]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /* for synchronous bio-based driver finish in-flight integrity i/o */
703 blk_flush_integrity();
704
705 /* @q won't process any more request, flush async actions */
706 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
707 blk_sync_queue(q);
708
709 if (q->mq_ops)
710 blk_mq_free_queue(q);
711 percpu_ref_exit(&q->q_usage_counter);
712
713 spin_lock_irq(lock);
714 if (q->queue_lock != &q->__queue_lock)
715 q->queue_lock = &q->__queue_lock;
716 spin_unlock_irq(lock);
717
718 /* @q is and will stay empty, shutdown and put */
719 blk_put_queue(q);
720 }
721 EXPORT_SYMBOL(blk_cleanup_queue);
722
723 /* Allocate memory local to the request queue */
724 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
725 {
726 struct request_queue *q = data;
727
728 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
729 }
730
731 static void free_request_simple(void *element, void *data)
732 {
733 kmem_cache_free(request_cachep, element);
734 }
735
736 static void *alloc_request_size(gfp_t gfp_mask, void *data)
737 {
738 struct request_queue *q = data;
739 struct request *rq;
740
741 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
742 q->node);
743 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
744 kfree(rq);
745 rq = NULL;
746 }
747 return rq;
748 }
749
750 static void free_request_size(void *element, void *data)
751 {
752 struct request_queue *q = data;
753
754 if (q->exit_rq_fn)
755 q->exit_rq_fn(q, element);
756 kfree(element);
757 }
758
759 int blk_init_rl(struct request_list *rl, struct request_queue *q,
760 gfp_t gfp_mask)
761 {
762 if (unlikely(rl->rq_pool) || q->mq_ops)
763 return 0;
764
765 rl->q = q;
766 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
767 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
768 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
769 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
770
771 if (q->cmd_size) {
772 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
773 alloc_request_size, free_request_size,
774 q, gfp_mask, q->node);
775 } else {
776 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
777 alloc_request_simple, free_request_simple,
778 q, gfp_mask, q->node);
779 }
780 if (!rl->rq_pool)
781 return -ENOMEM;
782
783 if (rl != &q->root_rl)
784 WARN_ON_ONCE(!blk_get_queue(q));
785
786 return 0;
787 }
788
789 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
790 {
791 if (rl->rq_pool) {
792 mempool_destroy(rl->rq_pool);
793 if (rl != &q->root_rl)
794 blk_put_queue(q);
795 }
796 }
797
798 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
799 {
800 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
801 }
802 EXPORT_SYMBOL(blk_alloc_queue);
803
804 /**
805 * blk_queue_enter() - try to increase q->q_usage_counter
806 * @q: request queue pointer
807 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
808 */
809 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
810 {
811 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
812
813 while (true) {
814 bool success = false;
815 int ret;
816
817 rcu_read_lock_sched();
818 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
819 /*
820 * The code that sets the PREEMPT_ONLY flag is
821 * responsible for ensuring that that flag is globally
822 * visible before the queue is unfrozen.
823 */
824 if (preempt || !blk_queue_preempt_only(q)) {
825 success = true;
826 } else {
827 percpu_ref_put(&q->q_usage_counter);
828 }
829 }
830 rcu_read_unlock_sched();
831
832 if (success)
833 return 0;
834
835 if (flags & BLK_MQ_REQ_NOWAIT)
836 return -EBUSY;
837
838 /*
839 * read pair of barrier in blk_freeze_queue_start(),
840 * we need to order reading __PERCPU_REF_DEAD flag of
841 * .q_usage_counter and reading .mq_freeze_depth or
842 * queue dying flag, otherwise the following wait may
843 * never return if the two reads are reordered.
844 */
845 smp_rmb();
846
847 ret = wait_event_interruptible(q->mq_freeze_wq,
848 (atomic_read(&q->mq_freeze_depth) == 0 &&
849 (preempt || !blk_queue_preempt_only(q))) ||
850 blk_queue_dying(q));
851 if (blk_queue_dying(q))
852 return -ENODEV;
853 if (ret)
854 return ret;
855 }
856 }
857
858 void blk_queue_exit(struct request_queue *q)
859 {
860 percpu_ref_put(&q->q_usage_counter);
861 }
862
863 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
864 {
865 struct request_queue *q =
866 container_of(ref, struct request_queue, q_usage_counter);
867
868 wake_up_all(&q->mq_freeze_wq);
869 }
870
871 static void blk_rq_timed_out_timer(struct timer_list *t)
872 {
873 struct request_queue *q = from_timer(q, t, timeout);
874
875 kblockd_schedule_work(&q->timeout_work);
876 }
877
878 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
879 {
880 struct request_queue *q;
881
882 q = kmem_cache_alloc_node(blk_requestq_cachep,
883 gfp_mask | __GFP_ZERO, node_id);
884 if (!q)
885 return NULL;
886
887 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
888 if (q->id < 0)
889 goto fail_q;
890
891 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
892 if (!q->bio_split)
893 goto fail_id;
894
895 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
896 if (!q->backing_dev_info)
897 goto fail_split;
898
899 q->stats = blk_alloc_queue_stats();
900 if (!q->stats)
901 goto fail_stats;
902
903 q->backing_dev_info->ra_pages =
904 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
905 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
906 q->backing_dev_info->name = "block";
907 q->node = node_id;
908
909 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
910 laptop_mode_timer_fn, 0);
911 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
912 INIT_WORK(&q->timeout_work, NULL);
913 INIT_LIST_HEAD(&q->queue_head);
914 INIT_LIST_HEAD(&q->timeout_list);
915 INIT_LIST_HEAD(&q->icq_list);
916 #ifdef CONFIG_BLK_CGROUP
917 INIT_LIST_HEAD(&q->blkg_list);
918 #endif
919 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
920
921 kobject_init(&q->kobj, &blk_queue_ktype);
922
923 #ifdef CONFIG_BLK_DEV_IO_TRACE
924 mutex_init(&q->blk_trace_mutex);
925 #endif
926 mutex_init(&q->sysfs_lock);
927 spin_lock_init(&q->__queue_lock);
928
929 /*
930 * By default initialize queue_lock to internal lock and driver can
931 * override it later if need be.
932 */
933 q->queue_lock = &q->__queue_lock;
934
935 /*
936 * A queue starts its life with bypass turned on to avoid
937 * unnecessary bypass on/off overhead and nasty surprises during
938 * init. The initial bypass will be finished when the queue is
939 * registered by blk_register_queue().
940 */
941 q->bypass_depth = 1;
942 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
943
944 init_waitqueue_head(&q->mq_freeze_wq);
945
946 /*
947 * Init percpu_ref in atomic mode so that it's faster to shutdown.
948 * See blk_register_queue() for details.
949 */
950 if (percpu_ref_init(&q->q_usage_counter,
951 blk_queue_usage_counter_release,
952 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
953 goto fail_bdi;
954
955 if (blkcg_init_queue(q))
956 goto fail_ref;
957
958 return q;
959
960 fail_ref:
961 percpu_ref_exit(&q->q_usage_counter);
962 fail_bdi:
963 blk_free_queue_stats(q->stats);
964 fail_stats:
965 bdi_put(q->backing_dev_info);
966 fail_split:
967 bioset_free(q->bio_split);
968 fail_id:
969 ida_simple_remove(&blk_queue_ida, q->id);
970 fail_q:
971 kmem_cache_free(blk_requestq_cachep, q);
972 return NULL;
973 }
974 EXPORT_SYMBOL(blk_alloc_queue_node);
975
976 /**
977 * blk_init_queue - prepare a request queue for use with a block device
978 * @rfn: The function to be called to process requests that have been
979 * placed on the queue.
980 * @lock: Request queue spin lock
981 *
982 * Description:
983 * If a block device wishes to use the standard request handling procedures,
984 * which sorts requests and coalesces adjacent requests, then it must
985 * call blk_init_queue(). The function @rfn will be called when there
986 * are requests on the queue that need to be processed. If the device
987 * supports plugging, then @rfn may not be called immediately when requests
988 * are available on the queue, but may be called at some time later instead.
989 * Plugged queues are generally unplugged when a buffer belonging to one
990 * of the requests on the queue is needed, or due to memory pressure.
991 *
992 * @rfn is not required, or even expected, to remove all requests off the
993 * queue, but only as many as it can handle at a time. If it does leave
994 * requests on the queue, it is responsible for arranging that the requests
995 * get dealt with eventually.
996 *
997 * The queue spin lock must be held while manipulating the requests on the
998 * request queue; this lock will be taken also from interrupt context, so irq
999 * disabling is needed for it.
1000 *
1001 * Function returns a pointer to the initialized request queue, or %NULL if
1002 * it didn't succeed.
1003 *
1004 * Note:
1005 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1006 * when the block device is deactivated (such as at module unload).
1007 **/
1008
1009 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1010 {
1011 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1012 }
1013 EXPORT_SYMBOL(blk_init_queue);
1014
1015 struct request_queue *
1016 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1017 {
1018 struct request_queue *q;
1019
1020 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1021 if (!q)
1022 return NULL;
1023
1024 q->request_fn = rfn;
1025 if (lock)
1026 q->queue_lock = lock;
1027 if (blk_init_allocated_queue(q) < 0) {
1028 blk_cleanup_queue(q);
1029 return NULL;
1030 }
1031
1032 return q;
1033 }
1034 EXPORT_SYMBOL(blk_init_queue_node);
1035
1036 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1037
1038
1039 int blk_init_allocated_queue(struct request_queue *q)
1040 {
1041 WARN_ON_ONCE(q->mq_ops);
1042
1043 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1044 if (!q->fq)
1045 return -ENOMEM;
1046
1047 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1048 goto out_free_flush_queue;
1049
1050 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1051 goto out_exit_flush_rq;
1052
1053 INIT_WORK(&q->timeout_work, blk_timeout_work);
1054 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1055
1056 /*
1057 * This also sets hw/phys segments, boundary and size
1058 */
1059 blk_queue_make_request(q, blk_queue_bio);
1060
1061 q->sg_reserved_size = INT_MAX;
1062
1063 /* Protect q->elevator from elevator_change */
1064 mutex_lock(&q->sysfs_lock);
1065
1066 /* init elevator */
1067 if (elevator_init(q, NULL)) {
1068 mutex_unlock(&q->sysfs_lock);
1069 goto out_exit_flush_rq;
1070 }
1071
1072 mutex_unlock(&q->sysfs_lock);
1073 return 0;
1074
1075 out_exit_flush_rq:
1076 if (q->exit_rq_fn)
1077 q->exit_rq_fn(q, q->fq->flush_rq);
1078 out_free_flush_queue:
1079 blk_free_flush_queue(q->fq);
1080 return -ENOMEM;
1081 }
1082 EXPORT_SYMBOL(blk_init_allocated_queue);
1083
1084 bool blk_get_queue(struct request_queue *q)
1085 {
1086 if (likely(!blk_queue_dying(q))) {
1087 __blk_get_queue(q);
1088 return true;
1089 }
1090
1091 return false;
1092 }
1093 EXPORT_SYMBOL(blk_get_queue);
1094
1095 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1096 {
1097 if (rq->rq_flags & RQF_ELVPRIV) {
1098 elv_put_request(rl->q, rq);
1099 if (rq->elv.icq)
1100 put_io_context(rq->elv.icq->ioc);
1101 }
1102
1103 mempool_free(rq, rl->rq_pool);
1104 }
1105
1106 /*
1107 * ioc_batching returns true if the ioc is a valid batching request and
1108 * should be given priority access to a request.
1109 */
1110 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1111 {
1112 if (!ioc)
1113 return 0;
1114
1115 /*
1116 * Make sure the process is able to allocate at least 1 request
1117 * even if the batch times out, otherwise we could theoretically
1118 * lose wakeups.
1119 */
1120 return ioc->nr_batch_requests == q->nr_batching ||
1121 (ioc->nr_batch_requests > 0
1122 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1123 }
1124
1125 /*
1126 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1127 * will cause the process to be a "batcher" on all queues in the system. This
1128 * is the behaviour we want though - once it gets a wakeup it should be given
1129 * a nice run.
1130 */
1131 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1132 {
1133 if (!ioc || ioc_batching(q, ioc))
1134 return;
1135
1136 ioc->nr_batch_requests = q->nr_batching;
1137 ioc->last_waited = jiffies;
1138 }
1139
1140 static void __freed_request(struct request_list *rl, int sync)
1141 {
1142 struct request_queue *q = rl->q;
1143
1144 if (rl->count[sync] < queue_congestion_off_threshold(q))
1145 blk_clear_congested(rl, sync);
1146
1147 if (rl->count[sync] + 1 <= q->nr_requests) {
1148 if (waitqueue_active(&rl->wait[sync]))
1149 wake_up(&rl->wait[sync]);
1150
1151 blk_clear_rl_full(rl, sync);
1152 }
1153 }
1154
1155 /*
1156 * A request has just been released. Account for it, update the full and
1157 * congestion status, wake up any waiters. Called under q->queue_lock.
1158 */
1159 static void freed_request(struct request_list *rl, bool sync,
1160 req_flags_t rq_flags)
1161 {
1162 struct request_queue *q = rl->q;
1163
1164 q->nr_rqs[sync]--;
1165 rl->count[sync]--;
1166 if (rq_flags & RQF_ELVPRIV)
1167 q->nr_rqs_elvpriv--;
1168
1169 __freed_request(rl, sync);
1170
1171 if (unlikely(rl->starved[sync ^ 1]))
1172 __freed_request(rl, sync ^ 1);
1173 }
1174
1175 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1176 {
1177 struct request_list *rl;
1178 int on_thresh, off_thresh;
1179
1180 WARN_ON_ONCE(q->mq_ops);
1181
1182 spin_lock_irq(q->queue_lock);
1183 q->nr_requests = nr;
1184 blk_queue_congestion_threshold(q);
1185 on_thresh = queue_congestion_on_threshold(q);
1186 off_thresh = queue_congestion_off_threshold(q);
1187
1188 blk_queue_for_each_rl(rl, q) {
1189 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1190 blk_set_congested(rl, BLK_RW_SYNC);
1191 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1192 blk_clear_congested(rl, BLK_RW_SYNC);
1193
1194 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1195 blk_set_congested(rl, BLK_RW_ASYNC);
1196 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1197 blk_clear_congested(rl, BLK_RW_ASYNC);
1198
1199 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1200 blk_set_rl_full(rl, BLK_RW_SYNC);
1201 } else {
1202 blk_clear_rl_full(rl, BLK_RW_SYNC);
1203 wake_up(&rl->wait[BLK_RW_SYNC]);
1204 }
1205
1206 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1207 blk_set_rl_full(rl, BLK_RW_ASYNC);
1208 } else {
1209 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1210 wake_up(&rl->wait[BLK_RW_ASYNC]);
1211 }
1212 }
1213
1214 spin_unlock_irq(q->queue_lock);
1215 return 0;
1216 }
1217
1218 /**
1219 * __get_request - get a free request
1220 * @rl: request list to allocate from
1221 * @op: operation and flags
1222 * @bio: bio to allocate request for (can be %NULL)
1223 * @flags: BLQ_MQ_REQ_* flags
1224 *
1225 * Get a free request from @q. This function may fail under memory
1226 * pressure or if @q is dead.
1227 *
1228 * Must be called with @q->queue_lock held and,
1229 * Returns ERR_PTR on failure, with @q->queue_lock held.
1230 * Returns request pointer on success, with @q->queue_lock *not held*.
1231 */
1232 static struct request *__get_request(struct request_list *rl, unsigned int op,
1233 struct bio *bio, blk_mq_req_flags_t flags)
1234 {
1235 struct request_queue *q = rl->q;
1236 struct request *rq;
1237 struct elevator_type *et = q->elevator->type;
1238 struct io_context *ioc = rq_ioc(bio);
1239 struct io_cq *icq = NULL;
1240 const bool is_sync = op_is_sync(op);
1241 int may_queue;
1242 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1243 __GFP_DIRECT_RECLAIM;
1244 req_flags_t rq_flags = RQF_ALLOCED;
1245
1246 lockdep_assert_held(q->queue_lock);
1247
1248 if (unlikely(blk_queue_dying(q)))
1249 return ERR_PTR(-ENODEV);
1250
1251 may_queue = elv_may_queue(q, op);
1252 if (may_queue == ELV_MQUEUE_NO)
1253 goto rq_starved;
1254
1255 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1256 if (rl->count[is_sync]+1 >= q->nr_requests) {
1257 /*
1258 * The queue will fill after this allocation, so set
1259 * it as full, and mark this process as "batching".
1260 * This process will be allowed to complete a batch of
1261 * requests, others will be blocked.
1262 */
1263 if (!blk_rl_full(rl, is_sync)) {
1264 ioc_set_batching(q, ioc);
1265 blk_set_rl_full(rl, is_sync);
1266 } else {
1267 if (may_queue != ELV_MQUEUE_MUST
1268 && !ioc_batching(q, ioc)) {
1269 /*
1270 * The queue is full and the allocating
1271 * process is not a "batcher", and not
1272 * exempted by the IO scheduler
1273 */
1274 return ERR_PTR(-ENOMEM);
1275 }
1276 }
1277 }
1278 blk_set_congested(rl, is_sync);
1279 }
1280
1281 /*
1282 * Only allow batching queuers to allocate up to 50% over the defined
1283 * limit of requests, otherwise we could have thousands of requests
1284 * allocated with any setting of ->nr_requests
1285 */
1286 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1287 return ERR_PTR(-ENOMEM);
1288
1289 q->nr_rqs[is_sync]++;
1290 rl->count[is_sync]++;
1291 rl->starved[is_sync] = 0;
1292
1293 /*
1294 * Decide whether the new request will be managed by elevator. If
1295 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1296 * prevent the current elevator from being destroyed until the new
1297 * request is freed. This guarantees icq's won't be destroyed and
1298 * makes creating new ones safe.
1299 *
1300 * Flush requests do not use the elevator so skip initialization.
1301 * This allows a request to share the flush and elevator data.
1302 *
1303 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1304 * it will be created after releasing queue_lock.
1305 */
1306 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1307 rq_flags |= RQF_ELVPRIV;
1308 q->nr_rqs_elvpriv++;
1309 if (et->icq_cache && ioc)
1310 icq = ioc_lookup_icq(ioc, q);
1311 }
1312
1313 if (blk_queue_io_stat(q))
1314 rq_flags |= RQF_IO_STAT;
1315 spin_unlock_irq(q->queue_lock);
1316
1317 /* allocate and init request */
1318 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1319 if (!rq)
1320 goto fail_alloc;
1321
1322 blk_rq_init(q, rq);
1323 blk_rq_set_rl(rq, rl);
1324 rq->cmd_flags = op;
1325 rq->rq_flags = rq_flags;
1326 if (flags & BLK_MQ_REQ_PREEMPT)
1327 rq->rq_flags |= RQF_PREEMPT;
1328
1329 /* init elvpriv */
1330 if (rq_flags & RQF_ELVPRIV) {
1331 if (unlikely(et->icq_cache && !icq)) {
1332 if (ioc)
1333 icq = ioc_create_icq(ioc, q, gfp_mask);
1334 if (!icq)
1335 goto fail_elvpriv;
1336 }
1337
1338 rq->elv.icq = icq;
1339 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1340 goto fail_elvpriv;
1341
1342 /* @rq->elv.icq holds io_context until @rq is freed */
1343 if (icq)
1344 get_io_context(icq->ioc);
1345 }
1346 out:
1347 /*
1348 * ioc may be NULL here, and ioc_batching will be false. That's
1349 * OK, if the queue is under the request limit then requests need
1350 * not count toward the nr_batch_requests limit. There will always
1351 * be some limit enforced by BLK_BATCH_TIME.
1352 */
1353 if (ioc_batching(q, ioc))
1354 ioc->nr_batch_requests--;
1355
1356 trace_block_getrq(q, bio, op);
1357 return rq;
1358
1359 fail_elvpriv:
1360 /*
1361 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1362 * and may fail indefinitely under memory pressure and thus
1363 * shouldn't stall IO. Treat this request as !elvpriv. This will
1364 * disturb iosched and blkcg but weird is bettern than dead.
1365 */
1366 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1367 __func__, dev_name(q->backing_dev_info->dev));
1368
1369 rq->rq_flags &= ~RQF_ELVPRIV;
1370 rq->elv.icq = NULL;
1371
1372 spin_lock_irq(q->queue_lock);
1373 q->nr_rqs_elvpriv--;
1374 spin_unlock_irq(q->queue_lock);
1375 goto out;
1376
1377 fail_alloc:
1378 /*
1379 * Allocation failed presumably due to memory. Undo anything we
1380 * might have messed up.
1381 *
1382 * Allocating task should really be put onto the front of the wait
1383 * queue, but this is pretty rare.
1384 */
1385 spin_lock_irq(q->queue_lock);
1386 freed_request(rl, is_sync, rq_flags);
1387
1388 /*
1389 * in the very unlikely event that allocation failed and no
1390 * requests for this direction was pending, mark us starved so that
1391 * freeing of a request in the other direction will notice
1392 * us. another possible fix would be to split the rq mempool into
1393 * READ and WRITE
1394 */
1395 rq_starved:
1396 if (unlikely(rl->count[is_sync] == 0))
1397 rl->starved[is_sync] = 1;
1398 return ERR_PTR(-ENOMEM);
1399 }
1400
1401 /**
1402 * get_request - get a free request
1403 * @q: request_queue to allocate request from
1404 * @op: operation and flags
1405 * @bio: bio to allocate request for (can be %NULL)
1406 * @flags: BLK_MQ_REQ_* flags.
1407 *
1408 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1409 * this function keeps retrying under memory pressure and fails iff @q is dead.
1410 *
1411 * Must be called with @q->queue_lock held and,
1412 * Returns ERR_PTR on failure, with @q->queue_lock held.
1413 * Returns request pointer on success, with @q->queue_lock *not held*.
1414 */
1415 static struct request *get_request(struct request_queue *q, unsigned int op,
1416 struct bio *bio, blk_mq_req_flags_t flags)
1417 {
1418 const bool is_sync = op_is_sync(op);
1419 DEFINE_WAIT(wait);
1420 struct request_list *rl;
1421 struct request *rq;
1422
1423 lockdep_assert_held(q->queue_lock);
1424 WARN_ON_ONCE(q->mq_ops);
1425
1426 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1427 retry:
1428 rq = __get_request(rl, op, bio, flags);
1429 if (!IS_ERR(rq))
1430 return rq;
1431
1432 if (op & REQ_NOWAIT) {
1433 blk_put_rl(rl);
1434 return ERR_PTR(-EAGAIN);
1435 }
1436
1437 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1438 blk_put_rl(rl);
1439 return rq;
1440 }
1441
1442 /* wait on @rl and retry */
1443 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1444 TASK_UNINTERRUPTIBLE);
1445
1446 trace_block_sleeprq(q, bio, op);
1447
1448 spin_unlock_irq(q->queue_lock);
1449 io_schedule();
1450
1451 /*
1452 * After sleeping, we become a "batching" process and will be able
1453 * to allocate at least one request, and up to a big batch of them
1454 * for a small period time. See ioc_batching, ioc_set_batching
1455 */
1456 ioc_set_batching(q, current->io_context);
1457
1458 spin_lock_irq(q->queue_lock);
1459 finish_wait(&rl->wait[is_sync], &wait);
1460
1461 goto retry;
1462 }
1463
1464 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1465 static struct request *blk_old_get_request(struct request_queue *q,
1466 unsigned int op, blk_mq_req_flags_t flags)
1467 {
1468 struct request *rq;
1469 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1470 __GFP_DIRECT_RECLAIM;
1471 int ret = 0;
1472
1473 WARN_ON_ONCE(q->mq_ops);
1474
1475 /* create ioc upfront */
1476 create_io_context(gfp_mask, q->node);
1477
1478 ret = blk_queue_enter(q, flags);
1479 if (ret)
1480 return ERR_PTR(ret);
1481 spin_lock_irq(q->queue_lock);
1482 rq = get_request(q, op, NULL, flags);
1483 if (IS_ERR(rq)) {
1484 spin_unlock_irq(q->queue_lock);
1485 blk_queue_exit(q);
1486 return rq;
1487 }
1488
1489 /* q->queue_lock is unlocked at this point */
1490 rq->__data_len = 0;
1491 rq->__sector = (sector_t) -1;
1492 rq->bio = rq->biotail = NULL;
1493 return rq;
1494 }
1495
1496 /**
1497 * blk_get_request_flags - allocate a request
1498 * @q: request queue to allocate a request for
1499 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1500 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1501 */
1502 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1503 blk_mq_req_flags_t flags)
1504 {
1505 struct request *req;
1506
1507 WARN_ON_ONCE(op & REQ_NOWAIT);
1508 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1509
1510 if (q->mq_ops) {
1511 req = blk_mq_alloc_request(q, op, flags);
1512 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1513 q->mq_ops->initialize_rq_fn(req);
1514 } else {
1515 req = blk_old_get_request(q, op, flags);
1516 if (!IS_ERR(req) && q->initialize_rq_fn)
1517 q->initialize_rq_fn(req);
1518 }
1519
1520 return req;
1521 }
1522 EXPORT_SYMBOL(blk_get_request_flags);
1523
1524 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1525 gfp_t gfp_mask)
1526 {
1527 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1528 0 : BLK_MQ_REQ_NOWAIT);
1529 }
1530 EXPORT_SYMBOL(blk_get_request);
1531
1532 /**
1533 * blk_requeue_request - put a request back on queue
1534 * @q: request queue where request should be inserted
1535 * @rq: request to be inserted
1536 *
1537 * Description:
1538 * Drivers often keep queueing requests until the hardware cannot accept
1539 * more, when that condition happens we need to put the request back
1540 * on the queue. Must be called with queue lock held.
1541 */
1542 void blk_requeue_request(struct request_queue *q, struct request *rq)
1543 {
1544 lockdep_assert_held(q->queue_lock);
1545 WARN_ON_ONCE(q->mq_ops);
1546
1547 blk_delete_timer(rq);
1548 blk_clear_rq_complete(rq);
1549 trace_block_rq_requeue(q, rq);
1550 wbt_requeue(q->rq_wb, &rq->issue_stat);
1551
1552 if (rq->rq_flags & RQF_QUEUED)
1553 blk_queue_end_tag(q, rq);
1554
1555 BUG_ON(blk_queued_rq(rq));
1556
1557 elv_requeue_request(q, rq);
1558 }
1559 EXPORT_SYMBOL(blk_requeue_request);
1560
1561 static void add_acct_request(struct request_queue *q, struct request *rq,
1562 int where)
1563 {
1564 blk_account_io_start(rq, true);
1565 __elv_add_request(q, rq, where);
1566 }
1567
1568 static void part_round_stats_single(struct request_queue *q, int cpu,
1569 struct hd_struct *part, unsigned long now,
1570 unsigned int inflight)
1571 {
1572 if (inflight) {
1573 __part_stat_add(cpu, part, time_in_queue,
1574 inflight * (now - part->stamp));
1575 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1576 }
1577 part->stamp = now;
1578 }
1579
1580 /**
1581 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1582 * @q: target block queue
1583 * @cpu: cpu number for stats access
1584 * @part: target partition
1585 *
1586 * The average IO queue length and utilisation statistics are maintained
1587 * by observing the current state of the queue length and the amount of
1588 * time it has been in this state for.
1589 *
1590 * Normally, that accounting is done on IO completion, but that can result
1591 * in more than a second's worth of IO being accounted for within any one
1592 * second, leading to >100% utilisation. To deal with that, we call this
1593 * function to do a round-off before returning the results when reading
1594 * /proc/diskstats. This accounts immediately for all queue usage up to
1595 * the current jiffies and restarts the counters again.
1596 */
1597 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1598 {
1599 struct hd_struct *part2 = NULL;
1600 unsigned long now = jiffies;
1601 unsigned int inflight[2];
1602 int stats = 0;
1603
1604 if (part->stamp != now)
1605 stats |= 1;
1606
1607 if (part->partno) {
1608 part2 = &part_to_disk(part)->part0;
1609 if (part2->stamp != now)
1610 stats |= 2;
1611 }
1612
1613 if (!stats)
1614 return;
1615
1616 part_in_flight(q, part, inflight);
1617
1618 if (stats & 2)
1619 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1620 if (stats & 1)
1621 part_round_stats_single(q, cpu, part, now, inflight[0]);
1622 }
1623 EXPORT_SYMBOL_GPL(part_round_stats);
1624
1625 #ifdef CONFIG_PM
1626 static void blk_pm_put_request(struct request *rq)
1627 {
1628 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1629 pm_runtime_mark_last_busy(rq->q->dev);
1630 }
1631 #else
1632 static inline void blk_pm_put_request(struct request *rq) {}
1633 #endif
1634
1635 void __blk_put_request(struct request_queue *q, struct request *req)
1636 {
1637 req_flags_t rq_flags = req->rq_flags;
1638
1639 if (unlikely(!q))
1640 return;
1641
1642 if (q->mq_ops) {
1643 blk_mq_free_request(req);
1644 return;
1645 }
1646
1647 lockdep_assert_held(q->queue_lock);
1648
1649 blk_pm_put_request(req);
1650
1651 elv_completed_request(q, req);
1652
1653 /* this is a bio leak */
1654 WARN_ON(req->bio != NULL);
1655
1656 wbt_done(q->rq_wb, &req->issue_stat);
1657
1658 /*
1659 * Request may not have originated from ll_rw_blk. if not,
1660 * it didn't come out of our reserved rq pools
1661 */
1662 if (rq_flags & RQF_ALLOCED) {
1663 struct request_list *rl = blk_rq_rl(req);
1664 bool sync = op_is_sync(req->cmd_flags);
1665
1666 BUG_ON(!list_empty(&req->queuelist));
1667 BUG_ON(ELV_ON_HASH(req));
1668
1669 blk_free_request(rl, req);
1670 freed_request(rl, sync, rq_flags);
1671 blk_put_rl(rl);
1672 blk_queue_exit(q);
1673 }
1674 }
1675 EXPORT_SYMBOL_GPL(__blk_put_request);
1676
1677 void blk_put_request(struct request *req)
1678 {
1679 struct request_queue *q = req->q;
1680
1681 if (q->mq_ops)
1682 blk_mq_free_request(req);
1683 else {
1684 unsigned long flags;
1685
1686 spin_lock_irqsave(q->queue_lock, flags);
1687 __blk_put_request(q, req);
1688 spin_unlock_irqrestore(q->queue_lock, flags);
1689 }
1690 }
1691 EXPORT_SYMBOL(blk_put_request);
1692
1693 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1694 struct bio *bio)
1695 {
1696 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1697
1698 if (!ll_back_merge_fn(q, req, bio))
1699 return false;
1700
1701 trace_block_bio_backmerge(q, req, bio);
1702
1703 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1704 blk_rq_set_mixed_merge(req);
1705
1706 req->biotail->bi_next = bio;
1707 req->biotail = bio;
1708 req->__data_len += bio->bi_iter.bi_size;
1709 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1710
1711 blk_account_io_start(req, false);
1712 return true;
1713 }
1714
1715 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1716 struct bio *bio)
1717 {
1718 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1719
1720 if (!ll_front_merge_fn(q, req, bio))
1721 return false;
1722
1723 trace_block_bio_frontmerge(q, req, bio);
1724
1725 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1726 blk_rq_set_mixed_merge(req);
1727
1728 bio->bi_next = req->bio;
1729 req->bio = bio;
1730
1731 req->__sector = bio->bi_iter.bi_sector;
1732 req->__data_len += bio->bi_iter.bi_size;
1733 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1734
1735 blk_account_io_start(req, false);
1736 return true;
1737 }
1738
1739 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1740 struct bio *bio)
1741 {
1742 unsigned short segments = blk_rq_nr_discard_segments(req);
1743
1744 if (segments >= queue_max_discard_segments(q))
1745 goto no_merge;
1746 if (blk_rq_sectors(req) + bio_sectors(bio) >
1747 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1748 goto no_merge;
1749
1750 req->biotail->bi_next = bio;
1751 req->biotail = bio;
1752 req->__data_len += bio->bi_iter.bi_size;
1753 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1754 req->nr_phys_segments = segments + 1;
1755
1756 blk_account_io_start(req, false);
1757 return true;
1758 no_merge:
1759 req_set_nomerge(q, req);
1760 return false;
1761 }
1762
1763 /**
1764 * blk_attempt_plug_merge - try to merge with %current's plugged list
1765 * @q: request_queue new bio is being queued at
1766 * @bio: new bio being queued
1767 * @request_count: out parameter for number of traversed plugged requests
1768 * @same_queue_rq: pointer to &struct request that gets filled in when
1769 * another request associated with @q is found on the plug list
1770 * (optional, may be %NULL)
1771 *
1772 * Determine whether @bio being queued on @q can be merged with a request
1773 * on %current's plugged list. Returns %true if merge was successful,
1774 * otherwise %false.
1775 *
1776 * Plugging coalesces IOs from the same issuer for the same purpose without
1777 * going through @q->queue_lock. As such it's more of an issuing mechanism
1778 * than scheduling, and the request, while may have elvpriv data, is not
1779 * added on the elevator at this point. In addition, we don't have
1780 * reliable access to the elevator outside queue lock. Only check basic
1781 * merging parameters without querying the elevator.
1782 *
1783 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1784 */
1785 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1786 unsigned int *request_count,
1787 struct request **same_queue_rq)
1788 {
1789 struct blk_plug *plug;
1790 struct request *rq;
1791 struct list_head *plug_list;
1792
1793 plug = current->plug;
1794 if (!plug)
1795 return false;
1796 *request_count = 0;
1797
1798 if (q->mq_ops)
1799 plug_list = &plug->mq_list;
1800 else
1801 plug_list = &plug->list;
1802
1803 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1804 bool merged = false;
1805
1806 if (rq->q == q) {
1807 (*request_count)++;
1808 /*
1809 * Only blk-mq multiple hardware queues case checks the
1810 * rq in the same queue, there should be only one such
1811 * rq in a queue
1812 **/
1813 if (same_queue_rq)
1814 *same_queue_rq = rq;
1815 }
1816
1817 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1818 continue;
1819
1820 switch (blk_try_merge(rq, bio)) {
1821 case ELEVATOR_BACK_MERGE:
1822 merged = bio_attempt_back_merge(q, rq, bio);
1823 break;
1824 case ELEVATOR_FRONT_MERGE:
1825 merged = bio_attempt_front_merge(q, rq, bio);
1826 break;
1827 case ELEVATOR_DISCARD_MERGE:
1828 merged = bio_attempt_discard_merge(q, rq, bio);
1829 break;
1830 default:
1831 break;
1832 }
1833
1834 if (merged)
1835 return true;
1836 }
1837
1838 return false;
1839 }
1840
1841 unsigned int blk_plug_queued_count(struct request_queue *q)
1842 {
1843 struct blk_plug *plug;
1844 struct request *rq;
1845 struct list_head *plug_list;
1846 unsigned int ret = 0;
1847
1848 plug = current->plug;
1849 if (!plug)
1850 goto out;
1851
1852 if (q->mq_ops)
1853 plug_list = &plug->mq_list;
1854 else
1855 plug_list = &plug->list;
1856
1857 list_for_each_entry(rq, plug_list, queuelist) {
1858 if (rq->q == q)
1859 ret++;
1860 }
1861 out:
1862 return ret;
1863 }
1864
1865 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1866 {
1867 struct io_context *ioc = rq_ioc(bio);
1868
1869 if (bio->bi_opf & REQ_RAHEAD)
1870 req->cmd_flags |= REQ_FAILFAST_MASK;
1871
1872 req->__sector = bio->bi_iter.bi_sector;
1873 if (ioprio_valid(bio_prio(bio)))
1874 req->ioprio = bio_prio(bio);
1875 else if (ioc)
1876 req->ioprio = ioc->ioprio;
1877 else
1878 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1879 req->write_hint = bio->bi_write_hint;
1880 blk_rq_bio_prep(req->q, req, bio);
1881 }
1882 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1883
1884 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1885 {
1886 struct blk_plug *plug;
1887 int where = ELEVATOR_INSERT_SORT;
1888 struct request *req, *free;
1889 unsigned int request_count = 0;
1890 unsigned int wb_acct;
1891
1892 /*
1893 * low level driver can indicate that it wants pages above a
1894 * certain limit bounced to low memory (ie for highmem, or even
1895 * ISA dma in theory)
1896 */
1897 blk_queue_bounce(q, &bio);
1898
1899 blk_queue_split(q, &bio);
1900
1901 if (!bio_integrity_prep(bio))
1902 return BLK_QC_T_NONE;
1903
1904 if (op_is_flush(bio->bi_opf)) {
1905 spin_lock_irq(q->queue_lock);
1906 where = ELEVATOR_INSERT_FLUSH;
1907 goto get_rq;
1908 }
1909
1910 /*
1911 * Check if we can merge with the plugged list before grabbing
1912 * any locks.
1913 */
1914 if (!blk_queue_nomerges(q)) {
1915 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1916 return BLK_QC_T_NONE;
1917 } else
1918 request_count = blk_plug_queued_count(q);
1919
1920 spin_lock_irq(q->queue_lock);
1921
1922 switch (elv_merge(q, &req, bio)) {
1923 case ELEVATOR_BACK_MERGE:
1924 if (!bio_attempt_back_merge(q, req, bio))
1925 break;
1926 elv_bio_merged(q, req, bio);
1927 free = attempt_back_merge(q, req);
1928 if (free)
1929 __blk_put_request(q, free);
1930 else
1931 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1932 goto out_unlock;
1933 case ELEVATOR_FRONT_MERGE:
1934 if (!bio_attempt_front_merge(q, req, bio))
1935 break;
1936 elv_bio_merged(q, req, bio);
1937 free = attempt_front_merge(q, req);
1938 if (free)
1939 __blk_put_request(q, free);
1940 else
1941 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1942 goto out_unlock;
1943 default:
1944 break;
1945 }
1946
1947 get_rq:
1948 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1949
1950 /*
1951 * Grab a free request. This is might sleep but can not fail.
1952 * Returns with the queue unlocked.
1953 */
1954 blk_queue_enter_live(q);
1955 req = get_request(q, bio->bi_opf, bio, 0);
1956 if (IS_ERR(req)) {
1957 blk_queue_exit(q);
1958 __wbt_done(q->rq_wb, wb_acct);
1959 if (PTR_ERR(req) == -ENOMEM)
1960 bio->bi_status = BLK_STS_RESOURCE;
1961 else
1962 bio->bi_status = BLK_STS_IOERR;
1963 bio_endio(bio);
1964 goto out_unlock;
1965 }
1966
1967 wbt_track(&req->issue_stat, wb_acct);
1968
1969 /*
1970 * After dropping the lock and possibly sleeping here, our request
1971 * may now be mergeable after it had proven unmergeable (above).
1972 * We don't worry about that case for efficiency. It won't happen
1973 * often, and the elevators are able to handle it.
1974 */
1975 blk_init_request_from_bio(req, bio);
1976
1977 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1978 req->cpu = raw_smp_processor_id();
1979
1980 plug = current->plug;
1981 if (plug) {
1982 /*
1983 * If this is the first request added after a plug, fire
1984 * of a plug trace.
1985 *
1986 * @request_count may become stale because of schedule
1987 * out, so check plug list again.
1988 */
1989 if (!request_count || list_empty(&plug->list))
1990 trace_block_plug(q);
1991 else {
1992 struct request *last = list_entry_rq(plug->list.prev);
1993 if (request_count >= BLK_MAX_REQUEST_COUNT ||
1994 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1995 blk_flush_plug_list(plug, false);
1996 trace_block_plug(q);
1997 }
1998 }
1999 list_add_tail(&req->queuelist, &plug->list);
2000 blk_account_io_start(req, true);
2001 } else {
2002 spin_lock_irq(q->queue_lock);
2003 add_acct_request(q, req, where);
2004 __blk_run_queue(q);
2005 out_unlock:
2006 spin_unlock_irq(q->queue_lock);
2007 }
2008
2009 return BLK_QC_T_NONE;
2010 }
2011
2012 static void handle_bad_sector(struct bio *bio)
2013 {
2014 char b[BDEVNAME_SIZE];
2015
2016 printk(KERN_INFO "attempt to access beyond end of device\n");
2017 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2018 bio_devname(bio, b), bio->bi_opf,
2019 (unsigned long long)bio_end_sector(bio),
2020 (long long)get_capacity(bio->bi_disk));
2021 }
2022
2023 #ifdef CONFIG_FAIL_MAKE_REQUEST
2024
2025 static DECLARE_FAULT_ATTR(fail_make_request);
2026
2027 static int __init setup_fail_make_request(char *str)
2028 {
2029 return setup_fault_attr(&fail_make_request, str);
2030 }
2031 __setup("fail_make_request=", setup_fail_make_request);
2032
2033 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2034 {
2035 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2036 }
2037
2038 static int __init fail_make_request_debugfs(void)
2039 {
2040 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2041 NULL, &fail_make_request);
2042
2043 return PTR_ERR_OR_ZERO(dir);
2044 }
2045
2046 late_initcall(fail_make_request_debugfs);
2047
2048 #else /* CONFIG_FAIL_MAKE_REQUEST */
2049
2050 static inline bool should_fail_request(struct hd_struct *part,
2051 unsigned int bytes)
2052 {
2053 return false;
2054 }
2055
2056 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2057
2058 /*
2059 * Remap block n of partition p to block n+start(p) of the disk.
2060 */
2061 static inline int blk_partition_remap(struct bio *bio)
2062 {
2063 struct hd_struct *p;
2064 int ret = 0;
2065
2066 /*
2067 * Zone reset does not include bi_size so bio_sectors() is always 0.
2068 * Include a test for the reset op code and perform the remap if needed.
2069 */
2070 if (!bio->bi_partno ||
2071 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2072 return 0;
2073
2074 rcu_read_lock();
2075 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2076 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2077 bio->bi_iter.bi_sector += p->start_sect;
2078 bio->bi_partno = 0;
2079 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2080 bio->bi_iter.bi_sector - p->start_sect);
2081 } else {
2082 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2083 ret = -EIO;
2084 }
2085 rcu_read_unlock();
2086
2087 return ret;
2088 }
2089
2090 /*
2091 * Check whether this bio extends beyond the end of the device.
2092 */
2093 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2094 {
2095 sector_t maxsector;
2096
2097 if (!nr_sectors)
2098 return 0;
2099
2100 /* Test device or partition size, when known. */
2101 maxsector = get_capacity(bio->bi_disk);
2102 if (maxsector) {
2103 sector_t sector = bio->bi_iter.bi_sector;
2104
2105 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2106 /*
2107 * This may well happen - the kernel calls bread()
2108 * without checking the size of the device, e.g., when
2109 * mounting a device.
2110 */
2111 handle_bad_sector(bio);
2112 return 1;
2113 }
2114 }
2115
2116 return 0;
2117 }
2118
2119 static noinline_for_stack bool
2120 generic_make_request_checks(struct bio *bio)
2121 {
2122 struct request_queue *q;
2123 int nr_sectors = bio_sectors(bio);
2124 blk_status_t status = BLK_STS_IOERR;
2125 char b[BDEVNAME_SIZE];
2126
2127 might_sleep();
2128
2129 if (bio_check_eod(bio, nr_sectors))
2130 goto end_io;
2131
2132 q = bio->bi_disk->queue;
2133 if (unlikely(!q)) {
2134 printk(KERN_ERR
2135 "generic_make_request: Trying to access "
2136 "nonexistent block-device %s (%Lu)\n",
2137 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2138 goto end_io;
2139 }
2140
2141 /*
2142 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2143 * if queue is not a request based queue.
2144 */
2145
2146 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2147 goto not_supported;
2148
2149 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2150 goto end_io;
2151
2152 if (blk_partition_remap(bio))
2153 goto end_io;
2154
2155 if (bio_check_eod(bio, nr_sectors))
2156 goto end_io;
2157
2158 /*
2159 * Filter flush bio's early so that make_request based
2160 * drivers without flush support don't have to worry
2161 * about them.
2162 */
2163 if (op_is_flush(bio->bi_opf) &&
2164 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2165 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2166 if (!nr_sectors) {
2167 status = BLK_STS_OK;
2168 goto end_io;
2169 }
2170 }
2171
2172 switch (bio_op(bio)) {
2173 case REQ_OP_DISCARD:
2174 if (!blk_queue_discard(q))
2175 goto not_supported;
2176 break;
2177 case REQ_OP_SECURE_ERASE:
2178 if (!blk_queue_secure_erase(q))
2179 goto not_supported;
2180 break;
2181 case REQ_OP_WRITE_SAME:
2182 if (!q->limits.max_write_same_sectors)
2183 goto not_supported;
2184 break;
2185 case REQ_OP_ZONE_REPORT:
2186 case REQ_OP_ZONE_RESET:
2187 if (!blk_queue_is_zoned(q))
2188 goto not_supported;
2189 break;
2190 case REQ_OP_WRITE_ZEROES:
2191 if (!q->limits.max_write_zeroes_sectors)
2192 goto not_supported;
2193 break;
2194 default:
2195 break;
2196 }
2197
2198 /*
2199 * Various block parts want %current->io_context and lazy ioc
2200 * allocation ends up trading a lot of pain for a small amount of
2201 * memory. Just allocate it upfront. This may fail and block
2202 * layer knows how to live with it.
2203 */
2204 create_io_context(GFP_ATOMIC, q->node);
2205
2206 if (!blkcg_bio_issue_check(q, bio))
2207 return false;
2208
2209 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2210 trace_block_bio_queue(q, bio);
2211 /* Now that enqueuing has been traced, we need to trace
2212 * completion as well.
2213 */
2214 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2215 }
2216 return true;
2217
2218 not_supported:
2219 status = BLK_STS_NOTSUPP;
2220 end_io:
2221 bio->bi_status = status;
2222 bio_endio(bio);
2223 return false;
2224 }
2225
2226 /**
2227 * generic_make_request - hand a buffer to its device driver for I/O
2228 * @bio: The bio describing the location in memory and on the device.
2229 *
2230 * generic_make_request() is used to make I/O requests of block
2231 * devices. It is passed a &struct bio, which describes the I/O that needs
2232 * to be done.
2233 *
2234 * generic_make_request() does not return any status. The
2235 * success/failure status of the request, along with notification of
2236 * completion, is delivered asynchronously through the bio->bi_end_io
2237 * function described (one day) else where.
2238 *
2239 * The caller of generic_make_request must make sure that bi_io_vec
2240 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2241 * set to describe the device address, and the
2242 * bi_end_io and optionally bi_private are set to describe how
2243 * completion notification should be signaled.
2244 *
2245 * generic_make_request and the drivers it calls may use bi_next if this
2246 * bio happens to be merged with someone else, and may resubmit the bio to
2247 * a lower device by calling into generic_make_request recursively, which
2248 * means the bio should NOT be touched after the call to ->make_request_fn.
2249 */
2250 blk_qc_t generic_make_request(struct bio *bio)
2251 {
2252 /*
2253 * bio_list_on_stack[0] contains bios submitted by the current
2254 * make_request_fn.
2255 * bio_list_on_stack[1] contains bios that were submitted before
2256 * the current make_request_fn, but that haven't been processed
2257 * yet.
2258 */
2259 struct bio_list bio_list_on_stack[2];
2260 blk_qc_t ret = BLK_QC_T_NONE;
2261
2262 if (!generic_make_request_checks(bio))
2263 goto out;
2264
2265 /*
2266 * We only want one ->make_request_fn to be active at a time, else
2267 * stack usage with stacked devices could be a problem. So use
2268 * current->bio_list to keep a list of requests submited by a
2269 * make_request_fn function. current->bio_list is also used as a
2270 * flag to say if generic_make_request is currently active in this
2271 * task or not. If it is NULL, then no make_request is active. If
2272 * it is non-NULL, then a make_request is active, and new requests
2273 * should be added at the tail
2274 */
2275 if (current->bio_list) {
2276 bio_list_add(&current->bio_list[0], bio);
2277 goto out;
2278 }
2279
2280 /* following loop may be a bit non-obvious, and so deserves some
2281 * explanation.
2282 * Before entering the loop, bio->bi_next is NULL (as all callers
2283 * ensure that) so we have a list with a single bio.
2284 * We pretend that we have just taken it off a longer list, so
2285 * we assign bio_list to a pointer to the bio_list_on_stack,
2286 * thus initialising the bio_list of new bios to be
2287 * added. ->make_request() may indeed add some more bios
2288 * through a recursive call to generic_make_request. If it
2289 * did, we find a non-NULL value in bio_list and re-enter the loop
2290 * from the top. In this case we really did just take the bio
2291 * of the top of the list (no pretending) and so remove it from
2292 * bio_list, and call into ->make_request() again.
2293 */
2294 BUG_ON(bio->bi_next);
2295 bio_list_init(&bio_list_on_stack[0]);
2296 current->bio_list = bio_list_on_stack;
2297 do {
2298 struct request_queue *q = bio->bi_disk->queue;
2299 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2300 BLK_MQ_REQ_NOWAIT : 0;
2301
2302 if (likely(blk_queue_enter(q, flags) == 0)) {
2303 struct bio_list lower, same;
2304
2305 /* Create a fresh bio_list for all subordinate requests */
2306 bio_list_on_stack[1] = bio_list_on_stack[0];
2307 bio_list_init(&bio_list_on_stack[0]);
2308 ret = q->make_request_fn(q, bio);
2309
2310 blk_queue_exit(q);
2311
2312 /* sort new bios into those for a lower level
2313 * and those for the same level
2314 */
2315 bio_list_init(&lower);
2316 bio_list_init(&same);
2317 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2318 if (q == bio->bi_disk->queue)
2319 bio_list_add(&same, bio);
2320 else
2321 bio_list_add(&lower, bio);
2322 /* now assemble so we handle the lowest level first */
2323 bio_list_merge(&bio_list_on_stack[0], &lower);
2324 bio_list_merge(&bio_list_on_stack[0], &same);
2325 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2326 } else {
2327 if (unlikely(!blk_queue_dying(q) &&
2328 (bio->bi_opf & REQ_NOWAIT)))
2329 bio_wouldblock_error(bio);
2330 else
2331 bio_io_error(bio);
2332 }
2333 bio = bio_list_pop(&bio_list_on_stack[0]);
2334 } while (bio);
2335 current->bio_list = NULL; /* deactivate */
2336
2337 out:
2338 return ret;
2339 }
2340 EXPORT_SYMBOL(generic_make_request);
2341
2342 /**
2343 * direct_make_request - hand a buffer directly to its device driver for I/O
2344 * @bio: The bio describing the location in memory and on the device.
2345 *
2346 * This function behaves like generic_make_request(), but does not protect
2347 * against recursion. Must only be used if the called driver is known
2348 * to not call generic_make_request (or direct_make_request) again from
2349 * its make_request function. (Calling direct_make_request again from
2350 * a workqueue is perfectly fine as that doesn't recurse).
2351 */
2352 blk_qc_t direct_make_request(struct bio *bio)
2353 {
2354 struct request_queue *q = bio->bi_disk->queue;
2355 bool nowait = bio->bi_opf & REQ_NOWAIT;
2356 blk_qc_t ret;
2357
2358 if (!generic_make_request_checks(bio))
2359 return BLK_QC_T_NONE;
2360
2361 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2362 if (nowait && !blk_queue_dying(q))
2363 bio->bi_status = BLK_STS_AGAIN;
2364 else
2365 bio->bi_status = BLK_STS_IOERR;
2366 bio_endio(bio);
2367 return BLK_QC_T_NONE;
2368 }
2369
2370 ret = q->make_request_fn(q, bio);
2371 blk_queue_exit(q);
2372 return ret;
2373 }
2374 EXPORT_SYMBOL_GPL(direct_make_request);
2375
2376 /**
2377 * submit_bio - submit a bio to the block device layer for I/O
2378 * @bio: The &struct bio which describes the I/O
2379 *
2380 * submit_bio() is very similar in purpose to generic_make_request(), and
2381 * uses that function to do most of the work. Both are fairly rough
2382 * interfaces; @bio must be presetup and ready for I/O.
2383 *
2384 */
2385 blk_qc_t submit_bio(struct bio *bio)
2386 {
2387 /*
2388 * If it's a regular read/write or a barrier with data attached,
2389 * go through the normal accounting stuff before submission.
2390 */
2391 if (bio_has_data(bio)) {
2392 unsigned int count;
2393
2394 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2395 count = queue_logical_block_size(bio->bi_disk->queue);
2396 else
2397 count = bio_sectors(bio);
2398
2399 if (op_is_write(bio_op(bio))) {
2400 count_vm_events(PGPGOUT, count);
2401 } else {
2402 task_io_account_read(bio->bi_iter.bi_size);
2403 count_vm_events(PGPGIN, count);
2404 }
2405
2406 if (unlikely(block_dump)) {
2407 char b[BDEVNAME_SIZE];
2408 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2409 current->comm, task_pid_nr(current),
2410 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2411 (unsigned long long)bio->bi_iter.bi_sector,
2412 bio_devname(bio, b), count);
2413 }
2414 }
2415
2416 return generic_make_request(bio);
2417 }
2418 EXPORT_SYMBOL(submit_bio);
2419
2420 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2421 {
2422 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2423 return false;
2424
2425 if (current->plug)
2426 blk_flush_plug_list(current->plug, false);
2427 return q->poll_fn(q, cookie);
2428 }
2429 EXPORT_SYMBOL_GPL(blk_poll);
2430
2431 /**
2432 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2433 * for new the queue limits
2434 * @q: the queue
2435 * @rq: the request being checked
2436 *
2437 * Description:
2438 * @rq may have been made based on weaker limitations of upper-level queues
2439 * in request stacking drivers, and it may violate the limitation of @q.
2440 * Since the block layer and the underlying device driver trust @rq
2441 * after it is inserted to @q, it should be checked against @q before
2442 * the insertion using this generic function.
2443 *
2444 * Request stacking drivers like request-based dm may change the queue
2445 * limits when retrying requests on other queues. Those requests need
2446 * to be checked against the new queue limits again during dispatch.
2447 */
2448 static int blk_cloned_rq_check_limits(struct request_queue *q,
2449 struct request *rq)
2450 {
2451 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2452 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2453 return -EIO;
2454 }
2455
2456 /*
2457 * queue's settings related to segment counting like q->bounce_pfn
2458 * may differ from that of other stacking queues.
2459 * Recalculate it to check the request correctly on this queue's
2460 * limitation.
2461 */
2462 blk_recalc_rq_segments(rq);
2463 if (rq->nr_phys_segments > queue_max_segments(q)) {
2464 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2465 return -EIO;
2466 }
2467
2468 return 0;
2469 }
2470
2471 /**
2472 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2473 * @q: the queue to submit the request
2474 * @rq: the request being queued
2475 */
2476 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2477 {
2478 unsigned long flags;
2479 int where = ELEVATOR_INSERT_BACK;
2480
2481 if (blk_cloned_rq_check_limits(q, rq))
2482 return BLK_STS_IOERR;
2483
2484 if (rq->rq_disk &&
2485 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2486 return BLK_STS_IOERR;
2487
2488 if (q->mq_ops) {
2489 if (blk_queue_io_stat(q))
2490 blk_account_io_start(rq, true);
2491 /*
2492 * Since we have a scheduler attached on the top device,
2493 * bypass a potential scheduler on the bottom device for
2494 * insert.
2495 */
2496 blk_mq_request_bypass_insert(rq, true);
2497 return BLK_STS_OK;
2498 }
2499
2500 spin_lock_irqsave(q->queue_lock, flags);
2501 if (unlikely(blk_queue_dying(q))) {
2502 spin_unlock_irqrestore(q->queue_lock, flags);
2503 return BLK_STS_IOERR;
2504 }
2505
2506 /*
2507 * Submitting request must be dequeued before calling this function
2508 * because it will be linked to another request_queue
2509 */
2510 BUG_ON(blk_queued_rq(rq));
2511
2512 if (op_is_flush(rq->cmd_flags))
2513 where = ELEVATOR_INSERT_FLUSH;
2514
2515 add_acct_request(q, rq, where);
2516 if (where == ELEVATOR_INSERT_FLUSH)
2517 __blk_run_queue(q);
2518 spin_unlock_irqrestore(q->queue_lock, flags);
2519
2520 return BLK_STS_OK;
2521 }
2522 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2523
2524 /**
2525 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2526 * @rq: request to examine
2527 *
2528 * Description:
2529 * A request could be merge of IOs which require different failure
2530 * handling. This function determines the number of bytes which
2531 * can be failed from the beginning of the request without
2532 * crossing into area which need to be retried further.
2533 *
2534 * Return:
2535 * The number of bytes to fail.
2536 */
2537 unsigned int blk_rq_err_bytes(const struct request *rq)
2538 {
2539 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2540 unsigned int bytes = 0;
2541 struct bio *bio;
2542
2543 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2544 return blk_rq_bytes(rq);
2545
2546 /*
2547 * Currently the only 'mixing' which can happen is between
2548 * different fastfail types. We can safely fail portions
2549 * which have all the failfast bits that the first one has -
2550 * the ones which are at least as eager to fail as the first
2551 * one.
2552 */
2553 for (bio = rq->bio; bio; bio = bio->bi_next) {
2554 if ((bio->bi_opf & ff) != ff)
2555 break;
2556 bytes += bio->bi_iter.bi_size;
2557 }
2558
2559 /* this could lead to infinite loop */
2560 BUG_ON(blk_rq_bytes(rq) && !bytes);
2561 return bytes;
2562 }
2563 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2564
2565 void blk_account_io_completion(struct request *req, unsigned int bytes)
2566 {
2567 if (blk_do_io_stat(req)) {
2568 const int rw = rq_data_dir(req);
2569 struct hd_struct *part;
2570 int cpu;
2571
2572 cpu = part_stat_lock();
2573 part = req->part;
2574 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2575 part_stat_unlock();
2576 }
2577 }
2578
2579 void blk_account_io_done(struct request *req)
2580 {
2581 /*
2582 * Account IO completion. flush_rq isn't accounted as a
2583 * normal IO on queueing nor completion. Accounting the
2584 * containing request is enough.
2585 */
2586 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2587 unsigned long duration = jiffies - req->start_time;
2588 const int rw = rq_data_dir(req);
2589 struct hd_struct *part;
2590 int cpu;
2591
2592 cpu = part_stat_lock();
2593 part = req->part;
2594
2595 part_stat_inc(cpu, part, ios[rw]);
2596 part_stat_add(cpu, part, ticks[rw], duration);
2597 part_round_stats(req->q, cpu, part);
2598 part_dec_in_flight(req->q, part, rw);
2599
2600 hd_struct_put(part);
2601 part_stat_unlock();
2602 }
2603 }
2604
2605 #ifdef CONFIG_PM
2606 /*
2607 * Don't process normal requests when queue is suspended
2608 * or in the process of suspending/resuming
2609 */
2610 static bool blk_pm_allow_request(struct request *rq)
2611 {
2612 switch (rq->q->rpm_status) {
2613 case RPM_RESUMING:
2614 case RPM_SUSPENDING:
2615 return rq->rq_flags & RQF_PM;
2616 case RPM_SUSPENDED:
2617 return false;
2618 }
2619
2620 return true;
2621 }
2622 #else
2623 static bool blk_pm_allow_request(struct request *rq)
2624 {
2625 return true;
2626 }
2627 #endif
2628
2629 void blk_account_io_start(struct request *rq, bool new_io)
2630 {
2631 struct hd_struct *part;
2632 int rw = rq_data_dir(rq);
2633 int cpu;
2634
2635 if (!blk_do_io_stat(rq))
2636 return;
2637
2638 cpu = part_stat_lock();
2639
2640 if (!new_io) {
2641 part = rq->part;
2642 part_stat_inc(cpu, part, merges[rw]);
2643 } else {
2644 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2645 if (!hd_struct_try_get(part)) {
2646 /*
2647 * The partition is already being removed,
2648 * the request will be accounted on the disk only
2649 *
2650 * We take a reference on disk->part0 although that
2651 * partition will never be deleted, so we can treat
2652 * it as any other partition.
2653 */
2654 part = &rq->rq_disk->part0;
2655 hd_struct_get(part);
2656 }
2657 part_round_stats(rq->q, cpu, part);
2658 part_inc_in_flight(rq->q, part, rw);
2659 rq->part = part;
2660 }
2661
2662 part_stat_unlock();
2663 }
2664
2665 static struct request *elv_next_request(struct request_queue *q)
2666 {
2667 struct request *rq;
2668 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2669
2670 WARN_ON_ONCE(q->mq_ops);
2671
2672 while (1) {
2673 list_for_each_entry(rq, &q->queue_head, queuelist) {
2674 if (blk_pm_allow_request(rq))
2675 return rq;
2676
2677 if (rq->rq_flags & RQF_SOFTBARRIER)
2678 break;
2679 }
2680
2681 /*
2682 * Flush request is running and flush request isn't queueable
2683 * in the drive, we can hold the queue till flush request is
2684 * finished. Even we don't do this, driver can't dispatch next
2685 * requests and will requeue them. And this can improve
2686 * throughput too. For example, we have request flush1, write1,
2687 * flush 2. flush1 is dispatched, then queue is hold, write1
2688 * isn't inserted to queue. After flush1 is finished, flush2
2689 * will be dispatched. Since disk cache is already clean,
2690 * flush2 will be finished very soon, so looks like flush2 is
2691 * folded to flush1.
2692 * Since the queue is hold, a flag is set to indicate the queue
2693 * should be restarted later. Please see flush_end_io() for
2694 * details.
2695 */
2696 if (fq->flush_pending_idx != fq->flush_running_idx &&
2697 !queue_flush_queueable(q)) {
2698 fq->flush_queue_delayed = 1;
2699 return NULL;
2700 }
2701 if (unlikely(blk_queue_bypass(q)) ||
2702 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2703 return NULL;
2704 }
2705 }
2706
2707 /**
2708 * blk_peek_request - peek at the top of a request queue
2709 * @q: request queue to peek at
2710 *
2711 * Description:
2712 * Return the request at the top of @q. The returned request
2713 * should be started using blk_start_request() before LLD starts
2714 * processing it.
2715 *
2716 * Return:
2717 * Pointer to the request at the top of @q if available. Null
2718 * otherwise.
2719 */
2720 struct request *blk_peek_request(struct request_queue *q)
2721 {
2722 struct request *rq;
2723 int ret;
2724
2725 lockdep_assert_held(q->queue_lock);
2726 WARN_ON_ONCE(q->mq_ops);
2727
2728 while ((rq = elv_next_request(q)) != NULL) {
2729 if (!(rq->rq_flags & RQF_STARTED)) {
2730 /*
2731 * This is the first time the device driver
2732 * sees this request (possibly after
2733 * requeueing). Notify IO scheduler.
2734 */
2735 if (rq->rq_flags & RQF_SORTED)
2736 elv_activate_rq(q, rq);
2737
2738 /*
2739 * just mark as started even if we don't start
2740 * it, a request that has been delayed should
2741 * not be passed by new incoming requests
2742 */
2743 rq->rq_flags |= RQF_STARTED;
2744 trace_block_rq_issue(q, rq);
2745 }
2746
2747 if (!q->boundary_rq || q->boundary_rq == rq) {
2748 q->end_sector = rq_end_sector(rq);
2749 q->boundary_rq = NULL;
2750 }
2751
2752 if (rq->rq_flags & RQF_DONTPREP)
2753 break;
2754
2755 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2756 /*
2757 * make sure space for the drain appears we
2758 * know we can do this because max_hw_segments
2759 * has been adjusted to be one fewer than the
2760 * device can handle
2761 */
2762 rq->nr_phys_segments++;
2763 }
2764
2765 if (!q->prep_rq_fn)
2766 break;
2767
2768 ret = q->prep_rq_fn(q, rq);
2769 if (ret == BLKPREP_OK) {
2770 break;
2771 } else if (ret == BLKPREP_DEFER) {
2772 /*
2773 * the request may have been (partially) prepped.
2774 * we need to keep this request in the front to
2775 * avoid resource deadlock. RQF_STARTED will
2776 * prevent other fs requests from passing this one.
2777 */
2778 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2779 !(rq->rq_flags & RQF_DONTPREP)) {
2780 /*
2781 * remove the space for the drain we added
2782 * so that we don't add it again
2783 */
2784 --rq->nr_phys_segments;
2785 }
2786
2787 rq = NULL;
2788 break;
2789 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2790 rq->rq_flags |= RQF_QUIET;
2791 /*
2792 * Mark this request as started so we don't trigger
2793 * any debug logic in the end I/O path.
2794 */
2795 blk_start_request(rq);
2796 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2797 BLK_STS_TARGET : BLK_STS_IOERR);
2798 } else {
2799 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2800 break;
2801 }
2802 }
2803
2804 return rq;
2805 }
2806 EXPORT_SYMBOL(blk_peek_request);
2807
2808 static void blk_dequeue_request(struct request *rq)
2809 {
2810 struct request_queue *q = rq->q;
2811
2812 BUG_ON(list_empty(&rq->queuelist));
2813 BUG_ON(ELV_ON_HASH(rq));
2814
2815 list_del_init(&rq->queuelist);
2816
2817 /*
2818 * the time frame between a request being removed from the lists
2819 * and to it is freed is accounted as io that is in progress at
2820 * the driver side.
2821 */
2822 if (blk_account_rq(rq)) {
2823 q->in_flight[rq_is_sync(rq)]++;
2824 set_io_start_time_ns(rq);
2825 }
2826 }
2827
2828 /**
2829 * blk_start_request - start request processing on the driver
2830 * @req: request to dequeue
2831 *
2832 * Description:
2833 * Dequeue @req and start timeout timer on it. This hands off the
2834 * request to the driver.
2835 */
2836 void blk_start_request(struct request *req)
2837 {
2838 lockdep_assert_held(req->q->queue_lock);
2839 WARN_ON_ONCE(req->q->mq_ops);
2840
2841 blk_dequeue_request(req);
2842
2843 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2844 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2845 req->rq_flags |= RQF_STATS;
2846 wbt_issue(req->q->rq_wb, &req->issue_stat);
2847 }
2848
2849 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2850 blk_add_timer(req);
2851 }
2852 EXPORT_SYMBOL(blk_start_request);
2853
2854 /**
2855 * blk_fetch_request - fetch a request from a request queue
2856 * @q: request queue to fetch a request from
2857 *
2858 * Description:
2859 * Return the request at the top of @q. The request is started on
2860 * return and LLD can start processing it immediately.
2861 *
2862 * Return:
2863 * Pointer to the request at the top of @q if available. Null
2864 * otherwise.
2865 */
2866 struct request *blk_fetch_request(struct request_queue *q)
2867 {
2868 struct request *rq;
2869
2870 lockdep_assert_held(q->queue_lock);
2871 WARN_ON_ONCE(q->mq_ops);
2872
2873 rq = blk_peek_request(q);
2874 if (rq)
2875 blk_start_request(rq);
2876 return rq;
2877 }
2878 EXPORT_SYMBOL(blk_fetch_request);
2879
2880 /*
2881 * Steal bios from a request and add them to a bio list.
2882 * The request must not have been partially completed before.
2883 */
2884 void blk_steal_bios(struct bio_list *list, struct request *rq)
2885 {
2886 if (rq->bio) {
2887 if (list->tail)
2888 list->tail->bi_next = rq->bio;
2889 else
2890 list->head = rq->bio;
2891 list->tail = rq->biotail;
2892
2893 rq->bio = NULL;
2894 rq->biotail = NULL;
2895 }
2896
2897 rq->__data_len = 0;
2898 }
2899 EXPORT_SYMBOL_GPL(blk_steal_bios);
2900
2901 /**
2902 * blk_update_request - Special helper function for request stacking drivers
2903 * @req: the request being processed
2904 * @error: block status code
2905 * @nr_bytes: number of bytes to complete @req
2906 *
2907 * Description:
2908 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2909 * the request structure even if @req doesn't have leftover.
2910 * If @req has leftover, sets it up for the next range of segments.
2911 *
2912 * This special helper function is only for request stacking drivers
2913 * (e.g. request-based dm) so that they can handle partial completion.
2914 * Actual device drivers should use blk_end_request instead.
2915 *
2916 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2917 * %false return from this function.
2918 *
2919 * Return:
2920 * %false - this request doesn't have any more data
2921 * %true - this request has more data
2922 **/
2923 bool blk_update_request(struct request *req, blk_status_t error,
2924 unsigned int nr_bytes)
2925 {
2926 int total_bytes;
2927
2928 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2929
2930 if (!req->bio)
2931 return false;
2932
2933 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2934 !(req->rq_flags & RQF_QUIET)))
2935 print_req_error(req, error);
2936
2937 blk_account_io_completion(req, nr_bytes);
2938
2939 total_bytes = 0;
2940 while (req->bio) {
2941 struct bio *bio = req->bio;
2942 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2943
2944 if (bio_bytes == bio->bi_iter.bi_size)
2945 req->bio = bio->bi_next;
2946
2947 /* Completion has already been traced */
2948 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2949 req_bio_endio(req, bio, bio_bytes, error);
2950
2951 total_bytes += bio_bytes;
2952 nr_bytes -= bio_bytes;
2953
2954 if (!nr_bytes)
2955 break;
2956 }
2957
2958 /*
2959 * completely done
2960 */
2961 if (!req->bio) {
2962 /*
2963 * Reset counters so that the request stacking driver
2964 * can find how many bytes remain in the request
2965 * later.
2966 */
2967 req->__data_len = 0;
2968 return false;
2969 }
2970
2971 req->__data_len -= total_bytes;
2972
2973 /* update sector only for requests with clear definition of sector */
2974 if (!blk_rq_is_passthrough(req))
2975 req->__sector += total_bytes >> 9;
2976
2977 /* mixed attributes always follow the first bio */
2978 if (req->rq_flags & RQF_MIXED_MERGE) {
2979 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2980 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2981 }
2982
2983 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2984 /*
2985 * If total number of sectors is less than the first segment
2986 * size, something has gone terribly wrong.
2987 */
2988 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2989 blk_dump_rq_flags(req, "request botched");
2990 req->__data_len = blk_rq_cur_bytes(req);
2991 }
2992
2993 /* recalculate the number of segments */
2994 blk_recalc_rq_segments(req);
2995 }
2996
2997 return true;
2998 }
2999 EXPORT_SYMBOL_GPL(blk_update_request);
3000
3001 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3002 unsigned int nr_bytes,
3003 unsigned int bidi_bytes)
3004 {
3005 if (blk_update_request(rq, error, nr_bytes))
3006 return true;
3007
3008 /* Bidi request must be completed as a whole */
3009 if (unlikely(blk_bidi_rq(rq)) &&
3010 blk_update_request(rq->next_rq, error, bidi_bytes))
3011 return true;
3012
3013 if (blk_queue_add_random(rq->q))
3014 add_disk_randomness(rq->rq_disk);
3015
3016 return false;
3017 }
3018
3019 /**
3020 * blk_unprep_request - unprepare a request
3021 * @req: the request
3022 *
3023 * This function makes a request ready for complete resubmission (or
3024 * completion). It happens only after all error handling is complete,
3025 * so represents the appropriate moment to deallocate any resources
3026 * that were allocated to the request in the prep_rq_fn. The queue
3027 * lock is held when calling this.
3028 */
3029 void blk_unprep_request(struct request *req)
3030 {
3031 struct request_queue *q = req->q;
3032
3033 req->rq_flags &= ~RQF_DONTPREP;
3034 if (q->unprep_rq_fn)
3035 q->unprep_rq_fn(q, req);
3036 }
3037 EXPORT_SYMBOL_GPL(blk_unprep_request);
3038
3039 void blk_finish_request(struct request *req, blk_status_t error)
3040 {
3041 struct request_queue *q = req->q;
3042
3043 lockdep_assert_held(req->q->queue_lock);
3044 WARN_ON_ONCE(q->mq_ops);
3045
3046 if (req->rq_flags & RQF_STATS)
3047 blk_stat_add(req);
3048
3049 if (req->rq_flags & RQF_QUEUED)
3050 blk_queue_end_tag(q, req);
3051
3052 BUG_ON(blk_queued_rq(req));
3053
3054 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3055 laptop_io_completion(req->q->backing_dev_info);
3056
3057 blk_delete_timer(req);
3058
3059 if (req->rq_flags & RQF_DONTPREP)
3060 blk_unprep_request(req);
3061
3062 blk_account_io_done(req);
3063
3064 if (req->end_io) {
3065 wbt_done(req->q->rq_wb, &req->issue_stat);
3066 req->end_io(req, error);
3067 } else {
3068 if (blk_bidi_rq(req))
3069 __blk_put_request(req->next_rq->q, req->next_rq);
3070
3071 __blk_put_request(q, req);
3072 }
3073 }
3074 EXPORT_SYMBOL(blk_finish_request);
3075
3076 /**
3077 * blk_end_bidi_request - Complete a bidi request
3078 * @rq: the request to complete
3079 * @error: block status code
3080 * @nr_bytes: number of bytes to complete @rq
3081 * @bidi_bytes: number of bytes to complete @rq->next_rq
3082 *
3083 * Description:
3084 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3085 * Drivers that supports bidi can safely call this member for any
3086 * type of request, bidi or uni. In the later case @bidi_bytes is
3087 * just ignored.
3088 *
3089 * Return:
3090 * %false - we are done with this request
3091 * %true - still buffers pending for this request
3092 **/
3093 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3094 unsigned int nr_bytes, unsigned int bidi_bytes)
3095 {
3096 struct request_queue *q = rq->q;
3097 unsigned long flags;
3098
3099 WARN_ON_ONCE(q->mq_ops);
3100
3101 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3102 return true;
3103
3104 spin_lock_irqsave(q->queue_lock, flags);
3105 blk_finish_request(rq, error);
3106 spin_unlock_irqrestore(q->queue_lock, flags);
3107
3108 return false;
3109 }
3110
3111 /**
3112 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3113 * @rq: the request to complete
3114 * @error: block status code
3115 * @nr_bytes: number of bytes to complete @rq
3116 * @bidi_bytes: number of bytes to complete @rq->next_rq
3117 *
3118 * Description:
3119 * Identical to blk_end_bidi_request() except that queue lock is
3120 * assumed to be locked on entry and remains so on return.
3121 *
3122 * Return:
3123 * %false - we are done with this request
3124 * %true - still buffers pending for this request
3125 **/
3126 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3127 unsigned int nr_bytes, unsigned int bidi_bytes)
3128 {
3129 lockdep_assert_held(rq->q->queue_lock);
3130 WARN_ON_ONCE(rq->q->mq_ops);
3131
3132 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3133 return true;
3134
3135 blk_finish_request(rq, error);
3136
3137 return false;
3138 }
3139
3140 /**
3141 * blk_end_request - Helper function for drivers to complete the request.
3142 * @rq: the request being processed
3143 * @error: block status code
3144 * @nr_bytes: number of bytes to complete
3145 *
3146 * Description:
3147 * Ends I/O on a number of bytes attached to @rq.
3148 * If @rq has leftover, sets it up for the next range of segments.
3149 *
3150 * Return:
3151 * %false - we are done with this request
3152 * %true - still buffers pending for this request
3153 **/
3154 bool blk_end_request(struct request *rq, blk_status_t error,
3155 unsigned int nr_bytes)
3156 {
3157 WARN_ON_ONCE(rq->q->mq_ops);
3158 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3159 }
3160 EXPORT_SYMBOL(blk_end_request);
3161
3162 /**
3163 * blk_end_request_all - Helper function for drives to finish the request.
3164 * @rq: the request to finish
3165 * @error: block status code
3166 *
3167 * Description:
3168 * Completely finish @rq.
3169 */
3170 void blk_end_request_all(struct request *rq, blk_status_t error)
3171 {
3172 bool pending;
3173 unsigned int bidi_bytes = 0;
3174
3175 if (unlikely(blk_bidi_rq(rq)))
3176 bidi_bytes = blk_rq_bytes(rq->next_rq);
3177
3178 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3179 BUG_ON(pending);
3180 }
3181 EXPORT_SYMBOL(blk_end_request_all);
3182
3183 /**
3184 * __blk_end_request - Helper function for drivers to complete the request.
3185 * @rq: the request being processed
3186 * @error: block status code
3187 * @nr_bytes: number of bytes to complete
3188 *
3189 * Description:
3190 * Must be called with queue lock held unlike blk_end_request().
3191 *
3192 * Return:
3193 * %false - we are done with this request
3194 * %true - still buffers pending for this request
3195 **/
3196 bool __blk_end_request(struct request *rq, blk_status_t error,
3197 unsigned int nr_bytes)
3198 {
3199 lockdep_assert_held(rq->q->queue_lock);
3200 WARN_ON_ONCE(rq->q->mq_ops);
3201
3202 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3203 }
3204 EXPORT_SYMBOL(__blk_end_request);
3205
3206 /**
3207 * __blk_end_request_all - Helper function for drives to finish the request.
3208 * @rq: the request to finish
3209 * @error: block status code
3210 *
3211 * Description:
3212 * Completely finish @rq. Must be called with queue lock held.
3213 */
3214 void __blk_end_request_all(struct request *rq, blk_status_t error)
3215 {
3216 bool pending;
3217 unsigned int bidi_bytes = 0;
3218
3219 lockdep_assert_held(rq->q->queue_lock);
3220 WARN_ON_ONCE(rq->q->mq_ops);
3221
3222 if (unlikely(blk_bidi_rq(rq)))
3223 bidi_bytes = blk_rq_bytes(rq->next_rq);
3224
3225 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3226 BUG_ON(pending);
3227 }
3228 EXPORT_SYMBOL(__blk_end_request_all);
3229
3230 /**
3231 * __blk_end_request_cur - Helper function to finish the current request chunk.
3232 * @rq: the request to finish the current chunk for
3233 * @error: block status code
3234 *
3235 * Description:
3236 * Complete the current consecutively mapped chunk from @rq. Must
3237 * be called with queue lock held.
3238 *
3239 * Return:
3240 * %false - we are done with this request
3241 * %true - still buffers pending for this request
3242 */
3243 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3244 {
3245 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3246 }
3247 EXPORT_SYMBOL(__blk_end_request_cur);
3248
3249 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3250 struct bio *bio)
3251 {
3252 if (bio_has_data(bio))
3253 rq->nr_phys_segments = bio_phys_segments(q, bio);
3254
3255 rq->__data_len = bio->bi_iter.bi_size;
3256 rq->bio = rq->biotail = bio;
3257
3258 if (bio->bi_disk)
3259 rq->rq_disk = bio->bi_disk;
3260 }
3261
3262 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3263 /**
3264 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3265 * @rq: the request to be flushed
3266 *
3267 * Description:
3268 * Flush all pages in @rq.
3269 */
3270 void rq_flush_dcache_pages(struct request *rq)
3271 {
3272 struct req_iterator iter;
3273 struct bio_vec bvec;
3274
3275 rq_for_each_segment(bvec, rq, iter)
3276 flush_dcache_page(bvec.bv_page);
3277 }
3278 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3279 #endif
3280
3281 /**
3282 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3283 * @q : the queue of the device being checked
3284 *
3285 * Description:
3286 * Check if underlying low-level drivers of a device are busy.
3287 * If the drivers want to export their busy state, they must set own
3288 * exporting function using blk_queue_lld_busy() first.
3289 *
3290 * Basically, this function is used only by request stacking drivers
3291 * to stop dispatching requests to underlying devices when underlying
3292 * devices are busy. This behavior helps more I/O merging on the queue
3293 * of the request stacking driver and prevents I/O throughput regression
3294 * on burst I/O load.
3295 *
3296 * Return:
3297 * 0 - Not busy (The request stacking driver should dispatch request)
3298 * 1 - Busy (The request stacking driver should stop dispatching request)
3299 */
3300 int blk_lld_busy(struct request_queue *q)
3301 {
3302 if (q->lld_busy_fn)
3303 return q->lld_busy_fn(q);
3304
3305 return 0;
3306 }
3307 EXPORT_SYMBOL_GPL(blk_lld_busy);
3308
3309 /**
3310 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3311 * @rq: the clone request to be cleaned up
3312 *
3313 * Description:
3314 * Free all bios in @rq for a cloned request.
3315 */
3316 void blk_rq_unprep_clone(struct request *rq)
3317 {
3318 struct bio *bio;
3319
3320 while ((bio = rq->bio) != NULL) {
3321 rq->bio = bio->bi_next;
3322
3323 bio_put(bio);
3324 }
3325 }
3326 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3327
3328 /*
3329 * Copy attributes of the original request to the clone request.
3330 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3331 */
3332 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3333 {
3334 dst->cpu = src->cpu;
3335 dst->__sector = blk_rq_pos(src);
3336 dst->__data_len = blk_rq_bytes(src);
3337 dst->nr_phys_segments = src->nr_phys_segments;
3338 dst->ioprio = src->ioprio;
3339 dst->extra_len = src->extra_len;
3340 }
3341
3342 /**
3343 * blk_rq_prep_clone - Helper function to setup clone request
3344 * @rq: the request to be setup
3345 * @rq_src: original request to be cloned
3346 * @bs: bio_set that bios for clone are allocated from
3347 * @gfp_mask: memory allocation mask for bio
3348 * @bio_ctr: setup function to be called for each clone bio.
3349 * Returns %0 for success, non %0 for failure.
3350 * @data: private data to be passed to @bio_ctr
3351 *
3352 * Description:
3353 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3354 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3355 * are not copied, and copying such parts is the caller's responsibility.
3356 * Also, pages which the original bios are pointing to are not copied
3357 * and the cloned bios just point same pages.
3358 * So cloned bios must be completed before original bios, which means
3359 * the caller must complete @rq before @rq_src.
3360 */
3361 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3362 struct bio_set *bs, gfp_t gfp_mask,
3363 int (*bio_ctr)(struct bio *, struct bio *, void *),
3364 void *data)
3365 {
3366 struct bio *bio, *bio_src;
3367
3368 if (!bs)
3369 bs = fs_bio_set;
3370
3371 __rq_for_each_bio(bio_src, rq_src) {
3372 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3373 if (!bio)
3374 goto free_and_out;
3375
3376 if (bio_ctr && bio_ctr(bio, bio_src, data))
3377 goto free_and_out;
3378
3379 if (rq->bio) {
3380 rq->biotail->bi_next = bio;
3381 rq->biotail = bio;
3382 } else
3383 rq->bio = rq->biotail = bio;
3384 }
3385
3386 __blk_rq_prep_clone(rq, rq_src);
3387
3388 return 0;
3389
3390 free_and_out:
3391 if (bio)
3392 bio_put(bio);
3393 blk_rq_unprep_clone(rq);
3394
3395 return -ENOMEM;
3396 }
3397 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3398
3399 int kblockd_schedule_work(struct work_struct *work)
3400 {
3401 return queue_work(kblockd_workqueue, work);
3402 }
3403 EXPORT_SYMBOL(kblockd_schedule_work);
3404
3405 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3406 {
3407 return queue_work_on(cpu, kblockd_workqueue, work);
3408 }
3409 EXPORT_SYMBOL(kblockd_schedule_work_on);
3410
3411 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3412 unsigned long delay)
3413 {
3414 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3415 }
3416 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3417
3418 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3419 unsigned long delay)
3420 {
3421 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3422 }
3423 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3424
3425 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3426 unsigned long delay)
3427 {
3428 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3429 }
3430 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3431
3432 /**
3433 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3434 * @plug: The &struct blk_plug that needs to be initialized
3435 *
3436 * Description:
3437 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3438 * pending I/O should the task end up blocking between blk_start_plug() and
3439 * blk_finish_plug(). This is important from a performance perspective, but
3440 * also ensures that we don't deadlock. For instance, if the task is blocking
3441 * for a memory allocation, memory reclaim could end up wanting to free a
3442 * page belonging to that request that is currently residing in our private
3443 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3444 * this kind of deadlock.
3445 */
3446 void blk_start_plug(struct blk_plug *plug)
3447 {
3448 struct task_struct *tsk = current;
3449
3450 /*
3451 * If this is a nested plug, don't actually assign it.
3452 */
3453 if (tsk->plug)
3454 return;
3455
3456 INIT_LIST_HEAD(&plug->list);
3457 INIT_LIST_HEAD(&plug->mq_list);
3458 INIT_LIST_HEAD(&plug->cb_list);
3459 /*
3460 * Store ordering should not be needed here, since a potential
3461 * preempt will imply a full memory barrier
3462 */
3463 tsk->plug = plug;
3464 }
3465 EXPORT_SYMBOL(blk_start_plug);
3466
3467 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3468 {
3469 struct request *rqa = container_of(a, struct request, queuelist);
3470 struct request *rqb = container_of(b, struct request, queuelist);
3471
3472 return !(rqa->q < rqb->q ||
3473 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3474 }
3475
3476 /*
3477 * If 'from_schedule' is true, then postpone the dispatch of requests
3478 * until a safe kblockd context. We due this to avoid accidental big
3479 * additional stack usage in driver dispatch, in places where the originally
3480 * plugger did not intend it.
3481 */
3482 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3483 bool from_schedule)
3484 __releases(q->queue_lock)
3485 {
3486 lockdep_assert_held(q->queue_lock);
3487
3488 trace_block_unplug(q, depth, !from_schedule);
3489
3490 if (from_schedule)
3491 blk_run_queue_async(q);
3492 else
3493 __blk_run_queue(q);
3494 spin_unlock(q->queue_lock);
3495 }
3496
3497 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3498 {
3499 LIST_HEAD(callbacks);
3500
3501 while (!list_empty(&plug->cb_list)) {
3502 list_splice_init(&plug->cb_list, &callbacks);
3503
3504 while (!list_empty(&callbacks)) {
3505 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3506 struct blk_plug_cb,
3507 list);
3508 list_del(&cb->list);
3509 cb->callback(cb, from_schedule);
3510 }
3511 }
3512 }
3513
3514 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3515 int size)
3516 {
3517 struct blk_plug *plug = current->plug;
3518 struct blk_plug_cb *cb;
3519
3520 if (!plug)
3521 return NULL;
3522
3523 list_for_each_entry(cb, &plug->cb_list, list)
3524 if (cb->callback == unplug && cb->data == data)
3525 return cb;
3526
3527 /* Not currently on the callback list */
3528 BUG_ON(size < sizeof(*cb));
3529 cb = kzalloc(size, GFP_ATOMIC);
3530 if (cb) {
3531 cb->data = data;
3532 cb->callback = unplug;
3533 list_add(&cb->list, &plug->cb_list);
3534 }
3535 return cb;
3536 }
3537 EXPORT_SYMBOL(blk_check_plugged);
3538
3539 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3540 {
3541 struct request_queue *q;
3542 unsigned long flags;
3543 struct request *rq;
3544 LIST_HEAD(list);
3545 unsigned int depth;
3546
3547 flush_plug_callbacks(plug, from_schedule);
3548
3549 if (!list_empty(&plug->mq_list))
3550 blk_mq_flush_plug_list(plug, from_schedule);
3551
3552 if (list_empty(&plug->list))
3553 return;
3554
3555 list_splice_init(&plug->list, &list);
3556
3557 list_sort(NULL, &list, plug_rq_cmp);
3558
3559 q = NULL;
3560 depth = 0;
3561
3562 /*
3563 * Save and disable interrupts here, to avoid doing it for every
3564 * queue lock we have to take.
3565 */
3566 local_irq_save(flags);
3567 while (!list_empty(&list)) {
3568 rq = list_entry_rq(list.next);
3569 list_del_init(&rq->queuelist);
3570 BUG_ON(!rq->q);
3571 if (rq->q != q) {
3572 /*
3573 * This drops the queue lock
3574 */
3575 if (q)
3576 queue_unplugged(q, depth, from_schedule);
3577 q = rq->q;
3578 depth = 0;
3579 spin_lock(q->queue_lock);
3580 }
3581
3582 /*
3583 * Short-circuit if @q is dead
3584 */
3585 if (unlikely(blk_queue_dying(q))) {
3586 __blk_end_request_all(rq, BLK_STS_IOERR);
3587 continue;
3588 }
3589
3590 /*
3591 * rq is already accounted, so use raw insert
3592 */
3593 if (op_is_flush(rq->cmd_flags))
3594 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3595 else
3596 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3597
3598 depth++;
3599 }
3600
3601 /*
3602 * This drops the queue lock
3603 */
3604 if (q)
3605 queue_unplugged(q, depth, from_schedule);
3606
3607 local_irq_restore(flags);
3608 }
3609
3610 void blk_finish_plug(struct blk_plug *plug)
3611 {
3612 if (plug != current->plug)
3613 return;
3614 blk_flush_plug_list(plug, false);
3615
3616 current->plug = NULL;
3617 }
3618 EXPORT_SYMBOL(blk_finish_plug);
3619
3620 #ifdef CONFIG_PM
3621 /**
3622 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3623 * @q: the queue of the device
3624 * @dev: the device the queue belongs to
3625 *
3626 * Description:
3627 * Initialize runtime-PM-related fields for @q and start auto suspend for
3628 * @dev. Drivers that want to take advantage of request-based runtime PM
3629 * should call this function after @dev has been initialized, and its
3630 * request queue @q has been allocated, and runtime PM for it can not happen
3631 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3632 * cases, driver should call this function before any I/O has taken place.
3633 *
3634 * This function takes care of setting up using auto suspend for the device,
3635 * the autosuspend delay is set to -1 to make runtime suspend impossible
3636 * until an updated value is either set by user or by driver. Drivers do
3637 * not need to touch other autosuspend settings.
3638 *
3639 * The block layer runtime PM is request based, so only works for drivers
3640 * that use request as their IO unit instead of those directly use bio's.
3641 */
3642 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3643 {
3644 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3645 if (q->mq_ops)
3646 return;
3647
3648 q->dev = dev;
3649 q->rpm_status = RPM_ACTIVE;
3650 pm_runtime_set_autosuspend_delay(q->dev, -1);
3651 pm_runtime_use_autosuspend(q->dev);
3652 }
3653 EXPORT_SYMBOL(blk_pm_runtime_init);
3654
3655 /**
3656 * blk_pre_runtime_suspend - Pre runtime suspend check
3657 * @q: the queue of the device
3658 *
3659 * Description:
3660 * This function will check if runtime suspend is allowed for the device
3661 * by examining if there are any requests pending in the queue. If there
3662 * are requests pending, the device can not be runtime suspended; otherwise,
3663 * the queue's status will be updated to SUSPENDING and the driver can
3664 * proceed to suspend the device.
3665 *
3666 * For the not allowed case, we mark last busy for the device so that
3667 * runtime PM core will try to autosuspend it some time later.
3668 *
3669 * This function should be called near the start of the device's
3670 * runtime_suspend callback.
3671 *
3672 * Return:
3673 * 0 - OK to runtime suspend the device
3674 * -EBUSY - Device should not be runtime suspended
3675 */
3676 int blk_pre_runtime_suspend(struct request_queue *q)
3677 {
3678 int ret = 0;
3679
3680 if (!q->dev)
3681 return ret;
3682
3683 spin_lock_irq(q->queue_lock);
3684 if (q->nr_pending) {
3685 ret = -EBUSY;
3686 pm_runtime_mark_last_busy(q->dev);
3687 } else {
3688 q->rpm_status = RPM_SUSPENDING;
3689 }
3690 spin_unlock_irq(q->queue_lock);
3691 return ret;
3692 }
3693 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3694
3695 /**
3696 * blk_post_runtime_suspend - Post runtime suspend processing
3697 * @q: the queue of the device
3698 * @err: return value of the device's runtime_suspend function
3699 *
3700 * Description:
3701 * Update the queue's runtime status according to the return value of the
3702 * device's runtime suspend function and mark last busy for the device so
3703 * that PM core will try to auto suspend the device at a later time.
3704 *
3705 * This function should be called near the end of the device's
3706 * runtime_suspend callback.
3707 */
3708 void blk_post_runtime_suspend(struct request_queue *q, int err)
3709 {
3710 if (!q->dev)
3711 return;
3712
3713 spin_lock_irq(q->queue_lock);
3714 if (!err) {
3715 q->rpm_status = RPM_SUSPENDED;
3716 } else {
3717 q->rpm_status = RPM_ACTIVE;
3718 pm_runtime_mark_last_busy(q->dev);
3719 }
3720 spin_unlock_irq(q->queue_lock);
3721 }
3722 EXPORT_SYMBOL(blk_post_runtime_suspend);
3723
3724 /**
3725 * blk_pre_runtime_resume - Pre runtime resume processing
3726 * @q: the queue of the device
3727 *
3728 * Description:
3729 * Update the queue's runtime status to RESUMING in preparation for the
3730 * runtime resume of the device.
3731 *
3732 * This function should be called near the start of the device's
3733 * runtime_resume callback.
3734 */
3735 void blk_pre_runtime_resume(struct request_queue *q)
3736 {
3737 if (!q->dev)
3738 return;
3739
3740 spin_lock_irq(q->queue_lock);
3741 q->rpm_status = RPM_RESUMING;
3742 spin_unlock_irq(q->queue_lock);
3743 }
3744 EXPORT_SYMBOL(blk_pre_runtime_resume);
3745
3746 /**
3747 * blk_post_runtime_resume - Post runtime resume processing
3748 * @q: the queue of the device
3749 * @err: return value of the device's runtime_resume function
3750 *
3751 * Description:
3752 * Update the queue's runtime status according to the return value of the
3753 * device's runtime_resume function. If it is successfully resumed, process
3754 * the requests that are queued into the device's queue when it is resuming
3755 * and then mark last busy and initiate autosuspend for it.
3756 *
3757 * This function should be called near the end of the device's
3758 * runtime_resume callback.
3759 */
3760 void blk_post_runtime_resume(struct request_queue *q, int err)
3761 {
3762 if (!q->dev)
3763 return;
3764
3765 spin_lock_irq(q->queue_lock);
3766 if (!err) {
3767 q->rpm_status = RPM_ACTIVE;
3768 __blk_run_queue(q);
3769 pm_runtime_mark_last_busy(q->dev);
3770 pm_request_autosuspend(q->dev);
3771 } else {
3772 q->rpm_status = RPM_SUSPENDED;
3773 }
3774 spin_unlock_irq(q->queue_lock);
3775 }
3776 EXPORT_SYMBOL(blk_post_runtime_resume);
3777
3778 /**
3779 * blk_set_runtime_active - Force runtime status of the queue to be active
3780 * @q: the queue of the device
3781 *
3782 * If the device is left runtime suspended during system suspend the resume
3783 * hook typically resumes the device and corrects runtime status
3784 * accordingly. However, that does not affect the queue runtime PM status
3785 * which is still "suspended". This prevents processing requests from the
3786 * queue.
3787 *
3788 * This function can be used in driver's resume hook to correct queue
3789 * runtime PM status and re-enable peeking requests from the queue. It
3790 * should be called before first request is added to the queue.
3791 */
3792 void blk_set_runtime_active(struct request_queue *q)
3793 {
3794 spin_lock_irq(q->queue_lock);
3795 q->rpm_status = RPM_ACTIVE;
3796 pm_runtime_mark_last_busy(q->dev);
3797 pm_request_autosuspend(q->dev);
3798 spin_unlock_irq(q->queue_lock);
3799 }
3800 EXPORT_SYMBOL(blk_set_runtime_active);
3801 #endif
3802
3803 int __init blk_dev_init(void)
3804 {
3805 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3806 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3807 FIELD_SIZEOF(struct request, cmd_flags));
3808 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3809 FIELD_SIZEOF(struct bio, bi_opf));
3810
3811 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3812 kblockd_workqueue = alloc_workqueue("kblockd",
3813 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3814 if (!kblockd_workqueue)
3815 panic("Failed to create kblockd\n");
3816
3817 request_cachep = kmem_cache_create("blkdev_requests",
3818 sizeof(struct request), 0, SLAB_PANIC, NULL);
3819
3820 blk_requestq_cachep = kmem_cache_create("request_queue",
3821 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3822
3823 #ifdef CONFIG_DEBUG_FS
3824 blk_debugfs_root = debugfs_create_dir("block", NULL);
3825 #endif
3826
3827 return 0;
3828 }