 return rq;
1289 }
1290 EXPORT_SYMBOL(blk_make_request);
1291
1292 /**
1293 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1294 * @rq: request to be initialized
1295 *
1296 */
1297 void blk_rq_set_block_pc(struct request *rq)
1298 {
1299 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1300 rq->__data_len = 0;
1301 rq->__sector = (sector_t) -1;
1302 rq->bio = rq->biotail = NULL;
1303 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1304 }
1305 EXPORT_SYMBOL(blk_rq_set_block_pc);
1306
1307 /**
1308 * blk_requeue_request - put a request back on queue
1309 * @q: request queue where request should be inserted
1310 * @rq: request to be inserted
1311 *
1312 * Description:
1313 * Drivers often keep queueing requests until the hardware cannot accept
1314 * more, when that condition happens we need to put the request back
1315 * on the queue. Must be called with queue lock held.
1316 */
1317 void blk_requeue_request(struct request_queue *q, struct request *rq)
1318 {
1319 blk_delete_timer(rq);
1320 blk_clear_rq_complete(rq);
1321 trace_block_rq_requeue(q, rq);
1322
1323 if (rq->cmd_flags & REQ_QUEUED)
1324 blk_queue_end_tag(q, rq);
1325
1326 BUG_ON(blk_queued_rq(rq));
1327
1328 elv_requeue_request(q, rq);
1329 }
1330 EXPORT_SYMBOL(blk_requeue_request);
1331
1332 static void add_acct_request(struct request_queue *q, struct request *rq,
1333 int where)
1334 {
1335 blk_account_io_start(rq, true);
1336 __elv_add_request(q, rq, where);
1337 }
1338
1339 static void part_round_stats_single(int cpu, struct hd_struct *part,
1340 unsigned long now)
1341 {
1342 int inflight;
1343
1344 if (now == part->stamp)
1345 return;
1346
1347 inflight = part_in_flight(part);
1348 if (inflight) {
1349 __part_stat_add(cpu, part, time_in_queue,
1350 inflight * (now - part->stamp));
1351 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1352 }
1353 part->stamp = now;
1354 }
1355
1356 /**
1357 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1358 * @cpu: cpu number for stats access
1359 * @part: target partition
1360 *
1361 * The average IO queue length and utilisation statistics are maintained
1362 * by observing the current state of the queue length and the amount of
1363 * time it has been in this state for.
1364 *
1365 * Normally, that accounting is done on IO completion, but that can result
1366 * in more than a second's worth of IO being accounted for within any one
1367 * second, leading to >100% utilisation. To deal with that, we call this
1368 * function to do a round-off before returning the results when reading
1369 * /proc/diskstats. This accounts immediately for all queue usage up to
1370 * the current jiffies and restarts the counters again.
1371 */
1372 void part_round_stats(int cpu, struct hd_struct *part)
1373 {
1374 unsigned long now = jiffies;
1375
1376 if (part->partno)
1377 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1378 part_round_stats_single(cpu, part, now);
1379 }
1380 EXPORT_SYMBOL_GPL(part_round_stats);
1381
1382 #ifdef CONFIG_PM
1383 static void blk_pm_put_request(struct request *rq)
1384 {
1385 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1386 pm_runtime_mark_last_busy(rq->q->dev);
1387 }
1388 #else
1389 static inline void blk_pm_put_request(struct request *rq) {}
1390 #endif
1391
1392 /*
1393 * queue lock must be held
1394 */
1395 void __blk_put_request(struct request_queue *q, struct request *req)
1396 {
1397 if (unlikely(!q))
1398 return;
1399
1400 if (q->mq_ops) {
1401 blk_mq_free_request(req);
1402 return;
1403 }
1404
1405 blk_pm_put_request(req);
1406
1407 elv_completed_request(q, req);
1408
1409 /* this is a bio leak */
1410 WARN_ON(req->bio != NULL);
1411
1412 /*
1413 * Request may not have originated from ll_rw_blk. if not,
1414 * it didn't come out of our reserved rq pools
1415 */
1416 if (req->cmd_flags & REQ_ALLOCED) {
1417 unsigned int flags = req->cmd_flags;
1418 struct request_list *rl = blk_rq_rl(req);
1419
1420 BUG_ON(!list_empty(&req->queuelist));
1421 BUG_ON(ELV_ON_HASH(req));
1422
1423 blk_free_request(rl, req);
1424 freed_request(rl, flags);
1425 blk_put_rl(rl);
1426 }
1427 }
1428 EXPORT_SYMBOL_GPL(__blk_put_request);
1429
1430 void blk_put_request(struct request *req)
1431 {
1432 struct request_queue *q = req->q;
1433
1434 if (q->mq_ops)
1435 blk_mq_free_request(req);
1436 else {
1437 unsigned long flags;
1438
1439 spin_lock_irqsave(q->queue_lock, flags);
1440 __blk_put_request(q, req);
1441 spin_unlock_irqrestore(q->queue_lock, flags);
1442 }
1443 }
1444 EXPORT_SYMBOL(blk_put_request);
1445
1446 /**
1447 * blk_add_request_payload - add a payload to a request
1448 * @rq: request to update
1449 * @page: page backing the payload
1450 * @len: length of the payload.
1451 *
1452 * This allows to later add a payload to an already submitted request by
1453 * a block driver. The driver needs to take care of freeing the payload
1454 * itself.
1455 *
1456 * Note that this is a quite horrible hack and nothing but handling of
1457 * discard requests should ever use it.
1458 */
1459 void blk_add_request_payload(struct request *rq, struct page *page,
1460 unsigned int len)
1461 {
1462 struct bio *bio = rq->bio;
1463
1464 bio->bi_io_vec->bv_page = page;
1465 bio->bi_io_vec->bv_offset = 0;
1466 bio->bi_io_vec->bv_len = len;
1467
1468 bio->bi_iter.bi_size = len;
1469 bio->bi_vcnt = 1;
1470 bio->bi_phys_segments = 1;
1471
1472 rq->__data_len = rq->resid_len = len;
1473 rq->nr_phys_segments = 1;
1474 }
1475 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1476
1477 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1478 struct bio *bio)
1479 {
1480 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1481
1482 if (!ll_back_merge_fn(q, req, bio))
1483 return false;
1484
1485 trace_block_bio_backmerge(q, req, bio);
1486
1487 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1488 blk_rq_set_mixed_merge(req);
1489
1490 req->biotail->bi_next = bio;
1491 req->biotail = bio;
1492 req->__data_len += bio->bi_iter.bi_size;
1493 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1494
1495 blk_account_io_start(req, false);
1496 return true;
1497 }
1498
1499 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1500 struct bio *bio)
1501 {
1502 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1503
1504 if (!ll_front_merge_fn(q, req, bio))
1505 return false;
1506
1507 trace_block_bio_frontmerge(q, req, bio);
1508
1509 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1510 blk_rq_set_mixed_merge(req);
1511
1512 bio->bi_next = req->bio;
1513 req->bio = bio;
1514
1515 req->__sector = bio->bi_iter.bi_sector;
1516 req->__data_len += bio->bi_iter.bi_size;
1517 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1518
1519 blk_account_io_start(req, false);
1520 return true;
1521 }
1522
1523 /**
1524 * blk_attempt_plug_merge - try to merge with %current's plugged list
1525 * @q: request_queue new bio is being queued at
1526 * @bio: new bio being queued
1527 * @request_count: out parameter for number of traversed plugged requests
1528 *
1529 * Determine whether @bio being queued on @q can be merged with a request
1530 * on %current's plugged list. Returns %true if merge was successful,
1531 * otherwise %false.
1532 *
1533 * Plugging coalesces IOs from the same issuer for the same purpose without
1534 * going through @q->queue_lock. As such it's more of an issuing mechanism
1535 * than scheduling, and the request, while may have elvpriv data, is not
1536 * added on the elevator at this point. In addition, we don't have
1537 * reliable access to the elevator outside queue lock. Only check basic
1538 * merging parameters without querying the elevator.
1539 *
1540 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1541 */
1542 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1543 unsigned int *request_count,
1544 struct request **same_queue_rq)
1545 {
1546 struct blk_plug *plug;
1547 struct request *rq;
1548 bool ret = false;
1549 struct list_head *plug_list;
1550
1551 plug = current->plug;
1552 if (!plug)
1553 goto out;
1554 *request_count = 0;
1555
1556 if (q->mq_ops)
1557 plug_list = &plug->mq_list;
1558 else
1559 plug_list = &plug->list;
1560
1561 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1562 int el_ret;
1563
1564 if (rq->q == q) {
1565 (*request_count)++;
1566 /*
1567 * Only blk-mq multiple hardware queues case checks the
1568 * rq in the same queue, there should be only one such
1569 * rq in a queue
1570 **/
1571 if (same_queue_rq)
1572 *same_queue_rq = rq;
1573 }
1574
1575 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1576 continue;
1577
1578 el_ret = blk_try_merge(rq, bio);
1579 if (el_ret == ELEVATOR_BACK_MERGE) {
1580 ret = bio_attempt_back_merge(q, rq, bio);
1581 if (ret)
1582 break;
1583 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1584 ret = bio_attempt_front_merge(q, rq, bio);
1585 if (ret)
1586 break;
1587 }
1588 }
1589 out:
1590 return ret;
1591 }
1592
1593 void init_request_from_bio(struct request *req, struct bio *bio)
1594 {
1595 req->cmd_type = REQ_TYPE_FS;
1596
1597 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1598 if (bio->bi_rw & REQ_RAHEAD)
1599 req->cmd_flags |= REQ_FAILFAST_MASK;
1600
1601 req->errors = 0;
1602 req->__sector = bio->bi_iter.bi_sector;
1603 req->ioprio = bio_prio(bio);
1604 blk_rq_bio_prep(req->q, req, bio);
1605 }
1606
1607 static void blk_queue_bio(struct request_queue *q, struct bio *bio)
1608 {
1609 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1610 struct blk_plug *plug;
1611 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1612 struct request *req;
1613 unsigned int request_count = 0;
1614
1615 /*
1616 * low level driver can indicate that it wants pages above a
1617 * certain limit bounced to low memory (ie for highmem, or even
1618 * ISA dma in theory)
1619 */
1620 blk_queue_bounce(q, &bio);
1621
1622 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1623 bio_endio(bio, -EIO);
1624 return;
1625 }
1626
1627 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1628 spin_lock_irq(q->queue_lock);
1629 where = ELEVATOR_INSERT_FLUSH;
1630 goto get_rq;
1631 }
1632
1633 /*
1634 * Check if we can merge with the plugged list before grabbing
1635 * any locks.
1636 */
1637 if (!blk_queue_nomerges(q) &&
1638 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1639 return;
1640
1641 spin_lock_irq(q->queue_lock);
1642
1643 el_ret = elv_merge(q, &req, bio);
1644 if (el_ret == ELEVATOR_BACK_MERGE) {
1645 if (bio_attempt_back_merge(q, req, bio)) {
1646 elv_bio_merged(q, req, bio);
1647 if (!attempt_back_merge(q, req))
1648 elv_merged_request(q, req, el_ret);
1649 goto out_unlock;
1650 }
1651 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1652 if (bio_attempt_front_merge(q, req, bio)) {
1653 elv_bio_merged(q, req, bio);
1654 if (!attempt_front_merge(q, req))
1655 elv_merged_request(q, req, el_ret);
1656 goto out_unlock;
1657 }
1658 }
1659
1660 get_rq:
1661 /*
1662 * This sync check and mask will be re-done in init_request_from_bio(),
1663 * but we need to set it earlier to expose the sync flag to the
1664 * rq allocator and io schedulers.
1665 */
1666 rw_flags = bio_data_dir(bio);
1667 if (sync)
1668 rw_flags |= REQ_SYNC;
1669
1670 /*
1671 * Grab a free request. This is might sleep but can not fail.
1672 * Returns with the queue unlocked.
1673 */
1674 req = get_request(q, rw_flags, bio, GFP_NOIO);
1675 if (IS_ERR(req)) {
1676 bio_endio(bio, PTR_ERR(req)); /* @q is dead */
1677 goto out_unlock;
1678 }
1679
1680 /*
1681 * After dropping the lock and possibly sleeping here, our request
1682 * may now be mergeable after it had proven unmergeable (above).
1683 * We don't worry about that case for efficiency. It won't happen
1684 * often, and the elevators are able to handle it.
1685 */
1686 init_request_from_bio(req, bio);
1687
1688 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1689 req->cpu = raw_smp_processor_id();
1690
1691 plug = current->plug;
1692 if (plug) {
1693 /*
1694 * If this is the first request added after a plug, fire
1695 * of a plug trace.
1696 */
1697 if (!request_count)
1698 trace_block_plug(q);
1699 else {
1700 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1701 blk_flush_plug_list(plug, false);
1702 trace_block_plug(q);
1703 }
1704 }
1705 list_add_tail(&req->queuelist, &plug->list);
1706 blk_account_io_start(req, true);
1707 } else {
1708 spin_lock_irq(q->queue_lock);
1709 add_acct_request(q, req, where);
1710 __blk_run_queue(q);
1711 out_unlock:
1712 spin_unlock_irq(q->queue_lock);
1713 }
1714 }
1715
1716 /*
1717 * If bio->bi_dev is a partition, remap the location
1718 */
1719 static inline void blk_partition_remap(struct bio *bio)
1720 {
1721 struct block_device *bdev = bio->bi_bdev;
1722
1723 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1724 struct hd_struct *p = bdev->bd_part;
1725
1726 bio->bi_iter.bi_sector += p->start_sect;
1727 bio->bi_bdev = bdev->bd_contains;
1728
1729 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1730 bdev->bd_dev,
1731 bio->bi_iter.bi_sector - p->start_sect);
1732 }
1733 }
1734
1735 static void handle_bad_sector(struct bio *bio)
1736 {
1737 char b[BDEVNAME_SIZE];
1738
1739 printk(KERN_INFO "attempt to access beyond end of device\n");
1740 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1741 bdevname(bio->bi_bdev, b),
1742 bio->bi_rw,
1743 (unsigned long long)bio_end_sector(bio),
1744 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1745 }
1746
1747 #ifdef CONFIG_FAIL_MAKE_REQUEST
1748
1749 static DECLARE_FAULT_ATTR(fail_make_request);
1750
1751 static int __init setup_fail_make_request(char *str)
1752 {
1753 return setup_fault_attr(&fail_make_request, str);
1754 }
1755 __setup("fail_make_request=", setup_fail_make_request);
1756
1757 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1758 {
1759 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1760 }
1761
1762 static int __init fail_make_request_debugfs(void)
1763 {
1764 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1765 NULL, &fail_make_request);
1766
1767 return PTR_ERR_OR_ZERO(dir);
1768 }
1769
1770 late_initcall(fail_make_request_debugfs);
1771
1772 #else /* CONFIG_FAIL_MAKE_REQUEST */
1773
1774 static inline bool should_fail_request(struct hd_struct *part,
1775 unsigned int bytes)
1776 {
1777 return false;
1778 }
1779
1780 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1781
1782 /*
1783 * Check whether this bio extends beyond the end of the device.
1784 */
1785 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1786 {
1787 sector_t maxsector;
1788
1789 if (!nr_sectors)
1790 return 0;
1791
1792 /* Test device or partition size, when known. */
1793 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1794 if (maxsector) {
1795 sector_t sector = bio->bi_iter.bi_sector;
1796
1797 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1798 /*
1799 * This may well happen - the kernel calls bread()
1800 * without checking the size of the device, e.g., when
1801 * mounting a device.
1802 */
1803 handle_bad_sector(bio);
1804 return 1;
1805 }
1806 }
1807
1808 return 0;
1809 }
1810
1811 static noinline_for_stack bool
1812 generic_make_request_checks(struct bio *bio)
1813 {
1814 struct request_queue *q;
1815 int nr_sectors = bio_sectors(bio);
1816 int err = -EIO;
1817 char b[BDEVNAME_SIZE];
1818 struct hd_struct *part;
1819
1820 might_sleep();
1821
1822 if (bio_check_eod(bio, nr_sectors))
1823 goto end_io;
1824
1825 q = bdev_get_queue(bio->bi_bdev);
1826 if (unlikely(!q)) {
1827 printk(KERN_ERR
1828 "generic_make_request: Trying to access "
1829 "nonexistent block-device %s (%Lu)\n",
1830 bdevname(bio->bi_bdev, b),
1831 (long long) bio->bi_iter.bi_sector);
1832 goto end_io;
1833 }
1834
1835 if (likely(bio_is_rw(bio) &&
1836 nr_sectors > queue_max_hw_sectors(q))) {
1837 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1838 bdevname(bio->bi_bdev, b),
1839 bio_sectors(bio),
1840 queue_max_hw_sectors(q));
1841 goto end_io;
1842 }
1843
1844 part = bio->bi_bdev->bd_part;
1845 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1846 should_fail_request(&part_to_disk(part)->part0,
1847 bio->bi_iter.bi_size))
1848 goto end_io;
1849
1850 /*
1851 * If this device has partitions, remap block n
1852 * of partition p to block n+start(p) of the disk.
1853 */
1854 blk_partition_remap(bio);
1855
1856 if (bio_check_eod(bio, nr_sectors))
1857 goto end_io;
1858
1859 /*
1860 * Filter flush bio's early so that make_request based
1861 * drivers without flush support don't have to worry
1862 * about them.
1863 */
1864 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1865 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1866 if (!nr_sectors) {
1867 err = 0;
1868 goto end_io;
1869 }
1870 }
1871
1872 if ((bio->bi_rw & REQ_DISCARD) &&
1873 (!blk_queue_discard(q) ||
1874 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1875 err = -EOPNOTSUPP;
1876 goto end_io;
1877 }
1878
1879 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1880 err = -EOPNOTSUPP;
1881 goto end_io;
1882 }
1883
1884 /*
1885 * Various block parts want %current->io_context and lazy ioc
1886 * allocation ends up trading a lot of pain for a small amount of
1887 * memory. Just allocate it upfront. This may fail and block
1888 * layer knows how to live with it.
1889 */
1890 create_io_context(GFP_ATOMIC, q->node);
1891
1892 if (blk_throtl_bio(q, bio))
1893 return false; /* throttled, will be resubmitted later */
1894
1895 trace_block_bio_queue(q, bio);
1896 return true;
1897
1898 end_io:
1899 bio_endio(bio, err);
1900 return false;
1901 }
1902
1903 /**
1904 * generic_make_request - hand a buffer to its device driver for I/O
1905 * @bio: The bio describing the location in memory and on the device.
1906 *
1907 * generic_make_request() is used to make I/O requests of block
1908 * devices. It is passed a &struct bio, which describes the I/O that needs
1909 * to be done.
1910 *
1911 * generic_make_request() does not return any status. The
1912 * success/failure status of the request, along with notification of
1913 * completion, is delivered asynchronously through the bio->bi_end_io
1914 * function described (one day) else where.
1915 *
1916 * The caller of generic_make_request must make sure that bi_io_vec
1917 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1918 * set to describe the device address, and the
1919 * bi_end_io and optionally bi_private are set to describe how
1920 * completion notification should be signaled.
1921 *
1922 * generic_make_request and the drivers it calls may use bi_next if this
1923 * bio happens to be merged with someone else, and may resubmit the bio to
1924 * a lower device by calling into generic_make_request recursively, which
1925 * means the bio should NOT be touched after the call to ->make_request_fn.
1926 */
1927 void generic_make_request(struct bio *bio)
1928 {
1929 struct bio_list bio_list_on_stack;
1930
1931 if (!generic_make_request_checks(bio))
1932 return;
1933
1934 /*
1935 * We only want one ->make_request_fn to be active at a time, else
1936 * stack usage with stacked devices could be a problem. So use
1937 * current->bio_list to keep a list of requests submited by a
1938 * make_request_fn function. current->bio_list is also used as a
1939 * flag to say if generic_make_request is currently active in this
1940 * task or not. If it is NULL, then no make_request is active. If
1941 * it is non-NULL, then a make_request is active, and new requests
1942 * should be added at the tail
1943 */
1944 if (current->bio_list) {
1945 bio_list_add(current->bio_list, bio);
1946 return;
1947 }
1948
1949 /* following loop may be a bit non-obvious, and so deserves some
1950 * explanation.
1951 * Before entering the loop, bio->bi_next is NULL (as all callers
1952 * ensure that) so we have a list with a single bio.
1953 * We pretend that we have just taken it off a longer list, so
1954 * we assign bio_list to a pointer to the bio_list_on_stack,
1955 * thus initialising the bio_list of new bios to be
1956 * added. ->make_request() may indeed add some more bios
1957 * through a recursive call to generic_make_request. If it
1958 * did, we find a non-NULL value in bio_list and re-enter the loop
1959 * from the top. In this case we really did just take the bio
1960 * of the top of the list (no pretending) and so remove it from
1961 * bio_list, and call into ->make_request() again.
1962 */
1963 BUG_ON(bio->bi_next);
1964 bio_list_init(&bio_list_on_stack);
1965 current->bio_list = &bio_list_on_stack;
1966 do {
1967 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1968
1969 q->make_request_fn(q, bio);
1970
1971 bio = bio_list_pop(current->bio_list);
1972 } while (bio);
1973 current->bio_list = NULL; /* deactivate */
1974 }
1975 EXPORT_SYMBOL(generic_make_request);
1976
1977 /**
1978 * submit_bio - submit a bio to the block device layer for I/O
1979 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1980 * @bio: The &struct bio which describes the I/O
1981 *
1982 * submit_bio() is very similar in purpose to generic_make_request(), and
1983 * uses that function to do most of the work. Both are fairly rough
1984 * interfaces; @bio must be presetup and ready for I/O.
1985 *
1986 */
1987 void submit_bio(int rw, struct bio *bio)
1988 {
1989 bio->bi_rw |= rw;
1990
1991 /*
1992 * If it's a regular read/write or a barrier with data attached,
1993 * go through the normal accounting stuff before submission.
1994 */
1995 if (bio_has_data(bio)) {
1996 unsigned int count;
1997
1998 if (unlikely(rw & REQ_WRITE_SAME))
1999 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2000 else
2001 count = bio_sectors(bio);
2002
2003 if (rw & WRITE) {
2004 count_vm_events(PGPGOUT, count);
2005 } else {
2006 task_io_account_read(bio->bi_iter.bi_size);
2007 count_vm_events(PGPGIN, count);
2008 }
2009
2010 if (unlikely(block_dump)) {
2011 char b[BDEVNAME_SIZE];
2012 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2013 current->comm, task_pid_nr(current),
2014 (rw & WRITE) ? "WRITE" : "READ",
2015 (unsigned long long)bio->bi_iter.bi_sector,
2016 bdevname(bio->bi_bdev, b),
2017 count);
2018 }
2019 }
2020
2021 generic_make_request(bio);
2022 }
2023 EXPORT_SYMBOL(submit_bio);
2024
2025 /**
2026 * blk_rq_check_limits - Helper function to check a request for the queue limit
2027 * @q: the queue
2028 * @rq: the request being checked
2029 *
2030 * Description:
2031 * @rq may have been made based on weaker limitations of upper-level queues
2032 * in request stacking drivers, and it may violate the limitation of @q.
2033 * Since the block layer and the underlying device driver trust @rq
2034 * after it is inserted to @q, it should be checked against @q before
2035 * the insertion using this generic function.
2036 *
2037 * This function should also be useful for request stacking drivers
2038 * in some cases below, so export this function.
2039 * Request stacking drivers like request-based dm may change the queue
2040 * limits while requests are in the queue (e.g. dm's table swapping).
2041 * Such request stacking drivers should check those requests against
2042 * the new queue limits again when they dispatch those requests,
2043 * although such checkings are also done against the old queue limits
2044 * when submitting requests.
2045 */
2046 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2047 {
2048 if (!rq_mergeable(rq))
2049 return 0;
2050
2051 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2052 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2053 return -EIO;
2054 }
2055
2056 /*
2057 * queue's settings related to segment counting like q->bounce_pfn
2058 * may differ from that of other stacking queues.
2059 * Recalculate it to check the request correctly on this queue's
2060 * limitation.
2061 */
2062 blk_recalc_rq_segments(rq);
2063 if (rq->nr_phys_segments > queue_max_segments(q)) {
2064 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2065 return -EIO;
2066 }
2067
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2071
2072 /**
2073 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2074 * @q: the queue to submit the request
2075 * @rq: the request being queued
2076 */
2077 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2078 {
2079 unsigned long flags;
2080 int where = ELEVATOR_INSERT_BACK;
2081
2082 if (blk_rq_check_limits(q, rq))
2083 return -EIO;
2084
2085 if (rq->rq_disk &&
2086 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2087 return -EIO;
2088
2089 if (q->mq_ops) {
2090 if (blk_queue_io_stat(q))
2091 blk_account_io_start(rq, true);
2092 blk_mq_insert_request(rq, false, true, true);
2093 return 0;
2094 }
2095
2096 spin_lock_irqsave(q->queue_lock, flags);
2097 if (unlikely(blk_queue_dying(q))) {
2098 spin_unlock_irqrestore(q->queue_lock, flags);
2099 return -ENODEV;
2100 }
2101
2102 /*
2103 * Submitting request must be dequeued before calling this function
2104 * because it will be linked to another request_queue
2105 */
2106 BUG_ON(blk_queued_rq(rq));
2107
2108 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2109 where = ELEVATOR_INSERT_FLUSH;
2110
2111 add_acct_request(q, rq, where);
2112 if (where == ELEVATOR_INSERT_FLUSH)
2113 __blk_run_queue(q);
2114 spin_unlock_irqrestore(q->queue_lock, flags);
2115
2116 return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2119
2120 /**
2121 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2122 * @rq: request to examine
2123 *
2124 * Description:
2125 * A request could be merge of IOs which require different failure
2126 * handling. This function determines the number of bytes which
2127 * can be failed from the beginning of the request without
2128 * crossing into area which need to be retried further.
2129 *
2130 * Return:
2131 * The number of bytes to fail.
2132 *
2133 * Context:
2134 * queue_lock must be held.
2135 */
2136 unsigned int blk_rq_err_bytes(const struct request *rq)
2137 {
2138 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2139 unsigned int bytes = 0;
2140 struct bio *bio;
2141
2142 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2143 return blk_rq_bytes(rq);
2144
2145 /*
2146 * Currently the only 'mixing' which can happen is between
2147 * different fastfail types. We can safely fail portions
2148 * which have all the failfast bits that the first one has -
2149 * the ones which are at least as eager to fail as the first
2150 * one.
2151 */
2152 for (bio = rq->bio; bio; bio = bio->bi_next) {
2153 if ((bio->bi_rw & ff) != ff)
2154 break;
2155 bytes += bio->bi_iter.bi_size;
2156 }
2157
2158 /* this could lead to infinite loop */
2159 BUG_ON(blk_rq_bytes(rq) && !bytes);
2160 return bytes;
2161 }
2162 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2163
2164 void blk_account_io_completion(struct request *req, unsigned int bytes)
2165 {
2166 if (blk_do_io_stat(req)) {
2167 const int rw = rq_data_dir(req);
2168 struct hd_struct *part;
2169 int cpu;
2170
2171 cpu = part_stat_lock();
2172 part = req->part;
2173 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2174 part_stat_unlock();
2175 }
2176 }
2177
2178 void blk_account_io_done(struct request *req)
2179 {
2180 /*
2181 * Account IO completion. flush_rq isn't accounted as a
2182 * normal IO on queueing nor completion. Accounting the
2183 * containing request is enough.
2184 */
2185 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2186 unsigned long duration = jiffies - req->start_time;
2187 const int rw = rq_data_dir(req);
2188 struct hd_struct *part;
2189 int cpu;
2190
2191 cpu = part_stat_lock();
2192 part = req->part;
2193
2194 part_stat_inc(cpu, part, ios[rw]);
2195 part_stat_add(cpu, part, ticks[rw], duration);
2196 part_round_stats(cpu, part);
2197 part_dec_in_flight(part, rw);
2198
2199 hd_struct_put(part);
2200 part_stat_unlock();
2201 }
2202 }
2203
2204 #ifdef CONFIG_PM
2205 /*
2206 * Don't process normal requests when queue is suspended
2207 * or in the process of suspending/resuming
2208 */
2209 static struct request *blk_pm_peek_request(struct request_queue *q,
2210 struct request *rq)
2211 {
2212 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2213 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2214 return NULL;
2215 else
2216 return rq;
2217 }
2218 #else
2219 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2220 struct request *rq)
2221 {
2222 return rq;
2223 }
2224 #endif
2225
2226 void blk_account_io_start(struct request *rq, bool new_io)
2227 {
2228 struct hd_struct *part;
2229 int rw = rq_data_dir(rq);
2230 int cpu;
2231
2232 if (!blk_do_io_stat(rq))
2233 return;
2234
2235 cpu = part_stat_lock();
2236
2237 if (!new_io) {
2238 part = rq->part;
2239 part_stat_inc(cpu, part, merges[rw]);
2240 } else {
2241 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2242 if (!hd_struct_try_get(part)) {
2243 /*
2244 * The partition is already being removed,
2245 * the request will be accounted on the disk only
2246 *
2247 * We take a reference on disk->part0 although that
2248 * partition will never be deleted, so we can treat
2249 * it as any other partition.
2250 */
2251 part = &rq->rq_disk->part0;
2252 hd_struct_get(part);
2253 }
2254 part_round_stats(cpu, part);
2255 part_inc_in_flight(part, rw);
2256 rq->part = part;
2257 }
2258
2259 part_stat_unlock();
2260 }
2261
2262 /**
2263 * blk_peek_request - peek at the top of a request queue
2264 * @q: request queue to peek at
2265 *
2266 * Description:
2267 * Return the request at the top of @q. The returned request
2268 * should be started using blk_start_request() before LLD starts
2269 * processing it.
2270 *
2271 * Return:
2272 * Pointer to the request at the top of @q if available. Null
2273 * otherwise.
2274 *
2275 * Context:
2276 * queue_lock must be held.
2277 */
2278 struct request *blk_peek_request(struct request_queue *q)
2279 {
2280 struct request *rq;
2281 int ret;
2282
2283 while ((rq = __elv_next_request(q)) != NULL) {
2284
2285 rq = blk_pm_peek_request(q, rq);
2286 if (!rq)
2287 break;
2288
2289 if (!(rq->cmd_flags & REQ_STARTED)) {
2290 /*
2291 * This is the first time the device driver
2292 * sees this request (possibly after
2293 * requeueing). Notify IO scheduler.
2294 */
2295 if (rq->cmd_flags & REQ_SORTED)
2296 elv_activate_rq(q, rq);
2297
2298 /*
2299 * just mark as started even if we don't start
2300 * it, a request that has been delayed should
2301 * not be passed by new incoming requests
2302 */
2303 rq->cmd_flags |= REQ_STARTED;
2304 trace_block_rq_issue(q, rq);
2305 }
2306
2307 if (!q->boundary_rq || q->boundary_rq == rq) {
2308 q->end_sector = rq_end_sector(rq);
2309 q->boundary_rq = NULL;
2310 }
2311
2312 if (rq->cmd_flags & REQ_DONTPREP)
2313 break;
2314
2315 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2316 /*
2317 * make sure space for the drain appears we
2318 * know we can do this because max_hw_segments
2319 * has been adjusted to be one fewer than the
2320 * device can handle
2321 */
2322 rq->nr_phys_segments++;
2323 }
2324
2325 if (!q->prep_rq_fn)
2326 break;
2327
2328 ret = q->prep_rq_fn(q, rq);
2329 if (ret == BLKPREP_OK) {
2330 break;
2331 } else if (ret == BLKPREP_DEFER) {
2332 /*
2333 * the request may have been (partially) prepped.
2334 * we need to keep this request in the front to
2335 * avoid resource deadlock. REQ_STARTED will
2336 * prevent other fs requests from passing this one.
2337 */
2338 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2339 !(rq->cmd_flags & REQ_DONTPREP)) {
2340 /*
2341 * remove the space for the drain we added
2342 * so that we don't add it again
2343 */
2344 --rq->nr_phys_segments;
2345 }
2346
2347 rq = NULL;
2348 break;
2349 } else if (ret == BLKPREP_KILL) {
2350 rq->cmd_flags |= REQ_QUIET;
2351 /*
2352 * Mark this request as started so we don't trigger
2353 * any debug logic in the end I/O path.
2354 */
2355 blk_start_request(rq);
2356 __blk_end_request_all(rq, -EIO);
2357 } else {
2358 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2359 break;
2360 }
2361 }
2362
2363 return rq;
2364 }
2365 EXPORT_SYMBOL(blk_peek_request);
2366
2367 void blk_dequeue_request(struct request *rq)
2368 {
2369 struct request_queue *q = rq->q;
2370
2371 BUG_ON(list_empty(&rq->queuelist));
2372 BUG_ON(ELV_ON_HASH(rq));
2373
2374 list_del_init(&rq->queuelist);
2375
2376 /*
2377 * the time frame between a request being removed from the lists
2378 * and to it is freed is accounted as io that is in progress at
2379 * the driver side.
2380 */
2381 if (blk_account_rq(rq)) {
2382 q->in_flight[rq_is_sync(rq)]++;
2383 set_io_start_time_ns(rq);
2384 }
2385 }
2386
2387 /**
2388 * blk_start_request - start request processing on the driver
2389 * @req: request to dequeue
2390 *
2391 * Description:
2392 * Dequeue @req and start timeout timer on it. This hands off the
2393 * request to the driver.
2394 *
2395 * Block internal functions which don't want to start timer should
2396 * call blk_dequeue_request().
2397 *
2398 * Context:
2399 * queue_lock must be held.
2400 */
2401 void blk_start_request(struct request *req)
2402 {
2403 blk_dequeue_request(req);
2404
2405 /*
2406 * We are now handing the request to the hardware, initialize
2407 * resid_len to full count and add the timeout handler.
2408 */
2409 req->resid_len = blk_rq_bytes(req);
2410 if (unlikely(blk_bidi_rq(req)))
2411 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2412
2413 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2414 blk_add_timer(req);
2415 }
2416 EXPORT_SYMBOL(blk_start_request);
2417
2418 /**
2419 * blk_fetch_request - fetch a request from a request queue
2420 * @q: request queue to fetch a request from
2421 *
2422 * Description:
2423 * Return the request at the top of @q. The request is started on
2424 * return and LLD can start processing it immediately.
2425 *
2426 * Return:
2427 * Pointer to the request at the top of @q if available. Null
2428 * otherwise.
2429 *
2430 * Context:
2431 * queue_lock must be held.
2432 */
2433 struct request *blk_fetch_request(struct request_queue *q)
2434 {
2435 struct request *rq;
2436
2437 rq = blk_peek_request(q);
2438 if (rq)
2439 blk_start_request(rq);
2440 return rq;
2441 }
2442 EXPORT_SYMBOL(blk_fetch_request);
2443
2444 /**
2445 * blk_update_request - Special helper function for request stacking drivers
2446 * @req: the request being processed
2447 * @error: %0 for success, < %0 for error
2448 * @nr_bytes: number of bytes to complete @req
2449 *
2450 * Description:
2451 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2452 * the request structure even if @req doesn't have leftover.
2453 * If @req has leftover, sets it up for the next range of segments.
2454 *
2455 * This special helper function is only for request stacking drivers
2456 * (e.g. request-based dm) so that they can handle partial completion.
2457 * Actual device drivers should use blk_end_request instead.
2458 *
2459 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2460 * %false return from this function.
2461 *
2462 * Return:
2463 * %false - this request doesn't have any more data
2464 * %true - this request has more data
2465 **/
2466 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2467 {
2468 int total_bytes;
2469
2470 trace_block_rq_complete(req->q, req, nr_bytes);
2471
2472 if (!req->bio)
2473 return false;
2474
2475 /*
2476 * For fs requests, rq is just carrier of independent bio's
2477 * and each partial completion should be handled separately.
2478 * Reset per-request error on each partial completion.
2479 *
2480 * TODO: tj: This is too subtle. It would be better to let
2481 * low level drivers do what they see fit.
2482 */
2483 if (req->cmd_type == REQ_TYPE_FS)
2484 req->errors = 0;
2485
2486 if (error && req->cmd_type == REQ_TYPE_FS &&
2487 !(req->cmd_flags & REQ_QUIET)) {
2488 char *error_type;
2489
2490 switch (error) {
2491 case -ENOLINK:
2492 error_type = "recoverable transport";
2493 break;
2494 case -EREMOTEIO:
2495 error_type = "critical target";
2496 break;
2497 case -EBADE:
2498 error_type = "critical nexus";
2499 break;
2500 case -ETIMEDOUT:
2501 error_type = "timeout";
2502 break;
2503 case -ENOSPC:
2504 error_type = "critical space allocation";
2505 break;
2506 case -ENODATA:
2507 error_type = "critical medium";
2508 break;
2509 case -EIO:
2510 default:
2511 error_type = "I/O";
2512 break;
2513 }
2514 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2515 __func__, error_type, req->rq_disk ?
2516 req->rq_disk->disk_name : "?",
2517 (unsigned long long)blk_rq_pos(req));
2518
2519 }
2520
2521 blk_account_io_completion(req, nr_bytes);
2522
2523 total_bytes = 0;
2524 while (req->bio) {
2525 struct bio *bio = req->bio;
2526 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2527
2528 if (bio_bytes == bio->bi_iter.bi_size)
2529 req->bio = bio->bi_next;
2530
2531 req_bio_endio(req, bio, bio_bytes, error);
2532
2533 total_bytes += bio_bytes;
2534 nr_bytes -= bio_bytes;
2535
2536 if (!nr_bytes)
2537 break;
2538 }
2539
2540 /*
2541 * completely done
2542 */
2543 if (!req->bio) {
2544 /*
2545 * Reset counters so that the request stacking driver
2546 * can find how many bytes remain in the request
2547 * later.
2548 */
2549 req->__data_len = 0;
2550 return false;
2551 }
2552
2553 req->__data_len -= total_bytes;
2554
2555 /* update sector only for requests with clear definition of sector */
2556 if (req->cmd_type == REQ_TYPE_FS)
2557 req->__sector += total_bytes >> 9;
2558
2559 /* mixed attributes always follow the first bio */
2560 if (req->cmd_flags & REQ_MIXED_MERGE) {
2561 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2562 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2563 }
2564
2565 /*
2566 * If total number of sectors is less than the first segment
2567 * size, something has gone terribly wrong.
2568 */
2569 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2570 blk_dump_rq_flags(req, "request botched");
2571 req->__data_len = blk_rq_cur_bytes(req);
2572 }
2573
2574 /* recalculate the number of segments */
2575 blk_recalc_rq_segments(req);
2576
2577 return true;
2578 }
2579 EXPORT_SYMBOL_GPL(blk_update_request);
2580
2581 static bool blk_update_bidi_request(struct request *rq, int error,
2582 unsigned int nr_bytes,
2583 unsigned int bidi_bytes)
2584 {
2585 if (blk_update_request(rq, error, nr_bytes))
2586 return true;
2587
2588 /* Bidi request must be completed as a whole */
2589 if (unlikely(blk_bidi_rq(rq)) &&
2590 blk_update_request(rq->next_rq, error, bidi_bytes))
2591 return true;
2592
2593 if (blk_queue_add_random(rq->q))
2594 add_disk_randomness(rq->rq_disk);
2595
2596 return false;
2597 }
2598
2599 /**
2600 * blk_unprep_request - unprepare a request
2601 * @req: the request
2602 *
2603 * This function makes a request ready for complete resubmission (or
2604 * completion). It happens only after all error handling is complete,
2605 * so represents the appropriate moment to deallocate any resources
2606 * that were allocated to the request in the prep_rq_fn. The queue
2607 * lock is held when calling this.
2608 */
2609 void blk_unprep_request(struct request *req)
2610 {
2611 struct request_queue *q = req->q;
2612
2613 req->cmd_flags &= ~REQ_DONTPREP;
2614 if (q->unprep_rq_fn)
2615 q->unprep_rq_fn(q, req);
2616 }
2617 EXPORT_SYMBOL_GPL(blk_unprep_request);
2618
2619 /*
2620 * queue lock must be held
2621 */
2622 void blk_finish_request(struct request *req, int error)
2623 {
2624 if (req->cmd_flags & REQ_QUEUED)
2625 blk_queue_end_tag(req->q, req);
2626
2627 BUG_ON(blk_queued_rq(req));
2628
2629 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2630 laptop_io_completion(&req->q->backing_dev_info);
2631
2632 blk_delete_timer(req);
2633
2634 if (req->cmd_flags & REQ_DONTPREP)
2635 blk_unprep_request(req);
2636
2637 blk_account_io_done(req);
2638
2639 if (req->end_io)
2640 req->end_io(req, error);
2641 else {
2642 if (blk_bidi_rq(req))
2643 __blk_put_request(req->next_rq->q, req->next_rq);
2644
2645 __blk_put_request(req->q, req);
2646 }
2647 }
2648 EXPORT_SYMBOL(blk_finish_request);
2649
2650 /**
2651 * blk_end_bidi_request - Complete a bidi request
2652 * @rq: the request to complete
2653 * @error: %0 for success, < %0 for error
2654 * @nr_bytes: number of bytes to complete @rq
2655 * @bidi_bytes: number of bytes to complete @rq->next_rq
2656 *
2657 * Description:
2658 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2659 * Drivers that supports bidi can safely call this member for any
2660 * type of request, bidi or uni. In the later case @bidi_bytes is
2661 * just ignored.
2662 *
2663 * Return:
2664 * %false - we are done with this request
2665 * %true - still buffers pending for this request
2666 **/
2667 static bool blk_end_bidi_request(struct request *rq, int error,
2668 unsigned int nr_bytes, unsigned int bidi_bytes)
2669 {
2670 struct request_queue *q = rq->q;
2671 unsigned long flags;
2672
2673 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2674 return true;
2675
2676 spin_lock_irqsave(q->queue_lock, flags);
2677 blk_finish_request(rq, error);
2678 spin_unlock_irqrestore(q->queue_lock, flags);
2679
2680 return false;
2681 }
2682
2683 /**
2684 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2685 * @rq: the request to complete
2686 * @error: %0 for success, < %0 for error
2687 * @nr_bytes: number of bytes to complete @rq
2688 * @bidi_bytes: number of bytes to complete @rq->next_rq
2689 *
2690 * Description:
2691 * Identical to blk_end_bidi_request() except that queue lock is
2692 * assumed to be locked on entry and remains so on return.
2693 *
2694 * Return:
2695 * %false - we are done with this request
2696 * %true - still buffers pending for this request
2697 **/
2698 bool __blk_end_bidi_request(struct request *rq, int error,
2699 unsigned int nr_bytes, unsigned int bidi_bytes)
2700 {
2701 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2702 return true;
2703
2704 blk_finish_request(rq, error);
2705
2706 return false;
2707 }
2708
2709 /**
2710 * blk_end_request - Helper function for drivers to complete the request.
2711 * @rq: the request being processed
2712 * @error: %0 for success, < %0 for error
2713 * @nr_bytes: number of bytes to complete
2714 *
2715 * Description:
2716 * Ends I/O on a number of bytes attached to @rq.
2717 * If @rq has leftover, sets it up for the next range of segments.
2718 *
2719 * Return:
2720 * %false - we are done with this request
2721 * %true - still buffers pending for this request
2722 **/
2723 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2724 {
2725 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2726 }
2727 EXPORT_SYMBOL(blk_end_request);
2728
2729 /**
2730 * blk_end_request_all - Helper function for drives to finish the request.
2731 * @rq: the request to finish
2732 * @error: %0 for success, < %0 for error
2733 *
2734 * Description:
2735 * Completely finish @rq.
2736 */
2737 void blk_end_request_all(struct request *rq, int error)
2738 {
2739 bool pending;
2740 unsigned int bidi_bytes = 0;
2741
2742 if (unlikely(blk_bidi_rq(rq)))
2743 bidi_bytes = blk_rq_bytes(rq->next_rq);
2744
2745 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2746 BUG_ON(pending);
2747 }
2748 EXPORT_SYMBOL(blk_end_request_all);
2749
2750 /**
2751 * blk_end_request_cur - Helper function to finish the current request chunk.
2752 * @rq: the request to finish the current chunk for
2753 * @error: %0 for success, < %0 for error
2754 *
2755 * Description:
2756 * Complete the current consecutively mapped chunk from @rq.
2757 *
2758 * Return:
2759 * %false - we are done with this request
2760 * %true - still buffers pending for this request
2761 */
2762 bool blk_end_request_cur(struct request *rq, int error)
2763 {
2764 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2765 }
2766 EXPORT_SYMBOL(blk_end_request_cur);
2767
2768 /**
2769 * blk_end_request_err - Finish a request till the next failure boundary.
2770 * @rq: the request to finish till the next failure boundary for
2771 * @error: must be negative errno
2772 *
2773 * Description:
2774 * Complete @rq till the next failure boundary.
2775 *
2776 * Return:
2777 * %false - we are done with this request
2778 * %true - still buffers pending for this request
2779 */
2780 bool blk_end_request_err(struct request *rq, int error)
2781 {
2782 WARN_ON(error >= 0);
2783 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2784 }
2785 EXPORT_SYMBOL_GPL(blk_end_request_err);
2786
2787 /**
2788 * __blk_end_request - Helper function for drivers to complete the request.
2789 * @rq: the request being processed
2790 * @error: %0 for success, < %0 for error
2791 * @nr_bytes: number of bytes to complete
2792 *
2793 * Description:
2794 * Must be called with queue lock held unlike blk_end_request().
2795 *
2796 * Return:
2797 * %false - we are done with this request
2798 * %true - still buffers pending for this request
2799 **/
2800 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2801 {
2802 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2803 }
2804 EXPORT_SYMBOL(__blk_end_request);
2805
2806 /**
2807 * __blk_end_request_all - Helper function for drives to finish the request.
2808 * @rq: the request to finish
2809 * @error: %0 for success, < %0 for error
2810 *
2811 * Description:
2812 * Completely finish @rq. Must be called with queue lock held.
2813 */
2814 void __blk_end_request_all(struct request *rq, int error)
2815 {
2816 bool pending;
2817 unsigned int bidi_bytes = 0;
2818
2819 if (unlikely(blk_bidi_rq(rq)))
2820 bidi_bytes = blk_rq_bytes(rq->next_rq);
2821
2822 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2823 BUG_ON(pending);
2824 }
2825 EXPORT_SYMBOL(__blk_end_request_all);
2826
2827 /**
2828 * __blk_end_request_cur - Helper function to finish the current request chunk.
2829 * @rq: the request to finish the current chunk for
2830 * @error: %0 for success, < %0 for error
2831 *
2832 * Description:
2833 * Complete the current consecutively mapped chunk from @rq. Must
2834 * be called with queue lock held.
2835 *
2836 * Return:
2837 * %false - we are done with this request
2838 * %true - still buffers pending for this request
2839 */
2840 bool __blk_end_request_cur(struct request *rq, int error)
2841 {
2842 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2843 }
2844 EXPORT_SYMBOL(__blk_end_request_cur);
2845
2846 /**
2847 * __blk_end_request_err - Finish a request till the next failure boundary.
2848 * @rq: the request to finish till the next failure boundary for
2849 * @error: must be negative errno
2850 *
2851 * Description:
2852 * Complete @rq till the next failure boundary. Must be called
2853 * with queue lock held.
2854 *
2855 * Return:
2856 * %false - we are done with this request
2857 * %true - still buffers pending for this request
2858 */
2859 bool __blk_end_request_err(struct request *rq, int error)
2860 {
2861 WARN_ON(error >= 0);
2862 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2863 }
2864 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2865
2866 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2867 struct bio *bio)
2868 {
2869 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2870 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2871
2872 if (bio_has_data(bio))
2873 rq->nr_phys_segments = bio_phys_segments(q, bio);
2874
2875 rq->__data_len = bio->bi_iter.bi_size;
2876 rq->bio = rq->biotail = bio;
2877
2878 if (bio->bi_bdev)
2879 rq->rq_disk = bio->bi_bdev->bd_disk;
2880 }
2881
2882 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2883 /**
2884 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2885 * @rq: the request to be flushed
2886 *
2887 * Description:
2888 * Flush all pages in @rq.
2889 */
2890 void rq_flush_dcache_pages(struct request *rq)
2891 {
2892 struct req_iterator iter;
2893 struct bio_vec bvec;
2894
2895 rq_for_each_segment(bvec, rq, iter)
2896 flush_dcache_page(bvec.bv_page);
2897 }
2898 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2899 #endif
2900
2901 /**
2902 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2903 * @q : the queue of the device being checked
2904 *
2905 * Description:
2906 * Check if underlying low-level drivers of a device are busy.
2907 * If the drivers want to export their busy state, they must set own
2908 * exporting function using blk_queue_lld_busy() first.
2909 *
2910 * Basically, this function is used only by request stacking drivers
2911 * to stop dispatching requests to underlying devices when underlying
2912 * devices are busy. This behavior helps more I/O merging on the queue
2913 * of the request stacking driver and prevents I/O throughput regression
2914 * on burst I/O load.
2915 *
2916 * Return:
2917 * 0 - Not busy (The request stacking driver should dispatch request)
2918 * 1 - Busy (The request stacking driver should stop dispatching request)
2919 */
2920 int blk_lld_busy(struct request_queue *q)
2921 {
2922 if (q->lld_busy_fn)
2923 return q->lld_busy_fn(q);
2924
2925 return 0;
2926 }
2927 EXPORT_SYMBOL_GPL(blk_lld_busy);
2928
2929 /**
2930 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2931 * @rq: the clone request to be cleaned up
2932 *
2933 * Description:
2934 * Free all bios in @rq for a cloned request.
2935 */
2936 void blk_rq_unprep_clone(struct request *rq)
2937 {
2938 struct bio *bio;
2939
2940 while ((bio = rq->bio) != NULL) {
2941 rq->bio = bio->bi_next;
2942
2943 bio_put(bio);
2944 }
2945 }
2946 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2947
2948 /*
2949 * Copy attributes of the original request to the clone request.
2950 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2951 */
2952 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2953 {
2954 dst->cpu = src->cpu;
2955 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2956 dst->cmd_type = src->cmd_type;
2957 dst->__sector = blk_rq_pos(src);
2958 dst->__data_len = blk_rq_bytes(src);
2959 dst->nr_phys_segments = src->nr_phys_segments;
2960 dst->ioprio = src->ioprio;
2961 dst->extra_len = src->extra_len;
2962 }
2963
2964 /**
2965 * blk_rq_prep_clone - Helper function to setup clone request
2966 * @rq: the request to be setup
2967 * @rq_src: original request to be cloned
2968 * @bs: bio_set that bios for clone are allocated from
2969 * @gfp_mask: memory allocation mask for bio
2970 * @bio_ctr: setup function to be called for each clone bio.
2971 * Returns %0 for success, non %0 for failure.
2972 * @data: private data to be passed to @bio_ctr
2973 *
2974 * Description:
2975 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2976 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2977 * are not copied, and copying such parts is the caller's responsibility.
2978 * Also, pages which the original bios are pointing to are not copied
2979 * and the cloned bios just point same pages.
2980 * So cloned bios must be completed before original bios, which means
2981 * the caller must complete @rq before @rq_src.
2982 */
2983 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2984 struct bio_set *bs, gfp_t gfp_mask,
2985 int (*bio_ctr)(struct bio *, struct bio *, void *),
2986 void *data)
2987 {
2988 struct bio *bio, *bio_src;
2989
2990 if (!bs)
2991 bs = fs_bio_set;
2992
2993 __rq_for_each_bio(bio_src, rq_src) {
2994 bio = bio_clone_fast(bio_src, gfp_mask, bs);
2995 if (!bio)
2996 goto free_and_out;
2997
2998 if (bio_ctr && bio_ctr(bio, bio_src, data))
2999 goto free_and_out;
3000
3001 if (rq->bio) {
3002 rq->biotail->bi_next = bio;
3003 rq->biotail = bio;
3004 } else
3005 rq->bio = rq->biotail = bio;
3006 }
3007
3008 __blk_rq_prep_clone(rq, rq_src);
3009
3010 return 0;
3011
3012 free_and_out:
3013 if (bio)
3014 bio_put(bio);
3015 blk_rq_unprep_clone(rq);
3016
3017 return -ENOMEM;
3018 }
3019 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3020
3021 int kblockd_schedule_work(struct work_struct *work)
3022 {
3023 return queue_work(kblockd_workqueue, work);
3024 }
3025 EXPORT_SYMBOL(kblockd_schedule_work);
3026
3027 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3028 unsigned long delay)
3029 {
3030 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3031 }
3032 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3033
3034 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3035 unsigned long delay)
3036 {
3037 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3038 }
3039 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3040
3041 /**
3042 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3043 * @plug: The &struct blk_plug that needs to be initialized
3044 *
3045 * Description:
3046 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3047 * pending I/O should the task end up blocking between blk_start_plug() and
3048 * blk_finish_plug(). This is important from a performance perspective, but
3049 * also ensures that we don't deadlock. For instance, if the task is blocking
3050 * for a memory allocation, memory reclaim could end up wanting to free a
3051 * page belonging to that request that is currently residing in our private
3052 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3053 * this kind of deadlock.
3054 */
3055 void blk_start_plug(struct blk_plug *plug)
3056 {
3057 struct task_struct *tsk = current;
3058
3059 /*
3060 * If this is a nested plug, don't actually assign it.
3061 */
3062 if (tsk->plug)
3063 return;
3064
3065 INIT_LIST_HEAD(&plug->list);
3066 INIT_LIST_HEAD(&plug->mq_list);
3067 INIT_LIST_HEAD(&plug->cb_list);
3068 /*
3069 * Store ordering should not be needed here, since a potential
3070 * preempt will imply a full memory barrier
3071 */
3072 tsk->plug = plug;
3073 }
3074 EXPORT_SYMBOL(blk_start_plug);
3075
3076 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3077 {
3078 struct request *rqa = container_of(a, struct request, queuelist);
3079 struct request *rqb = container_of(b, struct request, queuelist);
3080
3081 return !(rqa->q < rqb->q ||
3082 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3083 }
3084
3085 /*
3086 * If 'from_schedule' is true, then postpone the dispatch of requests
3087 * until a safe kblockd context. We due this to avoid accidental big
3088 * additional stack usage in driver dispatch, in places where the originally
3089 * plugger did not intend it.
3090 */
3091 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3092 bool from_schedule)
3093 __releases(q->queue_lock)
3094 {
3095 trace_block_unplug(q, depth, !from_schedule);
3096
3097 if (from_schedule)
3098 blk_run_queue_async(q);
3099 else
3100 __blk_run_queue(q);
3101 spin_unlock(q->queue_lock);
3102 }
3103
3104 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3105 {
3106 LIST_HEAD(callbacks);
3107
3108 while (!list_empty(&plug->cb_list)) {
3109 list_splice_init(&plug->cb_list, &callbacks);
3110
3111 while (!list_empty(&callbacks)) {
3112 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3113 struct blk_plug_cb,
3114 list);
3115 list_del(&cb->list);
3116 cb->callback(cb, from_schedule);
3117 }
3118 }
3119 }
3120
3121 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3122 int size)
3123 {
3124 struct blk_plug *plug = current->plug;
3125 struct blk_plug_cb *cb;
3126
3127 if (!plug)
3128 return NULL;
3129
3130 list_for_each_entry(cb, &plug->cb_list, list)
3131 if (cb->callback == unplug && cb->data == data)
3132 return cb;
3133
3134 /* Not currently on the callback list */
3135 BUG_ON(size < sizeof(*cb));
3136 cb = kzalloc(size, GFP_ATOMIC);
3137 if (cb) {
3138 cb->data = data;
3139 cb->callback = unplug;
3140 list_add(&cb->list, &plug->cb_list);
3141 }
3142 return cb;
3143 }
3144 EXPORT_SYMBOL(blk_check_plugged);
3145
3146 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3147 {
3148 struct request_queue *q;
3149 unsigned long flags;
3150 struct request *rq;
3151 LIST_HEAD(list);
3152 unsigned int depth;
3153
3154 flush_plug_callbacks(plug, from_schedule);
3155
3156 if (!list_empty(&plug->mq_list))
3157 blk_mq_flush_plug_list(plug, from_schedule);
3158
3159 if (list_empty(&plug->list))
3160 return;
3161
3162 list_splice_init(&plug->list, &list);
3163
3164 list_sort(NULL, &list, plug_rq_cmp);
3165
3166 q = NULL;
3167 depth = 0;
3168
3169 /*
3170 * Save and disable interrupts here, to avoid doing it for every
3171 * queue lock we have to take.
3172 */
3173 local_irq_save(flags);
3174 while (!list_empty(&list)) {
3175 rq = list_entry_rq(list.next);
3176 list_del_init(&rq->queuelist);
3177 BUG_ON(!rq->q);
3178 if (rq->q != q) {
3179 /*
3180 * This drops the queue lock
3181 */
3182 if (q)
3183 queue_unplugged(q, depth, from_schedule);
3184 q = rq->q;
3185 depth = 0;
3186 spin_lock(q->queue_lock);
3187 }
3188
3189 /*
3190 * Short-circuit if @q is dead
3191 */
3192 if (unlikely(blk_queue_dying(q))) {
3193 __blk_end_request_all(rq, -ENODEV);
3194 continue;
3195 }
3196
3197 /*
3198 * rq is already accounted, so use raw insert
3199 */
3200 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3201 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3202 else
3203 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3204
3205 depth++;
3206 }
3207
3208 /*
3209 * This drops the queue lock
3210 */
3211 if (q)
3212 queue_unplugged(q, depth, from_schedule);
3213
3214 local_irq_restore(flags);
3215 }
3216
3217 void blk_finish_plug(struct blk_plug *plug)
3218 {
3219 if (plug != current->plug)
3220 return;
3221 blk_flush_plug_list(plug, false);
3222
3223 current->plug = NULL;
3224 }
3225 EXPORT_SYMBOL(blk_finish_plug);
3226
3227 #ifdef CONFIG_PM
3228 /**
3229 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3230 * @q: the queue of the device
3231 * @dev: the device the queue belongs to
3232 *
3233 * Description:
3234 * Initialize runtime-PM-related fields for @q and start auto suspend for
3235 * @dev. Drivers that want to take advantage of request-based runtime PM
3236 * should call this function after @dev has been initialized, and its
3237 * request queue @q has been allocated, and runtime PM for it can not happen
3238 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3239 * cases, driver should call this function before any I/O has taken place.
3240 *
3241 * This function takes care of setting up using auto suspend for the device,
3242 * the autosuspend delay is set to -1 to make runtime suspend impossible
3243 * until an updated value is either set by user or by driver. Drivers do
3244 * not need to touch other autosuspend settings.
3245 *
3246 * The block layer runtime PM is request based, so only works for drivers
3247 * that use request as their IO unit instead of those directly use bio's.
3248 */
3249 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3250 {
3251 q->dev = dev;
3252 q->rpm_status = RPM_ACTIVE;
3253 pm_runtime_set_autosuspend_delay(q->dev, -1);
3254 pm_runtime_use_autosuspend(q->dev);
3255 }
3256 EXPORT_SYMBOL(blk_pm_runtime_init);
3257
3258 /**
3259 * blk_pre_runtime_suspend - Pre runtime suspend check
3260 * @q: the queue of the device
3261 *
3262 * Description:
3263 * This function will check if runtime suspend is allowed for the device
3264 * by examining if there are any requests pending in the queue. If there
3265 * are requests pending, the device can not be runtime suspended; otherwise,
3266 * the queue's status will be updated to SUSPENDING and the driver can
3267 * proceed to suspend the device.
3268 *
3269 * For the not allowed case, we mark last busy for the device so that
3270 * runtime PM core will try to autosuspend it some time later.
3271 *
3272 * This function should be called near the start of the device's
3273 * runtime_suspend callback.
3274 *
3275 * Return:
3276 * 0 - OK to runtime suspend the device
3277 * -EBUSY - Device should not be runtime suspended
3278 */
3279 int blk_pre_runtime_suspend(struct request_queue *q)
3280 {
3281 int ret = 0;
3282
3283 spin_lock_irq(q->queue_lock);
3284 if (q->nr_pending) {
3285 ret = -EBUSY;
3286 pm_runtime_mark_last_busy(q->dev);
3287 } else {
3288 q->rpm_status = RPM_SUSPENDING;
3289 }
3290 spin_unlock_irq(q->queue_lock);
3291 return ret;
3292 }
3293 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3294
3295 /**
3296 * blk_post_runtime_suspend - Post runtime suspend processing
3297 * @q: the queue of the device
3298 * @err: return value of the device's runtime_suspend function
3299 *
3300 * Description:
3301 * Update the queue's runtime status according to the return value of the
3302 * device's runtime suspend function and mark last busy for the device so
3303 * that PM core will try to auto suspend the device at a later time.
3304 *
3305 * This function should be called near the end of the device's
3306 * runtime_suspend callback.
3307 */
3308 void blk_post_runtime_suspend(struct request_queue *q, int err)
3309 {
3310 spin_lock_irq(q->queue_lock);
3311 if (!err) {
3312 q->rpm_status = RPM_SUSPENDED;
3313 } else {
3314 q->rpm_status = RPM_ACTIVE;
3315 pm_runtime_mark_last_busy(q->dev);
3316 }
3317 spin_unlock_irq(q->queue_lock);
3318 }
3319 EXPORT_SYMBOL(blk_post_runtime_suspend);
3320
3321 /**
3322 * blk_pre_runtime_resume - Pre runtime resume processing
3323 * @q: the queue of the device
3324 *
3325 * Description:
3326 * Update the queue's runtime status to RESUMING in preparation for the
3327 * runtime resume of the device.
3328 *
3329 * This function should be called near the start of the device's
3330 * runtime_resume callback.
3331 */
3332 void blk_pre_runtime_resume(struct request_queue *q)
3333 {
3334 spin_lock_irq(q->queue_lock);
3335 q->rpm_status = RPM_RESUMING;
3336 spin_unlock_irq(q->queue_lock);
3337 }
3338 EXPORT_SYMBOL(blk_pre_runtime_resume);
3339
3340 /**
3341 * blk_post_runtime_resume - Post runtime resume processing
3342 * @q: the queue of the device
3343 * @err: return value of the device's runtime_resume function
3344 *
3345 * Description:
3346 * Update the queue's runtime status according to the return value of the
3347 * device's runtime_resume function. If it is successfully resumed, process
3348 * the requests that are queued into the device's queue when it is resuming
3349 * and then mark last busy and initiate autosuspend for it.
3350 *
3351 * This function should be called near the end of the device's
3352 * runtime_resume callback.
3353 */
3354 void blk_post_runtime_resume(struct request_queue *q, int err)
3355 {
3356 spin_lock_irq(q->queue_lock);
3357 if (!err) {
3358 q->rpm_status = RPM_ACTIVE;
3359 __blk_run_queue(q);
3360 pm_runtime_mark_last_busy(q->dev);
3361 pm_request_autosuspend(q->dev);
3362 } else {
3363 q->rpm_status = RPM_SUSPENDED;
3364 }
3365 spin_unlock_irq(q->queue_lock);
3366 }
3367 EXPORT_SYMBOL(blk_post_runtime_resume);
3368 #endif
3369
3370 int __init blk_dev_init(void)
3371 {
3372 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3373 FIELD_SIZEOF(struct request, cmd_flags));
3374
3375 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3376 kblockd_workqueue = alloc_workqueue("kblockd",
3377 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3378 if (!kblockd_workqueue)
3379 panic("Failed to create kblockd\n");
3380
3381 request_cachep = kmem_cache_create("blkdev_requests",
3382 sizeof(struct request), 0, SLAB_PANIC, NULL);
3383
3384 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3385 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3386
3387 return 0;
3388 }