]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - block/blk-core.c
SCSI: fix queue cleanup race before queue initialization is done
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11 /*
12 * This handles all read/write requests to block devices
13 */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55
56 DEFINE_IDA(blk_queue_ida);
57
58 /*
59 * For the allocated request tables
60 */
61 struct kmem_cache *request_cachep;
62
63 /*
64 * For queue allocation
65 */
66 struct kmem_cache *blk_requestq_cachep;
67
68 /*
69 * Controlling structure to kblockd
70 */
71 static struct workqueue_struct *kblockd_workqueue;
72
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 /*
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
81 */
82 if (rl == &rl->q->root_rl)
83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 /* see blk_clear_congested() */
93 if (rl == &rl->q->root_rl)
94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 int nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 if (nr > q->nr_requests)
104 nr = q->nr_requests;
105 q->nr_congestion_on = nr;
106
107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 if (nr < 1)
109 nr = 1;
110 q->nr_congestion_off = nr;
111 }
112
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 memset(rq, 0, sizeof(*rq));
116
117 INIT_LIST_HEAD(&rq->queuelist);
118 INIT_LIST_HEAD(&rq->timeout_list);
119 rq->cpu = -1;
120 rq->q = q;
121 rq->__sector = (sector_t) -1;
122 INIT_HLIST_NODE(&rq->hash);
123 RB_CLEAR_NODE(&rq->rb_node);
124 rq->tag = -1;
125 rq->internal_tag = -1;
126 rq->start_time = jiffies;
127 set_start_time_ns(rq);
128 rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131
132 static const struct {
133 int errno;
134 const char *name;
135 } blk_errors[] = {
136 [BLK_STS_OK] = { 0, "" },
137 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
138 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
139 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
140 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
141 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
142 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
143 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
144 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
145 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
146 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
147
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
150
151 /* everything else not covered above: */
152 [BLK_STS_IOERR] = { -EIO, "I/O" },
153 };
154
155 blk_status_t errno_to_blk_status(int errno)
156 {
157 int i;
158
159 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
160 if (blk_errors[i].errno == errno)
161 return (__force blk_status_t)i;
162 }
163
164 return BLK_STS_IOERR;
165 }
166 EXPORT_SYMBOL_GPL(errno_to_blk_status);
167
168 int blk_status_to_errno(blk_status_t status)
169 {
170 int idx = (__force int)status;
171
172 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
173 return -EIO;
174 return blk_errors[idx].errno;
175 }
176 EXPORT_SYMBOL_GPL(blk_status_to_errno);
177
178 static void print_req_error(struct request *req, blk_status_t status)
179 {
180 int idx = (__force int)status;
181
182 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
183 return;
184
185 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
186 __func__, blk_errors[idx].name, req->rq_disk ?
187 req->rq_disk->disk_name : "?",
188 (unsigned long long)blk_rq_pos(req));
189 }
190
191 static void req_bio_endio(struct request *rq, struct bio *bio,
192 unsigned int nbytes, blk_status_t error)
193 {
194 if (error)
195 bio->bi_status = error;
196
197 if (unlikely(rq->rq_flags & RQF_QUIET))
198 bio_set_flag(bio, BIO_QUIET);
199
200 bio_advance(bio, nbytes);
201
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
204 bio_endio(bio);
205 }
206
207 void blk_dump_rq_flags(struct request *rq, char *msg)
208 {
209 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
210 rq->rq_disk ? rq->rq_disk->disk_name : "?",
211 (unsigned long long) rq->cmd_flags);
212
213 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq),
215 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
216 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
217 rq->bio, rq->biotail, blk_rq_bytes(rq));
218 }
219 EXPORT_SYMBOL(blk_dump_rq_flags);
220
221 static void blk_delay_work(struct work_struct *work)
222 {
223 struct request_queue *q;
224
225 q = container_of(work, struct request_queue, delay_work.work);
226 spin_lock_irq(q->queue_lock);
227 __blk_run_queue(q);
228 spin_unlock_irq(q->queue_lock);
229 }
230
231 /**
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
235 *
236 * Description:
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
240 */
241 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
242 {
243 lockdep_assert_held(q->queue_lock);
244 WARN_ON_ONCE(q->mq_ops);
245
246 if (likely(!blk_queue_dead(q)))
247 queue_delayed_work(kblockd_workqueue, &q->delay_work,
248 msecs_to_jiffies(msecs));
249 }
250 EXPORT_SYMBOL(blk_delay_queue);
251
252 /**
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
255 *
256 * Description:
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
259 * context.
260 **/
261 void blk_start_queue_async(struct request_queue *q)
262 {
263 lockdep_assert_held(q->queue_lock);
264 WARN_ON_ONCE(q->mq_ops);
265
266 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
267 blk_run_queue_async(q);
268 }
269 EXPORT_SYMBOL(blk_start_queue_async);
270
271 /**
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
274 *
275 * Description:
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
279 **/
280 void blk_start_queue(struct request_queue *q)
281 {
282 lockdep_assert_held(q->queue_lock);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q->mq_ops);
285
286 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
287 __blk_run_queue(q);
288 }
289 EXPORT_SYMBOL(blk_start_queue);
290
291 /**
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
294 *
295 * Description:
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
304 **/
305 void blk_stop_queue(struct request_queue *q)
306 {
307 lockdep_assert_held(q->queue_lock);
308 WARN_ON_ONCE(q->mq_ops);
309
310 cancel_delayed_work(&q->delay_work);
311 queue_flag_set(QUEUE_FLAG_STOPPED, q);
312 }
313 EXPORT_SYMBOL(blk_stop_queue);
314
315 /**
316 * blk_sync_queue - cancel any pending callbacks on a queue
317 * @q: the queue
318 *
319 * Description:
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
326 * this function.
327 *
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
331 *
332 */
333 void blk_sync_queue(struct request_queue *q)
334 {
335 del_timer_sync(&q->timeout);
336 cancel_work_sync(&q->timeout_work);
337
338 if (q->mq_ops) {
339 struct blk_mq_hw_ctx *hctx;
340 int i;
341
342 cancel_delayed_work_sync(&q->requeue_work);
343 queue_for_each_hw_ctx(q, hctx, i)
344 cancel_delayed_work_sync(&hctx->run_work);
345 } else {
346 cancel_delayed_work_sync(&q->delay_work);
347 }
348 }
349 EXPORT_SYMBOL(blk_sync_queue);
350
351 /**
352 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
353 * @q: request queue pointer
354 *
355 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
356 * set and 1 if the flag was already set.
357 */
358 int blk_set_preempt_only(struct request_queue *q)
359 {
360 unsigned long flags;
361 int res;
362
363 spin_lock_irqsave(q->queue_lock, flags);
364 res = queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
365 spin_unlock_irqrestore(q->queue_lock, flags);
366
367 return res;
368 }
369 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
370
371 void blk_clear_preempt_only(struct request_queue *q)
372 {
373 unsigned long flags;
374
375 spin_lock_irqsave(q->queue_lock, flags);
376 queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
377 wake_up_all(&q->mq_freeze_wq);
378 spin_unlock_irqrestore(q->queue_lock, flags);
379 }
380 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
381
382 /**
383 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
384 * @q: The queue to run
385 *
386 * Description:
387 * Invoke request handling on a queue if there are any pending requests.
388 * May be used to restart request handling after a request has completed.
389 * This variant runs the queue whether or not the queue has been
390 * stopped. Must be called with the queue lock held and interrupts
391 * disabled. See also @blk_run_queue.
392 */
393 inline void __blk_run_queue_uncond(struct request_queue *q)
394 {
395 lockdep_assert_held(q->queue_lock);
396 WARN_ON_ONCE(q->mq_ops);
397
398 if (unlikely(blk_queue_dead(q)))
399 return;
400
401 /*
402 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
403 * the queue lock internally. As a result multiple threads may be
404 * running such a request function concurrently. Keep track of the
405 * number of active request_fn invocations such that blk_drain_queue()
406 * can wait until all these request_fn calls have finished.
407 */
408 q->request_fn_active++;
409 q->request_fn(q);
410 q->request_fn_active--;
411 }
412 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
413
414 /**
415 * __blk_run_queue - run a single device queue
416 * @q: The queue to run
417 *
418 * Description:
419 * See @blk_run_queue.
420 */
421 void __blk_run_queue(struct request_queue *q)
422 {
423 lockdep_assert_held(q->queue_lock);
424 WARN_ON_ONCE(q->mq_ops);
425
426 if (unlikely(blk_queue_stopped(q)))
427 return;
428
429 __blk_run_queue_uncond(q);
430 }
431 EXPORT_SYMBOL(__blk_run_queue);
432
433 /**
434 * blk_run_queue_async - run a single device queue in workqueue context
435 * @q: The queue to run
436 *
437 * Description:
438 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
439 * of us.
440 *
441 * Note:
442 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
443 * has canceled q->delay_work, callers must hold the queue lock to avoid
444 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
445 */
446 void blk_run_queue_async(struct request_queue *q)
447 {
448 lockdep_assert_held(q->queue_lock);
449 WARN_ON_ONCE(q->mq_ops);
450
451 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
452 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
453 }
454 EXPORT_SYMBOL(blk_run_queue_async);
455
456 /**
457 * blk_run_queue - run a single device queue
458 * @q: The queue to run
459 *
460 * Description:
461 * Invoke request handling on this queue, if it has pending work to do.
462 * May be used to restart queueing when a request has completed.
463 */
464 void blk_run_queue(struct request_queue *q)
465 {
466 unsigned long flags;
467
468 WARN_ON_ONCE(q->mq_ops);
469
470 spin_lock_irqsave(q->queue_lock, flags);
471 __blk_run_queue(q);
472 spin_unlock_irqrestore(q->queue_lock, flags);
473 }
474 EXPORT_SYMBOL(blk_run_queue);
475
476 void blk_put_queue(struct request_queue *q)
477 {
478 kobject_put(&q->kobj);
479 }
480 EXPORT_SYMBOL(blk_put_queue);
481
482 /**
483 * __blk_drain_queue - drain requests from request_queue
484 * @q: queue to drain
485 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
486 *
487 * Drain requests from @q. If @drain_all is set, all requests are drained.
488 * If not, only ELVPRIV requests are drained. The caller is responsible
489 * for ensuring that no new requests which need to be drained are queued.
490 */
491 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
492 __releases(q->queue_lock)
493 __acquires(q->queue_lock)
494 {
495 int i;
496
497 lockdep_assert_held(q->queue_lock);
498 WARN_ON_ONCE(q->mq_ops);
499
500 while (true) {
501 bool drain = false;
502
503 /*
504 * The caller might be trying to drain @q before its
505 * elevator is initialized.
506 */
507 if (q->elevator)
508 elv_drain_elevator(q);
509
510 blkcg_drain_queue(q);
511
512 /*
513 * This function might be called on a queue which failed
514 * driver init after queue creation or is not yet fully
515 * active yet. Some drivers (e.g. fd and loop) get unhappy
516 * in such cases. Kick queue iff dispatch queue has
517 * something on it and @q has request_fn set.
518 */
519 if (!list_empty(&q->queue_head) && q->request_fn)
520 __blk_run_queue(q);
521
522 drain |= q->nr_rqs_elvpriv;
523 drain |= q->request_fn_active;
524
525 /*
526 * Unfortunately, requests are queued at and tracked from
527 * multiple places and there's no single counter which can
528 * be drained. Check all the queues and counters.
529 */
530 if (drain_all) {
531 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
532 drain |= !list_empty(&q->queue_head);
533 for (i = 0; i < 2; i++) {
534 drain |= q->nr_rqs[i];
535 drain |= q->in_flight[i];
536 if (fq)
537 drain |= !list_empty(&fq->flush_queue[i]);
538 }
539 }
540
541 if (!drain)
542 break;
543
544 spin_unlock_irq(q->queue_lock);
545
546 msleep(10);
547
548 spin_lock_irq(q->queue_lock);
549 }
550
551 /*
552 * With queue marked dead, any woken up waiter will fail the
553 * allocation path, so the wakeup chaining is lost and we're
554 * left with hung waiters. We need to wake up those waiters.
555 */
556 if (q->request_fn) {
557 struct request_list *rl;
558
559 blk_queue_for_each_rl(rl, q)
560 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
561 wake_up_all(&rl->wait[i]);
562 }
563 }
564
565 void blk_drain_queue(struct request_queue *q)
566 {
567 spin_lock_irq(q->queue_lock);
568 __blk_drain_queue(q, true);
569 spin_unlock_irq(q->queue_lock);
570 }
571
572 /**
573 * blk_queue_bypass_start - enter queue bypass mode
574 * @q: queue of interest
575 *
576 * In bypass mode, only the dispatch FIFO queue of @q is used. This
577 * function makes @q enter bypass mode and drains all requests which were
578 * throttled or issued before. On return, it's guaranteed that no request
579 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
580 * inside queue or RCU read lock.
581 */
582 void blk_queue_bypass_start(struct request_queue *q)
583 {
584 WARN_ON_ONCE(q->mq_ops);
585
586 spin_lock_irq(q->queue_lock);
587 q->bypass_depth++;
588 queue_flag_set(QUEUE_FLAG_BYPASS, q);
589 spin_unlock_irq(q->queue_lock);
590
591 /*
592 * Queues start drained. Skip actual draining till init is
593 * complete. This avoids lenghty delays during queue init which
594 * can happen many times during boot.
595 */
596 if (blk_queue_init_done(q)) {
597 spin_lock_irq(q->queue_lock);
598 __blk_drain_queue(q, false);
599 spin_unlock_irq(q->queue_lock);
600
601 /* ensure blk_queue_bypass() is %true inside RCU read lock */
602 synchronize_rcu();
603 }
604 }
605 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
606
607 /**
608 * blk_queue_bypass_end - leave queue bypass mode
609 * @q: queue of interest
610 *
611 * Leave bypass mode and restore the normal queueing behavior.
612 *
613 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
614 * this function is called for both blk-sq and blk-mq queues.
615 */
616 void blk_queue_bypass_end(struct request_queue *q)
617 {
618 spin_lock_irq(q->queue_lock);
619 if (!--q->bypass_depth)
620 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
621 WARN_ON_ONCE(q->bypass_depth < 0);
622 spin_unlock_irq(q->queue_lock);
623 }
624 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
625
626 void blk_set_queue_dying(struct request_queue *q)
627 {
628 spin_lock_irq(q->queue_lock);
629 queue_flag_set(QUEUE_FLAG_DYING, q);
630 spin_unlock_irq(q->queue_lock);
631
632 /*
633 * When queue DYING flag is set, we need to block new req
634 * entering queue, so we call blk_freeze_queue_start() to
635 * prevent I/O from crossing blk_queue_enter().
636 */
637 blk_freeze_queue_start(q);
638
639 if (q->mq_ops)
640 blk_mq_wake_waiters(q);
641 else {
642 struct request_list *rl;
643
644 spin_lock_irq(q->queue_lock);
645 blk_queue_for_each_rl(rl, q) {
646 if (rl->rq_pool) {
647 wake_up_all(&rl->wait[BLK_RW_SYNC]);
648 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
649 }
650 }
651 spin_unlock_irq(q->queue_lock);
652 }
653
654 /* Make blk_queue_enter() reexamine the DYING flag. */
655 wake_up_all(&q->mq_freeze_wq);
656 }
657 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
658
659 /**
660 * blk_cleanup_queue - shutdown a request queue
661 * @q: request queue to shutdown
662 *
663 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
664 * put it. All future requests will be failed immediately with -ENODEV.
665 */
666 void blk_cleanup_queue(struct request_queue *q)
667 {
668 spinlock_t *lock = q->queue_lock;
669
670 /* mark @q DYING, no new request or merges will be allowed afterwards */
671 mutex_lock(&q->sysfs_lock);
672 blk_set_queue_dying(q);
673 spin_lock_irq(lock);
674
675 /*
676 * A dying queue is permanently in bypass mode till released. Note
677 * that, unlike blk_queue_bypass_start(), we aren't performing
678 * synchronize_rcu() after entering bypass mode to avoid the delay
679 * as some drivers create and destroy a lot of queues while
680 * probing. This is still safe because blk_release_queue() will be
681 * called only after the queue refcnt drops to zero and nothing,
682 * RCU or not, would be traversing the queue by then.
683 */
684 q->bypass_depth++;
685 queue_flag_set(QUEUE_FLAG_BYPASS, q);
686
687 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
688 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
689 queue_flag_set(QUEUE_FLAG_DYING, q);
690 spin_unlock_irq(lock);
691 mutex_unlock(&q->sysfs_lock);
692
693 /*
694 * Drain all requests queued before DYING marking. Set DEAD flag to
695 * prevent that q->request_fn() gets invoked after draining finished.
696 */
697 blk_freeze_queue(q);
698 spin_lock_irq(lock);
699 queue_flag_set(QUEUE_FLAG_DEAD, q);
700 spin_unlock_irq(lock);
701
702 /*
703 * make sure all in-progress dispatch are completed because
704 * blk_freeze_queue() can only complete all requests, and
705 * dispatch may still be in-progress since we dispatch requests
706 * from more than one contexts.
707 *
708 * We rely on driver to deal with the race in case that queue
709 * initialization isn't done.
710 */
711 if (q->mq_ops && blk_queue_init_done(q))
712 blk_mq_quiesce_queue(q);
713
714 /* for synchronous bio-based driver finish in-flight integrity i/o */
715 blk_flush_integrity();
716
717 /* @q won't process any more request, flush async actions */
718 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
719 blk_sync_queue(q);
720
721 if (q->mq_ops)
722 blk_mq_free_queue(q);
723 percpu_ref_exit(&q->q_usage_counter);
724
725 spin_lock_irq(lock);
726 if (q->queue_lock != &q->__queue_lock)
727 q->queue_lock = &q->__queue_lock;
728 spin_unlock_irq(lock);
729
730 /* @q is and will stay empty, shutdown and put */
731 blk_put_queue(q);
732 }
733 EXPORT_SYMBOL(blk_cleanup_queue);
734
735 /* Allocate memory local to the request queue */
736 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
737 {
738 struct request_queue *q = data;
739
740 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
741 }
742
743 static void free_request_simple(void *element, void *data)
744 {
745 kmem_cache_free(request_cachep, element);
746 }
747
748 static void *alloc_request_size(gfp_t gfp_mask, void *data)
749 {
750 struct request_queue *q = data;
751 struct request *rq;
752
753 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
754 q->node);
755 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
756 kfree(rq);
757 rq = NULL;
758 }
759 return rq;
760 }
761
762 static void free_request_size(void *element, void *data)
763 {
764 struct request_queue *q = data;
765
766 if (q->exit_rq_fn)
767 q->exit_rq_fn(q, element);
768 kfree(element);
769 }
770
771 int blk_init_rl(struct request_list *rl, struct request_queue *q,
772 gfp_t gfp_mask)
773 {
774 if (unlikely(rl->rq_pool) || q->mq_ops)
775 return 0;
776
777 rl->q = q;
778 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
779 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
780 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
781 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
782
783 if (q->cmd_size) {
784 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
785 alloc_request_size, free_request_size,
786 q, gfp_mask, q->node);
787 } else {
788 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
789 alloc_request_simple, free_request_simple,
790 q, gfp_mask, q->node);
791 }
792 if (!rl->rq_pool)
793 return -ENOMEM;
794
795 if (rl != &q->root_rl)
796 WARN_ON_ONCE(!blk_get_queue(q));
797
798 return 0;
799 }
800
801 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
802 {
803 if (rl->rq_pool) {
804 mempool_destroy(rl->rq_pool);
805 if (rl != &q->root_rl)
806 blk_put_queue(q);
807 }
808 }
809
810 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
811 {
812 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
813 }
814 EXPORT_SYMBOL(blk_alloc_queue);
815
816 /**
817 * blk_queue_enter() - try to increase q->q_usage_counter
818 * @q: request queue pointer
819 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
820 */
821 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
822 {
823 const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
824
825 while (true) {
826 bool success = false;
827
828 rcu_read_lock();
829 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
830 /*
831 * The code that sets the PREEMPT_ONLY flag is
832 * responsible for ensuring that that flag is globally
833 * visible before the queue is unfrozen.
834 */
835 if (preempt || !blk_queue_preempt_only(q)) {
836 success = true;
837 } else {
838 percpu_ref_put(&q->q_usage_counter);
839 }
840 }
841 rcu_read_unlock();
842
843 if (success)
844 return 0;
845
846 if (flags & BLK_MQ_REQ_NOWAIT)
847 return -EBUSY;
848
849 /*
850 * read pair of barrier in blk_freeze_queue_start(),
851 * we need to order reading __PERCPU_REF_DEAD flag of
852 * .q_usage_counter and reading .mq_freeze_depth or
853 * queue dying flag, otherwise the following wait may
854 * never return if the two reads are reordered.
855 */
856 smp_rmb();
857
858 wait_event(q->mq_freeze_wq,
859 (atomic_read(&q->mq_freeze_depth) == 0 &&
860 (preempt || !blk_queue_preempt_only(q))) ||
861 blk_queue_dying(q));
862 if (blk_queue_dying(q))
863 return -ENODEV;
864 }
865 }
866
867 void blk_queue_exit(struct request_queue *q)
868 {
869 percpu_ref_put(&q->q_usage_counter);
870 }
871
872 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
873 {
874 struct request_queue *q =
875 container_of(ref, struct request_queue, q_usage_counter);
876
877 wake_up_all(&q->mq_freeze_wq);
878 }
879
880 static void blk_rq_timed_out_timer(struct timer_list *t)
881 {
882 struct request_queue *q = from_timer(q, t, timeout);
883
884 kblockd_schedule_work(&q->timeout_work);
885 }
886
887 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
888 {
889 struct request_queue *q;
890
891 q = kmem_cache_alloc_node(blk_requestq_cachep,
892 gfp_mask | __GFP_ZERO, node_id);
893 if (!q)
894 return NULL;
895
896 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
897 if (q->id < 0)
898 goto fail_q;
899
900 q->bio_split = bioset_create(BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
901 if (!q->bio_split)
902 goto fail_id;
903
904 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
905 if (!q->backing_dev_info)
906 goto fail_split;
907
908 q->stats = blk_alloc_queue_stats();
909 if (!q->stats)
910 goto fail_stats;
911
912 q->backing_dev_info->ra_pages =
913 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
914 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
915 q->backing_dev_info->name = "block";
916 q->node = node_id;
917
918 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
919 laptop_mode_timer_fn, 0);
920 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
921 INIT_WORK(&q->timeout_work, NULL);
922 INIT_LIST_HEAD(&q->queue_head);
923 INIT_LIST_HEAD(&q->timeout_list);
924 INIT_LIST_HEAD(&q->icq_list);
925 #ifdef CONFIG_BLK_CGROUP
926 INIT_LIST_HEAD(&q->blkg_list);
927 #endif
928 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
929
930 kobject_init(&q->kobj, &blk_queue_ktype);
931
932 #ifdef CONFIG_BLK_DEV_IO_TRACE
933 mutex_init(&q->blk_trace_mutex);
934 #endif
935 mutex_init(&q->sysfs_lock);
936 spin_lock_init(&q->__queue_lock);
937
938 /*
939 * By default initialize queue_lock to internal lock and driver can
940 * override it later if need be.
941 */
942 q->queue_lock = &q->__queue_lock;
943
944 /*
945 * A queue starts its life with bypass turned on to avoid
946 * unnecessary bypass on/off overhead and nasty surprises during
947 * init. The initial bypass will be finished when the queue is
948 * registered by blk_register_queue().
949 */
950 q->bypass_depth = 1;
951 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
952
953 init_waitqueue_head(&q->mq_freeze_wq);
954
955 /*
956 * Init percpu_ref in atomic mode so that it's faster to shutdown.
957 * See blk_register_queue() for details.
958 */
959 if (percpu_ref_init(&q->q_usage_counter,
960 blk_queue_usage_counter_release,
961 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
962 goto fail_bdi;
963
964 if (blkcg_init_queue(q))
965 goto fail_ref;
966
967 return q;
968
969 fail_ref:
970 percpu_ref_exit(&q->q_usage_counter);
971 fail_bdi:
972 blk_free_queue_stats(q->stats);
973 fail_stats:
974 bdi_put(q->backing_dev_info);
975 fail_split:
976 bioset_free(q->bio_split);
977 fail_id:
978 ida_simple_remove(&blk_queue_ida, q->id);
979 fail_q:
980 kmem_cache_free(blk_requestq_cachep, q);
981 return NULL;
982 }
983 EXPORT_SYMBOL(blk_alloc_queue_node);
984
985 /**
986 * blk_init_queue - prepare a request queue for use with a block device
987 * @rfn: The function to be called to process requests that have been
988 * placed on the queue.
989 * @lock: Request queue spin lock
990 *
991 * Description:
992 * If a block device wishes to use the standard request handling procedures,
993 * which sorts requests and coalesces adjacent requests, then it must
994 * call blk_init_queue(). The function @rfn will be called when there
995 * are requests on the queue that need to be processed. If the device
996 * supports plugging, then @rfn may not be called immediately when requests
997 * are available on the queue, but may be called at some time later instead.
998 * Plugged queues are generally unplugged when a buffer belonging to one
999 * of the requests on the queue is needed, or due to memory pressure.
1000 *
1001 * @rfn is not required, or even expected, to remove all requests off the
1002 * queue, but only as many as it can handle at a time. If it does leave
1003 * requests on the queue, it is responsible for arranging that the requests
1004 * get dealt with eventually.
1005 *
1006 * The queue spin lock must be held while manipulating the requests on the
1007 * request queue; this lock will be taken also from interrupt context, so irq
1008 * disabling is needed for it.
1009 *
1010 * Function returns a pointer to the initialized request queue, or %NULL if
1011 * it didn't succeed.
1012 *
1013 * Note:
1014 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1015 * when the block device is deactivated (such as at module unload).
1016 **/
1017
1018 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1019 {
1020 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1021 }
1022 EXPORT_SYMBOL(blk_init_queue);
1023
1024 struct request_queue *
1025 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1026 {
1027 struct request_queue *q;
1028
1029 q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1030 if (!q)
1031 return NULL;
1032
1033 q->request_fn = rfn;
1034 if (lock)
1035 q->queue_lock = lock;
1036 if (blk_init_allocated_queue(q) < 0) {
1037 blk_cleanup_queue(q);
1038 return NULL;
1039 }
1040
1041 return q;
1042 }
1043 EXPORT_SYMBOL(blk_init_queue_node);
1044
1045 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1046
1047
1048 int blk_init_allocated_queue(struct request_queue *q)
1049 {
1050 WARN_ON_ONCE(q->mq_ops);
1051
1052 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1053 if (!q->fq)
1054 return -ENOMEM;
1055
1056 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1057 goto out_free_flush_queue;
1058
1059 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1060 goto out_exit_flush_rq;
1061
1062 INIT_WORK(&q->timeout_work, blk_timeout_work);
1063 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1064
1065 /*
1066 * This also sets hw/phys segments, boundary and size
1067 */
1068 blk_queue_make_request(q, blk_queue_bio);
1069
1070 q->sg_reserved_size = INT_MAX;
1071
1072 /* Protect q->elevator from elevator_change */
1073 mutex_lock(&q->sysfs_lock);
1074
1075 /* init elevator */
1076 if (elevator_init(q, NULL)) {
1077 mutex_unlock(&q->sysfs_lock);
1078 goto out_exit_flush_rq;
1079 }
1080
1081 mutex_unlock(&q->sysfs_lock);
1082 return 0;
1083
1084 out_exit_flush_rq:
1085 if (q->exit_rq_fn)
1086 q->exit_rq_fn(q, q->fq->flush_rq);
1087 out_free_flush_queue:
1088 blk_free_flush_queue(q->fq);
1089 q->fq = NULL;
1090 return -ENOMEM;
1091 }
1092 EXPORT_SYMBOL(blk_init_allocated_queue);
1093
1094 bool blk_get_queue(struct request_queue *q)
1095 {
1096 if (likely(!blk_queue_dying(q))) {
1097 __blk_get_queue(q);
1098 return true;
1099 }
1100
1101 return false;
1102 }
1103 EXPORT_SYMBOL(blk_get_queue);
1104
1105 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1106 {
1107 if (rq->rq_flags & RQF_ELVPRIV) {
1108 elv_put_request(rl->q, rq);
1109 if (rq->elv.icq)
1110 put_io_context(rq->elv.icq->ioc);
1111 }
1112
1113 mempool_free(rq, rl->rq_pool);
1114 }
1115
1116 /*
1117 * ioc_batching returns true if the ioc is a valid batching request and
1118 * should be given priority access to a request.
1119 */
1120 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1121 {
1122 if (!ioc)
1123 return 0;
1124
1125 /*
1126 * Make sure the process is able to allocate at least 1 request
1127 * even if the batch times out, otherwise we could theoretically
1128 * lose wakeups.
1129 */
1130 return ioc->nr_batch_requests == q->nr_batching ||
1131 (ioc->nr_batch_requests > 0
1132 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1133 }
1134
1135 /*
1136 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1137 * will cause the process to be a "batcher" on all queues in the system. This
1138 * is the behaviour we want though - once it gets a wakeup it should be given
1139 * a nice run.
1140 */
1141 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1142 {
1143 if (!ioc || ioc_batching(q, ioc))
1144 return;
1145
1146 ioc->nr_batch_requests = q->nr_batching;
1147 ioc->last_waited = jiffies;
1148 }
1149
1150 static void __freed_request(struct request_list *rl, int sync)
1151 {
1152 struct request_queue *q = rl->q;
1153
1154 if (rl->count[sync] < queue_congestion_off_threshold(q))
1155 blk_clear_congested(rl, sync);
1156
1157 if (rl->count[sync] + 1 <= q->nr_requests) {
1158 if (waitqueue_active(&rl->wait[sync]))
1159 wake_up(&rl->wait[sync]);
1160
1161 blk_clear_rl_full(rl, sync);
1162 }
1163 }
1164
1165 /*
1166 * A request has just been released. Account for it, update the full and
1167 * congestion status, wake up any waiters. Called under q->queue_lock.
1168 */
1169 static void freed_request(struct request_list *rl, bool sync,
1170 req_flags_t rq_flags)
1171 {
1172 struct request_queue *q = rl->q;
1173
1174 q->nr_rqs[sync]--;
1175 rl->count[sync]--;
1176 if (rq_flags & RQF_ELVPRIV)
1177 q->nr_rqs_elvpriv--;
1178
1179 __freed_request(rl, sync);
1180
1181 if (unlikely(rl->starved[sync ^ 1]))
1182 __freed_request(rl, sync ^ 1);
1183 }
1184
1185 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1186 {
1187 struct request_list *rl;
1188 int on_thresh, off_thresh;
1189
1190 WARN_ON_ONCE(q->mq_ops);
1191
1192 spin_lock_irq(q->queue_lock);
1193 q->nr_requests = nr;
1194 blk_queue_congestion_threshold(q);
1195 on_thresh = queue_congestion_on_threshold(q);
1196 off_thresh = queue_congestion_off_threshold(q);
1197
1198 blk_queue_for_each_rl(rl, q) {
1199 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1200 blk_set_congested(rl, BLK_RW_SYNC);
1201 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1202 blk_clear_congested(rl, BLK_RW_SYNC);
1203
1204 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1205 blk_set_congested(rl, BLK_RW_ASYNC);
1206 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1207 blk_clear_congested(rl, BLK_RW_ASYNC);
1208
1209 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1210 blk_set_rl_full(rl, BLK_RW_SYNC);
1211 } else {
1212 blk_clear_rl_full(rl, BLK_RW_SYNC);
1213 wake_up(&rl->wait[BLK_RW_SYNC]);
1214 }
1215
1216 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1217 blk_set_rl_full(rl, BLK_RW_ASYNC);
1218 } else {
1219 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1220 wake_up(&rl->wait[BLK_RW_ASYNC]);
1221 }
1222 }
1223
1224 spin_unlock_irq(q->queue_lock);
1225 return 0;
1226 }
1227
1228 /**
1229 * __get_request - get a free request
1230 * @rl: request list to allocate from
1231 * @op: operation and flags
1232 * @bio: bio to allocate request for (can be %NULL)
1233 * @flags: BLQ_MQ_REQ_* flags
1234 *
1235 * Get a free request from @q. This function may fail under memory
1236 * pressure or if @q is dead.
1237 *
1238 * Must be called with @q->queue_lock held and,
1239 * Returns ERR_PTR on failure, with @q->queue_lock held.
1240 * Returns request pointer on success, with @q->queue_lock *not held*.
1241 */
1242 static struct request *__get_request(struct request_list *rl, unsigned int op,
1243 struct bio *bio, blk_mq_req_flags_t flags)
1244 {
1245 struct request_queue *q = rl->q;
1246 struct request *rq;
1247 struct elevator_type *et = q->elevator->type;
1248 struct io_context *ioc = rq_ioc(bio);
1249 struct io_cq *icq = NULL;
1250 const bool is_sync = op_is_sync(op);
1251 int may_queue;
1252 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1253 __GFP_DIRECT_RECLAIM;
1254 req_flags_t rq_flags = RQF_ALLOCED;
1255
1256 lockdep_assert_held(q->queue_lock);
1257
1258 if (unlikely(blk_queue_dying(q)))
1259 return ERR_PTR(-ENODEV);
1260
1261 may_queue = elv_may_queue(q, op);
1262 if (may_queue == ELV_MQUEUE_NO)
1263 goto rq_starved;
1264
1265 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1266 if (rl->count[is_sync]+1 >= q->nr_requests) {
1267 /*
1268 * The queue will fill after this allocation, so set
1269 * it as full, and mark this process as "batching".
1270 * This process will be allowed to complete a batch of
1271 * requests, others will be blocked.
1272 */
1273 if (!blk_rl_full(rl, is_sync)) {
1274 ioc_set_batching(q, ioc);
1275 blk_set_rl_full(rl, is_sync);
1276 } else {
1277 if (may_queue != ELV_MQUEUE_MUST
1278 && !ioc_batching(q, ioc)) {
1279 /*
1280 * The queue is full and the allocating
1281 * process is not a "batcher", and not
1282 * exempted by the IO scheduler
1283 */
1284 return ERR_PTR(-ENOMEM);
1285 }
1286 }
1287 }
1288 blk_set_congested(rl, is_sync);
1289 }
1290
1291 /*
1292 * Only allow batching queuers to allocate up to 50% over the defined
1293 * limit of requests, otherwise we could have thousands of requests
1294 * allocated with any setting of ->nr_requests
1295 */
1296 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1297 return ERR_PTR(-ENOMEM);
1298
1299 q->nr_rqs[is_sync]++;
1300 rl->count[is_sync]++;
1301 rl->starved[is_sync] = 0;
1302
1303 /*
1304 * Decide whether the new request will be managed by elevator. If
1305 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1306 * prevent the current elevator from being destroyed until the new
1307 * request is freed. This guarantees icq's won't be destroyed and
1308 * makes creating new ones safe.
1309 *
1310 * Flush requests do not use the elevator so skip initialization.
1311 * This allows a request to share the flush and elevator data.
1312 *
1313 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1314 * it will be created after releasing queue_lock.
1315 */
1316 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1317 rq_flags |= RQF_ELVPRIV;
1318 q->nr_rqs_elvpriv++;
1319 if (et->icq_cache && ioc)
1320 icq = ioc_lookup_icq(ioc, q);
1321 }
1322
1323 if (blk_queue_io_stat(q))
1324 rq_flags |= RQF_IO_STAT;
1325 spin_unlock_irq(q->queue_lock);
1326
1327 /* allocate and init request */
1328 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1329 if (!rq)
1330 goto fail_alloc;
1331
1332 blk_rq_init(q, rq);
1333 blk_rq_set_rl(rq, rl);
1334 rq->cmd_flags = op;
1335 rq->rq_flags = rq_flags;
1336 if (flags & BLK_MQ_REQ_PREEMPT)
1337 rq->rq_flags |= RQF_PREEMPT;
1338
1339 /* init elvpriv */
1340 if (rq_flags & RQF_ELVPRIV) {
1341 if (unlikely(et->icq_cache && !icq)) {
1342 if (ioc)
1343 icq = ioc_create_icq(ioc, q, gfp_mask);
1344 if (!icq)
1345 goto fail_elvpriv;
1346 }
1347
1348 rq->elv.icq = icq;
1349 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1350 goto fail_elvpriv;
1351
1352 /* @rq->elv.icq holds io_context until @rq is freed */
1353 if (icq)
1354 get_io_context(icq->ioc);
1355 }
1356 out:
1357 /*
1358 * ioc may be NULL here, and ioc_batching will be false. That's
1359 * OK, if the queue is under the request limit then requests need
1360 * not count toward the nr_batch_requests limit. There will always
1361 * be some limit enforced by BLK_BATCH_TIME.
1362 */
1363 if (ioc_batching(q, ioc))
1364 ioc->nr_batch_requests--;
1365
1366 trace_block_getrq(q, bio, op);
1367 return rq;
1368
1369 fail_elvpriv:
1370 /*
1371 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1372 * and may fail indefinitely under memory pressure and thus
1373 * shouldn't stall IO. Treat this request as !elvpriv. This will
1374 * disturb iosched and blkcg but weird is bettern than dead.
1375 */
1376 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1377 __func__, dev_name(q->backing_dev_info->dev));
1378
1379 rq->rq_flags &= ~RQF_ELVPRIV;
1380 rq->elv.icq = NULL;
1381
1382 spin_lock_irq(q->queue_lock);
1383 q->nr_rqs_elvpriv--;
1384 spin_unlock_irq(q->queue_lock);
1385 goto out;
1386
1387 fail_alloc:
1388 /*
1389 * Allocation failed presumably due to memory. Undo anything we
1390 * might have messed up.
1391 *
1392 * Allocating task should really be put onto the front of the wait
1393 * queue, but this is pretty rare.
1394 */
1395 spin_lock_irq(q->queue_lock);
1396 freed_request(rl, is_sync, rq_flags);
1397
1398 /*
1399 * in the very unlikely event that allocation failed and no
1400 * requests for this direction was pending, mark us starved so that
1401 * freeing of a request in the other direction will notice
1402 * us. another possible fix would be to split the rq mempool into
1403 * READ and WRITE
1404 */
1405 rq_starved:
1406 if (unlikely(rl->count[is_sync] == 0))
1407 rl->starved[is_sync] = 1;
1408 return ERR_PTR(-ENOMEM);
1409 }
1410
1411 /**
1412 * get_request - get a free request
1413 * @q: request_queue to allocate request from
1414 * @op: operation and flags
1415 * @bio: bio to allocate request for (can be %NULL)
1416 * @flags: BLK_MQ_REQ_* flags.
1417 *
1418 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1419 * this function keeps retrying under memory pressure and fails iff @q is dead.
1420 *
1421 * Must be called with @q->queue_lock held and,
1422 * Returns ERR_PTR on failure, with @q->queue_lock held.
1423 * Returns request pointer on success, with @q->queue_lock *not held*.
1424 */
1425 static struct request *get_request(struct request_queue *q, unsigned int op,
1426 struct bio *bio, blk_mq_req_flags_t flags)
1427 {
1428 const bool is_sync = op_is_sync(op);
1429 DEFINE_WAIT(wait);
1430 struct request_list *rl;
1431 struct request *rq;
1432
1433 lockdep_assert_held(q->queue_lock);
1434 WARN_ON_ONCE(q->mq_ops);
1435
1436 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1437 retry:
1438 rq = __get_request(rl, op, bio, flags);
1439 if (!IS_ERR(rq))
1440 return rq;
1441
1442 if (op & REQ_NOWAIT) {
1443 blk_put_rl(rl);
1444 return ERR_PTR(-EAGAIN);
1445 }
1446
1447 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1448 blk_put_rl(rl);
1449 return rq;
1450 }
1451
1452 /* wait on @rl and retry */
1453 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1454 TASK_UNINTERRUPTIBLE);
1455
1456 trace_block_sleeprq(q, bio, op);
1457
1458 spin_unlock_irq(q->queue_lock);
1459 io_schedule();
1460
1461 /*
1462 * After sleeping, we become a "batching" process and will be able
1463 * to allocate at least one request, and up to a big batch of them
1464 * for a small period time. See ioc_batching, ioc_set_batching
1465 */
1466 ioc_set_batching(q, current->io_context);
1467
1468 spin_lock_irq(q->queue_lock);
1469 finish_wait(&rl->wait[is_sync], &wait);
1470
1471 goto retry;
1472 }
1473
1474 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1475 static struct request *blk_old_get_request(struct request_queue *q,
1476 unsigned int op, blk_mq_req_flags_t flags)
1477 {
1478 struct request *rq;
1479 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC :
1480 __GFP_DIRECT_RECLAIM;
1481 int ret = 0;
1482
1483 WARN_ON_ONCE(q->mq_ops);
1484
1485 /* create ioc upfront */
1486 create_io_context(gfp_mask, q->node);
1487
1488 ret = blk_queue_enter(q, flags);
1489 if (ret)
1490 return ERR_PTR(ret);
1491 spin_lock_irq(q->queue_lock);
1492 rq = get_request(q, op, NULL, flags);
1493 if (IS_ERR(rq)) {
1494 spin_unlock_irq(q->queue_lock);
1495 blk_queue_exit(q);
1496 return rq;
1497 }
1498
1499 /* q->queue_lock is unlocked at this point */
1500 rq->__data_len = 0;
1501 rq->__sector = (sector_t) -1;
1502 rq->bio = rq->biotail = NULL;
1503 return rq;
1504 }
1505
1506 /**
1507 * blk_get_request_flags - allocate a request
1508 * @q: request queue to allocate a request for
1509 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1510 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1511 */
1512 struct request *blk_get_request_flags(struct request_queue *q, unsigned int op,
1513 blk_mq_req_flags_t flags)
1514 {
1515 struct request *req;
1516
1517 WARN_ON_ONCE(op & REQ_NOWAIT);
1518 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1519
1520 if (q->mq_ops) {
1521 req = blk_mq_alloc_request(q, op, flags);
1522 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1523 q->mq_ops->initialize_rq_fn(req);
1524 } else {
1525 req = blk_old_get_request(q, op, flags);
1526 if (!IS_ERR(req) && q->initialize_rq_fn)
1527 q->initialize_rq_fn(req);
1528 }
1529
1530 return req;
1531 }
1532 EXPORT_SYMBOL(blk_get_request_flags);
1533
1534 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1535 gfp_t gfp_mask)
1536 {
1537 return blk_get_request_flags(q, op, gfp_mask & __GFP_DIRECT_RECLAIM ?
1538 0 : BLK_MQ_REQ_NOWAIT);
1539 }
1540 EXPORT_SYMBOL(blk_get_request);
1541
1542 /**
1543 * blk_requeue_request - put a request back on queue
1544 * @q: request queue where request should be inserted
1545 * @rq: request to be inserted
1546 *
1547 * Description:
1548 * Drivers often keep queueing requests until the hardware cannot accept
1549 * more, when that condition happens we need to put the request back
1550 * on the queue. Must be called with queue lock held.
1551 */
1552 void blk_requeue_request(struct request_queue *q, struct request *rq)
1553 {
1554 lockdep_assert_held(q->queue_lock);
1555 WARN_ON_ONCE(q->mq_ops);
1556
1557 blk_delete_timer(rq);
1558 blk_clear_rq_complete(rq);
1559 trace_block_rq_requeue(q, rq);
1560 wbt_requeue(q->rq_wb, &rq->issue_stat);
1561
1562 if (rq->rq_flags & RQF_QUEUED)
1563 blk_queue_end_tag(q, rq);
1564
1565 BUG_ON(blk_queued_rq(rq));
1566
1567 elv_requeue_request(q, rq);
1568 }
1569 EXPORT_SYMBOL(blk_requeue_request);
1570
1571 static void add_acct_request(struct request_queue *q, struct request *rq,
1572 int where)
1573 {
1574 blk_account_io_start(rq, true);
1575 __elv_add_request(q, rq, where);
1576 }
1577
1578 static void part_round_stats_single(struct request_queue *q, int cpu,
1579 struct hd_struct *part, unsigned long now,
1580 unsigned int inflight)
1581 {
1582 if (inflight) {
1583 __part_stat_add(cpu, part, time_in_queue,
1584 inflight * (now - part->stamp));
1585 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1586 }
1587 part->stamp = now;
1588 }
1589
1590 /**
1591 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1592 * @q: target block queue
1593 * @cpu: cpu number for stats access
1594 * @part: target partition
1595 *
1596 * The average IO queue length and utilisation statistics are maintained
1597 * by observing the current state of the queue length and the amount of
1598 * time it has been in this state for.
1599 *
1600 * Normally, that accounting is done on IO completion, but that can result
1601 * in more than a second's worth of IO being accounted for within any one
1602 * second, leading to >100% utilisation. To deal with that, we call this
1603 * function to do a round-off before returning the results when reading
1604 * /proc/diskstats. This accounts immediately for all queue usage up to
1605 * the current jiffies and restarts the counters again.
1606 */
1607 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1608 {
1609 struct hd_struct *part2 = NULL;
1610 unsigned long now = jiffies;
1611 unsigned int inflight[2];
1612 int stats = 0;
1613
1614 if (part->stamp != now)
1615 stats |= 1;
1616
1617 if (part->partno) {
1618 part2 = &part_to_disk(part)->part0;
1619 if (part2->stamp != now)
1620 stats |= 2;
1621 }
1622
1623 if (!stats)
1624 return;
1625
1626 part_in_flight(q, part, inflight);
1627
1628 if (stats & 2)
1629 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1630 if (stats & 1)
1631 part_round_stats_single(q, cpu, part, now, inflight[0]);
1632 }
1633 EXPORT_SYMBOL_GPL(part_round_stats);
1634
1635 #ifdef CONFIG_PM
1636 static void blk_pm_put_request(struct request *rq)
1637 {
1638 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1639 pm_runtime_mark_last_busy(rq->q->dev);
1640 }
1641 #else
1642 static inline void blk_pm_put_request(struct request *rq) {}
1643 #endif
1644
1645 void __blk_put_request(struct request_queue *q, struct request *req)
1646 {
1647 req_flags_t rq_flags = req->rq_flags;
1648
1649 if (unlikely(!q))
1650 return;
1651
1652 if (q->mq_ops) {
1653 blk_mq_free_request(req);
1654 return;
1655 }
1656
1657 lockdep_assert_held(q->queue_lock);
1658
1659 blk_pm_put_request(req);
1660
1661 elv_completed_request(q, req);
1662
1663 /* this is a bio leak */
1664 WARN_ON(req->bio != NULL);
1665
1666 wbt_done(q->rq_wb, &req->issue_stat);
1667
1668 /*
1669 * Request may not have originated from ll_rw_blk. if not,
1670 * it didn't come out of our reserved rq pools
1671 */
1672 if (rq_flags & RQF_ALLOCED) {
1673 struct request_list *rl = blk_rq_rl(req);
1674 bool sync = op_is_sync(req->cmd_flags);
1675
1676 BUG_ON(!list_empty(&req->queuelist));
1677 BUG_ON(ELV_ON_HASH(req));
1678
1679 blk_free_request(rl, req);
1680 freed_request(rl, sync, rq_flags);
1681 blk_put_rl(rl);
1682 blk_queue_exit(q);
1683 }
1684 }
1685 EXPORT_SYMBOL_GPL(__blk_put_request);
1686
1687 void blk_put_request(struct request *req)
1688 {
1689 struct request_queue *q = req->q;
1690
1691 if (q->mq_ops)
1692 blk_mq_free_request(req);
1693 else {
1694 unsigned long flags;
1695
1696 spin_lock_irqsave(q->queue_lock, flags);
1697 __blk_put_request(q, req);
1698 spin_unlock_irqrestore(q->queue_lock, flags);
1699 }
1700 }
1701 EXPORT_SYMBOL(blk_put_request);
1702
1703 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1704 struct bio *bio)
1705 {
1706 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1707
1708 if (!ll_back_merge_fn(q, req, bio))
1709 return false;
1710
1711 trace_block_bio_backmerge(q, req, bio);
1712
1713 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1714 blk_rq_set_mixed_merge(req);
1715
1716 req->biotail->bi_next = bio;
1717 req->biotail = bio;
1718 req->__data_len += bio->bi_iter.bi_size;
1719 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1720
1721 blk_account_io_start(req, false);
1722 return true;
1723 }
1724
1725 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1726 struct bio *bio)
1727 {
1728 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1729
1730 if (!ll_front_merge_fn(q, req, bio))
1731 return false;
1732
1733 trace_block_bio_frontmerge(q, req, bio);
1734
1735 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1736 blk_rq_set_mixed_merge(req);
1737
1738 bio->bi_next = req->bio;
1739 req->bio = bio;
1740
1741 req->__sector = bio->bi_iter.bi_sector;
1742 req->__data_len += bio->bi_iter.bi_size;
1743 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1744
1745 blk_account_io_start(req, false);
1746 return true;
1747 }
1748
1749 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1750 struct bio *bio)
1751 {
1752 unsigned short segments = blk_rq_nr_discard_segments(req);
1753
1754 if (segments >= queue_max_discard_segments(q))
1755 goto no_merge;
1756 if (blk_rq_sectors(req) + bio_sectors(bio) >
1757 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1758 goto no_merge;
1759
1760 req->biotail->bi_next = bio;
1761 req->biotail = bio;
1762 req->__data_len += bio->bi_iter.bi_size;
1763 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1764 req->nr_phys_segments = segments + 1;
1765
1766 blk_account_io_start(req, false);
1767 return true;
1768 no_merge:
1769 req_set_nomerge(q, req);
1770 return false;
1771 }
1772
1773 /**
1774 * blk_attempt_plug_merge - try to merge with %current's plugged list
1775 * @q: request_queue new bio is being queued at
1776 * @bio: new bio being queued
1777 * @request_count: out parameter for number of traversed plugged requests
1778 * @same_queue_rq: pointer to &struct request that gets filled in when
1779 * another request associated with @q is found on the plug list
1780 * (optional, may be %NULL)
1781 *
1782 * Determine whether @bio being queued on @q can be merged with a request
1783 * on %current's plugged list. Returns %true if merge was successful,
1784 * otherwise %false.
1785 *
1786 * Plugging coalesces IOs from the same issuer for the same purpose without
1787 * going through @q->queue_lock. As such it's more of an issuing mechanism
1788 * than scheduling, and the request, while may have elvpriv data, is not
1789 * added on the elevator at this point. In addition, we don't have
1790 * reliable access to the elevator outside queue lock. Only check basic
1791 * merging parameters without querying the elevator.
1792 *
1793 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1794 */
1795 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1796 unsigned int *request_count,
1797 struct request **same_queue_rq)
1798 {
1799 struct blk_plug *plug;
1800 struct request *rq;
1801 struct list_head *plug_list;
1802
1803 plug = current->plug;
1804 if (!plug)
1805 return false;
1806 *request_count = 0;
1807
1808 if (q->mq_ops)
1809 plug_list = &plug->mq_list;
1810 else
1811 plug_list = &plug->list;
1812
1813 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1814 bool merged = false;
1815
1816 if (rq->q == q) {
1817 (*request_count)++;
1818 /*
1819 * Only blk-mq multiple hardware queues case checks the
1820 * rq in the same queue, there should be only one such
1821 * rq in a queue
1822 **/
1823 if (same_queue_rq)
1824 *same_queue_rq = rq;
1825 }
1826
1827 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1828 continue;
1829
1830 switch (blk_try_merge(rq, bio)) {
1831 case ELEVATOR_BACK_MERGE:
1832 merged = bio_attempt_back_merge(q, rq, bio);
1833 break;
1834 case ELEVATOR_FRONT_MERGE:
1835 merged = bio_attempt_front_merge(q, rq, bio);
1836 break;
1837 case ELEVATOR_DISCARD_MERGE:
1838 merged = bio_attempt_discard_merge(q, rq, bio);
1839 break;
1840 default:
1841 break;
1842 }
1843
1844 if (merged)
1845 return true;
1846 }
1847
1848 return false;
1849 }
1850
1851 unsigned int blk_plug_queued_count(struct request_queue *q)
1852 {
1853 struct blk_plug *plug;
1854 struct request *rq;
1855 struct list_head *plug_list;
1856 unsigned int ret = 0;
1857
1858 plug = current->plug;
1859 if (!plug)
1860 goto out;
1861
1862 if (q->mq_ops)
1863 plug_list = &plug->mq_list;
1864 else
1865 plug_list = &plug->list;
1866
1867 list_for_each_entry(rq, plug_list, queuelist) {
1868 if (rq->q == q)
1869 ret++;
1870 }
1871 out:
1872 return ret;
1873 }
1874
1875 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1876 {
1877 struct io_context *ioc = rq_ioc(bio);
1878
1879 if (bio->bi_opf & REQ_RAHEAD)
1880 req->cmd_flags |= REQ_FAILFAST_MASK;
1881
1882 req->__sector = bio->bi_iter.bi_sector;
1883 if (ioprio_valid(bio_prio(bio)))
1884 req->ioprio = bio_prio(bio);
1885 else if (ioc)
1886 req->ioprio = ioc->ioprio;
1887 else
1888 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1889 req->write_hint = bio->bi_write_hint;
1890 blk_rq_bio_prep(req->q, req, bio);
1891 }
1892 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1893
1894 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1895 {
1896 struct blk_plug *plug;
1897 int where = ELEVATOR_INSERT_SORT;
1898 struct request *req, *free;
1899 unsigned int request_count = 0;
1900 unsigned int wb_acct;
1901
1902 /*
1903 * low level driver can indicate that it wants pages above a
1904 * certain limit bounced to low memory (ie for highmem, or even
1905 * ISA dma in theory)
1906 */
1907 blk_queue_bounce(q, &bio);
1908
1909 blk_queue_split(q, &bio);
1910
1911 if (!bio_integrity_prep(bio))
1912 return BLK_QC_T_NONE;
1913
1914 if (op_is_flush(bio->bi_opf)) {
1915 spin_lock_irq(q->queue_lock);
1916 where = ELEVATOR_INSERT_FLUSH;
1917 goto get_rq;
1918 }
1919
1920 /*
1921 * Check if we can merge with the plugged list before grabbing
1922 * any locks.
1923 */
1924 if (!blk_queue_nomerges(q)) {
1925 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1926 return BLK_QC_T_NONE;
1927 } else
1928 request_count = blk_plug_queued_count(q);
1929
1930 spin_lock_irq(q->queue_lock);
1931
1932 switch (elv_merge(q, &req, bio)) {
1933 case ELEVATOR_BACK_MERGE:
1934 if (!bio_attempt_back_merge(q, req, bio))
1935 break;
1936 elv_bio_merged(q, req, bio);
1937 free = attempt_back_merge(q, req);
1938 if (free)
1939 __blk_put_request(q, free);
1940 else
1941 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1942 goto out_unlock;
1943 case ELEVATOR_FRONT_MERGE:
1944 if (!bio_attempt_front_merge(q, req, bio))
1945 break;
1946 elv_bio_merged(q, req, bio);
1947 free = attempt_front_merge(q, req);
1948 if (free)
1949 __blk_put_request(q, free);
1950 else
1951 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1952 goto out_unlock;
1953 default:
1954 break;
1955 }
1956
1957 get_rq:
1958 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1959
1960 /*
1961 * Grab a free request. This is might sleep but can not fail.
1962 * Returns with the queue unlocked.
1963 */
1964 blk_queue_enter_live(q);
1965 req = get_request(q, bio->bi_opf, bio, 0);
1966 if (IS_ERR(req)) {
1967 blk_queue_exit(q);
1968 __wbt_done(q->rq_wb, wb_acct);
1969 if (PTR_ERR(req) == -ENOMEM)
1970 bio->bi_status = BLK_STS_RESOURCE;
1971 else
1972 bio->bi_status = BLK_STS_IOERR;
1973 bio_endio(bio);
1974 goto out_unlock;
1975 }
1976
1977 wbt_track(&req->issue_stat, wb_acct);
1978
1979 /*
1980 * After dropping the lock and possibly sleeping here, our request
1981 * may now be mergeable after it had proven unmergeable (above).
1982 * We don't worry about that case for efficiency. It won't happen
1983 * often, and the elevators are able to handle it.
1984 */
1985 blk_init_request_from_bio(req, bio);
1986
1987 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1988 req->cpu = raw_smp_processor_id();
1989
1990 plug = current->plug;
1991 if (plug) {
1992 /*
1993 * If this is the first request added after a plug, fire
1994 * of a plug trace.
1995 *
1996 * @request_count may become stale because of schedule
1997 * out, so check plug list again.
1998 */
1999 if (!request_count || list_empty(&plug->list))
2000 trace_block_plug(q);
2001 else {
2002 struct request *last = list_entry_rq(plug->list.prev);
2003 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2004 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2005 blk_flush_plug_list(plug, false);
2006 trace_block_plug(q);
2007 }
2008 }
2009 list_add_tail(&req->queuelist, &plug->list);
2010 blk_account_io_start(req, true);
2011 } else {
2012 spin_lock_irq(q->queue_lock);
2013 add_acct_request(q, req, where);
2014 __blk_run_queue(q);
2015 out_unlock:
2016 spin_unlock_irq(q->queue_lock);
2017 }
2018
2019 return BLK_QC_T_NONE;
2020 }
2021
2022 static void handle_bad_sector(struct bio *bio)
2023 {
2024 char b[BDEVNAME_SIZE];
2025
2026 printk(KERN_INFO "attempt to access beyond end of device\n");
2027 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2028 bio_devname(bio, b), bio->bi_opf,
2029 (unsigned long long)bio_end_sector(bio),
2030 (long long)get_capacity(bio->bi_disk));
2031 }
2032
2033 #ifdef CONFIG_FAIL_MAKE_REQUEST
2034
2035 static DECLARE_FAULT_ATTR(fail_make_request);
2036
2037 static int __init setup_fail_make_request(char *str)
2038 {
2039 return setup_fault_attr(&fail_make_request, str);
2040 }
2041 __setup("fail_make_request=", setup_fail_make_request);
2042
2043 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2044 {
2045 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2046 }
2047
2048 static int __init fail_make_request_debugfs(void)
2049 {
2050 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2051 NULL, &fail_make_request);
2052
2053 return PTR_ERR_OR_ZERO(dir);
2054 }
2055
2056 late_initcall(fail_make_request_debugfs);
2057
2058 #else /* CONFIG_FAIL_MAKE_REQUEST */
2059
2060 static inline bool should_fail_request(struct hd_struct *part,
2061 unsigned int bytes)
2062 {
2063 return false;
2064 }
2065
2066 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2067
2068 /*
2069 * Remap block n of partition p to block n+start(p) of the disk.
2070 */
2071 static inline int blk_partition_remap(struct bio *bio)
2072 {
2073 struct hd_struct *p;
2074 int ret = 0;
2075
2076 /*
2077 * Zone reset does not include bi_size so bio_sectors() is always 0.
2078 * Include a test for the reset op code and perform the remap if needed.
2079 */
2080 if (!bio->bi_partno ||
2081 (!bio_sectors(bio) && bio_op(bio) != REQ_OP_ZONE_RESET))
2082 return 0;
2083
2084 rcu_read_lock();
2085 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2086 if (likely(p && !should_fail_request(p, bio->bi_iter.bi_size))) {
2087 bio->bi_iter.bi_sector += p->start_sect;
2088 bio->bi_partno = 0;
2089 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2090 bio->bi_iter.bi_sector - p->start_sect);
2091 } else {
2092 printk("%s: fail for partition %d\n", __func__, bio->bi_partno);
2093 ret = -EIO;
2094 }
2095 rcu_read_unlock();
2096
2097 return ret;
2098 }
2099
2100 /*
2101 * Check whether this bio extends beyond the end of the device.
2102 */
2103 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
2104 {
2105 sector_t maxsector;
2106
2107 if (!nr_sectors)
2108 return 0;
2109
2110 /* Test device or partition size, when known. */
2111 maxsector = get_capacity(bio->bi_disk);
2112 if (maxsector) {
2113 sector_t sector = bio->bi_iter.bi_sector;
2114
2115 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
2116 /*
2117 * This may well happen - the kernel calls bread()
2118 * without checking the size of the device, e.g., when
2119 * mounting a device.
2120 */
2121 handle_bad_sector(bio);
2122 return 1;
2123 }
2124 }
2125
2126 return 0;
2127 }
2128
2129 static noinline_for_stack bool
2130 generic_make_request_checks(struct bio *bio)
2131 {
2132 struct request_queue *q;
2133 int nr_sectors = bio_sectors(bio);
2134 blk_status_t status = BLK_STS_IOERR;
2135 char b[BDEVNAME_SIZE];
2136
2137 might_sleep();
2138
2139 if (bio_check_eod(bio, nr_sectors))
2140 goto end_io;
2141
2142 q = bio->bi_disk->queue;
2143 if (unlikely(!q)) {
2144 printk(KERN_ERR
2145 "generic_make_request: Trying to access "
2146 "nonexistent block-device %s (%Lu)\n",
2147 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2148 goto end_io;
2149 }
2150
2151 /*
2152 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2153 * if queue is not a request based queue.
2154 */
2155
2156 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2157 goto not_supported;
2158
2159 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2160 goto end_io;
2161
2162 if (blk_partition_remap(bio))
2163 goto end_io;
2164
2165 if (bio_check_eod(bio, nr_sectors))
2166 goto end_io;
2167
2168 /*
2169 * Filter flush bio's early so that make_request based
2170 * drivers without flush support don't have to worry
2171 * about them.
2172 */
2173 if (op_is_flush(bio->bi_opf) &&
2174 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2175 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2176 if (!nr_sectors) {
2177 status = BLK_STS_OK;
2178 goto end_io;
2179 }
2180 }
2181
2182 switch (bio_op(bio)) {
2183 case REQ_OP_DISCARD:
2184 if (!blk_queue_discard(q))
2185 goto not_supported;
2186 break;
2187 case REQ_OP_SECURE_ERASE:
2188 if (!blk_queue_secure_erase(q))
2189 goto not_supported;
2190 break;
2191 case REQ_OP_WRITE_SAME:
2192 if (!q->limits.max_write_same_sectors)
2193 goto not_supported;
2194 break;
2195 case REQ_OP_ZONE_REPORT:
2196 case REQ_OP_ZONE_RESET:
2197 if (!blk_queue_is_zoned(q))
2198 goto not_supported;
2199 break;
2200 case REQ_OP_WRITE_ZEROES:
2201 if (!q->limits.max_write_zeroes_sectors)
2202 goto not_supported;
2203 break;
2204 default:
2205 break;
2206 }
2207
2208 /*
2209 * Various block parts want %current->io_context and lazy ioc
2210 * allocation ends up trading a lot of pain for a small amount of
2211 * memory. Just allocate it upfront. This may fail and block
2212 * layer knows how to live with it.
2213 */
2214 create_io_context(GFP_ATOMIC, q->node);
2215
2216 if (!blkcg_bio_issue_check(q, bio))
2217 return false;
2218
2219 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2220 trace_block_bio_queue(q, bio);
2221 /* Now that enqueuing has been traced, we need to trace
2222 * completion as well.
2223 */
2224 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2225 }
2226 return true;
2227
2228 not_supported:
2229 status = BLK_STS_NOTSUPP;
2230 end_io:
2231 bio->bi_status = status;
2232 bio_endio(bio);
2233 return false;
2234 }
2235
2236 /**
2237 * generic_make_request - hand a buffer to its device driver for I/O
2238 * @bio: The bio describing the location in memory and on the device.
2239 *
2240 * generic_make_request() is used to make I/O requests of block
2241 * devices. It is passed a &struct bio, which describes the I/O that needs
2242 * to be done.
2243 *
2244 * generic_make_request() does not return any status. The
2245 * success/failure status of the request, along with notification of
2246 * completion, is delivered asynchronously through the bio->bi_end_io
2247 * function described (one day) else where.
2248 *
2249 * The caller of generic_make_request must make sure that bi_io_vec
2250 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2251 * set to describe the device address, and the
2252 * bi_end_io and optionally bi_private are set to describe how
2253 * completion notification should be signaled.
2254 *
2255 * generic_make_request and the drivers it calls may use bi_next if this
2256 * bio happens to be merged with someone else, and may resubmit the bio to
2257 * a lower device by calling into generic_make_request recursively, which
2258 * means the bio should NOT be touched after the call to ->make_request_fn.
2259 */
2260 blk_qc_t generic_make_request(struct bio *bio)
2261 {
2262 /*
2263 * bio_list_on_stack[0] contains bios submitted by the current
2264 * make_request_fn.
2265 * bio_list_on_stack[1] contains bios that were submitted before
2266 * the current make_request_fn, but that haven't been processed
2267 * yet.
2268 */
2269 struct bio_list bio_list_on_stack[2];
2270 blk_qc_t ret = BLK_QC_T_NONE;
2271
2272 if (!generic_make_request_checks(bio))
2273 goto out;
2274
2275 /*
2276 * We only want one ->make_request_fn to be active at a time, else
2277 * stack usage with stacked devices could be a problem. So use
2278 * current->bio_list to keep a list of requests submited by a
2279 * make_request_fn function. current->bio_list is also used as a
2280 * flag to say if generic_make_request is currently active in this
2281 * task or not. If it is NULL, then no make_request is active. If
2282 * it is non-NULL, then a make_request is active, and new requests
2283 * should be added at the tail
2284 */
2285 if (current->bio_list) {
2286 bio_list_add(&current->bio_list[0], bio);
2287 goto out;
2288 }
2289
2290 /* following loop may be a bit non-obvious, and so deserves some
2291 * explanation.
2292 * Before entering the loop, bio->bi_next is NULL (as all callers
2293 * ensure that) so we have a list with a single bio.
2294 * We pretend that we have just taken it off a longer list, so
2295 * we assign bio_list to a pointer to the bio_list_on_stack,
2296 * thus initialising the bio_list of new bios to be
2297 * added. ->make_request() may indeed add some more bios
2298 * through a recursive call to generic_make_request. If it
2299 * did, we find a non-NULL value in bio_list and re-enter the loop
2300 * from the top. In this case we really did just take the bio
2301 * of the top of the list (no pretending) and so remove it from
2302 * bio_list, and call into ->make_request() again.
2303 */
2304 BUG_ON(bio->bi_next);
2305 bio_list_init(&bio_list_on_stack[0]);
2306 current->bio_list = bio_list_on_stack;
2307 do {
2308 struct request_queue *q = bio->bi_disk->queue;
2309 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
2310 BLK_MQ_REQ_NOWAIT : 0;
2311
2312 if (likely(blk_queue_enter(q, flags) == 0)) {
2313 struct bio_list lower, same;
2314
2315 /* Create a fresh bio_list for all subordinate requests */
2316 bio_list_on_stack[1] = bio_list_on_stack[0];
2317 bio_list_init(&bio_list_on_stack[0]);
2318 ret = q->make_request_fn(q, bio);
2319
2320 blk_queue_exit(q);
2321
2322 /* sort new bios into those for a lower level
2323 * and those for the same level
2324 */
2325 bio_list_init(&lower);
2326 bio_list_init(&same);
2327 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2328 if (q == bio->bi_disk->queue)
2329 bio_list_add(&same, bio);
2330 else
2331 bio_list_add(&lower, bio);
2332 /* now assemble so we handle the lowest level first */
2333 bio_list_merge(&bio_list_on_stack[0], &lower);
2334 bio_list_merge(&bio_list_on_stack[0], &same);
2335 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2336 } else {
2337 if (unlikely(!blk_queue_dying(q) &&
2338 (bio->bi_opf & REQ_NOWAIT)))
2339 bio_wouldblock_error(bio);
2340 else
2341 bio_io_error(bio);
2342 }
2343 bio = bio_list_pop(&bio_list_on_stack[0]);
2344 } while (bio);
2345 current->bio_list = NULL; /* deactivate */
2346
2347 out:
2348 return ret;
2349 }
2350 EXPORT_SYMBOL(generic_make_request);
2351
2352 /**
2353 * direct_make_request - hand a buffer directly to its device driver for I/O
2354 * @bio: The bio describing the location in memory and on the device.
2355 *
2356 * This function behaves like generic_make_request(), but does not protect
2357 * against recursion. Must only be used if the called driver is known
2358 * to not call generic_make_request (or direct_make_request) again from
2359 * its make_request function. (Calling direct_make_request again from
2360 * a workqueue is perfectly fine as that doesn't recurse).
2361 */
2362 blk_qc_t direct_make_request(struct bio *bio)
2363 {
2364 struct request_queue *q = bio->bi_disk->queue;
2365 bool nowait = bio->bi_opf & REQ_NOWAIT;
2366 blk_qc_t ret;
2367
2368 if (!generic_make_request_checks(bio))
2369 return BLK_QC_T_NONE;
2370
2371 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2372 if (nowait && !blk_queue_dying(q))
2373 bio->bi_status = BLK_STS_AGAIN;
2374 else
2375 bio->bi_status = BLK_STS_IOERR;
2376 bio_endio(bio);
2377 return BLK_QC_T_NONE;
2378 }
2379
2380 ret = q->make_request_fn(q, bio);
2381 blk_queue_exit(q);
2382 return ret;
2383 }
2384 EXPORT_SYMBOL_GPL(direct_make_request);
2385
2386 /**
2387 * submit_bio - submit a bio to the block device layer for I/O
2388 * @bio: The &struct bio which describes the I/O
2389 *
2390 * submit_bio() is very similar in purpose to generic_make_request(), and
2391 * uses that function to do most of the work. Both are fairly rough
2392 * interfaces; @bio must be presetup and ready for I/O.
2393 *
2394 */
2395 blk_qc_t submit_bio(struct bio *bio)
2396 {
2397 /*
2398 * If it's a regular read/write or a barrier with data attached,
2399 * go through the normal accounting stuff before submission.
2400 */
2401 if (bio_has_data(bio)) {
2402 unsigned int count;
2403
2404 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2405 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2406 else
2407 count = bio_sectors(bio);
2408
2409 if (op_is_write(bio_op(bio))) {
2410 count_vm_events(PGPGOUT, count);
2411 } else {
2412 task_io_account_read(bio->bi_iter.bi_size);
2413 count_vm_events(PGPGIN, count);
2414 }
2415
2416 if (unlikely(block_dump)) {
2417 char b[BDEVNAME_SIZE];
2418 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2419 current->comm, task_pid_nr(current),
2420 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2421 (unsigned long long)bio->bi_iter.bi_sector,
2422 bio_devname(bio, b), count);
2423 }
2424 }
2425
2426 return generic_make_request(bio);
2427 }
2428 EXPORT_SYMBOL(submit_bio);
2429
2430 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2431 {
2432 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2433 return false;
2434
2435 if (current->plug)
2436 blk_flush_plug_list(current->plug, false);
2437 return q->poll_fn(q, cookie);
2438 }
2439 EXPORT_SYMBOL_GPL(blk_poll);
2440
2441 /**
2442 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2443 * for new the queue limits
2444 * @q: the queue
2445 * @rq: the request being checked
2446 *
2447 * Description:
2448 * @rq may have been made based on weaker limitations of upper-level queues
2449 * in request stacking drivers, and it may violate the limitation of @q.
2450 * Since the block layer and the underlying device driver trust @rq
2451 * after it is inserted to @q, it should be checked against @q before
2452 * the insertion using this generic function.
2453 *
2454 * Request stacking drivers like request-based dm may change the queue
2455 * limits when retrying requests on other queues. Those requests need
2456 * to be checked against the new queue limits again during dispatch.
2457 */
2458 static int blk_cloned_rq_check_limits(struct request_queue *q,
2459 struct request *rq)
2460 {
2461 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2462 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2463 return -EIO;
2464 }
2465
2466 /*
2467 * queue's settings related to segment counting like q->bounce_pfn
2468 * may differ from that of other stacking queues.
2469 * Recalculate it to check the request correctly on this queue's
2470 * limitation.
2471 */
2472 blk_recalc_rq_segments(rq);
2473 if (rq->nr_phys_segments > queue_max_segments(q)) {
2474 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2475 return -EIO;
2476 }
2477
2478 return 0;
2479 }
2480
2481 /**
2482 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2483 * @q: the queue to submit the request
2484 * @rq: the request being queued
2485 */
2486 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2487 {
2488 unsigned long flags;
2489 int where = ELEVATOR_INSERT_BACK;
2490
2491 if (blk_cloned_rq_check_limits(q, rq))
2492 return BLK_STS_IOERR;
2493
2494 if (rq->rq_disk &&
2495 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2496 return BLK_STS_IOERR;
2497
2498 if (q->mq_ops) {
2499 if (blk_queue_io_stat(q))
2500 blk_account_io_start(rq, true);
2501 /*
2502 * Since we have a scheduler attached on the top device,
2503 * bypass a potential scheduler on the bottom device for
2504 * insert.
2505 */
2506 blk_mq_request_bypass_insert(rq, true);
2507 return BLK_STS_OK;
2508 }
2509
2510 spin_lock_irqsave(q->queue_lock, flags);
2511 if (unlikely(blk_queue_dying(q))) {
2512 spin_unlock_irqrestore(q->queue_lock, flags);
2513 return BLK_STS_IOERR;
2514 }
2515
2516 /*
2517 * Submitting request must be dequeued before calling this function
2518 * because it will be linked to another request_queue
2519 */
2520 BUG_ON(blk_queued_rq(rq));
2521
2522 if (op_is_flush(rq->cmd_flags))
2523 where = ELEVATOR_INSERT_FLUSH;
2524
2525 add_acct_request(q, rq, where);
2526 if (where == ELEVATOR_INSERT_FLUSH)
2527 __blk_run_queue(q);
2528 spin_unlock_irqrestore(q->queue_lock, flags);
2529
2530 return BLK_STS_OK;
2531 }
2532 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2533
2534 /**
2535 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2536 * @rq: request to examine
2537 *
2538 * Description:
2539 * A request could be merge of IOs which require different failure
2540 * handling. This function determines the number of bytes which
2541 * can be failed from the beginning of the request without
2542 * crossing into area which need to be retried further.
2543 *
2544 * Return:
2545 * The number of bytes to fail.
2546 */
2547 unsigned int blk_rq_err_bytes(const struct request *rq)
2548 {
2549 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2550 unsigned int bytes = 0;
2551 struct bio *bio;
2552
2553 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2554 return blk_rq_bytes(rq);
2555
2556 /*
2557 * Currently the only 'mixing' which can happen is between
2558 * different fastfail types. We can safely fail portions
2559 * which have all the failfast bits that the first one has -
2560 * the ones which are at least as eager to fail as the first
2561 * one.
2562 */
2563 for (bio = rq->bio; bio; bio = bio->bi_next) {
2564 if ((bio->bi_opf & ff) != ff)
2565 break;
2566 bytes += bio->bi_iter.bi_size;
2567 }
2568
2569 /* this could lead to infinite loop */
2570 BUG_ON(blk_rq_bytes(rq) && !bytes);
2571 return bytes;
2572 }
2573 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2574
2575 void blk_account_io_completion(struct request *req, unsigned int bytes)
2576 {
2577 if (blk_do_io_stat(req)) {
2578 const int rw = rq_data_dir(req);
2579 struct hd_struct *part;
2580 int cpu;
2581
2582 cpu = part_stat_lock();
2583 part = req->part;
2584 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2585 part_stat_unlock();
2586 }
2587 }
2588
2589 void blk_account_io_done(struct request *req)
2590 {
2591 /*
2592 * Account IO completion. flush_rq isn't accounted as a
2593 * normal IO on queueing nor completion. Accounting the
2594 * containing request is enough.
2595 */
2596 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2597 unsigned long duration = jiffies - req->start_time;
2598 const int rw = rq_data_dir(req);
2599 struct hd_struct *part;
2600 int cpu;
2601
2602 cpu = part_stat_lock();
2603 part = req->part;
2604
2605 part_stat_inc(cpu, part, ios[rw]);
2606 part_stat_add(cpu, part, ticks[rw], duration);
2607 part_round_stats(req->q, cpu, part);
2608 part_dec_in_flight(req->q, part, rw);
2609
2610 hd_struct_put(part);
2611 part_stat_unlock();
2612 }
2613 }
2614
2615 #ifdef CONFIG_PM
2616 /*
2617 * Don't process normal requests when queue is suspended
2618 * or in the process of suspending/resuming
2619 */
2620 static bool blk_pm_allow_request(struct request *rq)
2621 {
2622 switch (rq->q->rpm_status) {
2623 case RPM_RESUMING:
2624 case RPM_SUSPENDING:
2625 return rq->rq_flags & RQF_PM;
2626 case RPM_SUSPENDED:
2627 return false;
2628 }
2629
2630 return true;
2631 }
2632 #else
2633 static bool blk_pm_allow_request(struct request *rq)
2634 {
2635 return true;
2636 }
2637 #endif
2638
2639 void blk_account_io_start(struct request *rq, bool new_io)
2640 {
2641 struct hd_struct *part;
2642 int rw = rq_data_dir(rq);
2643 int cpu;
2644
2645 if (!blk_do_io_stat(rq))
2646 return;
2647
2648 cpu = part_stat_lock();
2649
2650 if (!new_io) {
2651 part = rq->part;
2652 part_stat_inc(cpu, part, merges[rw]);
2653 } else {
2654 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2655 if (!hd_struct_try_get(part)) {
2656 /*
2657 * The partition is already being removed,
2658 * the request will be accounted on the disk only
2659 *
2660 * We take a reference on disk->part0 although that
2661 * partition will never be deleted, so we can treat
2662 * it as any other partition.
2663 */
2664 part = &rq->rq_disk->part0;
2665 hd_struct_get(part);
2666 }
2667 part_round_stats(rq->q, cpu, part);
2668 part_inc_in_flight(rq->q, part, rw);
2669 rq->part = part;
2670 }
2671
2672 part_stat_unlock();
2673 }
2674
2675 static struct request *elv_next_request(struct request_queue *q)
2676 {
2677 struct request *rq;
2678 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2679
2680 WARN_ON_ONCE(q->mq_ops);
2681
2682 while (1) {
2683 list_for_each_entry(rq, &q->queue_head, queuelist) {
2684 if (blk_pm_allow_request(rq))
2685 return rq;
2686
2687 if (rq->rq_flags & RQF_SOFTBARRIER)
2688 break;
2689 }
2690
2691 /*
2692 * Flush request is running and flush request isn't queueable
2693 * in the drive, we can hold the queue till flush request is
2694 * finished. Even we don't do this, driver can't dispatch next
2695 * requests and will requeue them. And this can improve
2696 * throughput too. For example, we have request flush1, write1,
2697 * flush 2. flush1 is dispatched, then queue is hold, write1
2698 * isn't inserted to queue. After flush1 is finished, flush2
2699 * will be dispatched. Since disk cache is already clean,
2700 * flush2 will be finished very soon, so looks like flush2 is
2701 * folded to flush1.
2702 * Since the queue is hold, a flag is set to indicate the queue
2703 * should be restarted later. Please see flush_end_io() for
2704 * details.
2705 */
2706 if (fq->flush_pending_idx != fq->flush_running_idx &&
2707 !queue_flush_queueable(q)) {
2708 fq->flush_queue_delayed = 1;
2709 return NULL;
2710 }
2711 if (unlikely(blk_queue_bypass(q)) ||
2712 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2713 return NULL;
2714 }
2715 }
2716
2717 /**
2718 * blk_peek_request - peek at the top of a request queue
2719 * @q: request queue to peek at
2720 *
2721 * Description:
2722 * Return the request at the top of @q. The returned request
2723 * should be started using blk_start_request() before LLD starts
2724 * processing it.
2725 *
2726 * Return:
2727 * Pointer to the request at the top of @q if available. Null
2728 * otherwise.
2729 */
2730 struct request *blk_peek_request(struct request_queue *q)
2731 {
2732 struct request *rq;
2733 int ret;
2734
2735 lockdep_assert_held(q->queue_lock);
2736 WARN_ON_ONCE(q->mq_ops);
2737
2738 while ((rq = elv_next_request(q)) != NULL) {
2739 if (!(rq->rq_flags & RQF_STARTED)) {
2740 /*
2741 * This is the first time the device driver
2742 * sees this request (possibly after
2743 * requeueing). Notify IO scheduler.
2744 */
2745 if (rq->rq_flags & RQF_SORTED)
2746 elv_activate_rq(q, rq);
2747
2748 /*
2749 * just mark as started even if we don't start
2750 * it, a request that has been delayed should
2751 * not be passed by new incoming requests
2752 */
2753 rq->rq_flags |= RQF_STARTED;
2754 trace_block_rq_issue(q, rq);
2755 }
2756
2757 if (!q->boundary_rq || q->boundary_rq == rq) {
2758 q->end_sector = rq_end_sector(rq);
2759 q->boundary_rq = NULL;
2760 }
2761
2762 if (rq->rq_flags & RQF_DONTPREP)
2763 break;
2764
2765 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2766 /*
2767 * make sure space for the drain appears we
2768 * know we can do this because max_hw_segments
2769 * has been adjusted to be one fewer than the
2770 * device can handle
2771 */
2772 rq->nr_phys_segments++;
2773 }
2774
2775 if (!q->prep_rq_fn)
2776 break;
2777
2778 ret = q->prep_rq_fn(q, rq);
2779 if (ret == BLKPREP_OK) {
2780 break;
2781 } else if (ret == BLKPREP_DEFER) {
2782 /*
2783 * the request may have been (partially) prepped.
2784 * we need to keep this request in the front to
2785 * avoid resource deadlock. RQF_STARTED will
2786 * prevent other fs requests from passing this one.
2787 */
2788 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2789 !(rq->rq_flags & RQF_DONTPREP)) {
2790 /*
2791 * remove the space for the drain we added
2792 * so that we don't add it again
2793 */
2794 --rq->nr_phys_segments;
2795 }
2796
2797 rq = NULL;
2798 break;
2799 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2800 rq->rq_flags |= RQF_QUIET;
2801 /*
2802 * Mark this request as started so we don't trigger
2803 * any debug logic in the end I/O path.
2804 */
2805 blk_start_request(rq);
2806 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2807 BLK_STS_TARGET : BLK_STS_IOERR);
2808 } else {
2809 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2810 break;
2811 }
2812 }
2813
2814 return rq;
2815 }
2816 EXPORT_SYMBOL(blk_peek_request);
2817
2818 static void blk_dequeue_request(struct request *rq)
2819 {
2820 struct request_queue *q = rq->q;
2821
2822 BUG_ON(list_empty(&rq->queuelist));
2823 BUG_ON(ELV_ON_HASH(rq));
2824
2825 list_del_init(&rq->queuelist);
2826
2827 /*
2828 * the time frame between a request being removed from the lists
2829 * and to it is freed is accounted as io that is in progress at
2830 * the driver side.
2831 */
2832 if (blk_account_rq(rq)) {
2833 q->in_flight[rq_is_sync(rq)]++;
2834 set_io_start_time_ns(rq);
2835 }
2836 }
2837
2838 /**
2839 * blk_start_request - start request processing on the driver
2840 * @req: request to dequeue
2841 *
2842 * Description:
2843 * Dequeue @req and start timeout timer on it. This hands off the
2844 * request to the driver.
2845 */
2846 void blk_start_request(struct request *req)
2847 {
2848 lockdep_assert_held(req->q->queue_lock);
2849 WARN_ON_ONCE(req->q->mq_ops);
2850
2851 blk_dequeue_request(req);
2852
2853 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2854 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2855 req->rq_flags |= RQF_STATS;
2856 wbt_issue(req->q->rq_wb, &req->issue_stat);
2857 }
2858
2859 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2860 blk_add_timer(req);
2861 }
2862 EXPORT_SYMBOL(blk_start_request);
2863
2864 /**
2865 * blk_fetch_request - fetch a request from a request queue
2866 * @q: request queue to fetch a request from
2867 *
2868 * Description:
2869 * Return the request at the top of @q. The request is started on
2870 * return and LLD can start processing it immediately.
2871 *
2872 * Return:
2873 * Pointer to the request at the top of @q if available. Null
2874 * otherwise.
2875 */
2876 struct request *blk_fetch_request(struct request_queue *q)
2877 {
2878 struct request *rq;
2879
2880 lockdep_assert_held(q->queue_lock);
2881 WARN_ON_ONCE(q->mq_ops);
2882
2883 rq = blk_peek_request(q);
2884 if (rq)
2885 blk_start_request(rq);
2886 return rq;
2887 }
2888 EXPORT_SYMBOL(blk_fetch_request);
2889
2890 /*
2891 * Steal bios from a request and add them to a bio list.
2892 * The request must not have been partially completed before.
2893 */
2894 void blk_steal_bios(struct bio_list *list, struct request *rq)
2895 {
2896 if (rq->bio) {
2897 if (list->tail)
2898 list->tail->bi_next = rq->bio;
2899 else
2900 list->head = rq->bio;
2901 list->tail = rq->biotail;
2902
2903 rq->bio = NULL;
2904 rq->biotail = NULL;
2905 }
2906
2907 rq->__data_len = 0;
2908 }
2909 EXPORT_SYMBOL_GPL(blk_steal_bios);
2910
2911 /**
2912 * blk_update_request - Special helper function for request stacking drivers
2913 * @req: the request being processed
2914 * @error: block status code
2915 * @nr_bytes: number of bytes to complete @req
2916 *
2917 * Description:
2918 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2919 * the request structure even if @req doesn't have leftover.
2920 * If @req has leftover, sets it up for the next range of segments.
2921 *
2922 * This special helper function is only for request stacking drivers
2923 * (e.g. request-based dm) so that they can handle partial completion.
2924 * Actual device drivers should use blk_end_request instead.
2925 *
2926 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2927 * %false return from this function.
2928 *
2929 * Return:
2930 * %false - this request doesn't have any more data
2931 * %true - this request has more data
2932 **/
2933 bool blk_update_request(struct request *req, blk_status_t error,
2934 unsigned int nr_bytes)
2935 {
2936 int total_bytes;
2937
2938 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
2939
2940 if (!req->bio)
2941 return false;
2942
2943 if (unlikely(error && !blk_rq_is_passthrough(req) &&
2944 !(req->rq_flags & RQF_QUIET)))
2945 print_req_error(req, error);
2946
2947 blk_account_io_completion(req, nr_bytes);
2948
2949 total_bytes = 0;
2950 while (req->bio) {
2951 struct bio *bio = req->bio;
2952 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2953
2954 if (bio_bytes == bio->bi_iter.bi_size)
2955 req->bio = bio->bi_next;
2956
2957 /* Completion has already been traced */
2958 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2959 req_bio_endio(req, bio, bio_bytes, error);
2960
2961 total_bytes += bio_bytes;
2962 nr_bytes -= bio_bytes;
2963
2964 if (!nr_bytes)
2965 break;
2966 }
2967
2968 /*
2969 * completely done
2970 */
2971 if (!req->bio) {
2972 /*
2973 * Reset counters so that the request stacking driver
2974 * can find how many bytes remain in the request
2975 * later.
2976 */
2977 req->__data_len = 0;
2978 return false;
2979 }
2980
2981 req->__data_len -= total_bytes;
2982
2983 /* update sector only for requests with clear definition of sector */
2984 if (!blk_rq_is_passthrough(req))
2985 req->__sector += total_bytes >> 9;
2986
2987 /* mixed attributes always follow the first bio */
2988 if (req->rq_flags & RQF_MIXED_MERGE) {
2989 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2990 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2991 }
2992
2993 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
2994 /*
2995 * If total number of sectors is less than the first segment
2996 * size, something has gone terribly wrong.
2997 */
2998 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2999 blk_dump_rq_flags(req, "request botched");
3000 req->__data_len = blk_rq_cur_bytes(req);
3001 }
3002
3003 /* recalculate the number of segments */
3004 blk_recalc_rq_segments(req);
3005 }
3006
3007 return true;
3008 }
3009 EXPORT_SYMBOL_GPL(blk_update_request);
3010
3011 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3012 unsigned int nr_bytes,
3013 unsigned int bidi_bytes)
3014 {
3015 if (blk_update_request(rq, error, nr_bytes))
3016 return true;
3017
3018 /* Bidi request must be completed as a whole */
3019 if (unlikely(blk_bidi_rq(rq)) &&
3020 blk_update_request(rq->next_rq, error, bidi_bytes))
3021 return true;
3022
3023 if (blk_queue_add_random(rq->q))
3024 add_disk_randomness(rq->rq_disk);
3025
3026 return false;
3027 }
3028
3029 /**
3030 * blk_unprep_request - unprepare a request
3031 * @req: the request
3032 *
3033 * This function makes a request ready for complete resubmission (or
3034 * completion). It happens only after all error handling is complete,
3035 * so represents the appropriate moment to deallocate any resources
3036 * that were allocated to the request in the prep_rq_fn. The queue
3037 * lock is held when calling this.
3038 */
3039 void blk_unprep_request(struct request *req)
3040 {
3041 struct request_queue *q = req->q;
3042
3043 req->rq_flags &= ~RQF_DONTPREP;
3044 if (q->unprep_rq_fn)
3045 q->unprep_rq_fn(q, req);
3046 }
3047 EXPORT_SYMBOL_GPL(blk_unprep_request);
3048
3049 void blk_finish_request(struct request *req, blk_status_t error)
3050 {
3051 struct request_queue *q = req->q;
3052
3053 lockdep_assert_held(req->q->queue_lock);
3054 WARN_ON_ONCE(q->mq_ops);
3055
3056 if (req->rq_flags & RQF_STATS)
3057 blk_stat_add(req);
3058
3059 if (req->rq_flags & RQF_QUEUED)
3060 blk_queue_end_tag(q, req);
3061
3062 BUG_ON(blk_queued_rq(req));
3063
3064 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3065 laptop_io_completion(req->q->backing_dev_info);
3066
3067 blk_delete_timer(req);
3068
3069 if (req->rq_flags & RQF_DONTPREP)
3070 blk_unprep_request(req);
3071
3072 blk_account_io_done(req);
3073
3074 if (req->end_io) {
3075 wbt_done(req->q->rq_wb, &req->issue_stat);
3076 req->end_io(req, error);
3077 } else {
3078 if (blk_bidi_rq(req))
3079 __blk_put_request(req->next_rq->q, req->next_rq);
3080
3081 __blk_put_request(q, req);
3082 }
3083 }
3084 EXPORT_SYMBOL(blk_finish_request);
3085
3086 /**
3087 * blk_end_bidi_request - Complete a bidi request
3088 * @rq: the request to complete
3089 * @error: block status code
3090 * @nr_bytes: number of bytes to complete @rq
3091 * @bidi_bytes: number of bytes to complete @rq->next_rq
3092 *
3093 * Description:
3094 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3095 * Drivers that supports bidi can safely call this member for any
3096 * type of request, bidi or uni. In the later case @bidi_bytes is
3097 * just ignored.
3098 *
3099 * Return:
3100 * %false - we are done with this request
3101 * %true - still buffers pending for this request
3102 **/
3103 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3104 unsigned int nr_bytes, unsigned int bidi_bytes)
3105 {
3106 struct request_queue *q = rq->q;
3107 unsigned long flags;
3108
3109 WARN_ON_ONCE(q->mq_ops);
3110
3111 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3112 return true;
3113
3114 spin_lock_irqsave(q->queue_lock, flags);
3115 blk_finish_request(rq, error);
3116 spin_unlock_irqrestore(q->queue_lock, flags);
3117
3118 return false;
3119 }
3120
3121 /**
3122 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3123 * @rq: the request to complete
3124 * @error: block status code
3125 * @nr_bytes: number of bytes to complete @rq
3126 * @bidi_bytes: number of bytes to complete @rq->next_rq
3127 *
3128 * Description:
3129 * Identical to blk_end_bidi_request() except that queue lock is
3130 * assumed to be locked on entry and remains so on return.
3131 *
3132 * Return:
3133 * %false - we are done with this request
3134 * %true - still buffers pending for this request
3135 **/
3136 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3137 unsigned int nr_bytes, unsigned int bidi_bytes)
3138 {
3139 lockdep_assert_held(rq->q->queue_lock);
3140 WARN_ON_ONCE(rq->q->mq_ops);
3141
3142 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3143 return true;
3144
3145 blk_finish_request(rq, error);
3146
3147 return false;
3148 }
3149
3150 /**
3151 * blk_end_request - Helper function for drivers to complete the request.
3152 * @rq: the request being processed
3153 * @error: block status code
3154 * @nr_bytes: number of bytes to complete
3155 *
3156 * Description:
3157 * Ends I/O on a number of bytes attached to @rq.
3158 * If @rq has leftover, sets it up for the next range of segments.
3159 *
3160 * Return:
3161 * %false - we are done with this request
3162 * %true - still buffers pending for this request
3163 **/
3164 bool blk_end_request(struct request *rq, blk_status_t error,
3165 unsigned int nr_bytes)
3166 {
3167 WARN_ON_ONCE(rq->q->mq_ops);
3168 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3169 }
3170 EXPORT_SYMBOL(blk_end_request);
3171
3172 /**
3173 * blk_end_request_all - Helper function for drives to finish the request.
3174 * @rq: the request to finish
3175 * @error: block status code
3176 *
3177 * Description:
3178 * Completely finish @rq.
3179 */
3180 void blk_end_request_all(struct request *rq, blk_status_t error)
3181 {
3182 bool pending;
3183 unsigned int bidi_bytes = 0;
3184
3185 if (unlikely(blk_bidi_rq(rq)))
3186 bidi_bytes = blk_rq_bytes(rq->next_rq);
3187
3188 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3189 BUG_ON(pending);
3190 }
3191 EXPORT_SYMBOL(blk_end_request_all);
3192
3193 /**
3194 * __blk_end_request - Helper function for drivers to complete the request.
3195 * @rq: the request being processed
3196 * @error: block status code
3197 * @nr_bytes: number of bytes to complete
3198 *
3199 * Description:
3200 * Must be called with queue lock held unlike blk_end_request().
3201 *
3202 * Return:
3203 * %false - we are done with this request
3204 * %true - still buffers pending for this request
3205 **/
3206 bool __blk_end_request(struct request *rq, blk_status_t error,
3207 unsigned int nr_bytes)
3208 {
3209 lockdep_assert_held(rq->q->queue_lock);
3210 WARN_ON_ONCE(rq->q->mq_ops);
3211
3212 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3213 }
3214 EXPORT_SYMBOL(__blk_end_request);
3215
3216 /**
3217 * __blk_end_request_all - Helper function for drives to finish the request.
3218 * @rq: the request to finish
3219 * @error: block status code
3220 *
3221 * Description:
3222 * Completely finish @rq. Must be called with queue lock held.
3223 */
3224 void __blk_end_request_all(struct request *rq, blk_status_t error)
3225 {
3226 bool pending;
3227 unsigned int bidi_bytes = 0;
3228
3229 lockdep_assert_held(rq->q->queue_lock);
3230 WARN_ON_ONCE(rq->q->mq_ops);
3231
3232 if (unlikely(blk_bidi_rq(rq)))
3233 bidi_bytes = blk_rq_bytes(rq->next_rq);
3234
3235 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3236 BUG_ON(pending);
3237 }
3238 EXPORT_SYMBOL(__blk_end_request_all);
3239
3240 /**
3241 * __blk_end_request_cur - Helper function to finish the current request chunk.
3242 * @rq: the request to finish the current chunk for
3243 * @error: block status code
3244 *
3245 * Description:
3246 * Complete the current consecutively mapped chunk from @rq. Must
3247 * be called with queue lock held.
3248 *
3249 * Return:
3250 * %false - we are done with this request
3251 * %true - still buffers pending for this request
3252 */
3253 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3254 {
3255 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3256 }
3257 EXPORT_SYMBOL(__blk_end_request_cur);
3258
3259 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3260 struct bio *bio)
3261 {
3262 if (bio_has_data(bio))
3263 rq->nr_phys_segments = bio_phys_segments(q, bio);
3264 else if (bio_op(bio) == REQ_OP_DISCARD)
3265 rq->nr_phys_segments = 1;
3266
3267 rq->__data_len = bio->bi_iter.bi_size;
3268 rq->bio = rq->biotail = bio;
3269
3270 if (bio->bi_disk)
3271 rq->rq_disk = bio->bi_disk;
3272 }
3273
3274 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3275 /**
3276 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3277 * @rq: the request to be flushed
3278 *
3279 * Description:
3280 * Flush all pages in @rq.
3281 */
3282 void rq_flush_dcache_pages(struct request *rq)
3283 {
3284 struct req_iterator iter;
3285 struct bio_vec bvec;
3286
3287 rq_for_each_segment(bvec, rq, iter)
3288 flush_dcache_page(bvec.bv_page);
3289 }
3290 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3291 #endif
3292
3293 /**
3294 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3295 * @q : the queue of the device being checked
3296 *
3297 * Description:
3298 * Check if underlying low-level drivers of a device are busy.
3299 * If the drivers want to export their busy state, they must set own
3300 * exporting function using blk_queue_lld_busy() first.
3301 *
3302 * Basically, this function is used only by request stacking drivers
3303 * to stop dispatching requests to underlying devices when underlying
3304 * devices are busy. This behavior helps more I/O merging on the queue
3305 * of the request stacking driver and prevents I/O throughput regression
3306 * on burst I/O load.
3307 *
3308 * Return:
3309 * 0 - Not busy (The request stacking driver should dispatch request)
3310 * 1 - Busy (The request stacking driver should stop dispatching request)
3311 */
3312 int blk_lld_busy(struct request_queue *q)
3313 {
3314 if (q->lld_busy_fn)
3315 return q->lld_busy_fn(q);
3316
3317 return 0;
3318 }
3319 EXPORT_SYMBOL_GPL(blk_lld_busy);
3320
3321 /**
3322 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3323 * @rq: the clone request to be cleaned up
3324 *
3325 * Description:
3326 * Free all bios in @rq for a cloned request.
3327 */
3328 void blk_rq_unprep_clone(struct request *rq)
3329 {
3330 struct bio *bio;
3331
3332 while ((bio = rq->bio) != NULL) {
3333 rq->bio = bio->bi_next;
3334
3335 bio_put(bio);
3336 }
3337 }
3338 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3339
3340 /*
3341 * Copy attributes of the original request to the clone request.
3342 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3343 */
3344 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3345 {
3346 dst->cpu = src->cpu;
3347 dst->__sector = blk_rq_pos(src);
3348 dst->__data_len = blk_rq_bytes(src);
3349 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3350 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3351 dst->special_vec = src->special_vec;
3352 }
3353 dst->nr_phys_segments = src->nr_phys_segments;
3354 dst->ioprio = src->ioprio;
3355 dst->extra_len = src->extra_len;
3356 }
3357
3358 /**
3359 * blk_rq_prep_clone - Helper function to setup clone request
3360 * @rq: the request to be setup
3361 * @rq_src: original request to be cloned
3362 * @bs: bio_set that bios for clone are allocated from
3363 * @gfp_mask: memory allocation mask for bio
3364 * @bio_ctr: setup function to be called for each clone bio.
3365 * Returns %0 for success, non %0 for failure.
3366 * @data: private data to be passed to @bio_ctr
3367 *
3368 * Description:
3369 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3370 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3371 * are not copied, and copying such parts is the caller's responsibility.
3372 * Also, pages which the original bios are pointing to are not copied
3373 * and the cloned bios just point same pages.
3374 * So cloned bios must be completed before original bios, which means
3375 * the caller must complete @rq before @rq_src.
3376 */
3377 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3378 struct bio_set *bs, gfp_t gfp_mask,
3379 int (*bio_ctr)(struct bio *, struct bio *, void *),
3380 void *data)
3381 {
3382 struct bio *bio, *bio_src;
3383
3384 if (!bs)
3385 bs = fs_bio_set;
3386
3387 __rq_for_each_bio(bio_src, rq_src) {
3388 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3389 if (!bio)
3390 goto free_and_out;
3391
3392 if (bio_ctr && bio_ctr(bio, bio_src, data))
3393 goto free_and_out;
3394
3395 if (rq->bio) {
3396 rq->biotail->bi_next = bio;
3397 rq->biotail = bio;
3398 } else
3399 rq->bio = rq->biotail = bio;
3400 }
3401
3402 __blk_rq_prep_clone(rq, rq_src);
3403
3404 return 0;
3405
3406 free_and_out:
3407 if (bio)
3408 bio_put(bio);
3409 blk_rq_unprep_clone(rq);
3410
3411 return -ENOMEM;
3412 }
3413 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3414
3415 int kblockd_schedule_work(struct work_struct *work)
3416 {
3417 return queue_work(kblockd_workqueue, work);
3418 }
3419 EXPORT_SYMBOL(kblockd_schedule_work);
3420
3421 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3422 {
3423 return queue_work_on(cpu, kblockd_workqueue, work);
3424 }
3425 EXPORT_SYMBOL(kblockd_schedule_work_on);
3426
3427 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3428 unsigned long delay)
3429 {
3430 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3431 }
3432 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3433
3434 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3435 unsigned long delay)
3436 {
3437 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3438 }
3439 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3440
3441 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3442 unsigned long delay)
3443 {
3444 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3445 }
3446 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3447
3448 /**
3449 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3450 * @plug: The &struct blk_plug that needs to be initialized
3451 *
3452 * Description:
3453 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3454 * pending I/O should the task end up blocking between blk_start_plug() and
3455 * blk_finish_plug(). This is important from a performance perspective, but
3456 * also ensures that we don't deadlock. For instance, if the task is blocking
3457 * for a memory allocation, memory reclaim could end up wanting to free a
3458 * page belonging to that request that is currently residing in our private
3459 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3460 * this kind of deadlock.
3461 */
3462 void blk_start_plug(struct blk_plug *plug)
3463 {
3464 struct task_struct *tsk = current;
3465
3466 /*
3467 * If this is a nested plug, don't actually assign it.
3468 */
3469 if (tsk->plug)
3470 return;
3471
3472 INIT_LIST_HEAD(&plug->list);
3473 INIT_LIST_HEAD(&plug->mq_list);
3474 INIT_LIST_HEAD(&plug->cb_list);
3475 /*
3476 * Store ordering should not be needed here, since a potential
3477 * preempt will imply a full memory barrier
3478 */
3479 tsk->plug = plug;
3480 }
3481 EXPORT_SYMBOL(blk_start_plug);
3482
3483 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3484 {
3485 struct request *rqa = container_of(a, struct request, queuelist);
3486 struct request *rqb = container_of(b, struct request, queuelist);
3487
3488 return !(rqa->q < rqb->q ||
3489 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3490 }
3491
3492 /*
3493 * If 'from_schedule' is true, then postpone the dispatch of requests
3494 * until a safe kblockd context. We due this to avoid accidental big
3495 * additional stack usage in driver dispatch, in places where the originally
3496 * plugger did not intend it.
3497 */
3498 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3499 bool from_schedule)
3500 __releases(q->queue_lock)
3501 {
3502 lockdep_assert_held(q->queue_lock);
3503
3504 trace_block_unplug(q, depth, !from_schedule);
3505
3506 if (from_schedule)
3507 blk_run_queue_async(q);
3508 else
3509 __blk_run_queue(q);
3510 spin_unlock(q->queue_lock);
3511 }
3512
3513 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3514 {
3515 LIST_HEAD(callbacks);
3516
3517 while (!list_empty(&plug->cb_list)) {
3518 list_splice_init(&plug->cb_list, &callbacks);
3519
3520 while (!list_empty(&callbacks)) {
3521 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3522 struct blk_plug_cb,
3523 list);
3524 list_del(&cb->list);
3525 cb->callback(cb, from_schedule);
3526 }
3527 }
3528 }
3529
3530 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3531 int size)
3532 {
3533 struct blk_plug *plug = current->plug;
3534 struct blk_plug_cb *cb;
3535
3536 if (!plug)
3537 return NULL;
3538
3539 list_for_each_entry(cb, &plug->cb_list, list)
3540 if (cb->callback == unplug && cb->data == data)
3541 return cb;
3542
3543 /* Not currently on the callback list */
3544 BUG_ON(size < sizeof(*cb));
3545 cb = kzalloc(size, GFP_ATOMIC);
3546 if (cb) {
3547 cb->data = data;
3548 cb->callback = unplug;
3549 list_add(&cb->list, &plug->cb_list);
3550 }
3551 return cb;
3552 }
3553 EXPORT_SYMBOL(blk_check_plugged);
3554
3555 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3556 {
3557 struct request_queue *q;
3558 unsigned long flags;
3559 struct request *rq;
3560 LIST_HEAD(list);
3561 unsigned int depth;
3562
3563 flush_plug_callbacks(plug, from_schedule);
3564
3565 if (!list_empty(&plug->mq_list))
3566 blk_mq_flush_plug_list(plug, from_schedule);
3567
3568 if (list_empty(&plug->list))
3569 return;
3570
3571 list_splice_init(&plug->list, &list);
3572
3573 list_sort(NULL, &list, plug_rq_cmp);
3574
3575 q = NULL;
3576 depth = 0;
3577
3578 /*
3579 * Save and disable interrupts here, to avoid doing it for every
3580 * queue lock we have to take.
3581 */
3582 local_irq_save(flags);
3583 while (!list_empty(&list)) {
3584 rq = list_entry_rq(list.next);
3585 list_del_init(&rq->queuelist);
3586 BUG_ON(!rq->q);
3587 if (rq->q != q) {
3588 /*
3589 * This drops the queue lock
3590 */
3591 if (q)
3592 queue_unplugged(q, depth, from_schedule);
3593 q = rq->q;
3594 depth = 0;
3595 spin_lock(q->queue_lock);
3596 }
3597
3598 /*
3599 * Short-circuit if @q is dead
3600 */
3601 if (unlikely(blk_queue_dying(q))) {
3602 __blk_end_request_all(rq, BLK_STS_IOERR);
3603 continue;
3604 }
3605
3606 /*
3607 * rq is already accounted, so use raw insert
3608 */
3609 if (op_is_flush(rq->cmd_flags))
3610 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3611 else
3612 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3613
3614 depth++;
3615 }
3616
3617 /*
3618 * This drops the queue lock
3619 */
3620 if (q)
3621 queue_unplugged(q, depth, from_schedule);
3622
3623 local_irq_restore(flags);
3624 }
3625
3626 void blk_finish_plug(struct blk_plug *plug)
3627 {
3628 if (plug != current->plug)
3629 return;
3630 blk_flush_plug_list(plug, false);
3631
3632 current->plug = NULL;
3633 }
3634 EXPORT_SYMBOL(blk_finish_plug);
3635
3636 #ifdef CONFIG_PM
3637 /**
3638 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3639 * @q: the queue of the device
3640 * @dev: the device the queue belongs to
3641 *
3642 * Description:
3643 * Initialize runtime-PM-related fields for @q and start auto suspend for
3644 * @dev. Drivers that want to take advantage of request-based runtime PM
3645 * should call this function after @dev has been initialized, and its
3646 * request queue @q has been allocated, and runtime PM for it can not happen
3647 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3648 * cases, driver should call this function before any I/O has taken place.
3649 *
3650 * This function takes care of setting up using auto suspend for the device,
3651 * the autosuspend delay is set to -1 to make runtime suspend impossible
3652 * until an updated value is either set by user or by driver. Drivers do
3653 * not need to touch other autosuspend settings.
3654 *
3655 * The block layer runtime PM is request based, so only works for drivers
3656 * that use request as their IO unit instead of those directly use bio's.
3657 */
3658 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3659 {
3660 /* Don't enable runtime PM for blk-mq until it is ready */
3661 if (q->mq_ops) {
3662 pm_runtime_disable(dev);
3663 return;
3664 }
3665
3666 q->dev = dev;
3667 q->rpm_status = RPM_ACTIVE;
3668 pm_runtime_set_autosuspend_delay(q->dev, -1);
3669 pm_runtime_use_autosuspend(q->dev);
3670 }
3671 EXPORT_SYMBOL(blk_pm_runtime_init);
3672
3673 /**
3674 * blk_pre_runtime_suspend - Pre runtime suspend check
3675 * @q: the queue of the device
3676 *
3677 * Description:
3678 * This function will check if runtime suspend is allowed for the device
3679 * by examining if there are any requests pending in the queue. If there
3680 * are requests pending, the device can not be runtime suspended; otherwise,
3681 * the queue's status will be updated to SUSPENDING and the driver can
3682 * proceed to suspend the device.
3683 *
3684 * For the not allowed case, we mark last busy for the device so that
3685 * runtime PM core will try to autosuspend it some time later.
3686 *
3687 * This function should be called near the start of the device's
3688 * runtime_suspend callback.
3689 *
3690 * Return:
3691 * 0 - OK to runtime suspend the device
3692 * -EBUSY - Device should not be runtime suspended
3693 */
3694 int blk_pre_runtime_suspend(struct request_queue *q)
3695 {
3696 int ret = 0;
3697
3698 if (!q->dev)
3699 return ret;
3700
3701 spin_lock_irq(q->queue_lock);
3702 if (q->nr_pending) {
3703 ret = -EBUSY;
3704 pm_runtime_mark_last_busy(q->dev);
3705 } else {
3706 q->rpm_status = RPM_SUSPENDING;
3707 }
3708 spin_unlock_irq(q->queue_lock);
3709 return ret;
3710 }
3711 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3712
3713 /**
3714 * blk_post_runtime_suspend - Post runtime suspend processing
3715 * @q: the queue of the device
3716 * @err: return value of the device's runtime_suspend function
3717 *
3718 * Description:
3719 * Update the queue's runtime status according to the return value of the
3720 * device's runtime suspend function and mark last busy for the device so
3721 * that PM core will try to auto suspend the device at a later time.
3722 *
3723 * This function should be called near the end of the device's
3724 * runtime_suspend callback.
3725 */
3726 void blk_post_runtime_suspend(struct request_queue *q, int err)
3727 {
3728 if (!q->dev)
3729 return;
3730
3731 spin_lock_irq(q->queue_lock);
3732 if (!err) {
3733 q->rpm_status = RPM_SUSPENDED;
3734 } else {
3735 q->rpm_status = RPM_ACTIVE;
3736 pm_runtime_mark_last_busy(q->dev);
3737 }
3738 spin_unlock_irq(q->queue_lock);
3739 }
3740 EXPORT_SYMBOL(blk_post_runtime_suspend);
3741
3742 /**
3743 * blk_pre_runtime_resume - Pre runtime resume processing
3744 * @q: the queue of the device
3745 *
3746 * Description:
3747 * Update the queue's runtime status to RESUMING in preparation for the
3748 * runtime resume of the device.
3749 *
3750 * This function should be called near the start of the device's
3751 * runtime_resume callback.
3752 */
3753 void blk_pre_runtime_resume(struct request_queue *q)
3754 {
3755 if (!q->dev)
3756 return;
3757
3758 spin_lock_irq(q->queue_lock);
3759 q->rpm_status = RPM_RESUMING;
3760 spin_unlock_irq(q->queue_lock);
3761 }
3762 EXPORT_SYMBOL(blk_pre_runtime_resume);
3763
3764 /**
3765 * blk_post_runtime_resume - Post runtime resume processing
3766 * @q: the queue of the device
3767 * @err: return value of the device's runtime_resume function
3768 *
3769 * Description:
3770 * Update the queue's runtime status according to the return value of the
3771 * device's runtime_resume function. If it is successfully resumed, process
3772 * the requests that are queued into the device's queue when it is resuming
3773 * and then mark last busy and initiate autosuspend for it.
3774 *
3775 * This function should be called near the end of the device's
3776 * runtime_resume callback.
3777 */
3778 void blk_post_runtime_resume(struct request_queue *q, int err)
3779 {
3780 if (!q->dev)
3781 return;
3782
3783 spin_lock_irq(q->queue_lock);
3784 if (!err) {
3785 q->rpm_status = RPM_ACTIVE;
3786 __blk_run_queue(q);
3787 pm_runtime_mark_last_busy(q->dev);
3788 pm_request_autosuspend(q->dev);
3789 } else {
3790 q->rpm_status = RPM_SUSPENDED;
3791 }
3792 spin_unlock_irq(q->queue_lock);
3793 }
3794 EXPORT_SYMBOL(blk_post_runtime_resume);
3795
3796 /**
3797 * blk_set_runtime_active - Force runtime status of the queue to be active
3798 * @q: the queue of the device
3799 *
3800 * If the device is left runtime suspended during system suspend the resume
3801 * hook typically resumes the device and corrects runtime status
3802 * accordingly. However, that does not affect the queue runtime PM status
3803 * which is still "suspended". This prevents processing requests from the
3804 * queue.
3805 *
3806 * This function can be used in driver's resume hook to correct queue
3807 * runtime PM status and re-enable peeking requests from the queue. It
3808 * should be called before first request is added to the queue.
3809 */
3810 void blk_set_runtime_active(struct request_queue *q)
3811 {
3812 spin_lock_irq(q->queue_lock);
3813 q->rpm_status = RPM_ACTIVE;
3814 pm_runtime_mark_last_busy(q->dev);
3815 pm_request_autosuspend(q->dev);
3816 spin_unlock_irq(q->queue_lock);
3817 }
3818 EXPORT_SYMBOL(blk_set_runtime_active);
3819 #endif
3820
3821 int __init blk_dev_init(void)
3822 {
3823 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3824 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3825 FIELD_SIZEOF(struct request, cmd_flags));
3826 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3827 FIELD_SIZEOF(struct bio, bi_opf));
3828
3829 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3830 kblockd_workqueue = alloc_workqueue("kblockd",
3831 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3832 if (!kblockd_workqueue)
3833 panic("Failed to create kblockd\n");
3834
3835 request_cachep = kmem_cache_create("blkdev_requests",
3836 sizeof(struct request), 0, SLAB_PANIC, NULL);
3837
3838 blk_requestq_cachep = kmem_cache_create("request_queue",
3839 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3840
3841 #ifdef CONFIG_DEBUG_FS
3842 blk_debugfs_root = debugfs_create_dir("block", NULL);
3843 #endif
3844
3845 return 0;
3846 }