]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
Merge tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
39
40 #include "blk.h"
41 #include "blk-mq.h"
42
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48
49 DEFINE_IDA(blk_queue_ida);
50
51 /*
52 * For the allocated request tables
53 */
54 struct kmem_cache *request_cachep = NULL;
55
56 /*
57 * For queue allocation
58 */
59 struct kmem_cache *blk_requestq_cachep;
60
61 /*
62 * Controlling structure to kblockd
63 */
64 static struct workqueue_struct *kblockd_workqueue;
65
66 static void blk_clear_congested(struct request_list *rl, int sync)
67 {
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
71 /*
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
74 */
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
78 }
79
80 static void blk_set_congested(struct request_list *rl, int sync)
81 {
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
89 }
90
91 void blk_queue_congestion_threshold(struct request_queue *q)
92 {
93 int nr;
94
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
99
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
104 }
105
106 /**
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
109 *
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
113 */
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
115 {
116 struct request_queue *q = bdev_get_queue(bdev);
117
118 return &q->backing_dev_info;
119 }
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
121
122 void blk_rq_init(struct request_queue *q, struct request *rq)
123 {
124 memset(rq, 0, sizeof(*rq));
125
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
139 }
140 EXPORT_SYMBOL(blk_rq_init);
141
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
144 {
145 if (error)
146 bio->bi_error = error;
147
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
150
151 bio_advance(bio, nbytes);
152
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
156 }
157
158 void blk_dump_rq_flags(struct request *rq, char *msg)
159 {
160 int bit;
161
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
165
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
171
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
177 }
178 }
179 EXPORT_SYMBOL(blk_dump_rq_flags);
180
181 static void blk_delay_work(struct work_struct *work)
182 {
183 struct request_queue *q;
184
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
189 }
190
191 /**
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
195 *
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
200 */
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
202 {
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
206 }
207 EXPORT_SYMBOL(blk_delay_queue);
208
209 /**
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
212 *
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
217 **/
218 void blk_start_queue_async(struct request_queue *q)
219 {
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
222 }
223 EXPORT_SYMBOL(blk_start_queue_async);
224
225 /**
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
228 *
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
233 **/
234 void blk_start_queue(struct request_queue *q)
235 {
236 WARN_ON(!irqs_disabled());
237
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
240 }
241 EXPORT_SYMBOL(blk_start_queue);
242
243 /**
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
246 *
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
256 **/
257 void blk_stop_queue(struct request_queue *q)
258 {
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
261 }
262 EXPORT_SYMBOL(blk_stop_queue);
263
264 /**
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
267 *
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
276 *
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
280 *
281 */
282 void blk_sync_queue(struct request_queue *q)
283 {
284 del_timer_sync(&q->timeout);
285
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
289
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
293 }
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
296 }
297 }
298 EXPORT_SYMBOL(blk_sync_queue);
299
300 /**
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
303 *
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
310 */
311 inline void __blk_run_queue_uncond(struct request_queue *q)
312 {
313 if (unlikely(blk_queue_dead(q)))
314 return;
315
316 /*
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
322 */
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
326 }
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
328
329 /**
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
332 *
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
336 */
337 void __blk_run_queue(struct request_queue *q)
338 {
339 if (unlikely(blk_queue_stopped(q)))
340 return;
341
342 __blk_run_queue_uncond(q);
343 }
344 EXPORT_SYMBOL(__blk_run_queue);
345
346 /**
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
349 *
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
353 */
354 void blk_run_queue_async(struct request_queue *q)
355 {
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
358 }
359 EXPORT_SYMBOL(blk_run_queue_async);
360
361 /**
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
364 *
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
368 */
369 void blk_run_queue(struct request_queue *q)
370 {
371 unsigned long flags;
372
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
376 }
377 EXPORT_SYMBOL(blk_run_queue);
378
379 void blk_put_queue(struct request_queue *q)
380 {
381 kobject_put(&q->kobj);
382 }
383 EXPORT_SYMBOL(blk_put_queue);
384
385 /**
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
389 *
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
393 */
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
397 {
398 int i;
399
400 lockdep_assert_held(q->queue_lock);
401
402 while (true) {
403 bool drain = false;
404
405 /*
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
408 */
409 if (q->elevator)
410 elv_drain_elevator(q);
411
412 blkcg_drain_queue(q);
413
414 /*
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
420 */
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
423
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
426
427 /*
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
431 */
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
440 }
441 }
442
443 if (!drain)
444 break;
445
446 spin_unlock_irq(q->queue_lock);
447
448 msleep(10);
449
450 spin_lock_irq(q->queue_lock);
451 }
452
453 /*
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
457 */
458 if (q->request_fn) {
459 struct request_list *rl;
460
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
464 }
465 }
466
467 /**
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
470 *
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
476 */
477 void blk_queue_bypass_start(struct request_queue *q)
478 {
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
483
484 /*
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
488 */
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
493
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
496 }
497 }
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
499
500 /**
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
503 *
504 * Leave bypass mode and restore the normal queueing behavior.
505 */
506 void blk_queue_bypass_end(struct request_queue *q)
507 {
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
513 }
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
515
516 void blk_set_queue_dying(struct request_queue *q)
517 {
518 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
519
520 if (q->mq_ops)
521 blk_mq_wake_waiters(q);
522 else {
523 struct request_list *rl;
524
525 blk_queue_for_each_rl(rl, q) {
526 if (rl->rq_pool) {
527 wake_up(&rl->wait[BLK_RW_SYNC]);
528 wake_up(&rl->wait[BLK_RW_ASYNC]);
529 }
530 }
531 }
532 }
533 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
534
535 /**
536 * blk_cleanup_queue - shutdown a request queue
537 * @q: request queue to shutdown
538 *
539 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
540 * put it. All future requests will be failed immediately with -ENODEV.
541 */
542 void blk_cleanup_queue(struct request_queue *q)
543 {
544 spinlock_t *lock = q->queue_lock;
545
546 /* mark @q DYING, no new request or merges will be allowed afterwards */
547 mutex_lock(&q->sysfs_lock);
548 blk_set_queue_dying(q);
549 spin_lock_irq(lock);
550
551 /*
552 * A dying queue is permanently in bypass mode till released. Note
553 * that, unlike blk_queue_bypass_start(), we aren't performing
554 * synchronize_rcu() after entering bypass mode to avoid the delay
555 * as some drivers create and destroy a lot of queues while
556 * probing. This is still safe because blk_release_queue() will be
557 * called only after the queue refcnt drops to zero and nothing,
558 * RCU or not, would be traversing the queue by then.
559 */
560 q->bypass_depth++;
561 queue_flag_set(QUEUE_FLAG_BYPASS, q);
562
563 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
564 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
565 queue_flag_set(QUEUE_FLAG_DYING, q);
566 spin_unlock_irq(lock);
567 mutex_unlock(&q->sysfs_lock);
568
569 /*
570 * Drain all requests queued before DYING marking. Set DEAD flag to
571 * prevent that q->request_fn() gets invoked after draining finished.
572 */
573 blk_freeze_queue(q);
574 spin_lock_irq(lock);
575 if (!q->mq_ops)
576 __blk_drain_queue(q, true);
577 queue_flag_set(QUEUE_FLAG_DEAD, q);
578 spin_unlock_irq(lock);
579
580 /* for synchronous bio-based driver finish in-flight integrity i/o */
581 blk_flush_integrity();
582
583 /* @q won't process any more request, flush async actions */
584 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
585 blk_sync_queue(q);
586
587 if (q->mq_ops)
588 blk_mq_free_queue(q);
589 percpu_ref_exit(&q->q_usage_counter);
590
591 spin_lock_irq(lock);
592 if (q->queue_lock != &q->__queue_lock)
593 q->queue_lock = &q->__queue_lock;
594 spin_unlock_irq(lock);
595
596 bdi_unregister(&q->backing_dev_info);
597
598 /* @q is and will stay empty, shutdown and put */
599 blk_put_queue(q);
600 }
601 EXPORT_SYMBOL(blk_cleanup_queue);
602
603 /* Allocate memory local to the request queue */
604 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
605 {
606 int nid = (int)(long)data;
607 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
608 }
609
610 static void free_request_struct(void *element, void *unused)
611 {
612 kmem_cache_free(request_cachep, element);
613 }
614
615 int blk_init_rl(struct request_list *rl, struct request_queue *q,
616 gfp_t gfp_mask)
617 {
618 if (unlikely(rl->rq_pool))
619 return 0;
620
621 rl->q = q;
622 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
623 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
624 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
625 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
626
627 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
628 free_request_struct,
629 (void *)(long)q->node, gfp_mask,
630 q->node);
631 if (!rl->rq_pool)
632 return -ENOMEM;
633
634 return 0;
635 }
636
637 void blk_exit_rl(struct request_list *rl)
638 {
639 if (rl->rq_pool)
640 mempool_destroy(rl->rq_pool);
641 }
642
643 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
644 {
645 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
646 }
647 EXPORT_SYMBOL(blk_alloc_queue);
648
649 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
650 {
651 while (true) {
652 int ret;
653
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
656
657 if (!gfpflags_allow_blocking(gfp))
658 return -EBUSY;
659
660 ret = wait_event_interruptible(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
665 if (ret)
666 return ret;
667 }
668 }
669
670 void blk_queue_exit(struct request_queue *q)
671 {
672 percpu_ref_put(&q->q_usage_counter);
673 }
674
675 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
676 {
677 struct request_queue *q =
678 container_of(ref, struct request_queue, q_usage_counter);
679
680 wake_up_all(&q->mq_freeze_wq);
681 }
682
683 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
684 {
685 struct request_queue *q;
686 int err;
687
688 q = kmem_cache_alloc_node(blk_requestq_cachep,
689 gfp_mask | __GFP_ZERO, node_id);
690 if (!q)
691 return NULL;
692
693 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
694 if (q->id < 0)
695 goto fail_q;
696
697 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
698 if (!q->bio_split)
699 goto fail_id;
700
701 q->backing_dev_info.ra_pages =
702 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
703 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
704 q->backing_dev_info.name = "block";
705 q->node = node_id;
706
707 err = bdi_init(&q->backing_dev_info);
708 if (err)
709 goto fail_split;
710
711 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
712 laptop_mode_timer_fn, (unsigned long) q);
713 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
714 INIT_LIST_HEAD(&q->queue_head);
715 INIT_LIST_HEAD(&q->timeout_list);
716 INIT_LIST_HEAD(&q->icq_list);
717 #ifdef CONFIG_BLK_CGROUP
718 INIT_LIST_HEAD(&q->blkg_list);
719 #endif
720 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
721
722 kobject_init(&q->kobj, &blk_queue_ktype);
723
724 mutex_init(&q->sysfs_lock);
725 spin_lock_init(&q->__queue_lock);
726
727 /*
728 * By default initialize queue_lock to internal lock and driver can
729 * override it later if need be.
730 */
731 q->queue_lock = &q->__queue_lock;
732
733 /*
734 * A queue starts its life with bypass turned on to avoid
735 * unnecessary bypass on/off overhead and nasty surprises during
736 * init. The initial bypass will be finished when the queue is
737 * registered by blk_register_queue().
738 */
739 q->bypass_depth = 1;
740 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
741
742 init_waitqueue_head(&q->mq_freeze_wq);
743
744 /*
745 * Init percpu_ref in atomic mode so that it's faster to shutdown.
746 * See blk_register_queue() for details.
747 */
748 if (percpu_ref_init(&q->q_usage_counter,
749 blk_queue_usage_counter_release,
750 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
751 goto fail_bdi;
752
753 if (blkcg_init_queue(q))
754 goto fail_ref;
755
756 return q;
757
758 fail_ref:
759 percpu_ref_exit(&q->q_usage_counter);
760 fail_bdi:
761 bdi_destroy(&q->backing_dev_info);
762 fail_split:
763 bioset_free(q->bio_split);
764 fail_id:
765 ida_simple_remove(&blk_queue_ida, q->id);
766 fail_q:
767 kmem_cache_free(blk_requestq_cachep, q);
768 return NULL;
769 }
770 EXPORT_SYMBOL(blk_alloc_queue_node);
771
772 /**
773 * blk_init_queue - prepare a request queue for use with a block device
774 * @rfn: The function to be called to process requests that have been
775 * placed on the queue.
776 * @lock: Request queue spin lock
777 *
778 * Description:
779 * If a block device wishes to use the standard request handling procedures,
780 * which sorts requests and coalesces adjacent requests, then it must
781 * call blk_init_queue(). The function @rfn will be called when there
782 * are requests on the queue that need to be processed. If the device
783 * supports plugging, then @rfn may not be called immediately when requests
784 * are available on the queue, but may be called at some time later instead.
785 * Plugged queues are generally unplugged when a buffer belonging to one
786 * of the requests on the queue is needed, or due to memory pressure.
787 *
788 * @rfn is not required, or even expected, to remove all requests off the
789 * queue, but only as many as it can handle at a time. If it does leave
790 * requests on the queue, it is responsible for arranging that the requests
791 * get dealt with eventually.
792 *
793 * The queue spin lock must be held while manipulating the requests on the
794 * request queue; this lock will be taken also from interrupt context, so irq
795 * disabling is needed for it.
796 *
797 * Function returns a pointer to the initialized request queue, or %NULL if
798 * it didn't succeed.
799 *
800 * Note:
801 * blk_init_queue() must be paired with a blk_cleanup_queue() call
802 * when the block device is deactivated (such as at module unload).
803 **/
804
805 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
806 {
807 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
808 }
809 EXPORT_SYMBOL(blk_init_queue);
810
811 struct request_queue *
812 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
813 {
814 struct request_queue *uninit_q, *q;
815
816 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
817 if (!uninit_q)
818 return NULL;
819
820 q = blk_init_allocated_queue(uninit_q, rfn, lock);
821 if (!q)
822 blk_cleanup_queue(uninit_q);
823
824 return q;
825 }
826 EXPORT_SYMBOL(blk_init_queue_node);
827
828 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
829
830 struct request_queue *
831 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
832 spinlock_t *lock)
833 {
834 if (!q)
835 return NULL;
836
837 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
838 if (!q->fq)
839 return NULL;
840
841 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
842 goto fail;
843
844 q->request_fn = rfn;
845 q->prep_rq_fn = NULL;
846 q->unprep_rq_fn = NULL;
847 q->queue_flags |= QUEUE_FLAG_DEFAULT;
848
849 /* Override internal queue lock with supplied lock pointer */
850 if (lock)
851 q->queue_lock = lock;
852
853 /*
854 * This also sets hw/phys segments, boundary and size
855 */
856 blk_queue_make_request(q, blk_queue_bio);
857
858 q->sg_reserved_size = INT_MAX;
859
860 /* Protect q->elevator from elevator_change */
861 mutex_lock(&q->sysfs_lock);
862
863 /* init elevator */
864 if (elevator_init(q, NULL)) {
865 mutex_unlock(&q->sysfs_lock);
866 goto fail;
867 }
868
869 mutex_unlock(&q->sysfs_lock);
870
871 return q;
872
873 fail:
874 blk_free_flush_queue(q->fq);
875 return NULL;
876 }
877 EXPORT_SYMBOL(blk_init_allocated_queue);
878
879 bool blk_get_queue(struct request_queue *q)
880 {
881 if (likely(!blk_queue_dying(q))) {
882 __blk_get_queue(q);
883 return true;
884 }
885
886 return false;
887 }
888 EXPORT_SYMBOL(blk_get_queue);
889
890 static inline void blk_free_request(struct request_list *rl, struct request *rq)
891 {
892 if (rq->cmd_flags & REQ_ELVPRIV) {
893 elv_put_request(rl->q, rq);
894 if (rq->elv.icq)
895 put_io_context(rq->elv.icq->ioc);
896 }
897
898 mempool_free(rq, rl->rq_pool);
899 }
900
901 /*
902 * ioc_batching returns true if the ioc is a valid batching request and
903 * should be given priority access to a request.
904 */
905 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
906 {
907 if (!ioc)
908 return 0;
909
910 /*
911 * Make sure the process is able to allocate at least 1 request
912 * even if the batch times out, otherwise we could theoretically
913 * lose wakeups.
914 */
915 return ioc->nr_batch_requests == q->nr_batching ||
916 (ioc->nr_batch_requests > 0
917 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
918 }
919
920 /*
921 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
922 * will cause the process to be a "batcher" on all queues in the system. This
923 * is the behaviour we want though - once it gets a wakeup it should be given
924 * a nice run.
925 */
926 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
927 {
928 if (!ioc || ioc_batching(q, ioc))
929 return;
930
931 ioc->nr_batch_requests = q->nr_batching;
932 ioc->last_waited = jiffies;
933 }
934
935 static void __freed_request(struct request_list *rl, int sync)
936 {
937 struct request_queue *q = rl->q;
938
939 if (rl->count[sync] < queue_congestion_off_threshold(q))
940 blk_clear_congested(rl, sync);
941
942 if (rl->count[sync] + 1 <= q->nr_requests) {
943 if (waitqueue_active(&rl->wait[sync]))
944 wake_up(&rl->wait[sync]);
945
946 blk_clear_rl_full(rl, sync);
947 }
948 }
949
950 /*
951 * A request has just been released. Account for it, update the full and
952 * congestion status, wake up any waiters. Called under q->queue_lock.
953 */
954 static void freed_request(struct request_list *rl, unsigned int flags)
955 {
956 struct request_queue *q = rl->q;
957 int sync = rw_is_sync(flags);
958
959 q->nr_rqs[sync]--;
960 rl->count[sync]--;
961 if (flags & REQ_ELVPRIV)
962 q->nr_rqs_elvpriv--;
963
964 __freed_request(rl, sync);
965
966 if (unlikely(rl->starved[sync ^ 1]))
967 __freed_request(rl, sync ^ 1);
968 }
969
970 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
971 {
972 struct request_list *rl;
973 int on_thresh, off_thresh;
974
975 spin_lock_irq(q->queue_lock);
976 q->nr_requests = nr;
977 blk_queue_congestion_threshold(q);
978 on_thresh = queue_congestion_on_threshold(q);
979 off_thresh = queue_congestion_off_threshold(q);
980
981 blk_queue_for_each_rl(rl, q) {
982 if (rl->count[BLK_RW_SYNC] >= on_thresh)
983 blk_set_congested(rl, BLK_RW_SYNC);
984 else if (rl->count[BLK_RW_SYNC] < off_thresh)
985 blk_clear_congested(rl, BLK_RW_SYNC);
986
987 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
988 blk_set_congested(rl, BLK_RW_ASYNC);
989 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
990 blk_clear_congested(rl, BLK_RW_ASYNC);
991
992 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
993 blk_set_rl_full(rl, BLK_RW_SYNC);
994 } else {
995 blk_clear_rl_full(rl, BLK_RW_SYNC);
996 wake_up(&rl->wait[BLK_RW_SYNC]);
997 }
998
999 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1000 blk_set_rl_full(rl, BLK_RW_ASYNC);
1001 } else {
1002 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1003 wake_up(&rl->wait[BLK_RW_ASYNC]);
1004 }
1005 }
1006
1007 spin_unlock_irq(q->queue_lock);
1008 return 0;
1009 }
1010
1011 /*
1012 * Determine if elevator data should be initialized when allocating the
1013 * request associated with @bio.
1014 */
1015 static bool blk_rq_should_init_elevator(struct bio *bio)
1016 {
1017 if (!bio)
1018 return true;
1019
1020 /*
1021 * Flush requests do not use the elevator so skip initialization.
1022 * This allows a request to share the flush and elevator data.
1023 */
1024 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1025 return false;
1026
1027 return true;
1028 }
1029
1030 /**
1031 * rq_ioc - determine io_context for request allocation
1032 * @bio: request being allocated is for this bio (can be %NULL)
1033 *
1034 * Determine io_context to use for request allocation for @bio. May return
1035 * %NULL if %current->io_context doesn't exist.
1036 */
1037 static struct io_context *rq_ioc(struct bio *bio)
1038 {
1039 #ifdef CONFIG_BLK_CGROUP
1040 if (bio && bio->bi_ioc)
1041 return bio->bi_ioc;
1042 #endif
1043 return current->io_context;
1044 }
1045
1046 /**
1047 * __get_request - get a free request
1048 * @rl: request list to allocate from
1049 * @rw_flags: RW and SYNC flags
1050 * @bio: bio to allocate request for (can be %NULL)
1051 * @gfp_mask: allocation mask
1052 *
1053 * Get a free request from @q. This function may fail under memory
1054 * pressure or if @q is dead.
1055 *
1056 * Must be called with @q->queue_lock held and,
1057 * Returns ERR_PTR on failure, with @q->queue_lock held.
1058 * Returns request pointer on success, with @q->queue_lock *not held*.
1059 */
1060 static struct request *__get_request(struct request_list *rl, int rw_flags,
1061 struct bio *bio, gfp_t gfp_mask)
1062 {
1063 struct request_queue *q = rl->q;
1064 struct request *rq;
1065 struct elevator_type *et = q->elevator->type;
1066 struct io_context *ioc = rq_ioc(bio);
1067 struct io_cq *icq = NULL;
1068 const bool is_sync = rw_is_sync(rw_flags) != 0;
1069 int may_queue;
1070
1071 if (unlikely(blk_queue_dying(q)))
1072 return ERR_PTR(-ENODEV);
1073
1074 may_queue = elv_may_queue(q, rw_flags);
1075 if (may_queue == ELV_MQUEUE_NO)
1076 goto rq_starved;
1077
1078 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1079 if (rl->count[is_sync]+1 >= q->nr_requests) {
1080 /*
1081 * The queue will fill after this allocation, so set
1082 * it as full, and mark this process as "batching".
1083 * This process will be allowed to complete a batch of
1084 * requests, others will be blocked.
1085 */
1086 if (!blk_rl_full(rl, is_sync)) {
1087 ioc_set_batching(q, ioc);
1088 blk_set_rl_full(rl, is_sync);
1089 } else {
1090 if (may_queue != ELV_MQUEUE_MUST
1091 && !ioc_batching(q, ioc)) {
1092 /*
1093 * The queue is full and the allocating
1094 * process is not a "batcher", and not
1095 * exempted by the IO scheduler
1096 */
1097 return ERR_PTR(-ENOMEM);
1098 }
1099 }
1100 }
1101 blk_set_congested(rl, is_sync);
1102 }
1103
1104 /*
1105 * Only allow batching queuers to allocate up to 50% over the defined
1106 * limit of requests, otherwise we could have thousands of requests
1107 * allocated with any setting of ->nr_requests
1108 */
1109 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1110 return ERR_PTR(-ENOMEM);
1111
1112 q->nr_rqs[is_sync]++;
1113 rl->count[is_sync]++;
1114 rl->starved[is_sync] = 0;
1115
1116 /*
1117 * Decide whether the new request will be managed by elevator. If
1118 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1119 * prevent the current elevator from being destroyed until the new
1120 * request is freed. This guarantees icq's won't be destroyed and
1121 * makes creating new ones safe.
1122 *
1123 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1124 * it will be created after releasing queue_lock.
1125 */
1126 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1127 rw_flags |= REQ_ELVPRIV;
1128 q->nr_rqs_elvpriv++;
1129 if (et->icq_cache && ioc)
1130 icq = ioc_lookup_icq(ioc, q);
1131 }
1132
1133 if (blk_queue_io_stat(q))
1134 rw_flags |= REQ_IO_STAT;
1135 spin_unlock_irq(q->queue_lock);
1136
1137 /* allocate and init request */
1138 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1139 if (!rq)
1140 goto fail_alloc;
1141
1142 blk_rq_init(q, rq);
1143 blk_rq_set_rl(rq, rl);
1144 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1145
1146 /* init elvpriv */
1147 if (rw_flags & REQ_ELVPRIV) {
1148 if (unlikely(et->icq_cache && !icq)) {
1149 if (ioc)
1150 icq = ioc_create_icq(ioc, q, gfp_mask);
1151 if (!icq)
1152 goto fail_elvpriv;
1153 }
1154
1155 rq->elv.icq = icq;
1156 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1157 goto fail_elvpriv;
1158
1159 /* @rq->elv.icq holds io_context until @rq is freed */
1160 if (icq)
1161 get_io_context(icq->ioc);
1162 }
1163 out:
1164 /*
1165 * ioc may be NULL here, and ioc_batching will be false. That's
1166 * OK, if the queue is under the request limit then requests need
1167 * not count toward the nr_batch_requests limit. There will always
1168 * be some limit enforced by BLK_BATCH_TIME.
1169 */
1170 if (ioc_batching(q, ioc))
1171 ioc->nr_batch_requests--;
1172
1173 trace_block_getrq(q, bio, rw_flags & 1);
1174 return rq;
1175
1176 fail_elvpriv:
1177 /*
1178 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1179 * and may fail indefinitely under memory pressure and thus
1180 * shouldn't stall IO. Treat this request as !elvpriv. This will
1181 * disturb iosched and blkcg but weird is bettern than dead.
1182 */
1183 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1184 __func__, dev_name(q->backing_dev_info.dev));
1185
1186 rq->cmd_flags &= ~REQ_ELVPRIV;
1187 rq->elv.icq = NULL;
1188
1189 spin_lock_irq(q->queue_lock);
1190 q->nr_rqs_elvpriv--;
1191 spin_unlock_irq(q->queue_lock);
1192 goto out;
1193
1194 fail_alloc:
1195 /*
1196 * Allocation failed presumably due to memory. Undo anything we
1197 * might have messed up.
1198 *
1199 * Allocating task should really be put onto the front of the wait
1200 * queue, but this is pretty rare.
1201 */
1202 spin_lock_irq(q->queue_lock);
1203 freed_request(rl, rw_flags);
1204
1205 /*
1206 * in the very unlikely event that allocation failed and no
1207 * requests for this direction was pending, mark us starved so that
1208 * freeing of a request in the other direction will notice
1209 * us. another possible fix would be to split the rq mempool into
1210 * READ and WRITE
1211 */
1212 rq_starved:
1213 if (unlikely(rl->count[is_sync] == 0))
1214 rl->starved[is_sync] = 1;
1215 return ERR_PTR(-ENOMEM);
1216 }
1217
1218 /**
1219 * get_request - get a free request
1220 * @q: request_queue to allocate request from
1221 * @rw_flags: RW and SYNC flags
1222 * @bio: bio to allocate request for (can be %NULL)
1223 * @gfp_mask: allocation mask
1224 *
1225 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1226 * this function keeps retrying under memory pressure and fails iff @q is dead.
1227 *
1228 * Must be called with @q->queue_lock held and,
1229 * Returns ERR_PTR on failure, with @q->queue_lock held.
1230 * Returns request pointer on success, with @q->queue_lock *not held*.
1231 */
1232 static struct request *get_request(struct request_queue *q, int rw_flags,
1233 struct bio *bio, gfp_t gfp_mask)
1234 {
1235 const bool is_sync = rw_is_sync(rw_flags) != 0;
1236 DEFINE_WAIT(wait);
1237 struct request_list *rl;
1238 struct request *rq;
1239
1240 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1241 retry:
1242 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1243 if (!IS_ERR(rq))
1244 return rq;
1245
1246 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1247 blk_put_rl(rl);
1248 return rq;
1249 }
1250
1251 /* wait on @rl and retry */
1252 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1253 TASK_UNINTERRUPTIBLE);
1254
1255 trace_block_sleeprq(q, bio, rw_flags & 1);
1256
1257 spin_unlock_irq(q->queue_lock);
1258 io_schedule();
1259
1260 /*
1261 * After sleeping, we become a "batching" process and will be able
1262 * to allocate at least one request, and up to a big batch of them
1263 * for a small period time. See ioc_batching, ioc_set_batching
1264 */
1265 ioc_set_batching(q, current->io_context);
1266
1267 spin_lock_irq(q->queue_lock);
1268 finish_wait(&rl->wait[is_sync], &wait);
1269
1270 goto retry;
1271 }
1272
1273 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1274 gfp_t gfp_mask)
1275 {
1276 struct request *rq;
1277
1278 BUG_ON(rw != READ && rw != WRITE);
1279
1280 /* create ioc upfront */
1281 create_io_context(gfp_mask, q->node);
1282
1283 spin_lock_irq(q->queue_lock);
1284 rq = get_request(q, rw, NULL, gfp_mask);
1285 if (IS_ERR(rq))
1286 spin_unlock_irq(q->queue_lock);
1287 /* q->queue_lock is unlocked at this point */
1288
1289 return rq;
1290 }
1291
1292 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1293 {
1294 if (q->mq_ops)
1295 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1296 else
1297 return blk_old_get_request(q, rw, gfp_mask);
1298 }
1299 EXPORT_SYMBOL(blk_get_request);
1300
1301 /**
1302 * blk_make_request - given a bio, allocate a corresponding struct request.
1303 * @q: target request queue
1304 * @bio: The bio describing the memory mappings that will be submitted for IO.
1305 * It may be a chained-bio properly constructed by block/bio layer.
1306 * @gfp_mask: gfp flags to be used for memory allocation
1307 *
1308 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1309 * type commands. Where the struct request needs to be farther initialized by
1310 * the caller. It is passed a &struct bio, which describes the memory info of
1311 * the I/O transfer.
1312 *
1313 * The caller of blk_make_request must make sure that bi_io_vec
1314 * are set to describe the memory buffers. That bio_data_dir() will return
1315 * the needed direction of the request. (And all bio's in the passed bio-chain
1316 * are properly set accordingly)
1317 *
1318 * If called under none-sleepable conditions, mapped bio buffers must not
1319 * need bouncing, by calling the appropriate masked or flagged allocator,
1320 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1321 * BUG.
1322 *
1323 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1324 * given to how you allocate bios. In particular, you cannot use
1325 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1326 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1327 * thus resulting in a deadlock. Alternatively bios should be allocated using
1328 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1329 * If possible a big IO should be split into smaller parts when allocation
1330 * fails. Partial allocation should not be an error, or you risk a live-lock.
1331 */
1332 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1333 gfp_t gfp_mask)
1334 {
1335 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1336
1337 if (IS_ERR(rq))
1338 return rq;
1339
1340 blk_rq_set_block_pc(rq);
1341
1342 for_each_bio(bio) {
1343 struct bio *bounce_bio = bio;
1344 int ret;
1345
1346 blk_queue_bounce(q, &bounce_bio);
1347 ret = blk_rq_append_bio(q, rq, bounce_bio);
1348 if (unlikely(ret)) {
1349 blk_put_request(rq);
1350 return ERR_PTR(ret);
1351 }
1352 }
1353
1354 return rq;
1355 }
1356 EXPORT_SYMBOL(blk_make_request);
1357
1358 /**
1359 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1360 * @rq: request to be initialized
1361 *
1362 */
1363 void blk_rq_set_block_pc(struct request *rq)
1364 {
1365 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1366 rq->__data_len = 0;
1367 rq->__sector = (sector_t) -1;
1368 rq->bio = rq->biotail = NULL;
1369 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1370 }
1371 EXPORT_SYMBOL(blk_rq_set_block_pc);
1372
1373 /**
1374 * blk_requeue_request - put a request back on queue
1375 * @q: request queue where request should be inserted
1376 * @rq: request to be inserted
1377 *
1378 * Description:
1379 * Drivers often keep queueing requests until the hardware cannot accept
1380 * more, when that condition happens we need to put the request back
1381 * on the queue. Must be called with queue lock held.
1382 */
1383 void blk_requeue_request(struct request_queue *q, struct request *rq)
1384 {
1385 blk_delete_timer(rq);
1386 blk_clear_rq_complete(rq);
1387 trace_block_rq_requeue(q, rq);
1388
1389 if (rq->cmd_flags & REQ_QUEUED)
1390 blk_queue_end_tag(q, rq);
1391
1392 BUG_ON(blk_queued_rq(rq));
1393
1394 elv_requeue_request(q, rq);
1395 }
1396 EXPORT_SYMBOL(blk_requeue_request);
1397
1398 static void add_acct_request(struct request_queue *q, struct request *rq,
1399 int where)
1400 {
1401 blk_account_io_start(rq, true);
1402 __elv_add_request(q, rq, where);
1403 }
1404
1405 static void part_round_stats_single(int cpu, struct hd_struct *part,
1406 unsigned long now)
1407 {
1408 int inflight;
1409
1410 if (now == part->stamp)
1411 return;
1412
1413 inflight = part_in_flight(part);
1414 if (inflight) {
1415 __part_stat_add(cpu, part, time_in_queue,
1416 inflight * (now - part->stamp));
1417 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1418 }
1419 part->stamp = now;
1420 }
1421
1422 /**
1423 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1424 * @cpu: cpu number for stats access
1425 * @part: target partition
1426 *
1427 * The average IO queue length and utilisation statistics are maintained
1428 * by observing the current state of the queue length and the amount of
1429 * time it has been in this state for.
1430 *
1431 * Normally, that accounting is done on IO completion, but that can result
1432 * in more than a second's worth of IO being accounted for within any one
1433 * second, leading to >100% utilisation. To deal with that, we call this
1434 * function to do a round-off before returning the results when reading
1435 * /proc/diskstats. This accounts immediately for all queue usage up to
1436 * the current jiffies and restarts the counters again.
1437 */
1438 void part_round_stats(int cpu, struct hd_struct *part)
1439 {
1440 unsigned long now = jiffies;
1441
1442 if (part->partno)
1443 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1444 part_round_stats_single(cpu, part, now);
1445 }
1446 EXPORT_SYMBOL_GPL(part_round_stats);
1447
1448 #ifdef CONFIG_PM
1449 static void blk_pm_put_request(struct request *rq)
1450 {
1451 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1452 pm_runtime_mark_last_busy(rq->q->dev);
1453 }
1454 #else
1455 static inline void blk_pm_put_request(struct request *rq) {}
1456 #endif
1457
1458 /*
1459 * queue lock must be held
1460 */
1461 void __blk_put_request(struct request_queue *q, struct request *req)
1462 {
1463 if (unlikely(!q))
1464 return;
1465
1466 if (q->mq_ops) {
1467 blk_mq_free_request(req);
1468 return;
1469 }
1470
1471 blk_pm_put_request(req);
1472
1473 elv_completed_request(q, req);
1474
1475 /* this is a bio leak */
1476 WARN_ON(req->bio != NULL);
1477
1478 /*
1479 * Request may not have originated from ll_rw_blk. if not,
1480 * it didn't come out of our reserved rq pools
1481 */
1482 if (req->cmd_flags & REQ_ALLOCED) {
1483 unsigned int flags = req->cmd_flags;
1484 struct request_list *rl = blk_rq_rl(req);
1485
1486 BUG_ON(!list_empty(&req->queuelist));
1487 BUG_ON(ELV_ON_HASH(req));
1488
1489 blk_free_request(rl, req);
1490 freed_request(rl, flags);
1491 blk_put_rl(rl);
1492 }
1493 }
1494 EXPORT_SYMBOL_GPL(__blk_put_request);
1495
1496 void blk_put_request(struct request *req)
1497 {
1498 struct request_queue *q = req->q;
1499
1500 if (q->mq_ops)
1501 blk_mq_free_request(req);
1502 else {
1503 unsigned long flags;
1504
1505 spin_lock_irqsave(q->queue_lock, flags);
1506 __blk_put_request(q, req);
1507 spin_unlock_irqrestore(q->queue_lock, flags);
1508 }
1509 }
1510 EXPORT_SYMBOL(blk_put_request);
1511
1512 /**
1513 * blk_add_request_payload - add a payload to a request
1514 * @rq: request to update
1515 * @page: page backing the payload
1516 * @len: length of the payload.
1517 *
1518 * This allows to later add a payload to an already submitted request by
1519 * a block driver. The driver needs to take care of freeing the payload
1520 * itself.
1521 *
1522 * Note that this is a quite horrible hack and nothing but handling of
1523 * discard requests should ever use it.
1524 */
1525 void blk_add_request_payload(struct request *rq, struct page *page,
1526 unsigned int len)
1527 {
1528 struct bio *bio = rq->bio;
1529
1530 bio->bi_io_vec->bv_page = page;
1531 bio->bi_io_vec->bv_offset = 0;
1532 bio->bi_io_vec->bv_len = len;
1533
1534 bio->bi_iter.bi_size = len;
1535 bio->bi_vcnt = 1;
1536 bio->bi_phys_segments = 1;
1537
1538 rq->__data_len = rq->resid_len = len;
1539 rq->nr_phys_segments = 1;
1540 }
1541 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1542
1543 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1544 struct bio *bio)
1545 {
1546 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1547
1548 if (!ll_back_merge_fn(q, req, bio))
1549 return false;
1550
1551 trace_block_bio_backmerge(q, req, bio);
1552
1553 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1554 blk_rq_set_mixed_merge(req);
1555
1556 req->biotail->bi_next = bio;
1557 req->biotail = bio;
1558 req->__data_len += bio->bi_iter.bi_size;
1559 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1560
1561 blk_account_io_start(req, false);
1562 return true;
1563 }
1564
1565 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1566 struct bio *bio)
1567 {
1568 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1569
1570 if (!ll_front_merge_fn(q, req, bio))
1571 return false;
1572
1573 trace_block_bio_frontmerge(q, req, bio);
1574
1575 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1576 blk_rq_set_mixed_merge(req);
1577
1578 bio->bi_next = req->bio;
1579 req->bio = bio;
1580
1581 req->__sector = bio->bi_iter.bi_sector;
1582 req->__data_len += bio->bi_iter.bi_size;
1583 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1584
1585 blk_account_io_start(req, false);
1586 return true;
1587 }
1588
1589 /**
1590 * blk_attempt_plug_merge - try to merge with %current's plugged list
1591 * @q: request_queue new bio is being queued at
1592 * @bio: new bio being queued
1593 * @request_count: out parameter for number of traversed plugged requests
1594 * @same_queue_rq: pointer to &struct request that gets filled in when
1595 * another request associated with @q is found on the plug list
1596 * (optional, may be %NULL)
1597 *
1598 * Determine whether @bio being queued on @q can be merged with a request
1599 * on %current's plugged list. Returns %true if merge was successful,
1600 * otherwise %false.
1601 *
1602 * Plugging coalesces IOs from the same issuer for the same purpose without
1603 * going through @q->queue_lock. As such it's more of an issuing mechanism
1604 * than scheduling, and the request, while may have elvpriv data, is not
1605 * added on the elevator at this point. In addition, we don't have
1606 * reliable access to the elevator outside queue lock. Only check basic
1607 * merging parameters without querying the elevator.
1608 *
1609 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1610 */
1611 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1612 unsigned int *request_count,
1613 struct request **same_queue_rq)
1614 {
1615 struct blk_plug *plug;
1616 struct request *rq;
1617 bool ret = false;
1618 struct list_head *plug_list;
1619
1620 plug = current->plug;
1621 if (!plug)
1622 goto out;
1623 *request_count = 0;
1624
1625 if (q->mq_ops)
1626 plug_list = &plug->mq_list;
1627 else
1628 plug_list = &plug->list;
1629
1630 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1631 int el_ret;
1632
1633 if (rq->q == q) {
1634 (*request_count)++;
1635 /*
1636 * Only blk-mq multiple hardware queues case checks the
1637 * rq in the same queue, there should be only one such
1638 * rq in a queue
1639 **/
1640 if (same_queue_rq)
1641 *same_queue_rq = rq;
1642 }
1643
1644 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1645 continue;
1646
1647 el_ret = blk_try_merge(rq, bio);
1648 if (el_ret == ELEVATOR_BACK_MERGE) {
1649 ret = bio_attempt_back_merge(q, rq, bio);
1650 if (ret)
1651 break;
1652 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1653 ret = bio_attempt_front_merge(q, rq, bio);
1654 if (ret)
1655 break;
1656 }
1657 }
1658 out:
1659 return ret;
1660 }
1661
1662 unsigned int blk_plug_queued_count(struct request_queue *q)
1663 {
1664 struct blk_plug *plug;
1665 struct request *rq;
1666 struct list_head *plug_list;
1667 unsigned int ret = 0;
1668
1669 plug = current->plug;
1670 if (!plug)
1671 goto out;
1672
1673 if (q->mq_ops)
1674 plug_list = &plug->mq_list;
1675 else
1676 plug_list = &plug->list;
1677
1678 list_for_each_entry(rq, plug_list, queuelist) {
1679 if (rq->q == q)
1680 ret++;
1681 }
1682 out:
1683 return ret;
1684 }
1685
1686 void init_request_from_bio(struct request *req, struct bio *bio)
1687 {
1688 req->cmd_type = REQ_TYPE_FS;
1689
1690 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1691 if (bio->bi_rw & REQ_RAHEAD)
1692 req->cmd_flags |= REQ_FAILFAST_MASK;
1693
1694 req->errors = 0;
1695 req->__sector = bio->bi_iter.bi_sector;
1696 req->ioprio = bio_prio(bio);
1697 blk_rq_bio_prep(req->q, req, bio);
1698 }
1699
1700 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1701 {
1702 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1703 struct blk_plug *plug;
1704 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1705 struct request *req;
1706 unsigned int request_count = 0;
1707
1708 /*
1709 * low level driver can indicate that it wants pages above a
1710 * certain limit bounced to low memory (ie for highmem, or even
1711 * ISA dma in theory)
1712 */
1713 blk_queue_bounce(q, &bio);
1714
1715 blk_queue_split(q, &bio, q->bio_split);
1716
1717 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1718 bio->bi_error = -EIO;
1719 bio_endio(bio);
1720 return BLK_QC_T_NONE;
1721 }
1722
1723 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1724 spin_lock_irq(q->queue_lock);
1725 where = ELEVATOR_INSERT_FLUSH;
1726 goto get_rq;
1727 }
1728
1729 /*
1730 * Check if we can merge with the plugged list before grabbing
1731 * any locks.
1732 */
1733 if (!blk_queue_nomerges(q)) {
1734 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1735 return BLK_QC_T_NONE;
1736 } else
1737 request_count = blk_plug_queued_count(q);
1738
1739 spin_lock_irq(q->queue_lock);
1740
1741 el_ret = elv_merge(q, &req, bio);
1742 if (el_ret == ELEVATOR_BACK_MERGE) {
1743 if (bio_attempt_back_merge(q, req, bio)) {
1744 elv_bio_merged(q, req, bio);
1745 if (!attempt_back_merge(q, req))
1746 elv_merged_request(q, req, el_ret);
1747 goto out_unlock;
1748 }
1749 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1750 if (bio_attempt_front_merge(q, req, bio)) {
1751 elv_bio_merged(q, req, bio);
1752 if (!attempt_front_merge(q, req))
1753 elv_merged_request(q, req, el_ret);
1754 goto out_unlock;
1755 }
1756 }
1757
1758 get_rq:
1759 /*
1760 * This sync check and mask will be re-done in init_request_from_bio(),
1761 * but we need to set it earlier to expose the sync flag to the
1762 * rq allocator and io schedulers.
1763 */
1764 rw_flags = bio_data_dir(bio);
1765 if (sync)
1766 rw_flags |= REQ_SYNC;
1767
1768 /*
1769 * Grab a free request. This is might sleep but can not fail.
1770 * Returns with the queue unlocked.
1771 */
1772 req = get_request(q, rw_flags, bio, GFP_NOIO);
1773 if (IS_ERR(req)) {
1774 bio->bi_error = PTR_ERR(req);
1775 bio_endio(bio);
1776 goto out_unlock;
1777 }
1778
1779 /*
1780 * After dropping the lock and possibly sleeping here, our request
1781 * may now be mergeable after it had proven unmergeable (above).
1782 * We don't worry about that case for efficiency. It won't happen
1783 * often, and the elevators are able to handle it.
1784 */
1785 init_request_from_bio(req, bio);
1786
1787 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1788 req->cpu = raw_smp_processor_id();
1789
1790 plug = current->plug;
1791 if (plug) {
1792 /*
1793 * If this is the first request added after a plug, fire
1794 * of a plug trace.
1795 */
1796 if (!request_count)
1797 trace_block_plug(q);
1798 else {
1799 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1800 blk_flush_plug_list(plug, false);
1801 trace_block_plug(q);
1802 }
1803 }
1804 list_add_tail(&req->queuelist, &plug->list);
1805 blk_account_io_start(req, true);
1806 } else {
1807 spin_lock_irq(q->queue_lock);
1808 add_acct_request(q, req, where);
1809 __blk_run_queue(q);
1810 out_unlock:
1811 spin_unlock_irq(q->queue_lock);
1812 }
1813
1814 return BLK_QC_T_NONE;
1815 }
1816
1817 /*
1818 * If bio->bi_dev is a partition, remap the location
1819 */
1820 static inline void blk_partition_remap(struct bio *bio)
1821 {
1822 struct block_device *bdev = bio->bi_bdev;
1823
1824 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1825 struct hd_struct *p = bdev->bd_part;
1826
1827 bio->bi_iter.bi_sector += p->start_sect;
1828 bio->bi_bdev = bdev->bd_contains;
1829
1830 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1831 bdev->bd_dev,
1832 bio->bi_iter.bi_sector - p->start_sect);
1833 }
1834 }
1835
1836 static void handle_bad_sector(struct bio *bio)
1837 {
1838 char b[BDEVNAME_SIZE];
1839
1840 printk(KERN_INFO "attempt to access beyond end of device\n");
1841 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1842 bdevname(bio->bi_bdev, b),
1843 bio->bi_rw,
1844 (unsigned long long)bio_end_sector(bio),
1845 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1846 }
1847
1848 #ifdef CONFIG_FAIL_MAKE_REQUEST
1849
1850 static DECLARE_FAULT_ATTR(fail_make_request);
1851
1852 static int __init setup_fail_make_request(char *str)
1853 {
1854 return setup_fault_attr(&fail_make_request, str);
1855 }
1856 __setup("fail_make_request=", setup_fail_make_request);
1857
1858 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1859 {
1860 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1861 }
1862
1863 static int __init fail_make_request_debugfs(void)
1864 {
1865 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1866 NULL, &fail_make_request);
1867
1868 return PTR_ERR_OR_ZERO(dir);
1869 }
1870
1871 late_initcall(fail_make_request_debugfs);
1872
1873 #else /* CONFIG_FAIL_MAKE_REQUEST */
1874
1875 static inline bool should_fail_request(struct hd_struct *part,
1876 unsigned int bytes)
1877 {
1878 return false;
1879 }
1880
1881 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1882
1883 /*
1884 * Check whether this bio extends beyond the end of the device.
1885 */
1886 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1887 {
1888 sector_t maxsector;
1889
1890 if (!nr_sectors)
1891 return 0;
1892
1893 /* Test device or partition size, when known. */
1894 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1895 if (maxsector) {
1896 sector_t sector = bio->bi_iter.bi_sector;
1897
1898 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1899 /*
1900 * This may well happen - the kernel calls bread()
1901 * without checking the size of the device, e.g., when
1902 * mounting a device.
1903 */
1904 handle_bad_sector(bio);
1905 return 1;
1906 }
1907 }
1908
1909 return 0;
1910 }
1911
1912 static noinline_for_stack bool
1913 generic_make_request_checks(struct bio *bio)
1914 {
1915 struct request_queue *q;
1916 int nr_sectors = bio_sectors(bio);
1917 int err = -EIO;
1918 char b[BDEVNAME_SIZE];
1919 struct hd_struct *part;
1920
1921 might_sleep();
1922
1923 if (bio_check_eod(bio, nr_sectors))
1924 goto end_io;
1925
1926 q = bdev_get_queue(bio->bi_bdev);
1927 if (unlikely(!q)) {
1928 printk(KERN_ERR
1929 "generic_make_request: Trying to access "
1930 "nonexistent block-device %s (%Lu)\n",
1931 bdevname(bio->bi_bdev, b),
1932 (long long) bio->bi_iter.bi_sector);
1933 goto end_io;
1934 }
1935
1936 part = bio->bi_bdev->bd_part;
1937 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1938 should_fail_request(&part_to_disk(part)->part0,
1939 bio->bi_iter.bi_size))
1940 goto end_io;
1941
1942 /*
1943 * If this device has partitions, remap block n
1944 * of partition p to block n+start(p) of the disk.
1945 */
1946 blk_partition_remap(bio);
1947
1948 if (bio_check_eod(bio, nr_sectors))
1949 goto end_io;
1950
1951 /*
1952 * Filter flush bio's early so that make_request based
1953 * drivers without flush support don't have to worry
1954 * about them.
1955 */
1956 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1957 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1958 if (!nr_sectors) {
1959 err = 0;
1960 goto end_io;
1961 }
1962 }
1963
1964 if ((bio->bi_rw & REQ_DISCARD) &&
1965 (!blk_queue_discard(q) ||
1966 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1967 err = -EOPNOTSUPP;
1968 goto end_io;
1969 }
1970
1971 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1972 err = -EOPNOTSUPP;
1973 goto end_io;
1974 }
1975
1976 /*
1977 * Various block parts want %current->io_context and lazy ioc
1978 * allocation ends up trading a lot of pain for a small amount of
1979 * memory. Just allocate it upfront. This may fail and block
1980 * layer knows how to live with it.
1981 */
1982 create_io_context(GFP_ATOMIC, q->node);
1983
1984 if (!blkcg_bio_issue_check(q, bio))
1985 return false;
1986
1987 trace_block_bio_queue(q, bio);
1988 return true;
1989
1990 end_io:
1991 bio->bi_error = err;
1992 bio_endio(bio);
1993 return false;
1994 }
1995
1996 /**
1997 * generic_make_request - hand a buffer to its device driver for I/O
1998 * @bio: The bio describing the location in memory and on the device.
1999 *
2000 * generic_make_request() is used to make I/O requests of block
2001 * devices. It is passed a &struct bio, which describes the I/O that needs
2002 * to be done.
2003 *
2004 * generic_make_request() does not return any status. The
2005 * success/failure status of the request, along with notification of
2006 * completion, is delivered asynchronously through the bio->bi_end_io
2007 * function described (one day) else where.
2008 *
2009 * The caller of generic_make_request must make sure that bi_io_vec
2010 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2011 * set to describe the device address, and the
2012 * bi_end_io and optionally bi_private are set to describe how
2013 * completion notification should be signaled.
2014 *
2015 * generic_make_request and the drivers it calls may use bi_next if this
2016 * bio happens to be merged with someone else, and may resubmit the bio to
2017 * a lower device by calling into generic_make_request recursively, which
2018 * means the bio should NOT be touched after the call to ->make_request_fn.
2019 */
2020 blk_qc_t generic_make_request(struct bio *bio)
2021 {
2022 struct bio_list bio_list_on_stack;
2023 blk_qc_t ret = BLK_QC_T_NONE;
2024
2025 if (!generic_make_request_checks(bio))
2026 goto out;
2027
2028 /*
2029 * We only want one ->make_request_fn to be active at a time, else
2030 * stack usage with stacked devices could be a problem. So use
2031 * current->bio_list to keep a list of requests submited by a
2032 * make_request_fn function. current->bio_list is also used as a
2033 * flag to say if generic_make_request is currently active in this
2034 * task or not. If it is NULL, then no make_request is active. If
2035 * it is non-NULL, then a make_request is active, and new requests
2036 * should be added at the tail
2037 */
2038 if (current->bio_list) {
2039 bio_list_add(current->bio_list, bio);
2040 goto out;
2041 }
2042
2043 /* following loop may be a bit non-obvious, and so deserves some
2044 * explanation.
2045 * Before entering the loop, bio->bi_next is NULL (as all callers
2046 * ensure that) so we have a list with a single bio.
2047 * We pretend that we have just taken it off a longer list, so
2048 * we assign bio_list to a pointer to the bio_list_on_stack,
2049 * thus initialising the bio_list of new bios to be
2050 * added. ->make_request() may indeed add some more bios
2051 * through a recursive call to generic_make_request. If it
2052 * did, we find a non-NULL value in bio_list and re-enter the loop
2053 * from the top. In this case we really did just take the bio
2054 * of the top of the list (no pretending) and so remove it from
2055 * bio_list, and call into ->make_request() again.
2056 */
2057 BUG_ON(bio->bi_next);
2058 bio_list_init(&bio_list_on_stack);
2059 current->bio_list = &bio_list_on_stack;
2060 do {
2061 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2062
2063 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2064
2065 ret = q->make_request_fn(q, bio);
2066
2067 blk_queue_exit(q);
2068
2069 bio = bio_list_pop(current->bio_list);
2070 } else {
2071 struct bio *bio_next = bio_list_pop(current->bio_list);
2072
2073 bio_io_error(bio);
2074 bio = bio_next;
2075 }
2076 } while (bio);
2077 current->bio_list = NULL; /* deactivate */
2078
2079 out:
2080 return ret;
2081 }
2082 EXPORT_SYMBOL(generic_make_request);
2083
2084 /**
2085 * submit_bio - submit a bio to the block device layer for I/O
2086 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2087 * @bio: The &struct bio which describes the I/O
2088 *
2089 * submit_bio() is very similar in purpose to generic_make_request(), and
2090 * uses that function to do most of the work. Both are fairly rough
2091 * interfaces; @bio must be presetup and ready for I/O.
2092 *
2093 */
2094 blk_qc_t submit_bio(int rw, struct bio *bio)
2095 {
2096 bio->bi_rw |= rw;
2097
2098 /*
2099 * If it's a regular read/write or a barrier with data attached,
2100 * go through the normal accounting stuff before submission.
2101 */
2102 if (bio_has_data(bio)) {
2103 unsigned int count;
2104
2105 if (unlikely(rw & REQ_WRITE_SAME))
2106 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2107 else
2108 count = bio_sectors(bio);
2109
2110 if (rw & WRITE) {
2111 count_vm_events(PGPGOUT, count);
2112 } else {
2113 task_io_account_read(bio->bi_iter.bi_size);
2114 count_vm_events(PGPGIN, count);
2115 }
2116
2117 if (unlikely(block_dump)) {
2118 char b[BDEVNAME_SIZE];
2119 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2120 current->comm, task_pid_nr(current),
2121 (rw & WRITE) ? "WRITE" : "READ",
2122 (unsigned long long)bio->bi_iter.bi_sector,
2123 bdevname(bio->bi_bdev, b),
2124 count);
2125 }
2126 }
2127
2128 return generic_make_request(bio);
2129 }
2130 EXPORT_SYMBOL(submit_bio);
2131
2132 /**
2133 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2134 * for new the queue limits
2135 * @q: the queue
2136 * @rq: the request being checked
2137 *
2138 * Description:
2139 * @rq may have been made based on weaker limitations of upper-level queues
2140 * in request stacking drivers, and it may violate the limitation of @q.
2141 * Since the block layer and the underlying device driver trust @rq
2142 * after it is inserted to @q, it should be checked against @q before
2143 * the insertion using this generic function.
2144 *
2145 * Request stacking drivers like request-based dm may change the queue
2146 * limits when retrying requests on other queues. Those requests need
2147 * to be checked against the new queue limits again during dispatch.
2148 */
2149 static int blk_cloned_rq_check_limits(struct request_queue *q,
2150 struct request *rq)
2151 {
2152 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2153 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2154 return -EIO;
2155 }
2156
2157 /*
2158 * queue's settings related to segment counting like q->bounce_pfn
2159 * may differ from that of other stacking queues.
2160 * Recalculate it to check the request correctly on this queue's
2161 * limitation.
2162 */
2163 blk_recalc_rq_segments(rq);
2164 if (rq->nr_phys_segments > queue_max_segments(q)) {
2165 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2166 return -EIO;
2167 }
2168
2169 return 0;
2170 }
2171
2172 /**
2173 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2174 * @q: the queue to submit the request
2175 * @rq: the request being queued
2176 */
2177 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2178 {
2179 unsigned long flags;
2180 int where = ELEVATOR_INSERT_BACK;
2181
2182 if (blk_cloned_rq_check_limits(q, rq))
2183 return -EIO;
2184
2185 if (rq->rq_disk &&
2186 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2187 return -EIO;
2188
2189 if (q->mq_ops) {
2190 if (blk_queue_io_stat(q))
2191 blk_account_io_start(rq, true);
2192 blk_mq_insert_request(rq, false, true, true);
2193 return 0;
2194 }
2195
2196 spin_lock_irqsave(q->queue_lock, flags);
2197 if (unlikely(blk_queue_dying(q))) {
2198 spin_unlock_irqrestore(q->queue_lock, flags);
2199 return -ENODEV;
2200 }
2201
2202 /*
2203 * Submitting request must be dequeued before calling this function
2204 * because it will be linked to another request_queue
2205 */
2206 BUG_ON(blk_queued_rq(rq));
2207
2208 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2209 where = ELEVATOR_INSERT_FLUSH;
2210
2211 add_acct_request(q, rq, where);
2212 if (where == ELEVATOR_INSERT_FLUSH)
2213 __blk_run_queue(q);
2214 spin_unlock_irqrestore(q->queue_lock, flags);
2215
2216 return 0;
2217 }
2218 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2219
2220 /**
2221 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2222 * @rq: request to examine
2223 *
2224 * Description:
2225 * A request could be merge of IOs which require different failure
2226 * handling. This function determines the number of bytes which
2227 * can be failed from the beginning of the request without
2228 * crossing into area which need to be retried further.
2229 *
2230 * Return:
2231 * The number of bytes to fail.
2232 *
2233 * Context:
2234 * queue_lock must be held.
2235 */
2236 unsigned int blk_rq_err_bytes(const struct request *rq)
2237 {
2238 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2239 unsigned int bytes = 0;
2240 struct bio *bio;
2241
2242 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2243 return blk_rq_bytes(rq);
2244
2245 /*
2246 * Currently the only 'mixing' which can happen is between
2247 * different fastfail types. We can safely fail portions
2248 * which have all the failfast bits that the first one has -
2249 * the ones which are at least as eager to fail as the first
2250 * one.
2251 */
2252 for (bio = rq->bio; bio; bio = bio->bi_next) {
2253 if ((bio->bi_rw & ff) != ff)
2254 break;
2255 bytes += bio->bi_iter.bi_size;
2256 }
2257
2258 /* this could lead to infinite loop */
2259 BUG_ON(blk_rq_bytes(rq) && !bytes);
2260 return bytes;
2261 }
2262 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2263
2264 void blk_account_io_completion(struct request *req, unsigned int bytes)
2265 {
2266 if (blk_do_io_stat(req)) {
2267 const int rw = rq_data_dir(req);
2268 struct hd_struct *part;
2269 int cpu;
2270
2271 cpu = part_stat_lock();
2272 part = req->part;
2273 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2274 part_stat_unlock();
2275 }
2276 }
2277
2278 void blk_account_io_done(struct request *req)
2279 {
2280 /*
2281 * Account IO completion. flush_rq isn't accounted as a
2282 * normal IO on queueing nor completion. Accounting the
2283 * containing request is enough.
2284 */
2285 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2286 unsigned long duration = jiffies - req->start_time;
2287 const int rw = rq_data_dir(req);
2288 struct hd_struct *part;
2289 int cpu;
2290
2291 cpu = part_stat_lock();
2292 part = req->part;
2293
2294 part_stat_inc(cpu, part, ios[rw]);
2295 part_stat_add(cpu, part, ticks[rw], duration);
2296 part_round_stats(cpu, part);
2297 part_dec_in_flight(part, rw);
2298
2299 hd_struct_put(part);
2300 part_stat_unlock();
2301 }
2302 }
2303
2304 #ifdef CONFIG_PM
2305 /*
2306 * Don't process normal requests when queue is suspended
2307 * or in the process of suspending/resuming
2308 */
2309 static struct request *blk_pm_peek_request(struct request_queue *q,
2310 struct request *rq)
2311 {
2312 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2313 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2314 return NULL;
2315 else
2316 return rq;
2317 }
2318 #else
2319 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2320 struct request *rq)
2321 {
2322 return rq;
2323 }
2324 #endif
2325
2326 void blk_account_io_start(struct request *rq, bool new_io)
2327 {
2328 struct hd_struct *part;
2329 int rw = rq_data_dir(rq);
2330 int cpu;
2331
2332 if (!blk_do_io_stat(rq))
2333 return;
2334
2335 cpu = part_stat_lock();
2336
2337 if (!new_io) {
2338 part = rq->part;
2339 part_stat_inc(cpu, part, merges[rw]);
2340 } else {
2341 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2342 if (!hd_struct_try_get(part)) {
2343 /*
2344 * The partition is already being removed,
2345 * the request will be accounted on the disk only
2346 *
2347 * We take a reference on disk->part0 although that
2348 * partition will never be deleted, so we can treat
2349 * it as any other partition.
2350 */
2351 part = &rq->rq_disk->part0;
2352 hd_struct_get(part);
2353 }
2354 part_round_stats(cpu, part);
2355 part_inc_in_flight(part, rw);
2356 rq->part = part;
2357 }
2358
2359 part_stat_unlock();
2360 }
2361
2362 /**
2363 * blk_peek_request - peek at the top of a request queue
2364 * @q: request queue to peek at
2365 *
2366 * Description:
2367 * Return the request at the top of @q. The returned request
2368 * should be started using blk_start_request() before LLD starts
2369 * processing it.
2370 *
2371 * Return:
2372 * Pointer to the request at the top of @q if available. Null
2373 * otherwise.
2374 *
2375 * Context:
2376 * queue_lock must be held.
2377 */
2378 struct request *blk_peek_request(struct request_queue *q)
2379 {
2380 struct request *rq;
2381 int ret;
2382
2383 while ((rq = __elv_next_request(q)) != NULL) {
2384
2385 rq = blk_pm_peek_request(q, rq);
2386 if (!rq)
2387 break;
2388
2389 if (!(rq->cmd_flags & REQ_STARTED)) {
2390 /*
2391 * This is the first time the device driver
2392 * sees this request (possibly after
2393 * requeueing). Notify IO scheduler.
2394 */
2395 if (rq->cmd_flags & REQ_SORTED)
2396 elv_activate_rq(q, rq);
2397
2398 /*
2399 * just mark as started even if we don't start
2400 * it, a request that has been delayed should
2401 * not be passed by new incoming requests
2402 */
2403 rq->cmd_flags |= REQ_STARTED;
2404 trace_block_rq_issue(q, rq);
2405 }
2406
2407 if (!q->boundary_rq || q->boundary_rq == rq) {
2408 q->end_sector = rq_end_sector(rq);
2409 q->boundary_rq = NULL;
2410 }
2411
2412 if (rq->cmd_flags & REQ_DONTPREP)
2413 break;
2414
2415 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2416 /*
2417 * make sure space for the drain appears we
2418 * know we can do this because max_hw_segments
2419 * has been adjusted to be one fewer than the
2420 * device can handle
2421 */
2422 rq->nr_phys_segments++;
2423 }
2424
2425 if (!q->prep_rq_fn)
2426 break;
2427
2428 ret = q->prep_rq_fn(q, rq);
2429 if (ret == BLKPREP_OK) {
2430 break;
2431 } else if (ret == BLKPREP_DEFER) {
2432 /*
2433 * the request may have been (partially) prepped.
2434 * we need to keep this request in the front to
2435 * avoid resource deadlock. REQ_STARTED will
2436 * prevent other fs requests from passing this one.
2437 */
2438 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2439 !(rq->cmd_flags & REQ_DONTPREP)) {
2440 /*
2441 * remove the space for the drain we added
2442 * so that we don't add it again
2443 */
2444 --rq->nr_phys_segments;
2445 }
2446
2447 rq = NULL;
2448 break;
2449 } else if (ret == BLKPREP_KILL) {
2450 rq->cmd_flags |= REQ_QUIET;
2451 /*
2452 * Mark this request as started so we don't trigger
2453 * any debug logic in the end I/O path.
2454 */
2455 blk_start_request(rq);
2456 __blk_end_request_all(rq, -EIO);
2457 } else {
2458 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2459 break;
2460 }
2461 }
2462
2463 return rq;
2464 }
2465 EXPORT_SYMBOL(blk_peek_request);
2466
2467 void blk_dequeue_request(struct request *rq)
2468 {
2469 struct request_queue *q = rq->q;
2470
2471 BUG_ON(list_empty(&rq->queuelist));
2472 BUG_ON(ELV_ON_HASH(rq));
2473
2474 list_del_init(&rq->queuelist);
2475
2476 /*
2477 * the time frame between a request being removed from the lists
2478 * and to it is freed is accounted as io that is in progress at
2479 * the driver side.
2480 */
2481 if (blk_account_rq(rq)) {
2482 q->in_flight[rq_is_sync(rq)]++;
2483 set_io_start_time_ns(rq);
2484 }
2485 }
2486
2487 /**
2488 * blk_start_request - start request processing on the driver
2489 * @req: request to dequeue
2490 *
2491 * Description:
2492 * Dequeue @req and start timeout timer on it. This hands off the
2493 * request to the driver.
2494 *
2495 * Block internal functions which don't want to start timer should
2496 * call blk_dequeue_request().
2497 *
2498 * Context:
2499 * queue_lock must be held.
2500 */
2501 void blk_start_request(struct request *req)
2502 {
2503 blk_dequeue_request(req);
2504
2505 /*
2506 * We are now handing the request to the hardware, initialize
2507 * resid_len to full count and add the timeout handler.
2508 */
2509 req->resid_len = blk_rq_bytes(req);
2510 if (unlikely(blk_bidi_rq(req)))
2511 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2512
2513 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2514 blk_add_timer(req);
2515 }
2516 EXPORT_SYMBOL(blk_start_request);
2517
2518 /**
2519 * blk_fetch_request - fetch a request from a request queue
2520 * @q: request queue to fetch a request from
2521 *
2522 * Description:
2523 * Return the request at the top of @q. The request is started on
2524 * return and LLD can start processing it immediately.
2525 *
2526 * Return:
2527 * Pointer to the request at the top of @q if available. Null
2528 * otherwise.
2529 *
2530 * Context:
2531 * queue_lock must be held.
2532 */
2533 struct request *blk_fetch_request(struct request_queue *q)
2534 {
2535 struct request *rq;
2536
2537 rq = blk_peek_request(q);
2538 if (rq)
2539 blk_start_request(rq);
2540 return rq;
2541 }
2542 EXPORT_SYMBOL(blk_fetch_request);
2543
2544 /**
2545 * blk_update_request - Special helper function for request stacking drivers
2546 * @req: the request being processed
2547 * @error: %0 for success, < %0 for error
2548 * @nr_bytes: number of bytes to complete @req
2549 *
2550 * Description:
2551 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2552 * the request structure even if @req doesn't have leftover.
2553 * If @req has leftover, sets it up for the next range of segments.
2554 *
2555 * This special helper function is only for request stacking drivers
2556 * (e.g. request-based dm) so that they can handle partial completion.
2557 * Actual device drivers should use blk_end_request instead.
2558 *
2559 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2560 * %false return from this function.
2561 *
2562 * Return:
2563 * %false - this request doesn't have any more data
2564 * %true - this request has more data
2565 **/
2566 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2567 {
2568 int total_bytes;
2569
2570 trace_block_rq_complete(req->q, req, nr_bytes);
2571
2572 if (!req->bio)
2573 return false;
2574
2575 /*
2576 * For fs requests, rq is just carrier of independent bio's
2577 * and each partial completion should be handled separately.
2578 * Reset per-request error on each partial completion.
2579 *
2580 * TODO: tj: This is too subtle. It would be better to let
2581 * low level drivers do what they see fit.
2582 */
2583 if (req->cmd_type == REQ_TYPE_FS)
2584 req->errors = 0;
2585
2586 if (error && req->cmd_type == REQ_TYPE_FS &&
2587 !(req->cmd_flags & REQ_QUIET)) {
2588 char *error_type;
2589
2590 switch (error) {
2591 case -ENOLINK:
2592 error_type = "recoverable transport";
2593 break;
2594 case -EREMOTEIO:
2595 error_type = "critical target";
2596 break;
2597 case -EBADE:
2598 error_type = "critical nexus";
2599 break;
2600 case -ETIMEDOUT:
2601 error_type = "timeout";
2602 break;
2603 case -ENOSPC:
2604 error_type = "critical space allocation";
2605 break;
2606 case -ENODATA:
2607 error_type = "critical medium";
2608 break;
2609 case -EIO:
2610 default:
2611 error_type = "I/O";
2612 break;
2613 }
2614 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2615 __func__, error_type, req->rq_disk ?
2616 req->rq_disk->disk_name : "?",
2617 (unsigned long long)blk_rq_pos(req));
2618
2619 }
2620
2621 blk_account_io_completion(req, nr_bytes);
2622
2623 total_bytes = 0;
2624 while (req->bio) {
2625 struct bio *bio = req->bio;
2626 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2627
2628 if (bio_bytes == bio->bi_iter.bi_size)
2629 req->bio = bio->bi_next;
2630
2631 req_bio_endio(req, bio, bio_bytes, error);
2632
2633 total_bytes += bio_bytes;
2634 nr_bytes -= bio_bytes;
2635
2636 if (!nr_bytes)
2637 break;
2638 }
2639
2640 /*
2641 * completely done
2642 */
2643 if (!req->bio) {
2644 /*
2645 * Reset counters so that the request stacking driver
2646 * can find how many bytes remain in the request
2647 * later.
2648 */
2649 req->__data_len = 0;
2650 return false;
2651 }
2652
2653 req->__data_len -= total_bytes;
2654
2655 /* update sector only for requests with clear definition of sector */
2656 if (req->cmd_type == REQ_TYPE_FS)
2657 req->__sector += total_bytes >> 9;
2658
2659 /* mixed attributes always follow the first bio */
2660 if (req->cmd_flags & REQ_MIXED_MERGE) {
2661 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2663 }
2664
2665 /*
2666 * If total number of sectors is less than the first segment
2667 * size, something has gone terribly wrong.
2668 */
2669 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2670 blk_dump_rq_flags(req, "request botched");
2671 req->__data_len = blk_rq_cur_bytes(req);
2672 }
2673
2674 /* recalculate the number of segments */
2675 blk_recalc_rq_segments(req);
2676
2677 return true;
2678 }
2679 EXPORT_SYMBOL_GPL(blk_update_request);
2680
2681 static bool blk_update_bidi_request(struct request *rq, int error,
2682 unsigned int nr_bytes,
2683 unsigned int bidi_bytes)
2684 {
2685 if (blk_update_request(rq, error, nr_bytes))
2686 return true;
2687
2688 /* Bidi request must be completed as a whole */
2689 if (unlikely(blk_bidi_rq(rq)) &&
2690 blk_update_request(rq->next_rq, error, bidi_bytes))
2691 return true;
2692
2693 if (blk_queue_add_random(rq->q))
2694 add_disk_randomness(rq->rq_disk);
2695
2696 return false;
2697 }
2698
2699 /**
2700 * blk_unprep_request - unprepare a request
2701 * @req: the request
2702 *
2703 * This function makes a request ready for complete resubmission (or
2704 * completion). It happens only after all error handling is complete,
2705 * so represents the appropriate moment to deallocate any resources
2706 * that were allocated to the request in the prep_rq_fn. The queue
2707 * lock is held when calling this.
2708 */
2709 void blk_unprep_request(struct request *req)
2710 {
2711 struct request_queue *q = req->q;
2712
2713 req->cmd_flags &= ~REQ_DONTPREP;
2714 if (q->unprep_rq_fn)
2715 q->unprep_rq_fn(q, req);
2716 }
2717 EXPORT_SYMBOL_GPL(blk_unprep_request);
2718
2719 /*
2720 * queue lock must be held
2721 */
2722 void blk_finish_request(struct request *req, int error)
2723 {
2724 if (req->cmd_flags & REQ_QUEUED)
2725 blk_queue_end_tag(req->q, req);
2726
2727 BUG_ON(blk_queued_rq(req));
2728
2729 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2730 laptop_io_completion(&req->q->backing_dev_info);
2731
2732 blk_delete_timer(req);
2733
2734 if (req->cmd_flags & REQ_DONTPREP)
2735 blk_unprep_request(req);
2736
2737 blk_account_io_done(req);
2738
2739 if (req->end_io)
2740 req->end_io(req, error);
2741 else {
2742 if (blk_bidi_rq(req))
2743 __blk_put_request(req->next_rq->q, req->next_rq);
2744
2745 __blk_put_request(req->q, req);
2746 }
2747 }
2748 EXPORT_SYMBOL(blk_finish_request);
2749
2750 /**
2751 * blk_end_bidi_request - Complete a bidi request
2752 * @rq: the request to complete
2753 * @error: %0 for success, < %0 for error
2754 * @nr_bytes: number of bytes to complete @rq
2755 * @bidi_bytes: number of bytes to complete @rq->next_rq
2756 *
2757 * Description:
2758 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2759 * Drivers that supports bidi can safely call this member for any
2760 * type of request, bidi or uni. In the later case @bidi_bytes is
2761 * just ignored.
2762 *
2763 * Return:
2764 * %false - we are done with this request
2765 * %true - still buffers pending for this request
2766 **/
2767 static bool blk_end_bidi_request(struct request *rq, int error,
2768 unsigned int nr_bytes, unsigned int bidi_bytes)
2769 {
2770 struct request_queue *q = rq->q;
2771 unsigned long flags;
2772
2773 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2774 return true;
2775
2776 spin_lock_irqsave(q->queue_lock, flags);
2777 blk_finish_request(rq, error);
2778 spin_unlock_irqrestore(q->queue_lock, flags);
2779
2780 return false;
2781 }
2782
2783 /**
2784 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2785 * @rq: the request to complete
2786 * @error: %0 for success, < %0 for error
2787 * @nr_bytes: number of bytes to complete @rq
2788 * @bidi_bytes: number of bytes to complete @rq->next_rq
2789 *
2790 * Description:
2791 * Identical to blk_end_bidi_request() except that queue lock is
2792 * assumed to be locked on entry and remains so on return.
2793 *
2794 * Return:
2795 * %false - we are done with this request
2796 * %true - still buffers pending for this request
2797 **/
2798 bool __blk_end_bidi_request(struct request *rq, int error,
2799 unsigned int nr_bytes, unsigned int bidi_bytes)
2800 {
2801 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2802 return true;
2803
2804 blk_finish_request(rq, error);
2805
2806 return false;
2807 }
2808
2809 /**
2810 * blk_end_request - Helper function for drivers to complete the request.
2811 * @rq: the request being processed
2812 * @error: %0 for success, < %0 for error
2813 * @nr_bytes: number of bytes to complete
2814 *
2815 * Description:
2816 * Ends I/O on a number of bytes attached to @rq.
2817 * If @rq has leftover, sets it up for the next range of segments.
2818 *
2819 * Return:
2820 * %false - we are done with this request
2821 * %true - still buffers pending for this request
2822 **/
2823 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2824 {
2825 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2826 }
2827 EXPORT_SYMBOL(blk_end_request);
2828
2829 /**
2830 * blk_end_request_all - Helper function for drives to finish the request.
2831 * @rq: the request to finish
2832 * @error: %0 for success, < %0 for error
2833 *
2834 * Description:
2835 * Completely finish @rq.
2836 */
2837 void blk_end_request_all(struct request *rq, int error)
2838 {
2839 bool pending;
2840 unsigned int bidi_bytes = 0;
2841
2842 if (unlikely(blk_bidi_rq(rq)))
2843 bidi_bytes = blk_rq_bytes(rq->next_rq);
2844
2845 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2846 BUG_ON(pending);
2847 }
2848 EXPORT_SYMBOL(blk_end_request_all);
2849
2850 /**
2851 * blk_end_request_cur - Helper function to finish the current request chunk.
2852 * @rq: the request to finish the current chunk for
2853 * @error: %0 for success, < %0 for error
2854 *
2855 * Description:
2856 * Complete the current consecutively mapped chunk from @rq.
2857 *
2858 * Return:
2859 * %false - we are done with this request
2860 * %true - still buffers pending for this request
2861 */
2862 bool blk_end_request_cur(struct request *rq, int error)
2863 {
2864 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2865 }
2866 EXPORT_SYMBOL(blk_end_request_cur);
2867
2868 /**
2869 * blk_end_request_err - Finish a request till the next failure boundary.
2870 * @rq: the request to finish till the next failure boundary for
2871 * @error: must be negative errno
2872 *
2873 * Description:
2874 * Complete @rq till the next failure boundary.
2875 *
2876 * Return:
2877 * %false - we are done with this request
2878 * %true - still buffers pending for this request
2879 */
2880 bool blk_end_request_err(struct request *rq, int error)
2881 {
2882 WARN_ON(error >= 0);
2883 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2884 }
2885 EXPORT_SYMBOL_GPL(blk_end_request_err);
2886
2887 /**
2888 * __blk_end_request - Helper function for drivers to complete the request.
2889 * @rq: the request being processed
2890 * @error: %0 for success, < %0 for error
2891 * @nr_bytes: number of bytes to complete
2892 *
2893 * Description:
2894 * Must be called with queue lock held unlike blk_end_request().
2895 *
2896 * Return:
2897 * %false - we are done with this request
2898 * %true - still buffers pending for this request
2899 **/
2900 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2901 {
2902 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2903 }
2904 EXPORT_SYMBOL(__blk_end_request);
2905
2906 /**
2907 * __blk_end_request_all - Helper function for drives to finish the request.
2908 * @rq: the request to finish
2909 * @error: %0 for success, < %0 for error
2910 *
2911 * Description:
2912 * Completely finish @rq. Must be called with queue lock held.
2913 */
2914 void __blk_end_request_all(struct request *rq, int error)
2915 {
2916 bool pending;
2917 unsigned int bidi_bytes = 0;
2918
2919 if (unlikely(blk_bidi_rq(rq)))
2920 bidi_bytes = blk_rq_bytes(rq->next_rq);
2921
2922 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2923 BUG_ON(pending);
2924 }
2925 EXPORT_SYMBOL(__blk_end_request_all);
2926
2927 /**
2928 * __blk_end_request_cur - Helper function to finish the current request chunk.
2929 * @rq: the request to finish the current chunk for
2930 * @error: %0 for success, < %0 for error
2931 *
2932 * Description:
2933 * Complete the current consecutively mapped chunk from @rq. Must
2934 * be called with queue lock held.
2935 *
2936 * Return:
2937 * %false - we are done with this request
2938 * %true - still buffers pending for this request
2939 */
2940 bool __blk_end_request_cur(struct request *rq, int error)
2941 {
2942 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2943 }
2944 EXPORT_SYMBOL(__blk_end_request_cur);
2945
2946 /**
2947 * __blk_end_request_err - Finish a request till the next failure boundary.
2948 * @rq: the request to finish till the next failure boundary for
2949 * @error: must be negative errno
2950 *
2951 * Description:
2952 * Complete @rq till the next failure boundary. Must be called
2953 * with queue lock held.
2954 *
2955 * Return:
2956 * %false - we are done with this request
2957 * %true - still buffers pending for this request
2958 */
2959 bool __blk_end_request_err(struct request *rq, int error)
2960 {
2961 WARN_ON(error >= 0);
2962 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2963 }
2964 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2965
2966 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2967 struct bio *bio)
2968 {
2969 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2970 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2971
2972 if (bio_has_data(bio))
2973 rq->nr_phys_segments = bio_phys_segments(q, bio);
2974
2975 rq->__data_len = bio->bi_iter.bi_size;
2976 rq->bio = rq->biotail = bio;
2977
2978 if (bio->bi_bdev)
2979 rq->rq_disk = bio->bi_bdev->bd_disk;
2980 }
2981
2982 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2983 /**
2984 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2985 * @rq: the request to be flushed
2986 *
2987 * Description:
2988 * Flush all pages in @rq.
2989 */
2990 void rq_flush_dcache_pages(struct request *rq)
2991 {
2992 struct req_iterator iter;
2993 struct bio_vec bvec;
2994
2995 rq_for_each_segment(bvec, rq, iter)
2996 flush_dcache_page(bvec.bv_page);
2997 }
2998 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2999 #endif
3000
3001 /**
3002 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3003 * @q : the queue of the device being checked
3004 *
3005 * Description:
3006 * Check if underlying low-level drivers of a device are busy.
3007 * If the drivers want to export their busy state, they must set own
3008 * exporting function using blk_queue_lld_busy() first.
3009 *
3010 * Basically, this function is used only by request stacking drivers
3011 * to stop dispatching requests to underlying devices when underlying
3012 * devices are busy. This behavior helps more I/O merging on the queue
3013 * of the request stacking driver and prevents I/O throughput regression
3014 * on burst I/O load.
3015 *
3016 * Return:
3017 * 0 - Not busy (The request stacking driver should dispatch request)
3018 * 1 - Busy (The request stacking driver should stop dispatching request)
3019 */
3020 int blk_lld_busy(struct request_queue *q)
3021 {
3022 if (q->lld_busy_fn)
3023 return q->lld_busy_fn(q);
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(blk_lld_busy);
3028
3029 /**
3030 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3031 * @rq: the clone request to be cleaned up
3032 *
3033 * Description:
3034 * Free all bios in @rq for a cloned request.
3035 */
3036 void blk_rq_unprep_clone(struct request *rq)
3037 {
3038 struct bio *bio;
3039
3040 while ((bio = rq->bio) != NULL) {
3041 rq->bio = bio->bi_next;
3042
3043 bio_put(bio);
3044 }
3045 }
3046 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3047
3048 /*
3049 * Copy attributes of the original request to the clone request.
3050 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3051 */
3052 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3053 {
3054 dst->cpu = src->cpu;
3055 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3056 dst->cmd_type = src->cmd_type;
3057 dst->__sector = blk_rq_pos(src);
3058 dst->__data_len = blk_rq_bytes(src);
3059 dst->nr_phys_segments = src->nr_phys_segments;
3060 dst->ioprio = src->ioprio;
3061 dst->extra_len = src->extra_len;
3062 }
3063
3064 /**
3065 * blk_rq_prep_clone - Helper function to setup clone request
3066 * @rq: the request to be setup
3067 * @rq_src: original request to be cloned
3068 * @bs: bio_set that bios for clone are allocated from
3069 * @gfp_mask: memory allocation mask for bio
3070 * @bio_ctr: setup function to be called for each clone bio.
3071 * Returns %0 for success, non %0 for failure.
3072 * @data: private data to be passed to @bio_ctr
3073 *
3074 * Description:
3075 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3076 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3077 * are not copied, and copying such parts is the caller's responsibility.
3078 * Also, pages which the original bios are pointing to are not copied
3079 * and the cloned bios just point same pages.
3080 * So cloned bios must be completed before original bios, which means
3081 * the caller must complete @rq before @rq_src.
3082 */
3083 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3084 struct bio_set *bs, gfp_t gfp_mask,
3085 int (*bio_ctr)(struct bio *, struct bio *, void *),
3086 void *data)
3087 {
3088 struct bio *bio, *bio_src;
3089
3090 if (!bs)
3091 bs = fs_bio_set;
3092
3093 __rq_for_each_bio(bio_src, rq_src) {
3094 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3095 if (!bio)
3096 goto free_and_out;
3097
3098 if (bio_ctr && bio_ctr(bio, bio_src, data))
3099 goto free_and_out;
3100
3101 if (rq->bio) {
3102 rq->biotail->bi_next = bio;
3103 rq->biotail = bio;
3104 } else
3105 rq->bio = rq->biotail = bio;
3106 }
3107
3108 __blk_rq_prep_clone(rq, rq_src);
3109
3110 return 0;
3111
3112 free_and_out:
3113 if (bio)
3114 bio_put(bio);
3115 blk_rq_unprep_clone(rq);
3116
3117 return -ENOMEM;
3118 }
3119 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3120
3121 int kblockd_schedule_work(struct work_struct *work)
3122 {
3123 return queue_work(kblockd_workqueue, work);
3124 }
3125 EXPORT_SYMBOL(kblockd_schedule_work);
3126
3127 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3128 unsigned long delay)
3129 {
3130 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3131 }
3132 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3133
3134 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3135 unsigned long delay)
3136 {
3137 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3138 }
3139 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3140
3141 /**
3142 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3143 * @plug: The &struct blk_plug that needs to be initialized
3144 *
3145 * Description:
3146 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3147 * pending I/O should the task end up blocking between blk_start_plug() and
3148 * blk_finish_plug(). This is important from a performance perspective, but
3149 * also ensures that we don't deadlock. For instance, if the task is blocking
3150 * for a memory allocation, memory reclaim could end up wanting to free a
3151 * page belonging to that request that is currently residing in our private
3152 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3153 * this kind of deadlock.
3154 */
3155 void blk_start_plug(struct blk_plug *plug)
3156 {
3157 struct task_struct *tsk = current;
3158
3159 /*
3160 * If this is a nested plug, don't actually assign it.
3161 */
3162 if (tsk->plug)
3163 return;
3164
3165 INIT_LIST_HEAD(&plug->list);
3166 INIT_LIST_HEAD(&plug->mq_list);
3167 INIT_LIST_HEAD(&plug->cb_list);
3168 /*
3169 * Store ordering should not be needed here, since a potential
3170 * preempt will imply a full memory barrier
3171 */
3172 tsk->plug = plug;
3173 }
3174 EXPORT_SYMBOL(blk_start_plug);
3175
3176 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3177 {
3178 struct request *rqa = container_of(a, struct request, queuelist);
3179 struct request *rqb = container_of(b, struct request, queuelist);
3180
3181 return !(rqa->q < rqb->q ||
3182 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3183 }
3184
3185 /*
3186 * If 'from_schedule' is true, then postpone the dispatch of requests
3187 * until a safe kblockd context. We due this to avoid accidental big
3188 * additional stack usage in driver dispatch, in places where the originally
3189 * plugger did not intend it.
3190 */
3191 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3192 bool from_schedule)
3193 __releases(q->queue_lock)
3194 {
3195 trace_block_unplug(q, depth, !from_schedule);
3196
3197 if (from_schedule)
3198 blk_run_queue_async(q);
3199 else
3200 __blk_run_queue(q);
3201 spin_unlock(q->queue_lock);
3202 }
3203
3204 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3205 {
3206 LIST_HEAD(callbacks);
3207
3208 while (!list_empty(&plug->cb_list)) {
3209 list_splice_init(&plug->cb_list, &callbacks);
3210
3211 while (!list_empty(&callbacks)) {
3212 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3213 struct blk_plug_cb,
3214 list);
3215 list_del(&cb->list);
3216 cb->callback(cb, from_schedule);
3217 }
3218 }
3219 }
3220
3221 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3222 int size)
3223 {
3224 struct blk_plug *plug = current->plug;
3225 struct blk_plug_cb *cb;
3226
3227 if (!plug)
3228 return NULL;
3229
3230 list_for_each_entry(cb, &plug->cb_list, list)
3231 if (cb->callback == unplug && cb->data == data)
3232 return cb;
3233
3234 /* Not currently on the callback list */
3235 BUG_ON(size < sizeof(*cb));
3236 cb = kzalloc(size, GFP_ATOMIC);
3237 if (cb) {
3238 cb->data = data;
3239 cb->callback = unplug;
3240 list_add(&cb->list, &plug->cb_list);
3241 }
3242 return cb;
3243 }
3244 EXPORT_SYMBOL(blk_check_plugged);
3245
3246 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3247 {
3248 struct request_queue *q;
3249 unsigned long flags;
3250 struct request *rq;
3251 LIST_HEAD(list);
3252 unsigned int depth;
3253
3254 flush_plug_callbacks(plug, from_schedule);
3255
3256 if (!list_empty(&plug->mq_list))
3257 blk_mq_flush_plug_list(plug, from_schedule);
3258
3259 if (list_empty(&plug->list))
3260 return;
3261
3262 list_splice_init(&plug->list, &list);
3263
3264 list_sort(NULL, &list, plug_rq_cmp);
3265
3266 q = NULL;
3267 depth = 0;
3268
3269 /*
3270 * Save and disable interrupts here, to avoid doing it for every
3271 * queue lock we have to take.
3272 */
3273 local_irq_save(flags);
3274 while (!list_empty(&list)) {
3275 rq = list_entry_rq(list.next);
3276 list_del_init(&rq->queuelist);
3277 BUG_ON(!rq->q);
3278 if (rq->q != q) {
3279 /*
3280 * This drops the queue lock
3281 */
3282 if (q)
3283 queue_unplugged(q, depth, from_schedule);
3284 q = rq->q;
3285 depth = 0;
3286 spin_lock(q->queue_lock);
3287 }
3288
3289 /*
3290 * Short-circuit if @q is dead
3291 */
3292 if (unlikely(blk_queue_dying(q))) {
3293 __blk_end_request_all(rq, -ENODEV);
3294 continue;
3295 }
3296
3297 /*
3298 * rq is already accounted, so use raw insert
3299 */
3300 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3301 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3302 else
3303 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3304
3305 depth++;
3306 }
3307
3308 /*
3309 * This drops the queue lock
3310 */
3311 if (q)
3312 queue_unplugged(q, depth, from_schedule);
3313
3314 local_irq_restore(flags);
3315 }
3316
3317 void blk_finish_plug(struct blk_plug *plug)
3318 {
3319 if (plug != current->plug)
3320 return;
3321 blk_flush_plug_list(plug, false);
3322
3323 current->plug = NULL;
3324 }
3325 EXPORT_SYMBOL(blk_finish_plug);
3326
3327 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3328 {
3329 struct blk_plug *plug;
3330 long state;
3331
3332 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3333 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3334 return false;
3335
3336 plug = current->plug;
3337 if (plug)
3338 blk_flush_plug_list(plug, false);
3339
3340 state = current->state;
3341 while (!need_resched()) {
3342 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3343 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3344 int ret;
3345
3346 hctx->poll_invoked++;
3347
3348 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3349 if (ret > 0) {
3350 hctx->poll_success++;
3351 set_current_state(TASK_RUNNING);
3352 return true;
3353 }
3354
3355 if (signal_pending_state(state, current))
3356 set_current_state(TASK_RUNNING);
3357
3358 if (current->state == TASK_RUNNING)
3359 return true;
3360 if (ret < 0)
3361 break;
3362 cpu_relax();
3363 }
3364
3365 return false;
3366 }
3367
3368 #ifdef CONFIG_PM
3369 /**
3370 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3371 * @q: the queue of the device
3372 * @dev: the device the queue belongs to
3373 *
3374 * Description:
3375 * Initialize runtime-PM-related fields for @q and start auto suspend for
3376 * @dev. Drivers that want to take advantage of request-based runtime PM
3377 * should call this function after @dev has been initialized, and its
3378 * request queue @q has been allocated, and runtime PM for it can not happen
3379 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3380 * cases, driver should call this function before any I/O has taken place.
3381 *
3382 * This function takes care of setting up using auto suspend for the device,
3383 * the autosuspend delay is set to -1 to make runtime suspend impossible
3384 * until an updated value is either set by user or by driver. Drivers do
3385 * not need to touch other autosuspend settings.
3386 *
3387 * The block layer runtime PM is request based, so only works for drivers
3388 * that use request as their IO unit instead of those directly use bio's.
3389 */
3390 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3391 {
3392 q->dev = dev;
3393 q->rpm_status = RPM_ACTIVE;
3394 pm_runtime_set_autosuspend_delay(q->dev, -1);
3395 pm_runtime_use_autosuspend(q->dev);
3396 }
3397 EXPORT_SYMBOL(blk_pm_runtime_init);
3398
3399 /**
3400 * blk_pre_runtime_suspend - Pre runtime suspend check
3401 * @q: the queue of the device
3402 *
3403 * Description:
3404 * This function will check if runtime suspend is allowed for the device
3405 * by examining if there are any requests pending in the queue. If there
3406 * are requests pending, the device can not be runtime suspended; otherwise,
3407 * the queue's status will be updated to SUSPENDING and the driver can
3408 * proceed to suspend the device.
3409 *
3410 * For the not allowed case, we mark last busy for the device so that
3411 * runtime PM core will try to autosuspend it some time later.
3412 *
3413 * This function should be called near the start of the device's
3414 * runtime_suspend callback.
3415 *
3416 * Return:
3417 * 0 - OK to runtime suspend the device
3418 * -EBUSY - Device should not be runtime suspended
3419 */
3420 int blk_pre_runtime_suspend(struct request_queue *q)
3421 {
3422 int ret = 0;
3423
3424 if (!q->dev)
3425 return ret;
3426
3427 spin_lock_irq(q->queue_lock);
3428 if (q->nr_pending) {
3429 ret = -EBUSY;
3430 pm_runtime_mark_last_busy(q->dev);
3431 } else {
3432 q->rpm_status = RPM_SUSPENDING;
3433 }
3434 spin_unlock_irq(q->queue_lock);
3435 return ret;
3436 }
3437 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3438
3439 /**
3440 * blk_post_runtime_suspend - Post runtime suspend processing
3441 * @q: the queue of the device
3442 * @err: return value of the device's runtime_suspend function
3443 *
3444 * Description:
3445 * Update the queue's runtime status according to the return value of the
3446 * device's runtime suspend function and mark last busy for the device so
3447 * that PM core will try to auto suspend the device at a later time.
3448 *
3449 * This function should be called near the end of the device's
3450 * runtime_suspend callback.
3451 */
3452 void blk_post_runtime_suspend(struct request_queue *q, int err)
3453 {
3454 if (!q->dev)
3455 return;
3456
3457 spin_lock_irq(q->queue_lock);
3458 if (!err) {
3459 q->rpm_status = RPM_SUSPENDED;
3460 } else {
3461 q->rpm_status = RPM_ACTIVE;
3462 pm_runtime_mark_last_busy(q->dev);
3463 }
3464 spin_unlock_irq(q->queue_lock);
3465 }
3466 EXPORT_SYMBOL(blk_post_runtime_suspend);
3467
3468 /**
3469 * blk_pre_runtime_resume - Pre runtime resume processing
3470 * @q: the queue of the device
3471 *
3472 * Description:
3473 * Update the queue's runtime status to RESUMING in preparation for the
3474 * runtime resume of the device.
3475 *
3476 * This function should be called near the start of the device's
3477 * runtime_resume callback.
3478 */
3479 void blk_pre_runtime_resume(struct request_queue *q)
3480 {
3481 if (!q->dev)
3482 return;
3483
3484 spin_lock_irq(q->queue_lock);
3485 q->rpm_status = RPM_RESUMING;
3486 spin_unlock_irq(q->queue_lock);
3487 }
3488 EXPORT_SYMBOL(blk_pre_runtime_resume);
3489
3490 /**
3491 * blk_post_runtime_resume - Post runtime resume processing
3492 * @q: the queue of the device
3493 * @err: return value of the device's runtime_resume function
3494 *
3495 * Description:
3496 * Update the queue's runtime status according to the return value of the
3497 * device's runtime_resume function. If it is successfully resumed, process
3498 * the requests that are queued into the device's queue when it is resuming
3499 * and then mark last busy and initiate autosuspend for it.
3500 *
3501 * This function should be called near the end of the device's
3502 * runtime_resume callback.
3503 */
3504 void blk_post_runtime_resume(struct request_queue *q, int err)
3505 {
3506 if (!q->dev)
3507 return;
3508
3509 spin_lock_irq(q->queue_lock);
3510 if (!err) {
3511 q->rpm_status = RPM_ACTIVE;
3512 __blk_run_queue(q);
3513 pm_runtime_mark_last_busy(q->dev);
3514 pm_request_autosuspend(q->dev);
3515 } else {
3516 q->rpm_status = RPM_SUSPENDED;
3517 }
3518 spin_unlock_irq(q->queue_lock);
3519 }
3520 EXPORT_SYMBOL(blk_post_runtime_resume);
3521 #endif
3522
3523 int __init blk_dev_init(void)
3524 {
3525 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3526 FIELD_SIZEOF(struct request, cmd_flags));
3527
3528 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3529 kblockd_workqueue = alloc_workqueue("kblockd",
3530 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3531 if (!kblockd_workqueue)
3532 panic("Failed to create kblockd\n");
3533
3534 request_cachep = kmem_cache_create("blkdev_requests",
3535 sizeof(struct request), 0, SLAB_PANIC, NULL);
3536
3537 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3538 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3539
3540 return 0;
3541 }