]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
Merge commit '070680218379e15c1901f4bf21b98e3cbf12b527' into stable/for-linus-fixes-3.3
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35
36 #include "blk.h"
37
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41
42 /*
43 * For the allocated request tables
44 */
45 static struct kmem_cache *request_cachep;
46
47 /*
48 * For queue allocation
49 */
50 struct kmem_cache *blk_requestq_cachep;
51
52 /*
53 * Controlling structure to kblockd
54 */
55 static struct workqueue_struct *kblockd_workqueue;
56
57 static void drive_stat_acct(struct request *rq, int new_io)
58 {
59 struct hd_struct *part;
60 int rw = rq_data_dir(rq);
61 int cpu;
62
63 if (!blk_do_io_stat(rq))
64 return;
65
66 cpu = part_stat_lock();
67
68 if (!new_io) {
69 part = rq->part;
70 part_stat_inc(cpu, part, merges[rw]);
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
73 if (!hd_struct_try_get(part)) {
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
83 hd_struct_get(part);
84 }
85 part_round_stats(cpu, part);
86 part_inc_in_flight(part, rw);
87 rq->part = part;
88 }
89
90 part_stat_unlock();
91 }
92
93 void blk_queue_congestion_threshold(struct request_queue *q)
94 {
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106 }
107
108 /**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118 {
119 struct backing_dev_info *ret = NULL;
120 struct request_queue *q = bdev_get_queue(bdev);
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125 }
126 EXPORT_SYMBOL(blk_get_backing_dev_info);
127
128 void blk_rq_init(struct request_queue *q, struct request *rq)
129 {
130 memset(rq, 0, sizeof(*rq));
131
132 INIT_LIST_HEAD(&rq->queuelist);
133 INIT_LIST_HEAD(&rq->timeout_list);
134 rq->cpu = -1;
135 rq->q = q;
136 rq->__sector = (sector_t) -1;
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
139 rq->cmd = rq->__cmd;
140 rq->cmd_len = BLK_MAX_CDB;
141 rq->tag = -1;
142 rq->ref_count = 1;
143 rq->start_time = jiffies;
144 set_start_time_ns(rq);
145 rq->part = NULL;
146 }
147 EXPORT_SYMBOL(blk_rq_init);
148
149 static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
151 {
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
156
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
161 }
162
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
165
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
168
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
171
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
175 }
176
177 void blk_dump_rq_flags(struct request *rq, char *msg)
178 {
179 int bit;
180
181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
184
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
190
191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
192 printk(KERN_INFO " cdb: ");
193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197 }
198 EXPORT_SYMBOL(blk_dump_rq_flags);
199
200 static void blk_delay_work(struct work_struct *work)
201 {
202 struct request_queue *q;
203
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
206 __blk_run_queue(q);
207 spin_unlock_irq(q->queue_lock);
208 }
209
210 /**
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
214 *
215 * Description:
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
221 {
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
224 }
225 EXPORT_SYMBOL(blk_delay_queue);
226
227 /**
228 * blk_start_queue - restart a previously stopped queue
229 * @q: The &struct request_queue in question
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
236 void blk_start_queue(struct request_queue *q)
237 {
238 WARN_ON(!irqs_disabled());
239
240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
241 __blk_run_queue(q);
242 }
243 EXPORT_SYMBOL(blk_start_queue);
244
245 /**
246 * blk_stop_queue - stop a queue
247 * @q: The &struct request_queue in question
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
259 void blk_stop_queue(struct request_queue *q)
260 {
261 __cancel_delayed_work(&q->delay_work);
262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
263 }
264 EXPORT_SYMBOL(blk_stop_queue);
265
266 /**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
275 * that the callbacks might use. The caller must already have made sure
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
283 */
284 void blk_sync_queue(struct request_queue *q)
285 {
286 del_timer_sync(&q->timeout);
287 cancel_delayed_work_sync(&q->delay_work);
288 }
289 EXPORT_SYMBOL(blk_sync_queue);
290
291 /**
292 * __blk_run_queue - run a single device queue
293 * @q: The queue to run
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
297 * held and interrupts disabled.
298 */
299 void __blk_run_queue(struct request_queue *q)
300 {
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
304 q->request_fn(q);
305 }
306 EXPORT_SYMBOL(__blk_run_queue);
307
308 /**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316 void blk_run_queue_async(struct request_queue *q)
317 {
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
321 }
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324
325 /**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
331 * May be used to restart queueing when a request has completed.
332 */
333 void blk_run_queue(struct request_queue *q)
334 {
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
338 __blk_run_queue(q);
339 spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342
343 void blk_put_queue(struct request_queue *q)
344 {
345 kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348
349 /**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353 *
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
357 */
358 void blk_drain_queue(struct request_queue *q, bool drain_all)
359 {
360 while (true) {
361 int nr_rqs;
362
363 spin_lock_irq(q->queue_lock);
364
365 elv_drain_elevator(q);
366 if (drain_all)
367 blk_throtl_drain(q);
368
369 __blk_run_queue(q);
370
371 if (drain_all)
372 nr_rqs = q->rq.count[0] + q->rq.count[1];
373 else
374 nr_rqs = q->rq.elvpriv;
375
376 spin_unlock_irq(q->queue_lock);
377
378 if (!nr_rqs)
379 break;
380 msleep(10);
381 }
382 }
383
384 /**
385 * blk_cleanup_queue - shutdown a request queue
386 * @q: request queue to shutdown
387 *
388 * Mark @q DEAD, drain all pending requests, destroy and put it. All
389 * future requests will be failed immediately with -ENODEV.
390 */
391 void blk_cleanup_queue(struct request_queue *q)
392 {
393 spinlock_t *lock = q->queue_lock;
394
395 /* mark @q DEAD, no new request or merges will be allowed afterwards */
396 mutex_lock(&q->sysfs_lock);
397 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
398
399 spin_lock_irq(lock);
400 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
401 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
402 queue_flag_set(QUEUE_FLAG_DEAD, q);
403
404 if (q->queue_lock != &q->__queue_lock)
405 q->queue_lock = &q->__queue_lock;
406
407 spin_unlock_irq(lock);
408 mutex_unlock(&q->sysfs_lock);
409
410 /*
411 * Drain all requests queued before DEAD marking. The caller might
412 * be trying to tear down @q before its elevator is initialized, in
413 * which case we don't want to call into draining.
414 */
415 if (q->elevator)
416 blk_drain_queue(q, true);
417
418 /* @q won't process any more request, flush async actions */
419 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
420 blk_sync_queue(q);
421
422 /* @q is and will stay empty, shutdown and put */
423 blk_put_queue(q);
424 }
425 EXPORT_SYMBOL(blk_cleanup_queue);
426
427 static int blk_init_free_list(struct request_queue *q)
428 {
429 struct request_list *rl = &q->rq;
430
431 if (unlikely(rl->rq_pool))
432 return 0;
433
434 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
435 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
436 rl->elvpriv = 0;
437 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
438 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
439
440 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
441 mempool_free_slab, request_cachep, q->node);
442
443 if (!rl->rq_pool)
444 return -ENOMEM;
445
446 return 0;
447 }
448
449 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
450 {
451 return blk_alloc_queue_node(gfp_mask, -1);
452 }
453 EXPORT_SYMBOL(blk_alloc_queue);
454
455 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
456 {
457 struct request_queue *q;
458 int err;
459
460 q = kmem_cache_alloc_node(blk_requestq_cachep,
461 gfp_mask | __GFP_ZERO, node_id);
462 if (!q)
463 return NULL;
464
465 q->backing_dev_info.ra_pages =
466 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
467 q->backing_dev_info.state = 0;
468 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
469 q->backing_dev_info.name = "block";
470
471 err = bdi_init(&q->backing_dev_info);
472 if (err) {
473 kmem_cache_free(blk_requestq_cachep, q);
474 return NULL;
475 }
476
477 if (blk_throtl_init(q)) {
478 kmem_cache_free(blk_requestq_cachep, q);
479 return NULL;
480 }
481
482 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
483 laptop_mode_timer_fn, (unsigned long) q);
484 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
485 INIT_LIST_HEAD(&q->timeout_list);
486 INIT_LIST_HEAD(&q->flush_queue[0]);
487 INIT_LIST_HEAD(&q->flush_queue[1]);
488 INIT_LIST_HEAD(&q->flush_data_in_flight);
489 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
490
491 kobject_init(&q->kobj, &blk_queue_ktype);
492
493 mutex_init(&q->sysfs_lock);
494 spin_lock_init(&q->__queue_lock);
495
496 /*
497 * By default initialize queue_lock to internal lock and driver can
498 * override it later if need be.
499 */
500 q->queue_lock = &q->__queue_lock;
501
502 return q;
503 }
504 EXPORT_SYMBOL(blk_alloc_queue_node);
505
506 /**
507 * blk_init_queue - prepare a request queue for use with a block device
508 * @rfn: The function to be called to process requests that have been
509 * placed on the queue.
510 * @lock: Request queue spin lock
511 *
512 * Description:
513 * If a block device wishes to use the standard request handling procedures,
514 * which sorts requests and coalesces adjacent requests, then it must
515 * call blk_init_queue(). The function @rfn will be called when there
516 * are requests on the queue that need to be processed. If the device
517 * supports plugging, then @rfn may not be called immediately when requests
518 * are available on the queue, but may be called at some time later instead.
519 * Plugged queues are generally unplugged when a buffer belonging to one
520 * of the requests on the queue is needed, or due to memory pressure.
521 *
522 * @rfn is not required, or even expected, to remove all requests off the
523 * queue, but only as many as it can handle at a time. If it does leave
524 * requests on the queue, it is responsible for arranging that the requests
525 * get dealt with eventually.
526 *
527 * The queue spin lock must be held while manipulating the requests on the
528 * request queue; this lock will be taken also from interrupt context, so irq
529 * disabling is needed for it.
530 *
531 * Function returns a pointer to the initialized request queue, or %NULL if
532 * it didn't succeed.
533 *
534 * Note:
535 * blk_init_queue() must be paired with a blk_cleanup_queue() call
536 * when the block device is deactivated (such as at module unload).
537 **/
538
539 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
540 {
541 return blk_init_queue_node(rfn, lock, -1);
542 }
543 EXPORT_SYMBOL(blk_init_queue);
544
545 struct request_queue *
546 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
547 {
548 struct request_queue *uninit_q, *q;
549
550 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
551 if (!uninit_q)
552 return NULL;
553
554 q = blk_init_allocated_queue_node(uninit_q, rfn, lock, node_id);
555 if (!q)
556 blk_cleanup_queue(uninit_q);
557
558 return q;
559 }
560 EXPORT_SYMBOL(blk_init_queue_node);
561
562 struct request_queue *
563 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
564 spinlock_t *lock)
565 {
566 return blk_init_allocated_queue_node(q, rfn, lock, -1);
567 }
568 EXPORT_SYMBOL(blk_init_allocated_queue);
569
570 struct request_queue *
571 blk_init_allocated_queue_node(struct request_queue *q, request_fn_proc *rfn,
572 spinlock_t *lock, int node_id)
573 {
574 if (!q)
575 return NULL;
576
577 q->node = node_id;
578 if (blk_init_free_list(q))
579 return NULL;
580
581 q->request_fn = rfn;
582 q->prep_rq_fn = NULL;
583 q->unprep_rq_fn = NULL;
584 q->queue_flags = QUEUE_FLAG_DEFAULT;
585
586 /* Override internal queue lock with supplied lock pointer */
587 if (lock)
588 q->queue_lock = lock;
589
590 /*
591 * This also sets hw/phys segments, boundary and size
592 */
593 blk_queue_make_request(q, blk_queue_bio);
594
595 q->sg_reserved_size = INT_MAX;
596
597 /*
598 * all done
599 */
600 if (!elevator_init(q, NULL)) {
601 blk_queue_congestion_threshold(q);
602 return q;
603 }
604
605 return NULL;
606 }
607 EXPORT_SYMBOL(blk_init_allocated_queue_node);
608
609 int blk_get_queue(struct request_queue *q)
610 {
611 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
612 kobject_get(&q->kobj);
613 return 0;
614 }
615
616 return 1;
617 }
618 EXPORT_SYMBOL(blk_get_queue);
619
620 static inline void blk_free_request(struct request_queue *q, struct request *rq)
621 {
622 if (rq->cmd_flags & REQ_ELVPRIV)
623 elv_put_request(q, rq);
624 mempool_free(rq, q->rq.rq_pool);
625 }
626
627 static struct request *
628 blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
629 {
630 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
631
632 if (!rq)
633 return NULL;
634
635 blk_rq_init(q, rq);
636
637 rq->cmd_flags = flags | REQ_ALLOCED;
638
639 if ((flags & REQ_ELVPRIV) &&
640 unlikely(elv_set_request(q, rq, gfp_mask))) {
641 mempool_free(rq, q->rq.rq_pool);
642 return NULL;
643 }
644
645 return rq;
646 }
647
648 /*
649 * ioc_batching returns true if the ioc is a valid batching request and
650 * should be given priority access to a request.
651 */
652 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
653 {
654 if (!ioc)
655 return 0;
656
657 /*
658 * Make sure the process is able to allocate at least 1 request
659 * even if the batch times out, otherwise we could theoretically
660 * lose wakeups.
661 */
662 return ioc->nr_batch_requests == q->nr_batching ||
663 (ioc->nr_batch_requests > 0
664 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
665 }
666
667 /*
668 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
669 * will cause the process to be a "batcher" on all queues in the system. This
670 * is the behaviour we want though - once it gets a wakeup it should be given
671 * a nice run.
672 */
673 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
674 {
675 if (!ioc || ioc_batching(q, ioc))
676 return;
677
678 ioc->nr_batch_requests = q->nr_batching;
679 ioc->last_waited = jiffies;
680 }
681
682 static void __freed_request(struct request_queue *q, int sync)
683 {
684 struct request_list *rl = &q->rq;
685
686 if (rl->count[sync] < queue_congestion_off_threshold(q))
687 blk_clear_queue_congested(q, sync);
688
689 if (rl->count[sync] + 1 <= q->nr_requests) {
690 if (waitqueue_active(&rl->wait[sync]))
691 wake_up(&rl->wait[sync]);
692
693 blk_clear_queue_full(q, sync);
694 }
695 }
696
697 /*
698 * A request has just been released. Account for it, update the full and
699 * congestion status, wake up any waiters. Called under q->queue_lock.
700 */
701 static void freed_request(struct request_queue *q, unsigned int flags)
702 {
703 struct request_list *rl = &q->rq;
704 int sync = rw_is_sync(flags);
705
706 rl->count[sync]--;
707 if (flags & REQ_ELVPRIV)
708 rl->elvpriv--;
709
710 __freed_request(q, sync);
711
712 if (unlikely(rl->starved[sync ^ 1]))
713 __freed_request(q, sync ^ 1);
714 }
715
716 /*
717 * Determine if elevator data should be initialized when allocating the
718 * request associated with @bio.
719 */
720 static bool blk_rq_should_init_elevator(struct bio *bio)
721 {
722 if (!bio)
723 return true;
724
725 /*
726 * Flush requests do not use the elevator so skip initialization.
727 * This allows a request to share the flush and elevator data.
728 */
729 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
730 return false;
731
732 return true;
733 }
734
735 /**
736 * get_request - get a free request
737 * @q: request_queue to allocate request from
738 * @rw_flags: RW and SYNC flags
739 * @bio: bio to allocate request for (can be %NULL)
740 * @gfp_mask: allocation mask
741 *
742 * Get a free request from @q. This function may fail under memory
743 * pressure or if @q is dead.
744 *
745 * Must be callled with @q->queue_lock held and,
746 * Returns %NULL on failure, with @q->queue_lock held.
747 * Returns !%NULL on success, with @q->queue_lock *not held*.
748 */
749 static struct request *get_request(struct request_queue *q, int rw_flags,
750 struct bio *bio, gfp_t gfp_mask)
751 {
752 struct request *rq = NULL;
753 struct request_list *rl = &q->rq;
754 struct io_context *ioc = NULL;
755 const bool is_sync = rw_is_sync(rw_flags) != 0;
756 int may_queue;
757
758 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
759 return NULL;
760
761 may_queue = elv_may_queue(q, rw_flags);
762 if (may_queue == ELV_MQUEUE_NO)
763 goto rq_starved;
764
765 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
766 if (rl->count[is_sync]+1 >= q->nr_requests) {
767 ioc = current_io_context(GFP_ATOMIC, q->node);
768 /*
769 * The queue will fill after this allocation, so set
770 * it as full, and mark this process as "batching".
771 * This process will be allowed to complete a batch of
772 * requests, others will be blocked.
773 */
774 if (!blk_queue_full(q, is_sync)) {
775 ioc_set_batching(q, ioc);
776 blk_set_queue_full(q, is_sync);
777 } else {
778 if (may_queue != ELV_MQUEUE_MUST
779 && !ioc_batching(q, ioc)) {
780 /*
781 * The queue is full and the allocating
782 * process is not a "batcher", and not
783 * exempted by the IO scheduler
784 */
785 goto out;
786 }
787 }
788 }
789 blk_set_queue_congested(q, is_sync);
790 }
791
792 /*
793 * Only allow batching queuers to allocate up to 50% over the defined
794 * limit of requests, otherwise we could have thousands of requests
795 * allocated with any setting of ->nr_requests
796 */
797 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
798 goto out;
799
800 rl->count[is_sync]++;
801 rl->starved[is_sync] = 0;
802
803 if (blk_rq_should_init_elevator(bio) &&
804 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
805 rw_flags |= REQ_ELVPRIV;
806 rl->elvpriv++;
807 }
808
809 if (blk_queue_io_stat(q))
810 rw_flags |= REQ_IO_STAT;
811 spin_unlock_irq(q->queue_lock);
812
813 rq = blk_alloc_request(q, rw_flags, gfp_mask);
814 if (unlikely(!rq)) {
815 /*
816 * Allocation failed presumably due to memory. Undo anything
817 * we might have messed up.
818 *
819 * Allocating task should really be put onto the front of the
820 * wait queue, but this is pretty rare.
821 */
822 spin_lock_irq(q->queue_lock);
823 freed_request(q, rw_flags);
824
825 /*
826 * in the very unlikely event that allocation failed and no
827 * requests for this direction was pending, mark us starved
828 * so that freeing of a request in the other direction will
829 * notice us. another possible fix would be to split the
830 * rq mempool into READ and WRITE
831 */
832 rq_starved:
833 if (unlikely(rl->count[is_sync] == 0))
834 rl->starved[is_sync] = 1;
835
836 goto out;
837 }
838
839 /*
840 * ioc may be NULL here, and ioc_batching will be false. That's
841 * OK, if the queue is under the request limit then requests need
842 * not count toward the nr_batch_requests limit. There will always
843 * be some limit enforced by BLK_BATCH_TIME.
844 */
845 if (ioc_batching(q, ioc))
846 ioc->nr_batch_requests--;
847
848 trace_block_getrq(q, bio, rw_flags & 1);
849 out:
850 return rq;
851 }
852
853 /**
854 * get_request_wait - get a free request with retry
855 * @q: request_queue to allocate request from
856 * @rw_flags: RW and SYNC flags
857 * @bio: bio to allocate request for (can be %NULL)
858 *
859 * Get a free request from @q. This function keeps retrying under memory
860 * pressure and fails iff @q is dead.
861 *
862 * Must be callled with @q->queue_lock held and,
863 * Returns %NULL on failure, with @q->queue_lock held.
864 * Returns !%NULL on success, with @q->queue_lock *not held*.
865 */
866 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
867 struct bio *bio)
868 {
869 const bool is_sync = rw_is_sync(rw_flags) != 0;
870 struct request *rq;
871
872 rq = get_request(q, rw_flags, bio, GFP_NOIO);
873 while (!rq) {
874 DEFINE_WAIT(wait);
875 struct io_context *ioc;
876 struct request_list *rl = &q->rq;
877
878 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
879 return NULL;
880
881 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
882 TASK_UNINTERRUPTIBLE);
883
884 trace_block_sleeprq(q, bio, rw_flags & 1);
885
886 spin_unlock_irq(q->queue_lock);
887 io_schedule();
888
889 /*
890 * After sleeping, we become a "batching" process and
891 * will be able to allocate at least one request, and
892 * up to a big batch of them for a small period time.
893 * See ioc_batching, ioc_set_batching
894 */
895 ioc = current_io_context(GFP_NOIO, q->node);
896 ioc_set_batching(q, ioc);
897
898 spin_lock_irq(q->queue_lock);
899 finish_wait(&rl->wait[is_sync], &wait);
900
901 rq = get_request(q, rw_flags, bio, GFP_NOIO);
902 };
903
904 return rq;
905 }
906
907 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
908 {
909 struct request *rq;
910
911 BUG_ON(rw != READ && rw != WRITE);
912
913 spin_lock_irq(q->queue_lock);
914 if (gfp_mask & __GFP_WAIT)
915 rq = get_request_wait(q, rw, NULL);
916 else
917 rq = get_request(q, rw, NULL, gfp_mask);
918 if (!rq)
919 spin_unlock_irq(q->queue_lock);
920 /* q->queue_lock is unlocked at this point */
921
922 return rq;
923 }
924 EXPORT_SYMBOL(blk_get_request);
925
926 /**
927 * blk_make_request - given a bio, allocate a corresponding struct request.
928 * @q: target request queue
929 * @bio: The bio describing the memory mappings that will be submitted for IO.
930 * It may be a chained-bio properly constructed by block/bio layer.
931 * @gfp_mask: gfp flags to be used for memory allocation
932 *
933 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
934 * type commands. Where the struct request needs to be farther initialized by
935 * the caller. It is passed a &struct bio, which describes the memory info of
936 * the I/O transfer.
937 *
938 * The caller of blk_make_request must make sure that bi_io_vec
939 * are set to describe the memory buffers. That bio_data_dir() will return
940 * the needed direction of the request. (And all bio's in the passed bio-chain
941 * are properly set accordingly)
942 *
943 * If called under none-sleepable conditions, mapped bio buffers must not
944 * need bouncing, by calling the appropriate masked or flagged allocator,
945 * suitable for the target device. Otherwise the call to blk_queue_bounce will
946 * BUG.
947 *
948 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
949 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
950 * anything but the first bio in the chain. Otherwise you risk waiting for IO
951 * completion of a bio that hasn't been submitted yet, thus resulting in a
952 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
953 * of bio_alloc(), as that avoids the mempool deadlock.
954 * If possible a big IO should be split into smaller parts when allocation
955 * fails. Partial allocation should not be an error, or you risk a live-lock.
956 */
957 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
958 gfp_t gfp_mask)
959 {
960 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
961
962 if (unlikely(!rq))
963 return ERR_PTR(-ENOMEM);
964
965 for_each_bio(bio) {
966 struct bio *bounce_bio = bio;
967 int ret;
968
969 blk_queue_bounce(q, &bounce_bio);
970 ret = blk_rq_append_bio(q, rq, bounce_bio);
971 if (unlikely(ret)) {
972 blk_put_request(rq);
973 return ERR_PTR(ret);
974 }
975 }
976
977 return rq;
978 }
979 EXPORT_SYMBOL(blk_make_request);
980
981 /**
982 * blk_requeue_request - put a request back on queue
983 * @q: request queue where request should be inserted
984 * @rq: request to be inserted
985 *
986 * Description:
987 * Drivers often keep queueing requests until the hardware cannot accept
988 * more, when that condition happens we need to put the request back
989 * on the queue. Must be called with queue lock held.
990 */
991 void blk_requeue_request(struct request_queue *q, struct request *rq)
992 {
993 blk_delete_timer(rq);
994 blk_clear_rq_complete(rq);
995 trace_block_rq_requeue(q, rq);
996
997 if (blk_rq_tagged(rq))
998 blk_queue_end_tag(q, rq);
999
1000 BUG_ON(blk_queued_rq(rq));
1001
1002 elv_requeue_request(q, rq);
1003 }
1004 EXPORT_SYMBOL(blk_requeue_request);
1005
1006 static void add_acct_request(struct request_queue *q, struct request *rq,
1007 int where)
1008 {
1009 drive_stat_acct(rq, 1);
1010 __elv_add_request(q, rq, where);
1011 }
1012
1013 /**
1014 * blk_insert_request - insert a special request into a request queue
1015 * @q: request queue where request should be inserted
1016 * @rq: request to be inserted
1017 * @at_head: insert request at head or tail of queue
1018 * @data: private data
1019 *
1020 * Description:
1021 * Many block devices need to execute commands asynchronously, so they don't
1022 * block the whole kernel from preemption during request execution. This is
1023 * accomplished normally by inserting aritficial requests tagged as
1024 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1025 * be scheduled for actual execution by the request queue.
1026 *
1027 * We have the option of inserting the head or the tail of the queue.
1028 * Typically we use the tail for new ioctls and so forth. We use the head
1029 * of the queue for things like a QUEUE_FULL message from a device, or a
1030 * host that is unable to accept a particular command.
1031 */
1032 void blk_insert_request(struct request_queue *q, struct request *rq,
1033 int at_head, void *data)
1034 {
1035 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1036 unsigned long flags;
1037
1038 /*
1039 * tell I/O scheduler that this isn't a regular read/write (ie it
1040 * must not attempt merges on this) and that it acts as a soft
1041 * barrier
1042 */
1043 rq->cmd_type = REQ_TYPE_SPECIAL;
1044
1045 rq->special = data;
1046
1047 spin_lock_irqsave(q->queue_lock, flags);
1048
1049 /*
1050 * If command is tagged, release the tag
1051 */
1052 if (blk_rq_tagged(rq))
1053 blk_queue_end_tag(q, rq);
1054
1055 add_acct_request(q, rq, where);
1056 __blk_run_queue(q);
1057 spin_unlock_irqrestore(q->queue_lock, flags);
1058 }
1059 EXPORT_SYMBOL(blk_insert_request);
1060
1061 static void part_round_stats_single(int cpu, struct hd_struct *part,
1062 unsigned long now)
1063 {
1064 if (now == part->stamp)
1065 return;
1066
1067 if (part_in_flight(part)) {
1068 __part_stat_add(cpu, part, time_in_queue,
1069 part_in_flight(part) * (now - part->stamp));
1070 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1071 }
1072 part->stamp = now;
1073 }
1074
1075 /**
1076 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1077 * @cpu: cpu number for stats access
1078 * @part: target partition
1079 *
1080 * The average IO queue length and utilisation statistics are maintained
1081 * by observing the current state of the queue length and the amount of
1082 * time it has been in this state for.
1083 *
1084 * Normally, that accounting is done on IO completion, but that can result
1085 * in more than a second's worth of IO being accounted for within any one
1086 * second, leading to >100% utilisation. To deal with that, we call this
1087 * function to do a round-off before returning the results when reading
1088 * /proc/diskstats. This accounts immediately for all queue usage up to
1089 * the current jiffies and restarts the counters again.
1090 */
1091 void part_round_stats(int cpu, struct hd_struct *part)
1092 {
1093 unsigned long now = jiffies;
1094
1095 if (part->partno)
1096 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1097 part_round_stats_single(cpu, part, now);
1098 }
1099 EXPORT_SYMBOL_GPL(part_round_stats);
1100
1101 /*
1102 * queue lock must be held
1103 */
1104 void __blk_put_request(struct request_queue *q, struct request *req)
1105 {
1106 if (unlikely(!q))
1107 return;
1108 if (unlikely(--req->ref_count))
1109 return;
1110
1111 elv_completed_request(q, req);
1112
1113 /* this is a bio leak */
1114 WARN_ON(req->bio != NULL);
1115
1116 /*
1117 * Request may not have originated from ll_rw_blk. if not,
1118 * it didn't come out of our reserved rq pools
1119 */
1120 if (req->cmd_flags & REQ_ALLOCED) {
1121 unsigned int flags = req->cmd_flags;
1122
1123 BUG_ON(!list_empty(&req->queuelist));
1124 BUG_ON(!hlist_unhashed(&req->hash));
1125
1126 blk_free_request(q, req);
1127 freed_request(q, flags);
1128 }
1129 }
1130 EXPORT_SYMBOL_GPL(__blk_put_request);
1131
1132 void blk_put_request(struct request *req)
1133 {
1134 unsigned long flags;
1135 struct request_queue *q = req->q;
1136
1137 spin_lock_irqsave(q->queue_lock, flags);
1138 __blk_put_request(q, req);
1139 spin_unlock_irqrestore(q->queue_lock, flags);
1140 }
1141 EXPORT_SYMBOL(blk_put_request);
1142
1143 /**
1144 * blk_add_request_payload - add a payload to a request
1145 * @rq: request to update
1146 * @page: page backing the payload
1147 * @len: length of the payload.
1148 *
1149 * This allows to later add a payload to an already submitted request by
1150 * a block driver. The driver needs to take care of freeing the payload
1151 * itself.
1152 *
1153 * Note that this is a quite horrible hack and nothing but handling of
1154 * discard requests should ever use it.
1155 */
1156 void blk_add_request_payload(struct request *rq, struct page *page,
1157 unsigned int len)
1158 {
1159 struct bio *bio = rq->bio;
1160
1161 bio->bi_io_vec->bv_page = page;
1162 bio->bi_io_vec->bv_offset = 0;
1163 bio->bi_io_vec->bv_len = len;
1164
1165 bio->bi_size = len;
1166 bio->bi_vcnt = 1;
1167 bio->bi_phys_segments = 1;
1168
1169 rq->__data_len = rq->resid_len = len;
1170 rq->nr_phys_segments = 1;
1171 rq->buffer = bio_data(bio);
1172 }
1173 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1174
1175 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1176 struct bio *bio)
1177 {
1178 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1179
1180 if (!ll_back_merge_fn(q, req, bio))
1181 return false;
1182
1183 trace_block_bio_backmerge(q, bio);
1184
1185 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1186 blk_rq_set_mixed_merge(req);
1187
1188 req->biotail->bi_next = bio;
1189 req->biotail = bio;
1190 req->__data_len += bio->bi_size;
1191 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1192
1193 drive_stat_acct(req, 0);
1194 elv_bio_merged(q, req, bio);
1195 return true;
1196 }
1197
1198 static bool bio_attempt_front_merge(struct request_queue *q,
1199 struct request *req, struct bio *bio)
1200 {
1201 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1202
1203 if (!ll_front_merge_fn(q, req, bio))
1204 return false;
1205
1206 trace_block_bio_frontmerge(q, bio);
1207
1208 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1209 blk_rq_set_mixed_merge(req);
1210
1211 bio->bi_next = req->bio;
1212 req->bio = bio;
1213
1214 /*
1215 * may not be valid. if the low level driver said
1216 * it didn't need a bounce buffer then it better
1217 * not touch req->buffer either...
1218 */
1219 req->buffer = bio_data(bio);
1220 req->__sector = bio->bi_sector;
1221 req->__data_len += bio->bi_size;
1222 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1223
1224 drive_stat_acct(req, 0);
1225 elv_bio_merged(q, req, bio);
1226 return true;
1227 }
1228
1229 /**
1230 * attempt_plug_merge - try to merge with %current's plugged list
1231 * @q: request_queue new bio is being queued at
1232 * @bio: new bio being queued
1233 * @request_count: out parameter for number of traversed plugged requests
1234 *
1235 * Determine whether @bio being queued on @q can be merged with a request
1236 * on %current's plugged list. Returns %true if merge was successful,
1237 * otherwise %false.
1238 *
1239 * This function is called without @q->queue_lock; however, elevator is
1240 * accessed iff there already are requests on the plugged list which in
1241 * turn guarantees validity of the elevator.
1242 *
1243 * Note that, on successful merge, elevator operation
1244 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1245 * must be ready for this.
1246 */
1247 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1248 unsigned int *request_count)
1249 {
1250 struct blk_plug *plug;
1251 struct request *rq;
1252 bool ret = false;
1253
1254 plug = current->plug;
1255 if (!plug)
1256 goto out;
1257 *request_count = 0;
1258
1259 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1260 int el_ret;
1261
1262 (*request_count)++;
1263
1264 if (rq->q != q)
1265 continue;
1266
1267 el_ret = elv_try_merge(rq, bio);
1268 if (el_ret == ELEVATOR_BACK_MERGE) {
1269 ret = bio_attempt_back_merge(q, rq, bio);
1270 if (ret)
1271 break;
1272 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1273 ret = bio_attempt_front_merge(q, rq, bio);
1274 if (ret)
1275 break;
1276 }
1277 }
1278 out:
1279 return ret;
1280 }
1281
1282 void init_request_from_bio(struct request *req, struct bio *bio)
1283 {
1284 req->cmd_type = REQ_TYPE_FS;
1285
1286 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1287 if (bio->bi_rw & REQ_RAHEAD)
1288 req->cmd_flags |= REQ_FAILFAST_MASK;
1289
1290 req->errors = 0;
1291 req->__sector = bio->bi_sector;
1292 req->ioprio = bio_prio(bio);
1293 blk_rq_bio_prep(req->q, req, bio);
1294 }
1295
1296 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1297 {
1298 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1299 struct blk_plug *plug;
1300 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1301 struct request *req;
1302 unsigned int request_count = 0;
1303
1304 /*
1305 * low level driver can indicate that it wants pages above a
1306 * certain limit bounced to low memory (ie for highmem, or even
1307 * ISA dma in theory)
1308 */
1309 blk_queue_bounce(q, &bio);
1310
1311 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1312 spin_lock_irq(q->queue_lock);
1313 where = ELEVATOR_INSERT_FLUSH;
1314 goto get_rq;
1315 }
1316
1317 /*
1318 * Check if we can merge with the plugged list before grabbing
1319 * any locks.
1320 */
1321 if (attempt_plug_merge(q, bio, &request_count))
1322 return;
1323
1324 spin_lock_irq(q->queue_lock);
1325
1326 el_ret = elv_merge(q, &req, bio);
1327 if (el_ret == ELEVATOR_BACK_MERGE) {
1328 if (bio_attempt_back_merge(q, req, bio)) {
1329 if (!attempt_back_merge(q, req))
1330 elv_merged_request(q, req, el_ret);
1331 goto out_unlock;
1332 }
1333 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1334 if (bio_attempt_front_merge(q, req, bio)) {
1335 if (!attempt_front_merge(q, req))
1336 elv_merged_request(q, req, el_ret);
1337 goto out_unlock;
1338 }
1339 }
1340
1341 get_rq:
1342 /*
1343 * This sync check and mask will be re-done in init_request_from_bio(),
1344 * but we need to set it earlier to expose the sync flag to the
1345 * rq allocator and io schedulers.
1346 */
1347 rw_flags = bio_data_dir(bio);
1348 if (sync)
1349 rw_flags |= REQ_SYNC;
1350
1351 /*
1352 * Grab a free request. This is might sleep but can not fail.
1353 * Returns with the queue unlocked.
1354 */
1355 req = get_request_wait(q, rw_flags, bio);
1356 if (unlikely(!req)) {
1357 bio_endio(bio, -ENODEV); /* @q is dead */
1358 goto out_unlock;
1359 }
1360
1361 /*
1362 * After dropping the lock and possibly sleeping here, our request
1363 * may now be mergeable after it had proven unmergeable (above).
1364 * We don't worry about that case for efficiency. It won't happen
1365 * often, and the elevators are able to handle it.
1366 */
1367 init_request_from_bio(req, bio);
1368
1369 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1370 req->cpu = raw_smp_processor_id();
1371
1372 plug = current->plug;
1373 if (plug) {
1374 /*
1375 * If this is the first request added after a plug, fire
1376 * of a plug trace. If others have been added before, check
1377 * if we have multiple devices in this plug. If so, make a
1378 * note to sort the list before dispatch.
1379 */
1380 if (list_empty(&plug->list))
1381 trace_block_plug(q);
1382 else {
1383 if (!plug->should_sort) {
1384 struct request *__rq;
1385
1386 __rq = list_entry_rq(plug->list.prev);
1387 if (__rq->q != q)
1388 plug->should_sort = 1;
1389 }
1390 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1391 blk_flush_plug_list(plug, false);
1392 trace_block_plug(q);
1393 }
1394 }
1395 list_add_tail(&req->queuelist, &plug->list);
1396 drive_stat_acct(req, 1);
1397 } else {
1398 spin_lock_irq(q->queue_lock);
1399 add_acct_request(q, req, where);
1400 __blk_run_queue(q);
1401 out_unlock:
1402 spin_unlock_irq(q->queue_lock);
1403 }
1404 }
1405 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1406
1407 /*
1408 * If bio->bi_dev is a partition, remap the location
1409 */
1410 static inline void blk_partition_remap(struct bio *bio)
1411 {
1412 struct block_device *bdev = bio->bi_bdev;
1413
1414 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1415 struct hd_struct *p = bdev->bd_part;
1416
1417 bio->bi_sector += p->start_sect;
1418 bio->bi_bdev = bdev->bd_contains;
1419
1420 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1421 bdev->bd_dev,
1422 bio->bi_sector - p->start_sect);
1423 }
1424 }
1425
1426 static void handle_bad_sector(struct bio *bio)
1427 {
1428 char b[BDEVNAME_SIZE];
1429
1430 printk(KERN_INFO "attempt to access beyond end of device\n");
1431 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1432 bdevname(bio->bi_bdev, b),
1433 bio->bi_rw,
1434 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1435 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1436
1437 set_bit(BIO_EOF, &bio->bi_flags);
1438 }
1439
1440 #ifdef CONFIG_FAIL_MAKE_REQUEST
1441
1442 static DECLARE_FAULT_ATTR(fail_make_request);
1443
1444 static int __init setup_fail_make_request(char *str)
1445 {
1446 return setup_fault_attr(&fail_make_request, str);
1447 }
1448 __setup("fail_make_request=", setup_fail_make_request);
1449
1450 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1451 {
1452 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1453 }
1454
1455 static int __init fail_make_request_debugfs(void)
1456 {
1457 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1458 NULL, &fail_make_request);
1459
1460 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1461 }
1462
1463 late_initcall(fail_make_request_debugfs);
1464
1465 #else /* CONFIG_FAIL_MAKE_REQUEST */
1466
1467 static inline bool should_fail_request(struct hd_struct *part,
1468 unsigned int bytes)
1469 {
1470 return false;
1471 }
1472
1473 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1474
1475 /*
1476 * Check whether this bio extends beyond the end of the device.
1477 */
1478 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1479 {
1480 sector_t maxsector;
1481
1482 if (!nr_sectors)
1483 return 0;
1484
1485 /* Test device or partition size, when known. */
1486 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1487 if (maxsector) {
1488 sector_t sector = bio->bi_sector;
1489
1490 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1491 /*
1492 * This may well happen - the kernel calls bread()
1493 * without checking the size of the device, e.g., when
1494 * mounting a device.
1495 */
1496 handle_bad_sector(bio);
1497 return 1;
1498 }
1499 }
1500
1501 return 0;
1502 }
1503
1504 static noinline_for_stack bool
1505 generic_make_request_checks(struct bio *bio)
1506 {
1507 struct request_queue *q;
1508 int nr_sectors = bio_sectors(bio);
1509 int err = -EIO;
1510 char b[BDEVNAME_SIZE];
1511 struct hd_struct *part;
1512
1513 might_sleep();
1514
1515 if (bio_check_eod(bio, nr_sectors))
1516 goto end_io;
1517
1518 q = bdev_get_queue(bio->bi_bdev);
1519 if (unlikely(!q)) {
1520 printk(KERN_ERR
1521 "generic_make_request: Trying to access "
1522 "nonexistent block-device %s (%Lu)\n",
1523 bdevname(bio->bi_bdev, b),
1524 (long long) bio->bi_sector);
1525 goto end_io;
1526 }
1527
1528 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1529 nr_sectors > queue_max_hw_sectors(q))) {
1530 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1531 bdevname(bio->bi_bdev, b),
1532 bio_sectors(bio),
1533 queue_max_hw_sectors(q));
1534 goto end_io;
1535 }
1536
1537 part = bio->bi_bdev->bd_part;
1538 if (should_fail_request(part, bio->bi_size) ||
1539 should_fail_request(&part_to_disk(part)->part0,
1540 bio->bi_size))
1541 goto end_io;
1542
1543 /*
1544 * If this device has partitions, remap block n
1545 * of partition p to block n+start(p) of the disk.
1546 */
1547 blk_partition_remap(bio);
1548
1549 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1550 goto end_io;
1551
1552 if (bio_check_eod(bio, nr_sectors))
1553 goto end_io;
1554
1555 /*
1556 * Filter flush bio's early so that make_request based
1557 * drivers without flush support don't have to worry
1558 * about them.
1559 */
1560 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1561 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1562 if (!nr_sectors) {
1563 err = 0;
1564 goto end_io;
1565 }
1566 }
1567
1568 if ((bio->bi_rw & REQ_DISCARD) &&
1569 (!blk_queue_discard(q) ||
1570 ((bio->bi_rw & REQ_SECURE) &&
1571 !blk_queue_secdiscard(q)))) {
1572 err = -EOPNOTSUPP;
1573 goto end_io;
1574 }
1575
1576 if (blk_throtl_bio(q, bio))
1577 return false; /* throttled, will be resubmitted later */
1578
1579 trace_block_bio_queue(q, bio);
1580 return true;
1581
1582 end_io:
1583 bio_endio(bio, err);
1584 return false;
1585 }
1586
1587 /**
1588 * generic_make_request - hand a buffer to its device driver for I/O
1589 * @bio: The bio describing the location in memory and on the device.
1590 *
1591 * generic_make_request() is used to make I/O requests of block
1592 * devices. It is passed a &struct bio, which describes the I/O that needs
1593 * to be done.
1594 *
1595 * generic_make_request() does not return any status. The
1596 * success/failure status of the request, along with notification of
1597 * completion, is delivered asynchronously through the bio->bi_end_io
1598 * function described (one day) else where.
1599 *
1600 * The caller of generic_make_request must make sure that bi_io_vec
1601 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1602 * set to describe the device address, and the
1603 * bi_end_io and optionally bi_private are set to describe how
1604 * completion notification should be signaled.
1605 *
1606 * generic_make_request and the drivers it calls may use bi_next if this
1607 * bio happens to be merged with someone else, and may resubmit the bio to
1608 * a lower device by calling into generic_make_request recursively, which
1609 * means the bio should NOT be touched after the call to ->make_request_fn.
1610 */
1611 void generic_make_request(struct bio *bio)
1612 {
1613 struct bio_list bio_list_on_stack;
1614
1615 if (!generic_make_request_checks(bio))
1616 return;
1617
1618 /*
1619 * We only want one ->make_request_fn to be active at a time, else
1620 * stack usage with stacked devices could be a problem. So use
1621 * current->bio_list to keep a list of requests submited by a
1622 * make_request_fn function. current->bio_list is also used as a
1623 * flag to say if generic_make_request is currently active in this
1624 * task or not. If it is NULL, then no make_request is active. If
1625 * it is non-NULL, then a make_request is active, and new requests
1626 * should be added at the tail
1627 */
1628 if (current->bio_list) {
1629 bio_list_add(current->bio_list, bio);
1630 return;
1631 }
1632
1633 /* following loop may be a bit non-obvious, and so deserves some
1634 * explanation.
1635 * Before entering the loop, bio->bi_next is NULL (as all callers
1636 * ensure that) so we have a list with a single bio.
1637 * We pretend that we have just taken it off a longer list, so
1638 * we assign bio_list to a pointer to the bio_list_on_stack,
1639 * thus initialising the bio_list of new bios to be
1640 * added. ->make_request() may indeed add some more bios
1641 * through a recursive call to generic_make_request. If it
1642 * did, we find a non-NULL value in bio_list and re-enter the loop
1643 * from the top. In this case we really did just take the bio
1644 * of the top of the list (no pretending) and so remove it from
1645 * bio_list, and call into ->make_request() again.
1646 */
1647 BUG_ON(bio->bi_next);
1648 bio_list_init(&bio_list_on_stack);
1649 current->bio_list = &bio_list_on_stack;
1650 do {
1651 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1652
1653 q->make_request_fn(q, bio);
1654
1655 bio = bio_list_pop(current->bio_list);
1656 } while (bio);
1657 current->bio_list = NULL; /* deactivate */
1658 }
1659 EXPORT_SYMBOL(generic_make_request);
1660
1661 /**
1662 * submit_bio - submit a bio to the block device layer for I/O
1663 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1664 * @bio: The &struct bio which describes the I/O
1665 *
1666 * submit_bio() is very similar in purpose to generic_make_request(), and
1667 * uses that function to do most of the work. Both are fairly rough
1668 * interfaces; @bio must be presetup and ready for I/O.
1669 *
1670 */
1671 void submit_bio(int rw, struct bio *bio)
1672 {
1673 int count = bio_sectors(bio);
1674
1675 bio->bi_rw |= rw;
1676
1677 /*
1678 * If it's a regular read/write or a barrier with data attached,
1679 * go through the normal accounting stuff before submission.
1680 */
1681 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1682 if (rw & WRITE) {
1683 count_vm_events(PGPGOUT, count);
1684 } else {
1685 task_io_account_read(bio->bi_size);
1686 count_vm_events(PGPGIN, count);
1687 }
1688
1689 if (unlikely(block_dump)) {
1690 char b[BDEVNAME_SIZE];
1691 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1692 current->comm, task_pid_nr(current),
1693 (rw & WRITE) ? "WRITE" : "READ",
1694 (unsigned long long)bio->bi_sector,
1695 bdevname(bio->bi_bdev, b),
1696 count);
1697 }
1698 }
1699
1700 generic_make_request(bio);
1701 }
1702 EXPORT_SYMBOL(submit_bio);
1703
1704 /**
1705 * blk_rq_check_limits - Helper function to check a request for the queue limit
1706 * @q: the queue
1707 * @rq: the request being checked
1708 *
1709 * Description:
1710 * @rq may have been made based on weaker limitations of upper-level queues
1711 * in request stacking drivers, and it may violate the limitation of @q.
1712 * Since the block layer and the underlying device driver trust @rq
1713 * after it is inserted to @q, it should be checked against @q before
1714 * the insertion using this generic function.
1715 *
1716 * This function should also be useful for request stacking drivers
1717 * in some cases below, so export this function.
1718 * Request stacking drivers like request-based dm may change the queue
1719 * limits while requests are in the queue (e.g. dm's table swapping).
1720 * Such request stacking drivers should check those requests agaist
1721 * the new queue limits again when they dispatch those requests,
1722 * although such checkings are also done against the old queue limits
1723 * when submitting requests.
1724 */
1725 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1726 {
1727 if (rq->cmd_flags & REQ_DISCARD)
1728 return 0;
1729
1730 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1731 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1732 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1733 return -EIO;
1734 }
1735
1736 /*
1737 * queue's settings related to segment counting like q->bounce_pfn
1738 * may differ from that of other stacking queues.
1739 * Recalculate it to check the request correctly on this queue's
1740 * limitation.
1741 */
1742 blk_recalc_rq_segments(rq);
1743 if (rq->nr_phys_segments > queue_max_segments(q)) {
1744 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1745 return -EIO;
1746 }
1747
1748 return 0;
1749 }
1750 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1751
1752 /**
1753 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1754 * @q: the queue to submit the request
1755 * @rq: the request being queued
1756 */
1757 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1758 {
1759 unsigned long flags;
1760 int where = ELEVATOR_INSERT_BACK;
1761
1762 if (blk_rq_check_limits(q, rq))
1763 return -EIO;
1764
1765 if (rq->rq_disk &&
1766 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1767 return -EIO;
1768
1769 spin_lock_irqsave(q->queue_lock, flags);
1770
1771 /*
1772 * Submitting request must be dequeued before calling this function
1773 * because it will be linked to another request_queue
1774 */
1775 BUG_ON(blk_queued_rq(rq));
1776
1777 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1778 where = ELEVATOR_INSERT_FLUSH;
1779
1780 add_acct_request(q, rq, where);
1781 if (where == ELEVATOR_INSERT_FLUSH)
1782 __blk_run_queue(q);
1783 spin_unlock_irqrestore(q->queue_lock, flags);
1784
1785 return 0;
1786 }
1787 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1788
1789 /**
1790 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1791 * @rq: request to examine
1792 *
1793 * Description:
1794 * A request could be merge of IOs which require different failure
1795 * handling. This function determines the number of bytes which
1796 * can be failed from the beginning of the request without
1797 * crossing into area which need to be retried further.
1798 *
1799 * Return:
1800 * The number of bytes to fail.
1801 *
1802 * Context:
1803 * queue_lock must be held.
1804 */
1805 unsigned int blk_rq_err_bytes(const struct request *rq)
1806 {
1807 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1808 unsigned int bytes = 0;
1809 struct bio *bio;
1810
1811 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1812 return blk_rq_bytes(rq);
1813
1814 /*
1815 * Currently the only 'mixing' which can happen is between
1816 * different fastfail types. We can safely fail portions
1817 * which have all the failfast bits that the first one has -
1818 * the ones which are at least as eager to fail as the first
1819 * one.
1820 */
1821 for (bio = rq->bio; bio; bio = bio->bi_next) {
1822 if ((bio->bi_rw & ff) != ff)
1823 break;
1824 bytes += bio->bi_size;
1825 }
1826
1827 /* this could lead to infinite loop */
1828 BUG_ON(blk_rq_bytes(rq) && !bytes);
1829 return bytes;
1830 }
1831 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1832
1833 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1834 {
1835 if (blk_do_io_stat(req)) {
1836 const int rw = rq_data_dir(req);
1837 struct hd_struct *part;
1838 int cpu;
1839
1840 cpu = part_stat_lock();
1841 part = req->part;
1842 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1843 part_stat_unlock();
1844 }
1845 }
1846
1847 static void blk_account_io_done(struct request *req)
1848 {
1849 /*
1850 * Account IO completion. flush_rq isn't accounted as a
1851 * normal IO on queueing nor completion. Accounting the
1852 * containing request is enough.
1853 */
1854 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1855 unsigned long duration = jiffies - req->start_time;
1856 const int rw = rq_data_dir(req);
1857 struct hd_struct *part;
1858 int cpu;
1859
1860 cpu = part_stat_lock();
1861 part = req->part;
1862
1863 part_stat_inc(cpu, part, ios[rw]);
1864 part_stat_add(cpu, part, ticks[rw], duration);
1865 part_round_stats(cpu, part);
1866 part_dec_in_flight(part, rw);
1867
1868 hd_struct_put(part);
1869 part_stat_unlock();
1870 }
1871 }
1872
1873 /**
1874 * blk_peek_request - peek at the top of a request queue
1875 * @q: request queue to peek at
1876 *
1877 * Description:
1878 * Return the request at the top of @q. The returned request
1879 * should be started using blk_start_request() before LLD starts
1880 * processing it.
1881 *
1882 * Return:
1883 * Pointer to the request at the top of @q if available. Null
1884 * otherwise.
1885 *
1886 * Context:
1887 * queue_lock must be held.
1888 */
1889 struct request *blk_peek_request(struct request_queue *q)
1890 {
1891 struct request *rq;
1892 int ret;
1893
1894 while ((rq = __elv_next_request(q)) != NULL) {
1895 if (!(rq->cmd_flags & REQ_STARTED)) {
1896 /*
1897 * This is the first time the device driver
1898 * sees this request (possibly after
1899 * requeueing). Notify IO scheduler.
1900 */
1901 if (rq->cmd_flags & REQ_SORTED)
1902 elv_activate_rq(q, rq);
1903
1904 /*
1905 * just mark as started even if we don't start
1906 * it, a request that has been delayed should
1907 * not be passed by new incoming requests
1908 */
1909 rq->cmd_flags |= REQ_STARTED;
1910 trace_block_rq_issue(q, rq);
1911 }
1912
1913 if (!q->boundary_rq || q->boundary_rq == rq) {
1914 q->end_sector = rq_end_sector(rq);
1915 q->boundary_rq = NULL;
1916 }
1917
1918 if (rq->cmd_flags & REQ_DONTPREP)
1919 break;
1920
1921 if (q->dma_drain_size && blk_rq_bytes(rq)) {
1922 /*
1923 * make sure space for the drain appears we
1924 * know we can do this because max_hw_segments
1925 * has been adjusted to be one fewer than the
1926 * device can handle
1927 */
1928 rq->nr_phys_segments++;
1929 }
1930
1931 if (!q->prep_rq_fn)
1932 break;
1933
1934 ret = q->prep_rq_fn(q, rq);
1935 if (ret == BLKPREP_OK) {
1936 break;
1937 } else if (ret == BLKPREP_DEFER) {
1938 /*
1939 * the request may have been (partially) prepped.
1940 * we need to keep this request in the front to
1941 * avoid resource deadlock. REQ_STARTED will
1942 * prevent other fs requests from passing this one.
1943 */
1944 if (q->dma_drain_size && blk_rq_bytes(rq) &&
1945 !(rq->cmd_flags & REQ_DONTPREP)) {
1946 /*
1947 * remove the space for the drain we added
1948 * so that we don't add it again
1949 */
1950 --rq->nr_phys_segments;
1951 }
1952
1953 rq = NULL;
1954 break;
1955 } else if (ret == BLKPREP_KILL) {
1956 rq->cmd_flags |= REQ_QUIET;
1957 /*
1958 * Mark this request as started so we don't trigger
1959 * any debug logic in the end I/O path.
1960 */
1961 blk_start_request(rq);
1962 __blk_end_request_all(rq, -EIO);
1963 } else {
1964 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1965 break;
1966 }
1967 }
1968
1969 return rq;
1970 }
1971 EXPORT_SYMBOL(blk_peek_request);
1972
1973 void blk_dequeue_request(struct request *rq)
1974 {
1975 struct request_queue *q = rq->q;
1976
1977 BUG_ON(list_empty(&rq->queuelist));
1978 BUG_ON(ELV_ON_HASH(rq));
1979
1980 list_del_init(&rq->queuelist);
1981
1982 /*
1983 * the time frame between a request being removed from the lists
1984 * and to it is freed is accounted as io that is in progress at
1985 * the driver side.
1986 */
1987 if (blk_account_rq(rq)) {
1988 q->in_flight[rq_is_sync(rq)]++;
1989 set_io_start_time_ns(rq);
1990 }
1991 }
1992
1993 /**
1994 * blk_start_request - start request processing on the driver
1995 * @req: request to dequeue
1996 *
1997 * Description:
1998 * Dequeue @req and start timeout timer on it. This hands off the
1999 * request to the driver.
2000 *
2001 * Block internal functions which don't want to start timer should
2002 * call blk_dequeue_request().
2003 *
2004 * Context:
2005 * queue_lock must be held.
2006 */
2007 void blk_start_request(struct request *req)
2008 {
2009 blk_dequeue_request(req);
2010
2011 /*
2012 * We are now handing the request to the hardware, initialize
2013 * resid_len to full count and add the timeout handler.
2014 */
2015 req->resid_len = blk_rq_bytes(req);
2016 if (unlikely(blk_bidi_rq(req)))
2017 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2018
2019 blk_add_timer(req);
2020 }
2021 EXPORT_SYMBOL(blk_start_request);
2022
2023 /**
2024 * blk_fetch_request - fetch a request from a request queue
2025 * @q: request queue to fetch a request from
2026 *
2027 * Description:
2028 * Return the request at the top of @q. The request is started on
2029 * return and LLD can start processing it immediately.
2030 *
2031 * Return:
2032 * Pointer to the request at the top of @q if available. Null
2033 * otherwise.
2034 *
2035 * Context:
2036 * queue_lock must be held.
2037 */
2038 struct request *blk_fetch_request(struct request_queue *q)
2039 {
2040 struct request *rq;
2041
2042 rq = blk_peek_request(q);
2043 if (rq)
2044 blk_start_request(rq);
2045 return rq;
2046 }
2047 EXPORT_SYMBOL(blk_fetch_request);
2048
2049 /**
2050 * blk_update_request - Special helper function for request stacking drivers
2051 * @req: the request being processed
2052 * @error: %0 for success, < %0 for error
2053 * @nr_bytes: number of bytes to complete @req
2054 *
2055 * Description:
2056 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2057 * the request structure even if @req doesn't have leftover.
2058 * If @req has leftover, sets it up for the next range of segments.
2059 *
2060 * This special helper function is only for request stacking drivers
2061 * (e.g. request-based dm) so that they can handle partial completion.
2062 * Actual device drivers should use blk_end_request instead.
2063 *
2064 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2065 * %false return from this function.
2066 *
2067 * Return:
2068 * %false - this request doesn't have any more data
2069 * %true - this request has more data
2070 **/
2071 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2072 {
2073 int total_bytes, bio_nbytes, next_idx = 0;
2074 struct bio *bio;
2075
2076 if (!req->bio)
2077 return false;
2078
2079 trace_block_rq_complete(req->q, req);
2080
2081 /*
2082 * For fs requests, rq is just carrier of independent bio's
2083 * and each partial completion should be handled separately.
2084 * Reset per-request error on each partial completion.
2085 *
2086 * TODO: tj: This is too subtle. It would be better to let
2087 * low level drivers do what they see fit.
2088 */
2089 if (req->cmd_type == REQ_TYPE_FS)
2090 req->errors = 0;
2091
2092 if (error && req->cmd_type == REQ_TYPE_FS &&
2093 !(req->cmd_flags & REQ_QUIET)) {
2094 char *error_type;
2095
2096 switch (error) {
2097 case -ENOLINK:
2098 error_type = "recoverable transport";
2099 break;
2100 case -EREMOTEIO:
2101 error_type = "critical target";
2102 break;
2103 case -EBADE:
2104 error_type = "critical nexus";
2105 break;
2106 case -EIO:
2107 default:
2108 error_type = "I/O";
2109 break;
2110 }
2111 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2112 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2113 (unsigned long long)blk_rq_pos(req));
2114 }
2115
2116 blk_account_io_completion(req, nr_bytes);
2117
2118 total_bytes = bio_nbytes = 0;
2119 while ((bio = req->bio) != NULL) {
2120 int nbytes;
2121
2122 if (nr_bytes >= bio->bi_size) {
2123 req->bio = bio->bi_next;
2124 nbytes = bio->bi_size;
2125 req_bio_endio(req, bio, nbytes, error);
2126 next_idx = 0;
2127 bio_nbytes = 0;
2128 } else {
2129 int idx = bio->bi_idx + next_idx;
2130
2131 if (unlikely(idx >= bio->bi_vcnt)) {
2132 blk_dump_rq_flags(req, "__end_that");
2133 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2134 __func__, idx, bio->bi_vcnt);
2135 break;
2136 }
2137
2138 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2139 BIO_BUG_ON(nbytes > bio->bi_size);
2140
2141 /*
2142 * not a complete bvec done
2143 */
2144 if (unlikely(nbytes > nr_bytes)) {
2145 bio_nbytes += nr_bytes;
2146 total_bytes += nr_bytes;
2147 break;
2148 }
2149
2150 /*
2151 * advance to the next vector
2152 */
2153 next_idx++;
2154 bio_nbytes += nbytes;
2155 }
2156
2157 total_bytes += nbytes;
2158 nr_bytes -= nbytes;
2159
2160 bio = req->bio;
2161 if (bio) {
2162 /*
2163 * end more in this run, or just return 'not-done'
2164 */
2165 if (unlikely(nr_bytes <= 0))
2166 break;
2167 }
2168 }
2169
2170 /*
2171 * completely done
2172 */
2173 if (!req->bio) {
2174 /*
2175 * Reset counters so that the request stacking driver
2176 * can find how many bytes remain in the request
2177 * later.
2178 */
2179 req->__data_len = 0;
2180 return false;
2181 }
2182
2183 /*
2184 * if the request wasn't completed, update state
2185 */
2186 if (bio_nbytes) {
2187 req_bio_endio(req, bio, bio_nbytes, error);
2188 bio->bi_idx += next_idx;
2189 bio_iovec(bio)->bv_offset += nr_bytes;
2190 bio_iovec(bio)->bv_len -= nr_bytes;
2191 }
2192
2193 req->__data_len -= total_bytes;
2194 req->buffer = bio_data(req->bio);
2195
2196 /* update sector only for requests with clear definition of sector */
2197 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2198 req->__sector += total_bytes >> 9;
2199
2200 /* mixed attributes always follow the first bio */
2201 if (req->cmd_flags & REQ_MIXED_MERGE) {
2202 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2203 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2204 }
2205
2206 /*
2207 * If total number of sectors is less than the first segment
2208 * size, something has gone terribly wrong.
2209 */
2210 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2211 blk_dump_rq_flags(req, "request botched");
2212 req->__data_len = blk_rq_cur_bytes(req);
2213 }
2214
2215 /* recalculate the number of segments */
2216 blk_recalc_rq_segments(req);
2217
2218 return true;
2219 }
2220 EXPORT_SYMBOL_GPL(blk_update_request);
2221
2222 static bool blk_update_bidi_request(struct request *rq, int error,
2223 unsigned int nr_bytes,
2224 unsigned int bidi_bytes)
2225 {
2226 if (blk_update_request(rq, error, nr_bytes))
2227 return true;
2228
2229 /* Bidi request must be completed as a whole */
2230 if (unlikely(blk_bidi_rq(rq)) &&
2231 blk_update_request(rq->next_rq, error, bidi_bytes))
2232 return true;
2233
2234 if (blk_queue_add_random(rq->q))
2235 add_disk_randomness(rq->rq_disk);
2236
2237 return false;
2238 }
2239
2240 /**
2241 * blk_unprep_request - unprepare a request
2242 * @req: the request
2243 *
2244 * This function makes a request ready for complete resubmission (or
2245 * completion). It happens only after all error handling is complete,
2246 * so represents the appropriate moment to deallocate any resources
2247 * that were allocated to the request in the prep_rq_fn. The queue
2248 * lock is held when calling this.
2249 */
2250 void blk_unprep_request(struct request *req)
2251 {
2252 struct request_queue *q = req->q;
2253
2254 req->cmd_flags &= ~REQ_DONTPREP;
2255 if (q->unprep_rq_fn)
2256 q->unprep_rq_fn(q, req);
2257 }
2258 EXPORT_SYMBOL_GPL(blk_unprep_request);
2259
2260 /*
2261 * queue lock must be held
2262 */
2263 static void blk_finish_request(struct request *req, int error)
2264 {
2265 if (blk_rq_tagged(req))
2266 blk_queue_end_tag(req->q, req);
2267
2268 BUG_ON(blk_queued_rq(req));
2269
2270 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2271 laptop_io_completion(&req->q->backing_dev_info);
2272
2273 blk_delete_timer(req);
2274
2275 if (req->cmd_flags & REQ_DONTPREP)
2276 blk_unprep_request(req);
2277
2278
2279 blk_account_io_done(req);
2280
2281 if (req->end_io)
2282 req->end_io(req, error);
2283 else {
2284 if (blk_bidi_rq(req))
2285 __blk_put_request(req->next_rq->q, req->next_rq);
2286
2287 __blk_put_request(req->q, req);
2288 }
2289 }
2290
2291 /**
2292 * blk_end_bidi_request - Complete a bidi request
2293 * @rq: the request to complete
2294 * @error: %0 for success, < %0 for error
2295 * @nr_bytes: number of bytes to complete @rq
2296 * @bidi_bytes: number of bytes to complete @rq->next_rq
2297 *
2298 * Description:
2299 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2300 * Drivers that supports bidi can safely call this member for any
2301 * type of request, bidi or uni. In the later case @bidi_bytes is
2302 * just ignored.
2303 *
2304 * Return:
2305 * %false - we are done with this request
2306 * %true - still buffers pending for this request
2307 **/
2308 static bool blk_end_bidi_request(struct request *rq, int error,
2309 unsigned int nr_bytes, unsigned int bidi_bytes)
2310 {
2311 struct request_queue *q = rq->q;
2312 unsigned long flags;
2313
2314 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2315 return true;
2316
2317 spin_lock_irqsave(q->queue_lock, flags);
2318 blk_finish_request(rq, error);
2319 spin_unlock_irqrestore(q->queue_lock, flags);
2320
2321 return false;
2322 }
2323
2324 /**
2325 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2326 * @rq: the request to complete
2327 * @error: %0 for success, < %0 for error
2328 * @nr_bytes: number of bytes to complete @rq
2329 * @bidi_bytes: number of bytes to complete @rq->next_rq
2330 *
2331 * Description:
2332 * Identical to blk_end_bidi_request() except that queue lock is
2333 * assumed to be locked on entry and remains so on return.
2334 *
2335 * Return:
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2338 **/
2339 bool __blk_end_bidi_request(struct request *rq, int error,
2340 unsigned int nr_bytes, unsigned int bidi_bytes)
2341 {
2342 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2343 return true;
2344
2345 blk_finish_request(rq, error);
2346
2347 return false;
2348 }
2349
2350 /**
2351 * blk_end_request - Helper function for drivers to complete the request.
2352 * @rq: the request being processed
2353 * @error: %0 for success, < %0 for error
2354 * @nr_bytes: number of bytes to complete
2355 *
2356 * Description:
2357 * Ends I/O on a number of bytes attached to @rq.
2358 * If @rq has leftover, sets it up for the next range of segments.
2359 *
2360 * Return:
2361 * %false - we are done with this request
2362 * %true - still buffers pending for this request
2363 **/
2364 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2365 {
2366 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2367 }
2368 EXPORT_SYMBOL(blk_end_request);
2369
2370 /**
2371 * blk_end_request_all - Helper function for drives to finish the request.
2372 * @rq: the request to finish
2373 * @error: %0 for success, < %0 for error
2374 *
2375 * Description:
2376 * Completely finish @rq.
2377 */
2378 void blk_end_request_all(struct request *rq, int error)
2379 {
2380 bool pending;
2381 unsigned int bidi_bytes = 0;
2382
2383 if (unlikely(blk_bidi_rq(rq)))
2384 bidi_bytes = blk_rq_bytes(rq->next_rq);
2385
2386 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2387 BUG_ON(pending);
2388 }
2389 EXPORT_SYMBOL(blk_end_request_all);
2390
2391 /**
2392 * blk_end_request_cur - Helper function to finish the current request chunk.
2393 * @rq: the request to finish the current chunk for
2394 * @error: %0 for success, < %0 for error
2395 *
2396 * Description:
2397 * Complete the current consecutively mapped chunk from @rq.
2398 *
2399 * Return:
2400 * %false - we are done with this request
2401 * %true - still buffers pending for this request
2402 */
2403 bool blk_end_request_cur(struct request *rq, int error)
2404 {
2405 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2406 }
2407 EXPORT_SYMBOL(blk_end_request_cur);
2408
2409 /**
2410 * blk_end_request_err - Finish a request till the next failure boundary.
2411 * @rq: the request to finish till the next failure boundary for
2412 * @error: must be negative errno
2413 *
2414 * Description:
2415 * Complete @rq till the next failure boundary.
2416 *
2417 * Return:
2418 * %false - we are done with this request
2419 * %true - still buffers pending for this request
2420 */
2421 bool blk_end_request_err(struct request *rq, int error)
2422 {
2423 WARN_ON(error >= 0);
2424 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2425 }
2426 EXPORT_SYMBOL_GPL(blk_end_request_err);
2427
2428 /**
2429 * __blk_end_request - Helper function for drivers to complete the request.
2430 * @rq: the request being processed
2431 * @error: %0 for success, < %0 for error
2432 * @nr_bytes: number of bytes to complete
2433 *
2434 * Description:
2435 * Must be called with queue lock held unlike blk_end_request().
2436 *
2437 * Return:
2438 * %false - we are done with this request
2439 * %true - still buffers pending for this request
2440 **/
2441 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2442 {
2443 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2444 }
2445 EXPORT_SYMBOL(__blk_end_request);
2446
2447 /**
2448 * __blk_end_request_all - Helper function for drives to finish the request.
2449 * @rq: the request to finish
2450 * @error: %0 for success, < %0 for error
2451 *
2452 * Description:
2453 * Completely finish @rq. Must be called with queue lock held.
2454 */
2455 void __blk_end_request_all(struct request *rq, int error)
2456 {
2457 bool pending;
2458 unsigned int bidi_bytes = 0;
2459
2460 if (unlikely(blk_bidi_rq(rq)))
2461 bidi_bytes = blk_rq_bytes(rq->next_rq);
2462
2463 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2464 BUG_ON(pending);
2465 }
2466 EXPORT_SYMBOL(__blk_end_request_all);
2467
2468 /**
2469 * __blk_end_request_cur - Helper function to finish the current request chunk.
2470 * @rq: the request to finish the current chunk for
2471 * @error: %0 for success, < %0 for error
2472 *
2473 * Description:
2474 * Complete the current consecutively mapped chunk from @rq. Must
2475 * be called with queue lock held.
2476 *
2477 * Return:
2478 * %false - we are done with this request
2479 * %true - still buffers pending for this request
2480 */
2481 bool __blk_end_request_cur(struct request *rq, int error)
2482 {
2483 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2484 }
2485 EXPORT_SYMBOL(__blk_end_request_cur);
2486
2487 /**
2488 * __blk_end_request_err - Finish a request till the next failure boundary.
2489 * @rq: the request to finish till the next failure boundary for
2490 * @error: must be negative errno
2491 *
2492 * Description:
2493 * Complete @rq till the next failure boundary. Must be called
2494 * with queue lock held.
2495 *
2496 * Return:
2497 * %false - we are done with this request
2498 * %true - still buffers pending for this request
2499 */
2500 bool __blk_end_request_err(struct request *rq, int error)
2501 {
2502 WARN_ON(error >= 0);
2503 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2504 }
2505 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2506
2507 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2508 struct bio *bio)
2509 {
2510 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2511 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2512
2513 if (bio_has_data(bio)) {
2514 rq->nr_phys_segments = bio_phys_segments(q, bio);
2515 rq->buffer = bio_data(bio);
2516 }
2517 rq->__data_len = bio->bi_size;
2518 rq->bio = rq->biotail = bio;
2519
2520 if (bio->bi_bdev)
2521 rq->rq_disk = bio->bi_bdev->bd_disk;
2522 }
2523
2524 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2525 /**
2526 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2527 * @rq: the request to be flushed
2528 *
2529 * Description:
2530 * Flush all pages in @rq.
2531 */
2532 void rq_flush_dcache_pages(struct request *rq)
2533 {
2534 struct req_iterator iter;
2535 struct bio_vec *bvec;
2536
2537 rq_for_each_segment(bvec, rq, iter)
2538 flush_dcache_page(bvec->bv_page);
2539 }
2540 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2541 #endif
2542
2543 /**
2544 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2545 * @q : the queue of the device being checked
2546 *
2547 * Description:
2548 * Check if underlying low-level drivers of a device are busy.
2549 * If the drivers want to export their busy state, they must set own
2550 * exporting function using blk_queue_lld_busy() first.
2551 *
2552 * Basically, this function is used only by request stacking drivers
2553 * to stop dispatching requests to underlying devices when underlying
2554 * devices are busy. This behavior helps more I/O merging on the queue
2555 * of the request stacking driver and prevents I/O throughput regression
2556 * on burst I/O load.
2557 *
2558 * Return:
2559 * 0 - Not busy (The request stacking driver should dispatch request)
2560 * 1 - Busy (The request stacking driver should stop dispatching request)
2561 */
2562 int blk_lld_busy(struct request_queue *q)
2563 {
2564 if (q->lld_busy_fn)
2565 return q->lld_busy_fn(q);
2566
2567 return 0;
2568 }
2569 EXPORT_SYMBOL_GPL(blk_lld_busy);
2570
2571 /**
2572 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2573 * @rq: the clone request to be cleaned up
2574 *
2575 * Description:
2576 * Free all bios in @rq for a cloned request.
2577 */
2578 void blk_rq_unprep_clone(struct request *rq)
2579 {
2580 struct bio *bio;
2581
2582 while ((bio = rq->bio) != NULL) {
2583 rq->bio = bio->bi_next;
2584
2585 bio_put(bio);
2586 }
2587 }
2588 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2589
2590 /*
2591 * Copy attributes of the original request to the clone request.
2592 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2593 */
2594 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2595 {
2596 dst->cpu = src->cpu;
2597 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2598 dst->cmd_type = src->cmd_type;
2599 dst->__sector = blk_rq_pos(src);
2600 dst->__data_len = blk_rq_bytes(src);
2601 dst->nr_phys_segments = src->nr_phys_segments;
2602 dst->ioprio = src->ioprio;
2603 dst->extra_len = src->extra_len;
2604 }
2605
2606 /**
2607 * blk_rq_prep_clone - Helper function to setup clone request
2608 * @rq: the request to be setup
2609 * @rq_src: original request to be cloned
2610 * @bs: bio_set that bios for clone are allocated from
2611 * @gfp_mask: memory allocation mask for bio
2612 * @bio_ctr: setup function to be called for each clone bio.
2613 * Returns %0 for success, non %0 for failure.
2614 * @data: private data to be passed to @bio_ctr
2615 *
2616 * Description:
2617 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2618 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2619 * are not copied, and copying such parts is the caller's responsibility.
2620 * Also, pages which the original bios are pointing to are not copied
2621 * and the cloned bios just point same pages.
2622 * So cloned bios must be completed before original bios, which means
2623 * the caller must complete @rq before @rq_src.
2624 */
2625 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2626 struct bio_set *bs, gfp_t gfp_mask,
2627 int (*bio_ctr)(struct bio *, struct bio *, void *),
2628 void *data)
2629 {
2630 struct bio *bio, *bio_src;
2631
2632 if (!bs)
2633 bs = fs_bio_set;
2634
2635 blk_rq_init(NULL, rq);
2636
2637 __rq_for_each_bio(bio_src, rq_src) {
2638 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2639 if (!bio)
2640 goto free_and_out;
2641
2642 __bio_clone(bio, bio_src);
2643
2644 if (bio_integrity(bio_src) &&
2645 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2646 goto free_and_out;
2647
2648 if (bio_ctr && bio_ctr(bio, bio_src, data))
2649 goto free_and_out;
2650
2651 if (rq->bio) {
2652 rq->biotail->bi_next = bio;
2653 rq->biotail = bio;
2654 } else
2655 rq->bio = rq->biotail = bio;
2656 }
2657
2658 __blk_rq_prep_clone(rq, rq_src);
2659
2660 return 0;
2661
2662 free_and_out:
2663 if (bio)
2664 bio_free(bio, bs);
2665 blk_rq_unprep_clone(rq);
2666
2667 return -ENOMEM;
2668 }
2669 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2670
2671 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2672 {
2673 return queue_work(kblockd_workqueue, work);
2674 }
2675 EXPORT_SYMBOL(kblockd_schedule_work);
2676
2677 int kblockd_schedule_delayed_work(struct request_queue *q,
2678 struct delayed_work *dwork, unsigned long delay)
2679 {
2680 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2681 }
2682 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2683
2684 #define PLUG_MAGIC 0x91827364
2685
2686 /**
2687 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2688 * @plug: The &struct blk_plug that needs to be initialized
2689 *
2690 * Description:
2691 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2692 * pending I/O should the task end up blocking between blk_start_plug() and
2693 * blk_finish_plug(). This is important from a performance perspective, but
2694 * also ensures that we don't deadlock. For instance, if the task is blocking
2695 * for a memory allocation, memory reclaim could end up wanting to free a
2696 * page belonging to that request that is currently residing in our private
2697 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2698 * this kind of deadlock.
2699 */
2700 void blk_start_plug(struct blk_plug *plug)
2701 {
2702 struct task_struct *tsk = current;
2703
2704 plug->magic = PLUG_MAGIC;
2705 INIT_LIST_HEAD(&plug->list);
2706 INIT_LIST_HEAD(&plug->cb_list);
2707 plug->should_sort = 0;
2708
2709 /*
2710 * If this is a nested plug, don't actually assign it. It will be
2711 * flushed on its own.
2712 */
2713 if (!tsk->plug) {
2714 /*
2715 * Store ordering should not be needed here, since a potential
2716 * preempt will imply a full memory barrier
2717 */
2718 tsk->plug = plug;
2719 }
2720 }
2721 EXPORT_SYMBOL(blk_start_plug);
2722
2723 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2724 {
2725 struct request *rqa = container_of(a, struct request, queuelist);
2726 struct request *rqb = container_of(b, struct request, queuelist);
2727
2728 return !(rqa->q <= rqb->q);
2729 }
2730
2731 /*
2732 * If 'from_schedule' is true, then postpone the dispatch of requests
2733 * until a safe kblockd context. We due this to avoid accidental big
2734 * additional stack usage in driver dispatch, in places where the originally
2735 * plugger did not intend it.
2736 */
2737 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2738 bool from_schedule)
2739 __releases(q->queue_lock)
2740 {
2741 trace_block_unplug(q, depth, !from_schedule);
2742
2743 /*
2744 * If we are punting this to kblockd, then we can safely drop
2745 * the queue_lock before waking kblockd (which needs to take
2746 * this lock).
2747 */
2748 if (from_schedule) {
2749 spin_unlock(q->queue_lock);
2750 blk_run_queue_async(q);
2751 } else {
2752 __blk_run_queue(q);
2753 spin_unlock(q->queue_lock);
2754 }
2755
2756 }
2757
2758 static void flush_plug_callbacks(struct blk_plug *plug)
2759 {
2760 LIST_HEAD(callbacks);
2761
2762 if (list_empty(&plug->cb_list))
2763 return;
2764
2765 list_splice_init(&plug->cb_list, &callbacks);
2766
2767 while (!list_empty(&callbacks)) {
2768 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2769 struct blk_plug_cb,
2770 list);
2771 list_del(&cb->list);
2772 cb->callback(cb);
2773 }
2774 }
2775
2776 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2777 {
2778 struct request_queue *q;
2779 unsigned long flags;
2780 struct request *rq;
2781 LIST_HEAD(list);
2782 unsigned int depth;
2783
2784 BUG_ON(plug->magic != PLUG_MAGIC);
2785
2786 flush_plug_callbacks(plug);
2787 if (list_empty(&plug->list))
2788 return;
2789
2790 list_splice_init(&plug->list, &list);
2791
2792 if (plug->should_sort) {
2793 list_sort(NULL, &list, plug_rq_cmp);
2794 plug->should_sort = 0;
2795 }
2796
2797 q = NULL;
2798 depth = 0;
2799
2800 /*
2801 * Save and disable interrupts here, to avoid doing it for every
2802 * queue lock we have to take.
2803 */
2804 local_irq_save(flags);
2805 while (!list_empty(&list)) {
2806 rq = list_entry_rq(list.next);
2807 list_del_init(&rq->queuelist);
2808 BUG_ON(!rq->q);
2809 if (rq->q != q) {
2810 /*
2811 * This drops the queue lock
2812 */
2813 if (q)
2814 queue_unplugged(q, depth, from_schedule);
2815 q = rq->q;
2816 depth = 0;
2817 spin_lock(q->queue_lock);
2818 }
2819 /*
2820 * rq is already accounted, so use raw insert
2821 */
2822 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2823 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2824 else
2825 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2826
2827 depth++;
2828 }
2829
2830 /*
2831 * This drops the queue lock
2832 */
2833 if (q)
2834 queue_unplugged(q, depth, from_schedule);
2835
2836 local_irq_restore(flags);
2837 }
2838
2839 void blk_finish_plug(struct blk_plug *plug)
2840 {
2841 blk_flush_plug_list(plug, false);
2842
2843 if (plug == current->plug)
2844 current->plug = NULL;
2845 }
2846 EXPORT_SYMBOL(blk_finish_plug);
2847
2848 int __init blk_dev_init(void)
2849 {
2850 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2851 sizeof(((struct request *)0)->cmd_flags));
2852
2853 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2854 kblockd_workqueue = alloc_workqueue("kblockd",
2855 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2856 if (!kblockd_workqueue)
2857 panic("Failed to create kblockd\n");
2858
2859 request_cachep = kmem_cache_create("blkdev_requests",
2860 sizeof(struct request), 0, SLAB_PANIC, NULL);
2861
2862 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2863 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2864
2865 return 0;
2866 }