]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - block/blk-core.c
Allow elevators to sort/merge discard requests
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/interrupt.h>
30 #include <linux/cpu.h>
31 #include <linux/blktrace_api.h>
32 #include <linux/fault-inject.h>
33
34 #include "blk.h"
35
36 static int __make_request(struct request_queue *q, struct bio *bio);
37
38 /*
39 * For the allocated request tables
40 */
41 static struct kmem_cache *request_cachep;
42
43 /*
44 * For queue allocation
45 */
46 struct kmem_cache *blk_requestq_cachep;
47
48 /*
49 * Controlling structure to kblockd
50 */
51 static struct workqueue_struct *kblockd_workqueue;
52
53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
54
55 static void drive_stat_acct(struct request *rq, int new_io)
56 {
57 struct hd_struct *part;
58 int rw = rq_data_dir(rq);
59
60 if (!blk_fs_request(rq) || !rq->rq_disk)
61 return;
62
63 part = get_part(rq->rq_disk, rq->sector);
64 if (!new_io)
65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector);
66 else {
67 disk_round_stats(rq->rq_disk);
68 rq->rq_disk->in_flight++;
69 if (part) {
70 part_round_stats(part);
71 part->in_flight++;
72 }
73 }
74 }
75
76 void blk_queue_congestion_threshold(struct request_queue *q)
77 {
78 int nr;
79
80 nr = q->nr_requests - (q->nr_requests / 8) + 1;
81 if (nr > q->nr_requests)
82 nr = q->nr_requests;
83 q->nr_congestion_on = nr;
84
85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
86 if (nr < 1)
87 nr = 1;
88 q->nr_congestion_off = nr;
89 }
90
91 /**
92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
93 * @bdev: device
94 *
95 * Locates the passed device's request queue and returns the address of its
96 * backing_dev_info
97 *
98 * Will return NULL if the request queue cannot be located.
99 */
100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
101 {
102 struct backing_dev_info *ret = NULL;
103 struct request_queue *q = bdev_get_queue(bdev);
104
105 if (q)
106 ret = &q->backing_dev_info;
107 return ret;
108 }
109 EXPORT_SYMBOL(blk_get_backing_dev_info);
110
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 memset(rq, 0, sizeof(*rq));
114
115 INIT_LIST_HEAD(&rq->queuelist);
116 INIT_LIST_HEAD(&rq->donelist);
117 rq->q = q;
118 rq->sector = rq->hard_sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->cmd = rq->__cmd;
122 rq->tag = -1;
123 rq->ref_count = 1;
124 }
125 EXPORT_SYMBOL(blk_rq_init);
126
127 static void req_bio_endio(struct request *rq, struct bio *bio,
128 unsigned int nbytes, int error)
129 {
130 struct request_queue *q = rq->q;
131
132 if (&q->bar_rq != rq) {
133 if (error)
134 clear_bit(BIO_UPTODATE, &bio->bi_flags);
135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
136 error = -EIO;
137
138 if (unlikely(nbytes > bio->bi_size)) {
139 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
140 __func__, nbytes, bio->bi_size);
141 nbytes = bio->bi_size;
142 }
143
144 bio->bi_size -= nbytes;
145 bio->bi_sector += (nbytes >> 9);
146
147 if (bio_integrity(bio))
148 bio_integrity_advance(bio, nbytes);
149
150 if (bio->bi_size == 0)
151 bio_endio(bio, error);
152 } else {
153
154 /*
155 * Okay, this is the barrier request in progress, just
156 * record the error;
157 */
158 if (error && !q->orderr)
159 q->orderr = error;
160 }
161 }
162
163 void blk_dump_rq_flags(struct request *rq, char *msg)
164 {
165 int bit;
166
167 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
168 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
169 rq->cmd_flags);
170
171 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
172 (unsigned long long)rq->sector,
173 rq->nr_sectors,
174 rq->current_nr_sectors);
175 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
176 rq->bio, rq->biotail,
177 rq->buffer, rq->data,
178 rq->data_len);
179
180 if (blk_pc_request(rq)) {
181 printk(KERN_INFO " cdb: ");
182 for (bit = 0; bit < BLK_MAX_CDB; bit++)
183 printk("%02x ", rq->cmd[bit]);
184 printk("\n");
185 }
186 }
187 EXPORT_SYMBOL(blk_dump_rq_flags);
188
189 /*
190 * "plug" the device if there are no outstanding requests: this will
191 * force the transfer to start only after we have put all the requests
192 * on the list.
193 *
194 * This is called with interrupts off and no requests on the queue and
195 * with the queue lock held.
196 */
197 void blk_plug_device(struct request_queue *q)
198 {
199 WARN_ON(!irqs_disabled());
200
201 /*
202 * don't plug a stopped queue, it must be paired with blk_start_queue()
203 * which will restart the queueing
204 */
205 if (blk_queue_stopped(q))
206 return;
207
208 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
209 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
210 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
211 }
212 }
213 EXPORT_SYMBOL(blk_plug_device);
214
215 /**
216 * blk_plug_device_unlocked - plug a device without queue lock held
217 * @q: The &struct request_queue to plug
218 *
219 * Description:
220 * Like @blk_plug_device(), but grabs the queue lock and disables
221 * interrupts.
222 **/
223 void blk_plug_device_unlocked(struct request_queue *q)
224 {
225 unsigned long flags;
226
227 spin_lock_irqsave(q->queue_lock, flags);
228 blk_plug_device(q);
229 spin_unlock_irqrestore(q->queue_lock, flags);
230 }
231 EXPORT_SYMBOL(blk_plug_device_unlocked);
232
233 /*
234 * remove the queue from the plugged list, if present. called with
235 * queue lock held and interrupts disabled.
236 */
237 int blk_remove_plug(struct request_queue *q)
238 {
239 WARN_ON(!irqs_disabled());
240
241 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
242 return 0;
243
244 del_timer(&q->unplug_timer);
245 return 1;
246 }
247 EXPORT_SYMBOL(blk_remove_plug);
248
249 /*
250 * remove the plug and let it rip..
251 */
252 void __generic_unplug_device(struct request_queue *q)
253 {
254 if (unlikely(blk_queue_stopped(q)))
255 return;
256
257 if (!blk_remove_plug(q))
258 return;
259
260 q->request_fn(q);
261 }
262 EXPORT_SYMBOL(__generic_unplug_device);
263
264 /**
265 * generic_unplug_device - fire a request queue
266 * @q: The &struct request_queue in question
267 *
268 * Description:
269 * Linux uses plugging to build bigger requests queues before letting
270 * the device have at them. If a queue is plugged, the I/O scheduler
271 * is still adding and merging requests on the queue. Once the queue
272 * gets unplugged, the request_fn defined for the queue is invoked and
273 * transfers started.
274 **/
275 void generic_unplug_device(struct request_queue *q)
276 {
277 if (blk_queue_plugged(q)) {
278 spin_lock_irq(q->queue_lock);
279 __generic_unplug_device(q);
280 spin_unlock_irq(q->queue_lock);
281 }
282 }
283 EXPORT_SYMBOL(generic_unplug_device);
284
285 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
286 struct page *page)
287 {
288 struct request_queue *q = bdi->unplug_io_data;
289
290 blk_unplug(q);
291 }
292
293 void blk_unplug_work(struct work_struct *work)
294 {
295 struct request_queue *q =
296 container_of(work, struct request_queue, unplug_work);
297
298 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
299 q->rq.count[READ] + q->rq.count[WRITE]);
300
301 q->unplug_fn(q);
302 }
303
304 void blk_unplug_timeout(unsigned long data)
305 {
306 struct request_queue *q = (struct request_queue *)data;
307
308 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
309 q->rq.count[READ] + q->rq.count[WRITE]);
310
311 kblockd_schedule_work(&q->unplug_work);
312 }
313
314 void blk_unplug(struct request_queue *q)
315 {
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
320 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
321 q->rq.count[READ] + q->rq.count[WRITE]);
322
323 q->unplug_fn(q);
324 }
325 }
326 EXPORT_SYMBOL(blk_unplug);
327
328 /**
329 * blk_start_queue - restart a previously stopped queue
330 * @q: The &struct request_queue in question
331 *
332 * Description:
333 * blk_start_queue() will clear the stop flag on the queue, and call
334 * the request_fn for the queue if it was in a stopped state when
335 * entered. Also see blk_stop_queue(). Queue lock must be held.
336 **/
337 void blk_start_queue(struct request_queue *q)
338 {
339 WARN_ON(!irqs_disabled());
340
341 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
342
343 /*
344 * one level of recursion is ok and is much faster than kicking
345 * the unplug handling
346 */
347 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
348 q->request_fn(q);
349 queue_flag_clear(QUEUE_FLAG_REENTER, q);
350 } else {
351 blk_plug_device(q);
352 kblockd_schedule_work(&q->unplug_work);
353 }
354 }
355 EXPORT_SYMBOL(blk_start_queue);
356
357 /**
358 * blk_stop_queue - stop a queue
359 * @q: The &struct request_queue in question
360 *
361 * Description:
362 * The Linux block layer assumes that a block driver will consume all
363 * entries on the request queue when the request_fn strategy is called.
364 * Often this will not happen, because of hardware limitations (queue
365 * depth settings). If a device driver gets a 'queue full' response,
366 * or if it simply chooses not to queue more I/O at one point, it can
367 * call this function to prevent the request_fn from being called until
368 * the driver has signalled it's ready to go again. This happens by calling
369 * blk_start_queue() to restart queue operations. Queue lock must be held.
370 **/
371 void blk_stop_queue(struct request_queue *q)
372 {
373 blk_remove_plug(q);
374 queue_flag_set(QUEUE_FLAG_STOPPED, q);
375 }
376 EXPORT_SYMBOL(blk_stop_queue);
377
378 /**
379 * blk_sync_queue - cancel any pending callbacks on a queue
380 * @q: the queue
381 *
382 * Description:
383 * The block layer may perform asynchronous callback activity
384 * on a queue, such as calling the unplug function after a timeout.
385 * A block device may call blk_sync_queue to ensure that any
386 * such activity is cancelled, thus allowing it to release resources
387 * that the callbacks might use. The caller must already have made sure
388 * that its ->make_request_fn will not re-add plugging prior to calling
389 * this function.
390 *
391 */
392 void blk_sync_queue(struct request_queue *q)
393 {
394 del_timer_sync(&q->unplug_timer);
395 kblockd_flush_work(&q->unplug_work);
396 }
397 EXPORT_SYMBOL(blk_sync_queue);
398
399 /**
400 * blk_run_queue - run a single device queue
401 * @q: The queue to run
402 */
403 void __blk_run_queue(struct request_queue *q)
404 {
405 blk_remove_plug(q);
406
407 /*
408 * Only recurse once to avoid overrunning the stack, let the unplug
409 * handling reinvoke the handler shortly if we already got there.
410 */
411 if (!elv_queue_empty(q)) {
412 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
413 q->request_fn(q);
414 queue_flag_clear(QUEUE_FLAG_REENTER, q);
415 } else {
416 blk_plug_device(q);
417 kblockd_schedule_work(&q->unplug_work);
418 }
419 }
420 }
421 EXPORT_SYMBOL(__blk_run_queue);
422
423 /**
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
426 */
427 void blk_run_queue(struct request_queue *q)
428 {
429 unsigned long flags;
430
431 spin_lock_irqsave(q->queue_lock, flags);
432 __blk_run_queue(q);
433 spin_unlock_irqrestore(q->queue_lock, flags);
434 }
435 EXPORT_SYMBOL(blk_run_queue);
436
437 void blk_put_queue(struct request_queue *q)
438 {
439 kobject_put(&q->kobj);
440 }
441
442 void blk_cleanup_queue(struct request_queue *q)
443 {
444 mutex_lock(&q->sysfs_lock);
445 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
446 mutex_unlock(&q->sysfs_lock);
447
448 if (q->elevator)
449 elevator_exit(q->elevator);
450
451 blk_put_queue(q);
452 }
453 EXPORT_SYMBOL(blk_cleanup_queue);
454
455 static int blk_init_free_list(struct request_queue *q)
456 {
457 struct request_list *rl = &q->rq;
458
459 rl->count[READ] = rl->count[WRITE] = 0;
460 rl->starved[READ] = rl->starved[WRITE] = 0;
461 rl->elvpriv = 0;
462 init_waitqueue_head(&rl->wait[READ]);
463 init_waitqueue_head(&rl->wait[WRITE]);
464
465 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
466 mempool_free_slab, request_cachep, q->node);
467
468 if (!rl->rq_pool)
469 return -ENOMEM;
470
471 return 0;
472 }
473
474 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
475 {
476 return blk_alloc_queue_node(gfp_mask, -1);
477 }
478 EXPORT_SYMBOL(blk_alloc_queue);
479
480 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
481 {
482 struct request_queue *q;
483 int err;
484
485 q = kmem_cache_alloc_node(blk_requestq_cachep,
486 gfp_mask | __GFP_ZERO, node_id);
487 if (!q)
488 return NULL;
489
490 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
491 q->backing_dev_info.unplug_io_data = q;
492 err = bdi_init(&q->backing_dev_info);
493 if (err) {
494 kmem_cache_free(blk_requestq_cachep, q);
495 return NULL;
496 }
497
498 init_timer(&q->unplug_timer);
499
500 kobject_init(&q->kobj, &blk_queue_ktype);
501
502 mutex_init(&q->sysfs_lock);
503 spin_lock_init(&q->__queue_lock);
504
505 return q;
506 }
507 EXPORT_SYMBOL(blk_alloc_queue_node);
508
509 /**
510 * blk_init_queue - prepare a request queue for use with a block device
511 * @rfn: The function to be called to process requests that have been
512 * placed on the queue.
513 * @lock: Request queue spin lock
514 *
515 * Description:
516 * If a block device wishes to use the standard request handling procedures,
517 * which sorts requests and coalesces adjacent requests, then it must
518 * call blk_init_queue(). The function @rfn will be called when there
519 * are requests on the queue that need to be processed. If the device
520 * supports plugging, then @rfn may not be called immediately when requests
521 * are available on the queue, but may be called at some time later instead.
522 * Plugged queues are generally unplugged when a buffer belonging to one
523 * of the requests on the queue is needed, or due to memory pressure.
524 *
525 * @rfn is not required, or even expected, to remove all requests off the
526 * queue, but only as many as it can handle at a time. If it does leave
527 * requests on the queue, it is responsible for arranging that the requests
528 * get dealt with eventually.
529 *
530 * The queue spin lock must be held while manipulating the requests on the
531 * request queue; this lock will be taken also from interrupt context, so irq
532 * disabling is needed for it.
533 *
534 * Function returns a pointer to the initialized request queue, or NULL if
535 * it didn't succeed.
536 *
537 * Note:
538 * blk_init_queue() must be paired with a blk_cleanup_queue() call
539 * when the block device is deactivated (such as at module unload).
540 **/
541
542 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
543 {
544 return blk_init_queue_node(rfn, lock, -1);
545 }
546 EXPORT_SYMBOL(blk_init_queue);
547
548 struct request_queue *
549 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
550 {
551 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
552
553 if (!q)
554 return NULL;
555
556 q->node = node_id;
557 if (blk_init_free_list(q)) {
558 kmem_cache_free(blk_requestq_cachep, q);
559 return NULL;
560 }
561
562 /*
563 * if caller didn't supply a lock, they get per-queue locking with
564 * our embedded lock
565 */
566 if (!lock)
567 lock = &q->__queue_lock;
568
569 q->request_fn = rfn;
570 q->prep_rq_fn = NULL;
571 q->unplug_fn = generic_unplug_device;
572 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
573 q->queue_lock = lock;
574
575 blk_queue_segment_boundary(q, 0xffffffff);
576
577 blk_queue_make_request(q, __make_request);
578 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
579
580 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
581 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
582
583 q->sg_reserved_size = INT_MAX;
584
585 blk_set_cmd_filter_defaults(&q->cmd_filter);
586
587 /*
588 * all done
589 */
590 if (!elevator_init(q, NULL)) {
591 blk_queue_congestion_threshold(q);
592 return q;
593 }
594
595 blk_put_queue(q);
596 return NULL;
597 }
598 EXPORT_SYMBOL(blk_init_queue_node);
599
600 int blk_get_queue(struct request_queue *q)
601 {
602 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
603 kobject_get(&q->kobj);
604 return 0;
605 }
606
607 return 1;
608 }
609
610 static inline void blk_free_request(struct request_queue *q, struct request *rq)
611 {
612 if (rq->cmd_flags & REQ_ELVPRIV)
613 elv_put_request(q, rq);
614 mempool_free(rq, q->rq.rq_pool);
615 }
616
617 static struct request *
618 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
619 {
620 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
621
622 if (!rq)
623 return NULL;
624
625 blk_rq_init(q, rq);
626
627 rq->cmd_flags = rw | REQ_ALLOCED;
628
629 if (priv) {
630 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
631 mempool_free(rq, q->rq.rq_pool);
632 return NULL;
633 }
634 rq->cmd_flags |= REQ_ELVPRIV;
635 }
636
637 return rq;
638 }
639
640 /*
641 * ioc_batching returns true if the ioc is a valid batching request and
642 * should be given priority access to a request.
643 */
644 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
645 {
646 if (!ioc)
647 return 0;
648
649 /*
650 * Make sure the process is able to allocate at least 1 request
651 * even if the batch times out, otherwise we could theoretically
652 * lose wakeups.
653 */
654 return ioc->nr_batch_requests == q->nr_batching ||
655 (ioc->nr_batch_requests > 0
656 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
657 }
658
659 /*
660 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
661 * will cause the process to be a "batcher" on all queues in the system. This
662 * is the behaviour we want though - once it gets a wakeup it should be given
663 * a nice run.
664 */
665 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
666 {
667 if (!ioc || ioc_batching(q, ioc))
668 return;
669
670 ioc->nr_batch_requests = q->nr_batching;
671 ioc->last_waited = jiffies;
672 }
673
674 static void __freed_request(struct request_queue *q, int rw)
675 {
676 struct request_list *rl = &q->rq;
677
678 if (rl->count[rw] < queue_congestion_off_threshold(q))
679 blk_clear_queue_congested(q, rw);
680
681 if (rl->count[rw] + 1 <= q->nr_requests) {
682 if (waitqueue_active(&rl->wait[rw]))
683 wake_up(&rl->wait[rw]);
684
685 blk_clear_queue_full(q, rw);
686 }
687 }
688
689 /*
690 * A request has just been released. Account for it, update the full and
691 * congestion status, wake up any waiters. Called under q->queue_lock.
692 */
693 static void freed_request(struct request_queue *q, int rw, int priv)
694 {
695 struct request_list *rl = &q->rq;
696
697 rl->count[rw]--;
698 if (priv)
699 rl->elvpriv--;
700
701 __freed_request(q, rw);
702
703 if (unlikely(rl->starved[rw ^ 1]))
704 __freed_request(q, rw ^ 1);
705 }
706
707 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
708 /*
709 * Get a free request, queue_lock must be held.
710 * Returns NULL on failure, with queue_lock held.
711 * Returns !NULL on success, with queue_lock *not held*.
712 */
713 static struct request *get_request(struct request_queue *q, int rw_flags,
714 struct bio *bio, gfp_t gfp_mask)
715 {
716 struct request *rq = NULL;
717 struct request_list *rl = &q->rq;
718 struct io_context *ioc = NULL;
719 const int rw = rw_flags & 0x01;
720 int may_queue, priv;
721
722 may_queue = elv_may_queue(q, rw_flags);
723 if (may_queue == ELV_MQUEUE_NO)
724 goto rq_starved;
725
726 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
727 if (rl->count[rw]+1 >= q->nr_requests) {
728 ioc = current_io_context(GFP_ATOMIC, q->node);
729 /*
730 * The queue will fill after this allocation, so set
731 * it as full, and mark this process as "batching".
732 * This process will be allowed to complete a batch of
733 * requests, others will be blocked.
734 */
735 if (!blk_queue_full(q, rw)) {
736 ioc_set_batching(q, ioc);
737 blk_set_queue_full(q, rw);
738 } else {
739 if (may_queue != ELV_MQUEUE_MUST
740 && !ioc_batching(q, ioc)) {
741 /*
742 * The queue is full and the allocating
743 * process is not a "batcher", and not
744 * exempted by the IO scheduler
745 */
746 goto out;
747 }
748 }
749 }
750 blk_set_queue_congested(q, rw);
751 }
752
753 /*
754 * Only allow batching queuers to allocate up to 50% over the defined
755 * limit of requests, otherwise we could have thousands of requests
756 * allocated with any setting of ->nr_requests
757 */
758 if (rl->count[rw] >= (3 * q->nr_requests / 2))
759 goto out;
760
761 rl->count[rw]++;
762 rl->starved[rw] = 0;
763
764 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
765 if (priv)
766 rl->elvpriv++;
767
768 spin_unlock_irq(q->queue_lock);
769
770 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
771 if (unlikely(!rq)) {
772 /*
773 * Allocation failed presumably due to memory. Undo anything
774 * we might have messed up.
775 *
776 * Allocating task should really be put onto the front of the
777 * wait queue, but this is pretty rare.
778 */
779 spin_lock_irq(q->queue_lock);
780 freed_request(q, rw, priv);
781
782 /*
783 * in the very unlikely event that allocation failed and no
784 * requests for this direction was pending, mark us starved
785 * so that freeing of a request in the other direction will
786 * notice us. another possible fix would be to split the
787 * rq mempool into READ and WRITE
788 */
789 rq_starved:
790 if (unlikely(rl->count[rw] == 0))
791 rl->starved[rw] = 1;
792
793 goto out;
794 }
795
796 /*
797 * ioc may be NULL here, and ioc_batching will be false. That's
798 * OK, if the queue is under the request limit then requests need
799 * not count toward the nr_batch_requests limit. There will always
800 * be some limit enforced by BLK_BATCH_TIME.
801 */
802 if (ioc_batching(q, ioc))
803 ioc->nr_batch_requests--;
804
805 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
806 out:
807 return rq;
808 }
809
810 /*
811 * No available requests for this queue, unplug the device and wait for some
812 * requests to become available.
813 *
814 * Called with q->queue_lock held, and returns with it unlocked.
815 */
816 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
817 struct bio *bio)
818 {
819 const int rw = rw_flags & 0x01;
820 struct request *rq;
821
822 rq = get_request(q, rw_flags, bio, GFP_NOIO);
823 while (!rq) {
824 DEFINE_WAIT(wait);
825 struct io_context *ioc;
826 struct request_list *rl = &q->rq;
827
828 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
829 TASK_UNINTERRUPTIBLE);
830
831 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
832
833 __generic_unplug_device(q);
834 spin_unlock_irq(q->queue_lock);
835 io_schedule();
836
837 /*
838 * After sleeping, we become a "batching" process and
839 * will be able to allocate at least one request, and
840 * up to a big batch of them for a small period time.
841 * See ioc_batching, ioc_set_batching
842 */
843 ioc = current_io_context(GFP_NOIO, q->node);
844 ioc_set_batching(q, ioc);
845
846 spin_lock_irq(q->queue_lock);
847 finish_wait(&rl->wait[rw], &wait);
848
849 rq = get_request(q, rw_flags, bio, GFP_NOIO);
850 };
851
852 return rq;
853 }
854
855 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
856 {
857 struct request *rq;
858
859 BUG_ON(rw != READ && rw != WRITE);
860
861 spin_lock_irq(q->queue_lock);
862 if (gfp_mask & __GFP_WAIT) {
863 rq = get_request_wait(q, rw, NULL);
864 } else {
865 rq = get_request(q, rw, NULL, gfp_mask);
866 if (!rq)
867 spin_unlock_irq(q->queue_lock);
868 }
869 /* q->queue_lock is unlocked at this point */
870
871 return rq;
872 }
873 EXPORT_SYMBOL(blk_get_request);
874
875 /**
876 * blk_start_queueing - initiate dispatch of requests to device
877 * @q: request queue to kick into gear
878 *
879 * This is basically a helper to remove the need to know whether a queue
880 * is plugged or not if someone just wants to initiate dispatch of requests
881 * for this queue.
882 *
883 * The queue lock must be held with interrupts disabled.
884 */
885 void blk_start_queueing(struct request_queue *q)
886 {
887 if (!blk_queue_plugged(q))
888 q->request_fn(q);
889 else
890 __generic_unplug_device(q);
891 }
892 EXPORT_SYMBOL(blk_start_queueing);
893
894 /**
895 * blk_requeue_request - put a request back on queue
896 * @q: request queue where request should be inserted
897 * @rq: request to be inserted
898 *
899 * Description:
900 * Drivers often keep queueing requests until the hardware cannot accept
901 * more, when that condition happens we need to put the request back
902 * on the queue. Must be called with queue lock held.
903 */
904 void blk_requeue_request(struct request_queue *q, struct request *rq)
905 {
906 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
907
908 if (blk_rq_tagged(rq))
909 blk_queue_end_tag(q, rq);
910
911 elv_requeue_request(q, rq);
912 }
913 EXPORT_SYMBOL(blk_requeue_request);
914
915 /**
916 * blk_insert_request - insert a special request in to a request queue
917 * @q: request queue where request should be inserted
918 * @rq: request to be inserted
919 * @at_head: insert request at head or tail of queue
920 * @data: private data
921 *
922 * Description:
923 * Many block devices need to execute commands asynchronously, so they don't
924 * block the whole kernel from preemption during request execution. This is
925 * accomplished normally by inserting aritficial requests tagged as
926 * REQ_SPECIAL in to the corresponding request queue, and letting them be
927 * scheduled for actual execution by the request queue.
928 *
929 * We have the option of inserting the head or the tail of the queue.
930 * Typically we use the tail for new ioctls and so forth. We use the head
931 * of the queue for things like a QUEUE_FULL message from a device, or a
932 * host that is unable to accept a particular command.
933 */
934 void blk_insert_request(struct request_queue *q, struct request *rq,
935 int at_head, void *data)
936 {
937 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
938 unsigned long flags;
939
940 /*
941 * tell I/O scheduler that this isn't a regular read/write (ie it
942 * must not attempt merges on this) and that it acts as a soft
943 * barrier
944 */
945 rq->cmd_type = REQ_TYPE_SPECIAL;
946 rq->cmd_flags |= REQ_SOFTBARRIER;
947
948 rq->special = data;
949
950 spin_lock_irqsave(q->queue_lock, flags);
951
952 /*
953 * If command is tagged, release the tag
954 */
955 if (blk_rq_tagged(rq))
956 blk_queue_end_tag(q, rq);
957
958 drive_stat_acct(rq, 1);
959 __elv_add_request(q, rq, where, 0);
960 blk_start_queueing(q);
961 spin_unlock_irqrestore(q->queue_lock, flags);
962 }
963 EXPORT_SYMBOL(blk_insert_request);
964
965 /*
966 * add-request adds a request to the linked list.
967 * queue lock is held and interrupts disabled, as we muck with the
968 * request queue list.
969 */
970 static inline void add_request(struct request_queue *q, struct request *req)
971 {
972 drive_stat_acct(req, 1);
973
974 /*
975 * elevator indicated where it wants this request to be
976 * inserted at elevator_merge time
977 */
978 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
979 }
980
981 /*
982 * disk_round_stats() - Round off the performance stats on a struct
983 * disk_stats.
984 *
985 * The average IO queue length and utilisation statistics are maintained
986 * by observing the current state of the queue length and the amount of
987 * time it has been in this state for.
988 *
989 * Normally, that accounting is done on IO completion, but that can result
990 * in more than a second's worth of IO being accounted for within any one
991 * second, leading to >100% utilisation. To deal with that, we call this
992 * function to do a round-off before returning the results when reading
993 * /proc/diskstats. This accounts immediately for all queue usage up to
994 * the current jiffies and restarts the counters again.
995 */
996 void disk_round_stats(struct gendisk *disk)
997 {
998 unsigned long now = jiffies;
999
1000 if (now == disk->stamp)
1001 return;
1002
1003 if (disk->in_flight) {
1004 __disk_stat_add(disk, time_in_queue,
1005 disk->in_flight * (now - disk->stamp));
1006 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
1007 }
1008 disk->stamp = now;
1009 }
1010 EXPORT_SYMBOL_GPL(disk_round_stats);
1011
1012 void part_round_stats(struct hd_struct *part)
1013 {
1014 unsigned long now = jiffies;
1015
1016 if (now == part->stamp)
1017 return;
1018
1019 if (part->in_flight) {
1020 __part_stat_add(part, time_in_queue,
1021 part->in_flight * (now - part->stamp));
1022 __part_stat_add(part, io_ticks, (now - part->stamp));
1023 }
1024 part->stamp = now;
1025 }
1026
1027 /*
1028 * queue lock must be held
1029 */
1030 void __blk_put_request(struct request_queue *q, struct request *req)
1031 {
1032 if (unlikely(!q))
1033 return;
1034 if (unlikely(--req->ref_count))
1035 return;
1036
1037 elv_completed_request(q, req);
1038
1039 /*
1040 * Request may not have originated from ll_rw_blk. if not,
1041 * it didn't come out of our reserved rq pools
1042 */
1043 if (req->cmd_flags & REQ_ALLOCED) {
1044 int rw = rq_data_dir(req);
1045 int priv = req->cmd_flags & REQ_ELVPRIV;
1046
1047 BUG_ON(!list_empty(&req->queuelist));
1048 BUG_ON(!hlist_unhashed(&req->hash));
1049
1050 blk_free_request(q, req);
1051 freed_request(q, rw, priv);
1052 }
1053 }
1054 EXPORT_SYMBOL_GPL(__blk_put_request);
1055
1056 void blk_put_request(struct request *req)
1057 {
1058 unsigned long flags;
1059 struct request_queue *q = req->q;
1060
1061 spin_lock_irqsave(q->queue_lock, flags);
1062 __blk_put_request(q, req);
1063 spin_unlock_irqrestore(q->queue_lock, flags);
1064 }
1065 EXPORT_SYMBOL(blk_put_request);
1066
1067 void init_request_from_bio(struct request *req, struct bio *bio)
1068 {
1069 req->cmd_type = REQ_TYPE_FS;
1070
1071 /*
1072 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1073 */
1074 if (bio_rw_ahead(bio) || bio_failfast(bio))
1075 req->cmd_flags |= REQ_FAILFAST;
1076
1077 /*
1078 * REQ_BARRIER implies no merging, but lets make it explicit
1079 */
1080 if (unlikely(bio_discard(bio))) {
1081 req->cmd_flags |= REQ_DISCARD;
1082 if (bio_barrier(bio))
1083 req->cmd_flags |= REQ_SOFTBARRIER;
1084 req->q->prepare_discard_fn(req->q, req);
1085 } else if (unlikely(bio_barrier(bio)))
1086 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1087
1088 if (bio_sync(bio))
1089 req->cmd_flags |= REQ_RW_SYNC;
1090 if (bio_rw_meta(bio))
1091 req->cmd_flags |= REQ_RW_META;
1092
1093 req->errors = 0;
1094 req->hard_sector = req->sector = bio->bi_sector;
1095 req->ioprio = bio_prio(bio);
1096 req->start_time = jiffies;
1097 blk_rq_bio_prep(req->q, req, bio);
1098 }
1099
1100 static int __make_request(struct request_queue *q, struct bio *bio)
1101 {
1102 struct request *req;
1103 int el_ret, nr_sectors, barrier, discard, err;
1104 const unsigned short prio = bio_prio(bio);
1105 const int sync = bio_sync(bio);
1106 int rw_flags;
1107
1108 nr_sectors = bio_sectors(bio);
1109
1110 /*
1111 * low level driver can indicate that it wants pages above a
1112 * certain limit bounced to low memory (ie for highmem, or even
1113 * ISA dma in theory)
1114 */
1115 blk_queue_bounce(q, &bio);
1116
1117 barrier = bio_barrier(bio);
1118 if (unlikely(barrier) && bio_has_data(bio) &&
1119 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1120 err = -EOPNOTSUPP;
1121 goto end_io;
1122 }
1123
1124 discard = bio_discard(bio);
1125 if (unlikely(discard) && !q->prepare_discard_fn) {
1126 err = -EOPNOTSUPP;
1127 goto end_io;
1128 }
1129
1130 spin_lock_irq(q->queue_lock);
1131
1132 if (unlikely(barrier) || elv_queue_empty(q))
1133 goto get_rq;
1134
1135 el_ret = elv_merge(q, &req, bio);
1136 switch (el_ret) {
1137 case ELEVATOR_BACK_MERGE:
1138 BUG_ON(!rq_mergeable(req));
1139
1140 if (!ll_back_merge_fn(q, req, bio))
1141 break;
1142
1143 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1144
1145 req->biotail->bi_next = bio;
1146 req->biotail = bio;
1147 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1148 req->ioprio = ioprio_best(req->ioprio, prio);
1149 drive_stat_acct(req, 0);
1150 if (!attempt_back_merge(q, req))
1151 elv_merged_request(q, req, el_ret);
1152 goto out;
1153
1154 case ELEVATOR_FRONT_MERGE:
1155 BUG_ON(!rq_mergeable(req));
1156
1157 if (!ll_front_merge_fn(q, req, bio))
1158 break;
1159
1160 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1161
1162 bio->bi_next = req->bio;
1163 req->bio = bio;
1164
1165 /*
1166 * may not be valid. if the low level driver said
1167 * it didn't need a bounce buffer then it better
1168 * not touch req->buffer either...
1169 */
1170 req->buffer = bio_data(bio);
1171 req->current_nr_sectors = bio_cur_sectors(bio);
1172 req->hard_cur_sectors = req->current_nr_sectors;
1173 req->sector = req->hard_sector = bio->bi_sector;
1174 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1175 req->ioprio = ioprio_best(req->ioprio, prio);
1176 drive_stat_acct(req, 0);
1177 if (!attempt_front_merge(q, req))
1178 elv_merged_request(q, req, el_ret);
1179 goto out;
1180
1181 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1182 default:
1183 ;
1184 }
1185
1186 get_rq:
1187 /*
1188 * This sync check and mask will be re-done in init_request_from_bio(),
1189 * but we need to set it earlier to expose the sync flag to the
1190 * rq allocator and io schedulers.
1191 */
1192 rw_flags = bio_data_dir(bio);
1193 if (sync)
1194 rw_flags |= REQ_RW_SYNC;
1195
1196 /*
1197 * Grab a free request. This is might sleep but can not fail.
1198 * Returns with the queue unlocked.
1199 */
1200 req = get_request_wait(q, rw_flags, bio);
1201
1202 /*
1203 * After dropping the lock and possibly sleeping here, our request
1204 * may now be mergeable after it had proven unmergeable (above).
1205 * We don't worry about that case for efficiency. It won't happen
1206 * often, and the elevators are able to handle it.
1207 */
1208 init_request_from_bio(req, bio);
1209
1210 spin_lock_irq(q->queue_lock);
1211 if (elv_queue_empty(q))
1212 blk_plug_device(q);
1213 add_request(q, req);
1214 out:
1215 if (sync)
1216 __generic_unplug_device(q);
1217
1218 spin_unlock_irq(q->queue_lock);
1219 return 0;
1220
1221 end_io:
1222 bio_endio(bio, err);
1223 return 0;
1224 }
1225
1226 /*
1227 * If bio->bi_dev is a partition, remap the location
1228 */
1229 static inline void blk_partition_remap(struct bio *bio)
1230 {
1231 struct block_device *bdev = bio->bi_bdev;
1232
1233 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1234 struct hd_struct *p = bdev->bd_part;
1235
1236 bio->bi_sector += p->start_sect;
1237 bio->bi_bdev = bdev->bd_contains;
1238
1239 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1240 bdev->bd_dev, bio->bi_sector,
1241 bio->bi_sector - p->start_sect);
1242 }
1243 }
1244
1245 static void handle_bad_sector(struct bio *bio)
1246 {
1247 char b[BDEVNAME_SIZE];
1248
1249 printk(KERN_INFO "attempt to access beyond end of device\n");
1250 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1251 bdevname(bio->bi_bdev, b),
1252 bio->bi_rw,
1253 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1254 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1255
1256 set_bit(BIO_EOF, &bio->bi_flags);
1257 }
1258
1259 #ifdef CONFIG_FAIL_MAKE_REQUEST
1260
1261 static DECLARE_FAULT_ATTR(fail_make_request);
1262
1263 static int __init setup_fail_make_request(char *str)
1264 {
1265 return setup_fault_attr(&fail_make_request, str);
1266 }
1267 __setup("fail_make_request=", setup_fail_make_request);
1268
1269 static int should_fail_request(struct bio *bio)
1270 {
1271 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
1272 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
1273 return should_fail(&fail_make_request, bio->bi_size);
1274
1275 return 0;
1276 }
1277
1278 static int __init fail_make_request_debugfs(void)
1279 {
1280 return init_fault_attr_dentries(&fail_make_request,
1281 "fail_make_request");
1282 }
1283
1284 late_initcall(fail_make_request_debugfs);
1285
1286 #else /* CONFIG_FAIL_MAKE_REQUEST */
1287
1288 static inline int should_fail_request(struct bio *bio)
1289 {
1290 return 0;
1291 }
1292
1293 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1294
1295 /*
1296 * Check whether this bio extends beyond the end of the device.
1297 */
1298 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1299 {
1300 sector_t maxsector;
1301
1302 if (!nr_sectors)
1303 return 0;
1304
1305 /* Test device or partition size, when known. */
1306 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1307 if (maxsector) {
1308 sector_t sector = bio->bi_sector;
1309
1310 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1311 /*
1312 * This may well happen - the kernel calls bread()
1313 * without checking the size of the device, e.g., when
1314 * mounting a device.
1315 */
1316 handle_bad_sector(bio);
1317 return 1;
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * generic_make_request: hand a buffer to its device driver for I/O
1326 * @bio: The bio describing the location in memory and on the device.
1327 *
1328 * generic_make_request() is used to make I/O requests of block
1329 * devices. It is passed a &struct bio, which describes the I/O that needs
1330 * to be done.
1331 *
1332 * generic_make_request() does not return any status. The
1333 * success/failure status of the request, along with notification of
1334 * completion, is delivered asynchronously through the bio->bi_end_io
1335 * function described (one day) else where.
1336 *
1337 * The caller of generic_make_request must make sure that bi_io_vec
1338 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1339 * set to describe the device address, and the
1340 * bi_end_io and optionally bi_private are set to describe how
1341 * completion notification should be signaled.
1342 *
1343 * generic_make_request and the drivers it calls may use bi_next if this
1344 * bio happens to be merged with someone else, and may change bi_dev and
1345 * bi_sector for remaps as it sees fit. So the values of these fields
1346 * should NOT be depended on after the call to generic_make_request.
1347 */
1348 static inline void __generic_make_request(struct bio *bio)
1349 {
1350 struct request_queue *q;
1351 sector_t old_sector;
1352 int ret, nr_sectors = bio_sectors(bio);
1353 dev_t old_dev;
1354 int err = -EIO;
1355
1356 might_sleep();
1357
1358 if (bio_check_eod(bio, nr_sectors))
1359 goto end_io;
1360
1361 /*
1362 * Resolve the mapping until finished. (drivers are
1363 * still free to implement/resolve their own stacking
1364 * by explicitly returning 0)
1365 *
1366 * NOTE: we don't repeat the blk_size check for each new device.
1367 * Stacking drivers are expected to know what they are doing.
1368 */
1369 old_sector = -1;
1370 old_dev = 0;
1371 do {
1372 char b[BDEVNAME_SIZE];
1373
1374 q = bdev_get_queue(bio->bi_bdev);
1375 if (!q) {
1376 printk(KERN_ERR
1377 "generic_make_request: Trying to access "
1378 "nonexistent block-device %s (%Lu)\n",
1379 bdevname(bio->bi_bdev, b),
1380 (long long) bio->bi_sector);
1381 end_io:
1382 bio_endio(bio, err);
1383 break;
1384 }
1385
1386 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1387 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1388 bdevname(bio->bi_bdev, b),
1389 bio_sectors(bio),
1390 q->max_hw_sectors);
1391 goto end_io;
1392 }
1393
1394 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1395 goto end_io;
1396
1397 if (should_fail_request(bio))
1398 goto end_io;
1399
1400 /*
1401 * If this device has partitions, remap block n
1402 * of partition p to block n+start(p) of the disk.
1403 */
1404 blk_partition_remap(bio);
1405
1406 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1407 goto end_io;
1408
1409 if (old_sector != -1)
1410 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1411 old_sector);
1412
1413 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1414
1415 old_sector = bio->bi_sector;
1416 old_dev = bio->bi_bdev->bd_dev;
1417
1418 if (bio_check_eod(bio, nr_sectors))
1419 goto end_io;
1420 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1421 (bio_discard(bio) && !q->prepare_discard_fn)) {
1422 err = -EOPNOTSUPP;
1423 goto end_io;
1424 }
1425
1426 ret = q->make_request_fn(q, bio);
1427 } while (ret);
1428 }
1429
1430 /*
1431 * We only want one ->make_request_fn to be active at a time,
1432 * else stack usage with stacked devices could be a problem.
1433 * So use current->bio_{list,tail} to keep a list of requests
1434 * submited by a make_request_fn function.
1435 * current->bio_tail is also used as a flag to say if
1436 * generic_make_request is currently active in this task or not.
1437 * If it is NULL, then no make_request is active. If it is non-NULL,
1438 * then a make_request is active, and new requests should be added
1439 * at the tail
1440 */
1441 void generic_make_request(struct bio *bio)
1442 {
1443 if (current->bio_tail) {
1444 /* make_request is active */
1445 *(current->bio_tail) = bio;
1446 bio->bi_next = NULL;
1447 current->bio_tail = &bio->bi_next;
1448 return;
1449 }
1450 /* following loop may be a bit non-obvious, and so deserves some
1451 * explanation.
1452 * Before entering the loop, bio->bi_next is NULL (as all callers
1453 * ensure that) so we have a list with a single bio.
1454 * We pretend that we have just taken it off a longer list, so
1455 * we assign bio_list to the next (which is NULL) and bio_tail
1456 * to &bio_list, thus initialising the bio_list of new bios to be
1457 * added. __generic_make_request may indeed add some more bios
1458 * through a recursive call to generic_make_request. If it
1459 * did, we find a non-NULL value in bio_list and re-enter the loop
1460 * from the top. In this case we really did just take the bio
1461 * of the top of the list (no pretending) and so fixup bio_list and
1462 * bio_tail or bi_next, and call into __generic_make_request again.
1463 *
1464 * The loop was structured like this to make only one call to
1465 * __generic_make_request (which is important as it is large and
1466 * inlined) and to keep the structure simple.
1467 */
1468 BUG_ON(bio->bi_next);
1469 do {
1470 current->bio_list = bio->bi_next;
1471 if (bio->bi_next == NULL)
1472 current->bio_tail = &current->bio_list;
1473 else
1474 bio->bi_next = NULL;
1475 __generic_make_request(bio);
1476 bio = current->bio_list;
1477 } while (bio);
1478 current->bio_tail = NULL; /* deactivate */
1479 }
1480 EXPORT_SYMBOL(generic_make_request);
1481
1482 /**
1483 * submit_bio: submit a bio to the block device layer for I/O
1484 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1485 * @bio: The &struct bio which describes the I/O
1486 *
1487 * submit_bio() is very similar in purpose to generic_make_request(), and
1488 * uses that function to do most of the work. Both are fairly rough
1489 * interfaces, @bio must be presetup and ready for I/O.
1490 *
1491 */
1492 void submit_bio(int rw, struct bio *bio)
1493 {
1494 int count = bio_sectors(bio);
1495
1496 bio->bi_rw |= rw;
1497
1498 /*
1499 * If it's a regular read/write or a barrier with data attached,
1500 * go through the normal accounting stuff before submission.
1501 */
1502 if (bio_has_data(bio)) {
1503 if (rw & WRITE) {
1504 count_vm_events(PGPGOUT, count);
1505 } else {
1506 task_io_account_read(bio->bi_size);
1507 count_vm_events(PGPGIN, count);
1508 }
1509
1510 if (unlikely(block_dump)) {
1511 char b[BDEVNAME_SIZE];
1512 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1513 current->comm, task_pid_nr(current),
1514 (rw & WRITE) ? "WRITE" : "READ",
1515 (unsigned long long)bio->bi_sector,
1516 bdevname(bio->bi_bdev, b));
1517 }
1518 }
1519
1520 generic_make_request(bio);
1521 }
1522 EXPORT_SYMBOL(submit_bio);
1523
1524 /**
1525 * __end_that_request_first - end I/O on a request
1526 * @req: the request being processed
1527 * @error: 0 for success, < 0 for error
1528 * @nr_bytes: number of bytes to complete
1529 *
1530 * Description:
1531 * Ends I/O on a number of bytes attached to @req, and sets it up
1532 * for the next range of segments (if any) in the cluster.
1533 *
1534 * Return:
1535 * 0 - we are done with this request, call end_that_request_last()
1536 * 1 - still buffers pending for this request
1537 **/
1538 static int __end_that_request_first(struct request *req, int error,
1539 int nr_bytes)
1540 {
1541 int total_bytes, bio_nbytes, next_idx = 0;
1542 struct bio *bio;
1543
1544 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1545
1546 /*
1547 * for a REQ_BLOCK_PC request, we want to carry any eventual
1548 * sense key with us all the way through
1549 */
1550 if (!blk_pc_request(req))
1551 req->errors = 0;
1552
1553 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1554 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1555 req->rq_disk ? req->rq_disk->disk_name : "?",
1556 (unsigned long long)req->sector);
1557 }
1558
1559 if (blk_fs_request(req) && req->rq_disk) {
1560 struct hd_struct *part = get_part(req->rq_disk, req->sector);
1561 const int rw = rq_data_dir(req);
1562
1563 all_stat_add(req->rq_disk, part, sectors[rw],
1564 nr_bytes >> 9, req->sector);
1565 }
1566
1567 total_bytes = bio_nbytes = 0;
1568 while ((bio = req->bio) != NULL) {
1569 int nbytes;
1570
1571 /*
1572 * For an empty barrier request, the low level driver must
1573 * store a potential error location in ->sector. We pass
1574 * that back up in ->bi_sector.
1575 */
1576 if (blk_empty_barrier(req))
1577 bio->bi_sector = req->sector;
1578
1579 if (nr_bytes >= bio->bi_size) {
1580 req->bio = bio->bi_next;
1581 nbytes = bio->bi_size;
1582 req_bio_endio(req, bio, nbytes, error);
1583 next_idx = 0;
1584 bio_nbytes = 0;
1585 } else {
1586 int idx = bio->bi_idx + next_idx;
1587
1588 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1589 blk_dump_rq_flags(req, "__end_that");
1590 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1591 __func__, bio->bi_idx, bio->bi_vcnt);
1592 break;
1593 }
1594
1595 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1596 BIO_BUG_ON(nbytes > bio->bi_size);
1597
1598 /*
1599 * not a complete bvec done
1600 */
1601 if (unlikely(nbytes > nr_bytes)) {
1602 bio_nbytes += nr_bytes;
1603 total_bytes += nr_bytes;
1604 break;
1605 }
1606
1607 /*
1608 * advance to the next vector
1609 */
1610 next_idx++;
1611 bio_nbytes += nbytes;
1612 }
1613
1614 total_bytes += nbytes;
1615 nr_bytes -= nbytes;
1616
1617 bio = req->bio;
1618 if (bio) {
1619 /*
1620 * end more in this run, or just return 'not-done'
1621 */
1622 if (unlikely(nr_bytes <= 0))
1623 break;
1624 }
1625 }
1626
1627 /*
1628 * completely done
1629 */
1630 if (!req->bio)
1631 return 0;
1632
1633 /*
1634 * if the request wasn't completed, update state
1635 */
1636 if (bio_nbytes) {
1637 req_bio_endio(req, bio, bio_nbytes, error);
1638 bio->bi_idx += next_idx;
1639 bio_iovec(bio)->bv_offset += nr_bytes;
1640 bio_iovec(bio)->bv_len -= nr_bytes;
1641 }
1642
1643 blk_recalc_rq_sectors(req, total_bytes >> 9);
1644 blk_recalc_rq_segments(req);
1645 return 1;
1646 }
1647
1648 /*
1649 * splice the completion data to a local structure and hand off to
1650 * process_completion_queue() to complete the requests
1651 */
1652 static void blk_done_softirq(struct softirq_action *h)
1653 {
1654 struct list_head *cpu_list, local_list;
1655
1656 local_irq_disable();
1657 cpu_list = &__get_cpu_var(blk_cpu_done);
1658 list_replace_init(cpu_list, &local_list);
1659 local_irq_enable();
1660
1661 while (!list_empty(&local_list)) {
1662 struct request *rq;
1663
1664 rq = list_entry(local_list.next, struct request, donelist);
1665 list_del_init(&rq->donelist);
1666 rq->q->softirq_done_fn(rq);
1667 }
1668 }
1669
1670 static int __cpuinit blk_cpu_notify(struct notifier_block *self,
1671 unsigned long action, void *hcpu)
1672 {
1673 /*
1674 * If a CPU goes away, splice its entries to the current CPU
1675 * and trigger a run of the softirq
1676 */
1677 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1678 int cpu = (unsigned long) hcpu;
1679
1680 local_irq_disable();
1681 list_splice_init(&per_cpu(blk_cpu_done, cpu),
1682 &__get_cpu_var(blk_cpu_done));
1683 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1684 local_irq_enable();
1685 }
1686
1687 return NOTIFY_OK;
1688 }
1689
1690
1691 static struct notifier_block blk_cpu_notifier __cpuinitdata = {
1692 .notifier_call = blk_cpu_notify,
1693 };
1694
1695 /**
1696 * blk_complete_request - end I/O on a request
1697 * @req: the request being processed
1698 *
1699 * Description:
1700 * Ends all I/O on a request. It does not handle partial completions,
1701 * unless the driver actually implements this in its completion callback
1702 * through requeueing. The actual completion happens out-of-order,
1703 * through a softirq handler. The user must have registered a completion
1704 * callback through blk_queue_softirq_done().
1705 **/
1706
1707 void blk_complete_request(struct request *req)
1708 {
1709 struct list_head *cpu_list;
1710 unsigned long flags;
1711
1712 BUG_ON(!req->q->softirq_done_fn);
1713
1714 local_irq_save(flags);
1715
1716 cpu_list = &__get_cpu_var(blk_cpu_done);
1717 list_add_tail(&req->donelist, cpu_list);
1718 raise_softirq_irqoff(BLOCK_SOFTIRQ);
1719
1720 local_irq_restore(flags);
1721 }
1722 EXPORT_SYMBOL(blk_complete_request);
1723
1724 /*
1725 * queue lock must be held
1726 */
1727 static void end_that_request_last(struct request *req, int error)
1728 {
1729 struct gendisk *disk = req->rq_disk;
1730
1731 if (blk_rq_tagged(req))
1732 blk_queue_end_tag(req->q, req);
1733
1734 if (blk_queued_rq(req))
1735 blkdev_dequeue_request(req);
1736
1737 if (unlikely(laptop_mode) && blk_fs_request(req))
1738 laptop_io_completion();
1739
1740 /*
1741 * Account IO completion. bar_rq isn't accounted as a normal
1742 * IO on queueing nor completion. Accounting the containing
1743 * request is enough.
1744 */
1745 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1746 unsigned long duration = jiffies - req->start_time;
1747 const int rw = rq_data_dir(req);
1748 struct hd_struct *part = get_part(disk, req->sector);
1749
1750 __all_stat_inc(disk, part, ios[rw], req->sector);
1751 __all_stat_add(disk, part, ticks[rw], duration, req->sector);
1752 disk_round_stats(disk);
1753 disk->in_flight--;
1754 if (part) {
1755 part_round_stats(part);
1756 part->in_flight--;
1757 }
1758 }
1759
1760 if (req->end_io)
1761 req->end_io(req, error);
1762 else {
1763 if (blk_bidi_rq(req))
1764 __blk_put_request(req->next_rq->q, req->next_rq);
1765
1766 __blk_put_request(req->q, req);
1767 }
1768 }
1769
1770 static inline void __end_request(struct request *rq, int uptodate,
1771 unsigned int nr_bytes)
1772 {
1773 int error = 0;
1774
1775 if (uptodate <= 0)
1776 error = uptodate ? uptodate : -EIO;
1777
1778 __blk_end_request(rq, error, nr_bytes);
1779 }
1780
1781 /**
1782 * blk_rq_bytes - Returns bytes left to complete in the entire request
1783 * @rq: the request being processed
1784 **/
1785 unsigned int blk_rq_bytes(struct request *rq)
1786 {
1787 if (blk_fs_request(rq))
1788 return rq->hard_nr_sectors << 9;
1789
1790 return rq->data_len;
1791 }
1792 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1793
1794 /**
1795 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1796 * @rq: the request being processed
1797 **/
1798 unsigned int blk_rq_cur_bytes(struct request *rq)
1799 {
1800 if (blk_fs_request(rq))
1801 return rq->current_nr_sectors << 9;
1802
1803 if (rq->bio)
1804 return rq->bio->bi_size;
1805
1806 return rq->data_len;
1807 }
1808 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1809
1810 /**
1811 * end_queued_request - end all I/O on a queued request
1812 * @rq: the request being processed
1813 * @uptodate: error value or 0/1 uptodate flag
1814 *
1815 * Description:
1816 * Ends all I/O on a request, and removes it from the block layer queues.
1817 * Not suitable for normal IO completion, unless the driver still has
1818 * the request attached to the block layer.
1819 *
1820 **/
1821 void end_queued_request(struct request *rq, int uptodate)
1822 {
1823 __end_request(rq, uptodate, blk_rq_bytes(rq));
1824 }
1825 EXPORT_SYMBOL(end_queued_request);
1826
1827 /**
1828 * end_dequeued_request - end all I/O on a dequeued request
1829 * @rq: the request being processed
1830 * @uptodate: error value or 0/1 uptodate flag
1831 *
1832 * Description:
1833 * Ends all I/O on a request. The request must already have been
1834 * dequeued using blkdev_dequeue_request(), as is normally the case
1835 * for most drivers.
1836 *
1837 **/
1838 void end_dequeued_request(struct request *rq, int uptodate)
1839 {
1840 __end_request(rq, uptodate, blk_rq_bytes(rq));
1841 }
1842 EXPORT_SYMBOL(end_dequeued_request);
1843
1844
1845 /**
1846 * end_request - end I/O on the current segment of the request
1847 * @req: the request being processed
1848 * @uptodate: error value or 0/1 uptodate flag
1849 *
1850 * Description:
1851 * Ends I/O on the current segment of a request. If that is the only
1852 * remaining segment, the request is also completed and freed.
1853 *
1854 * This is a remnant of how older block drivers handled IO completions.
1855 * Modern drivers typically end IO on the full request in one go, unless
1856 * they have a residual value to account for. For that case this function
1857 * isn't really useful, unless the residual just happens to be the
1858 * full current segment. In other words, don't use this function in new
1859 * code. Either use end_request_completely(), or the
1860 * end_that_request_chunk() (along with end_that_request_last()) for
1861 * partial completions.
1862 *
1863 **/
1864 void end_request(struct request *req, int uptodate)
1865 {
1866 __end_request(req, uptodate, req->hard_cur_sectors << 9);
1867 }
1868 EXPORT_SYMBOL(end_request);
1869
1870 /**
1871 * blk_end_io - Generic end_io function to complete a request.
1872 * @rq: the request being processed
1873 * @error: 0 for success, < 0 for error
1874 * @nr_bytes: number of bytes to complete @rq
1875 * @bidi_bytes: number of bytes to complete @rq->next_rq
1876 * @drv_callback: function called between completion of bios in the request
1877 * and completion of the request.
1878 * If the callback returns non 0, this helper returns without
1879 * completion of the request.
1880 *
1881 * Description:
1882 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1883 * If @rq has leftover, sets it up for the next range of segments.
1884 *
1885 * Return:
1886 * 0 - we are done with this request
1887 * 1 - this request is not freed yet, it still has pending buffers.
1888 **/
1889 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1890 unsigned int bidi_bytes,
1891 int (drv_callback)(struct request *))
1892 {
1893 struct request_queue *q = rq->q;
1894 unsigned long flags = 0UL;
1895
1896 if (bio_has_data(rq->bio) || blk_discard_rq(rq)) {
1897 if (__end_that_request_first(rq, error, nr_bytes))
1898 return 1;
1899
1900 /* Bidi request must be completed as a whole */
1901 if (blk_bidi_rq(rq) &&
1902 __end_that_request_first(rq->next_rq, error, bidi_bytes))
1903 return 1;
1904 }
1905
1906 /* Special feature for tricky drivers */
1907 if (drv_callback && drv_callback(rq))
1908 return 1;
1909
1910 add_disk_randomness(rq->rq_disk);
1911
1912 spin_lock_irqsave(q->queue_lock, flags);
1913 end_that_request_last(rq, error);
1914 spin_unlock_irqrestore(q->queue_lock, flags);
1915
1916 return 0;
1917 }
1918
1919 /**
1920 * blk_end_request - Helper function for drivers to complete the request.
1921 * @rq: the request being processed
1922 * @error: 0 for success, < 0 for error
1923 * @nr_bytes: number of bytes to complete
1924 *
1925 * Description:
1926 * Ends I/O on a number of bytes attached to @rq.
1927 * If @rq has leftover, sets it up for the next range of segments.
1928 *
1929 * Return:
1930 * 0 - we are done with this request
1931 * 1 - still buffers pending for this request
1932 **/
1933 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1934 {
1935 return blk_end_io(rq, error, nr_bytes, 0, NULL);
1936 }
1937 EXPORT_SYMBOL_GPL(blk_end_request);
1938
1939 /**
1940 * __blk_end_request - Helper function for drivers to complete the request.
1941 * @rq: the request being processed
1942 * @error: 0 for success, < 0 for error
1943 * @nr_bytes: number of bytes to complete
1944 *
1945 * Description:
1946 * Must be called with queue lock held unlike blk_end_request().
1947 *
1948 * Return:
1949 * 0 - we are done with this request
1950 * 1 - still buffers pending for this request
1951 **/
1952 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1953 {
1954 if ((bio_has_data(rq->bio) || blk_discard_rq(rq)) &&
1955 __end_that_request_first(rq, error, nr_bytes))
1956 return 1;
1957
1958 add_disk_randomness(rq->rq_disk);
1959
1960 end_that_request_last(rq, error);
1961
1962 return 0;
1963 }
1964 EXPORT_SYMBOL_GPL(__blk_end_request);
1965
1966 /**
1967 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1968 * @rq: the bidi request being processed
1969 * @error: 0 for success, < 0 for error
1970 * @nr_bytes: number of bytes to complete @rq
1971 * @bidi_bytes: number of bytes to complete @rq->next_rq
1972 *
1973 * Description:
1974 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1975 *
1976 * Return:
1977 * 0 - we are done with this request
1978 * 1 - still buffers pending for this request
1979 **/
1980 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1981 unsigned int bidi_bytes)
1982 {
1983 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1984 }
1985 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1986
1987 /**
1988 * blk_end_request_callback - Special helper function for tricky drivers
1989 * @rq: the request being processed
1990 * @error: 0 for success, < 0 for error
1991 * @nr_bytes: number of bytes to complete
1992 * @drv_callback: function called between completion of bios in the request
1993 * and completion of the request.
1994 * If the callback returns non 0, this helper returns without
1995 * completion of the request.
1996 *
1997 * Description:
1998 * Ends I/O on a number of bytes attached to @rq.
1999 * If @rq has leftover, sets it up for the next range of segments.
2000 *
2001 * This special helper function is used only for existing tricky drivers.
2002 * (e.g. cdrom_newpc_intr() of ide-cd)
2003 * This interface will be removed when such drivers are rewritten.
2004 * Don't use this interface in other places anymore.
2005 *
2006 * Return:
2007 * 0 - we are done with this request
2008 * 1 - this request is not freed yet.
2009 * this request still has pending buffers or
2010 * the driver doesn't want to finish this request yet.
2011 **/
2012 int blk_end_request_callback(struct request *rq, int error,
2013 unsigned int nr_bytes,
2014 int (drv_callback)(struct request *))
2015 {
2016 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2017 }
2018 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2019
2020 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2021 struct bio *bio)
2022 {
2023 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2024 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2025 rq->cmd_flags |= (bio->bi_rw & 3);
2026
2027 if (bio_has_data(bio)) {
2028 rq->nr_phys_segments = bio_phys_segments(q, bio);
2029 rq->nr_hw_segments = bio_hw_segments(q, bio);
2030 rq->buffer = bio_data(bio);
2031 }
2032 rq->current_nr_sectors = bio_cur_sectors(bio);
2033 rq->hard_cur_sectors = rq->current_nr_sectors;
2034 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2035 rq->data_len = bio->bi_size;
2036
2037 rq->bio = rq->biotail = bio;
2038
2039 if (bio->bi_bdev)
2040 rq->rq_disk = bio->bi_bdev->bd_disk;
2041 }
2042
2043 int kblockd_schedule_work(struct work_struct *work)
2044 {
2045 return queue_work(kblockd_workqueue, work);
2046 }
2047 EXPORT_SYMBOL(kblockd_schedule_work);
2048
2049 void kblockd_flush_work(struct work_struct *work)
2050 {
2051 cancel_work_sync(work);
2052 }
2053 EXPORT_SYMBOL(kblockd_flush_work);
2054
2055 int __init blk_dev_init(void)
2056 {
2057 int i;
2058
2059 kblockd_workqueue = create_workqueue("kblockd");
2060 if (!kblockd_workqueue)
2061 panic("Failed to create kblockd\n");
2062
2063 request_cachep = kmem_cache_create("blkdev_requests",
2064 sizeof(struct request), 0, SLAB_PANIC, NULL);
2065
2066 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2067 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2068
2069 for_each_possible_cpu(i)
2070 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
2071
2072 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
2073 register_hotcpu_notifier(&blk_cpu_notifier);
2074
2075 return 0;
2076 }
2077